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Gravitational waves around a naked singularity: Odd-parity perturbation
of Lemaitre-Tolman-Bondi space-time
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The motion of a spherical dust cloud is described by the Cemdiolman-Bondi solution and is completely
specified by initial values of distributions of the rest mass density and specific energy of the dust fluid. From
generic initial conditions of this spherically symmetric collapse, there appears a naked singularity at the
symmetric center in the course of the gravitational collapse of the dust cloud. So this might be a counterex-
ample to the cosmic censorship hypothesis. To investigate the genericity of this example, we examine the
stability of the “nakedness” of this singularity against odd-parity modes of non-spherical linear perturbations
for the metric, i.e., linear gravitational waves. We find that the perturbations do not diverge but are well-
behaved even in the neighborhood of the central naked singularity. This means that the naked singularity
formation process is marginally stable against the odd-parity modes of linear gravitational waves.
[S0556-282198)04412-9
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[. INTRODUCTION singularity, quantum effects on the space-time will play an
important role and therefore if the existence of naked singu-
The singularity theorems revealed that the occurrence dfrities is generic, in order to understand the nature of a black
singularities is a generic property of space-time in generahole, we might need the knowledge of the quantum theory of
relativity [1—3]. However, those theorems say nothing aboutdravity even if the black hole is a classical entity.
the detailed features of the singularities themselves; for ex- In the past two decades several researchers have shown
ample, we do not get information from those theorems aboufhat the Lemdre-Tolman-Bondi(LTB) space-time[6,7] is
whether the predicted singularity is naked or not. Naked®n€ of the candlo_lates for a counterex_ample to both versions
means that the singularity is observable. A singularity is &7 theé CCH. This space-time describes the motion of a
boundary of space-time. Hence, in order to obtain a solutioﬁphenc"leIy Sym.”.‘et”c [nhpmogeneous dust cloud and N
of hyperbolic field equations for matter, gauge fields andcompletely specified by initial values of the rest mass density

space-time itself in the causal future of a naked singularityand specific energy of the dust fluid. Eardley and Smarr

we need to impose a boundary condition on it. However We’showed that the central singularity of the LTB space-time
P y ’ .. " tan be shell-focusing and naked in the case of marginally

"Hound collapsd8]. Christodoulou showed that the same is

on singularities and hence to avoid this difficulty, the COSMiCy e also for the bound cask9]. Newman generalized
censorship hypothes¢€CH) proposed by Penrogd.5] are  cpistodoulou’s analysis to cover a larger class of LTB

often adopted in the analysis of the physical phenomena &fpace-time§10]. Joshi and Dwivedi carried out studies of a
the strong gravitational fields. much more general class of solutions in which a conical
There are weak and strong versions of the CCH. Theingularity (but not curvature onewas allowed in the initial
weak CCH states that a singularity is covered by an evengonfiguration and showed that the formation of a central na-
horizon and never observed by anyone included in the causikd singularity is a general feature for a very wide range of

past of future null infinity(not globally nakegl while the initial data in the LTB space-tim¢ll]. These results are
strong CCH says that nobody can observe a singul@nity ~ summarized as follows; in this space-time, a naked singular-
locally naked. However, the validity of the CCH is one of ity appears from generic initial data fepherically symmet-
the most important open questions in classical general relaic configurations of the rest mass density and specific en-
tivity. No one has ever proved that these hypotheses holdrgy of the dust fluid.
On the contrary, some researchers found, analytically or nu- In order to recognize this example as a serious counter-
merically, that there are solutions of the Einstein equationgxample to the CCH, we should examine its genericity. That
which have naked singularities. If these naked singularitiess to say, there is a possibility that the naked singularity is
are physically realizable, then we could be in an embarrassdue to physically unrealistic conditions, e.g., assumptions of
ing situation because an important assumption in theoreme spherical symmetry, dust matter and so on. Shapiro and
on the nature of a black hole is violated. In the vicinity of a Teukolsky studied evolution of collisionless gas spheroids by
fully general relativistic simulation§12]. They found that
prolate spheroids with sufficiently elongated initial configu-
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fect fluid with a barotropic equation of stafd3]. They devoted to the summary and discussions. We adopt the ge-
showed that there is a globally naked singularity in a signifi-ometrized unitsc=G=1. The signature of the metric tensor
cant part of the space of self-similar solutions. Joshi andind sign convention of the Riemann tensor follow R21].
Dwivedi analytically investigated the self-similar spherically

symmetric collapse of a perfect fluid with a similar equation IIl. LEMAI TRE-TOLMAN-BONDI SPACE-TIME

of state[14] and further the naked singularity produced by

the gravitational collapse of radiation shdll$] and of more is described by the LTB space-time. Using the synchronous

ge?r?rtarl]lism:rt:iiﬁe]\}ve concentrate our attention on the issu coordinate system, the line element of this space-time is ex-
' j)ressed in the form

whether the spherical symmetry is essential to the occurrence

of the shell focusing naked singularity. For this purpose, we d;zza dxdx”

consider odd-parity modes of non-spherically symmetric per- my

turbations in the marginally bound LTB space-time and ex- =—dt?+ A?(t,r)dr2+ R%(t,r)(d 6+ sirf0d ¢?).

