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Is there chaos in low-energy string cosmology?
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Bianchi type IX, ‘‘mixmaster’’ universes are investigated in low-energy-effective-action string cosmology.
We show that, unlike in general relativity, there is no chaos in these string cosmologies for the case of the
tree-level action. The characteristic mixmaster evolution through a series of Kasner epochs is studied in detail.
In the Einstein frame an infinite sequence of chaotic oscillations of the scale factors on approach to the initial
singularity is impossible, as it was in general relativistic mixmaster universes in the presence of a massless
scalar field. A finite sequence of oscillations of the scale factors described by approximate Kasner metrics is
possible, but it always ceases when all expansion rates become positive. In the string frame the evolution
through Kasner epochs changes to a new form which reflects the duality symmetry of the theory. Again, we
show that chaotic oscillations must end after a finite time. The need for duality symmetry appears to be
incompatible with the presence of chaotic behavior ast→0. We also obtain our results using the Hamiltonian
qualitative cosmological picture for mixmaster models. We also prove that a time-independent pseudoscalar
axion fieldh is not admitted by the Bianchi type IX geometry.@S0556-2821~98!04312-4#

PACS number~s!: 98.80.Hw, 04.50.1h, 11.25.Mj, 98.80.Cq
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I. INTRODUCTION

String cosmology has attracted a lot of interest recen
especially in the context of duality symmetry, which is
striking feature of the underlying string theory. The moti
of the simplest bosonic string in background fields is go
erned by the nonlinear sigma-model action@1#. Cosmologi-
cal solutions~to lowest order ina8—the inverse string ten
sion! have been considered in detail in many papers w
special interest in the possibility of inflation, the behavior
inhomogeneities, and the relation between the so called
and post-big-bang phases of evolution.@2#. The bosonic
string spectrum of particles contains the graviton, dilaton a
axion~antisymmetric tensor field!. The dilaton can always be
accommodated within homogeneous geometries, but th
not the case for the axion. It has been shown that the a
symmetric tensor-field potential does not necessarily hav
be time-independent and this can prevent the isotropisa
of homogeneous models at late times@3#. Moreover, the
time-dependent antisymmetric tensor potential cannot be
commodated in all homogeneous anisotropic universes of
anchi or Kantowski-Sachs types@4#. In this paper we con-
centrate on Bianchi type IX~BIX ! axion-dilaton cosmology
with a homogeneous ansatz as given originally in@5#. This is
equivalent to the inclusion of a time-dependent pseudosc
axion field, h5h(t). The dilaton field is always homoge
neous,f5f(t).

It is well known that in the vacuum BIX homogeneou
cosmology one approaches the initial singularity chaotica
@6#. An infinite number of oscillations of the orthogonal sca
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factors occurs in general on any finite interval of proper tim
including the singularity att50. These oscillations are cre
ated by the 3-curvature anisotropy of the spacetime and
intrinsically general relativistic in origin. Physically, th
propagation of homogeneous gravitational waves alters
curvature of spacetime along the direction of propagation
that their non-linear back-reaction on the curvature rever
the direction of propagation.

In the presence of a massless scalar field~or, alternatively,
‘‘stiff matter,’’ with pressure,p, equal to density,r) the
situation changes. Only a finite number of spacetime osc
tions can occur before the evolution is changed into a stat
which all directions shrink monotonically to zero as the cu
vature singularity is reached and the oscillatory behav
ceases@7#. In this paper we want to investigate the oscill
tory approach to singularity in BIX low-energy-effective
action homogeneous string cosmologies with both axion
dilaton fields.

This investigation complements other recent studies of
behavior of string cosmologies at early times. The investi
tion in @8# shows that there is an open neighborhood of init
data space for string cosmologies which display veloc
dominated behavior. That is, on approach to the singula
the spatial gradients become negligible compared to t
derivatives, velocities are non-relativistic, and curvatu
anisotropies are negligible. These solutions resem
inhomogeneously-varying Kasner metrics, but the appro
mation only hold on scales larger than the particle horiz
Barrow and Kunze@9# found a large family of exact inho
mogeneous string cosmologies which are veloci
dominated. They describe the evolution of the dilaton a
axion fields on all scales, showing how these fields oscill
once inhomogeneities in their distribution enter the horiz
These studies show that the general behavior of the l
7204 © 1998 The American Physical Society
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57 7205IS THERE CHAOS IN LOW-ENERGY STRING COSMOLOGY?
energy-string cosmology equations are considerably sim
than those of general relativity. The string gravity sector
haves in a quasi-Newtonian fashion in the vicinity of cosm
logical singularities. In general relativity the velocity
dominated, quasi-Kasner, behavior is disrupted by
chaotic oscillations of the three-curvature anisotropy on
proach to the singularity whenever the matter content i
massless scalar field or perfect fluid satisfyingp,r. It is
therefore important to determine what happens in the p
ence of three-curvature anisotropies in string cosmology.
possible that there exists another stable neighborhood of
lution on approach to the initial singularity which is chao
rather than of quasi-Kasner form. We will investigate th
situation by studying the Bianchi type IX string cosmologi
in order to discover whether chaotic behavior is possible
whether it is destroyed by the presence of the dilaton
axion fields.

