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Radiation from a charged particle and radiation reaction reexamined
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We study the electromagnetic fields of an arbitrarily moving charged particle and the radiation reaction on
the charged particle using a novel approach. We first show that the fields axbararily moving charged
particle in an inertial frame can be related in a simple manner to the fieldsiof@mly accelerated¢harged
particle in its rest frame. Since the latter field is static and easily obtainable, it is possible to derive the fields
of an arbitrarily moving charged particle by a coordinate transformation. More importantly, this formalism
allows us to calculate the self-force on a charged particle in a remarkably simple manner. We show that the
original expression for this force, obtained by Dirac, can be rederived with much less computation and in an
intuitively simple manner using our formalisf50556-282(98)05710-5

PACS numbegs): 03.50.De, 03.65.Pm, 41.66m

I. MOTIVATION located in a nontrivialand in general time-dependégmbet-
ric. The solution to Maxwell’'s equation in this frame re-
The field of a charged particle at rest in an inertial frameceives time-dependent contributionst because of the mo-
is a static Coulomb field which falls as ¢2) in the standard tion of charged particles but because of the nontrivial nature
spherical coordinate system. The field of a charge, movin@f the backgroundmetric. But we know that, for internal
with uniform velocity, can be obtained by Lorentz transform- consistency, these solutions should transform to the standard
ing the Coulomb field; this field also falls as the inversesolutions describing the field of an arbitrarily moving
square of the distance. The situation changes dramatically féiharged particle when we go over to the inertial frame. This
a charged particle which is moving with nonzero accelerais remarkable since the time dependence and nontriviality of
tion. The field now has a piece which falls only asrj]/ thebackground metrihave to translate to the correct spatial
usually called the radiation field. For a field which decrease@nd time dependence of theudiation field Further, the
as (1t), the energy flux varies as (£ implying that the charged particle has to feel the radiation reaction force in the
same amount of energy flows through spheres of differenfioninertial frame, even though it is at rest, due to the non-
radii at sufficiently large distances from the charge. For thigriviality of the background metric. It is not intuitively obvi-
reason, the radiation fields acquire a life of their own and thé@us how these features come about and it is important to
entire phenomena of electromagnetic radiation hinges on thignderstand how the physics in the noninertial frame of the
feature. Because of the continuous transfer of energy frorharged particle operates.
the charged particle to large distances, there will be a damp- We shall explore in this paper both the issues raised in the
ing force acting on the charged particle which is usuallyabove paragraph. The key feature which emerges from our
called the radiation reaction force. The derivation of the ra-2nalysis is the following. The structure of Maxwell's equa-
diation reaction force is conceptually and operationally quitelions dictate that the static field of uniformly accelerated
complicated and the expression — obtained originally bycharged particle in its rest frame can be related to the field of
Dirac (see Ref[4])— has no simple intuitive description. ~ @n arbitrarily moving charged particle in the inertial frame.
We analyze these issues from a novel point of view in thisThis connection also carries over to the computation of the
paper which throws light on the conceptual and mathematiself-force. It turns out that the radiation reaction force has a
cal issues involved in this problem. The analysis is motivategimple geometrical origin in the uniformly accelerating
by the following issue: Maxwell's equations are not only frame in which the charged patrticle is instantaneously at rest.
Lorentz invariant but can also be written in a generally co-The force arises due to the deviation of the trajectory of the
variant manner. Given a charged particle moving in some&harged particle from that of uniform acceleration and hence
arbitrary trajectory, it is always possible to construct a propefS Proportional to the derivative of the acceleration. We shall
coordinate system for such a charged particle. In such a cd0W spell out the details of the approach we plan to follow in
ordinate system, the charge will be at rest for all times buthis paper.
the background metric will be non-Minkowskian and — in
general — time dgpendent. Maxwell’s equations in this co- Il. THE FORMALISM
ordinate system will correspond to that o$tationarycharge
Consider the electromagnetic field of a charge moving
with a uniform velocity in an inertial fram&. Since Max-
*Email address: abh@ducos.ernet.in well's equations are Lorentz covariant, the most natural way
TEmail address: paddy@iucaa.ernet.in to calculate the field ir§ is to find the field in the charge’s
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rest frameS’ and transform back t8. Let us next consider
the problem of calculating the electromagnetic field of a
charge which is movingarbitrarily. The conventional
method (see, e.g., Ref[1l]) is to calculate the Leinard-
Weichert potential and to differentiate it to obtain the field.
However, we will show that it is possible to approach the
problem differently along the following lines. c]