amine the stability of the “nakedness” of that naked singu- 2.1)

larity against those linear perturbations. As for the non- ’

spherically symmetric collapse case, Joshi and Krolackrhe energy-momentum tensor for the dust fluid is

revealed that a naked singularity appears also in the Szekeres

space-time with an irrotational dust mat{dr7]. Since the Trv=p(t,r)uku’, (2.2

odd-parity perturbations correspond to the rotational motions

of the dust fluid and of the space-time itself, our analysis Willyherep(t,r) is the rest mass density and is the 4-velocity

give a new insight into the formations of naked singularitiesof the dust fluid. In the synchronous coordinate system, the

in non-spherically symmetric space-time. ~unit normal vector field to the spacelike hypersurfaces is
To decouple physical effects from gauge or coordinateyeodesic and there is a freedom of which timelike geodesic

ones, we adopt the gauge-invariant formalism formulated byie|d is adopted as the hypersurface unit normal. Using this

Gerlach and Sengupla8] for general spherically symmetric freedom, we can always sat'= 5% since the 4-velocity of

space-times. Here we consider only the metric perturbationgne spherically symmetric dust fluid is tangent to an irrota-

i.e., linear gravitational waves. Using this formalism, we 0b-tional timelike geodesic field.

tain a single decoupled partial differential equation for a  Then the Einstein equations and the equation of motion

gauge-invariant variable corresponding to the odd-parityy the dust fluid reduce to the following simple equations:
metric perturbations of the LTB space-time. We analyze this

The inhomogeneous spherically symmetric dust collapse

equation numerically by use of single null coordinates, IR

which was adopted by Goldwirth and Pirgt8] for the nu- A=——, (2.3
merical study of spherical collapse of a massless scalar field. V1+£(r)

Then we shall discuss the stability of the LTB space-time

with a central naked singularity from the results of these — 1 1 dF(r)

analyses. A naked singularity is interpreted to be unstable, if p(t,r)= 87 R2g.R dr ' 2.4
perturbations tend to diverge as they approach the naked sin- '

gularity and the Cauchy horizon associated with it. If such a F(r)

behavior is found, it means that the perturbations will de- (6,R)2— T:f(r)’ (2.5

stroy the Cauchy horizon and change the causal structure of
this space-time. Waugh and Lake examined the stability of . . .
the central naked singularity of the LTB space-time againsYVhe:je. f(r) ar|1:d F(rI)E ar;- 4arl;):|trary fur;ctlo;s OL thl\e/llradlal
perturbations of a massless field by the use of the high(—:ohOr Inatey . from' q2(2 4, F(r) |fsrhe atde tolt ed .'Snﬁr'
frequency(eikona) approximation and with the assumption Sharp mass functiof22], m(r), of the dust cloud in the
of no back reaction of the massless field to the space—tim@"anner

geometry{20]. Their analysis revealed that the formation of RLI_ -

the central naked singularity is stable within the validity of m(r)=47-rJ p(t,r)R?d R=47TJ p(t,r)R%,Rdr
their approximation. In contrast to the analysis by Waugh 0 0

and Lake, however, the effect of the finite wavelength of the F(r)

perturbations and the non-spherically symmetric dynamics of =—", (2.6)
the space-time itself are taken into account up to the linear 2

order in our present analysis. . .
This paper is organized as follows. In Sec. Il, we briefly Hence Eq(2.5 might be regarded as the energy equation per

describe the LTB space-time. In Sec. lll, we derive the basi(%Inlt mass. This means that_ t_he other arbitrary f“”C“‘QT‘)'
equations for perturbations in the LTB space-time and thert r(_acogr:zr:addas thle sdpgcnﬁc erlwergly of th.ff. %ust ﬂ#'df' The
give regularity conditions for the perturbations at the sym—mOtlon ofthe USt. cloud 1S com.p'e.te y speciiie y the func-
metric center, which are significant for our stability analysist'on’ F(r), (9r3qualently, the !r?mal distribution of the rest
of the central naked singularity formation. In Sec. IV, we Mass densityp) and the specific energy(r). When we
present the expressions for the perturbations of the Riemar§strict our calculation to the case that the symmetric center,
tensor. We show the numerical procedure and results for the= 0. is initially regular, the central shell focusing singular-
marginally bound LTB space-time in Sec. V. Section VI is ity is naked if and only if8r2p|r:0<0 is initially satisfied for
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the marginally bound collapsé&(r) =0 [23,24]. For the col-

lapse that is not marginally bound, there exists a similar con- L=to— ETBBhZ' (3.8
dition as an inequality for a value depending on the func-
tional forms ofF(r) andf(r) [10,23,24. Then the Einstein equations lead to the equations for the

metric variables as

Ill. PERTURBATION METHOD
. N L a]a=l6q-rL (1=2), (3.9
The perturbation method used in this article is the gauge-

invariant one which has been formulated by Gerlach and a\pjab _ a_ 2| a -
Sengupta[18] for a general spherically symmetric back- (RWD)p+ (=11 +2)k*=167RL (I/l)’(3 10
ground space-time. First we briefly review their formalism '
only for the so-called odd-parity modes. Thereafter we willyhereW,, is defined as

apply this formalism to the LTB space-time in order to de-

rive the basic equations for our analysis. hp h, Ko Ka
The perturbed metric tensor is expressed in the form W, = @) - E = E - E , (3.1
_ la b la Ib
9ur=9urt Ny, 3.1

and the vertical bar refers to the covariant derivative within
the 2-dimensional sub-space-timgr(. From the equation

whereg,,, is the metric tensor of the spherically symmetric of motion for the matter, we get

