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Gravitational waves around a naked singularity: Odd-parity perturbation
of Lemaı̂tre-Tolman-Bondi space-time

Hideo Iguchi,* Ken-ichi Nakao,† and Tomohiro Harada‡

Department of Physics, Kyoto University, Kyoto 606-01, Japan
~Received 1 December 1997; published 6 May 1998!

The motion of a spherical dust cloud is described by the Lemaıˆtre-Tolman-Bondi solution and is completely
specified by initial values of distributions of the rest mass density and specific energy of the dust fluid. From
generic initial conditions of this spherically symmetric collapse, there appears a naked singularity at the
symmetric center in the course of the gravitational collapse of the dust cloud. So this might be a counterex-
ample to the cosmic censorship hypothesis. To investigate the genericity of this example, we examine the
stability of the ‘‘nakedness’’ of this singularity against odd-parity modes of non-spherical linear perturbations
for the metric, i.e., linear gravitational waves. We find that the perturbations do not diverge but are well-
behaved even in the neighborhood of the central naked singularity. This means that the naked singularity
formation process is marginally stable against the odd-parity modes of linear gravitational waves.
@S0556-2821~98!04412-9#
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I. INTRODUCTION

The singularity theorems revealed that the occurrence
singularities is a generic property of space-time in gene
relativity @1–3#. However, those theorems say nothing ab
the detailed features of the singularities themselves; for
ample, we do not get information from those theorems ab
whether the predicted singularity is naked or not. Nak
means that the singularity is observable. A singularity i
boundary of space-time. Hence, in order to obtain a solu
of hyperbolic field equations for matter, gauge fields a
space-time itself in the causal future of a naked singular
we need to impose a boundary condition on it. However,
do not yet know physically reasonable boundary conditio
on singularities and hence to avoid this difficulty, the cosm
censorship hypotheses~CCH! proposed by Penrose@4,5# are
often adopted in the analysis of the physical phenomen
the strong gravitational fields.

There are weak and strong versions of the CCH. T
weak CCH states that a singularity is covered by an ev
horizon and never observed by anyone included in the ca
past of future null infinity~not globally naked! while the
strong CCH says that nobody can observe a singularity~not
locally naked!. However, the validity of the CCH is one o
the most important open questions in classical general r
tivity. No one has ever proved that these hypotheses h
On the contrary, some researchers found, analytically or
merically, that there are solutions of the Einstein equati
which have naked singularities. If these naked singulari
are physically realizable, then we could be in an embarra
ing situation because an important assumption in theor
on the nature of a black hole is violated. In the vicinity of
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singularity, quantum effects on the space-time will play
important role and therefore if the existence of naked sin
larities is generic, in order to understand the nature of a bl
hole, we might need the knowledge of the quantum theory
gravity even if the black hole is a classical entity.

In the past two decades several researchers have sh
that the Lemaıˆtre-Tolman-Bondi~LTB! space-time@6,7# is
one of the candidates for a counterexample to both vers
of the CCH. This space-time describes the motion o
spherically symmetric inhomogeneous dust cloud and
completely specified by initial values of the rest mass den
and specific energy of the dust fluid. Eardley and Sm
showed that the central singularity of the LTB space-tim
can be shell-focusing and naked in the case of margin
bound collapse@8#. Christodoulou showed that the same
true also for the bound case@9#. Newman generalized
Christodoulou’s analysis to cover a larger class of LT
space-times@10#. Joshi and Dwivedi carried out studies of
much more general class of solutions in which a coni
singularity~but not curvature one! was allowed in the initial
configuration and showed that the formation of a central
ked singularity is a general feature for a very wide range
initial data in the LTB space-time@11#. These results are
summarized as follows; in this space-time, a naked singu
ity appears from generic initial data forspherically symmet-
ric configurations of the rest mass density and specific
ergy of the dust fluid.

In order to recognize this example as a serious coun
example to the CCH, we should examine its genericity. T
is to say, there is a possibility that the naked singularity
due to physically unrealistic conditions, e.g., assumptions
the spherical symmetry, dust matter and so on. Shapiro
Teukolsky studied evolution of collisionless gas spheroids
fully general relativistic simulations@12#. They found that
prolate spheroids with sufficiently elongated initial config
rations and even with some angular momentum, may fo
naked singularities. Ori and Piran numerically examined
structure of self-similar spherical collapse solutions for a p
7262 © 1998 The American Physical Society



ifi
n

lly
on
by

u
n
w
e

ex
u
n

ac
e

on
i

ie

at
b

c
on
b
a

rit
h
s

e
m
s

e,
s

h
e
e
o

in
igh
n
im
of
of
g
th
s
e

fly
s

he
m
sis
e
a
t
is

ge-
r

pse
ous
ex-

the
is
sic

this

ta-

ion
s:

l

per

he
c-
t

ter,
r-

57 7263GRAVITATIONAL WAVES AROUND A NAKED . . .
fect fluid with a barotropic equation of state@13#. They
showed that there is a globally naked singularity in a sign
cant part of the space of self-similar solutions. Joshi a
Dwivedi analytically investigated the self-similar spherica
symmetric collapse of a perfect fluid with a similar equati
of state@14# and further the naked singularity produced
the gravitational collapse of radiation shells@15# and of more
general matter@16#.

In this article, we concentrate our attention on the iss
whether the spherical symmetry is essential to the occurre
of the shell focusing naked singularity. For this purpose,
consider odd-parity modes of non-spherically symmetric p
turbations in the marginally bound LTB space-time and
amine the stability of the ‘‘nakedness’’ of that naked sing
larity against those linear perturbations. As for the no
spherically symmetric collapse case, Joshi and Krol
revealed that a naked singularity appears also in the Szek
space-time with an irrotational dust matter@17#. Since the
odd-parity perturbations correspond to the rotational moti
of the dust fluid and of the space-time itself, our analysis w
give a new insight into the formations of naked singularit
in non-spherically symmetric space-time.