The paper is organized as follows. In Sec. II we derive
string low-energy-effective-action equations for BIX geom
etry. We present the equations in both the string and
Einstein frames and we use orthonormal frames in the m
body of the paper. In Sec. III we discuss the possible rou
to chaos near a curvature singularity in both the Einstein
the string frames with reference to the calculations given
Ref. @6#. In Sec. IV we discuss the relation between the
cillating mixmaster behavior of the scale factors and the
ality symmetry of the string equations. In Sec. V we use
Hamiltonian approach to represent the evolution of the B
string cosmology as the motion of a ‘‘universe point’’ insid
a curvature potential. This picture provides a simple pict
of the conditions needed for chaos to occur, and for it to
absent, in the Einstein, string and so-called axion frames
Appendix A we give the relation between Ricci tensors
BIX model in orthonormal and holonomic~coordinate!
frames and show why it is impossible to include a tim
independent pseudoscalar axion fieldh in the non-
axisymmetric and axisymmetric BIX models.

II. LOW-ENERGY-EFFECTIVE-ACTION EQUATIONS
FOR BIANCHI TYPE IX UNIVERSES

The low-energy-effective-action field equations in t
string frame are given by1 @3,5#

Rm
n 1¹m¹nf2

1

4
HmabHnab50, ~2.1!

R2¹mf¹mf12¹m¹mf2
1

12
HmnbHmnb50, ~2.2!

¹m~e2fHmna!5]m~e2fA2gHmna!50, ~2.3!

where f is the dilaton field,Hmnb56] [mBnb] is the field
strength of the antisymmetric tensorBmn52Bnm . In the
Einstein frame we have@3#

1Following standard notation we use Greek indices here to w
down the field equations~2.1!–~2.8!. However, beginning with the
formula ~2.9! we replace these Greek indices by Latin on
i , j ,k,l 50,1,2,3 because we are using an orthonormal basis. G

indicesa,b,m,n50̄,1̄,2̄,3̄ are coordinate basis indices and will b
used in Appendix A.
er
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R̃m
n 2

1

2
g̃m

n R̃5k2~ T̃m
n~f!1T̃m

n~H !!, ~2.4!

¹̃m¹̃mf1
1

6
e22fH̃250, ~2.5!

¹̃m~e22fH̃mna!5 ]̃m~e22fA2g̃H̃mna!50, ~2.6!

and (k258pG, c51)

k2T̃m
n~f!5

1

2S g̃m
l g̃ns2

1

2
g̃m

n g̃lsD ¹̃lf¹̃sf, ~2.7!

k2T̃m
n~H !5

1

12
e22fS 3H̃mabH̃nab2

1

2
g̃m

n H̃2D .

~2.8!

Covariant derivatives are formed with respect to the Bian
type IX metric which, in the string frame, reads as@13#

ds25dt22a2~ t !~s1!22b2~ t !~s2!22c2~ t !~s3!2,
~2.9!

where the orthonormal formss1,s2,s3 are given by
( i , j ,k,l 50,1,2,3 are orthonormal basis indices!

s15coscdu1sincsinudw, ~2.10!

s25sincdu2coscsinudw, ~2.11!

s35dc1cosudw, ~2.12!

and the angular coordinatesc,u,w span the following
ranges:

0<c<4p, 0<u<p, 0<w<2p. ~2.13!

In the Einstein frame the metric is

ds̃ 25d t̃ 22ã 2~ t !~s1!22b̃ 2~ t !~s2!22 c̃2~ t !~s3!2,
~2.14!

and

d t̃5e2f/2dt, ~2.15!

ãi5e2f/2ai , ~2.16!

whereãi5$ã,b̃,c̃,% andai5$a,b,c%.
The nonzero Ricci tensor components in the orthonorm

frames i are ~an overdot means a derivative with respect
the synchronous coordinate timet) @6#

2R0
05

ä

a
1

b̈

b
1

c̈

c
, ~2.17!

