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Radiation from a charged particle and radiation reaction reexamined
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We study the electromagnetic fields of an arbitrarily moving charged particle and the radiation reaction on
the charged particle using a novel approach. We first show that the fields of anarbitrarily moving charged
particle in an inertial frame can be related in a simple manner to the fields of auniformly acceleratedcharged
particle in its rest frame. Since the latter field is static and easily obtainable, it is possible to derive the fields
of an arbitrarily moving charged particle by a coordinate transformation. More importantly, this formalism
allows us to calculate the self-force on a charged particle in a remarkably simple manner. We show that the
original expression for this force, obtained by Dirac, can be rederived with much less computation and in an
intuitively simple manner using our formalism.@S0556-2821~98!05710-5#

PACS number~s!: 03.50.De, 03.65.Pm, 41.60.2m
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I. MOTIVATION

The field of a charged particle at rest in an inertial fram
is a static Coulomb field which falls as (1/r 2) in the standard
spherical coordinate system. The field of a charge, mov
with uniform velocity, can be obtained by Lorentz transform
ing the Coulomb field; this field also falls as the inver
square of the distance. The situation changes dramaticall
a charged particle which is moving with nonzero accele
tion. The field now has a piece which falls only as (1/r ),
usually called the radiation field. For a field which decrea
as (1/r ), the energy flux varies as (1/r 2) implying that the
same amount of energy flows through spheres of differ
radii at sufficiently large distances from the charge. For t
reason, the radiation fields acquire a life of their own and
entire phenomena of electromagnetic radiation hinges on
feature. Because of the continuous transfer of energy f
the charged particle to large distances, there will be a da
ing force acting on the charged particle which is usua
called the radiation reaction force. The derivation of the
diation reaction force is conceptually and operationally qu
complicated and the expression — obtained originally
Dirac ~see Ref.@4#!— has no simple intuitive description.

We analyze these issues from a novel point of view in t
paper which throws light on the conceptual and mathem
cal issues involved in this problem. The analysis is motiva
by the following issue: Maxwell’s equations are not on
Lorentz invariant but can also be written in a generally c
variant manner. Given a charged particle moving in so
arbitrary trajectory, it is always possible to construct a pro
coordinate system for such a charged particle. In such a
ordinate system, the charge will be at rest for all times
the background metric will be non-Minkowskian and —
general — time dependent. Maxwell’s equations in this
ordinate system will correspond to that of astationarycharge

*Email address: abh@ducos.ernet.in
†Email address: paddy@iucaa.ernet.in
570556-2821/98/57~12!/7241~10!/$15.00
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located in a nontrivial~and in general time-dependent! met-
ric. The solution to Maxwell’s equation in this frame re
ceives time-dependent contributionsnot because of the mo
tion of charged particles but because of the nontrivial nat
of the backgroundmetric. But we know that, for interna
consistency, these solutions should transform to the stan
solutions describing the field of an arbitrarily movin
charged particle when we go over to the inertial frame. T
is remarkable since the time dependence and nontriviality
thebackground metrichave to translate to the correct spat
and time dependence of theradiation field. Further, the
charged particle has to feel the radiation reaction force in
noninertial frame, even though it is at rest, due to the n
triviality of the background metric. It is not intuitively obvi
ous how these features come about and it is importan
understand how the physics in the noninertial frame of
charged particle operates.

We shall explore in this paper both the issues raised in
above paragraph. The key feature which emerges from
analysis is the following. The structure of Maxwell’s equ
tions dictate that the static field of auniformly accelerated
charged particle in its rest frame can be related to the field
an arbitrarily moving charged particle in the inertial frame
This connection also carries over to the computation of
self-force. It turns out that the radiation reaction force ha
simple geometrical origin in the uniformly acceleratin
frame in which the charged particle is instantaneously at r
The force arises due to the deviation of the trajectory of
charged particle from that of uniform acceleration and he
is proportional to the derivative of the acceleration. We sh
now spell out the details of the approach we plan to follow
this paper.

II. THE FORMALISM

Consider the electromagnetic field of a charge mov
with a uniform velocity in an inertial frameS. Since Max-
well’s equations are Lorentz covariant, the most natural w
to calculate the field inS is to find the field in the charge’s
7241 © 1998 The American Physical Society
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7242 57ABHINAV GUPTA AND T. PADMANABHAN
rest frameS8 and transform back toS. Let us next consider
the problem of calculating the electromagnetic field of
charge which is movingarbitrarily . The conventional
method ~see, e.g., Ref.@1#! is to calculate the Leinard
Weichert potential and to differentiate it to obtain the fie
However, we will show that it is possible to approach t
problem differently along the following lines.

Consider a charge moving with an arbitrary velocity a
acceleration in an inertial frameS. In the Lorentz gauge
Maxwell’s equations can be written in terms of the vec
potentialAm and the currentj m as

hAm54p j m, ~1!

whereh5]m]m. It follows that

hFmn54p~]m j n2]n j m!. ~2!

