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Numerical evidence supports the conjecture that polarizdgl §ymmetric cosmologies have asymptotically
velocity term dominated singularitiegS0556-282(98)02412-6

PACS numbd(s): 98.80.Hw, 04.20.Jb

I. INTRODUCTION because Gowdy-like spiky featur€®] cannot yet be mod-
eled with sufficient accuracy. However, the subclass of po-
The cosmological singularity in spatially homogeneouslarized U1) models does not appear to develop spiky fea-
models is known to be either asymptotically velocity termtures and thus can be treated well by our numerical methods.
dominated (AVTD) (Kasner-like [1,2] or Mixmaster-like ~We consider vacuum (@) symmetric cosmologies o>
[3,4]. Analytic [2,5] and numerical studi€i,7] have shown XR. These can be described by two variablesand w
that the singularity in the spatially inhomogeneous Gowdyanalogous to the Gowdy wave amplitudes for theand X
models[8] is AVTD everywhere in polarized models and polarizatic_)ns ofgrayitational waves a_nd three_ variatz)lex_,
everywhere except, perhaps, at a set of measure zero in t}f@d z which contain nondynamical |nformat|on.' Polan;ed
generic, unpolarized case. Long ago, Belinskii, Khalatnikov U(1) models have the degree of freedom associated with
and Lifshitz(BKL) [3] argued that the generic singularity in set equal_ to z_efo. Thls_condltlon is preserved for all time
Einstein’s equations is locally of the Mixmaster type. This both b.y Einstein’s equations apd by the. discrete form ther_eof
remains controversidl9] but serves as a conjecture which used in our numerical simulations. While a general solution

can be tested. The Gowdy models, though interesting in the the initial valug problgm is not known e'pr|C|tIy., we havg
. . - , . ound an algebraic solution to the constraints which contains
own right, have two commuting Killing fields which pre-

cludes local Mixmaster behavior fa*X R topology. (For three[four for generic W1) modeld arbitrary functions of

the spatial variables and is sufficiently general to yield ge-
generalized Gowdy models which appear to exhibit Mixmas P y4d y d

: . ““neric evolution toward the singularity within the polarized
ter dynamics sef10].) However, the more general one Kill- (1) cjass of models. We find that the evolution toward the

ing field U(1) symmetric cosmologies of°X R should ge-  singularity is AVTD everywhere as had previously been con-
nerically have Mixmaster-like singularities if the BKL jectured[11]. This conclusion is base@) on the exponential
conjecture Is correct. decay with time of all terms in the Hamiltonian containing
An AVTD solution to Einstein’s equations is obtained by spatial derivatives(b) the exponential decay with time of the
neglecting all terms containing spatial derivatives. The pachange in certain functions of the spatial coordinates which
rameters of the solution to the resultant ordinary differentialare constant in time in the AVTD regime, afg fits of the
equationgODE’s) are then assumed to depend on the spatiabehavior of the variables at randomly selected spatial points

coordinates. An AVTD singularity is then one where theto the expected linear or constant asymptotic time depen-
solution to the full Einstein equations comes arbitrarily closegence.

to an AVTD solution as the singularity is approachie.
For the Ul) cosmologies, the AVTD equations may be
solved exactly. However, one may worry about the coordi-
nate and slicing dependence of the notions of space and time The spacelike Killing vectog=d/9x® of the U1) sym-
leading to such dependence in our definition of AVTD. Wemetry allows a generic metric in this class to be described in
shall argue here that the AVTD behavior of the singularity isterms of the coordinatg® along ¢ and coordinates andv

not strongly slicing dependent. and = parametrizing the quotient21 manifold[12]. Using

We have already show[6] that numerical methods used notation from[6] and takingu e[0,27] andv €[0,27] the
in the Gowdy cosmologies can be easily generalized to thg+ 1 metric is

U(1) case. However, numerical difficulties associated with
spatial differencing in two dimensions have prevented so far ds?=e 2¢{—N2e %" d2+e 2"ele,,dx2dx’}
a complete understanding of generi¢lymodels probably

Il. THE MODEL

+e29(dx3+ B,dx®)? (2)
*Email address: berger@oakland.edu where {x8}={u,v}={x*x?}, the lapseN=e", and g,y
"Email address: moncrief@hepvms.physics.yale.edu = eAeab where
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e??+e ?(1+x)?2 e?+e A x°—1)
e22+672Z(X2_1) e2z+e722(1_x)2

1 —(e"e™),aA p+er[(e7), %, = (€77, %]

eabzz i)

1
+2e2e?p, . 0,p+ EeAe““eabw,aw,b}
is the conformal metric of tha-v plane.