2R1
15

ä

a
1

ȧ

a

ḃ

b
1

ȧ

a

ċ

c
2

1

2a2b2c2
@~b22c2!22a4#, ~2.18!

2R2
25

b̈

b
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
2

1

2a2b2c2
@~a22c2!22b4#, ~2.19!
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2R3
35

c̈

c
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
2

1

2a2b2c2
@~a22b2!22c4#, ~2.20!

and the Ricci scalar reads

2R52
ä

a
12

b̈

b
12

c̈

c
12

ȧ

a

ḃ

b
12

ȧ

a

ċ

c
12

ḃ

b

ċ

c
2

1

2a2b2c2

3@a41b41c422a2b222b2c222a2c2#. ~2.21!

Since the model under consideration is homogeneous th
laton field can only depend on time and so we have~cf.
Appendix A!

¹0¹0f5f̈, ~2.22!

¹ i¹
if5

ȧi

ai
ḟ, ~2.23!

¹0f¹0f5ḟ2. ~2.24!

As for the axion field, we can use the following homog
neous ansatz@3,5#

H5
A

abc
e1`e2`e35As1`s2`s3, ~2.25!

whereA is constant and

ei5ais
i . ~2.26!

Since

~Hi
j !2[HiklH

jkl , ~2.27!

and

H2[HiklH
ikl , ~2.28!

we have

~H0
0!250, ~2.29!

~H1
1!25~H2

2!25~H3
3!2

522
A2

a2b2c2
, ~2.30!

H2526
A2

a2b2c2
. ~2.31!

The special case of axial symmetrya5b gives the ortho-
normal forms~2.10!–~2.12! as below@11#

s15du, ~2.32!

s25sinudw, ~2.33!

s35dc1cosudw. ~2.34!
di-

-

One can easily check~cf. Appendix A! that the homoge-
neous ansatz~2.25! is also appropriate for the axisymmetr
case.

III. TIME-DEPENDENT PSEUDOSCALAR AXION FIELD
AND THE OSCILLATORY APPROACH

TO A SINGULARITY

The ansatz~2.25! is, in fact, equivalent to the inclusion o
a time-dependent pseudoscalar axion fieldh5h(t) @3# ~cf.
Appendix A!. We are going to investigate the possible em
gence of chaos in such models. Using Eqs.~2.17!–~2.24! and
Eqs. ~2.29!–~2.31! the field equations~2.1! in the string
frame read (•5d/dt)

ä

a
1

b̈

b
1

c̈

c
2f̈50, ~3.1!

ä

a
1

ȧ

a

ḃ

b
1

ȧ

a

ċ

c
2

ȧ

a
ḟ2

1

2a2b2c2
@~b22c2!22a4#

2
1

2

A2

a2b2c2
50, ~3.2!

b̈

b
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
2

ḃ

b
ḟ2

1

2a2b2c2
@~a22c2!22b4#

2
1

2

A2

a2b2c2
50, ~3.3!

c̈

c
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
2

ċ

c
ḟ2

1

2a2b2c2
@~a22b2!22c4#

2
1

2

A2

a2b2c2
50. ~3.4!

Equation~2.2!, with Eq. ~3.1!, reads@4,5#

22S ȧ

a

ḃ

b
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
D 12ḟS ȧ

a
1

ḃ

b
1

ċ

c
D 2ḟ2

1
1

2a2b2c2
@a41b41c422a2b2

22a2c222b2c2#1
1

2

A2

a2b2c2
50. ~3.5!

Using Eq.~3.5!, together with the sum of Eqs.~3.2!–~3.4!,
we have the dilaton equation of motion

f̈2~ḟ !21S ȧ

a
1

ḃ

b
1

ċ

c
D ḟ2

A2

a2b2c2
50. ~3.6!

In the Einstein frame, the field equations~2.4! become@3#

(85d/d t̃)
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2
ã9

ã
2

b̃9

b̃
2

c̃9

c̃
5

1

2
f821

1

2
A2

e22f

ã 2b̃ 2c̃ 2
, ~3.7!