To decouple physical effects from gauge or coordin
ones, we adopt the gauge-invariant formalism formulated
Gerlach and Sengupta@18# for general spherically symmetri
space-times. Here we consider only the metric perturbati
i.e., linear gravitational waves. Using this formalism, we o
tain a single decoupled partial differential equation for
gauge-invariant variable corresponding to the odd-pa
metric perturbations of the LTB space-time. We analyze t
equation numerically by use of single null coordinate
which was adopted by Goldwirth and Piran@19# for the nu-
merical study of spherical collapse of a massless scalar fi
Then we shall discuss the stability of the LTB space-ti
with a central naked singularity from the results of the
analyses. A naked singularity is interpreted to be unstabl
perturbations tend to diverge as they approach the naked
gularity and the Cauchy horizon associated with it. If suc
behavior is found, it means that the perturbations will d
stroy the Cauchy horizon and change the causal structur
this space-time. Waugh and Lake examined the stability
the central naked singularity of the LTB space-time aga
perturbations of a massless field by the use of the h
frequency~eikonal! approximation and with the assumptio
of no back reaction of the massless field to the space-t
geometry@20#. Their analysis revealed that the formation
the central naked singularity is stable within the validity
their approximation. In contrast to the analysis by Wau
and Lake, however, the effect of the finite wavelength of
perturbations and the non-spherically symmetric dynamic
the space-time itself are taken into account up to the lin
order in our present analysis.

This paper is organized as follows. In Sec. II, we brie
describe the LTB space-time. In Sec. III, we derive the ba
equations for perturbations in the LTB space-time and t
give regularity conditions for the perturbations at the sy
metric center, which are significant for our stability analy
of the central naked singularity formation. In Sec. IV, w
present the expressions for the perturbations of the Riem
tensor. We show the numerical procedure and results for
marginally bound LTB space-time in Sec. V. Section VI
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devoted to the summary and discussions. We adopt the
ometrized units,c5G51. The signature of the metric tenso
and sign convention of the Riemann tensor follow Ref.@21#.

II. LEMAI ˆTRE-TOLMAN-BONDI SPACE-TIME

The inhomogeneous spherically symmetric dust colla
is described by the LTB space-time. Using the synchron
coordinate system, the line element of this space-time is
pressed in the form

ds̄25ḡmndxmdxn

[2dt21A2~ t,r !dr21R2~ t,r !~du21sin2udf2!.

~2.1!

The energy-momentum tensor for the dust fluid is

T̄mn5 r̄~ t,r !ūmūn, ~2.2!

wherer̄(t,r ) is the rest mass density andūm is the 4-velocity
of the dust fluid. In the synchronous coordinate system,
unit normal vector field to the spacelike hypersurfaces
geodesic and there is a freedom of which timelike geode
field is adopted as the hypersurface unit normal. Using
freedom, we can always setum5d0

m since the 4-velocity of
the spherically symmetric dust fluid is tangent to an irro
tional timelike geodesic field.

Then the Einstein equations and the equation of mot
for the dust fluid reduce to the following simple equation

A5
] rR

A11 f ~r !
, ~2.3!

r̄~ t,r !5
1

8p

1

R2] rR

dF~r !

dr
, ~2.4!

~] tR!22
F~r !

R
5 f ~r !, ~2.5!

where f (r ) and F(r ) are arbitrary functions of the radia
coordinate,r . From Eq.~2.4!, F(r ) is related to the Misner-
Sharp mass function@22#, m(r ), of the dust cloud in the
manner

m~r !54pE
0

R~ t,r !

r̄~ t,r !R2dR54pE
0

r

r̄~ t,r !R2] rRdr

5
F~r !

2
. ~2.6!

Hence Eq.~2.5! might be regarded as the energy equation
unit mass. This means that the other arbitrary function,f (r ),
is recognized as the specific energy of the dust fluid. T
motion of the dust cloud is completely specified by the fun
tion, F(r ), ~or equivalently, the initial distribution of the res
mass density,r̄) and the specific energy,f (r ). When we
restrict our calculation to the case that the symmetric cen
r 50, is initially regular, the central shell focusing singula
ity is naked if and only if] r

2r̄ur 50,0 is initially satisfied for
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the marginally bound collapse,f (r )50 @23,24#. For the col-
lapse that is not marginally bound, there exists a similar c
dition as an inequality for a value depending on the fu
tional forms ofF(r ) and f (r ) @10,23,24#.

III. PERTURBATION METHOD

The perturbation method used in this article is the gau
invariant one which has been formulated by Gerlach a
Sengupta@18# for a general spherically symmetric bac
ground space-time. First we briefly review their formalis
only for the so-called odd-parity modes. Thereafter we w
apply this formalism to the LTB space-time in order to d
rive the basic equations for our analysis.

