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Numerical evidence that the singularity in polarized U„1… symmetric cosmologies
on T33R is velocity dominated
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Numerical evidence supports the conjecture that polarized U~1! symmetric cosmologies have asymptotically
velocity term dominated singularities.@S0556-2821~98!02412-6#

PACS number~s!: 98.80.Hw, 04.20.Jb
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I. INTRODUCTION

The cosmological singularity in spatially homogeneo
models is known to be either asymptotically velocity te
dominated~AVTD ! ~Kasner-like! @1,2# or Mixmaster-like
@3,4#. Analytic @2,5# and numerical studies@6,7# have shown
that the singularity in the spatially inhomogeneous Gow
models @8# is AVTD everywhere in polarized models an
everywhere except, perhaps, at a set of measure zero in
generic, unpolarized case. Long ago, Belinskii, Khalatnik
and Lifshitz~BKL ! @3# argued that the generic singularity
Einstein’s equations is locally of the Mixmaster type. Th
remains controversial@9# but serves as a conjecture whic
can be tested. The Gowdy models, though interesting in t
own right, have two commuting Killing fields which pre
cludes local Mixmaster behavior forT33R topology. ~For
generalized Gowdy models which appear to exhibit Mixm
ter dynamics see@10#.! However, the more general one Kil
ing field U~1! symmetric cosmologies onT33R should ge-
nerically have Mixmaster-like singularities if the BK
conjecture is correct.

An AVTD solution to Einstein’s equations is obtained b
neglecting all terms containing spatial derivatives. The
rameters of the solution to the resultant ordinary differen
equations~ODE’s! are then assumed to depend on the spa
coordinates. An AVTD singularity is then one where t
solution to the full Einstein equations comes arbitrarily clo
to an AVTD solution as the singularity is approached@2#.
For the U~1! cosmologies, the AVTD equations may b
solved exactly. However, one may worry about the coor
nate and slicing dependence of the notions of space and
leading to such dependence in our definition of AVTD. W
shall argue here that the AVTD behavior of the singularity
not strongly slicing dependent.

We have already shown@6# that numerical methods use
in the Gowdy cosmologies can be easily generalized to
U~1! case. However, numerical difficulties associated w
spatial differencing in two dimensions have prevented so
a complete understanding of generic U~1! models probably
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because Gowdy-like spiky features@7# cannot yet be mod-
eled with sufficient accuracy. However, the subclass of
larized U~1! models does not appear to develop spiky fe
tures and thus can be treated well by our numerical meth
We consider vacuum U~1! symmetric cosmologies onT3

3R. These can be described by two variablesw and v
analogous to the Gowdy wave amplitudes for the1 and3
polarizations of gravitational waves and three variablesL, x,
and z which contain nondynamical information. Polarize
U~1! models have the degree of freedom associated witv
set equal to zero. This condition is preserved for all tim
both by Einstein’s equations and by the discrete form ther
used in our numerical simulations. While a general solut
to the initial value problem is not known explicitly, we hav
found an algebraic solution to the constraints which conta
three @four for generic U~1! models# arbitrary functions of
the spatial variables and is sufficiently general to yield g
neric evolution toward the singularity within the polarize
U~1! class of models. We find that the evolution toward t
singularity is AVTD everywhere as had previously been co
jectured@11#. This conclusion is based~a! on the exponential
decay with time of all terms in the Hamiltonian containin
spatial derivatives,~b! the exponential decay with time of th
change in certain functions of the spatial coordinates wh
are constant in time in the AVTD regime, and~c! fits of the
behavior of the variables at randomly selected spatial po
to the expected linear or constant asymptotic time dep
dence.