ã9

ã
1

ã8

ã

b̃8

b̃
1

ã8

ã

c̃8

c̃
5

1

2ã 2b̃ 2c̃ 2
@~ b̃ 22 c̃ 2!22ã4#,

~3.8!

b̃9

b̃
1

ã8

ã

b̃8

b̃
1

b̃8

c̃

c̃8

c̃
5

1

2ã 2b̃ 2c̃ 2
@~ ã 22 c̃ 2!22b̃4#,

~3.9!

c̃9

c̃
1

c̃8

c̃

b̃8

b̃
1

ã8

ã

c̃8

c̃
5

1

2ã 2b̃ 2c̃ 2
@~ ã 22b̃ 2!22 c̃4#,

~3.10!

and Eq.~2.5! now becomes

f91f8S ã8

ã
1

b̃8

b̃
1

c̃8

c̃
D 5A2

e22f

ã 2b̃ 2c̃ 2
. ~3.11!

A new time coordinate is introduced to simplify the fie
equations by defining@3,5#

dh5
ef

abc
dt5

1

ãb̃c̃
d t̃. ~3.12!

First, notice that the string-frame equation~3.6! then simpli-
fies to

f ,hh2A2e22f50, ~3.13!

where (,h5d/dh). The Einstein-frame Eq.~3.11!, with the
time coordinatet̃ , gives the same result, Eq.~3.13!. The
solution of Eq.~3.13! is @5#

ef5coshLMh1A12
A2

L2M2
sinhLMh, ~3.14!

with M ,L constant (L2M2.A2). A useful relation, implied
by Eq. ~3.14! is

f ,hh1f ,h
2 5L2M2. ~3.15!

Let us introduce new forms for the scale factors;

a5ea b5eb c5eg, ~3.16!

and

ã5eã b̃5eb̃ c̃5eg̃, ~3.17!

so, from Eq.~2.16!,

ã5a2f/2 b̃5b2f/2 g̃5g2f/2,
~3.18!
anddt5exp(f/2)d t̃ in Eq. ~3.12!. The field equations~3.1!–
~3.4! in the string frame take the form

~a1b1g! ,hh2M252~a ,hb ,h1a ,hg ,h1b ,hg ,h!

22~a ,h1b ,h1g ,h!f ,h , ~3.19!

2e2fa ,hh5~b22c2!22a41A2, ~3.20!

2e2fb ,hh5~a22c2!22b41A2, ~3.21!

2e2fg ,hh5~a22b2!22c41A2. ~3.22!

Equations~3.20!–~3.22!, using Eq.~3.13!, can be rewritten
to give

~2f12a! ,hh5@~b22c2!22a4#e22f, ~3.23!

~2f12b! ,hh5@~a22c2!22b4#e22f, ~3.24!

~2f12g! ,hh5@~a22b2!22c4#e22f. ~3.25!

Notice that there is no explicit dependence of the axion,A, in
these equations~3.23!–~3.25!.

On the other hand, using Eq.~3.12!, Eqs.~3.7!–~3.10! in
the Einstein frame reduce to

2~ ã ,hb̃ ,h1ã ,hg̃ ,h1b̃ ,hg̃ ,h!5~ ã1b̃1g̃ ! ,hh1
1

2
M2,

~3.26!

2ã ,hh5~ b̃ 22 c̃ 2!22ã4, ~3.27!

2b̃ ,hh5~ ã 22 c̃ 2!22b̃4, ~3.28!

2g̃ ,hh5~ ã 22b̃ 2!22 c̃4. ~3.29!

These equations@except for the constantM which appears in
Eq. ~3.26!# have exactly the same form as the standard B
equations of general relativity@6#. Equations~3.26!–~3.29!
can be explicitly transformed into Eqs.~3.23!–~3.25! by us-
ing Eqs.~3.16!–~3.18!.

In order to discuss possible emergence of chaos we c
sider suitable initial conditions expressed in terms of
Kasner parameters.

A. Einstein frame

The Kasner solutions are obtained as approximate s
tions of the equations~3.7!–~3.11! when the right-hand side
~describing the curvature anisotropies! are neglected. In the
Einstein frame, in terms oft̃ -time, they are

ã5ã0 t̃ p̃1,

b̃5b̃0 t̃ p̃2, ~3.30!

c̃5 c̃0 t̃ p̃3,

while (A2<L̃2M2)
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f5 lnd̃01
M

L̃
lnu t̃ u, ~3.31!

for A50, and

f5 lnd̃01 lnF1

2S 11A12
A2

L̃M2D u t̃ uM /L̃

1
1

2S 12A12
A2

L̃M2D u t̃ u2M /L̃G , ~3.32!

for AÞ0, where

L̃5ã0b̃0c̃0 , d̃05const. ~3.33!

