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Characterization of unstable particles
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The properties of the unstable particles are analyzed relativistically in a spectral form similar to the solvable
Friedrichs-Lee model of the nonrelativistic theory. Singular threshold effects are considered. The approach is
then extended to a renormalizable quantum field theory that includes unstable particles. Their dynamical
behavior is then investigated by examining the renormalization effects for the propagators. The connection
with the Källen-Lehmann spectral representation is established and some phenomenological implications are
discussed.@S0556-2821~98!05812-3#
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I. INTRODUCTION

The problem of decaying particles, scattering resonan
and generic metastable states in quantum physics conti
to be of current interest. Recently, there has been cons
able discussions concerning the definition of unstable st
@1#, which becomes an acute problem in models based
scattering theory@2#. This problem is not only of mathemat
cal interest since many confusing issues affect the un
standing of the production and the decay of large width
stable heavy fundamental particles such as top quark, ga
bosons, and eventually Higgs bosons@3#, which make ques-
tionable how they are to be studied. In particular, theW and
Z gauge bosons both have a sizable width and the s
might be true for the top quark and the Higgs boson. Des
the impressive successes of the standard model of the
troweak interactions, the analytical structure of the reson
dynamics governing these particles will play a particula
relevant new role influencing sensibly the planning accur
of the next generation of experiments at the forthcom
colliders, such as the second phase of the Large Elec
Positron ~LEP2! collider and the Large Hadron Collide
~LHC! at CERN, as the Tevatron at Fermilab.

The intrinsic dissipative nature of the unstable system
its decay in quantum mechanics@1#, in particle physics@4#
and in statistical mechanics@5#, faced with the problem of
the complex eigenvalues for the Hamiltonian, and theref
with the extension from the usual Hilbert space~a space of
square integrable functions! to a rigged Hilbert space~a
space of distributions!, in order to maintain the Hermiticity
of the Hamiltonian. This procedure is not unique and diff
ent distribution spaces can be defined which are based
different test function spaces. If we chooseF2 as the test
function space, generated by the eigenfunctions of the en
E which are analytic in the lower complex halfplane, wh
the real variableE is promoted to a complex variablez ~pre-
cisely Hardy class functions!, we obtain the dual spaceF2

3 ,
which is the required extension of the Hilbert spaceH. The
corresponding Gel’fand triplet is then

F2,H,F2
3 . ~1!
570556-2821/98/57~12!/7251~11!/$15.00
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If the same procedure is performed in the upper comp
plane, the resulting triplet reads

F1,H,F1
3 . ~2!

The first of these choices, hence the spaceF2
3 , corresponds

to unstable decaying states while the second one, nam
F1

3 , corresponds to unstable growing states. In fact,
complex poles of the transition matrix are related, as it
well known, with unstable physical states. These poles
then be transformed into complex eigenvalueszn of the
Hamiltonian. According to this method, a pair of dual spac
is necessary in order to separately represent the fut
decaying and future-growing~past-decaying! states. The es-
sence of the proposal of a rigged Hilbert space is clea
devoted to make rigorous the decay formalism and to re
the dynamical semigroup composition law in the evoluti
of unstable quantum states with Hermitian Hamiltonian. T
eigenvalueszn of a Hermitian operator are not real anymo
in this extended space. If Imzn.0 then a growing prefacto
appears in the time evolution of the corresponding eigenv
tor ucn1&, giving rise to a growing state belonging to th
rigged Hilbert spaceF1

3 . On the contrary, if Imzn,0 the
prefactor is a decaying one, the corresponding stateucn2& is
decaying and belongs to another rigged Hilbert space,F2

3 .
Finally, Im zn50 corresponds to an ordinary stable state
longing to the ordinary Hilbert spaceH5F1

3ùF2
3 ~more

general models contain both, growing and decaying sta
@1#!. The choice betweenF2 or F1 is irrelevant, since these
two objects are identical~namely one can be obtained from
the other by a mathematical symmetry transformation!, and
therefore they are not distinguishable. Only the namespast
and future or decayingand growing will change but the
physics is the same. The hints to double the phase sp
degrees of freedom are intimately connected with the pr
lem of the quantization of dissipative open systems@6#. In
these open systems, the doubled degrees of freedom pla
role of the inclusion of an effective coupled bath adopted
take into account the dissipative effects. The description
the original dissipative system is then recovered by elimin
ing those bath variables which are not relevant by mean
an appropriate averaging procedure. The strategy to inc
additional bath variables yields formally an isolated config
7251 © 1998 The American Physical Society
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7252 57DECIO COCOLICCHIO
ration ~bath plus system!, which can, of course, be studied
the canonical quantization scheme. The application of
method to problems with large quantum numbers is w
known in many fields of physics. For instance, such an
fective approach is extensively adopted in the general fra
work of statistical and thermal field theories where usua
the applications of coherent-state condensates and the
tional formalism of path integrals are especially useful
integrating out the subset of plethoric dynamical field va
ables and to yield effective dynamics at a more phenome
logical level. Anyway, these results seem to reflect the w
known requirements of additional complementarity relatio
which occur at the classical level, to make the equations
motion for dissipative systems derivable from a variatio
principle @7#.

On the other side, instead of extending the representa
space, an alternative technique consists in doubling the
integration contour of the path integral representation
quantum systems with infinite degrees of freedom. T
closed time-path Green-function formalism was introduc
early into the many-body theories@8# in order to describe
both equilibrium and nonequilibrium systems in a unifi
framework.

Anyway, it is clear that the main difficulties arise becau
it is not easy to deal with unstable particles in the realm
the ordinary quantum theory, as they cannot be represe
by asymptotic states. The standard perturbation expan
breaks down in the absence of the observable asymp
states for unstable particles. The controversial issue con
in defining properly the characteristic space-time depende
of the survival probability of any metastable state which c
deviate from a pure exponential decay law at very shor
very long times, as compared to the lifetime of the unsta
particle, and in dependence of the structure of the prepa
initial state. More recently, such a problem has been
cussed extensively in the context of the quantum field the
@9#, and in order to show that the features of unstability ar
manifestation of the fact that an unstable system canno
considered isolated@10#. This intrinsic dissipative nature i
peculiar of open systems and faced with the problem of co
plex eigenvalues for the Hamiltonian. This approach is
dressed to decompose a total closed system into a rele
subsystem, with a character of elementarity, and the rem
ing environmental degrees of freedom which must be in
grated out to yield an effective formulation at a more ph
nomenological level. We already mentioned that t
intrinsic nature of unstable systems can be afforded rig
ously with a doubling of the path of the functional integr
tion @8#, or with the doubling of the ordinary Hilbert spac
@11#. However, in these rigorous approaches, we are led
consider matrix valued Green’s functions~propagators!,
which contain spurious information, and that complica
their use in a perturbation expansion.