Consider a charge moving with an arbitrary velocity and
acceleration in an inertial fram8. In the Lorentz gauge,
Maxwell's equations can be written in terms of the vector
potential A* and the curren* as

OA=4mj*, ) o]

where]=4,4". It follows that FIG. 1. The four domains of Minkowski spacetime; see text for
more discussion.
OF*=4m(d"j"—d"j*). (2

The rest of the paper is organised as follows. In Sec. lll,
Because of the characteristics of theoperator, the fields at we obtain the electromagnetic field of a uniformly acceler-
an event can only depend on the trajectory of the charge atted charge. This is done by solving Maxwell's equations in
the retarded ever@®, which is the point of intersection of the the rest frame of the charged parti¢ighich is a noninertial
backward light cone drawn from, and the world line of the frame and transforming to the inertial frame. In Sec. IV, we
chargez#=z*(7). Sincej* is linear in four velocity, the use this result to obtain the field of an arbitrarily moving
quantity 7,,j,, in the the right hand side of Eq2) can at cha_rged particle. Th_is result is obtained by th_e procedur_e
most depend oz*(7). Therefore, the fields & can at most outllr_1ed gbove. S_ect|0n V uses the same formall_sm to obtain
depend on the second derivatives at the retarded position df€ field in the neighborhood of the charged particle, thereby
the charge a® — i.e., at most on the retarded accelerationObt"’?'”'”g the radiation reaction term. The last section sum-
of the charge. Suppose we now change the trajectory of th@arizes the results of the paper.
charge to that of a uniformly accelerated one without chang-
ing the values of the velocity and acceleration at the retarded  Ill. FIELDS DUE TO A CHARGE AT REST IN A
eventO. The field atP, since it depends only on the velocity UNIFORMLY ACCELERATED FRAME
and acceleration & will still remain the same. It follows
that, if we know the field aP due to a uniformly accelerated ) ) ) . ) )
charge with a given acceleration and velocityCatthen we Since the key idea involves working with a uniformly
can obtain the field due to a general trajectory. accelerated frame, we shall review the coordinate transfor-

Thus the problem reduces to that of calculating the fieldnation connecting the Minkowski frame to the Rindler

of a uniformly accelerated charged particle. This is most easfame and collect the necessary formulas. Consider a charge
ily done by using the fact that Maxwell's equations can bemoving with uniform acceleration along the axis of an
written in a generally covariant manner. Solving the Max-inertial frameS with the coordinate systent.k,y,z). The
well's equations in the noninertial, rest frame of charge andrajectory of the charge is given by
transforming the field to the inertial frame, we can obtain the 1 1
field of a uniformly accelerated particle. Using the argument t==sinhgr); z=— coskgr), 3
outlined above, we can then find the field of a charged par- g g
ticle moving in an arbitrary trajectory. To illustrate the ) ) o
power of this technique, we shall directly calculate the fielgWhereg is the proper acceleration of the charge, and its
for arbitrary, rectilinear motion. (The general case is a Proper time. The world line

A. The coordinate transformation

straightforward extension, and is treated in Appendjx C 1\2
The real power of this formalism, however, lies in calcu- 72_12= <_) %)
lating the field in theinfinitesimal neighborhooaf the ac- g

celerating charge. The general expression for the field in the ) , ,
neighborhood of an accelerating charge, found by Dirac, is & & hyperbola. Referring to Fig. 1, one can see that this
fairly involved expression, and good deal of labor is requiredcNarge can influence regioAsandB of spacetime, which lie

to compute it. Our formalism involves computing it in the @0ng the forward light cone of the charge’s trajectory but
instantaneous coaccelerating frame of the charge, in whicRCt the regionsC andD. Let us now fix a proper, Fermi-
the first and second derivatives of the position of the chargdValker transported coordinate system{x,y) to the accel-
vanish. The only dynamical contribution to the near field€rating charge and call it frame. Separate transformations
comes from the third derivative, which, as we shall see, lead@"® defined fronS to U for regionsA andB. In regionA, we

to the radiation reaction term. This, along with the statictake

terms, neatly transforms into expression obtained by Dirac in

the inertial frame. In addition, a novel interpretation for ra- t= V2g¢ sin(gr), z= V29¢
diation reaction emerges in the accelerated frame. ’

cosiigr), (>0 (5
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and in regionB we take This equation has a simple, closed form solution which can
be obtained by direct integration of E(L3) for x#x, and
V—209¢ v—209¢ . matching the boundary condition at Xg:
t= cosigr), z= sinh(gr), (¢<0,
6) A —qe {+ o+ (1/2)gp?