From Eqs.~3.8!–~3.10!, irrespective to the presence of th
axion termA, we have the following algebraic conditions o
the Kasner indices,p̃i :

(
i 51

3

p̃i51, ~3.34!

and, from Eq.~3.7!,

(
i 51

3

p̃ i
2512

M2

2L̃ 2
, ~3.35!

which is exactly the case considered first by Belinskii a
Khalatnikov @7#.2 So, in the Einstein frame their argume
follows.

In terms ofh-time from Eqs.~3.27!–~3.29!

ã5L̃ p̃1h1 r̃ 1 ,

b̃5L̃ p̃2h1 r̃ 2 , ~3.36!

g̃5L̃ p̃3h1 r̃ 3 ,

and the constraint equation~3.26! becomes3

p̃1p̃21 p̃1p̃31 p̃2p̃35
1

4

M2

L̃ 2
. ~3.37!

This constraint is equivalent to the constraints~3.34!–~3.35!.
In order to get Eq.~3.30! from Eq.~3.36! we need to use Eq
~3.12! to relate t̃ -time with h-time, i.e.,

h5L̃21ln t̃ 1const. ~3.38!

2In their notation this occurs if we putM2/2L̃25q2. Also, they
define the Lagrangian of the scalar field without a factor of 1/2@i.e.,
Lf5(¹f)2# while we follow standard notation.

3In @5# there isA2 instead ofM2 while in all our calculations we
obtainedM2 both in the string frame and in the Einstein fram
They claim they use the so-called ‘‘sigma frame,’’ which, howev
seems to be just the Einstein frame@10#.
d

When we approach singularityh→2` ( t̃→0) we can-
not neglect all the terms on the right-hand side of E
~3.27!–~3.29! since one of the Kasner indices in Eq.~3.37!
can be negative. We assumep̃1[2u p̃1u,0, which means
that ã(h)@b̃(h)@ c̃(h), so Eqs.~3.27!–~3.29! are approxi-
mated by

ã ,hh52
1

2
e4ã,

b̃ ,hh5
1

2
e4ã, ~3.39!

g̃ ,hh5
1

2
e4ã.

Far away from singularity the approximate axisymmet
Kasner regime is fulfilled, but it is broken by theã 2 term
when we approach singularity, so our Kasner solutio
~3.36! will be fulfilled for h→` ( t̃→`); suitable solutions
of ~3.39! which satisty~3.36! are4

ã~h!52
1

2
lnF 1

2u p̃1uL̃
cosh~22u p̃1uL̃h!G ,

b̃~h!5
1

2
lnF 1

2u p̃1uL̃
cosh~22u p̃1uL̃h!G

1L̃~2u p̃1u1 p̃2!h, ~3.40!

g̃~h!5
1

2
lnF 1

2u p̃1uL̃
cosh~22u p̃1uL̃h!G

1L̃~2u p̃1u1 p̃3!h.

In the limit h→2` ( t̃→0) from Eq.~3.40! we have

ã~h!5L̃u p̃1uh52L̃ p̃1h,

b̃~h!5L̃~ p̃222u p̃1u!h5L̃~ p̃212p̃1!h, ~3.41!

g̃~h!5L̃~ p̃222u p̃1u!h5L̃~ p̃312p̃1!h,

which means that one Kasner epoch Eq.~3.36! with indices
p̃i is replaced by another Kasner epoch with indices given
Eq. ~3.41!. By virtue of Eq.~3.12!

h5L̃821ln t̃ 1const, ~3.42!

and

ã5ã08 t̃ p̃18,

,

4This necessarily requiresp̃1,0. Of course, one has the sam
solutions forp̃1.0, but in such a case our initial conditions wou
have to be taken ath→` rather than ath→2`. This does not
change the physics of the problem and was assumed in@19,21#, but
we prefer to follow the spirit of@6#.
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b̃5b̃08 t̃ p̃28, ~3.43!

c̃5 c̃08 t̃ p̃38,

where

p̃1852
u p̃1u

122u p̃1u
5

p̃1

112p̃1

,

p̃285
p̃222u p̃1u

122u p̃1u
5

p̃212p̃1

112p̃1

, ~3.44!

p̃385
p̃322u p̃1u

112p̃1

5
p̃312p̃1

112p̃1

,

and

L̃8 t̃ 5ãb̃c̃d̃,
L̃8

L̃
5112p̃1 ,

(
i 51

3

p̃i851, (
i 51

3

p̃i8
2512

1

2

M2

L̃82
. ~3.45!

As we can see from Eq.~3.32!, the axion does not influenc
these asymptotic solutions.