background space-time and,, is a perturbation. The
energy-momentum tensor is written in the form (RZLa)‘az(I —D(+2)L  (1=1). (3.12
Ty=Tu+6T,,, 3.2 Now we apply the above formalism to the case of the
- background LTB space-time. From Ed2.2) and(3.5), we
whereT ,, is a background quantity andll ,, is a perturba-  find that there is no density perturbation and that only the
tion. By virtue of the spherical symmetry of the backgroundperturbation of 4-velocityéu,, , exists:

space-timeT ,, is expressed in the form

6u,=(0,0U(t,r)®z). (3.13
_ _ 1
T, dx“dx"= Tabdxadxb+ —TBBRZ(t,r)dQZ, (3.3 Therefore the odd-parity gauge-invariant matter variables be-
2 come
where the sub- and superscripgsb, ... represent andr Lo=pU and L.=L=0 31
while A,B, ... represen® and ¢. The odd-parity perturba- o= p ! ' (3.14
tions ofh,, and 5T, are expressed in the form From Egs.(3.9) and (3.10, we obtain the equations of mo-

tion for the metric variables:
0 0 hyt,r)®jp
k
h,u,y: O hl(t,r)q){g y (34) aI(AkO)_’?r<K1> :0’ (313
sym ho(t,r) XAg
3, (R*g) +A(l—1)(1 + 2)ko=16mARL,

0 O to(t,r)CDﬂ; (3.16
8T ,,= 0 ty(t,n)Pjg |, (3.9
1
sym to(t,r) xMg I(R*s) + A= D(+2)k =0, (3.19

m m H
where @5 and yjag are odd-parity vector and tensor har- \ypare we have introduced another gauge-invariant variable,
monics associated with the spherical symmetry of the backy  jeafined as
S

ground space-timg25].

We introduce gauge-invariant variables defined by 1 K K
Gerlach and Sengupta. The metric variables are given by = A o, R_12 -, R_Z) ) (3.18
1, [hy :
ka=hy— ER Ja =2/ (3.6 Equation(3.12 becomes
J(ARPLy)=0. (3.19
The matter variables are given by the following combina-
tions: This equation is easily integrated and we obtain

1_, o dJ(r)
La=ta=5Tgha, (3.7 ARLy=—1—, (3.20
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where J(r) is an arbitrary function depending only an
From Egs.(3.16, (3.17), and(3.20), we obtain a single de-
coupled wave equation in the form

bations. The Riemann tensor is decomposed into the Ricci
tensor,R,,, and the Weyl tensor,

wv
1
C,LLVO')\: R/LVU)\+{9M[)\R0']V+ gV[O'R)\],lL}+ gRg,u[og)\]V .

—or (4.1)

A 4 1 4
Jy Eat(R lr//s) ARZar(R ‘r/fs)
We shall give them in the form of the components of the

1 dJ
+(I=1)(1+2)Ays= —l@rr&r(— ) following tetrad basis:

AR2 dr
(3.2 em=<1,o,o,— hfp_‘"a ) 4.2

The variable,i, differs from the gauge-invariant vari- R"sin ¢
able used in Ref[26] by a factor of 1R?. The reason why
we adoptis as a gauge-invariant variable instead is due to u 1 hiP 4
regularity conditions at= 0. Further, as will be shown later, €n= OK'O'_ ARZ—sme ' (4.3
s is closely connected with the curvature tensor near the
center.

Let us consider the regularity conditions for the back- el — OOE _ h,
ground metric functions and gauge-invariant perturbations at (6) "R’ 2R3sinke
r=0. Hereafter we restrict ourselves to the axisymmetric
case, i.e.m=0. Note that this restriction does not lose gen- .
erality of our analysis. Further we consider only the case in X (sin 6P, 44— COS 0P|Y0)) . 449
which the space-time is regular before the occurrence of the
singularity. This means that, before the naked singularity for-
mation, the metric function®(t,r) andA(t,r), behave near eé‘¢)=<0,0,0—.), (4.5
the center in the manner Rsin 6

R—R.(t)r+0(r?), (3.22  whereP,(cos¥) is the Legendre polynomial and the comma
followed by 6 denotes a derivative with respect & The
A— Rc(t)+O(r2). (3.23 Weyl tensor is then decomposed into the so-called electric

) ) ) . part,E,z, and magnetic parB,;, which are defined as
To investigate the regularity conditions of the gauge-

invariant variablesk, andL,, we follow Bardeen and Piran

E.s=C,.5.€0€0 (4.6
[27]. The results are given by prmanbrEOEm
Lo—L(t)r' " 1+0(r'*3), 3.2 — v o
o—Le(O)r (r=) (3.29 Baﬁzzéwu Cﬂvﬁhe(t)e&), 4.7
ko—Koc(D)r' "2+ 0(r'*3), (3.29
wheree,,, .z is the 4-dimensional skew tensor. In the back-
ki— ki (H)r' T 2+0(r' 4. (3.260  ground LTB space-time, the Ricci tensor has a non-zero

value in the region of non-vanishing rest mass den$_ity,
# 0, through the Einstein equations and also the electric part
has a non-zero value. On the other hand, the magnetic part is

From Egs.(3.18, (3.22, (3.23, (3.295 and(3.26, we find
that /s behaves near the center as

Yo o OF'24+0(r")  for 1=2, (3.27) identically equal to zero in the background LTB space-time.
s Tse However, when axisymmetric odd-parity metric perturba-
Y Wso)l + o(r® for I=1. (3.29  tions exist, the Riemann tensor is perturbed and the magnetic

part may also have a non-vanishing value.