In principle, we may define the properties of unstable p
ticles investigating globally a reaction involving the initi
production, the intermediate propagation and its final dec
The essential content of this investigation consists in ana
ing the possible existence of singularities in the multip
sheets of the Riemann surface into which the Fourier tra
form of the propagator can be continued analytically. Suc
propagator’s method has the great advantage to appear
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ral and indeed independent of various production and de
mechanisms, although it is not immediate to have a mo
and to solve the ambiguities connected to its complex a
lytical structure. However, in several situations, the instab
ity properties seem to be incorporated consistently by ad
ing the averaging process of radiative corrections. T
process yields complex singularities in the propagator
suffers in general from the presence of divergences wh
imposes the renormalization of the parameters in the Ha
tonian. This path of renormalization has unraveled a la
number of tantalizing possibilities, but unfortunately witho
accommodating the significant features associated with
gauge invariance of the theory. A number of approaches
been developed to understand the singularities connecte
unstable particles in perturbation theory. Nevertheless, s
sort of resummation of the perturbation is required to int
duce an absorptive part into the renormalized propag
which can account for the Breit-Wigner resonance sha
Indeed, in the context of renormalizable gauge theor
many pathologies seem to affect the discussion about
correct form of the resummed propagator of gauge vec
unstable bosons in the resonance region. Recently, the a
racy attained in LEP experiments regarding the meas
ments of the fundamental parameters, the mass and wid
the Z0 gauge boson, has raised the question whether the
tracted value of the renormalized on-shellZ0 mass is gauge
dependent in higher orders of perturbation theory. This
point is not only of academic interest as gauge break
terms are often much larger numerically than the gauge
variant result. Thus, to circumvent the problem, there
several recent theoretical proposals. On this side, a dec
impulse to obtain the gauge invariance of the result at
order of perturbation theory is assured by a Laurent exp
sion around the complex pole@12# with the supplement of a
suitable renormalization scheme to define properly the re
larized mass@13#. Evidently, to obtain a more realistic de
scription, it is necessary to incorporate also the additio
contributions induced at threshold. This problem is han
somely overtaken if we are willing to comply also with oth
underlying characteristics of an unstable particle. Unsta
intermediate states are associated with poles in their inv
ant momentum lying off the physical sheet below the r
axis. The associated residues can be used to define gen
ized matrix elements for processes with unstable particle
external states which satisfy unitarity sum rules that
analogous to those for stable particles but continued off
real axis. An explanation of these shortcomings is the f
that the basic dynamics is given in terms of Heisenberg~or
interacting! fields whereas the physically relevant quantiti
are given by expectation values of observables expresse
terms of asymptotic in- or out-fields, also called physical
free fields. In the formalism of quantum field theories the
and out-fields are obtained by the weak limit of the Heise
berg fields in asymptotic regions of space and time where
interaction is negligible. The meaning of the weak limit
that the realization of basic dynamics in terms of the in- a
outfields is not unique so that the limit in the asympto
region, is representation dependent. This representation
pendence of the asymptotic limit arises from the existence
infinitely many unitarily nonequivalent representations of t
canonical~anti-! commutation relations. Of course, since o
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57 7253CHARACTERIZATION OF UNSTABLE PARTICLES
servables are described in terms of asymptotic fields,
tarily inequivalent representations describe different, i
physically inequivalent, situations. It is therefore of cruc
importance, in order to get physically meaningful results,
investigate with much care the mapping among Heisenb
or interacting fields and free fields. Such a mapping is u
ally called the Haag expansion or the dynamical map an
is based on the concept of interpolating field for a compo
particle, which was introduced independently by Nishijim
Haag, and Zimmermann@14#. Only in a very rude and naive
approximation we may assume that interacting fields
free fields share the same vacuum state and the same
space representation@15#. These remarks obviously appl
only to quantum field theories, namely to systems with
infinite number of degrees of freedom. In quantum mech
ics, the von Neumann theorem ensures that the repres
tions of the canonical commutation relations are each o
unitarily equivalent and no problem arises with uniquen
of the asymptotic limit. In quantum field theories, howev
the von Neumann theorem does not hold and much m
careful attention is required when considering any mapp
among interacting and free fields. With this warning, t
evolution of unstable states deserves a careful analysis. In
in-out formalism of quantum field theory, instead of exten
ing the representation space, the evolution is connected
the averaging process of the quantum corrections. The in
duction of the dynamical map which relates bare fields a
the radiatively corrected asymptotic fields, specifies, am
many representations of the canonical commutation relat
one representation suitable for the description of the de
system. From this point of view, the dynamical map gives
ensemble of representations among a statistical averag
dynamics, each of which has a deterministic evolution.
this sense, the analytical features of the dynamical map y
one-to-many correspondence instead of one-to-one. It is
pose of this paper to discuss the essential problems of
structure of unstable particles in a covariant formulatio
Apart from mathematical complexities, the essential task
to spell out the proper physical interpretation.

First, we discuss the decay formalism in the framework
ordinary time dependent canonical formalism. In this sect
we elucidate several unstable particle ideas including th
of second-sheet poles, discrete energy dissolved into the
tinuum, and unitary time evolution with deviations from e
ponential decay. The covariant generalization of the de
problem with relativistic kinematics is discussed in Sec.
This relativistic covariant version illustrates how the ma
change and the decay width are generated by the intera
in a generalized invariant proper time representation. In S
IV, we analyze the effects of the inclusion of quantum c
rections into renormalizable field theories which lead to ca
strophic results, with the appearance not only of comp
poles, or ghosts, in the analytic continuation of the propa
tors into second Riemann sheets but also of branch l
corresponding to resonant intermediate states or to ano
lous composite structures. In fact, the character of bra
lines is based on the analytic properties of the correspon
dispersive and absorptive parts. We explore the use of th
properties for the description of resonant states and we
cuss their application into the treatment of singularity str
ture related or to possible resonant new ordinary states o
i-
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anomalous structure thresholds which describe effects du
the possibility that a given particle can be considered a
composite system of other particles. In the case of quan
electrodynamics~QED!, the appearance of a ghost in the o
loop corrections to the photon propagator, the so-called L
dau ghost, is not taken as a serious drawback of the the
This is because the momentum scale at which the ghost
pears is far from measurable and, at this scale, QED sh
probably be modified to include the effects of other ele
troweak effects. It is probably an indication of the sickne
of QED as a fundamental theory at high energies@16#. In
renormalizable field theories, a multitude of techniques~such
as structure functions, exponential and running coupling c
stants! have been developed to control the structure of
ultra-violet, infrared and collinear singularities in a relative
easy way, or to improve the convergence of the perturba
expansion, or reordering the expansion. In the case of h
ronic theories in the presence of confinement, the existe
of ghost poles is related to the short distance behavior of
model interactions and can be cured employing a subnuc
quark structure with new degrees of freedom which prov
a reasonable description of the property of asymptotic fr
dom @17#. In this paper we will endeavor to show the pec
liarities of this singular behavior which causes the trou
and fosters the belief that must be armed with a dee
knowledge to come with it.