One can easily show that

2A2

3
<

M

L̃A2
<A2

3
~3.46!

and, after ordering the Kasner indices byp̃1< p̃2< p̃3, we
require

21/3< p̃1<1/3,

0< p̃2<2/3, ~3.47!

1/3< p̃3<1.

This means that, unlike the vacuum case, all the Kasner
dices can be positive and, as in the analysis of@7#, the final
situation is that the universe inevitably reaches a monoto
stage of evolution in which all three Kasner indices are po
tive ~see also the discussion of Sec. V!.5 By means of Eqs.
~3.30! and ~3.32!, which lead to the same relations betwe
the Kasner indices~3.34!, ~3.35!, one can extend this conclu
sion into the axion-dilaton cosmology. The presence of
axion field cannot change the fate of the universe near

5Then, the terms of the typee4ã,e4b̃,e4g̃ decrease ifh→2` (t
→0), and they do not allow a transition into another Kasner ep
to take place. This is just monotonic evolution such as in the
tropic Friedman case.
n-

ic
i-

e
a

singularity and the universe finally reaches a monoto
stage of evolution with all three scale factors tending to z
ast→0. Thus, there is no chaos in BIX homogeneous str
cosmology in the Einstein frame. Finally, we note that the
is an isotropic limit here, provided all the Kasner indices a
equal withp̃15 p̃25 p̃351/3.

B. String frame

For the string frame we can follow the discussion given
@19# ~see also@20,21#!.

In terms oft-time, Kasner solutions of the system~3.1!–
~3.4!, for A50, are given by

a5a0tp1,

b5b0tp2,
~3.48!

c5c0tp3,

e2f5d0tp4,

or, alternatively, the last of these conditions~3.48! reads as

f~ t !52 lnd02p4lnt, and p452M . ~3.49!

After putting Eq.~3.48! into Eq. ~3.6! we have

p4512(
i 51

3

pi , ~3.50!

and from Eq.~3.1! we have

(
i 51

3

pi
251, ~3.51!

so Eq.~3.49! can be rewritten to give

f~ t !52 lnd01S (
i 51

3

pi21D lnt. ~3.52!

The last condition means, for instance, that a choicepi5
(21/3,2/3,2/3) gives(pi51 and leads to a vanishing o
constant dilaton (M50), i.e., to general relativity.~Other
permutations of the threepi with the signs changed are a
lowed!. Thus, the difference between general relativity a
string theory depends on the ‘‘fourth Kasner index’’p45
2M .

Now, from Eqs. ~3.23!–~3.25! ~one can see thatLpi

52L̃ p̃i here!

a5f/21L~p1/2!h1r 1/25f/21L̃ p̃1h1 r̃ 1 ,

b5f/21L~p2/2!h1r 2/25f/21L̃ p̃2h1 r̃ 2 ,
~3.53!

g5f/21L~p3/2!h1r 3/25f/21L̃ p̃3h1 r̃ 3 ,

and, from Eq.~3.19!,

h
-
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p1p21p1p31p2p35
M2

L2
. ~3.54!

The condition~3.54!, in fact, can be obtained from Eqs
~3.51!,~3.52!. In order to get Eq.~3.48! we need to use Eq
~3.12!, i.e.,

h5L21lnt1const, L5a0b0c0d0 . ~3.55!

From the conditions~3.50!,~3.51! on thepi , we have nec-
essarily that@7#

212A3<M<211A3. ~3.56!

However, the domain ofM given by Eq.~3.56! covers the
whole duality-related region since in the case of a Kas
regime the duality symmetry~cf. Sec. IV! simply means that
we change

p1→2p1 , p2→2p2 , p3→2p3 ,

M→M2p12p22p352~M12!. ~3.57!

Having given Eq.~3.57!, we can delineate the two duality
related domains of Kasner indices as follows:

212A3<M<21, 2
1

A3
<p1<A2

3
,

2
2

3
<p2<

1

2
A2

3
, 21<p3<2

1

2
A2

3
; ~3.58!

and

21<M<211A3, 2A2

3
<p1<

1

A3
,

2
1

2
A2

3
<p2<

2

3
,

1

2
A2

3
<p3<1. ~3.59!

Of course, for212A3<M<21, the indices are ordered s
thatp3<p2<p1; while, for 21<M<211A3, they are or-
dered asp1<p2<p3.