II. THE MODEL

The spacelike Killing vectorj5]/]x3 of the U~1! sym-
metry allows a generic metric in this class to be described
terms of the coordinatex3 alongj and coordinatesu andv
andt parametrizing the quotient 211 manifold@12#. Using
notation from@6# and takinguP@0,2p# and vP@0,2p# the
311 metric is

ds25e22w$2N2e24tdt21e22teLeabdxadxb%

1e2w~dx31badxa!2 ~1!

where $xa%5$u,v%5$x1,x2%, the lapseN5eL, and gab
5eLeab where
7235 © 1998 The American Physical Society
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eab5
1

2Fe2z1e22z~11x!2 e2z1e22z~x221!

e2z1e22z~x221! e2z1e22z~12x!2G ~2!

is the conformal metric of theu-v plane.
In the polarized case,ba50 but for the general case w

must construct$ba%5$b1 ,b2% as follows: At an initial time,
t5t0, define

b1* ~u,v !5c11E
0

v
dv8H r ~u,v8!2

1

2pE0

2p

dv9@r ~u,v9!#J ,

b2* ~u,v !5c22
1

2pE0

u

du8E
0

2p

dv8 r ~u8,v8! ~3!

where c1 and c2 are constants. These constants are l
‘‘twist’’ constants @12# and are arbitrary~but physically sig-
nificant!. Theseb* ’s will be periodic onT2 provided

E
0

2p

duE
0

2p

dv r ~u,v !50. ~4!

Now let b15b1* 1]l/]u and b25b2* 1]l/]v wherel is
arbitrary and could be identically zero to give$ba% at t0.
Finally, defineba(u,v,t) by computing

ba~u,v,t!5ba~u,v,t0!2E
t0

t

dt8e22t8Ne24weab«
bcv,c

~5!

where

«bc5S 0 1

21 0D . ~6!

As in @12#, a canonical transformation replaces the terms
the Einstein-Hilbert actioneaḃa1b0ea,a by r v̇ where the
momentumea conjugate toba identically satisfies the con
straint ea,a50 if ea5«abv,b . Einstein’s equations may b
obtained by the variation of

H5E E du dv H

5E E du dvS 1

8
pz

21
1

2
e4zpx

21
1

8
p21

1

2
e4wr 2

2
1

2
pL

2 12pLD1e22tE E du dvH ~eLeab!,ab
e

n

2~eLeab!,aL,b1eL@~e22z!,ux,v2~e22z!,vx,u#

12eLeabw,aw,b1
1

2
eLe24weabv,av,bJ

5HK1HV5E E du dv HK1E E du dv V. ~7!

The Hamiltonian and momentum constraints are respectiv

H 05H22pL50 ~8!

and

H u5pzz,u1pxx,u1pLL,u2pL,u1pw,u1rv,u

1
1

2
$@e4z2~11x!2#px2~11x!pz%,v

2
1

2
$@e4z1~12x2!#px2xpz%,u50, ~9!

H v5pzz,v1pxx,v1pLL,v2pL,v1pw,v1rv,v

2
1

2
$@e4z2~12x!2#px1~12x!pz%,u

1
1

2
$@e4z1~12x2!#px2xpz%,v50. ~10!

To evolve Einstein’s equations numerically, we need to so
the initial value problem. While an explicit general solutio
is not available, a particular class of solutions may be
tained as follows: To solve the momentum constraints~9!
and ~10! set px5pz5w,a5v,a50 to leavepLL,a2pL ,a
50 which may be satisfied by requiringpL5ceL. For suf-
ficiently largec, the Hamiltonian constraint may be solve
algebraically for eitherp or r . In general, this leaves as fre
data the four functionsx, z, L, and eitherr or p. However,
in the polarized case, we demand

v5r 50 ~11!

so that the Hamiltonian constraint must be solved forp with
three arbitrary functionsx, z, andL. We note that while any
c will solve the initial value problem, to approach the sing
larity we requirec.0 in order to givepL.0 so thatL will
decrease~become more negative! ast→`. This is required
because the determinant of the metric has a factore2L which
measures the area in theu-v plane.