II. THE DECAY FORMALISM

Unstable quantum mechanical states ought to be re
sented by generalized eigenvectors corresponding to c
plex eigenvalues of the Hamiltonian, the so-called Gam
vectors, which appeared in the early studies about thea de-
cay of atomic nuclei@18#. Energy eigenvectors with comple
eigenvalues appear simple and useful, but were consid
just as heuristic approximations, since they are exclu
from ordinary quantum mechanics, in which the energy o
eratorH is requested self-adjoint, with consequent meani
ful real eigenvalues. Then the decay formalism becomes
orous only within an extension of Hilbert space, namely in
rigged Hilbert space@11#. In spite of its undeniable short
comings, the theory of unstable nonrelativistic systems w
systematically settled out by Weisskopf and Wigner@4# in
their work on the spectral linewidth for atomic radiation.
this theory, the unstable system is represented by a w
function c which is supposed to be an eigenfunction of
unperturbed HamiltonianH0 . The action of the full per-
turbed HamiltonianH5H01Hint then causes a nontrivia
evolution of the wave function,c(t)5e2 iHtc, and induces
transition to a new bound state or to a single continuum~i.e.,
with energy as the only quantum number!. Such a simple
model is good enough to give an account of the pecu
effects of decaying systems.

The wave function can be expanded as

uc~ t !&5a~ t !uc0&1E
0

`

b~E,t !ucE&dt ~3!

with a andb the probability amplitudes of the system in th
stateuc0& ~corresponding to the bound state of energyE0,0!
and the positive continuum spectrum~which we supposed to
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7254 57DECIO COCOLICCHIO
start atE50!. The time evolution, predicted by the Wigne
Weisskopf theory, can be understood more easily by expr
ing the evolution operator by means of the Cauchy repres
tation with the contour integration of the exact Green
function ~the propagator! performed around the spectrum
H:

U~ t !5
1

2p i EC
dz e2 iztG~z!,

G~z!5@z2H#21. ~4!

This formalism has a rich bibliography@19#. As usual, we
now introduce the partition of the Hilbert space of the co
posed system~a single bound state and a simple continuu!
by means of the following projection operators:

P5uc0&^c0u,

Q5I2P. ~5!

The amplitudes of interest are then determined by the
duced propagators

PG~z!P and QG~z!P. ~6!

SettingI5P1Q in the identityI(z2H)G(z)I5I one ob-
tains, after some operator algebra,

PG~z!P5@z2H02PR~z!P#21,

QG~z!P5Q@z2QHQ#21QHintP@z2H02PR~z!P#21,
~7!

with the level shiftR(z) defined as

R~z!5Hint1HintQ@z2QHQ#21QHint ,

R~z!5^c0uR~z!uc0&. ~8!

The nondecay amplitudea(t) for survival of the initial state
is then given by

a~ t !5
1

2p i EC
dz e2 izt@z2E02R~z!#21, ~9!

whereC is a contour that depends on the nature of the sp
trum of H and we assume that att50 the system is in the
initial stateuc0& with eigenenergyE0 and that the interaction
can be switched on instantaneously.

The probability amplitudea(t) to find the initial state
‘‘undecayed’’ after a timet can be calculated by closing th
integration contour in the lower half plane and using t
method of residua. Usually, it can be written in a closed fo
if we restrict the Hilbert space of possible states with a s
of a superselection rule for which the level shiftR(z) re-
duces exactly to a second-order formula:

R~z!5E
0

`

dE
u^c0uHintucE&u2

z2E
. ~10!

This simplification follows from the essential feature of t
model. In fact, it was reasonably assumed that the unst
s-
n-

-

e-

c-

rt

le

quantum state has only projections on continuum state
which it decays, implying, physically, that there are no ‘‘fi
nal state’’ interactions. This is often a reliable physical a
proximation in many decaying systems, for which we c
neglect the rescattering of the decay particles. In general
decay products have several channels available and
unique prescription exists if several resonant states con
ute.

Although the functionR(z) might show a branch cut an
the propagatorPG(z)P may additionally have isolated pole
on the second Riemann sheet and, in the case of the so-c
‘‘virtual bound states,’’ on the real axis to the left of th
branch point@19#, usually, the integral over the cut is negl
gible, the real pole is absent and among the possible pole
the second sheet, we can argue that the dominant cont
tion derives from that located atz5E01R(E0) for slowly
varying R(z). Thus we obtain an exponential decay of t
initial state:

a~ t !5exp$2 i „E01R~E0!…t% ~11!

so that, withR(E0)5D02( i /2)G0 , we get the survival prob-
ability:

ua~ t !u25exp~2G0t !. ~12!

The constantsD0 andG0 can obviously be interpreted as th
induced shift and the induced width of the stateuc0&. Such
an approximation, called the pole approximation~or
Weisskopf-Wigner approximation!, usually works except for
very short times when other poles, lying further from the re
axis, may become important and for very long times wh
the cut contribution~decaying as a power function! exceeds
the exponent.

In the case of the threshold region, for instance, the re
tive significance of the cut term increases;R(E) may in
some range be a rapidly varying function so that the do
nant pole on the second sheet can approach the cut and
sibly the real axis. Furthermore, this pole could disapp
from the inside of the contour and a new resonant poleEb
could appear on the real axis to the left of the branch po
The integral over the cut can be replaced by an integral o
an half-line. Finally, one obtains

a~ t !5
e2 iEbT

@12R8~Eb!#
1

1

2p E
0

`

dE e2 iEt

3
G~E!

@E2E02D~E!#21
1

4
@G~E!#2

, ~13!

with R(E)5D(E)2( i /2)G(E) where

G~E!52pu^c0uHintucE&u2,

D~E!5PE
0

`

dE8
u^c0uHintucE8 &u2

E2E8
.

~14!

The first term is the residue of the integrand atEb , a real
solution of the equation
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57 7255CHARACTERIZATION OF UNSTABLE PARTICLES
Eb5E01R~Eb!. ~15!

The pole of the propagator atz5Eb implies the existence
of a bound stateucEb

& of energyEb of the dressed system
eigenstate of the total Hamiltonian at the moment of swit
ing on the interaction. High above the threshold, the te
including Eb is absent because there no solutions to the p
vious equation. Moreover, the functionsG(E) andD(E) are
usually slowly varying, so the spectrum is, to a good a
proximation, given by a Lorentzian profile. The peak is
cated at (E01D0) where the constantD0 represents the shif
in the initial state andG.G0 represents the linewidth. O
course, in the threshold region, the solutionEb appears and
G(E) andD(E) may vary rapidly; they cannot be interprete
simply as width and shift and, as the spectrum is defined
positive energies only, the curve is cut off atE50. The form
of this cutoff depends essentially on the properties of
quantum system considered. TheEb term gives the dynamics
and represents, physically, the importance of the dressed
tem ~eigenstate of the initial Hamiltonian! which has been
created at the moment of switching on the interaction.
long as the interaction is present, the initial state can
considered ‘‘trapped’’ in this stateucEb

& with a probability

u^cEb
uc0&u25@12R8(Eb)#21. At the moment it is switched

off, the dressed bound state ceases to exist and it is part
transferred to the bare continuum.