The perturbed metric tensor is expressed in the form

gmn5ḡmn1hmn , ~3.1!

whereḡmn is the metric tensor of the spherically symmet
background space-time andhmn is a perturbation. The
energy-momentum tensor is written in the form

Tmn5T̄mn1dTmn , ~3.2!

whereT̄mn is a background quantity anddTmn is a perturba-
tion. By virtue of the spherical symmetry of the backgrou
space-time,T̄mn is expressed in the form

T̄mndxmdxn5T̄abdxadxb1
1

2
T̄B

BR2~ t,r !dV2, ~3.3!

where the sub- and superscripts,a,b, . . . representt and r
while A,B, . . . representu andf. The odd-parity perturba
tions of hmn anddTmn are expressed in the form

hmn5S 0 0 h0~ t,r !F lB
m

0 h1~ t,r !F lB
m

sym h2~ t,r !x lAB
m
D , ~3.4!

dTmn5S 0 0 t0~ t,r !F lB
m

0 t1~ t,r !F lB
m

sym t2~ t,r !x lAB
m
D , ~3.5!

where F lB
m and x lAB

m are odd-parity vector and tensor ha
monics associated with the spherical symmetry of the ba
ground space-time@25#.

We introduce gauge-invariant variables defined
Gerlach and Sengupta. The metric variables are given b

ka5ha2
1

2
R2]aS h2

R2D . ~3.6!

The matter variables are given by the following combin
tions:

La5ta2
1

2
TB

Bha , ~3.7!
-
-

e-
d

l
-

k-

y

-

L5t22
1

2
TB

Bh2 . ~3.8!

Then the Einstein equations lead to the equations for
metric variables as

k ua
a 516pL ~ l>2!, ~3.9!

~R4Wab! ub1~ l 21!~ l 12!ka516pR2La ~ l>1!,
~3.10!

whereWab is defined as

Wab[S hb

R2D
ua

2S ha

R2D
ub

5S kb

R2D
ua

2S ka

R2D
ub

, ~3.11!

and the vertical bar refers to the covariant derivative with
the 2-dimensional sub-space-time (t,r ). From the equation
of motion for the matter, we get

~R2La! ua5~ l 21!~ l 12!L ~ l>1!. ~3.12!

Now we apply the above formalism to the case of t
background LTB space-time. From Eqs.~2.2! and ~3.5!, we
find that there is no density perturbation and that only
perturbation of 4-velocity,dum , exists:

dum5„0,0,U~ t,r !F lB
m
…. ~3.13!

Therefore the odd-parity gauge-invariant matter variables
come

L05 r̄U and L15L50. ~3.14!

From Eqs.~3.9! and ~3.10!, we obtain the equations of mo
tion for the metric variables:

] t~Ak0!2] r S k1

A D50, ~3.15!

] r~R4cs!1A~ l 21!~ l 12!k0516pAR2L0 ,
~3.16!

] t~R4cs!1
1

A
~ l 21!~ l 12!k150, ~3.17!

where we have introduced another gauge-invariant varia
cs , defined as

cs[
1

AF ] tS k1

R2D 2] rS k0

R2D G . ~3.18!

Equation~3.12! becomes

] t~AR2L0!50. ~3.19!

This equation is easily integrated and we obtain

AR2L05
dJ~r !

dr
, ~3.20!
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57 7265GRAVITATIONAL WAVES AROUND A NAKED . . .
where J(r ) is an arbitrary function depending only onr .
From Eqs.~3.16!, ~3.17!, and~3.20!, we obtain a single de
coupled wave equation in the form

] tS A

R2
] t~R4cs!D 2] rS 1

AR2
] r~R4cs!D

1~ l 21!~ l 12!Acs5216p] rS 1

AR2

dJ

dr D .

~3.21!

The variable,cs , differs from the gauge-invariant vari
able used in Ref.@26# by a factor of 1/R2. The reason why
we adoptcs as a gauge-invariant variable instead is due
regularity conditions atr 50. Further, as will be shown later
cs is closely connected with the curvature tensor near
center.

Let us consider the regularity conditions for the bac
ground metric functions and gauge-invariant perturbation
r 50. Hereafter we restrict ourselves to the axisymme
case, i.e.,m50. Note that this restriction does not lose ge
erality of our analysis. Further we consider only the case
which the space-time is regular before the occurrence of
singularity. This means that, before the naked singularity
mation, the metric functions,R(t,r ) andA(t,r ), behave near
the center in the manner

R→Rc~ t !r 1O~r 3!, ~3.22!

A→Rc~ t !1O~r 2!. ~3.23!

To investigate the regularity conditions of the gaug
invariant variables,ka andL0, we follow Bardeen and Piran
@27#. The results are given by

L0→Lc~ t !r l 111O~r l 13!, ~3.24!

k0→k0c~ t !r l 111O~r l 13!, ~3.25!

k1→k1c~ t !r l 121O~r l 14!. ~3.26!

From Eqs.~3.18!, ~3.22!, ~3.23!, ~3.25! and ~3.26!, we find
that cs behaves near the center as

cs→csc~ t !r l 221O~r l ! for l>2, ~3.27!

cs→csc~ t !r 1O~r 3! for l 51. ~3.28!

In the case ofl>2, the coefficient,csc(t), is related toRc(t)
andk0c(t) in the manner

csc~ t !52~ l 21!
k0c~ t !

Rc
3~ t !

. ~3.29!

From the above equations, we note that only the quadru
mode,l 52, of cs does not vanish at the center.

IV. PERTURBATION OF RIEMANN TENSOR

In this section, we consider the perturbation of the R
mann tensor,Rmns

l , of the LTB space-time to investigat
the relation between the singularity formation and the per
o

e

-
at
c
-
n
e

r-

-

le

-

r-

bations. The Riemann tensor is decomposed into the R
tensor,Rmn , and the Weyl tensor,

Cmnsl5Rmnsl1$gm[lRs]n1gn[sRl]m%1
1

3
Rgm[sgl]n .

~4.1!