In the case of =2, the coefficientiys(t), is related taR.(t) The perturbation of the Ricci tensor is expressed by the

andkgc(t) in the manner

Koc(t)
R3(t)

s(t)=—(1—-1) (3.29

matter perturbation through the Einstein equations as

8 87 dJ

SRty ) = R Lopl,ezﬁapuey 4.9

From the above equations, we note that only the quadrupolgng the other components vanish, where we have used Eq.

mode,|l =2, of ¢ does not vanish at the center.

IV. PERTURBATION OF RIEMANN TENSOR

(3.20 in the last equality. The perturbations of the tetrad
components of the electric part are given in the form

1

. . , , . 1
In this section, we consider the perturbation of the Rie- 5(E<r)(¢)):§ A_(|_1)(|+2)k1+ R(R) s [sin 6P, 4,

mann tensorRMW“, of the LTB space-time to investigate
the relation between the singularity formation and the pertur-

R®
4.9
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1
S(E ) =——
(Eco)(9)) AR

Ky
o)

(4.10

X(Sin 6P|'gyg_cos 0P|,0)1

and the other components vanish. The perturbations of the5 B _ i I— DI+ D kaPrr' 2
tetrad components of the magnetic part are obtained in the Bon)— 51 DI+ DkocPir =,

form

1
5(B(r)(r))=§|(|+1)¢/sp|, (4.1

_ 2 2 _ _
5(B(r><9))—4AR3[R (R%s) — Al = 1) (1 +2)ko]P) 4,
(4.12
1 ko\ (R aA
5(5(9)(6))=_ﬁ Ril g TR Ak
Iary|P L Rs
> Us|Pi oo AR I R
+ F—T k1+AR (,[fs |(|+1)P|,
(4.13
1 ko\ (&R aA
OB =" 1 RH R T R ™A M
IR t oP o P
> s|cot 0P, 4 AR Ir R
F_T k1+AR l//s |(|+1)P|,
(4.19

and the other components vanish.
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o(E ! [+ 2)k R dRCk
( (0)(45))_’2_R::1( ) 1c CF Oc
X (P g g—COt OP; r' 1, (4.1
(4.18
C
1 -2 (4.19
O(B(r)p)— =z (I =1) (I + 1)kocPy or %, :
2R¢ ’
(4.20

1
8(Bg)(a)— — E(I +1)koe(Py g g+ 1P 72,

C

1
5<B<¢><¢)>H—E(Hl)km(coteP.,9+IP|>r'-2, (4.21)

C

for the Weyl tensor of =2. For thel =1 mode, we find

1dR,

8(E(1)(¢)— 5 37 ¥sd °Sin 6, 4.22
2 dt

5(B(T)(r))_’_ sd cos b, (4.23
1 -

8(B(r)(p)— 7 s SIN 6, (4.24
1

8(B(g)(6) = 5 s COS O, (4.29

8(B4)(4)) = 0(B(p)(n))- (4.26

From the above equations, we see that the perturbations of
the tetrad components of the Ricci and Weyl tensors, except
for the quadrupole modé=2, of the magnetic parB,;,
identically vanish at the center. This means that the central
naked singularity formation is affected only by the quadru-
pole mode up to linear order. Therefore, hereafter we shall

Now we will investigate the behavior of the Ricci and consider the quadrupole mode only. On the other hand, since

Weyl tensors near the center where the naked singularit{fi€ solution for the dipole modé=1, is obtained analyti-
appears. From the regularity conditiof3.22—(3.29, we  cally, we present itin Appendix A, although the dipole mode
can see that the perturbations of the Ricci and Weyl tensoréanishes at the center from the regularity condition and does

obtained in the above behave near the center in the mannéiot influence the formation of the central naked singularity
up to linear order.

V. NUMERICAL RESULTS AND DISCUSSIONS

8 |
S(Riyg) =g LcPror (4.19
C

Here we will perform numerical integration of E(.21)

for the quadrupole modd,=2. As mentioned above, the

gauge-invariant matter perturbation variallg, and the per-

turbation of the Ricci tensor vanish at the regular center.

1 dR, Here We_restrict our invest_igation to the case of no matter

S(E(ry(gy)— — (1= 1)| (14 2)kye— Re——koq Py or' =1, Perturbations, namely the right hand side of E2j21) van-

2R; dt ’ ishes. The non-vanishing matter perturbation case should be

(4.16 investigated in future. Further, for the simplicity of calcula-

for the Ricci tensor, and
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tions, we consider only the marginally bound cae) =0,
as background space-time.

By virtue of f(r)=0, we can easily integrate EQ.5
and obtain

R(t,r)= (5.7

173
7) [to(r)—t]%%,

wheretq(r) is an arbitrary function of . Using the freedom
for the scaling ofr, we chooseR(0,r)=r. This scaling ofr
corresponds to the following choice tf(r),

2
to(r)=—=r32

3\F

Here note that, from Eq2.3), the background metric vari-
able, A, is equal tod,R.
Then, the wave equatiof8.21) becomes as follows:

(5.2

s 1 Py 1 [ IR afR)aws
a2 (3,R)? ar2 (4,R)2 R R/ ar
(7R, AR| o0

R ' R ) at
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Whether the naked singularity is global or local is deter-
mined by a non-dimensional constarr 2. It is known that
the singularity is globally naked for sufficiently sm@lbrﬁ
[9,23]. However, the critical value oborﬁ cannot be ob-
tained explicitly. Hence, aftep,r? is given, we have to in-
vestigate whether the central naked singularity is global or
local, by numerically solving the future directed null ray
from the central naked singularity. Here we consider two
cases. One is that @fr2=3x10"2, which corresponds to a
globally naked singularity, and the other is thatmf2=3
X 101, which corresponds to a locally naked one.