The generalizations of the exponential decay law are
cussed extensively in the literature about unstable quan
mechanical systems@1#. In particular, a lot of attention ha
been given to discussions on the nonexponential decay
spontaneous radiation emission for an excited atom. The
act solution of such a system was proposed by Friedr
@20# and in an elegant covariant form by Lee@21# and many
others@22#. For very long times, these general properties
the singularities characterizing unstable particles become
fective and essential to deal, for instance, with the case
proton decay whose predicted lifetime appears longer t
the present age of the universe or for the very rare dou
beta decay processes. Hence, according to very genera
sumptions, a deviation of the exponential law for the dec
of present-day protons is not excluded. The Friedrichs-
model has been very useful for the study of the propertie
unstable systems and provides a framework for the ana
study of decay. This model originally motivated the co
struction of the generalized Gamow states with exact ex
nential decay which belong to a rigged Hilbert space@11#.
Such states have found application in the theory of itera
maps@23# and play an important role in the study of irrever
ible processes@5#. The Friedrichs-Lee model is complete
soluble and provides a closed analytic form for what is cal
the reduced resolventG(z). In the theory of linear operator
in Hilbert space and, therefore, in more general quan
theory, we can introduce the concept of the resolv
G(l,H) of an operatorH,

G~l,H!5@lI2H#215E
0

`

e2lt exp~ tH!dt, ~16!

with the assumptions that the spectrum was bounded f
below and the ground state~vacuum! normalized to have
-

e-

-

r

e

ys-

s
e

lly

s-
m

a
x-
s

f
f-

of
n

e-
as-
y
e

of
ic
-
o-

d

d

m
t

m

zero energy eigenvalue. The survival amplitude can then
rewritten in this spectral formalism by means of the Lapla
transform

a~ t !5
1

2p i EC
dl G~l!e2 ilt. ~17!

However, the general quantum theory of unstable syste
says little about the non-exponential corrections to the p
approximation. As a matter of fact, these corrections wo
come from singularities ofG~l! in the complexl plane but
they are indeed not properly known. Consequently, the in
ence of singularities responsible for any violation of the pu
exponential decay law cannot be resolved clearly. Furth
more, the nonanalycity of the real and the imaginary part
the level shift operator could be reflected in the appeara
of nonanalytic structures~cusp! in the spectrum, the so
called Wigner combs@24#. On the other side, it is importan
to have a relativistic model for the description of the partic
decay involving a real change in the total particle mass of
system. An unstable particle generally decays into a fi
state of two or more particles in a process for which the to
energy is conserved, but the total mass is not. The equ
lence between mass and energy, which enters quantitati
in the kinematical description of such a process, is a fun
mentally relativistic relation. It is of interest, therefore,
describe unstable systems, or dissipative systems in gen
by extending these considerations to quantum field the
There is, however, an even more compelling reason for us
an explicitly relativistic description to deal with unstable pa
ticles, namely, the fact that for a system described in a G
ilean invariant form~as opposed to a relativistic form! there
are phase ambiguities that arise when one considers the
bination of states with different masses@25#. Indeed in the
relativistic quantum theory, the kinematical characterizat
of unstable particles may find difficulties since it is co
nected with a complex rest mass eigenvalue of a represe
tion of the Poincare´ group @26#.

III. THE RELATIVISTIC GENERALIZATION

A first approach to achieve a relativistic generalization
the Friedrichs-Lee model useful to deal with the transiti
from the initial boson stateV to the final scalarN1 andN2
decay states can then be provided by using a Poincare´ invari-
ant parametert.

The continuous quantum mechanical evolution of t
wave function for a one-particle system,

Ct5e2 iK tC0 , ~18!

is influenced by a generalized invariant Hamiltonian whi
in the rest frame can be split into the relativistic for
@21,22#.

K5K01KI , ~19!

whereK0 determines the particle spectrum andKI governs
the interactions according to the following expressions:
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K05E d4p
p2

2MV
b†~p!b~p!

1E d4p
p2

2M1
a1

†~p!a1~p!

1E d4k
k2

2M2
a2

†~k!a2~k!,

KI5E d4k d4p$ f ~k!b†~p!a1~p2k!a2~k!

1 f ~k!* a1
†~p2k!a2

†~k!b~p!%. ~20!

Here,b(p) is the annihilation operator for theV particle, and
a1(p), a2(k), for the N1 andN2 , respectively. This gener
alized Hamiltonian assures that there is nontrivial interact
only in the decay sector which is determined by the ver
factor f (k). Clearly, the second termKI represents the con
tinuous spectrum of the decay channel and it is determi
by the support properties of the coupling functionf (k). If
the initial particleV is represented by the normalized stat

C05E g~p!b†~p!d4pu0& ~21!

the evolved stateCt , as a function of the invariant timet, is
then given by

Ct5E d4p A~p,t!b†~p!u0&

1E d4p d4kB~p,k,t!a1
†~p!a2

†~k!u0&, ~22!

where we have chosen for the initial condition

A~p,0!5g~p!,

B~p,k,0!50. ~23!

Following precisely parallel to the analysis of the pre
ous section, we can formulate this relativistic generalizat
by means of a spectral approach. Considering the Hilb
space as a direct sum space over the absolutely conse
total energy momentum of the system, we can decomp
the generalized Hamiltonian for each four-momentapm of
the V particle:

Kp5M~p!P01K̄p1KI , ~24!

whereP0 represents the generally covariant projector cho
to select out single-particle intermediate states and chara
izing the decay system whereasKI is supposed with matrix
elements only between the continuum spectrum and the
crete statefp with eigenvalueM(p). At this point, the
problem has been reduced to solve the relativistic resolv
operator. Denoting the termK̄p corresponding to the continu
ous spectrum by means of a spectralv(k) function, for each
value ofp2, we may write

K̄p5E w~k!uk&^kud4k, ~25!
n
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or introducing a continuous labell to identify the continuum
eigenstates$ucl&%

K̄p5E w~l!ul&^ludl, ~26!

we derive the generalized form of the reduced resolven
eachp

G~z!5 i E d4p
ug~p!u2

z2M2R~z,p!
, ~27!

where

R~z,p!5E dl
u^cluKI ufp&u2

z2v~l!
5E d4k

u f ~k!u2

z2v~k!
.

~28!

A real pole is found for a stableV particle. However, if
unstable the pole becomes complex and if the system re
even more sophisticated, essential complexities are not
cluded. The proper-time relativistic analogue of the survi
amplitude is then given by

a~t!5
1

2p i EC
e2 iztG~z!dz, ~29!

whereC is a contour which depends on the spectrum. T
complex poles which dominate the decay law, in this pro
time evolution, can then be investigated in a way similar
the discussion of the nonrelativistic form. It is worth notin
that, for each value ofp2, there is a shift of the unperturbate
eigenvalue@for f (k)50# fromM(p) to a complex pole in
the second Riemann sheet determined by the vertex func
f (k). This can be interpreted as the acquisition of a comp
part for the total energy momentum of the system and c
responds to unstable particle states. The analytic structur
the resolvent operator becomes a powerful tool in the qu
tum description. Its relevance is due to the direct connec
among its singularities and physically significant properti
In general, the singularities will be assumed as only poles
the real axis corresponding to stable states or poles in
analytical continuation of the unphysical second Riema
sheet corresponding to unstable particles. Instead, the
pearance of singularities bound in the continuum reveals
unexpected interest. In this case, the singularity will be
branch line and will correspond to multiparticle states. Th
are related to possible intermediate states which mediate
decay~ordinary absorptive thresholds!, or they are anoma-
lous structure thresholds which describe effects due to
possibility that a given particle can be considered as a c
posite system of other particles. They appear in the phys
sheet only if a loosely condensate bound system is involv
otherwise they remain in a secondary Riemann sheet. A
way, there are a large variety of covariant models which m
be extracted in accord with the form of the spectrum. Fr
this point on we can buttress directly the analogy of t
Friedrichs-Lee model. Of course these complexities can
better realized by means of an extension of the Hilbert sp
introducing complex distributions, as we have already m
tioned.
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57 7257CHARACTERIZATION OF UNSTABLE PARTICLES
IV. UNSTABLE PARTICLES
IN QUANTUM FIELD THEORY

