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Characterization of unstable particles
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The properties of the unstable particles are analyzed relativistically in a spectral form similar to the solvable
Friedrichs-Lee model of the nonrelativistic theory. Singular threshold effects are considered. The approach is
then extended to a renormalizable quantum field theory that includes unstable particles. Their dynamical
behavior is then investigated by examining the renormalization effects for the propagators. The connection
with the Kdlen-Lehmann spectral representation is established and some phenomenological implications are
discussed[S0556-282(198)05812-3
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I. INTRODUCTION If the same procedure is performed in the upper complex

: . : lane, the resulting triplet reads
The problem of decaying particles, scattering resonanceg, gtrp

and generic metastable states in quantum physics continues O, CHCDT. )

to be of current interest. Recently, there has been consider-

able discussions concerning the definition of unstable stateBhe first of these choices, hence the sp&ce, corresponds

[1], which becomes an acute problem in models based oto unstable decaying states while the second one, namely
scattering theory2]. This problem is not only of mathemati- &7, corresponds to unstable growing states. In fact, the
cal interest since many confusing issues affect the undecomplex poles of the transition matrix are related, as it is
standing of the production and the decay of large width unwell known, with unstable physical states. These poles can
stable heavy fundamental particles such as top quark, gaudgeen be transformed into complex eigenvalugsof the
bosons, and eventually Higgs bosdB$ which make ques- Hamiltonian. According to this method, a pair of dual spaces
tionable how they are to be studied. In particular, #i@nd  is necessary in order to separately represent the future-
Z gauge bosons both have a sizable width and the sanfé€caying and future-growin(past-decayingstates. The es-
might be true for the top quark and the Higgs boson. Despit§€nce of the proposal of a rigged Hilbert space is clearly
the impressive successes of the standard model of the eled€voted to make rigorous the decay formalism and to retain
troweak interactions, the analytical structure of the resonari{!€ dynamical semigroup composition law in the evolution
dynamics governing these particles will play a particularIyOf unstable quantum states with Hermitian Hamiltonian. The

relevant new role influencing sensibly the planning accurac |gt(re1nvalutesc& O(; a Hermlltf|e|1n c;%e[ﬁtor are not. real a?ynt"nore
of the next generation of experiments at the forthcomin n his extended space. 1 1 €n a growing pretactor

colliders, such as the second phase of the Large Electropp P ars N the time evolution of the corresponding eigenvec-

Positron (LEP2) collider and the Large Hadron Collider ';?r |ed:jn+l-ii,lb%|:{[msg ;::Se%io %grgﬁmcgo;:gf bi(faI(I)ngQg :Eethe
(LHC) at CERN, as the Tevatron at Fermilab. 99 P + Y, 1t Iy

The intrinsic dissipative nature of the unstable system an@ree(:‘:citr?r Izn?j dbeeclgzmsg t(c))n;ﬁ;:ﬁeior:resepdor;?:ggj?ﬁg;éls
its decay in quantum mechanif$], in particle physic44] ying 9 99 pare,

and in statistical mechanid$], faced with the problem of Finally, Im z,=0 corresponds to an ordinary stable state be-

: : : B X X
the complex eigenvalues for the Hamiltonian, and therefortleonglng to the ordinary Hilbert spack=®,N®- (more

) 7 . eneral models contain both, growing and decaying states
with the_extensmn from .the usuaI_H|Ibert gpa(eespace of ?1]). The choice betweet® _ or CD% is irrglevant singe t?]ese
square mtt_egrgblg fun_chohsto a ngg_ed _H|Ibert spa.cga.\ two objects are identicghamely one can be obtained from
space of distributions in order to maintain the Hermiticity

o . . . : he oth h ical f i
of the Hamiltonian. This procedure is not unique and differ the other by a mathematical symmetry transformatiand

ent distribution spaces can be defined which are based (};heﬁrj%ereﬂ:)erydzfa;?];glr?:jlng%gl\/sv?nzblve\!/il|ocnrgr:gg T)it the
different test function spaces. If we choode as the test

. . ; hysics is the same. The hints to double the phase space
function space, generated by the eigenfunctions of the ener egrees of freedom are intimately connected with the prob-
£ which are analytic in the lower complex halfplane, WhenI

i d . em of the quantization of dissipative open systdiik In
the real variablet' is promoted to a complex variabi(pre- 50 onen systems, the doubled degrees of freedom play the

; ; ; X
cisely Hardy class functionswe obtain the dual spasB™, (e of the inclusion of an effective coupled bath adopted to
which is the required extension of the Hilbert spa¢eThe  take into account the dissipative effects. The description of
corresponding Gel'fand triplet is then the original dissipative system is then recovered by eliminat-