In the globally naked case, the initial radius of the dust
cloud and the time of the central naked singularity formation
are given by

R(O,rb)_rb_ 105 ~348 5.7
M M 327Tpol'§_ o .
to(0 105
o) _ =463,

M 32673 pord)*
(5.9

On the other hand, in the locally naked case, they are given
by

4{(&tarR)atR+(atR)2+afR}

- m "R B |¥Ys R(Or r

sRIR IR/ TR (M o) _ =348, (5.9
(5.3

We solve this partially differential equation numerically. In to(o)zl 46 (5.10

the rest of this section, we explain the details of the back- M~ ‘

ground space-time considered here, numerical methods and

boundary conditions. Further we show the numerical results.

A. Background density profile

B. Numerical procedure

Next, we describe the procedure of our numerical calcu-
lation. We have a disadvantage when we use ti® oor-

The background space-time and the motion of the marginginate system, because of the restriction on the region in
ally bound dust cloud are completely determined by the ini\yhich we can numerically construct the solution of the wave
tial rest mass density profile(0,r). Further as already men- equation,(3.21). Therefore, instead of thet,f) coordinate

tioned, it should satisfy the conditioﬁfﬂr:0<0 in order

system, we introduce a single-null coordinate systanr,’(),

that the central naked singularity is formed. We, thereforewhereu is an out-going null coordinate and chosen so that it
adopt the following initial rest mass density profile so thatagrees witht at the symmetric center and we choase-r.

the central naked singularity appears:

pol1—2(r/rp)?+(rirp)*] for
0 for

O<r=ry,

— 01—
p(Oy) (>,

(5.9
where p, is a positive constant and, denotes the radial

coordinate at the surface of the dust cloud. The t(yedvi-
tationa) mass of the dust cloud is

M=m(r )=ﬁ rd (5.5
b 105p0 b "

The time of the central naked singularity formation is

t=to(0)= (5.9

1
\/67TP0.

We perform the numerical integration along two characteris-
tic directions. The transformation matrix is formally ex-
pressed in the form

dr’=dr, (5.11)

du=(gu),dt+(d,u)dr.
(5.12

Becauseu is the out-going null coordinate, the following
relation holds:

(), 1
([?ru)t é’rR.

(5.13

Using these relations, we obtain the line element of the 2-
dimensional sub-space-timet,), in the following new
form:
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ds5, = — a?du?—2a(d,R)dudr’, (5.14
where we have introduced
_ 1 (5.19
“ (du), .

Furthermore, from Eqg5.11) and(5.12), we obtain

__ (9U)y
: (du),

o+ d,=(0,R)d;+ 3, , (5.16
where we have used Ed@5.13 in the last equality. The
above equation describes that is parallel to the future
directed out-going null direction.

By using this new coordinate systenu,(’), Eq. (5.3 is
expressed in the form

dos a 1
mz - ﬁ 3t9rR+ ER(atR)atarR

1
—(9R)?4,R+ ER(&,R)&?R} A

@ (9r2R 2
-3 W_ﬁ(l_atR) Ps, (5.17
1 IR
é’r’ws:ﬁ‘f’s_sﬁ(l"";tR)lﬁSr (5-18)

where the ordinary derivative in the left hand side of Eq.

(5.17 is given by

d dr’

—_— +— )=
du du duo7r du

= 5.1
ZarRal‘" ( . 9

and we have introduced a new variabig,, given by Eg.

(5.18.

The procedure of the numerical integration is as follows.
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initial surface

FIG. 1. Conformal diagram of the LTB space-time with a glo-
bally naked singularityi " (i 7) denotes futurépas) timelike infin-
ity respectively, whilei® denotes spacelike infinityy™ () de-
notes future(pasy null infinity respectively. The dotted linél *
indicates a future Cauchy horizon associated with the central naked
singularity. The broken line is a null hypersurface on which we put
initial wave packets. The initial positions of the wave packets are
classified into cases 1-3. For the locally naked singularity case, the
cases 1-3 are defined in the same manner as the globally naked
case.

Here we comment on our numerical code. We compared
the numerical results for the Minkowski space-time with the
analytical solutions which will be described in the next sub-
section. In this case, the result produced by our code agreed
with the analytical solution very closely. Another check we
performed was to compare the numerical results for several
mesh sizes with each other. This test confirmed that our nu-
merical results were almost independent of the mesh size.

C. Initial conditions and numerical results

The initial conditions which we consider are a Gaussian-

At the first step, we prepare initial data corresponding toShaped wave packet with respect to the coordinte,

imploding waves forp at each grid point on the initial null

hypersurface labeled hy=uy=const. Then, using thig,,
i is obtained at each grid point an= ug by the integration
of Eq. (5.18. At the next step, in order to obtaip, at each
grid point onu=ugy+Au, we integrate Eq(5.17) by using
values of s and ¢ on u=ugy. Then, s on u=ug+Au is
obtained from Eq(5.18 by using ¢s on u=uy+Au. We

(5.21)

o

: (r'—rg)?
¢s|u:u0: wexg — 552 )

whereyl, o, andr/ are constants and characterize the am-
plitude, width and initial position of the initial wave packet,
respectively. The initial null hypersurface=u,, is chosen

repeat this_procedure_ and qbtain a solution outs!de thgo that it includes a world point ()= (0,0), except for the
Cauchy horizon associated with the central naked singulamnalysis of the scattered waves which will be discussed in

ity.

this section.