Because of the characteristics of theh operator, the fields a
an eventP can only depend on the trajectory of the charge
the retarded eventO, which is the point of intersection of th
backward light cone drawn fromP, and the world line of the
chargezm5zm(t). Since j m is linear in four velocity, the
quantity ]m j n , in the the right hand side of Eq.~2! can at
most depend onz̈m(t). Therefore, the fields atP can at most
depend on the second derivatives at the retarded positio
the charge atO — i.e., at most on the retarded accelerati
of the charge. Suppose we now change the trajectory of
charge to that of a uniformly accelerated one without cha
ing the values of the velocity and acceleration at the retar
eventO. The field atP, since it depends only on the velocit
and acceleration atO will still remain the same. It follows
that, if we know the field atP due to a uniformly accelerate
charge with a given acceleration and velocity atO, then we
can obtain the field due to a general trajectory.

Thus the problem reduces to that of calculating the fi
of a uniformly accelerated charged particle. This is most e
ily done by using the fact that Maxwell’s equations can
written in a generally covariant manner. Solving the Ma
well’s equations in the noninertial, rest frame of charge a
transforming the field to the inertial frame, we can obtain
field of a uniformly accelerated particle. Using the argum
outlined above, we can then find the field of a charged p
ticle moving in an arbitrary trajectory. To illustrate th
power of this technique, we shall directly calculate the fie
for arbitrary, rectilinear motion. ~The general case is
straightforward extension, and is treated in Appendix C!.

The real power of this formalism, however, lies in calc
lating the field in theinfinitesimal neighborhoodof the ac-
celerating charge. The general expression for the field in
neighborhood of an accelerating charge, found by Dirac,
fairly involved expression, and good deal of labor is requir
to compute it. Our formalism involves computing it in th
instantaneous coaccelerating frame of the charge, in w
the first and second derivatives of the position of the cha
vanish. The only dynamical contribution to the near fie
comes from the third derivative, which, as we shall see, le
to the radiation reaction term. This, along with the sta
terms, neatly transforms into expression obtained by Dira
the inertial frame. In addition, a novel interpretation for r
diation reaction emerges in the accelerated frame.
.
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The rest of the paper is organised as follows. In Sec.
we obtain the electromagnetic field of a uniformly accel
ated charge. This is done by solving Maxwell’s equations
the rest frame of the charged particle~which is a noninertial
frame! and transforming to the inertial frame. In Sec. IV, w
use this result to obtain the field of an arbitrarily movin
charged particle. This result is obtained by the proced
outlined above. Section V uses the same formalism to ob
the field in the neighborhood of the charged particle, there
obtaining the radiation reaction term. The last section su
marizes the results of the paper.

III. FIELDS DUE TO A CHARGE AT REST IN A
UNIFORMLY ACCELERATED FRAME

A. The coordinate transformation

Since the key idea involves working with a uniform
accelerated frame, we shall review the coordinate trans
mation connecting the Minkowski frame to the Rindl
frame and collect the necessary formulas. Consider a ch
moving with uniform acceleration along thez axis of an
inertial frameS with the coordinate system (t,x,y,z). The
trajectory of the charge is given by

t5
1

g
sinh~gt!; z5

1

g
cosh~gt!, ~3!

whereg is the proper acceleration of the charge, andt is its
proper time. The world line

z22t25S 1

gD 2

~4!

is a hyperbola. Referring to Fig. 1, one can see that
charge can influence regionsA andB of spacetime, which lie
along the forward light cone of the charge’s trajectory b
not the regionsC and D. Let us now fix a proper, Fermi
Walker transported coordinate system (t,z,x,y) to the accel-
erating charge and call it frameU. Separate transformation
are defined fromS to U for regionsA andB. In regionA, we
take

t5
A2gz

g
sinh~gt!, z5

A2gz

g
cosh~gt!, z.0 ~5!

FIG. 1. The four domains of Minkowski spacetime; see text
more discussion.
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57 7243RADIATION FROM A CHARGED PARTICLE AND . . .
and in regionB we take

t5
A22gz

g
cosh~gt!, z5

A22gz

g
sinh~gt!, z,0,

~6!

x and y are mapped to themselves. The spacetime inter
both in regionsA andB is

ds252gzdt22
dz2

2gz
2dr22r2df2, ~7!

where r5Ax21y2 and f5tan21(y/x). The range @z
.0; 2`,t,1`# covers regionA, and @z,0; 2`,t
,1`# covers regionB. In these coordinates, the charge
at rest, atz05(1/2g). Since the metric is same for the tran
formations defined by Eqs.~5! and ~6!, we can solve Max-
well’s equations in the background metric of Eq.~7! and
transform separately in regionsA andB to get the fields in
the frameS.