ing those bath variables which are not relevant by means of
o an appropriate averaging procedure. The strategy to include
O_CHCO™. (1) additional bath variables yields formally an isolated configu-
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ration (bath plus systemwhich can, of course, be studied in ral and indeed independent of various production and decay
the canonical quantization scheme. The application of thisnechanisms, although it is not immediate to have a model
method to problems with large quantum numbers is welland to solve the ambiguities connected to its complex ana-
known in many fields of physics. For instance, such an eflytical structure. However, in several situations, the instabil-
fective approach is extensively adopted in the general frameaty properties seem to be incorporated consistently by adopt-
work of statistical and thermal field theories where usuallying the averaging process of radiative corrections. This
the applications of coherent-state condensates and the fungrocess yields complex singularities in the propagator and
tional formalism of path integrals are especially useful insuffers in general from the presence of divergences which
integrating out the subset of plethoric dynamical field vari-imposes the renormalization of the parameters in the Hamil-
ables and to yield effective dynamics at a more phenomendenian. This path of renormalization has unraveled a large
logical level. Anyway, these results seem to reflect the welhumber of tantalizing possibilities, but unfortunately without
known requirements of additional complementarity relationsaccommodating the significant features associated with the
which occur at the classical level, to make the equations ofjlauge invariance of the theory. A number of approaches has
motion for dissipative systems derivable from a variationalbeen developed to understand the singularities connected to
principle [7]. unstable particles in perturbation theory. Nevertheless, some
On the other side, instead of extending the representatiosort of resummation of the perturbation is required to intro-
space, an alternative technique consists in doubling the tim@uce an absorptive part into the renormalized propagator
integration contour of the path integral representation ofvhich can account for the Breit-Wigner resonance shape.
guantum systems with infinite degrees of freedom. Thidndeed, in the context of renormalizable gauge theories,
closed time-path Green-function formalism was introducednany pathologies seem to affect the discussion about the
early into the many-body theorid8] in order to describe correct form of the resummed propagator of gauge vector
both equilibrium and nonequilibrium systems in a unifiedunstable bosons in the resonance region. Recently, the accu-
framework. racy attained in LEP experiments regarding the measure-
Anyway, it is clear that the main difficulties arise becausements of the fundamental parameters, the mass and width of
it is not easy to deal with unstable particles in the realm ofthe Z° gauge boson, has raised the question whether the ex-
the ordinary quantum theory, as they cannot be representdthcted value of the renormalized on-shgfl mass is gauge
by asymptotic states. The standard perturbation expansiatependent in higher orders of perturbation theory. This last
breaks down in the absence of the observable asymptotjgoint is not only of academic interest as gauge breaking
states for unstable particles. The controversial issue consisterms are often much larger numerically than the gauge in-
in defining properly the characteristic space-time dependenceriant result. Thus, to circumvent the problem, there are
of the survival probability of any metastable state which carseveral recent theoretical proposals. On this side, a decisive
deviate from a pure exponential decay law at very short oimpulse to obtain the gauge invariance of the result at any
very long times, as compared to the lifetime of the unstablerder of perturbation theory is assured by a Laurent expan-
particle, and in dependence of the structure of the preparesion around the complex pol&2] with the supplement of a
initial state. More recently, such a problem has been dissuitable renormalization scheme to define properly the regu-
cussed extensively in the context of the quantum field theorjarized masq13]. Evidently, to obtain a more realistic de-
[9], and in order to show that the features of unstability are acription, it is necessary to incorporate also the additional
manifestation of the fact that an unstable system cannot beontributions induced at threshold. This problem is hand-
considered isolatefil0]. This intrinsic dissipative nature is somely overtaken if we are willing to comply also with other
peculiar of open systems and faced with the problem of comunderlying characteristics of an unstable particle. Unstable
plex eigenvalues for the Hamiltonian. This approach is adintermediate states are associated with poles in their invari-
dressed to decompose a total closed system into a relevaant momentum lying off the physical sheet below the real
subsystem, with a character of elementarity, and the remairaxis. The associated residues can be used to define general-
ing environmental degrees of freedom which must be inteized matrix elements for processes with unstable particles as
grated out to yield an effective formulation at a more phe-external states which satisfy unitarity sum rules that are
nomenological level. We already mentioned that thisanalogous to those for stable particles but continued off the
intrinsic nature of unstable systems can be afforded rigorreal axis. An explanation of these shortcomings is the fact
ously with a doubling of the path of the functional integra- that the basic dynamics is given in terms of Heisenkerg
tion [8], or with the doubling of the ordinary Hilbert space interacting fields whereas the physically relevant quantities
[11]. However, in these rigorous approaches, we are led tare given by expectation values of observables expressed in
consider matrix valued Green’s function@ropagators  terms of asymptotic in- or out-fields, also called physical or
which contain spurious information, and that complicatefree fields. In the formalism of quantum field theories the in-
their use in a perturbation expansion. and out-fields are obtained by the weak limit of the Heisen-
In principle, we may define the properties of unstable parberg fields in asymptotic regions of space and time where the
ticles investigating globally a reaction involving the initial interaction is negligible. The meaning of the weak limit is
production, the intermediate propagation and its final decaythat the realization of basic dynamics in terms of the in- and
The essential content of this investigation consists in analyzeutfields is not unique so that the limit in the asymptotic
ing the possible existence of singularities in the multipleregion, is representation dependent. This representation de-
sheets of the Riemann surface into which the Fourier trangpendence of the asymptotic limit arises from the existence of
form of the propagator can be continued analytically. Such anfinitely many unitarily nonequivalent representations of the
propagator's method has the great advantage to appear nattanonical(anti-) commutation relations. Of course, since ob-
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servables are described in terms of asymptotic fields, unianomalous structure thresholds which describe effects due to
tarily inequivalent representations describe different, i.e.the possibility that a given particle can be considered as a
physically inequivalent, situations. It is therefore of crucial composite system of other particles. In the case of quantum
importance, in order to get physically meaningful results, toelectrodynamic$QED), the appearance of a ghost in the one
investigate with much care the mapping among Heisenbertpop corrections to the photon propagator, the so-called Lan-
or interacting fields and free fields. Such a mapping is usudau ghost, is not taken as a serious drawback of the theory.
ally called the Haag expansion or the dynamical map and if his is because the momentum scale at which the ghost ap-
is based on the concept of interpolating field for a compositd€2rs is far from measurable and, at this scale, QED should
particle, which was introduced independently by Nishijima,Probably be modified to include the effects of other elec-
Haag, and Zimmermanjii4]. Only in a very rude and naive troweak effects. It is probably an |nd|c§\tlon of the sickness
approximation we may assume that interacting fields an(fl)f QED as a fu_ndamentz_al theory a.‘t high energﬂ_ﬂa@]. In

free fields share the same vacuum state and the same Fok ormalizahle f|e_|d theories, a m“'“t“de of FeChn'th
space representatiofi5]. These remarks obviously apply as structure functions, exponential and running coupling con-

only to quantum field theories, namely to systems with anstants} have been developed to control the structure of the

infinite number of degrees of freedom. In quantum mechanyltra-wolet, infrared and collinear singularities in a relatively

ics, the von Neumann theorem ensures that the represent‘iéfzlsy way, or to improve the convergence of the perturbation