In the polarized case3,=0 but for the general case we _ _
must construc{ 8.} ={B1,8} as follows: At an initial time, =HktHy= du do M+ du dv V. @)

7= 10, define . ) )
The Hamiltonian and momentum constraints are respectively

v 1 27
,8’{(u,v)=cl+f dv’{r(u,v’)—— dv”[r(u,v”)]}, HO=H—2p,=0 8
0 2mJo
and

1 u 2w
* — _ ’ ' roor
Bz (Uv)=c, 277J0d“ fo dv’ r(u’,o’) ® Hu=PZut PXout PAN = Pat POt T @y

1
where c; and c, are constants. These constants are like +5{[6‘42—(1+X)2]px—(1+X)Dz},u
“twist” constants[12] and are arbitrarybut physically sig-

nificant. TheseB*’s will be periodic onT? provided 1, )

— 517+ (1=X) IPx=%Pz,u=0, ©
27
fO dU dv T(U,U)IO_ (4) Hv:pzziv+pXva+pAAru_pAru+p‘Piv+rw1u

T e*— (1—x)2 _

Now let B,=B7 +dN/du and B,= B3 +IN/dv where\ is 2{[e = (1=0)7IPx+ (1=X)P2h

arbitrary and could be identically zero to giy@.} at 7. .

Finally, defineB,(u,v,7) by computing i E{[e4z+(1—X2)]px—sz},v=0- (10)

Ba(U,v,7)= Ba(U,v,70) — f dr'e 2" Ne *e,pe v, To evolve Einstein’s equations numerically, we need to solve
70

(5) the initial value problem. While an explicit general solution
is not available, a particular class of solutions may be ob-
tained as follows: To solve the momentum constraif®s
and (10) set py=p,=¢,;=®,,=0 to leavep,A,;—Pa,a

0 1 =0 which may be satisfied by requiring, =ce*. For suf-
) (6) ficiently largec, the Hamiltonian constraint may be solved
algebraically for eithep or r. In general, this leaves as free

As in [12], a canonical transformation replaces the terms mdata the four functions, z, A, and either or p. However,
n the polarized case, we demand

the Einstein-Hilbert actiore8,+ B,e2,, by rw where the
momentume?® conjugate toB, identically satisfies the con-
strainte?,,=0 if e2=¢%"w,,. Einstein’s equations may be
obtained by the variation of

where

Sbcz

-1 0/

w=r=0 (11)

so that the Hamiltonian constraint must be solvedfavith
three arbitrary functiong, z, andA. We note that while any

j f du dv H ¢ will solve the initial value problem, to approach the singu-
larity we requirec>0 in order to givep, >0 so thatA will

j f du dv( P2+ e4zp L= p2+ 2 ghor2 decreasébecome more negatiyas r— . This is required

8 x' 8 because the determinant of the metric has a fagtdmwhich
measures the area in tlhiev plane.
+e‘27f fdu dv

(eted) ., The AVTD equations may be obtained by variatiorHy{
ra
Z=—v, (7= 7o) + In[|lf’*z|(1+9_41}2(7_702))]‘> —U,7 as 7—®,

A A in Eq. (7) and have the exact solutiqeee[6,13])

x=&,~[p(1+e ™) 1y as 7,

(1_ e*4vz(77 TOZ))

pz= _4vzme—4vz as 7— o,
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— 0
Px=—mz0 =Py,

(P:_Uq:(T_TO@)"'In[l/““(p|(l+e_4u‘p(7_70‘°))]_’_Uq:T as 7—x®,
a)=§¢—[,U,(p(l-l-e_4”¢(7_70¢))]_1—>w0 as r— oo, (12

. (1—8_40‘9(7_704’))
p=- U¢(1+e74v¢(777’0w))

——4v, as Tt—®,
r=—M¢v¢Er°,
A=Ay+(2-p%)7,

pA:p(/)\

subject to the AVTD limit of the Hamiltonian constrai(8): Ill. NUMERICAL METHODS

1 1 To integrate Einstein’s equations, the symplectic method
pizzp§+ e*?p2+ Zp2+ e*er?, (13)  described in detail i6] is applied to Y1) symmetric cos-
mologies. For a system described by a Hamiltonian

The AVTD limit is expressed in terms ok,, v,=0, &,,

Toz» Mg, V=0, &,, and o, which are functions ofi and H=H;+H,, (17)
v. The limits onv, and v, arise in order for the limiting

forms of Eq.(12) to cause the exponents in BJ) to decay the corresponding evolution operatd(A 7) which evolves

as 7—. (See the discussion of similar terms in Gowdy data from+ to 7+ A7+ generated byH can be written as
models[5,7].) The AVTD solution(12) may be inverted to [14,15

give these parameters in terms of the original variables. Use-
ful examples are

/1 1 /1 1
| T2, T abzn2 ] T n20 T pbep2
v, 16pz+4e Py, Ve 16p +4e re. (14
whereU,,, are the evolution operators generatedHby,,.