The AVTD equations may be obtained by variation ofHK
in Eq. ~7! and have the exact solution~see@6,13#!
z52vz~t2t0z!1 ln@ umzu~11e24vz~t2t0z!!#→2vzt as t→`,

x5jz2@mz~11e24vz~t2t0z!!#21→x0 as t→`,

pz524vz

~12e24vz~t2t0z!!

~11e24vz~t2t0z!!
→24vz as t→`,
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px52mzvz[px
0 ,

w52vw~t2t0w!1 ln@ umwu~11e24vw~t2t0w!!#→2vwt as t→`,

v5jw2@mw~11e24vw~t2t0w!!#21→v0 as t→`, ~12!

p524vw

~12e24vw~t2t0w!!

~11e24vw~t2t0w!!
→24vw as t→`,

r 52mwvw[r 0,

L5L01~22pL
0 !t,

pL5pL
0

dy

s
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subject to the AVTD limit of the Hamiltonian constraint~8!:

pL
2 5

1

4
pz

21e4zpx
21

1

4
p21e4wr 2. ~13!

The AVTD limit is expressed in terms ofmz , vz>0, jz ,
t0z , mw , vw>0, jw , andt0w which are functions ofu and
v. The limits onvz and vw arise in order for the limiting
forms of Eq.~12! to cause the exponents in Eq.~7! to decay
as t→`. ~See the discussion of similar terms in Gow
models@5,7#.! The AVTD solution~12! may be inverted to
give these parameters in terms of the original variables. U
ful examples are

vz5A 1

16
pz

21
1

4
e4zpx

2, vw5A 1

16
p21

1

4
e4wr 2. ~14!

We further note@5# that, in addition tovz , vw , px , r , and
pL ,

cz5
1

2
pz1pxx, cw5

1

2
p1rv ~15!

are also constant in time in an AVTD regime.
The method of Grubis˘ić and Moncrief~GM! @5# can be

followed to determine if one expects the singularity to
AVTD in the polarized model. We require every term inV
@from Eq. ~7!# to decay exponentially ast→` if we substi-
tute the limiting AVTD solution, Eq.~12!, for the U~1! vari-
ables. Clearly, the behavior will depend on the behavior
the exponentials. First, as in the Gowdy case@5,7#, we expect
the remaining nonlinear term inHK , e4zpx

2/2 to drive pz to
negative values yieldingz eventually large and negative. I
that case, terms ineab proportional toe22z will dominate.
From Eq.~7!, we must examine the factore22t1L22z which
will decay ast→` if pL22vz.0. ~Recall thatvz>0.! But
the AVTD limiting form of the Hamiltonian constraint re
quires

pz
21p224pL

2 50516vz
21p224pL

2 ~16!

which, in turn, requirespL>2vz . Thus,pL.0 is expected if
the singularity is AVTD and yields consistent behavior.
e-

f

III. NUMERICAL METHODS

To integrate Einstein’s equations, the symplectic meth
described in detail in@6# is applied to U~1! symmetric cos-
mologies. For a system described by a Hamiltonian

H5H11H2 , ~17!

the corresponding evolution operatorU(Dt) which evolves
data from t to t1Dt generated byH can be written as
@14,15#

U~Dt!5U1S Dt

2 DU2~Dt!U1S Dt

2 D1O@~Dt!3# ~18!

whereU1 ,2 are the evolution operators generated byH1 ,2.
Suzuki @16,17# has shown how to generalize this algorith
to an arbitrary order inDt. This method is useful if the set
of equations of motion obtained by the separate variation
H1 andH2 are exactly solvable.