tions of the canonical commutation relations are each otherP2"ns!on. or reordering the expansion. In the case of had-

ity cquvalen and no prolem risos i uiquenestST ECTES 1 1 Prsenie of onfnenent, e et
,?rf the aSKlmptOtiC Iirtr;]it. In quzntum fiildh trdeorie(:js, hov;ever,gqogdel intperactions and can be cured employing a subnuclear
e von Neumann theorem does not hold and much mor : : .
careful attention is required when considering any mappin%uark struck:)tlurz W'th. new d::grr]ees of freedc;m which pro;/lde
among interacting and free fields. With this warning, the reai(;nal eh_escnpuon 0 F”e p(;operty 0 a:]sympr':otm re(_a-
evolution of unstable states deserves a careful analysis. In th) r.n.[ l- In this paper we will endeavor to show the pecu
in-out formalism of quantum field theory, instead of extend- larities of this smgqlar behavior which causes the trouble
ing the representation space, the evolution is connected Wi?nd fosters the behef that must be armed with a deeper
the averaging process of the quantum corrections. The intr nowledge to come with it.
duction of the dynamical map which relates bare fields and
the radiatively corrected asymptotic fields, specifies, among ll. THE DECAY FORMALISM
many representations of the canonical commutation relation, Unstable quantum mechanical states ought to be repre-
one representation suitable for the description of the deca ented by generalized eigenvectors corresponding to com-
system. From this point of view, the dynamical map gives an

ensemble of representations among a statistical average fo eigenvalues of the Hamiltonian, the so-called Gamow
P Y 9€ 9 ctors, which appeared in the early studies aboutitlle-

oo o o ot g of tomic nuclf 16 Enry eigenvectors wih comple
’ y y by igenvalues appear simple and useful, but were considered

one-to-many correspondence instead of one-to-one. Itis PUlist as heuristic approximations, since they are excluded
pose of this paper to discuss the essential problems of t

structure of unstable particles in a covariant formulation. fom ordinary quantum mechanics, in which the energy op-

. L . “eratorH is requested self-adjoint, with consequent meaning-
Apart from mathematical complexities, the essential task i ; ; >
o ; ul real eigenvalues. Then the decay formalism becomes rig-
to spell out the proper physical interpretation.

First, we discuss the decay formalism in the framework oforous only within an extension of Hilbert space, namely in a

ordinary time dependent canonical formalism. In this sectionrigged Hilbert spac¢11]. In spite of its undeniable short-
we eIU():/idate se\F/)eraI unstable particle ideas.includin thos(éomings’ the theory of unstable nonrelativistic systems was
P 9 Systematically settled out by Weisskopf and Wigpér} in

of second-sheet poles, discrete energy dissolved into the co 1eir work on the spectral linewidth for atomic radiation. In

tinuum, and unitary time evolution with deviations from ex- this theory, the unstable system is represented by a wave

ponential Qecay. The_coyariant 'ger'lera.lization OT the deca?’unction ¢ which is supposed to be an eigenfunction of an
problem with relativistic kinematics is discussed in Sec. Ill. oo .
unperturbed HamiltoniaH,. The action of the full per-

This relativistic covariant version illustrates how the masst rbed HamiltonianH = H~+ H. then causes a nontrivial
change and the decay width are generated by the interactiof 0" Hint

i ; _ a—iHt ;

in a generalized invariant proper time representation. In Se(ﬁ;ﬂ;ﬂg: g ;hr?e\\lfvvat\)/gufrlmjorllg:tgﬁétr)tgg sinwl’e i?)itliz?aﬂgaes

IV, we analyze the effects of the inclusion of quantum cor- 9 A
with energy as the only quantum numpeBuch a simple

rections into renormalizable field theories which lead to cata- odel is aood enouah to give an account of the peculiar
strophic results, with the appearance not only of comple Sffects of ?jeca in sgstemsg P
poles, or ghosts, in the analytic continuation of the propaga- h f ying sy b' ded

tors into second Riemann sheets but also of branch lines The wave function can be expanded as

corresponding to resonant intermediate states or to anoma- .

Ipus pomposite structures. In fact, t'he character of branph |¢(t)>=a(t)|$0)+f B(E,t)| ye)dt (3)
lines is based on the analytic properties of the corresponding 0

dispersive and absorptive parts. We explore the use of these

properties for the description of resonant states and we disvith « and 8 the probability amplitudes of the system in the
cuss their application into the treatment of singularity struc-state| ) (corresponding to the bound state of enelgy<0)
ture related or to possible resonant new ordinary states or tand the positive continuum spectrumhich we supposed to
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start atE=0). The time evolution, predicted by the Wigner- quantum state has only projections on continuum states in
Weisskopf theory, can be understood more easily by expressvhich it decays, implying, physically, that there are no “fi-
ing the evolution operator by means of the Cauchy represemal state” interactions. This is often a reliable physical ap-
tation with the contour integration of the exact Green'sproximation in many decaying systems, for which we can
function (the propagatgrperformed around the spectrum of neglect the rescattering of the decay particles. In general, the
H: decay products have several channels available and no
unique prescription exists if several resonant states contrib-
ute.
Although the functiorR(z) might show a branch cut and
the propagatoPG(z) P may additionally have isolated poles
G(z)=[z—-H]™ ™~ (4)  onthe second Riemann sheet and, in the case of the so-called
“virtual bound states,” on the real axis to the left of the
This formalism has a rich bibliographyl9]. As usual, we branch poin{19], usually, the integral over the cut is negli-
now introduce the partition of the Hilbert space of the com-gible, the real pole is absent and among the possible poles on
posed systena single bound state and a simple contindium the second sheet, we can argue that the dominant contribu-

1 .
U(t)= pp fcdz e ?'G(2),

by means of the following projection operators: tion derives from that located at=E,+ R(E,) for slowly
varying R(z). Thus we obtain an exponential decay of the
P=[ o)l initial state:
Q=1I—7P. ) a(t)=exp{—i(Eq+ R(E)t} (12)
The amplitudes of interest are then determined by the regq that, withR(Eo) = Ao — (i/2)[',, we get the survival prob-
duced propagators ability:
PG(z)P and QG(2)P. (6) la(t)|2=exp(—Tgt). (12)