0=9e— 272 2
x andy are mapped to themselves. The spacetime interval, VL= Lot (1129p°T"+ (290700)
both in regionsA andB is L+ Lo+ (1/2)gp?

:ge i
2 +{o+(12)gp?1?—4
4= 207d 72 ggg dp p?d a2 @ VIg+ Lo+ (12 gp™17 - 440L

where p=\X?+y? and ¢=tan }(y/x). The range [{
>0; —oo<r<+ow] covers regionA, and[({<0; —ow<7

< +oo] covers regiorB. In these coordinates, the charge is
at rest, atfy=(1/2g). Since the metric is same for the trans-
formations defined by Eq¢5) and (6), we can solve Max-
well’s equations in the background metric of EJ) and
transform separately in regios andB to get the fields in
the frameS.

(14)

(An alternative derivation of this solution is given in Appen-
dix A) Also, as mentioned earlieA; =0 implying that there
are no magnetic fields.

Let us next compute the electric field corresponding to
this potential. In an inertial frames'y,F? ,F'° can all be
interpreted as defining the electric fieldpart from differ-
ence in signs However, in the metric defined by E¢7),
these components have different spatial dependence due to
raising and lowering byg,,,, which is not constant. So, in
order to define thehysicalelectric field, we go back to the
basic definition of electric field as the “electromagnetic force
B. The fields in the accelerated frame per unit charge, experienced by a charge at rest.” The con-

Let us next obtain the solutions to Maxwell's equations intravariant electromagnetic force vector is
the noninertial Rindler frame. The generally covariant form

of Maxwell's equations are fHoph dx”
Y ds
\/— d,(N—gF*")=4mj” (8)  which for a charge at rest gives the electric field
. dx° F!
with E=Fy——=—. (15)
Ods VY00
Fu=d,A,—d,A,. 9
Using this in Eqs(12), we get the electric field components
The current is 5
cc_ (20800 V20L{[ ¢~ o~ (129"}
L TV (10 & |
= X—Xo)—=,
J Tg 00
,_(2080)pN29¢
wherexq,=({y,0,0) is coordinate of the charged particle in Ef= & . EP=0, (16)
the accelerated frame and the Dirac delta function is defined
to be where
> = _ 272 2
Px=%) =80~ )3, | FGdL dp dg=1 =V ot (W20 T 200 (A7)
(11 There are some interesting features which are worth not-

A ing about this field. To simplify the analysis let us transform
for a point charge at={,. Since the charge is at re§t, from the coordinates 1¢,p, @) to (1.Z,p,¢), Where ¢
=0 for i=1,2,3 and j°#0. Correspondingly, we can =(gZ?/2). The metric in regiorA is now
take A;=0 with all time derivatives vanishing. Hence the
only relevant components of the field tensor are ds?=g2Z%d7?— (dZ2+dp?+ p?de?). (18)

[0 0 1 The Z component of the electric field in this coordinate sys-

297
Expressing the field tensor in terms of the potential, we get z:f [Z2%~p*~g~?]
the equation satisfied b4g: 92 [(Z2+ p?— g~ 2)2+4g~2p?]3?
PA, 1 49 ( aAo) 4e [Z2°—p?—g~?]
t——| p—|=—4mes3(x—xy). (13 =— : 19
p a2 29¢ p p ap med( 0 (13 o2 [(Z2+ p?+g~2)%— 4g 22212 (19
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In this coordinate system, thH@pparentevent horizon is at instantaneously at rest without acceleration. With this con-
Z=0. On this surface, the electric field is alodgaxis and  struction, the constant, proper, accelerationMfis g, as

has the value defined by Eq(25).
The coordinate transformations frogto M are different
de 1 in the regionsA andB. In regionA ({>0)
EZ (at Z=0)=—— ———- (20
9 (p°+9™ ") _ YUret \/ﬂ .
t=ty— ——+—— sinh(g7),
This is finite and is equivalent to having a charge density 9 9
V297
E? e 1 _,_Y
o(at Z=0)=+—= - @ z=12, g + g coshgr), (26)

am wg? (pP+g7?)?
while in regionB ({<0),
at the apparent horizoftthis point was earlier noted in Ref.
[2]). Note that this result is coordinate dependehhe field YVoret V—20¢
E¢, in the coordinates+,Z,p, @), vanishesat the horizon. In t=to— T"' 9 coshigr),
these coordinates, there is no charge density on the horizon.
If we shift the origin of theZ axis by introducing the y —2g¢

coordinatef=z—g‘1, then the metric becomes Z=2Zp— 5

ds?=(1+g2)2d?— (dZ2+dp2+p?dp?)  (22)  The constantstf— yv./g) and (z,— y/g) ensure the con-
dition that the charge is at rest and with zero acceleration at