B. The fields in the accelerated frame

Let us next obtain the solutions to Maxwell’s equations
the noninertial Rindler frame. The generally covariant fo
of Maxwell’s equations are

1

A2g
]m~A2gFmn!54p j n ~8!

with

Fmn5]mAn2]nAm . ~9!

The current is

j m5
e

A2g
d3~x2x0!

dxm

dx0
, ~10!

wherex05(z0 ,0,0) is coordinate of the charged particle
the accelerated frame and the Dirac delta function is defi
to be

d3~x2x0!5d~z2z0!d~r!d~f!, E d3~x¢!dz dr df51

~11!

for a point charge atz5z0. Since the charge is at rest,j i

50 for i 51,2,3 and j 0Þ0. Correspondingly, we can
take Ai50 with all time derivatives vanishing. Hence th
only relevant components of the field tensor are

Fz052Fz052]zA0 , Fr052
1

2gz
~]rA0!. ~12!

Expressing the field tensor in terms of the potential, we
the equation satisfied byA0:

r
]2A0

]z2
1

1

2gz

]

]rS r
]A0

]r D524ped3~x2x0!. ~13!
l,

d

t

This equation has a simple, closed form solution which c
be obtained by direct integration of Eq.~13! for xÞx0 and
matching the boundary condition atx5x0:

A05ge
z1z01~1/2!gr2

A@z2z01~1/2!gr2#21~2gr2z0!

5ge
z1z01~1/2!gr2

A@z1z01~1/2!gr2#224z0z
. ~14!

~An alternative derivation of this solution is given in Appe
dix A! Also, as mentioned earlier,Ai50 implying that there
are no magnetic fields.

Let us next compute the electric field corresponding
this potential. In an inertial frame,Fi

0 ,F0
i ,Fi0 can all be

interpreted as defining the electric field~apart from differ-
ence in signs!. However, in the metric defined by Eq.~7!,
these components have different spatial dependence du
raising and lowering bygmn , which is not constant. So, in
order to define thephysicalelectric field, we go back to the
basic definition of electric field as the ‘‘electromagnetic for
per unit charge, experienced by a charge at rest.’’ The c
travariant electromagnetic force vector is

f m5eFm
n

dxn

ds

which for a charge at rest gives the electric field

Ei[Fi
0

dx0

ds
5

Fi
0

Ag00

. ~15!

Using this in Eqs.~12!, we get the electric field componen

Ez5
~2gez0!A2gz$@z2z02~1/2!gr2#%

j3
,

Er5
~2gez0!rA2gz

j3
, Ef50, ~16!

where

j[A@z2z01~1/2!gr2#212gr2z0. ~17!

There are some interesting features which are worth n
ing about this field. To simplify the analysis let us transfor
from the coordinates (t,z,r,w) to (t,Z,r,w), where z
5(gZ2/2). The metric in regionA is now

ds25g2Z2dt22~dZ21dr21r2dw2!. ~18!

The Z component of the electric field in this coordinate sy
tem is

EZ5
4e

g2

@Z22r22g22#

@~Z21r22g22!214g22r2#3/2

5
4e

g2

@Z22r22g22#

@~Z21r21g22!224g22Z2#3/2
. ~19!



f.

izo

l

t h
nd
ld

ng
th

-
at

on-

n at

in
b-

er
een

To

7244 57ABHINAV GUPTA AND T. PADMANABHAN
In this coordinate system, the~apparent! event horizon is at
Z50. On this surface, the electric field is alongZ axis and
has the value

EZ ~at Z50!52
4e

g2

1

~r21g22!2
. ~20!

This is finite and is equivalent to having a charge density

s ~at Z50!51
Ez

4p
52

e

pg2

1

~r21g22!2
~21!

at the apparent horizon~this point was earlier noted in Re
@2#!. Note that this result is coordinate dependent. The field
Ez, in the coordinates (t,z,r,w), vanishesat the horizon. In
these coordinates, there is no charge density on the hor

If we shift the origin of theZ axis by introducing the
coordinateZ̄5Z2g21, then the metric becomes

ds25~11gZ̄!2dt22~dZ21dr21r2dw2! ~22!

and the electric field becomes

Ez̄5
eZ̄

r 3 S 11
1

2

gr2

Z̄
D S 11gZ̄1

1

4
g2r 2D 23/2

, ~23!

Er52
er

r 3 S 11
1

2

gr2

Z̄
D ~11gZ̄!S 11gZ̄1

1

4
g2r 2D 23/2

3S 11gZ̄2
g

2

r 2

Z̄
D 21

, ~24!

with Ew50. In this form, it is clear that field is the usua
Coulomb field forgZ̄!1, gr!1. The behavior of the field
near the charge, compared to its form near the apparen
rizon clearly shows the distorting effect of the backgrou
line element. We shall now use this result to obtain the fie
of an arbitrarily moving change.