The further generalization of the decay formalism with
the framework of a renormalizable theory encounters con
erable difficulties on the definition of unstable particl
which is often rather complicated in a model based on s
tering theory. Instead of extending the representation sp
another appropriate formalism emerges for describing
stable particles. InS-matrix theory, the real poles of the sca
tering amplitude correspond to stable intermediate parti
whereas the instability of an unstable particle consists
shifting the pole location to a complex value in the differe
sheets of the Riemann surface into which the correspon
propagator can be analytically continued. The poles of
scattering amplitude are the zeros of the inverse propaga
The mass of an unstable particle is usually defined as the
part of the pole. This pole position is a physical quantity
has meaning independent of any theoretical framework,
of any scattering process. It is settled that the definition o
unstable particle can be introduced without recourse to
S-matrix formalism, by considering simply the subtleties r
lated to the mass renormalization of the propagator.

For definiteness, the space time evolution of a bare p
ticle is governed by the causal propagator which is ess
tially described in momentum space by

D~q2!5
1

q22M0
2 , ~30!

where M0 denotes the bare mass and we neglect, for
moment, the transverse part in the case of a massive ve
field and the projector operators for fermions.

If we consider the effects of the interactions and if w
limit ourselves to perturbative field theories, after the Dys
summation of one-particle-irreducible two-point Green
functions~which may eventually include mixing with othe
particles and tadpole contributions!, the dressed renorma
ized propagator can be written as

DR~q2!5
1

q22M0
21P~q2!

, ~31!

where the vacuum polarizationP(q2) represents the collec
tion of all irreducible proper self-energy~bubble! diagrams.
Assuming, tacitly, that the real part ofP(q2) is analytic near
the on-shell renormalized pointq25MR

2, we can perform the
following Taylor expansion:

Re P~q2!5Re P~MR
2 !

1Re P8~MR
2 !~q22MR

2 !1¯ ~32!

in order to define the on-shell renormalized mass param

MR
2.M0

22Re P~MR
2 !, ~33!

and the wave-function renormalized constant
d-
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Z21.11Re P8~MR
2 !. ~34!

Then, we may cast the propagator into the resonant Br
Wigner form

DR~q2!.
Z21

q22MR
21 iZ Im P~q2!

. ~35!

This form for the renormalized propagator will run into pro
lems not only with the gauge invariance but also to defi
properly the effective pole position of the scattering amp
tude. In fact, the imaginary part of the two point function
related by unitarity to the sum of the squares of the trunca
Green’s function connecting the particle to various fin
states. The ImP(MR

2) is related to the particle width via uni
tarity. For a stable particle ImP(q2)50 and the paramete
MR is then the particle’s mass. For an unstable parti
Im P(q2)Þ0 and the pole position is complex. The Dyso
summation of quantum corrections in the propagator lead
a finite width, and it is clearly only needed when the unsta
particle can kinematically be on its mass shell. Indeed for
unstable particle with spacelike momentum, the imagin
part of the self-energy is zero; hence no finite width sho
be used. It is a pure kinematical problem which partic
should be given a finite width and which not. The essen
variable here is the virtualityq2 of the unstable particles. In
the on-mass-shell renormalization scheme the pole pos
of the propagators coincide with their physical masses
the residues of the pole is normalized to unity.

In the case of the unstable particles, this is somewha
subtle question, since the ‘‘mass’’ lies in the continuum c
ated by open decay channels in the sense that the singu
is not a simple pole but it may coincide with a branch cut
another pole. The problem together with its solution has b
recently rediscovered in connection with the precision m
surements of the electroweak neutral gauge boson mass
width @3# and it can be correlated to the attempts to constr
the effective form factor characterizing the decays of hea
mesons@27#. To make this approach clearer, it is worth no
ing that the renormalization effects on the form of the pa
cle’s propagator in the neighborhood of the one-particle p
and the intertwined issue of the correct wave-function n
malization in the Ka¨llen-Lehmann dispersion representatio
for the vacuum polarization require exactly one subtr
tion: by definition, the self-energy has to vanish at the o
servable mass at which the propagator has a pole. Howe
the structure singularities can be understood independe
of the perturbation methods, on the basis of analyticity a
unitarity. The inclusion of quantum corrections into th
propagator imposes deep care to keep the matrix elem
gauge invariant@3#. This last point is not only of academi
interest, as gauge breaking terms are often much larger
merically than the gauge invariant result.

On the other side, within the framework of a renormal
able theory, as it is well known@28#, P(q2) has a branch
point on the real axis whenq2 is at a threshold. Therefore
the failure of the Taylor expansion about a real renormaliz
mass of the vacuum polarization functionP(q2) in the
threshold region suggests retrieving the definition of
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physical mass and width of a particle in terms of the posit
q0

2 of the complex pole in the particle’s propagator

q0
25S M phys2

i

2
GphysD 2

, ~36!

where

DR
21~q0

2!5@D21~q0
2!1P~q0

2!#

5q0
22M0

21P~q0
2!50, ~37!

so that the mass is defined as the real part of the pole in
energy plane. The relation between the physical mass an
renormalized mass can be recovered from the analytic st
ture ofP(q2). Anyway, to solve Eq.~37!, we stress that the
Taylor expansion ofP(q2) may not converge in the thresh
old region. In the absence, though, of any theoretical mo
the vacuum polarization functionP can be summarized ac
cording to the characteristic structure of its singularities.
general, if the singularities are complex poles, they are
rectly related to the intermediate states which introduce
sorptive singularities. On the other side, thresholds
branch lines which are related to the peculiarities of
model under examination. They describe physical effects
to the possibility that a given particle can be considered a
composite system of other particles or they are manife
tions of the resonant mixing of the particle with a bou
state. They appear in the physical sheet of the propag
only if a loosely bound composite system is involved, oth
wise, they remain in a secondary Riemann sheet. Howe
by proceeding from the more theoretical to the more phys
aspects of the problem, the issue becomes critical only w
we begin the expansion using just a real renormalized m
and the threshold branch points lie on the real axis. The p
positions of the propagators coincide with their physi
masses in the on-mass shell renormalization sche
whereas the definition of the width based on the comp
pole position is rather different in the threshold region@3#.
Following the procedure outlined in the first paper of Ref.@3#
and in Ref.@29#, the inverse propagator can be written as

DR
21~q2!5~q22q0

2!2@P~q2!2P~q0
2!#

5~q22q0
2!ZR

21~q2,q0
2!, ~38!

where

ZR
21~q2,q0

2!5F12
P~q2!2P~q0

2!

q22q0
2 G . ~39!