From Eqs.~3.57!–~3.59!, we can draw some interestin
conclusions. First, that the vacuum general relativity c
M50 ~with 21/3<p1<0, 0<p2<2/3, 2/3<p3<1) is dual
to the caseM522 ~with 21<p1<22/3, 22/3<p2<0,
0<p3<1/3), while the caseM521 is ‘‘self-dual’’ in M
giving M521 again, although thepi8s change. Second, th
M521 plane is the dividing plane for the duality-relate
range of the parameters which are defined by

2A2

3
<p1<2

1

2
A2

3
,

2
1

2
A2

3
<p2<

1

2
A2

3
,

1

2
A2

3
<p3<A2

3
.

r

e

The isotropic Friedmann solution is given when w
choose M5211A3, p15p25p351/A3, while its dual
with M5212A3, p15p25p3521/A3 does not appear in
the vacuum general relativity case. This shows that one
generally have two different types of change in the Kas
indices, and inM ~effectively, a fourth Kasner index!. There
are oscillations as in general relativistic vacuum or stiff flu
cases@6,7#, but there are also duality-related exchanges
indices. We will discuss some points related to duality th
refer to the work of Ref.@16#.

There are eight possible permutations of the Kasner in
ces in which some are equal to21/A3 or 1/A3, with suitable
M . These are the first two quadruples (p1 ,p2 ,p3 ,M )
5(1/A3,1/A3,1/A3,211A3),(21/A3,21/A3,21/A3,21
2A3), plus another three pairs with@21/A3,1/A3,1/A3,
211(A3/3)#,@1/A3,21/A3,21/A3,212(A3/3)# and the
permutations which are dual to each other. One can ea
show that these last three pairs of cases are duality rel
and describe exactly the transitions from one Kasner ep
to another given by Eq.~3.80!. Another interesting set o
‘‘self-dual’’ ( M521) combinations which describe LR
~locally rotationally symmetric! Kasner solutions are given
by (A2/3,21/A6,21/A6,21),(2A2/3,1/A6,1/A6,21) and
their permutations. Other interesting duality-related com
nations are (21/3,2/3,2/3,0), (1/3,22/3,22/3,22) and
(0,1/A2,21/A2,21),(0,21/A2,1/A2,21). The last two
give the so-called Taub points~flat Minkowski spacetime!
@16#.

The question arises whether the changes of the Ka
indices~chaotic and duality-related! have something in com
mon. In order to answer this question one should try to fi
a suitable parametrization of the Kasner indices analogou
the one given in Ref.@7# for the stiff-fluid case. We have
checked that such a parametrization does not cover the
range of the indices given by Eq.~3.58! unless we multiply
p1 by A3. After some searching, we have found the follo
ing parametrization of the indices which has advanta
which we will explain in due course.

The u-parametrization we use is defined as follows:6

p̄15
2u

11u2
, ~3.60!

p̄25
1

2

1

11u2
@~11M !~11u2!22u1P1~M ,u!#,

p̄35
1

2

1

11u2
@~11M !~11u2!22u2P1~M ,u!#

whereu is constant and

6In the general relativity case (M50) this parametrization can b
written down in terms of the one suggested in@16# with p1

5(1/3)(122cosc), p2,35(1/3)(11cosc6sinc) with a suitable
choice of cosc5(1/2)(u226u11)(u211) in our case.
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P1~M ,u!5A~122M2M2!~11u2!214u~M11!~11u2!212u2, ~3.61!

and to achievep1,0 we needu,0. Alternatively, we have

p152
2u

11u2
, ~3.62!

p25
1

2

1

11u2
@~11M !~11u2!12u1P2~M ,u!#

p35
1

2

1

11u2
@~11M !~11u2!12u2P2~M ,u!#

where

P2~M ,u!5A~122M2M2!~11u2!224u~M11!~11u2!212u2, ~3.63!
s-
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and for p1,0 we needu.0. These are very general tran
formations that include all duality-related cases~3.58!,~3.59!
and the vacuum general relativity case whenM50. Simi-
larly, as for stiff-fluid models in Ref.@7#, we draw a plot the
allowed values of the parameteru againstM and show the
duality-related regions in Figs. 1 and 2.

There are many possible transformations of the gen
homographic typeu→(au1b)/(cu1d) or some more gen
eral types related to Pade´ or other rational approximants@18#
which may be useful in the discussion of mixmaster osci
tions. Although we are mainly interested inT-duality sym-
metry of the low-energy-effective-action equations~2.1!–
~2.3! in this paper~see the more extensive discussion of t
in Sec. IV!, it is quite interesting to comment on the fa
these homographic transformation withad2bc51 fulfill
the requirements forS-duality. This suggestsT-duality may
be embedded at a certain level inS-duality here, and vice
versa. However, we do not consider these general trans
mations in this paper; we discuss only the simplest cases
mainly address theT-duality.