IV. FIELD OF A CHARGE MOVING RECTILINEARLY,
WITH ARBITRARY VELOCITY AND ACCELERATION

A. The coordinate transformation

We shall calculate the field due to a rectilinearly movi
charge using the approach described in Sec. II. Let
charge move along thez axis of the inertial frameS. We are
interested in the field at eventP with coordinates (t,z,r,f).
The retarded event isO with coordinates (t0 ,z0,0,0). At O,
let v ret be the velocity of the charge andaret be its accelera-
tion. Then, the proper acceleration is

g5A2amam5aretg
3, ~25!

where g5(12v ret
2 )21/2. We construct a comoving, uni

formly accelerating observer with an attached coordin
frameM with coordinates (t,z,r,f) such that the origin of
M coincides with the world line of the charge up tovm and
am at the eventO. So, atO, in the frameM , the charge is
n.

o-

s

is

e

instantaneously at rest without acceleration. With this c
struction, the constant, proper, acceleration ofM is g, as
defined by Eq.~25!.

The coordinate transformations fromS to M are different
in the regionsA andB. In regionA (z.0)

t5t02
gv ret

g
1

A2gz

g
sinh~gt!,

z5z02
g

g
1

A2gz

g
cosh~gt!, ~26!

while in regionB (z,0),

t5t02
gv ret

g
1

A22gz

g
cosh~gt!,

z5z02
g

g
1

A22gz

g
sinh~gt!. ~27!

The constants (t02gv ret/g) and (z02g/g) ensure the con-
dition that the charge is at rest and with zero acceleratio
z051/(2g) in frame M at the eventO. The eventO has
coordinates

z05
1

2g
, t05

1

g
sinh21~gv ret!, r50, f50 ~28!

in frameM , as can be verified from Eq.~26!. It is convenient
to shift the origin and define

t85t2t01
gv ret

g
, z85z2z01

g

g
. ~29!

In these coordinates, the eventO occurs at

t85
gv ret

g
, z085

g

g
. ~30!

Given these transformations and the form of the field
the instantaneous Rindler frame, it is straightforward to o
tain the field in the inertial frame. Conventionally, the latt
fields are expressed in terms of the separation vector betw
the field point and the retarded position of the particle.
make the comparison we will introduce the null vectorRm

with the components

Rm5x8m2x80
m5~ t82t08 ,z82z08 ,r,f!. ~31!

Using the conditionRmRm50 in region A, we can easily
show that

coshg~t2t0!5
z1z01~1/2!gr2

2AzAz0

, z.0, z05
1

2g
.

~32!

Further, since the components ofv ret
m are

v ret
05A2gz0cosh~gt0!, v ret

z5A2gz0sinh~gt0!,
~33!

we get
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57 7245RADIATION FROM A CHARGED PARTICLE AND . . .
Rmv ret
m52Azz0sinh g~t2t0!

5A@z2z01~1/2!gr2#212gr2z0. ~34!

Similarly for regionB,

sinh g~t2t0!5
z1z01~1/2!gr2

2A2zAz0

, z,0, z05
1

2g
~35!

and

Rmv ret
m5A@z2z01~1/2!gr2#212gr2z0 ~36!

which is the same as that for regionA.

B. The field

Given the field in the coaccelerating frame@Eqs.~14! and
~16!# and the transformation between the inertial frame a
coaccelerating frame@Eqs.~26!, ~27!, and~29!#, we can find
the field in the inertial frame. We refer to the field tensor
inertial coordinates and the electric and magnetic fields
Fmn

min , Ei
min , and Bi

min, respectively. The electric field
for example, is obtained by

Ez8
min5Fmin

z8
05S ]z8

]t D S ]z

]t8
D F0

z1S ]z8

]z D S ]t

]t8
D Fz

0

5
g

2z
~z822t82!~2]zA0!. ~37!

Therefore,

Ez8
min5

2gez0@z2z02~1/2!gr2#

j3

5
4e

g2

@z822t822r22~1/g!2#

$@z822t821r22~1/g!2#214~r2/g2!%3/2
.

~38!

Similarly, we obtain

Er
min5Fmin

r
05

8ez8r

g2$@z822t821r22~1/g!2#214~r2/g2!%3/2
,

~39!

Bmin
f5Fmin

rz

5
8et8r

g2$@z822t821r22~1/g!2#214~r2/g2!%3/2
,

~40!

Ef
min5Bz

min5Br
min50. ~41!

This can be recast in a more familiar form by using Eqs.~34!
and ~36!:

Ez8
min5

ge@z822t822r22~1/g!2#

2~Rmvm
ret!

3

d

s

5
ge@z822t822r22~1/g!2#

2g3~R2Rz8v ret!
3

, ~42!

whereR5R05t82t80 , Rz85z82z80. Note that

z822t822r22~1/g!25
2g

g
~Rz82Rv ret!22r2 ~43!