SettingZ="P+ Q in the identityZ(z—H)G(z)Z=Z one ob-

; The constanta, andI"y can obviously be interpreted as the
tains, after some operator algebra,

induced shift and the induced width of the sthfg). Such

PG(2)P=[z—Ho—PR(2)P] * an approximation, called the pole approximatigor
’ Weisskopf-Wigner approximationusually works except for
QG(2)P=Q[z— QHQ] *OH,,Plz—Ho—PR(2)P] 1, very short times when other poles, lying further from the real

7) axis, may become important and for very long times when
the cut contributiondecaying as a power functipexceeds

with the level shiftR(z) defined as the exponent.
In the case of the threshold region, for instance, the rela-
R(2)=Hini+HinQ[z— QH Q] *OQHjpy, tive significance of the cut term increasd®(E) may in
some range be a rapidly varying function so that the domi-
R(2) = (40| R(2)| ¢ho)- (8  nant pole on the second sheet can approach the cut and pos-

sibly the real axis. Furthermore, this pole could disappear
from the inside of the contour and a new resonant igje

could appear on the real axis to the left of the branch point.
The integral over the cut can be replaced by an integral over

The nondecay amplitude(t) for survival of the initial state
is then given by

a(t)= Py j dze ?[z—E;—R(2)] 7%, (9  an half-line. Finally, one obtains
—iELT w
whereC is a contour that depends on the nature of the spec- a(t)= W‘F o J dE e 'Et
trum of H and we assume that &0 the system is in the | (Ep)] T Jo
initial state| ) with eigenenerg¥, and that the interaction T'(E)
can be switched on instantaneously. X , (13
The probability amplitudex(t) to find the initial state [E_EO_A(E)]zJF%[F(E)]z

“undecayed” after a time can be calculated by closing the
integration contour in the lower half plane and using the
method of residua. Usually, it can be written in a closed formWith R(E)=A(E) — (i/2)I'(E) where
if we restrict the Hilbert space of possible states with a sort 5
of a superselection rule for which the level shi{z) re- I'(B)=2m[(gro|Hinil i) ",
duces exactly to a second-order formula:
(ol Hindl 96) |7

He L) 2 AE)=P| dE’ nd
R(Z)=J |<¢o|z :L¢E>| . (10 Jo E-E ”

This simplification follows from the essential feature of the The first term is the residue of the integrandEat, a real
model. In fact, it was reasonably assumed that the unstabkolution of the equation
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E,=Eo+R(Ep). (15  zero energy eigenvalue. The survival amplitude can then be
rewritten in this spectral formalism by means of the Laplace

The pole of the propagator atE, implies the existence transform
of a bound stat¢szb) of energyE,, of the dressed system,

eigenstate of the total Hamiltonian at the moment of switch- 1 int
ing on the interaction. High above the threshold, the term a(t)= 2 Cd)‘ g(r)e ™. (17)
including E,, is absent because there no solutions to the pre-

vious equation. Moreover, the functioh¢E) andA(E) are However, the general quantum theory of unstable systems
usually slowly varying, so the spectrum is, to a good ap- ' 9 q y Y

proximation, given by a Lorentzian profile. The peak is lo- says little about the non-exponential corrections to the pole

cated at E -;-A ) where the constant représents the shift approximation. As a matter of fact, these corrections would
0T Ao 0 ; " :

in the initial state and"=I" represents the linewidth. Of come fro'm singularities of()) in the complex plane bqt

course, in the threshold region, the solutiep appears and they are indeed not properly known. Consequently, the influ-

o . ence of singularities responsible for any violation of the pure
F.(E) andA(lE) may vary rapidly; they cannot be.mterpreted exponential decay law cannot be resolved clearly. Further-
S|mp!y as W'dt.h and shift and, as_the spectrum is defined fo ore, the nonanalycity of the real and the imaginary part of
positive energies only, the curve Is cut offe- 0. Th9 form the level shift operator could be reflected in the appearance
of this cutoff depends essentially on the properties of theOf nonanalytic structuregcusp in the spectrum, the so-
guantum system considered. TEgterm gives the dynamics :

q ts. phvsically. the i . fthe d d called Wigner comb§24]. On the other side, it is important
and represents, physically, theé importance of thé Aressed Sygy oy e 4 velativistic model for the description of the particle
tem (eigenstate of the initial Hamiltoniarwhich has been

ted at th t of switchi the int " A decay involving a real change in the total particle mass of the
created at the moment of switching on the interaction. Ssystem. An unstable particle generally decays into a final
long as the interaction is present, the initial state can b

. . . . . State of two or more particles in a process for which the total
considered “trapped” in this statprb> with a probability energy is conserved, but the total mass is not. The equiva-

[(¥e,|#o)|*=[1—R’'(Ex)]~*. At the moment it is switched |ence between mass and energy, which enters quantitatively
off, the dressed bound state ceases to exist and it is partialip the kinematical description of such a process, is a funda-
transferred to the bare continuum. mentally relativistic relation. It is of interest, therefore, to
The generalizations of the exponential decay law are disdescribe unstable systems, or dissipative systems in general,
cussed extensively in the literature about unstable quantutoy extending these considerations to quantum field theory.
mechanical systemd]. In particular, a lot of attention has There is, however, an even more compelling reason for using
been given to discussions on the nonexponential decay in @n explicitly relativistic description to deal with unstable par-
spontaneous radiation emission for an excited atom. The exicles, namely, the fact that for a system described in a Gal-
act solution of such a system was proposed by Friedrich#ean invariant form(as opposed to a relativistic foynthere
[20] and in an elegant covariant form by LEZL] and many are phase ambiguities that arise when one considers the com-
others[22]. For very long times, these general properties ofbination of states with different massgz5]. Indeed in the
the singularities characterizing unstable particles become efelativistic quantum theory, the kinematical characterization
fective and essential to deal, for instance, with the case obéf unstable particles may find difficulties since it is con-
proton decay whose predicted lifetime appears longer thanected with a complex rest mass eigenvalue of a representa-
the present age of the universe or for the very rare doubletion of the Poincaregroup[26].
beta decay processes. Hence, according to very general as-
sumptions, a deviation of the exponential law for the decay
of present-day protons is not excluded. The Friedrichs-Lee

model has been very useful for the study of the properties of A first approach to achieve a relativistic generalization of
unstable systems and provides a framework for the analytithe Friedrichs-Lee model useful to deal with the transition
study of decay. This model originally motivated the con-from the initial boson stat¥ to the final scalaN; andN,
struction of the generalized Gamow states with exact expodecay states can then be provided by using a Poiricasei-
nential decay which belong to a rigged Hilbert spat&].  ant parameter-