sinh(g7). (27)

and the electric field becomes {o=1/(2g) in frame M at the eventO. The eventO has
. coordinates
— e 1gr? 1 -2
El=—| 1+ - =||1+gZ+>g%?| , (23 1 1,
rs 2 7z 4 fo=340 Ty sinh™“(yvred, p=0, ¢=0 (28
ep 1gr? — — - —3f2 in frameM, as can be verified from EQ6). It is convenient
EP=-Sl it = (1+92)| 1+9Z+ g7 to shift the origin and define
. r2 -1 P +'Yvret P +Z
% 1+gZ—g? , (24 t'=t—t, , 2'=2—-124 B (29

In these coordinates, the evebtoccurs at
with E®=0. In this form, it is clear that field is the usual

Coulomb field forgZ<1, gr<1. The behavior of the field p= et Y (30)
near the charge, compared to its form near the apparent ho- g’ g
rizon clearly shows the distorting effect of the background

line element. We shall now use this result to obtain the fields, Given these transformations and the form of the field in
of an arbitrarily moving change. the instantaneous Rindler frame, it is straightforward to ob-

tain the field in the inertial frame. Conventionally, the latter
fields are expressed in terms of the separation vector between
the field point and the retarded position of the particle. To
make the comparison we will introduce the null vecRit

A. The coordinate transformation with the components

IV. FIELD OF A CHARGE MOVING RECTILINEARLY,
WITH ARBITRARY VELOCITY AND ACCELERATION

We shall calculate the field due to a rectilinearly moving RE=X'B—x' i =(t'—t}),2' —Z},p, ). (31)
charge using the approach described in Sec. Il. Let this
charge move along theaxis of the inertial framéS. We are  Using the conditionR*R,,=0 in regionA, we can easily
interested in the field at evem with coordinatest(z,p, ®). show that
The retarded event © with coordinates 1,24,0,0). At O,

let v, be the velocity of the charge amgl; be its accelera- . : {+ o+ (112)gp? 1
tion. Then, the proper acceleration is coshg(r—19)=———F=—=——, (>0, {o=5=.
brop 2\TZo 29
g=v— a#ap.: aret'yga (25 (32

_ . . Further, since the components are
where y=(1-v2) 2 We construct a comoving, uni- P o

formly acc_eleratlng_ observer with an attached c_oqrdmate Viel= \/mCOSKgTo), U el= msinug%)’
frame M with coordinates £,{,p,¢) such that the origin of (33
M coincides with the world line of the charge upu¢ and

a* at the evenD. So, atO, in the frameM, the charge is we get



EZ,min:FminZ,O:<ai) ‘9_5 F0{+<ai) ﬁ I:gO
at/\ at’ al )\ at’

g ! !
zz_g(z 2—1'2)(— 9,A). (37
Therefore,
o _298ol{~ (o= (1/2)9p°]

53
_4e [2'?-1"2—p?—(1/9)*]

g {[2/2—t'2+ "= (LUg)**+4(p*1gD)}**
(38

Similarly, we obtain

8eZp

g{[2'2=t'>+p°— (Lig)*1*+4(p%g*)}**
(39

Efmin=Fmin’0=

Brin®=F min’”
8et'p
gl pP— (1) + 49D}
(40

E(bmin: Bzmin: BPmin=0. (41

This can be recast in a more familiar form by using Eg4)
and(36):

o gzt (1))
m Z(R,u,vﬂret)3
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Rubret=2V{Zgsinhg(7— 70) _ gz 1% p?— (1ig)?] .
= [l o+ (129717299, (34 2 (R-Ryvwe)®
Similarly for regionB, whereR=R%=t'—t’,, R, =z'—2',. Note that
. {+ Lo+ (12 gp? 1 2 2 2 2 27 2
sinhg(t—19)=—————, ¢<0, {o=5= 2 =t""=p°—(Ug)*= —(Ry —Ru) —2p (43
g( 0) 2\/_—§\/§—0 g gO 2g g z re
(39
2 AR Ry a2
and a [(1—vref )(R;—Rure) —arep”].
ret
Ruviet=[{— Lo+ (U2)8p7P+29p%;  (36) “4
which is the same as that for regién Therefore, we can write our answer as
B. The field E7 = e[(1- Uretz)(Rz’ —Rue)— aretpz] (45)
min— 3 .
Given the field in the coaccelerating frarftegs.(14) and (R=Rzvred
(16)] and the transformation between the inertial frame an%_ iarl
coaccelerating framgEgs. (26), (27), and(29)], we can find ~ ='M"any.
the field in the inertial frame. We refer to the field tensor in )
inertial coordinates and the electric and magnetic fields as g S Ve)pt Ry p] 46
F#” in, Emin, and B',,, respectively. The electric field, min (R—R, 09>
for example, is obtained by
e[aeRp+ el 1= vred)p]
min: ret’ re ret (47)