We shall give them in the form of the components of t
following tetrad basis:

e~ t !
m 5S 1,0,0,2

h0Pl ,u

R2sin u
D , ~4.2!

e~r !
m 5S 0,

1

A
,0,2

h1Pl ,u

AR2sin u
D , ~4.3!

e~u!
m 5S 0,0,

1

R
,2

h2

2R3sin2u

3~sin uPl ,u,u2cosuPl ,u!D , ~4.4!

e~f!
m 5S 0,0,0,

1

R sin u D , ~4.5!

wherePl(cosu) is the Legendre polynomial and the comm
followed by u denotes a derivative with respect tou. The
Weyl tensor is then decomposed into the so-called elec
part,Eab , and magnetic part,Bab , which are defined as

Eab[Cambne~ t !
m e~ t !

n , ~4.6!

Bab[
1

2
eas

mnCmnble~ t !
s e~ t !

l , ~4.7!

whereemnab is the 4-dimensional skew tensor. In the bac
ground LTB space-time, the Ricci tensor has a non-z
value in the region of non-vanishing rest mass densityr̄
Þ0, through the Einstein equations and also the electric
has a non-zero value. On the other hand, the magnetic pa
identically equal to zero in the background LTB space-tim
However, when axisymmetric odd-parity metric perturb
tions exist, the Riemann tensor is perturbed and the magn
part may also have a non-vanishing value.

The perturbation of the Ricci tensor is expressed by
matter perturbation through the Einstein equations as

d~R~ t !~f!!5
8p

R
L0Pl ,u5

8p

AR3

dJ

dr
Pl ,u , ~4.8!

and the other components vanish, where we have used
~3.20! in the last equality. The perturbations of the tetr
components of the electric part are given in the form

d~E~r !~f!!5
1

2F 1

AR3
~ l 21!~ l 12!k11R~] tR!csGsin uPl ,u ,

~4.9!
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d~E~u!~f!!5
1

2AR2F] tS k1

A D2~] tA!k0G
3~sin uPl ,u,u2cosuPl ,u!, ~4.10!

and the other components vanish. The perturbations of
tetrad components of the magnetic part are obtained in
form

d~B~r !~r !!5
1

2
l ~ l 11!csPl , ~4.11!

d~B~r !~u!!5
1

4AR3
@R2] r~R2cs!2A~ l 21!~ l 12!k0#Pl ,u ,

~4.12!

d~B~u!~u!!52
1

AR2FR] r S k0

R D1S ] tR

R
2

] tA

A D k1

1
1

2
AR2csGPl ,u,u2

1

2AR2FR] r S k0

R D
1S ] tR

R
2

] tA

A D k11AR2csG l ~ l 11!Pl ,

~4.13!

d~B~f!~f!!52
1

AR2FR] r S k0

R D1S ] tR

R
2

] tA

A D k1

1
1

2
AR2csGcot uPl ,u2

1

2AR2FR] r S k0

R D
1S ] tR

R
2

] tA

A D k11AR2csG l ~ l 11!Pl ,

~4.14!

and the other components vanish.
Now we will investigate the behavior of the Ricci an

Weyl tensors near the center where the naked singula
appears. From the regularity conditions~3.22!–~3.29!, we
can see that the perturbations of the Ricci and Weyl ten
obtained in the above behave near the center in the man

d~R~ t !~f!!→
8p

Rc
LcPl ,ur l , ~4.15!

for the Ricci tensor, and

d~E~r !~f!!→
1

2Rc
4 ~ l 21!F ~ l 12!k1c2Rc

dRc

dt
k0cGPl ,ur l 21,

~4.16!
he
e

ity

rs
er

d~E~u!~f!!→
1

2Rc
4F ~ l 12!k1c2Rc

dRc

dt
k0cG

3~Pl ,u,u2cot uPl ,u!r l 21, ~4.17!

d~B~r !~r !!→2
1

2Rc
3 ~ l 21!l ~ l 11!k0cPlr

l 22, ~4.18!

d~B~r !~u!!→2
1

2Rc
3 ~ l 21!~ l 11!k0cPl ,ur l 22, ~4.19!

d~B~u!~u!!→2
1

2Rc
3 ~ l 11!k0c~Pl ,u,u1 lPl !r

l 22, ~4.20!

d~B~f!~f!!→2
1

2Rc
3 ~ l 11!k0c~cot uPl ,u1 lPl !r

l 22, ~4.21!

for the Weyl tensor ofl>2. For thel 51 mode, we find

d~E~r !~f!!→
1

2

dRc

dt
cscr

2sin u, ~4.22!

d~B~r !~r !!→2cscr cosu, ~4.23!

d~B~r !~u!!→
1

4
cscr sin u, ~4.24!

d~B~u!~u!!→
1

2
cscr cosu, ~4.25!

d~B~f!~f!!5d~B~u!~u!!. ~4.26!

From the above equations, we see that the perturbation
the tetrad components of the Ricci and Weyl tensors, exc
for the quadrupole mode,l 52, of the magnetic part,Bab ,
identically vanish at the center. This means that the cen
naked singularity formation is affected only by the quad
pole mode up to linear order. Therefore, hereafter we s
consider the quadrupole mode only. On the other hand, s
the solution for the dipole mode,l 51, is obtained analyti-
cally, we present it in Appendix A, although the dipole mo
vanishes at the center from the regularity condition and d
not influence the formation of the central naked singular
up to linear order.

V. NUMERICAL RESULTS AND DISCUSSIONS

Here we will perform numerical integration of Eq.~3.21!
for the quadrupole mode,l 52. As mentioned above, th
gauge-invariant matter perturbation variable,L0, and the per-
turbation of the Ricci tensor vanish at the regular cen
Here we restrict our investigation to the case of no ma
perturbations, namely the right hand side of Eq.~3.21! van-
ishes. The non-vanishing matter perturbation case shoul
investigated in future. Further, for the simplicity of calcul
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tions, we consider only the marginally bound case,f (r )50,
as background space-time.