In generalZR
21(q2,q0

2) is divergent. We assume that one su
traction is sufficient to make it finite. In fact, if the gaug
invariant expansion of the resonant part is about the com
n
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pole q0
2 of Eq. ~37!, we can decompose the space-tim

dressed propagator according to the following expression

DR~x82x!

5E d4q

~2p!4 e2 iq•~x82x!F F~q0
2!

q22q0
21

F~q2!2F~q0
2!

q22q0
2 G ,

~40!

with

F~q2!5
q2q0

2

q22M01P~q2!
5F11

P~q2!2P~q0
2!

q22q0
2 G21

,

~41!

where according to l’Hoˆpital’s rule we have

F~q0
2!5@11P8~q0

2!#21. ~42!

This characterization of an unstable particle represent
deeper insight into any resonant scattering process. The
term in the space-time propagator is connected to the fi
space-time propagation whereas the second is a contact
It is worth noting that they are both produced by the sa
field so that the simultaneous presence of these two p
avoids a direct correspondence between the field and the
ticle. This is, in fact, Schwinger’s point of view of a fiel
theory@30#. A field is not supposed to be defined in the ca
of an unstable particle just because of the absence o
asymptotic states. Rather one defines a more fundame
field which describes a localized excitation, and it is differe
from the conventional one in which each particle is assign
a field. In other words, the question as to what is the lifeti
of an unstable particle depends on the manner in which
particle was prepared in the sense that it is only meanin
to consider the lifetime of an unstable particle with a defin
four-momentum. Therefore, unstable particles are und
stood in the context of field theories only in association w
the Green functions which can really describe the propa
tion from their production to their decay space-time po
tions. The form of these propagators determines the t
evolution of the decay probabilities. Nevertheless, the thre
old singularities merit a particular attention. At the thresho
for on shell production of two scalar particles, the analy
form of the vacuum polarization is given by

P1 loop~q2!5E d4k

~2p!4

1

~k22m1
2!@~q2k!22m2

2#

5B0~m1
2,m2

2;q2!. ~43!

Without considering the details of the singularities det
mined by the Landau equations, after a subtracted regu
ization to cure the divergences, the analytic expression of
scalar two points functionB0 @31#, let us write



57 7259CHARACTERIZATION OF UNSTABLE PARTICLES
4p@P~s!2P~s1!#5H l1/2

2s
logFA~m11m2!22s1A~m12m2!22s

A~m11m2!22s2A~m12m2!22s
G2

m1
22m2

2

2s
log

m1
2

m2
2J 2$s→s1%, ~44!

with

l5l~s,m1
2,m2

2!5@s2~m11m2!2#@s2~m12m2!2#, ~45!
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where we replaceq25s. In this form, it is clear thats50,
s5(m12m2)2 were irrelevant singularities. In the physic
Riemann sheet, for realq2 near threshold, the reflectio
property, let us write

Im P~s!5
l1/2

4ps
Q@s2~m11m2!2#. ~46!

The same result can be obtained by the once subtracted
persion relation, i.e., by a Cauchy formula along an integ
contour ~often named the african shield! encircling the
branch cut. In particular, the self-energy function satisfies
once subtracted dispersion relation

@Re P~q2!2Re P~q1
2!#

5
~q22q1

2!

p E
~m11m2!2

`

ds8
Im P~s8!

~s82q1
2!~s82q2!

. ~47!

The standard procedure to express the Feynman integra
their cut consists of performing a Taylor expansion in ext
nal momenta, whose coefficients make relatively easier
remaining calculation in the whole complex plane. Som
times, it appears worthwhile to develop and extend
method of the Taylor expansion to make it applicable to
various kinetical situations. For example, in the case of
multitude of methods to compute the two loop self-energ
@32#, the Taylor expansion does not seem to exist. In fa
there is no threshold solution of the relative Landau eq
tions because of the factorized logarithmic singularities.
our case, the subtracted dispersion relations are applie
assuming that the dominant contribution comes from
lowest pole corresponding to the lightest intermediate s
which can be produced. The existence of an anoma
structure threshold~due for instance to a new lighter weak
bound state!, causes the failure of the application of the d
persion relations. In this case, a discontinuity is crossed
the loop integration because the intermediate particle can
on shell for unphysical values of the momentum. When
new lighter bound is included as the lowest singularity, us
the appropriate contour, the dispersion relations cease to
However, in general, the precise knowledge ofP(q2) can be
achieved at various levels of sophistication by means of
details of the experimental situation and it often requi
some kind of analytic continuation to result sensibly. In fa
sometimes, the nearest singularity which characterizes
radius of convergence of the Taylor series is a branch p
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associated with the nearest threshold. To make this p
clearer, it is worth expressing the full propagator in t
Kallen-Lehmann representation

DF~s!5E r~m!dm

s2m
, ~48!

where the range of the integration extends from threshold
infinity below the poles of the integrand. At this level o
accuracy, the lower limit may recede to infinity and the c
contributions can be ignored. Whatever the spectral func
r~m! is supposed to be non-negative, it is simple to show t
the propagatorDF(s) has no poles or zeros off the reals-axis
@33#. This is known as the Herglotz property. Furthermore
DF(s) possesses the Herglotz property, then so does the
verse

DF
21~s!5@s2M0

22R~s!#, ~49!

where the integral

R~s!5E s~m!dm

s2m
, ~50!

in general is divergent and therefore needs regularizat
The spectral functions are obviously related:s(s)
5uDF

21(s)u2r(s). The usual mass and wave function reno
malizations are performed by imposing the condition that
renormalized propagator has a pole at the physical masM
with unit residue. This condition implies that the renorma
ized propagator is given by

DR
215~s2M2!F12~s2M2!E dm

sR~m!

~m2M2!2~s2m!G ,
~51!

with sR(m)5Zs(m). Notice that we have absorbed a
renormalization effects into the functionZ which represents
the residue of the full propagator at the mass pole and
terms of renormalized quantities it is given by the followin
relation:

Z5F12E dm
sR~m!

~m2M !2G5F E dm rR~m!G21

. ~52!

It follows that the spectral representation of the propaga
becomes
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DR~s!5E rR~m!dm

s2m
, ~53!

where rR(m)5r(m)/Z. Incidentally, we can say that an
other way to look at the issue of the normalization is
examine the form of the propagator in the vicinity of th
one-particle pole. Relaxing the requirement that the resi
of this pole should be unity, and assuming that the residu
the propagator takes different values, in general, we m
express the spectral densities as

sR~s!5E d mK~s,m!rR~m!

and

rR~s!.d~s2M2!1uDR
21~s!u22sR~s!, ~54!

for s5s(11 i e) and with the kernelK(s,m) depending on
the theory. In the case of new physical effects, new pole
cuts can lie in the neighborhood of the poles5M2 ~which is
fixed by the renormalization procedure!. Actually, the main
difficulty arises from a negative sign of theZ, since it de-
stroys the Herglotz property ofDR

21. The spectral function
rR(s) can be negative for some value ofs. This eventuality
introduces a discontinuity in the integrand ofDR

21, whose
real part~principal value integral! has a logarithmic singular
ity @28#. NegativerR(s) represents presumably the presen
of negative metric states, sometimes also referred to
ghosts. For instance, in the case of QED, the interaction
nel gives rise to a negative spectral function@34#. Neverthe-
less, theories with massless gauge vector bosons can b
formulated in terms of an indefinite metric@35#, and the
positivity of the spectral functions is not a necessary requ
ment. Anyway, in massive theories, the negativity ofrR re-
flects the inadequacy of the approximations, or the incon
tency of the theory. It is worth noting that the introduction
a cutoff does not automatically remove the ghost problem
the local relativistic field theory, the origin of the proble
lies in the negative value ofZ. Physically, all that means tha
a reasonable description eliminates these complex and si
lar sensitivities or inelegantly modifies its analytical structu
by means of some artificious approximations or with frust
tion employs substructural degrees of freedom in the in
actions.