Such states have found application in the theory of iterated The continuous guantum mechanical evolution of the

maps[23] and play an important role in the study of irrevers- wave function for a one-particle system,
ible processe$5]. The Friedrichs-Lee model is completely

soluble and provides a closed analytic form for what is called v
the reduced resolverdi(z). In the theory of linear operators T
in Hilbert space and, therefore, in more general quantum

theory, we can introduce the concept of the resolvents influenced by a generalized invariant Hamiltonian which
G(\,H) of an operatofH, in the rest frame can be split into the relativistic form

[21,22.

lll. THE RELATIVISTIC GENERALIZATION

=e Ky, (18

G0 =IT-H) = [ Te N exprrnat, 19 K=Ko+K, . 19

with the assumptions that the spectrum was bounded fromhereK, determines the particle spectrum aikgd governs
below and the ground state&acuum normalized to have the interactions according to the following expressions:
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. p? R or introducing a continuous labglto identify the continuum
K0=J d*p My b'(p)b(p) eigenstate$| 4, )}
2 I
+ [ atp b alpiasp) Ko~ | wonalan, 29
1
4 k? + we derive the generalized form of the reduced resolvent at
+f d kmaz(k)ag(k), eachp
2
. lg(p)|?
— 4
K.=J d*k d*p{f(k)b'(p)as(p—k)ay(k) 9<Z>—'f 4P T M—Rzp)’ @7
+f(k)*al(p—k)al(k)b(p)}. (200  where
Here,b(p) is the annihilation operator for thé particle, and |<¢A|KI|¢)p>|2 . |f(k)|?
a;(p), ay(k), for theN; andN,, respectively. This gener- R(z,p)zf dx TO\):I d*k = ok’
alized Hamiltonian assures that there is nontrivial interaction (28)

only in the decay sector which is determined by the vertex

factor f(k). Clearly, the second teri, represents the con- A real pole is found for a stabl® particle. However, if

tinuous spectrum of the decay channel and it is determinegnstable the pole becomes complex and if the system results

by the support properties of the coupling functibfk). If  even more sophisticated, essential complexities are not ex-

the initial particleV is represented by the normalized state cluded. The proper-time relativistic analogue of the survival
amplitude is then given by

‘1’o=f g(p)b'(p)d*p|0) (21)

a(7)=

py Ce"”g(z)dz, (29

the evolved stat&d’ _, as a function of the invariant time is

then given by
whereC is a contour which depends on the spectrum. The

_ 4 t complex poles which dominate the decay law, in this proper
V.= | d*p Alp,n)b'(p)|0) time evolution, can then be investigated in a way similar to
the discussion of the nonrelativistic form. It is worth noting
2 . .
I 40 $*KB(Db.k t Tk 29 that, for each value gb“, there is a shift of the unperturbqted
J d'p dkB(p.k,Dai(p)az(k[0), (22 eigenvalugfor f(k)=0] from M(p) to a complex pole in
the second Riemann sheet determined by the vertex function

where we have chosen for the initial condition f(k). This can be interpreted as the acquisition of a complex

A(p,0)=g(p) part for the total energy momentum of the system and cor-
' ' responds to unstable particle states. The analytic structure of
B(p,k,00=0. (23 the resolvent operator becomes a powerful tool in the quan-

tum description. Its relevance is due to the direct connection

Following precisely parallel to the analysis of the previ- among its singularities and physically significant properties.
ous section, we can formulate this relativistic generalizatiorin general, the singularities will be assumed as only poles on
by means of a spectral approach. Considering the Hilberthe real axis corresponding to stable states or poles in the
space as a direct sum space over the absolutely conservagalytical continuation of the unphysical second Riemann
total energy momentum of the system, we can decomposgheet corresponding to unstable particles. Instead, the ap-
the generalized Hamiltonian for each four-momepta of pearance of singularities bound in the continuum reveals an
the V particle: unexpected interest. In this case, the singularity will be a
o branch line and will correspond to multiparticle states. They
Kp=M(p)Po+Ky+K;, (24)  are related to possible intermediate states which mediate the

decay(ordinary absorptive thresholgsor they are anoma-

whereP, represents the generally covariant projector choselous structure thresholds which describe effects due to the
to select out single-particle intermediate states and charactgsossibility that a given particle can be considered as a com-
izing the decay system whereks is supposed with matrix posite system of other particles. They appear in the physical
elements only between the continuum spectrum and the disheet only if a loosely condensate bound system is involved,
crete state¢, with eigenvalueM(p). At this point, the otherwise they remain in a secondary Riemann sheet. Any-
problem has been reduced to solve the relativistic resolverway, there are a large variety of covariant models which may
operator. Denoting the teri, corresponding to the continu- be extracted in accord with the form of the spectrum. From

ous spectrum by means of a specingk) function, for each this point on we can buttress directly the analogy of the
value ofp?, we may write Friedrichs-Lee model. Of course these complexities can be
better realized by means of an extension of the Hilbert space
introducing complex distributions, as we have already men-

Ep: f w(k)[k)(k|d*, @5 fioned.
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IV. UNSTABLE PARTICLES Z 1=1+Rell’(M3). (34)
IN QUANTUM FIELD THEORY