5
2

aret
@~12v ret

2!~Rz2Rv ret!2aretr
2#.

~44!

Therefore, we can write our answer as

Ez8
min5

e@~12v ret
2!~Rz82Rv ret!2aretr

2#

~R2Rz8v ret!
3

. ~45!

Similarly,

Er
min5

e@~12v ret
2!r1aretRz8r#

~R2Rz8v ret!
3

~46!

Bf
min5

e@aretRr1v ret~12v ret
2!r#

~R2Rz8v ret!
3

. ~47!

These components can be expressed in a more familiar
tor notation as

E5
e~12v ret

2!~R2vretR!

~R2R•vret!
3

1
eR3@~R2vret!3aret#

~R2R•vret!
3

,

~48!

B5
R3E

R
. ~49!

This is the standard result for the electromagnetic field of
arbitrary moving charged particle~see Ref.@1#!.

Our results in Eqs.~45!, ~46!, and~47! have been derived
for the special case of a charge in rectilinear motion. T
was done to show clearly the use of our formalism. In fa
one can obtain the general result quite easily. Consider
general case, in which the motion is not restricted to
straight line. Then, one can always transform to aninertial
frame of referenceS9 in which the charge was at rest at th
retarded eventO. This requires us to make the usual tran
formation to the accelerated frame

t5t01
A2gz

g
sinh~gt!, z5z02

1

g
1

A2gz

g
cosh~gt!,

~50!

followed by a Lorentz transformation to bringvret to zero.
Working in a similar fashion, we will land up with simple
expressions for the fields:

E5
eR

R3
1

R3~R3aret!

R3
, B5

R3E

R
. ~51!
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7246 57ABHINAV GUPTA AND T. PADMANABHAN
This gives the field in the Lorentz frame in which the char
has zero velocity at the retarded event. By making a Lore
transformation with an arbitrary velocityv, we can get fields
in Eqs. ~48!, ~49!. More formally, one can show that th
fields in Eq.~51! can be obtained from the following Lorent
invariant expression:

Fmn5
e

~Rsvs!3
@~Rmvn2Rnvm!1RnRs~vmas2vsam!

2RmRs~vnas2vsan!#. ~52!

Then, since this is a tensor equation under Lorentz trans
mations, it will give the fields in a frameS in which the
retarded velocity is arbitrary. A simple calculation show
that Eq.~52! reduces to Eqs.~48! and~49! in this case.@This
form is derived in Ref.@3# in a very complicated manner. A
simple derivation of Eq.~52! is given in Appendix C.#

V. ELECTROMAGNETIC FIELDS IN THE
INFINITESIMAL NEIGHBORHOOD
OF AN ACCELERATING CHARGE

As before, let us consider a rectilinearly moving char
with arbitrary velocity and acceleration along thez axis of
frameS. The instantaneous, uniformly accelerating frame
M . At the eventO, the charge is at rest inM and with zero
acceleration at the pointz5z0. We are interested in calcu
lating the finite part of the force exerted on the charge by
own field at the eventO. It is now convenient to use th
coordinate Z introduced earlier with the definition

Z5
A2gz

g
. ~53!

In the frame with coordinates (t,Z,r,f), the charge, is a
rest inM at Z5Z05(1/g) at eventO. In these coordinates
the fields corresponding to the retarded eventO are

EZ5
4e~Z22Z0

22r2!

g2@~Z22Z0
21r2!214r2Z0

2#3/2
,

Er5
8erZ

g2@~Z22Z0
21r2!214r2Z0

2#3/2
. ~54!

These are same as those given by Eqs.~38! and ~39!, but
expressed in the new coordinateZ.

We will analyze the situation described in Fig. 2. T
eventO, at which the charge has zero velocity and accele
tion, corresponds tot50. Consider now an eventO8 along
the world line of the charge. The forward light ray travelin
from this event is seen to intersect theZ axis at the point
P, which is an event simultaneous with eventO. We want to
study the fields atP in the limit P→O. In this limit, O8
→O and the fields atP are those due to the charge in its ow
infinitesimal neighborhood.~Since the metric is noninertial
the curveO8P will not be a straight line. But we are onl
interested in the limit ofO8→O when the actual form of the
curve is irrelevant.!
tz

r-

e

s

s

-

The field due to theretarded point O is a static field,
given by Eq.~54!. However, we are interested in calculatin
the field at eventP due to theevent O8. At O8, the charge is
not at rest in frameM . So, the field given by Eq.~54! will
not work. But, in the limitO → O8, we can make a correc
tion to the field given by Eq.~54!, which can account for its
motion at eventO8. To illustrate this, let us approach th
infinitesimal neighborhood of the charge along theZ axis. If
we ignore for the moment the motion of the charge then
field along theZ axis at eventP ~in the limit O → O8) is

EZ5
4e

g2

1

~Z22Z0
2!2

, Er50. ~55!