We see@6# that Eq.~7! for the U~1! models has exactly
solvable equations forHK and HV . We have already ob-
tained the AVTD solution~12! from HK’s equations of mo-
tion. SinceHV contains no momenta, the configuration va
ablesx, z, L, w, andv are constants of the motion so th
equations are trivially solved. Non-trivial, however, is th
representation of the gradients ofV which arise during the
variation. Accurate representation of spatial derivatives
two spatial dimensions is more difficult than in one dime
sion since the function of interest is no longer guaranteed
vary along the differencing direction. These inaccurac
have been found to limit the duration ofgenericU~1! model
simulationsbut are not problematical for polarized model.
This is almost certainly due to the fact that Gowdy-lik
steepening spiky features characterized by increasingly~with
t) large spatial gradients are absent in polarized U~1! models
as they also are in polarized Gowdy models. We empha
that the ‘‘averaging’’ mentioned in@13# as necessary to sta
bilize generic U~1! evolution is not required in the polarize
case.

To illustrate the behavior of typical polarized U~1! sym-
metric models, we consider a particular choice of initial da
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with L5Asinu sinv, x5z5cosu cosv, and pL5ceL with
A51, c514. Other choices of initial data yield qualitative
similar results.

The constraints are imposed initially and monitored the
after. Figure 1 shows the maximum value of the constra
on the spatial grid vs time and spatial resolution. Although
is not clear how small one should require the constraints
be, the demonstrated convergence allows one to argue
the small constraint violation can be neglected in our int
pretation of the results. Choptuik has argued that constr
convergence is an indicator of convergence of the numer
solution to the true solution to Einstein’s equations@18#.

IV. RESULTS

Figure 2 displays the maximum value of log10V from Eq.
~7! at two spatial points as a function oft. One expects this
quantity to vanish ast→` for an AVTD singularity. Here
we demonstrate that it vanishes exponentially as one exp
We note that the exponential decay ofV measures only con
sistency and does not prove AVTD behavior. The obser
exponential decay is compared to the predictede(2pL1pz/2)t

FIG. 1. Convergence of the constraints. The Hamiltonian~tri-
angles!, u-momentum~circles!, andv-momentum constraints vst
for spatial resolutions of 1283128 ~broken line!, 2483248 ~solid
line!, and 5123512 ~dashed line!. ~a! A second order~in time!
accurate symplectic partial differential equation~PDE! solver yields
a decrease in the magnitude of the constraints by a factor of 4 a
number of spatial grid points in each direction is doubled~second
order convergence!. ~b! A fourth order~in time! accurate symplectic
PDE solver@16,17# yields a factor of 16 decrease in the magnitu
of the constraints~fourth order convergence!. Only the early part of
the evolution is shown. Note that in addition to improvement
convergence with increasing spatial resolution, one also finds
vergence with increasing time order accuracy. In all cases, the
tial differencing scheme@19# is fourth order accurate and centere
about the spatial grid point of interest@18#.
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behavior. While only representative spatial points have b
shown, exponential decay at the predicted rate is seen a
spatial points.

In Fig. 3, the maximum values over the spatial grid of t
changewith time in the AVTD functions that should be con
stant in time in the AVTD limit—px , vz , vw , cz , cw ,
pL—are plotted vst. Again, one sees exponential decay
the level of machine noise.~This machine noise does no
show up in log10V which is an evaluation but does appe
when differences are computed.! These quantities are strictl
constant in the AVTD limit. In order to compare the ob
served to predicted decay of these quantities, one needs
beyond the AVTD solution. In the Gowdy case, this w
done by GM@5#.

Finally, in Fig. 4, the variablesL, z, andf, expected to
be linear witht in the AVTD limit, and x expected to be
constant int are shown vst at typical spatial points. For the
first three, linear fits are shown. We see thatx does not show
the constant int behavior one would expect ast→`. How-
ever, we note from Fig. 4 thatx'0. This small constant
value allows the exponentially decaying term inx to be mea-
surable. The lines in Fig. 4~d! are fit by a constant plus a
exponential decaying with the expected rate of 4vz from Eq.
~12!. Again, although only representative points are d
played, the same behavior is seen at all spatial points.

the

n-
a-

FIG. 2. Exponential decay of the spatial derivative terms in
Hamiltonian. Log10uVu vs t is displayed for two spatial points~solid
line!. The straight line slope indicates exponential decay. In e
case, the corresponding values of (2pL1pz/2)t/ ln10 are also dis-
played~dashed line!. Figures 2–4 are obtained from a second ord
accurate PDE solver with 5122 spatial grid points.