The further generalization of the decay formalism within Then, we may cast the propagator into the resonant Breit-
the framework of a renormalizable theory encounters considWigner form
erable difficulties on the definition of unstable particles
which is often rather complicated in a model based on scat-
tering theory. Instead of extending the representation space, z 1
another appropriate formalism emerges for describing un- Ar(g?)= 2 MZHiZ M (D) (39
stable particles. lis-matrix theory, the real poles of the scat- q R q
tering amplitude correspond to stable intermediate particles . ) ) )
whereas the instability of an unstable particle consists in' is form for the renormalized propagator will run into prob-
shifting the pole location to a complex value in the different/€mS not only with the gauge invariance but also to define
sheets of the Riemann surface into which the correspondingroPerly the effective pole position of the scattering ampli-
propagator can be analytically continued. The poles of th ude. In fact, _the_ imaginary part of the two point function is
scattering amplitude are the zeros of the inverse propagator%‘?'ateq by unitarity to the sum of the squares of the truncated
The mass of an unstable particle is usually defined as the re§iréen’s _function chnnectmg the particle to various final
part of the pole. This pole position is a physical quantity: it States. The II(Mg) is related to the particle width via uni-
has meaning independent of any theoretical framework, antfity. For a stable particle Ifi(q?)=0 and the parameter
of any scattering process. It is settled that the definition of aMr is then the particle’s mass. For an unstable particle
unstable particle can be introduced without recourse to thém I1(g)#0 and the pole position is complex. The Dyson
S-matrix formalism, by considering simply the subtleties re-Summation of quantum corrections in the propagator leads to
lated to the mass renormalization of the propagator_ a finite Wldth, anditis Clearly Only needed when the unstable
For definiteness, the space time evolution of a bare pararticle can kinematically be on its mass shell. Indeed for an

ticle is governed by the causal propagator which is essertnstable particle with spacelike momentum, the imaginary
tially described in momentum space by part of the self-energy is zero; hence no finite width should

be used. It is a pure kinematical problem which particles

should be given a finite width and which not. The essential
(30 variable here is the virtuality? of the unstable particles. In

the on-mass-shell renormalization scheme the pole position

where M, denotes the bare mass and we neglect, for th%eﬂ;gsﬁjrﬁggg;t?gz gg:zﬁfigﬂ;gﬁggg t%hﬁ:g?l masses and

moment, the transverse part in the case of a massive vector In the case of the unstable particles, this is somewhat a

field and the projector operators for fermions. subtle question, since the “mass” lies in the continuum cre-

If we consider the effects of the interactions and if we ; . .
. > i ated by open decay channels in the sense that the singularity
limit ourselves to perturbative field theories, after the Dyson ; . - .

; A : . ,_Is not a simple pole but it may coincide with a branch cut or
summation of one-particle-irreducible two-point Green’s

functions (which may eventually include mixing with other another pole. The problem together with its solution has been

particles and tadpole contributignsthe dressed renormal- recently rediscovered in connection with the precision mea-
ized propagator can be written as, surements of the electroweak neutral gauge boson mass and

width [3] and it can be correlated to the attempts to constrain
the effective form factor characterizing the decays of heavy
5 5 =, (3D mesong 27]. To make this approach clearer, it is worth not-
—Mg+I1(g%) ing that the renormalization effects on the form of the parti-
cle’s propagator in the neighborhood of the one-particle pole
where the vacuum polarizatidii(q%) represents the collec- and the intertwined issue of the correct wave-function nor-
tion of all irreducible proper self-energpubble diagrams.  malization in the Kéien-Lehmann dispersion representation
Assuming, tacitly, that the real part bf(q®) is analytic near for the vacuum polarization require exactly one subtrac-
the on-shell renormalized poigf=M3, we can perform the tion: by definition, the self-energy has to vanish at the ob-
following Taylor expansion: servable mass at which the propagator has a pole. However,
the structure singularities can be understood independently
of the perturbation methods, on the basis of analyticity and

A(q?)= ,

AR(qz)z q

ReH(q2)=ReH(M§) unitarity. The inclusion of quantum corrections into the
o o ) propagator imposes deep care to keep the matrix element
+Rell'(MR)(q°=Mg)+--+ (32 gauge invarianf3]. This last point is not only of academic

interest, as gauge breaking terms are often much larger nu-
merically than the gauge invariant result.

in order to define the on-shell renormalized mass parameter On the other side, within the framework of a renormaliz-
able theory, as it is well knowfi28], I1(g%) has a branch
point on the real axis wheq? is at a threshold. Therefore,

MZ=MZ—ReIl(M3), (33 the failure of the Taylor expansion about a real renormalized

mass of the vacuum polarization functidii(g?) in the

and the wave-function renormalized constant threshold region suggests retrieving the definition of the
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physical mass and width of a particle in terms of the positiorpole g3 of Eq. (37), we can decompose the space-time

g3 of the complex pole in the particle’s propagator dressed propagator according to the following expression:
i 2 AR(X'—X)
q%: ( Ilehys_ 2 thys ) (36)
4 2 2\ _ 2
_ g a iq.(x,x)[ Flad) | F(@) Fz(qoq,
where (2m) a4 Y a°— Qo
AR (ad)=[A™H(a3) +T1(ch)] (40
5 5 5 with
=0o—Mg+1I(gp) =0, 37
that th is defined as th | part of the pole in the F(g%) a—ds { H(qZ)_H(qS)}l
so that the mass is defined as the real part of the pole in the = T s — |
1S e P poe | 2= Mo+ TI(q?) o?— a3

energy plane. The relation between the physical mass and the
renormalized mass can be recovered from the analytic struc-
ture of I1(g?). Anyway, to solve Eq(37), we stress that the
Taylor expansion ofI(g%) may not converge in the thresh- where according to I'fApital’s rule we have

old region. In the absence, though, of any theoretical model,

the vacuum polarization functiol can be summarized ac- F(g2)=[1+11"(g3)]~~ (42)
cording to the characteristic structure of its singularities. In