We further note[5] that, in addition tov,, v,, Pk, r, and  Suzuki[16,17 has shown how to generalize this algorithm

AT

AT
U(AT):U1<7> UZ(AT)U1<7 +0[(AT)3] (18

PA to an arbitrary order i\ 7. This method is useful if the sets
of equations of motion obtained by the separate variations of
1 1 H, andH, are exactly solvable.
Cz=5 Pzt PX, Co=5ptre (15) We see[6] that Eq.(7) for the U(1) models has exactly
solvable equations foHx and Hy,. We have already ob-
are also constant in time in an AVTD regime. tained the AVTD solutior(12) from Hy’s equations of mo-

The method of Grubié and Moncrief(GM) [5] can be tion. SinceH,, contains no momenta, the configuration vari-
followed to determine if one expects the singularity to beablesx, z, A, ¢, and w are constants of the motion so the
AVTD in the polarized model. We require every term\in  equations are trivially solved. Non-trivial, however, is the
[from Eq.(7)] to decay exponentially as— oo if we substi-  representation of the gradients ¥fwhich arise during the
tute the limiting AVTD solution, Eq(12), for the U1) vari-  variation. Accurate representation of spatial derivatives in
ables. Clearly, the behavior will depend on the behavior otwo spatial dimensions is more difficult than in one dimen-
the exponentials. First, as in the Gowdy cHs&], we expect sion since the function of interest is no longer guaranteed to
the remaining nonlinear term ik, , €*?p2/2 to drivep, to  vary along the differencing direction. These inaccuracies
negative values yielding eventually large and negative. In have been found to limit the duration génericU(1) model
that case, terms ie®® proportional toe ?? will dominate. ~ simulationsbut are not problematical for polarized models
From Eq.(7), we must examine the facter 27*A 22 which ~ This is almost certainly due to the fact that Gowdy-like,
will decay asr— if p,—2v,>0. (Recall that,=0.) But  Steepening spiky features characterized by increasiwgt
the AVTD limiting form of the Hamiltonian constraint re- 7) large spatial gradients are absent in polarizét) thodels

quires as they also are in polarized Gowdy models. We emphasize
that the “averaging” mentioned ifi13] as necessary to sta-
p2+p2—4pi=0=16v%+p?—4p3 (16)  bilize generic Y1) evolution is not required in the polarized
case.
which, in turn, requirep,=2v,. Thus,p, >0 is expected if To illustrate the behavior of typical polarized1) sym-

the singularity is AVTD and yields consistent behavior. metric models, we consider a particular choice of initial data
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2 4 e 8 ’l:lo 1214 18 FIG. 2. Exponential decay of the spatial derivative terms in the

Hamiltonian. Logg|V| vs 7 is displayed for two spatial pointsolid
line). The straight line slope indicates exponential decay. In each
case, the corresponding values eff§, + p,/2)7/In10 are also dis-
played(dashed ling Figures 2—4 are obtained from a second order
accurate PDE solver with 533patial grid points.

0.001

behavior. While only representative spatial points have been
shown, exponential decay at the predicted rate is seen at all
spatial points.

In Fig. 3, the maximum values over the spatial grid of the
changewith time in the AVTD functions that should be con-

FIG. 1. Convergence of the constraints. The Hamiltor(igi stant in time in the AVTD limit—py, v,, vy, Cz, Co,
angle$, u-momentum(circles, andv-momentum constraints vs py—are plotted vsr. Again, one sees exponential decay to

for spatial resolutions of 128128 (broken ling, 248< 248 (solid  the level of machine noisgThis machine noise does not

line), and 51512 (dashed ling () A second order(in time) ~ ShOw up in logoV which is an evaluation but does appear

accurate symplectic partial differential equati@DB solver yields ~ When differences are computgdhese quantities are strictly

a decrease in the magnitude of the constraints by a factor of 4 as t@nstant in the AVTD limit. In order to compare the ob-

number of spatial grid points in each direction is doublsecond  served to predicted decay of these quantities, one needs to go

order convergende(b) A fourth order(in time) accurate symplectic beyond the AVTD solution. In the Gowdy case, this was

PDE solver{16,17] yields a factor of 16 decrease in the magnitude done by GM[5].