(R_Rz’vret)3

These components can be expressed in a more familiar vec-
tor notation as

E— e(l_vretz)(R_VretR) " ERX[(R— Vi) X ayef]

(R_R'Vret)3 (R_R'Vret)3
(48

RXE

=R (49
This is the standard result for the electromagnetic field of an
arbitrary moving charged particlsee Ref[1]).

Our results in Eqs(45), (46), and(47) have been derived
for the special case of a charge in rectilinear motion. This
was done to show clearly the use of our formalism. In fact,
one can obtain the general result quite easily. Consider the
general case, in which the motion is not restricted to a
straight line. Then, one can always transform toiraertial
frame of referenc&” in which the charge was at rest at the
retarded even©. This requires us to make the usual trans-
formation to the accelerated frame

1 29¢
= ZO_ a +

coshgr),
(50)

t=ty+ ¢ sinh(g7),

followed by a Lorentz transformation to bring to zero.
Working in a similar fashion, we will land up with simpler
expressions for the fields:

eR RX(RXa RXE
—E'FT, B—T (51)
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This gives the field in the Lorentz frame in which the charge T
has zero velocity at the retarded event. By making a Lorentz
transformation with an arbitrary velocity we can get fields

in Egs. (48), (49). More formally, one can show that the
fields in Eq.(51) can be obtained from the following Lorentz
invariant expression:

F#”:(RUUU)s[(RMUV_RVU#)+RVRU(U#a0_UUaM) P z

[

o |

~R.R(v,a,~v,a,)]. (52 T |
[

|

Then, since this is a tensor equation under Lorentz transfor-
mations, it will give the fields in a framé& in which the
retarded velocity is arbitrary. A simple calculation shows g, 2. The geometry of the word lines indicating how radiation

that Eq.(52) reduces to Eqg48) and(49) in this case[This  reaction force arises; see text for more discussion.
form is derived in Ref[3] in a very complicated manner. A

simple derivation of Eq(52) is given in Appendix C| The field due to theetarded point Ois a static field,
given by Eq.(54). However, we are interested in calculating
V. ELECTROMAGNETIC FIELDS IN THE the field at evenP due to theevent G. At O’, the charge is
INFINITESIMAL NEIGHBORHOOD not at rest in frameM. So, the field given by Eq54) will
OF AN ACCELERATING CHARGE not work. But, in the limitO — O’, we can make a correc-

) . ) tion to the field given by Eq(54), which can account for its
_As before, let us consider a rectilinearly moving chargemqion at evento’. To illustrate this, let us approach the
with arbitrary velocity and acceleration along theaxis of _infinitesimal neighborhood of the charge along thexis. If

frameS. The instantaneous, uniformly accelerating frame isye jgnore for the moment the motion of the charge then the
M. At the_ eventO, the .charge is at rest iMl and with zero 5|4 along theZ axis at evenP (in the limit O — ') is
acceleration at the point={,. We are interested in calcu-

lating the finite part of the force exerted on the charge by it's de 1

own field at the evenO. It is now convenient to use the El=—o ————, P=0. (55)
coordinate Z introduced earlier with the definition g2 (Z22-24%)?
V29¢ Let the evenD’ occur atr= — 7. In the approximation that
Z= g (53)  the charge was at rest @', it can be verified that
In the frame with coordinatesr(Z,p,¢), the charge, is at R v"ret=9(22—202), (56)
restinM atZ=Z,=(1/g) at eventO. In these coordinates, . 2

the fields corresponding to the retarded ev@nare ) ) )
which can be obtained from Eq&4) and (53) after setting

, 4e(Z2—242— p?) p=0. So the field can be expressed as
92[(22_ZOZ+p2)2+4p2202]3/2' e
Ef=——. (57)
8epZ (R,u,vret'u)2
Ef= . 54
9°[(Z%—Zy*+ p?)?+4p?2,%1%? 4 Let us next account for the charge’s motion@t. We

begin by noting that, in arriving at E¢34), we used the fact
These are same as those given by H88) and (39), but  that the charge was at rest at the retarded event. When we
expressed in the new coordinde take into account the motion of the chargeXdt, the expres-