Let the eventO8 occur att52t0. In the approximation that
the charge was at rest atO8, it can be verified that

Rmvm
ret5

g

2
~Z22Z0

2!, ~56!

which can be obtained from Eqs.~34! and ~53! after setting
r50. So the field can be expressed as

EZ5
e

~Rmv ret
m!2

. ~57!

Let us next account for the charge’s motion atO8. We
begin by noting that, in arriving at Eq.~34!, we used the fact
that the charge was at rest at the retarded event. When
take into account the motion of the charge atO8, the expres-
sion for (Rmv ret

m ) will be modified. Since the Coulomb part o
the field dominates asO8→O, the leading term in the field is
still given by Eq. ~57! with the corrected expression fo
Rmv ret

m. If velocity of the charge atO8 is uZ(2t0), then, in
the limit we are interested in, the updated (Rmv ret

m) is

Rmv ret
m5

g

2
@Z22Z0

2~2t0!#2@Z2Z0~2t0!#uZ~2t0!.

~58!

So the expression for the field which accounts for the mot
of the charge atO8 will be

FIG. 2. The geometry of the word lines indicating how radiati
reaction force arises; see text for more discussion.



r
is

s

t
it

rb

ar
re

th
-

rm
r t

y
x-

re-
it
an

ed
ing

-

n
ion
o-

ial
in

ial
st

tial

57 7247RADIATION FROM A CHARGED PARTICLE AND . . .
EZ~P!

5
4e

g2$Z22Z0
2~2t0!2~2/g!@Z2Z0~2t0!#uZ~2t0!%2

.

~59!

At event O, the velocity and acceleration of the charge a
zero in M . However, the rate of change of acceleration
nonzero, and we denote this quantity byȧ. Then, all the
relevant quantities at timet52t0 can be expressed in term
of ȧ alone, in the limitO → O8 ~that is whent0→0).
Making a Taylor expansion aboutt50, we get

Z0~2t0!>Z02
t0

3

6
ȧ ~60!

and

uZ~2t0!>
t0

2

2
ȧ, ~61!

whereZ05Z0(0)5g21. ~Here, only terms up to ordert0
3

need to be retained, in the limit oft0→ 0.! In this limit,
writing Z5Z01d, we find that

EZ~P!>
4e

g2@d212Z0d1~Z0t0
3ȧ/3!2Z0dt0

2ȧ#2
.

~62!

From Eq.~32!, we get, after settingt50, r50 and replacing
t0 by 2t0

sinh ~gt0!5
z2z0

2Azz0

>
d

Z0
~63!

in the limit d→0. Hence, in the limitt0→0,

t0>d. ~64!

We are interested in the force exerted on the charge by
own field, which is equal toeEZ(P) in the limit d→0. This
force is given by

FZ5eEZ~P!>
e2

d2
2

e2g

d
1

2e2

3
ȧ1

3e2g2

4
, ~65!

where we have expanded the expression forEZ in the bino-
mial series in the infinitesimal parameterd. It is understood
that we should evaluate this expression in the limit ofd→0.

The first two terms diverge asd→ 0. This point is exten-
sively discussed in literature, and these terms arise from
self-energy of a charged particle due to interaction with
own electromagnetic field and are expected to be abso
by mass renormalization. There is also the constant~last!
term, which is uninteresting, since the first two terms
already divergent. We would have landed up with these th
terms, even if we had not accounted for the motion of
charge at eventO8. It is the third term, which has the deriva
tive of the acceleration, which is the most interesting te
We have been able to obtain it because we accounted fo
e

its

he
s
ed

e
e

e

.
he

motion of the charge at eventO8. It is this term which ac-
counts for the effect of radiation reaction on the charge.

All these terms were first found by Dirac for arbitrar
motion of the charge in an inertial frame. The general e
pression in the inertial frame obtained by Dirac is~see Ref.
@4#; also see pp. 141–144 of Ref.@3#!

f m>
e2

A12~d!alul
Fum

d2
2

am

2d
2

am ~alul!

2
1

gam

8

2
um ~ ȧlvl!

2
1

2

3
@ ȧm2vm~ ȧlvl!#G . ~66!

Here, am is the four-acceleration,vm the 4-velocity, d
5Rlvl and um[@(Rm2dvm)/(d)#. These are the leading
terms in an expansion ind in the limit d→0.