of the constraint¢fourth order convergengeOnly the early part of Finally, in Fig. 4, the variabled, z, and ¢, expected to

the evolution is shown. Note that in addition to improvement inbe linear withr in the AVTD limit, and x expected to be

convergence with increasing spatial resolution, one also finds corconstant inr are shown vs- at typical spatial points. For the

vergence with increasing time order accuracy. In all cases, the spgjrst three, linear fits are shown. We see thaloes not show

tial differencing schemgl9] is fourth order accurate and centered the constant inr behavior one would expect as—o. How-

about the spatial grid point of interelst8]. ever, we note from Fig. 4 that~0. This small constant

value allows the exponentially decaying ternxito be mea-

with A =Asinu sirv, x=z=coaicow, and py=ce* with  surable. The lines in Fig.(d) are fit by a constant plus an

A=1, c=14. Other choices of initial data yield qualitatively exponential decaying with the expected rate of rom Eq.

similar results. (12). Again, although only representative points are dis-
The constraints are imposed initially and monitored thereplayed, the same behavior is seen at all spatial points.

after. Figure 1 shows the maximum value of the constraints

on the spatial grid vs time and spatial resolution. Although it

is not clear how small one should require the constraints to

be, the demonstrated convergence allows one to argue that

the small constraint violation can be neglected in our inter-

pretation of the results. Choptuik has argued that constraint

convergence is an indicator of convergence of the numerical 10

solution to the true solution to Einstein’s equatigas].

-4

-8 ]

-12

10

’

IV. RESULTS

-16

10

Figure 2 displays the maximum value of Iy from Eq.
(7) at two spatial points as a function ef One expects this

quantity to vanish as— for an AVTD singularity. Here FIG. 3. Decay of the deviations from constant in time behavior
we demonstrate that it vanishes exponentially as one expecist. quantities constant in the AVTD limit. The maximum value of
We note that the exponential decay\6ineasures only con- the change with time over the spatial grid of the quantifigsc, ,

sistency and does not prove AVTD behavior. The observed, C,, v,, andp, are shown vsr. The non-vanishing values at
exponential decay is compared to the prediaed®s*P#27  |ate times are at the level of machine precision errors.
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0 v ' w the AVTD solution. Decay to the observed constant values
i (a) could be compared with the prediction from the next order in
-160r ] an asymptotic expansion where the AVTD limit is the zero

order term[5]. This has not been done. However, this is not
required to demonstrate that the singularity is AVTD.

Given the consistency of our numerical results with the
AVTD limit, we argue that longer duration simulations and
other initial data sets will reveal nothing new. This is be-
cause the method of GM suggests that exponential decay of
all the terms inV is consistent with the AVTD limit as
—o, As shown in the Gowdy casé] and, of course, in

1 20,002 Mixmaster itself 3], the exponential growth of such terms is
| required to change the qualitative behavior of the model at a
1_0.004 given spatial point. In the absence of this growth, there is no

mechanism within Einstein’s equations that could destroy the
AVTD behavior.

Finally, we consider the possible slicing dependence of
the notion of AVTD. First, we note that the canonical trans-
formation tor and w has interchanged generalized coordi-
nate and conjugate momentum. Of course, this degree of
freedom is absent in polarized(l) models. However the
algebraic coordinate conditions which we have imposed in
fixing the metric form(1) (essentially zero shift and a “har-
monic” time function when the choicdl=e" is enforced

~0.004 are not completely rigid since they depend still upon the
choice of an initial hypersurface. There are many other har-
-0.008 monic time functions(i.e., solutions of the wave equation

having timelike gradientwhich could have been used in-

-0.012 stead of any given one without disturbing the metric form
-0.016 but one can analyze these asymptotically using the formal
expansion methods of GM. Thigot yet rigorously justifieg
0 - R e analysis determines the asymptotic behavior of any such

time function relative to a given on@vith respect to which
FIG. 4. Comparison of predicted and measured values of th\yVTD behavior of the metric is assumednd shows that
variables(a) A, (b) z, (¢) ¢, and(d) x vs  are shown for two  gsymptotic velocity term dominance would be preserved in
representative spatial points. F@, (b), and(c), the data is repre-  any harmonic time, zero shift gauge provided it holds in the
sented by circles or squares while the soli_d line ig a Iinea_r fitto theoriginal one. Thus the occurrence of AVTD behavior does
data. For(d), the fit is tox=a+be *z" as is consistent with Eq. not seem to depend upon the choice of a preferred initial
(12). hypersurface, at least not within the class of gauges under

study.
V. DISCUSSION
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