In the above procedure, we should impose a boundary e investigate models with three different initial posi-
condition onys at the center to perform the numerical inte- tjons of the wave packet i.er! in Eq.(5.21), on the initial

gration of Eq.(5.18. From Egs.(3.27) and (3.29, in the
case ofl =2 mode, s behaves in the manner

~ Kkoc(t) )
Rg(t) +0(r9) r—o.

(5.20

for

S—)

Hence, we have to numerically makle near the center so

that Eq.(5.20 is guaranteed on a surface ©f const, and
this leads to the boundary condition f¢t at the center.

null hypersurface. In case 1, the wave packet reaches the
center of the dust cloud before the formation of the central
naked singularity. In case 2, a significant portion of the wave
packet hits the central naked singularity. In case 3, the packet
does not hit the central naked singularity but reaches the
Cauchy horizon associated with it. Figure 1 shows these situ-
ations schematically. In each case, the valuejgfat the
center is plotted as a function of the coordinate timen

Fig. 2 for the globally naked case and in Fig. 3 for the locally
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(a) t/M t/M
Lt ey FIG. 3. Plots of the gauge-invariant variable,, at the center,
r ] r=0, with an initial width 0=0.02, for cases 1-3 for locally
100 naked cases. The dotted, broken, and solid lines denote case 1 (

=0.2&), case 2 ,=0.38,), and case 3r(=0.58), respec-
tively.

Since we would like to see the effect of the central naked
singularity onys, we consider the globally naked case only.
We set up an initial wave packet of=0.05, at R
=100M on the initial null hypersurface which does not in-
clude the space-time point,()=(0,0) but is chosen so that
the wave packet will reach the neighborhood of the central
naked singularity.

The results are shown in Fig. 6 in whiclt; at R

(b)

FIG. 2. Plots of the gauge-invariant variable,, at the center,
r=0, with an initial widtho=0.05,, for the cases 1-3 for globally
naked cases. Ifg), the dotted line denotes caserl£0.5rp), the
broken line shows case 2(=0.82,), and the solid line denotes
case 3 (,=1.2r,). In (b), the results of case 2 are shown in more
detail. The broken line irib) is the same as the broken line (i@.
The solid and dotted lines show the cases that the wave packets
were put on the initial surface a=0.76, and atr,=0.8&,,
respectively.

naked case. Note that it is impossible to perform the numeri-
cal calculation in the causal future of the central naked sin-
gularity. Therefore we plot), at the center only before the
occurrence of the central naked singularity. Although such a
difficulty exists, we find that violent growth of the amplitude
of ¢ is not observed near the central naked singularity and
Cauchy horizon associated with it.

Next we show the dependence ©f at the center on the
width of the initial wave packet. Figure 4 depiafg at the
center for various widths of packets in case 2. It is found that
the amplitude off; with smaller initial width becomes larger
at the center. The relation between the wid#h, and the
maximal value ofl s/ at the center is shown in Fig. 5. We
find that there is the following power-law relation:

i
s

Y (r=0)/9

=100M is plotted as a function df. Note that the pointR
=100M, is located in the vacuum region which is the
Schwarzschild space-time by Birkhoff's theorem. Hence the
value oft along the curve oR=100M agrees with that of

200

-200

-400

-600

(4]
[8)]

t/M

[9))
o

FIG. 4. Plots of the gauge-invariant variable,, at the center,
r=0, in the LTB space-time for various widths of initial wave
packets. The wave packets are put &0.8&, on the initial null
surface. The widths of initial wave packets are varied from ,03

to 0.12,. The solid line(a) corresponds to the wave form of the

|¢s|r=0°c0'73- (5.22

wave packet with the initial widtlr=0.03,. The broken lingb)

is that of the initial widtho=0.05, while the dotted lingc) cor-

We also observe the time dependencesghlong the line

responds to that of the initial widtr=0.0&,. The broken dotted
of a constant circumferential radius outside the dust cloudiine (d) is that of the initial widthc=0.12,.



7270
108 — TS
E o LTB{globally naked) }
108 | A s LTB(locally naked) |
E x  Minkowski 3
N A ]
1ot g E
F© a E
1000 I * |
E A =
T 0P ° s E
N - N X 1A i
\\ o
_E 10g N s 3
Y i NI 3
o L s, el .
0F .o
1 ;— |’¢ |max°(0_3 —;
b Ll il
0.01 0.1 1
a/r,

FIG. 5. The relation between the widths of initial wave packets
and the maximal values ofy| at the centery =0. The results for
the case of the LTB space-time with globally naked singularity are
marked by open circles. The results of the locally naked case are
marked by the triangles. The results of the Minkowski space-time
are marked by cross marks. The broken line denotes the relation,

|| max™ o 3.

the usual static time coordinate of the Schwarzschild space-
time.