Computing the above expression forf m in the inertial
frame is a laborious task. Our formalism makes the cor
sponding computation very simple. In fact, we calculated
the same way we calculated the fields: We transform to
inertial frameS9, in which the charge is at rest at the retard
event and find the expression for the force in the comov
accelerating frame, which is given by Eq.~65!. By trans-
forming back toS9 and making an arbitrary Lorentz trans
formation to S gives the force~66! in the general inertial
frame starting from Eq.~65!. ~We give the explicit procedure
in Appendix B.! Here we shall transform only the radiatio
reaction term, and show that it gives the correct radiat
reaction in the inertial frame, for the case of rectilinear m
tion.

Let f z denote the radiation reaction force in the inert
frameS. Then, ifF rad

Z denotes the radiation reaction force
frameM , then using Eqs.~26!, ~28!, and~53!, we have

f z5S ]z

]ZD
ret

F rad
Z5

2e2

3
ȧ cosh~gt0!. ~67!

The derivative of the retarded accelerationȧret
m 5dam/(dt),

as measured in the frameS is related toȧ by

ȧ05g2cosh~gt0!1ȧ sinh~gt0!, ~68!

ȧz5g2 sinh~gt0!1ȧ cosh~gt0!. ~69!

Then, using Eq.~67!, we get

f z5
2e2

3
ȧ cosh~gt0!5

2e2

3
@ ȧz2vz~ ȧmvm!#, ~70!

which is indeed the radiation reaction force in the inert
frame S. For an arbitrarily moving charge, one can fir
transform to the instantaneous Lorentz frame, in which~put-
ting vz50!

f z5
2e2

3
ȧz ~71!

and make a Lorentz transformation to an arbitrary iner
frame, to get
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f m5
2e2

3
@ ȧm2vm~ ȧnvn!# ~72!

which is the correct expression for radiation reaction.
An attempt is made in Ref.@2# to relate theradiated

power to the force acting between the charge and the fi
tious charge density at the horizon. Our result is more g
eral and gives the actualradiation reaction forceitself. Fur-
ther we did not have to use theficticious, coordinate
dependent, charge density to interpret areal effect.

VI. CONCLUSIONS

The radiation of electromagnetic waves by a charged p
ticle and the consequent radiation reaction force are issue
considerable theoretical significance and have attracted
attention of researchers over the decades. We believe tha
approach outlined in this paper throws light on these p
cesses and clarifies the conceptual issues involved in
problem. To begin with, we have been able to derive
radiation field as arising out of a static Coulomb field in
noninertial frame through a general coordinate transform
tion. This is of some conceptual importance since one
lieves that the physics should be independent of the coo
nate system. Secondly, we have been able to show tha
key contribution to radiation reaction arises because of
deviation of the trajectory from that of a uniformly accele
ated one. This deviation, which essentially modifies the
pressionRmvm , has a purely geometrical origin in the local
coaccelerating frame. Since the lowest order deviation
be proportional to the rate of change of acceleration, i
clear that the radiation reaction force should be proportio
to the same; that is, it should be proportional to the th
derivative of the trajectory.

It will be of interest to see whether these results allow
to tackle the question of self-force in curved space time
e
a
e

-

i-
n-

r-
of
he
the
-

he
e

-
e-
i-

the
e

-

ll
s
al
d

s
d

to generalize the various expressions to an arbitrary cur
background. We hope to address these questions in a fu
publication.

APPENDIX A: SOLUTION TO MAXWELL’S EQUATIONS
FOR A CHARGE AT REST IN A UNIFORMLY

ACCELERATING FRAME

The scalar potentialA0 due to a charge at rest in a un
formly accelerating frame satisfies the following equati
@see Eq.~13!#:

r]z
2A01

1

2gz
]r~r]rA0!524ped~z2z0! d~r! d~f!.

~A1!

We shall find a solution to this equation by studying a d
ferent, but related problem.

Consider the problem of a charge placed at rest outs
the horizon of a Schwarzschild black hole. In the spheri
polar coordinates (r ,u,f), the charge is placed atr 5r 8, u
50. The metric is given by

ds25S 12
2M

r Ddt22
dr2

~122M /r !
2r 2~du21sin2udf2!.

~A2!

Maxwell’s equations are separable in these coordinates.
differential equation satisfied byA0 in this metric is

1

r 2
] r~r 2] rA0!1

1

~122M /r !

1

r 2 sin u
]u~sin u]uA0!

524ped~r 2r 8!d~cosu21!. ~A3!

The solution to this equation can be expressed in a clo
form ~see Ref.@5#!:
A05
e@~r 2M !~r 82M !2M2cosu#

rr 8A~r 2M !21~r 82M !222~r 2M !~r 82M !cosu2M2sin2u
. ~A4!
of

s

Now, if the charge is placed infinitesimally close to th
horizon and all measurements made in an arbitrarily sm
region around the charge, then the horizon would app
‘‘flat.’’ Mathematically, if we introduce a coordinatez by

r 52M1z; 2M@z, ~A5!

then we can write

S 12
2M

r D>
z

2M
52gz, ~A6!

whereg5(1/4M ) is the effective surface gravity of the ho
rizon. If we fix our origin atu50, r >2M and restrict all
observations perpendicular to thez axis to a very small re-
gion, thenr>2M sinu>2Mu. In this limit,
ll
ar

r 2~du21sin2u df2!>~2M !2~du21u2 df2!