By virtue of f (r )50, we can easily integrate Eq.~2.5!
and obtain

R~ t,r !5S 9F

4 D 1/3

@ t0~r !2t#2/3, ~5.1!

wheret0(r ) is an arbitrary function ofr . Using the freedom
for the scaling ofr , we chooseR(0,r )5r . This scaling ofr
corresponds to the following choice oft0(r ),

t0~r !5
2

3AF
r 3/2. ~5.2!

Here note that, from Eq.~2.3!, the background metric vari
able,A, is equal to] rR.

Then, the wave equation~3.21! becomes as follows:

]2cs

]t2
2

1

~] rR!2

]2cs

]r 2
5

1

~] rR!2S 6
] rR

R
2

] r
2R

] rR
D ]cs

]r

2S 6
] tR

R
1

] t] rR

] rR
D ]cs

]t

24F S ] t] rR

] rR
D ] tR

R
1S ] tR

R D 2

1
] t

2R

R Gcs .

~5.3!

We solve this partially differential equation numerically.
the rest of this section, we explain the details of the ba
ground space-time considered here, numerical methods
boundary conditions. Further we show the numerical resu

A. Background density profile

The background space-time and the motion of the mar
ally bound dust cloud are completely determined by the
tial rest mass density profile,r̄(0,r ). Further as already men
tioned, it should satisfy the condition] r

2r̄ur 50,0 in order
that the central naked singularity is formed. We, therefo
adopt the following initial rest mass density profile so th
the central naked singularity appears:

r̄~0,r !5H r0@122~r /r b!21~r /r b!4# for 0<r<r b,

0 for r .r b ,
~5.4!

where r0 is a positive constant andr b denotes the radia
coordinate at the surface of the dust cloud. The total~gravi-
tational! mass of the dust cloud is

M5m~r b!5
32p

105
r0r b

3 . ~5.5!

The time of the central naked singularity formation is

t5t0~0!5
1

A6pr0

. ~5.6!
-
nd
s.

-
i-

,
t

Whether the naked singularity is global or local is det
mined by a non-dimensional constantr0r b

2 . It is known that
the singularity is globally naked for sufficiently smallr0r b

2

@9,23#. However, the critical value ofr0r b
2 cannot be ob-

tained explicitly. Hence, afterr0r b
2 is given, we have to in-

vestigate whether the central naked singularity is globa
local, by numerically solving the future directed null ra
from the central naked singularity. Here we consider t
cases. One is that ofr0r b

25331022, which corresponds to a
globally naked singularity, and the other is that ofr0r b

253
31021, which corresponds to a locally naked one.

In the globally naked case, the initial radius of the du
cloud and the time of the central naked singularity format
are given by

R~0,r b!

M
5

r b

M
5

105

32pr0r b
2

>34.8, ~5.7!

t0~0!

M
5

105

32A6p3/2~r0r b
2!3/2

>46.3.

~5.8!

On the other hand, in the locally naked case, they are gi
by

R~0,r b!

M
5

r b

M
>3.48, ~5.9!

t0~0!

M
>1.46. ~5.10!

B. Numerical procedure

Next, we describe the procedure of our numerical cal
lation. We have a disadvantage when we use the (t,r ) coor-
dinate system, because of the restriction on the region
which we can numerically construct the solution of the wa
equation,~3.21!. Therefore, instead of the (t,r ) coordinate
system, we introduce a single-null coordinate system, (u,r 8),
whereu is an out-going null coordinate and chosen so tha
agrees witht at the symmetric center and we chooser 85r .
We perform the numerical integration along two characte
tic directions. The transformation matrix is formally ex
pressed in the form

dr85dr, ~5.11!

du5~] tu!rdt1~] ru! tdr.
~5.12!

Becauseu is the out-going null coordinate, the followin
relation holds:

~] tu!r

~] ru! t
52

1

] rR
. ~5.13!

Using these relations, we obtain the line element of the
dimensional sub-space-time, (t,r ), in the following new
form:
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ds~2!
2 52a2du222a~] rR!dudr8, ~5.14!

where we have introduced

a[
1

~] tu!r
. ~5.15!

Furthermore, from Eqs.~5.11! and ~5.12!, we obtain

] r 852
~] ru! t

~] tu!r
] t1] r5~] rR!] t1] r , ~5.16!

where we have used Eq.~5.13! in the last equality. The
above equation describes that] r 8 is parallel to the future
directed out-going null direction.

By using this new coordinate system, (u,r 8), Eq. ~5.3! is
expressed in the form

dfs

du
52

a

RF3] rR1
1

2
R~] tR!] t] rR

2~] tR!2] rR1
1

2
R~] rR!] t

2RGcs

2
a

2F ] r
2R

~] rR!2
2

2

R
~12] tR!Gfs , ~5.17!

] r 8cs5
1

R
fs23

] rR

R
~11] tR!cs , ~5.18!

where the ordinary derivative in the left hand side of E
~5.17! is given by

d

du
5]u1

dr8

du
] r 85]u2

a

2] rR
] r 8, ~5.19!

and we have introduced a new variable,fs , given by Eq.
~5.18!.

The procedure of the numerical integration is as follow
At the first step, we prepare initial data corresponding
imploding waves forfs at each grid point on the initial nul
hypersurface labeled byu5u05const. Then, using thisfs ,
cs is obtained at each grid point onu5u0 by the integration
of Eq. ~5.18!. At the next step, in order to obtainfs at each
grid point onu5u01Du, we integrate Eq.~5.17! by using
values offs and cs on u5u0. Then,cs on u5u01Du is
obtained from Eq.~5.18! by using fs on u5u01Du. We
repeat this procedure and obtain a solution outside
Cauchy horizon associated with the central naked singu
ity.