general, if the singularities are complex poles, they are diThjs characterization of an unstable particle represents a
rectly related to the intermediate states which introduce abdeeper insight into any resonant Scattering process. The first
sorptive singularities. On the other side, thresholds argerm in the space-time propagator is connected to the finite
branch lines which are related to the peculiarities of thespace-time propagation whereas the second is a contact term.
model under examination. They describe physical effects dug js worth noting that they are both produced by the same
to the possibility that a given particle can be considered as fleld so that the simultaneous presence of these two parts
composite system of other particles or they are manifestagyoids a direct correspondence between the field and the par-
tions of the resonant mixing of the particle with a boundticle. This is, in fact, Schwinger's point of view of a field
state. They appear in the physical sheet of the propagat®reory[30]. A field is not supposed to be defined in the case
only if a loosely bound composite system is involved, other-of an unstable particle just because of the absence of its
wise, they remain in a secondary Riemann sheet. Howevegsymptotic states. Rather one defines a more fundamental
by proceeding from the more theoretical to the more physicafield which describes a localized excitation, and it is different
aspects of the problem, the issue becomes critical only wheflom the conventional one in which each particle is assigned
we begin the expansion using just a real renormalized masgfield. In other words, the question as to what is the lifetime
and the threshold branch points lie on the real axis. The polgf an unstable particle depends on the manner in which the
positions of the propagators coincide with their physicalparticle was prepared in the sense that it is only meaningful
masses in the on-mass shell renormalization schemeg consider the lifetime of an unstable particle with a definite
whereas the definition of the width based on the compleXour-momentum. Therefore, unstable particles are under-
pole position is rather different in the threshold reg[@.  stood in the context of field theories only in association with
Following the procedure outlined in the first paper of R8f.  the Green functions which can really describe the propaga-
and in Ref.[29], the inverse propagator can be written as  tion from their production to their decay space-time posi-
tions. The form of these propagators determines the time
evolution of the decay probabilities. Nevertheless, the thresh-

(41)

AR (9% =(9’~ap) —[I1(g*) —~T1(q))] old singularities merit a particular attention. At the threshold
for on shell production of two scalar particles, the analytic
=(q2—q§)2§1(q2,q§), (38  form of the vacuum polarization is given by
where - (qz):f d*k 1
L loop (2m)* (K—md)[(q—k)*~m3]

(39) =Bo(mf,m3;q?). (43)

H(qz)—H(qé)}
qz_% .

le<q2,qé>=[1——2—

Without considering the details of the singularities deter-
In generalZ; *(g?,q3) is divergent. We assume that one sub-mined by the Landau equations, after a subtracted regular-
traction is sufficient to make it finite. In fact, if the gauge ization to cure the divergences, the analytic expression of the
invariant expansion of the resonant part is about the complegcalar two points functioB, [31], let us write
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A2 J(mi+my)Z—s++(m—my)Z—s| mi—-m3 m?
II(s)— I1(sy)] = { — | - log —3| —{s—
with
A=\(s,mi,m3)=[s—(m;+m,)?][s—(m;—m,)?], (45)

where we replacg®=s. In this form, it is clear thas=0, associated with the nearest threshold. To make this point
s=(m;—m,)? were irrelevant singularities. In the physical clearer, it is worth express!ng the full propagator in the
Riemann sheet, for reaj® near threshold, the reflection Kallen-Lehmann representation

property, let us write
p(m)du
= (a8)
1/2

Im II(s)= O[s—(m;+m,)?]. (46)  Wwhere the range of the integration extends from threshold to
4ms infinity below the poles of the integrand. At this level of
accuracy, the lower limit may recede to infinity and the cut
, contributions can be ignored. Whatever the spectral function
The same rgsult can be obtained by the once subtra_cted di () is supposed to be non-negative, it is simple to show that
persion relation, i.e., by a Cauchy formula along an integraj,o propagatoA £(s) has no poles or zeros off the reahixis

contour (often named the african shigldencircling the 331 Thigis known as the Herglotz property. Furthermore, if
branch cut. In particular, the self-energy function satisfies th (s) possesses the Herglotz property, then so does the in-
once subtracted dispersion relation F ’

verse
[ReTl(q?) —Rell(g))] AFY(s)=[s—M§—R(s)], (49)
(9%—a3) (= Im II(s") where the integral
- ' . (@4
T j(mﬁmz)zds (s'—a5)(s'—a?) “0
d
R(s)= [ % (50)

The standard procedure to express the Feynman integrals on
their cut consists of performing a Taylor expansion in exter-

nal momenta, whose coefficients make relatively easier thg, general is divergent and therefore needs regularization.
remaining calculation in thg whole complex plane. Some-pe spectral functions are obviously related(s)
times, it appears worthwhile to develop and extend the=|A;1(s)|2p(s). The usual mass and wave function renor-

method of the Taylor expansion to make it applicable t0 the, -7 ations are performed by imposing the condition that the

various kinetical situations. For example, in the case of th‘?enormalized propagator has a pole at the physical rivass
multitude of methods to. compute the two loop se_If-energ|e§Nith unit residue. This condition implies that the renormal-
[32], the Taylor expansion does not seem to exist. In fact;

there is no threshold solution of the relative Landau equal-Zed propagator is given by
tions because of the factorized logarithmic singularities. In
our case, the subtracted dispersion relations are applied by_ 2 2 or(p)

assuming that the dominant contribution comes from the R =(s=MH|1=(s—M )j du (n—M?)2%(s—u)|’

lowest pole corresponding to the lightest intermediate state (51
which can be produced. The existence of an anomalous

structure threshol@due for instance to a new lighter weakly )

bound statg causes the failure of the application of the dis-With or(#)=Z0(u). Notice that we have absorbed all
persion relations. In this case, a discontinuity is crossed iffgnormalization effects into the functioB which represents
the loop integration because the intermediate particle can g§€ residue of the full propagator at the mass pole and in
on shell for unphysical values of the momentum. When thd€rms of renormalized quantities it is given by the following
new lighter bound is included as the lowest singularity, using €/ation:

the appropriate contour, the dispersion relations cease to fail.