V. PHENOMENOLOGICAL IMPLICATIONS
AND CONCLUSIONS

At present there are no practical implications between
renormalized mass and the real part of the propagator. In
case of hadron resonances@36#, which in principle are
thought to be derived by QCD, the mass is regarded a
Breit-Wigner resonance parameter extracted experimen
in the resonant cross section. This approach is adopted b
suspicious Particle Data Group with the relevant excep
of theS* / f 0(975) meson. In this case, the assumption of
q2 independence of the self-energy is more problematic@37#.
In general, hadron dynamics is described by an effec
low-energy Lagrangian, constructed so as to be compa
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with QCD. Usually one adopts an effective chiral Lagran
ian, obtainable via the Coleman-Callan-Wess-Zumino c
struction @38#. Such a Lagrangian, involving terms of arb
trary high order in derivatives, will produce momentu
dependence in all observables. Suchq2 dependence could
also be shown to be consistent with a number of other
proaches as well as QCD sum rules and chiral perturba
theory techniques and with the vector meson dominance
proach. It is thus appropriate to revisit and generalize
usual understanding of meson spectroscopy mainly in
search of gluonium or hybrid states.

The physical effects due to the location of complex po
singularities has been stressed recently for the resonant s
of the Z0 neutral gauge boson, in the context of providin
gauge and process independent definition of theZ0 mass and
width in the electroweak standard model@3#. Analogous and
more interesting is the case of the heavy top quark@39#, the
charged gauge boson@40#, and the forthcoming neutra
Higgs boson@41#. Clearly, although any effect is small, how
ever, it is not expected entirely out of range for the futu
precision measurements of the partial width of theZ0.

Any attempts to determine the correct treatment of u
stable particles were faced with the problem of select
gauge independent observables. Now the Breit-Wigner fo
is not enough to preserve gauge invariance, due to the
fact that if we want a gauge invariant property valid order
order in perturbation theory, we must invoke some Wa
Takahashi identities, so we are forced to consider higher
der corrections@42#, although it is reasonable to expect th
the Breit-Wigner ansatz will contain the biggest contributi
of the absorptive part. Until the dynamics of unstable p
ticles has been described in terms of initial and fin
asymptotic states, the results are unitary and causal. The
tarity of the S matrix even in the presence of unstable p
ticles has been considered by Veltman in the paper of R
@2#. Nevertheless, the use of on-shell particles configurati
becomes misleading if the resummation of the self-ene
graphs takes into account higher order corrections@42#. Al-
though most of the investigations have been concerned
the resonant enhancements in the scattering cross sectio
to the position of ordinary poles, threshold effects, mainly
e1e2 collisions, are claimed to be of controversial intere
@43#. The long time during the decayed particles stays cl
together, allowing strong interactions to build up rich stru
tures of bound states and resonances. This picture beco
relevant in the resonant region where the narrow width
proximation of the Weisskopf-Wigner method will be insu
ficient for many purposes. To obtain a more realistic desc
tion it is necessary to consider the additional thresh
contributions whose resummation could produce an ex
nent with the Fermi-Watson singularities from the infra-r
pole.

In conclusion, in this paper we propose a full-fledged d
cussion of the properties of the unstable particles. The inv
tigation ranges from the solvable Friedrichs-Lee model
the quantum nonrelativistic theory to the renormaliza
quantum field theory. In particular, the threshold singularit
are considered to elucidate several often forgotten renorm
ization effects for the propagator. The connection with t
Källen-Lehmann spectral representation is then establis
and some phenomenological implications are discussed.



p
.

n-

g
A

,

.

6.

e

th

d

;

o
,

,

,

,
l.

d

o,

T

ett.

.

57 7261CHARACTERIZATION OF UNSTABLE PARTICLES
@1# For a review see L. Fonda, G. C. Ghirardi, and A. Rimini, Re
Prog. Phys.41, 587 ~1978!; E. C. G. Sudarshan and C. B
Chiu, Phys. Rev. D47, 2602~1993!; H. Nakazato, M. Namiki,
and S. Pascazio, Int. J. Mod. Phys. B10, 247 ~1996!.

@2# P. T. Matthews and A. Salam, Phys. Rev.112, 283 ~1958!;
115, 1079 ~1959!; R. Jacob and R. G. Sachs,ibid. 121, 350
~1961!; M. Veltman, Physica~Amsterdam! 29, 186 ~1963!; R.
Eden, P. Landshoff, D. Olive, and J. Polkinghorne,The Ana-
lytic S-matrix ~Cambridge University Press, Cambridge, E
gland, 1966!.

@3# For an update see R. Stuart, inPerspective for Electroweak
Interactions in e1e2 Collisions, Proceedings of the Ringber
Workshop, Ringberg Castle, Germany, 1995, edited by B.
Kniehl ~World Scientific, Singapore, 1995!; A. Aeppli, G. J.
van Oldenborgh, and D. Wyler, Nucl. Phys.B428, 126~1994!;
J. Papavassiliou and A. Pilaftsis, Phys. Rev. Lett.75, 3060
~1995!; Phys. Rev. D53, 2128~1996!.

@4# V. Weisskopf and E. P. Wigner, Z. Phys.63, 54 ~1930!; 65, 18
~1930!.

@5# I. Antoniou and I. Prigogine, Physica A192, 443 ~1993!.
@6# H. Feshbach and Y. Tikochinsky, Trans. NY Acad. Sci.38

~Ser. II!, 44 ~1997!; E. Celeghini, M. Rasetti, and G. Vitiello
Ann. Phys.~N.Y.! 215, 156 ~1992!.

@7# H. Bateman, Phys. Rev.38, 815~1931!; H. Dekker, Phys. Rep
80, 1 ~1980!.

@8# J. Schwinger, J. Math. Phys.2, 407~1961!; R. P. Feynman and
F. L. Vernon, Ann. Phys.~N.Y.! 24, 118 ~1963!; L. V.
Keldysh, Sov. Phys. JETP20, 1018~1965!; A. O. Caldeira and
A. J. Legget, Physica A121, 587 ~1983!; K. Chou, Z. Su, B.
Hao, and L. Yu, Phys. Rep.118, 1 ~1985!.

@9# L. Maiani and M. Testa, CERN Report No. CERN-TH/97-24
@10# M. Yoshimura, Tohoku Univ. Report No. TU/97/523~1997!; I.

Joichi, Sh. Matsumoto, and M. Yoshimura, Tohoku Univ. R
port No. TU/97/524~1997!.