In the above procedure, we should impose a bound
condition oncs at the center to perform the numerical int
gration of Eq.~5.18!. From Eqs.~3.27! and ~3.29!, in the
case ofl 52 mode,cs behaves in the manner

cs→2
k0c~ t !

Rc
3~ t !

1O~r 2! for r→0. ~5.20!

Hence, we have to numerically makecs near the center so
that Eq.~5.20! is guaranteed on a surface oft5const, and
this leads to the boundary condition forcs at the center.
.

.
o

e
r-

ry

Here we comment on our numerical code. We compa
the numerical results for the Minkowski space-time with t
analytical solutions which will be described in the next su
section. In this case, the result produced by our code ag
with the analytical solution very closely. Another check w
performed was to compare the numerical results for sev
mesh sizes with each other. This test confirmed that our
merical results were almost independent of the mesh siz

C. Initial conditions and numerical results

The initial conditions which we consider are a Gaussia
shaped wave packet with respect to the coordinate,r 8:

csuu5u0
5cs

i expF2
~r 82r c8!2

2s2 G , ~5.21!

wherecs
i , s, andr c8 are constants and characterize the a

plitude, width and initial position of the initial wave packe
respectively. The initial null hypersurface,u5u0, is chosen
so that it includes a world point (t,r )5(0,0), except for the
analysis of the scattered waves which will be discussed
this section.

We investigate models with three different initial pos
tions of the wave packet, i.e.,r c8 in Eq. ~5.21!, on the initial
null hypersurface. In case 1, the wave packet reaches
center of the dust cloud before the formation of the cen
naked singularity. In case 2, a significant portion of the wa
packet hits the central naked singularity. In case 3, the pa
does not hit the central naked singularity but reaches
Cauchy horizon associated with it. Figure 1 shows these s
ations schematically. In each case, the value ofcs at the
center is plotted as a function of the coordinate time,t, in
Fig. 2 for the globally naked case and in Fig. 3 for the loca

FIG. 1. Conformal diagram of the LTB space-time with a gl
bally naked singularity.i 1( i 2) denotes future~past! timelike infin-
ity respectively, whilei 0 denotes spacelike infinity.J\ 1(J\ 2) de-
notes future~past! null infinity respectively. The dotted lineH1

indicates a future Cauchy horizon associated with the central na
singularity. The broken line is a null hypersurface on which we p
initial wave packets. The initial positions of the wave packets
classified into cases 1–3. For the locally naked singularity case
cases 1–3 are defined in the same manner as the globally n
case.
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naked case. Note that it is impossible to perform the num
cal calculation in the causal future of the central naked s
gularity. Therefore we plotcs at the center only before th
occurrence of the central naked singularity. Although suc
difficulty exists, we find that violent growth of the amplitud
of cs is not observed near the central naked singularity
Cauchy horizon associated with it.

Next we show the dependence ofcs at the center on the
width of the initial wave packet. Figure 4 depictscs at the
center for various widths of packets in case 2. It is found t
the amplitude ofcs with smaller initial width becomes large
at the center. The relation between the width,s, and the
maximal value ofucsu at the center is shown in Fig. 5. W
find that there is the following power-law relation:

ucsur 50}s23. ~5.22!

We also observe the time dependence ofcs along the line
of a constant circumferential radius outside the dust clo

FIG. 2. Plots of the gauge-invariant variable,cs , at the center,
r 50, with an initial widths50.05r b for the cases 1–3 for globally
naked cases. In~a!, the dotted line denotes case 1 (r c850.5r b), the
broken line shows case 2 (r c850.82r b), and the solid line denote
case 3 (r c851.2r b). In ~b!, the results of case 2 are shown in mo
detail. The broken line in~b! is the same as the broken line in~a!.
The solid and dotted lines show the cases that the wave pac
were put on the initial surface atr c850.76r b and at r c850.88r b ,
respectively.
i-
-

a

d

t

d.

Since we would like to see the effect of the central nak
singularity oncs , we consider the globally naked case on
We set up an initial wave packet ofs50.05r b at R
5100M on the initial null hypersurface which does not in
clude the space-time point (t,r )5(0,0) but is chosen so tha
the wave packet will reach the neighborhood of the cen
naked singularity.

The results are shown in Fig. 6 in whichcs at R
5100M is plotted as a function oft. Note that the point,R
5100M , is located in the vacuum region which is th
Schwarzschild space-time by Birkhoff’s theorem. Hence
value of t along the curve ofR5100M agrees with that of

ets

FIG. 3. Plots of the gauge-invariant variable,cs , at the center,
r 50, with an initial width s50.02r b for cases 1–3 for locally
naked cases. The dotted, broken, and solid lines denote caser c8
50.28r b), case 2 (r c850.38r b), and case 3 (r c850.58r b), respec-
tively.

FIG. 4. Plots of the gauge-invariant variable,cs , at the center,
r 50, in the LTB space-time for various widths of initial wav
packets. The wave packets are put atr 50.88r b on the initial null
surface. The widths of initial wave packets are varied from 0.0r b

to 0.12r b . The solid line~a! corresponds to the wave form of th
wave packet with the initial widths50.03r b . The broken line~b!
is that of the initial widths50.05r b while the dotted line~c! cor-
responds to that of the initial widths50.08r b . The broken dotted
line ~d! is that of the initial widths50.12r b .
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the usual static time coordinate of the Schwarzschild spa
time.