We will analyze the situation described in Fig. 2. The sion for (R v/e,) will be modified. Since the Coulomb part of
eventO, at which the charge has zero velocity and accelerathe field dominates a8’ — O, the leading term in the field is
tion, corresponds te=0. Consider now an evei®’ along  still given by Eq.(57) with the corrected expression for
the world line of the charge. The forward light ray traveling R,v . If velocity of the charge aD’ is u?(— 7o), then, in
from this event is seen to intersect tHeaxis at the point the limit we are interested in, the update®, ¢ ) is
P, which is an event simultaneous with evéhtWe want to
study the fields aP in the limit P—O. In this limit, O’ g
— 0 and the fields aP are those due to the charge in its own sV fetﬂzi[zz_ Zo*(= 70)]=[Z~ Zo(— 7o) Ju(— 70).
infinitesimal neighborhoodSince the metric is noninertial, (58)
the curveQO’P will not be a straight line. But we are only
interested in the limit o’ — O when the actual form of the So the expression for the field which accounts for the motion
curve is irrelevan. of the charge aO’ will be
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EZ(P) motion of the charge at eve@’. It is this term which ac-
counts for the effect of radiation reaction on the charge.
de All these terms were first found by Dirac for arbitrary
== 5 > >+ motion of the charge in an inertial frame. The general ex-
9HZ° = Zo(— m0) = (2I)[Z— Zo( — 70) Ju“(— 70)} pression in the inertial frame obtained by Diradsee Ref.
(59 [4]; also see pp. 141-144 of R¢B))
At eventO, the velocity and acceleration of the charge are 5 " u PPN u
zero in M. However, the rate of change of acceleration is  fu— e ut @t af (alu) gat
nonzero, and we denote this quantity by Then, all the Vi-(8)atu,[ 6 29 2 8
relevant quantities at time= — 7, can be expressed in terms PRPTRNEY
of a alone, in the limitO — O’ (that is whenr,—0). _LW+ E[éu_vu(éw)\)] ) (66)
Making a Taylor expansion about=0, we get 2 3
T0°. Here, a* is the four-accelerationp” the 4-velocity, §
Zo(—Tm0)=2Zp~ @ 60 —RNy, and ur=[(R“—6v4)/(8)]. These are the leading
terms in an expansion if in the limit 6—0.
and Computing the above expression féf in the inertial

frame is a laborious task. Our formalism makes the corre-
sponding computation very simple. In fact, we calculated it
the same way we calculated the fields: We transform to an
inertial frameS’, in which the charge is at rest at the retarded
where Z,=Z,(0)=g" . (Here, only terms up to order, event and find the expression for the force in the comoving
need to be retained, in the limit af;— 0. In this limit, accelerating frame, which is given by E(65). By trans-

2

UZ(— )= %d, 61)

3

writing Z=Z,+ 6, we find that forming back toS” and making an arbitrary Lorentz trans-
formation to S gives the force(66) in the general inertial

EZ(P)= de frame start_ing from Eq(65). (We give the explicit proce_du_re

- 9 52+ 2205”20703&/3) —Zoérozd]z. in Appendix B) Here we shall transform only the radiation

(62)  reaction term, and show that it gives the correct radiation
reaction in the inertial frame, for the case of rectilinear mo-
From Eq.(32), we get, after setting=0, p=0 and replacing tion.

79 by — 79 Let f? denote the radiation reaction force in the inertial
frameS. Then, ifF .,/ denotes the radiation reaction force in
) (=l O frame M, then using Eqs(26), (28), and(53), we have
sinh(gry) = =_ (63
2V¢o %o 9z 2¢?
fZ:(_) Fraf=——a coshgro). (67)
in the limit 5—0. Hence, in the limitry—0, iz . " 3
To=9. 64 The derivative of the retarded acceleratiafy=da*/(d7),

We are interested in the force exerted on the charge by t8 measured in the frantis related toa by
own field, which is equal t@ E“(P) in the limit 5—0. This

force is given by a®=g?coshgro) + a sinh(gy), (68)
FZ—eEZ(P)Eé—z—e%gnL %ezw 36292, 65 a*=g? sinh(g7o) + a coshgry). (69
Then, using Eq(67), we get
where we have expanded the expressionE6iin the bino- 2 5
mial series in the infinitesimal param_en&r_ Itis und(_erstood fzzzi& cosh(gr)= Zi[éz_UZ(é#U ), (70
that we should evaluate this expression in the limive$ 0. 3 3 K’