@11# G. Parravicini, V. Gorini, and E. C. G. Sudarshan, J. Ma
Phys.21, 2208 ~1980!; A. Bohm, ibid. 22, 2813 ~1981!; M.
Gadella, ibid. 24, 1462 ~1983!; 24, 2142 ~1983!; 25, 2481
~1984!.

@12# R. Stuart, Phys. Lett. B262, 113 ~1991!.
@13# R. Stuart, Phys. Rev. Lett.70, 3193~1993!.
@14# K. Nishijima, Phys. Rev.111, 995 ~1958!; R. Haag,ibid. 112,

669 ~1958!; W. Zimmermann, Nuovo Cimento10, 597~1958!.
@15# H. Umezawa,Advanced Field Theory—Micro, Macro, an

Thermal Physics~AIP Press, New York, 1993!.
@16# R. L. Jaffe and P. L. Mende, Nucl. Phys.B369, 189~1992!; R.

Tarrach, Univ. Barcelona Report No. UB-ECM-PF-38-94~un-
published!.

@17# R. Oehme,pN-Newsletter No.7, 1 ~1992!; Fermi Institute
Report EFI 92-17; Mod. Phys. Lett. A8, 1533 ~1993!; Int. J.
Mod. Phys. A10, 1995~1995!.

@18# G. A. Gamow, Z. Phys.51, 204 ~1928!; 52, 510 ~1928!.
@19# See, for example, M. L. Goldberger and K. M. Watson,Colli-

sions Theory~Wiley, New York, 1964!, Chap. 8, pp. 437–452
L. Mower, Phys. Rev.142, 799 ~1966!; Phys. Rev. A22, 882
~1980!.

@20# K. O. Friedrichs, Commun. Pure Appl. Math.1, 361 ~1948!.
@21# T. D. Lee, Phys. Rev.95, 1329~1954!.
@22# R. E. Peierls,Proceedings of the 1954 Glashow Conference

Nuclear and Meson Physics~Pergamon Press, New York
1954!, p. 296; L. Van Hove, Physica~Amsterdam! 22, 343
~1956!; V. Glasser and G. Ka¨llen, Nucl. Phys.2, 706 ~1956!;
.

.

-

.

n

M. Levy, Nuovo Cimento13, 115 ~1959!; 14, 612 ~1959!; F.
Yndurain, J. Math. Phys.7, 1133~1966!; N. Nakanishi, Prog.
Theor. Phys.19, 607 ~1968!; C. L. Hammer and T. A. Weber
Phys. Rev. D5, 3087~1972!; J. Math. Phys.10, 2067~1969!;
D. N. Williams, Nucl. Phys.B264, 423 ~1986!; L. P. Horwitz,
Found. Phys.25, 39 ~1995!.

@23# I. Antoniou and S. Tasaki, J. Phys. A26, 73 ~1993!.
@24# E. P. Wigner, Phys. Rev.73, 1002~1948!.
@25# V. Bargmann, Ann. Math.59, 1 ~1954!; E. Henley and W.

Thirring, Elementary Quantum Field Theory~McGraw-Hill,
New York, 1963!.

@26# D. N. Williams, Commun. Math. Phys.21, 314 ~1971!; P.
Exner, Phys. Rev. D28, 2621 ~1983!; M. G. Fuda,ibid. 41,
534 ~1990!.

@27# E. de Rafael and J. Taron, Phys. Rev. D50, 373 ~1994! and
references therein.

@28# T. Battacharaya and S. Willenbrok, Phys. Rev. D47, 4022
~1993!; K. Hagiwara, S. Matsumoto, D. Haidt, and C. S. Kim
Z. Phys. C68, 559 ~1994!; 68, 352~E! ~1995!.

@29# R. Stuart, Nucl. Phys.B498, 28 ~1997!.
@30# J. Schwinger, Ann. Phys.~N.Y.! 9, 169 ~1960!.
@31# G. ’t Hooft and M. Veltman, Nucl. Phys.B153, 365~1979!; S.

Bertolini and A. Sirlin, ibid. B248, 589 ~1984!; G. Degrassi
and A. Sirlin, Phys. Rev. D46, 3104~1994!.

@32# D. J. Broadhurstet al., Z. Phys. C60, 287 ~1993!; F. V. Tka-
chov, Int. J. Mod. Phys. A8, 2047 ~1993!; L. Durandet al.,
Phys. Rev. D48, 1061~1993!; J. Fleisher and O. V. Tarasov
Z. Phys. C64, 413 ~1994!; S. Bauberger and M. Bohm, Nuc
Phys.B445, 25 ~1995!; F. A. Berendset al., ibid. B439, 536
~1995!; A. Czarnecki and V. A. Smirnov, Phys. Lett. B394,
211 ~1997!.

@33# G. Barton, Introduction to Dispersion Techniques in Fiel
Theory ~Benjamin, New York, 1965!; W. D. Brown, R. D.
Puff, and L. Wilets, Phys. Rev. C2, 331 ~1970!; L. Mizrachi,
Phys. Rev. D13, 2891~1976!.

@34# M. Gell-Mann and F. E. Low, Phys. Rev.95, 1300~1954!.
@35# S. W. Gupta, Proc. Phys. Soc. London, Sect. A63, 681~1950!;

K. Bleuler, Helv. Phys. Acta23, 567 ~1950!.
@36# D. Morgan and M. R. Pennington, Phys. Rev. Lett.59, 2818

~1987!; Phys. Lett. B258, 444 ~1991!.
@37# S. Coleman and H. J. Schnitzer, Phys. Rev.134, B863~1964!;

R. G. Sachs and J. F. Willemsen, Phys. Rev. D2, 133 ~1970!;
H. B. O’Connelet al., Phys. Lett. B336, 1 ~1994!; J. Pestieau
et al., Phys. Rev. D50, 4454 ~1994!; Nucl. Phys.B440, 237
~1995!.

@38# S. Coleman, J. Wess, and B. Zumino, Phys. Rev.177, 2239
~1969!; C. G. Callan, S. Coleman, J. Wess, and B. Zumin
ibid. 177, 2247~1969!.

@39# A. Pilaftsis, Z. Phys. C47, 95 ~1990!; Jiang Liu, Phys. Rev. D
47, R1741~1993!; Univ. Pennsylvania Report No. UPR-0558
~unpublished!.

@40# G. Lopez Castro, J. L Lucio, and J. Pestieau, Mod. Phys. L
B 259, 3679~1991!; Int. J. Mod. Phys. A11, 563 ~1996!; M.
Nowakowski and A. Pilaftsis, Z. Phys. C60, 121 ~1993!.

@41# G. Valencia and S. Willenbrock, Phys. Rev. D46, 2247
~1992!.

@42# A. Borrelli, M. Consoli, L. Maiani, and L. Sisto, Nucl. Phys
B333, 357 ~1990!.

@43# F. J. Yndurain, Phys. Lett. B321, 400~1994!; M. C. Gonzalez-
Garcia, F. Halzen, and R. A. Va´zquez,ibid. 322, 233 ~1994!;
B. A. Kniehl and A. Sirlin, Phys. Rev. D51, 3803~1995!.