In Fig. 6~a!, the solid line corresponds to case 1 while t
broken line is for case 2. The dotted line denotes the re
for case 3. The left-hand peaks in Fig. 6~a! correspond to the
initial incident waves. On the other hand, the right-ha
peaks of cases 1 and 2 in this figure correspond to the s
tered outgoing waves. In case 3, the right-hand peak does
exist and this is because, in this case, almost all portion
the incident waves enter into the Cauchy horizon associ
with the central naked singularity and hence it is impossi
to follow numerically the scattered waves in the causal fut
of the central naked singularity. Figure 6~b! shows detailed
behavior of the scatteredcs for case 2. It is a most importan
fact seen in these figures that the amplitude of the scatt
waves is almost the same as that of the initial incident wa
in cases 1 and 2.

In order to investigate the effect of the wavelength ofcs ,
we perform the numerical integration for case 2 but w
different initial widths of wave packets. The results of na
rower (s50.02r b) and broader (s50.25r b and 0.5r b)
widths than the case plotted in Figs. 6~a! and 6~b! are shown
in Fig. 6~c!. The narrower wave is similar tos50.05r b
while the broader packets have different forms of scatte
waves from the narrower one. However, in both cases,
amplitude of the scattered wave is not so different from
incident one.

D. Minkowski case

Here we investigate the behavior ofcs in the Minkowski
space-time and compare it with the results of the LTB spa
time obtained in the above in order to reveal the effects
the existence of the dust cloud and the central naked sin
larity on the dynamics ofcs . In the Minkowski case, since
R(t,r )5r , Eq. ~5.3! becomes

FIG. 5. The relation between the widths of initial wave pack
and the maximal values ofucsu at the center,r 50. The results for
the case of the LTB space-time with globally naked singularity
marked by open circles. The results of the locally naked case
marked by the triangles. The results of the Minkowski space-t
are marked by cross marks. The broken line denotes the rela
ucsumax}s23.
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FIG. 6. Plots of cs with an initial width s50.05r b at R
5100M as a function of time,t, in the LTB space-time. In~a!, the
solid line shows the result for the case with an initial time when
put the wave packet on the initial surfacet i /M5265.310~case 1!,
the broken line is fort i /M5238.529~case 2!, and the dotted line
is for t i /M5213.610~case 3!. In ~b!, we depict the details of the
case 2. The solid line shows the plot ofcs with the initial time,
t i /M5234.336, the broken line is fort i /M5238.529, the dotted
line is for t i /M5244.677. We find no diverging tendency of th
gauge-invariantcs when it approaches the Cauchy horizon. In~c!,
we vary the width of the initial wave packet in case 2. The solid li
is a plot of s50.02r b , the broken line is the case of the initia
width s50.25r b , and the dotted line is that ofs50.5r b .
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] t
2cs2] r

2cs5
6

r
] rcs . ~5.23!

The solution of this equation which is regular atr 50 is
obtained in the form

cs53
f ~ t2r !2 f ~ t1r !

r 5
13

f ~1!~ t2r !1 f ~1!~ t1r !

r 4

1
f ~2!~ t2r !2 f ~2!~ t1r !

r 3
, ~5.24!

where f (x) is an arbitrary function andf (n)(x) denotes the
n-th order derivative off (x) with respect tox. We set the
following initial wave packet on the null hypersurface,t5r ,

cs5expF2
~r 2r c!

2

2s2 G . ~5.25!

Using the above solution, we compare the evolution of wa
forms in the Minkowski space-time with that in the LT
space-time. The initial wave packet in the LTB space-ti
has been given by Eq.~5.21! as a function of the coordinat
radius, r 8. However, note thatr 8 does not agree with the
circumferential radius,R, in this case but in the Minkowsk
case, the coordinate radius,r , agrees with the circumferentia
radius,R. Since the circumferential radius,R, is tightly con-
nected with the behavior of the amplitude of the wave,
should set the same initial data with respect toR both for the
LTB and Minkowski cases. Hence first we plot the initi
wave packet~5.21! as a function ofR/M on the initial null
hypersurface and then the values ofs and r c in Eq. ~5.25!
are adjusted so that the initial wave form fits well with th
of the LTB case.

First we consider the evolution ofcs at the center. Using
Eqs.~5.24! and~5.25!, we obtaincs at the center in the form

cs~ t,0!5F12
1

s2S t

2
2r cD t

2
2

1

4s2S t

2D 2

1
1

4s4S t

2
2r cD 2S t

2D 2

1
1

20s4S t

2
2r cD S t

2D 3

2
1

60s6S t

2
2r cD 3S t

2D 3G
3expF2

1

2s2S t

2
2r cD 2G . ~5.26!

The parameters,s and r c , in Eq. ~5.25! are chosen so tha
the initial wave packets fit well with those of the cases 1 a
2 of Fig. 2. The results are given in Figs. 7~a! and 7~b!,
respectively, and in this figure, we also plot the results
the corresponding cases of the LTB space-time. It should
noted that there is scarcely any difference between the w
forms of the Minkowski and LTB cases.

Next we consider the behavior ofcs at a finite circumfer-
ential radius which agrees with the numerical value ofR
5100M in the LTB case. Here the wave form is obtain
e

e

e

t

d

r
e

ve

numerically by the same procedure as in the LTB case.
result is shown in Fig. 8. We also plot the corresponding c
of the LTB space-time in the same figure. We find that th
is a little difference of the phase between the Minkowski a
LTB cases. However, the behavior ofcs in the Minkowski
case is basically the same as that in the LTB case. The e
due to the dust cloud and the existence of the central na
singularity on the propagation ofcs is rather small.