FIG. 3. Decay of the deviations from constant in time behav
of quantities constant in the AVTD limit. The maximum value
the change with time over the spatial grid of the quantitiespx , cz ,
vz , cw , vw , andpL are shown vst. The non-vanishing values a
late times are at the level of machine precision errors.
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V. DISCUSSION

Numerical studies of polarized U~1! models provide
strong evidence in support of their conjectured AVTD s
gularity. For a representative choice of initial data, all r
evant terms are examined for consistency with AVTD beh
ior. Terms predicted to decay exponentially in the AVT
limit as t→` do so with the expected slope. The termscz ,
cw , vz , vw , px , andpL are strictly constant int for all t in

FIG. 4. Comparison of predicted and measured values of
variables~a! L, ~b! z, ~c! w, and ~d! x vs t are shown for two
representative spatial points. For~a!, ~b!, and~c!, the data is repre-
sented by circles or squares while the solid line is a linear fit to
data. For~d!, the fit is tox5a1be24vzt as is consistent with Eq
~12!.
-
-
-

the AVTD solution. Decay to the observed constant valu
could be compared with the prediction from the next order
an asymptotic expansion where the AVTD limit is the ze
order term@5#. This has not been done. However, this is n
required to demonstrate that the singularity is AVTD.

Given the consistency of our numerical results with t
AVTD limit, we argue that longer duration simulations an
other initial data sets will reveal nothing new. This is b
cause the method of GM suggests that exponential deca
all the terms inV is consistent with the AVTD limit ast
→`. As shown in the Gowdy case@5# and, of course, in
Mixmaster itself@3#, the exponential growth of such terms
required to change the qualitative behavior of the model a
given spatial point. In the absence of this growth, there is
mechanism within Einstein’s equations that could destroy
AVTD behavior.

Finally, we consider the possible slicing dependence
the notion of AVTD. First, we note that the canonical tran
formation to r and v has interchanged generalized coord
nate and conjugate momentum. Of course, this degree
freedom is absent in polarized U~1! models. However the
algebraic coordinate conditions which we have imposed
fixing the metric form~1! ~essentially zero shift and a ‘‘har
monic’’ time function when the choiceN5eL is enforced!
are not completely rigid since they depend still upon t
choice of an initial hypersurface. There are many other h
monic time functions~i.e., solutions of the wave equatio
having timelike gradient! which could have been used in
stead of any given one without disturbing the metric fo
but one can analyze these asymptotically using the for
expansion methods of GM. This~not yet rigorously justified!
analysis determines the asymptotic behavior of any s
time function relative to a given one~with respect to which
AVTD behavior of the metric is assumed! and shows that
asymptotic velocity term dominance would be preserved
any harmonic time, zero shift gauge provided it holds in t
original one. Thus the occurrence of AVTD behavior do
not seem to depend upon the choice of a preferred in
hypersurface, at least not within the class of gauges un
study.

ACKNOWLEDGMENTS

We would like to thank the Albert Einstein Institute a
Potsdam for hospitality. This work was supported in part
National Science Foundation Grants PHY9507313 a
PHY9503133. Numerical simulations were performed at
National Center for Supercomputing Applications~Univer-
sity of Illinois!.

e

e

@1# D. Eardley, E. Liang, and R. Sachs, J. Math. Phys.13, 99
~1972!.

@2# J. A. Isenberg and V. Moncrief, Ann. Phys.~N.Y.! 199, 84
~1990!.

@3# V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Sov.
Phys. Usp.13, 745 ~1971!.

@4# C. W. Misner, Phys. Rev. Lett.22, 1071~1969!.
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