However, in general, the precise knowledgdk(ig?®) can be or(w) -1

achieved at various levels of sophistication by means of the Z:[l_f du (,LL——M)Z}:U du pR(M)} . (52
details of the experimental situation and it often requires
some kind of analytic continuation to result sensibly. In fact,
sometimes, the nearest singularity which characterizes thie follows that the spectral representation of the propagator
radius of convergence of the Taylor series is a branch poirthecomes
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prp)du with QCD. Usually one adopts an effective chiral Lagrang-
AR(S):J — (53)  ian, obtainable via the Coleman-Callan-Wess-Zumino con-
struction[38]. Such a Lagrangian, involving terms of arbi-

where pr(n)=p(x)/ Z. Incidentally, we can say that an- trary high order in derivatives, will produce momentum
other way to look at the issue of the normalization is todependence in all observables. Sughdependence could
examine the form of the propagator in the vicinity of the also be shown to be consistent with a number of other ap-
one-particle pole. Relaxing the requirement that the residuproaches as well as QCD sum rules and chiral perturbation
of this pole should be unity, and assuming that the residue aheory techniques and with the vector meson dominance ap-
the propagator takes different values, in general, we maproach. It is thus appropriate to revisit and generalize the
express the spectral densities as usual understanding of meson spectroscopy mainly in the
search of gluonium or hybrid states.
The physical effects due to the location of complex pole
TR(S)= J d uK(s,u)prp) singularities has been stressed recently for the resonant shape
of the Z° neutral gauge boson, in the context of providing
gauge and process independent definition oizhenass and
and width in the electroweak standard mod8]. Analogous and
more interesting is the case of the heavy top quat, the
pr(S)=38(s—M?)+[Az*(s)| 2oR(s), (54)  charged gauge bosofd0], and the forthcoming neutral
Higgs bosorj41]. Clearly, although any effect is small, how-
for s=s(1+ie) and with the kerneK(s,u) depending on ever, it is not expected entirely out of range for the future
the theory. In the case of new physical effects, new poles ofrecision measurements of the partial width of #fe
cuts can lie in the neighborhood of the pete M? (which is Any attempts to determine the correct treatment of un-
fixed by the renormalization procedyréictually, the main  stable particles were faced with the problem of selecting
difficulty arises from a negative sign of thg since it de- gauge independent observables. Now the Breit-Wigner form
stroys the Herglotz property oigl. The spectral function is not enough to preserve gauge invariance, due to the arti-
pr(S) can be negative for some value ©f This eventuality  fact that if we want a gauge invariant property valid order by
introduces a discontinuity in the integrand &f*, whose order in perturbation theory, we must invoke some Ward-
real part(principal value integralhas a logarithmic singular- Takahashi identities, so we are forced to consider higher or-
ity [28]. Negativepg(s) represents presumably the presenceder correctiong42], although it is reasonable to expect that
of negative metric states, sometimes also referred to aihe Breit-Wigner ansatz will contain the biggest contribution
ghosts. For instance, in the case of QED, the interaction ke®f the absorptive part. Until the dynamics of unstable par-
nel gives rise to a negative spectral funct[@4]. Neverthe- ticles has been described in terms of initial and final
less, theories with massless gauge vector bosons can be &symptotic states, the results are unitary and causal. The uni-
formulated in terms of an indefinite metr{@5], and the tarity of the S matrix even in the presence of unstable par-
positivity of the spectral functions is not a necessary requireticles has been considered by Veltman in the paper of Ref.
ment. Anyway, in massive theories, the negativitypafre-  [2]. Nevertheless, the use of on-shell particles configurations
flects the inadequacy of the approximations, or the inconsissecomes misleading if the resummation of the self-energy
tency of the theory. It is worth noting that the introduction of graphs takes into account higher order correctiegt®. Al-
a cutoff does not automatically remove the ghost problem. Inhough most of the investigations have been concerned with
the local relativistic field theory, the origin of the problem the resonant enhancements in the scattering cross section due
lies in the negative value d. Physically, all that means that to the position of ordinary poles, threshold effects, mainly in
a reasonable description eliminates these complex and singa¥ e~ collisions, are claimed to be of controversial interest
lar sensitivities or inelegantly modifies its analytical structure[43]. The long time during the decayed patrticles stays close
by means of some artificious approximations or with frustra-together, allowing strong interactions to build up rich struc-
tion employs substructural degrees of freedom in the intertures of bound states and resonances. This picture becomes

S—u

actions. relevant in the resonant region where the narrow width ap-
proximation of the Weisskopf-Wigner method will be insuf-

V. PHENOMENOLOGICAL IMPLICATIONS f!C|en_t f(_)r many purposes. To qbtam a more_rgahsuc descrip-

AND CONCLUSIONS tion it is necessary to consider the additional threshold

contributions whose resummation could produce an expo-

At present there are no practical implications between th@ent with the Fermi-Watson singularities from the infra-red
renormalized mass and the real part of the propagator. In theole.
case of hadron resonanc¢36], which in principle are In conclusion, in this paper we propose a full-fledged dis-
thought to be derived by QCD, the mass is regarded as eussion of the properties of the unstable particles. The inves-
Breit-Wigner resonance parameter extracted experimentalliigation ranges from the solvable Friedrichs-Lee model of
in the resonant cross section. This approach is adopted by thlkee quantum nonrelativistic theory to the renormalizable
suspicious Particle Data Group with the relevant exceptiomuantum field theory. In particular, the threshold singularities
of the S*/f,(975) meson. In this case, the assumption of theare considered to elucidate several often forgotten renormal-
g2 independence of the self-energy is more problenj&f¢.  ization effects for the propagator. The connection with the
In general, hadron dynamics is described by an effectivé&Kallen-Lehmann spectral representation is then established
low-energy Lagrangian, constructed so as to be compatibland some phenomenological implications are discussed.
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