We consider the relation between the maximum value
ucsu observed at the center and the width,s, of an initial
wave packet in the Minkowski space-time. This relation
obtained from Eq.~5.26!. The results are also shown in Fig
5. The power-law relation Eq.~5.22! is also valid in the
Minkowski case. From Eq.~5.24!, cs is approximately pro-
portion to 1/r 3 except for the region ofr &s around the
center. If the initial amplitude of the wave packet has a va
c i at r 5r c , then the value ofcs at r 5s is roughly esti-
mated asc i3(s/r c)

23. This will be the reason why the
relation ~5.22! holds in the Minkowski space-time. As w
have discussed above,cs behaves outside the Cauchy ho

FIG. 7. Results of the comparison of the wave forms at
center. In~a!, the solid line shows the LTB case, as a function
t/M , that is the same as the case 1 in Fig. 2~a!. The dotted line
shows the corresponding one of the Minkowsi case, as a functio
t, wheres51.18 andr c513.9. In~b!, the LTB case is the solid line
and case 2 in Fig. 2~a!. The Minkowski case is the dotted line wher
s51.25 andr c521.4.
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zon of the LTB space-time in approximately the same m
ner as in the Minkowski space-time. Therefore it would
also the reason why the relation~5.22! holds in the LTB
space-time.

As a result, we conclude that even in the neighborhood
the central naked singularity and of the Cauchy horizon
sociated with it, the metric perturbation,cs , does not show
any peculiar behavior. However, we should note thatcs does
not vanish in the neighborhood of the central naked sin
larity although it is well-behaved. Therefore, the formati
process of the central naked singularity ismarginally stable
against the odd-parity metric perturbations.

VI. CONCLUSIONS

We have investigated the behavior of the odd-parity lin
perturbations in the LTB space-time. We have derived
wave equation for the gauge-invariant variable,cs . From the
analysis of the regularity forcs and the perturbations of th
Riemann tensor, only the quadrupole mode,l 52, of cs and
of the magnetic part of the Weyl tensor does not vanish
the symmetric center of the background LTB space-tim
where a naked singularity appears in the course of the gr
tational collapse of the dust cloud. Therefore this quadrup
mode is the most important for the stability analysis of nak
singularity formation in the LTB space-time. Then we ha
performed numerical experiments on how a Gaussian-sha
incident wave packet behaves under this wave equation
the l 52 mode without matter perturbations. From those n
merical experiments, we have obtained the following resu
When this wave packet approaches the center, its ampli
becomes larger but finite. The amplitude at the center
pends on the width of the initial wave packet according t
power law. On the other hand, when the incident wa
packet initially located outside the dust cloud returns back
the same circumferential radius as the initial one, the am
tude of the returned wave is almost equal to that of the in
dent one.

In order to reveal the characteristic effects of the LT
space-time on the behavior ofcs , we have also investigate
cs in the Minkowski space-time. Then we have found that

FIG. 8. Wave forms along the constant circumferential rad
both for the Minkowski and LTB cases are plotted. The solid li
shows the LTB case, as a function oft/M , that is identical with case
1 in Fig. 6~a!. The dotted line shows the corresponding one of
Minkowski case, as a function oft, wheres51.33 andr c5100.
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the outside of the Cauchy horizon associated with the cen
naked singularity, the behavior ofcs in the LTB space-time
seems to be not so different from that in the Minkows
space-time at least except for the extreme neighborhoo
the naked singularity. Therefore the power-law depende
in the LTB space-time described above is basically reali
by the analytical discussion about the case of the Minkow
space-time. Further the propagation effect due to the e
tence of the dust cloud and the occurrence of the cen
naked singularity is rather small. In other words, there is
peculiar behavior ofcs even in the neighborhood of the cen
tral naked singularity. However, it should be noted that
odd-parity metric perturbation does not vanish in the nei
borhood of the central naked singularity and Cauchy horiz
associated with it. As a result, we conclude that the cen
naked singularity formation in the LTB space-time is ‘‘ma
ginally’’ stable against the odd-parity metric perturbations

We note that our analyses are not sufficient to determ
the stability of the naked singularity formation in the LT
space-time. There remain some problems to complete
analysis. The first problem is to take account of odd-pa
matter perturbations. We are now investigating this proble
The second is to consider the even-parity mode in which
metric and matter perturbations are essentially coupled w
each other. This problem will be analyzed in future. In th
paper, we have dealt with the marginally bound case. For
case that is not marginally bound collapse, the condition
the appearance of the central naked singularity is sligh
different from the above case@23,24# and hence there is a
possibility that the behavior ofcs in this case is different
from the marginally bound one. This case is now under
vestigation.
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APPENDIX A: ANALYTIC SOLUTION
OF THE DIPOLE MODE

We present an analytic solution of the wave equations
the l 51 mode. Substitutingl 51 into Eqs.~3.16! and~3.17!,
we get

] t~R4cs!50, ~A1!

] r@R4cs216pJ~r !#50. ~A2!

Equation~A2! is easily integrated and we obtain

R4cs216pJ~r !5c~ t !, ~A3!

where c(t) is an arbitrary function oft. Substituting this
equation into Eq.~A1!, we obtain

s

e
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] tc~ t !50. ~A4!

Hence the function,c(t), is temporally constant. From Eq
~3.20! and the regularity conditions forR, L0 andcs , the left
hand side of Eq.~A3! vanishes at the center. Therefore t
function,c(t), should vanish identically and the solution fo
the dipole mode is obtained in the form
r-
cs5
16p

R4
J~r !. ~A5!

From the regularity condition,~3.28!, J(r )/R4, is identically
zero at the regular center and hence this mode does not a
the formation of the central naked singularity.
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