In Fig. 6(a), the solid line corresponds to case 1 while the
broken line is for case 2. The dotted line denotes the result
for case 3. The left-hand peaks in Figapcorrespond to the
initial incident waves. On the other hand, the right-hand
peaks of cases 1 and 2 in this figure correspond to the scat-
tered outgoing waves. In case 3, the right-hand peak does not
exist and this is because, in this case, almost all portions of
the incident waves enter into the Cauchy horizon associated
with the central naked singularity and hence it is impossible
to follow numerically the scattered waves in the causal future
of the central naked singularity. Figuréb® shows detailed
behavior of the scatteraf for case 2. It is a most important
fact seen in these figures that the amplitude of the scattered
waves is almost the same as that of the initial incident waves
in cases 1 and 2.

In order to investigate the effect of the wavelength/gf
we perform the numerical integration for case 2 but with
different initial widths of wave packets. The results of nar-
rower (c=0.02,) and broader §=0.25, and 0.%5,)
widths than the case plotted in Figgapand Gb) are shown
in Fig. 6(c). The narrower wave is similar to=0.05,,

i
s

¥(R=100M) /91

E

i
s

¥(R=100M) /i

5

i
s

¥(R=100M) /i
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while the broader packets have different forms of scattered 15 6 piots of e with an initial width o=0.0%, at R
waves from the narrower one. However, in both cases, the. 10y as a function of timet, in the LTB space-time. Iita), the
amplitude of the scattered wave is not so different from thegjig line shows the result for the case with an initial time when we

incident one.

put the wave packet on the initial surfagéM = — 65.310(case },

the broken line is fot; /M = —38.529(case 2, and the dotted line

D. Minkowski case

Here we investigate the behavior ¢f in the Minkowski

is for t;/M=—13.610(case 3. In (b), we depict the details of the
case 2. The solid line shows the plot g¢f with the initial time,
t; /M = —34.336, the broken line is fdf /M = —38.529, the dotted

space-time and compare it with the results of the LTB spaceline is for t;/M=—44.677. We find no diverging tendency of the
time obtained in the above in order to reveal the effects ofauge-invariant/s when it approaches the Cauchy horizon (¢
the existence of the dust cloud and the central naked sing(je vary the width of the initial wave packet in case 2. The solid line
larity on the dynamics off. In the Minkowski case, since is a plot of =0.02,, the broken line is the case of the initial

R(t,r)=r, Eq. (5.3 becomes

width 0=0.25,, and the dotted line is that @f=0.5r,.
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6 AL L B B B BRI

&E‘ﬂs_&?‘ﬂszrﬁr‘/’s- (5.23 r 1

40 — —

The solution of this equation which is regular B0 is i ]
obtained in the form 20 L ]
- D(t— (€ 3 : ]

:3f(t r) f(t+r)+3f (t—r)+f9(t+r) S ol B

S r5 r4 ~, L i

Y L 4

fO(t—r)—f@(t+r %0 ‘ ‘

+ (t=r) 3 ( ), (5.29 L ]

r - |

-0 7]

wheref(x) is an arbitrary function and™(x) denotes the i .

n-th order derivative off(x) with respect tox. We set the —eg e L b Lo L
following initial wave packet on the null hypersurfadesr, 10 20 30 40

(a) time
. —eX[{ (r=ro)”
S_ - T~ |

20°

(=)
(o))
o

(5.29 i ]

100

Using the above solution, we compare the evolution of wave
forms in the Minkowski space-time with that in the LTB
space-time. The initial wave packet in the LTB space-time
has been given by E@5.21) as a function of the coordinate
radius,r’. However, note that’ does not agree with the
circumferential radiusR, in this case but in the Minkowski
case, the coordinate radius,agrees with the circumferential
radius,R. Since the circumferential radiuR, is tightly con- i
nected with the behavior of the amplitude of the wave, we —100
should set the same initial data with respecRtboth for the I
LTB and Minkowski cases. Hence first we plot the initial S N I
wave packe(5.21) as a function ofR/M on the initial null =0 0 40 50
. (b) time
hypersurface and then the valuescofandr, in Eq. (5.29
are adjusted so that the initial wave form fits well with that FIG. 7. Results of the comparison of the wave forms at the
of the LTB case. center. In(a), the solid line shows the LTB case, as a function of
First we consider the evolution afs at the center. Using t/M, that is the same as the case 1 in Fige)2The dotted line
Egs.(5.24 and(5.25, we obtainy at the center in the form shows the corresponding one of the Minkowsi case, as a function of
t, whereo=1.18 and .= 13.9. In(b), the LTB case is the solid line

1/t t 1 /t)2 and case 2 in Fig.(@). The Minkowski case is the dotted line where

1__2(5_“)5_@( ) o=1.25 andr;=21.4.