The first two terms diverge a$— 0. This point is exten-
sively discussed in literature, and these terms arise from th&hich is indeed the radiation reaction force in the inertial
self-energy of a charged particle due to interaction with itsframe S. For an arbitrarily moving charge, one can first
own electromagnetic field and are expected to be absorbefansform to the instantaneous Lorentz frame, in witjuit-
by mass renormalization. There is also the constéas) ting v*=0)
term, which is uninteresting, since the first two terms are 5
already divergent. We would have landed up with these three f2— Zi 2 (71)
terms, even if we had not accounted for the motion of the 3
charge at ever®’. It is the third term, which has the deriva-
tive of the acceleration, which is the most interesting termand make a Lorentz transformation to an arbitrary inertial

We have been able to obtain it because we accounted for tHeame, to get
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2e? . . to generalize the various expressions to an arbitrary curved
fr=—-la*—v"(@'v,)] (72 background. We hope to address these questions in a future
publication.

which is the correct expression for radiation reaction.
An attempt is made in Ref2] to relate theradiated =~ APPENDIX A: SOLUTION TO MAXWELL'S EQUATIONS

powerto the force acting between the charge and the ficti- FOR A CHARGE AT REST IN A UNIFORMLY

tious charge density at the horizon. Our result is more gen- ACCELERATING FRAME

eral and gives the actuehdiation reaction forcetself. Fur-

ther we did not have to use thécticious coordinate

dependent, charge density to interpretal effect.

The scalar potentiad, due to a charge at rest in a uni-
formly accelerating frame satisfies the following equation
[see Eq(13)]:

VI. CONCLUSIONS

1
2 —

The radiation of electromagnetic waves by a charged par-p&g Aot 29§&p(p§pA0) amed({=Lo) 3lp) &(&).
ticle and the consequent radiation reaction force are issues of (A1)
considerable theoretical significance and have attracted tfw
attention of researchers over the decades. We believe that tIF
approach outline_d_ in this paper throvys light on these_pro- Consider the problem of a charge placed at rest outside
cesses and clarlfles .the conceptual issues mvolveq n th[%e horizon of a Schwarzschild black hole. In the spherical
problem. To begin with, we have been able to derive thepolar coordinatesr( 8, $), the charge is placed at=r’, 6
radiation field as arising out of a static Coulomb field in aZ0 The metric is gi\’/en, by '
noninertial frame through a general coordinate transforma- =~

e shall find a solution to this equation by studying a dif-
rent, but related problem.

tion. This is of some conceptual importance since one be- 2M dr2
lieves that the physics should be independent of the coordi- ds*=| 1— — |dt?— —————r?(d#*+sirf0d ¢?).
r (1—-2M/r)
nate system. Secondly, we have been able to show that the (A2)

key contribution to radiation reaction arises because of the
deviation of the trajectory from that of a uniformly acceler- Maxwell's equations are separable in these coordinates. The
ated one. This deviation, which essentially modifies the exdifferential equation satisfied b, in this metric is
pressiorR*v , , has a purely geometrical origin in the locally
coaccelerating frame. Since the lowest order deviation will 1 ) )
be proportional to the rate of change of acceleration, it is 5 r(I"0rAo)* (T 5y 5 = 96(SIN 096A0)
clear that the radiation reaction force should be proportional
to the same; that is, it should be proportional to the third = —47ed(r—r')5(cosf—1). (A3)
derivative of the trajectory.

It will be of interest to see whether these results allow usThe solution to this equation can be expressed in a closed
to tackle the question of self-force in curved space time andorm (see Ref[5]):

e[(r—M)(r'—M)—M?cos 6]

Ap= . (A4
O o J(r=M)Z+(r —=M)2—2(r—M)(r' — M)cos 6— M2sir?d )
|
Now, if the charge is placed infinitesimally close to the r2(de?+sirfd de¢p?)=(2M)3(d6?+ 6> d¢?)
horizon and all measurements made in an arbitrarily small y 5
region around the charge, then the horizon would appear =dp°+p° d¢ (A7)
“flat.” Mathematically, if we introduce a coordinaté by
giving
r=2M+¢; 2M>/¢, (A5)
d¢?
then we can write ds’=2g¢ dt*- ﬁ—dpz—Pz dep? (A8)
(1_ m> Ei:Zg{ (A6) which is identical to the metric given by E7).
r 2M ' In this approximation, we are neglecting curvature of

spacetime such that the horizon appears as a plgn@) as
whereg=(1/4M) is the effective surface gravity of the ho- in a uniformly accelerating frame. More importantly, it gives
rizon. If we fix our origin atd=0, r=2M and restrict all us an ansatz to find a solution to E@.3), by using this
observations perpendicular to theaxis to a very small re- approximation in the expression féy, given by Eq.(B3).
gion, thenp=2M sin #=2M4. In this limit, Straightforward algebra gives
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1/2)gp? OGe(x—y)=8*(X—Y), Gre(x—y)=0  for x°<y’.
gef{+ o+ ( Zzgp] i (A9) (ca
VL= Lot (12)9p%1?+29p%g