>dr21r2 df2 ~A7!

giving

ds252gz dt22
dz2

2gz
2dr22r2 df2 ~A8!

which is identical to the metric given by Eq.~7!.
In this approximation, we are neglecting curvature

spacetime such that the horizon appears as a plane (z50) as
in a uniformly accelerating frame. More importantly, it give
us an ansatz to find a solution to Eq.~13!, by using this
approximation in the expression forA0 given by Eq.~B3!.
Straightforward algebra gives
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A0>
ge@z1z01~1/2!gr2#

A@z2z01~1/2!gr2#212gr2z0

~A9!

which is an exact solution to equation~A1!.

APPENDIX B: THE LORENTZ-DIRAC FORMULA

Consider a charge moving in an arbitrary trajectory in
inertial frameS. As before, we construct a comoving, un
formly accelerating frameM , in which the expression for the
self-force is given by Eq.~65!. Consider now the expressio
~66! in a frame in which

vm5~1,0,0,0!, ȧm5~g2,ȧ,0,0!, am5~0,g,0,0!.
~B1!

The expression reduces to

f m>e2 amS 1

gd2
2

1

d
1

3g

4 D 1
2e2

3
@ ȧm2vm~ ȧlvl!#

~B2!

so that

f z>e2S 1

d2
2

g

d
1

3g2

4
1

2e2

3
ȧzD . ~B3!

~It is assumed thatd→0 limit is considered; also note tha
um→am in this limit.! This is identical to Eq.~65! when we
use Eq.~69! with t050. If one wants the expression forf m

in the frameS, all one has to do is find the expression inM
~which is a simpler task compared to directly calculating it
the frameS, as is normally done!, given by Eq.~65!, trans-
form it to the inertial frame@to get expression~B3!#, and
finally to transform it toS by making a Lorentz transforma
tion. This leads to the Lorentz-Dirac expression, given
Eq. ~66!.

APPENDIX C: COVARIANT FORM OF THE FIELD
OF AN ARBITRARILY MOVING CHARGE

It is possible to express the field tensorFmn produced by
an arbitrarily moving charge, in a manifestedly Lorentz
variant form. Though the result is obtained in Ref.@3#, the
derivation is quite cumbersome. We give here a clearer
simpler derivation of this formula. Maxwell’s equations
inertial coordinates in flat spacetime are

]mFmn54p j n, F mn5]mAn2]nAm . ~C1!

Combined together in the Lorentz gauge (]mAm)50, we
have

hAm54p j m ~C2!

which has the solution

Am~x!54pE d4xGret~x2y! j m~y!, ~C3!

whereGret is the retarded Green’s function, satisfying
n

y

-

d

hGret~x2y!5d4~x2y!, Gret~x2y!50 for x0,y0.
~C4!

The currentj m(x) for a point charge moving along a worl
line zm5zm(t) with a four-velocityum(t) is given by

j m~x!5eE dtd4@x2z~t!#um~t! ~C5!

so that

Am~x!54peE dtGret@x2z~t!#um~t!. ~C6!

Now, let Rm5xm2zm(t). Then,

Gret@x2z~t!#5
1

2p
d~s2! u~x02z0!, s2[RmRm

~C7!

giving

Am~x!52eE dtd~s2!um~t! ~C8!

and

]nAm~x!52eE dt]nd~s2!um~t!

52eE dt
dd~s2!

ds2

]s2

]xn
um~t!. ~C9!

Now,

]s2

]xn
52Rn . ~C10!

Therefore,

]nAm~x!54eE dt
dd~s2!

dt S ds2

dt D 21

Rnum~t!. ~C11!

Also,

ds2

dt
522r, r[Rmum ~C12!

leading to

]nAm~x!522eE dt
dd~s2!

dt S Rnum

r D
52eE dtd~s2!

d

dtS Rnum

r D5
e

r

d

dtS Rnum

r D U
ret

.

~C13!

It follows that

Fmn5]mAn2]nAm5
e

r

d

dtS Rmun2Rnum

r D U
ret

. ~C14!
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Differentiating the expression, we get

Fmn5
e

r3
@~Rsus!~Rman2Rnam!

1~12Rsas!~Rmun2Rnum!#. ~C15!

Using RsRs50, Rm5(R,R), um5g(1,u), am5g(ġ,uġ
1ga), we get the electric and magnetic fields as
E5
e~12u2!~R2uR!

~R2R•u!3
1

eR3@~R2uR!3a#

~R2R•u!3
,

~C16!

B5
R3E

R
. ~C17!

These are the standard textbook expressions for the field
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