i
s

V(L) /¥

P(t,0)= 2

1/t 2/1)\2 1 /[t t)\3 numerically by the same procedure as in the LTB case. The
( c) ( ) + ( )( ) result is shown in Fig. 8. We also plot the corresponding case
of the LTB space-time in the same figure. We find that there
1 [t 3113 is a little difference of the phase between the Minkowski and
— (——r ) (_) LTB cases. However, the behavior ¢f in the Minkowski
600812 °/ 12 case is basically the same as that in the LTB case. The effect
) due to the dust cloud and the existence of the central naked
Xex;{ _ L(i—r ) _ singularity on the propagation af; is rather small.
20212 ¢ We consider the relation between the maximum value of
|| observed at the center and the width, of an initial
The parametersy andr, in Eg. (5.29 are chosen so that wave packet in the Minkowski space-time. This relation is
the initial wave packets fit well with those of the cases 1 andobtained from Eq(5.26. The results are also shown in Fig.
2 of Fig. 2. The results are given in Figs(ay and 7b), 5. The power-law relation Eq®5.22) is also valid in the
respectively, and in this figure, we also plot the results forMinkowski case. From Eq5.24), ¢ is approximately pro-
the corresponding cases of the LTB space-time. It should bportion to 1f3 except for the region of <o around the
noted that there is scarcely any difference between the waweenter. If the initial amplitude of the wave packet has a value
forms of the Minkowski and LTB cases. i atr=r., then the value off; at r=o¢ is roughly esti-
Next we consider the behavior ¢ at a finite circumfer- mated asy; X (o/r) 3. This will be the reason why the
ential radius which agrees with the numerical valueRof relation (5.22 holds in the Minkowski space-time. As we
=100M in the LTB case. Here the wave form is obtained have discussed abové, behaves outside the Cauchy hori-

4g%

(5.26
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the outside of the Cauchy horizon associated with the central
naked singularity, the behavior @f; in the LTB space-time
seems to be not so different from that in the Minkowski

05 space-time at least except for the extreme neighborhood of

<= the naked singularity. Therefore the power-law dependence
in the LTB space-time described above is basically realized

by the analytical discussion about the case of the Minkowski

space-time. Further the propagation effect due to the exis-

-05 tence of the dust cloud and the occurrence of the central

naked singularity is rather small. In other words, there is no
peculiar behavior ofl; even in the neighborhood of the cen-
tral naked singularity. However, it should be noted that the

V() /¥
R L IR I IR

PR S T ST S T ST S T S S S S S M SR
—-50 0 50 100 150 200 odd-parity metric perturbation does not vanish in the neigh-

time borhood of the central naked singularity and Cauchy horizon
associated with it. As a result, we conclude that the central

FIG. 8. Wave forms along the constant circumferential radius ked si larity f ion in th . L
both for the Minkowski and LTB cases are plotted. The solid line nf”l ed singularity formation in the LTB space-time is "mar-

shows the LTB case, as a functiontéil, that is identical with case  9inally” stable against the odd-parity metric perturbations.

1 in Fig. 6a). The dotted line shows the corresponding one of the W€ note that our analyses are not sufficient to determine
Minkowski case, as a function of whereo=1.33 andr .= 100. the stability of the naked singularity formation in the LTB

space-time. There remain some problems to complete the

zon of the LTB space-time in approximately the same man&nalysis. The first problem is to take account of odd-parity
ner as in the Minkowski space-time. Therefore it would bematter perturbations. We are now investigating this problem.
also the reason why the relatiqs.22 holds in the LTB The second is to consider the even-parity mode in which the
space-time. metric and matter perturbations are essentially coupled with
As a result, we conclude that even in the neighborhood ofach other. This problem will be analyzed in future. In this

the central naked singularity and of the Cauchy horizon asPaper, we have dealt with the marginally bound case. For the
sociated with it, the metric perturbatiorr,, does not show Case that is not marginally bound collapse, the condition of
any peculiar behavior. However, we should note thatioes the appearance of the central naked singularity is slightly
not vanish in the neighborhood of the central naked singudifferent from the above cad@3,24 and hence there is a
larity although it is well-behaved. Therefore, the formationPOssibility that the behavior of in this case is different
process of the central naked singularitynigrginally stable ~ from the marginally bound one. This case is now under in-
against the odd-parity metric perturbations. vestigation.
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the symmetric center of the background LTB space-time,
where a naked singularity appears in the course of the gravi-
tational collapse of the dust cloud. Therefore this quadrupole
mode is the most important for the stability analysis of naked
singularity formation in the LTB space-time. Then we have We present an analytic solution of the wave equations for
performed numerical experiments on how a Gaussian-shapehble| =1 mode. Substituting=1 into Egs.(3.16 and(3.17),
incident wave packet behaves under this wave equation fore get
thel =2 mode without matter perturbations. From those nu-
merical experiments, we have obtained the following results. a(R%) =0 (A1)
When this wave packet approaches the center, its amplitude ! s ’
becomes larger but finite. The amplitude at the center de-
pends on the width of the initial wave packet according to a g [R*ps—16m(r)]=0. (A2)
power law. On the other hand, when the incident wave
packet initially located outside the dust cloud returns back tq=quation(A2) is easily integrated and we obtain
the same circumferential radius as the initial one, the ampli-
tude of the returned wave is almost equal to that of the inci-
dent one.

In order to reveal the characteristic effects of the LTB
space-time on the behavior ¢f, we have also investigated where c(t) is an arbitrary function oft. Substituting this
s in the Minkowski space-time. Then we have found that inequation into Eq(A1), we obtain

APPENDIX A: ANALYTIC SOLUTION
OF THE DIPOLE MODE

R*ys— 16mJ(r)=c(t), (A3)
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ac(t)=0. (A4) 16w
, _ Ys=—7-J(r). (A5)
Hence the functiong(t), is temporally constant. From Eq. R
(3.20 and the regularity conditions fd®, L, and s, the left
hand side of Eq(A3) vanishes at the center. Therefore the From the regularity conditior(3.28), J(r)/R?, is identically
function, c(t), should vanish identically and the solution for zero at the regular center and hence this mode does not affect

the dipole mode is obtained in the form the formation of the central naked singularity.
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