0=

o _ _ The currentj#(x) for a point charge moving along a world
which is an exact solution to eqUaUQAl). line z*= Z‘M(T) with a four-ve'ocityu#(T) is given by

APPENDIX B: THE LORENTZ-DIRAC FORMULA j“(X)Iej dT§4[X—Z( 7)uH(7) (C5)

Consider a charge moving in an arbitrary trajectory in an
inertial frameS. As before, we construct a comoving, uni- so that
formly accelerating fram#, in which the expression for the

self-force is given by Eq(65). Consider now the expression _
(66) in a frame in which Au(x)=4me | d7Gre{x—2(7)]u,(7). (C6)
v*=(1,000, a*=(g’@,00), a*=(0g,0,0). Now, letR*=x*—2¥(r). Then,
(B1) 1
_ - 2 0_-0 2
The expression reduces to Grelx—2(7)]= 2775(3 ) 0(xX°=27), Ss"=R'R,
(C7
M~M113922MM o
fr=e? a E_S—’_T +—[a —vMawM)] giving
(B2)
AM(x)=2ef dTé(SZ)UM(T) (C8
so that
fe g 1 g 3¢° 2e*, a3 and
=l 5 577 T332 B3 ,
ayAﬂ(x)ZZef d7d,6(s“)u,(7)
(It is assumed thab— 0 limit is considered; also note that )
u“—a* in this limit.) This is identical to Eq(65) when we e g do(s?) ds co
use Eq.(69) with 7,=0. If one wants the expression fot —ce | dr ds?  ox” Uy (7). (C9)
in the frameS, all one has to do is find the expressionNin
(which is a simpler task compared to directly calculating it in Now,
the frameS, as is normally done given by Eq.(65), trans-
form it to the inertial frameg[to get expressioriB3)], and 952
finally to transform it toS by making a Lorentz transforma- -=2R,. (C10
tion. This leads to the Lorentz-Dirac expression, given by 2
Eq. (66). Therefore,
APPENDIX C: COVARIANT FORM OF THE FIELD ) ds?\
OF AN ARBITRARILY MOVING CHARGE 3,AL(X)= 4ef d7—\ 47 RVU,L(T)- (C1y
It is possible to express the field tengot” produced by |
an arbitrarily moving charge, in a manifestedly Lorentz in-AlSO.
variant form. Though the result is obtained in RgS], the ds?
derivation is quite cumbersome. We give here a clearer and —=-2p, p=R4U (C12
. - . ) . . dr ’ Iz
simpler derivation of this formula. Maxwell's equations in
inertial coordinates in flat spacetime are .
leading to
d,Fr'=4mj’, F ,,=d,A,—d,A,. (C) d6(s?)(R
) . é’A(X)——ZeJ'dT
Combined together in the Lorentz gauge“d,)=0, we P
have X J'd a 2)d(RvuM> e d(RyuM)
. =2e| d78(s°)+ =—— .
OA,=47j, (C2 dr\ p pdrl p /|
which has the solution (C13
It follows that
A (X)=477f A*X Gl X—Y)j (), (C3
17 ret( y J,u y e d RILUV— RVUM
FW:%AV—(?VA,F—O'— . (C19
whereG,, is the retarded Green’s function, satisfying par p ret
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Differentiating the expression, we get e(1—ud)(R—uR) eRX[(R—uR)Xa]
= +
e (R-R-u)® (R-R-u)®
FMVZE[(RU—UO')(R,U,av_ Rva,u,) (C16)
+(1-R%a,)(R,u,~R,u,)].  (C15 g RXE (c17)
R

Using R’R,=0, R“=(R,R), u*=1y(1lu), a*=y(y,uy
+ ya), we get the electric and magnetic fields as These are the standard textbook expressions for the fields.

[1] L. D. Landau and E. M. LifschitzClassical Theory of Fields  [4] P. A. M. Dirac, Proc. R. Soc. Londof165, 199 (1983.

(Pergamon, New York, 1972 [5] Black Holes: The Membrane Paradignedited by K. S.
[2] F. J. Alexander and U. H. Gerlach, Phys. Rev4B 3887 Thorne, R. H. Price and D. A. Macdonal@ale University
(1991). Press, New Haven, 1986

[3] F. Rohrlich, Classical Charged Particle(Addison-Wesley,
New York, 1964.