First, notice that a transformation of the type

u→
1

u
, ~3.64!

gives

p̄i~M ,1/u!5 p̄i~M ,u!,
~3.65!

pi~M ,1/u!5pi~M ,u!,

wherei 51,2,3, unless we take negative value of the root
P6 after applying the transformation. On the other hand
transformation

u→2
1

u
, ~3.66!

changes parametrization~3.60! into ~3.62!, i.e.,

pī~M ,21/u!5pi~M ,u!52 p̄i~M ,u!, ~3.67!
al

-

r-
nd

f
e

pi~M ,21/u!5 p̄i~M ,u!52pi~M ,u!. ~3.68!

Second, one can consider the transformation

u→2u, ~3.69!

which results in the same rules as Eq.~3.65!. However, this
transformation is not enough to describe duality relatio
between the considered solutions. As one can see,
duality-reflecting transformations should be of the type~see
also Fig. 1!

u→2u, M→2~M12!, ~3.70!

or, alternatively

u→2
1

u
, M→2~M12!. ~3.71!

From Eqs.~3.70! and ~3.71! we see that

P6~2M22,2u!5P6~2M22,21/u!5P6~M ,u!,

~3.72!

and

p̄1~2u!52 p̄1~u!,

p̄2~2M22,2u!52 p̄3~M ,u!, ~3.73!

p̄3~2M22,2u!52 p̄2~M ,u!;

similarly,

p1~2u!52p1~u!,

p2~2M22,2u!52p3~M ,u!, ~3.74!

p3~2M22,2u!52p2~M ,u!.
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We notice that the duality in Eqs.~3.73!,~3.74! would entail
the exchange of the Kasner indicesp2 andp3.

If we assume thata@b@c in Eqs.~3.23!, ~3.24! then we
obtain the following set of approximating equations~for A
50):

a ,hh52
1

2
e4ae22LMh,

b ,hh5
1

2
e4ae22LMh,

~3.75!

g ,hh5
1

2
e4ae22LMh,

f ,hh50,

together with the constraint~3.19!. The Kasner solutions in
terms ofh-time are given by

a~h!5Lp1h1const,

b~h!5Lp2h1const,
~3.76!

g~h!5Lp3h1const,

f~h!5LMh1const.

However, these solutions are not directly obtained by
ing the relations~3.18! between the Einstein frame an
string-frame scale factors. This is very important in the c
when the axion field is taken into account and will be d
cussed below.

The solutions of equations~3.75! which satisfy the above
conditions,~3.76!, in the limit h→` (t→`, i.e. far from the

FIG. 1. The regions I, II, III of permissible values of the param
etersu andM for the parametrization~3.60! of the Kasner indices
p1 ,p2 and p3. We restricted ourselves to210<u<10 although
regions I and III extend to infinity. Special isotropic FRW (1) and
FRW (2) points are given for (A32A2,211A3) and (2A3
1A2,212A3) respectively.
-

e
-

singularity!, providedp152up1u,0 and 2p12M522up1u
2M,0, can be chosen to be7

a~h!52
1

2
lnS 1

L~2p12M !
coshL~2p12M !h D1

1

2
LMh,

b~h!5
1

2
lnS 1

L~2p12M !
coshL~2p12M !h D

1~p11p22M !Lh1
1

2
LMh, ~3.77!

g~h!5
1

2
lnS 1

L~2p12M !
coshL~2p12M !h D

1~p11p32M !Lh1
1

2
LMh.

In the limit h→2` (t→0, i.e. on the approach to th
singularity! they approach the following asymptotic forms8

a~h!;2L~p12M !h,

b~h!;L~p212p12M !h,
~3.78!

g~h!;L~p312p12M !h,

f~h!;LMh.

7Note, we can derive them in a similar way to theAÞ0 case~see
the rest of this section!, but here it is more convenient to follow th
results given in@21#.

8If we assumep1,0 and 2p12M,0, thenp12M,0, provided
M.0, which means we have changed expansion ofa(h) into con-
traction.

FIG. 2. The regions I, II, III of permissible values of the param
etersu andM for the parametrization~3.62! of the Kasner indices
p1 ,p2 and p3. We restricted ourselves to210<u<10 although
regions I and III extend to infinity. Special isotropic FRW (1) and
FRW (2) points are given for (2A31A2,211A3) and (A3
2A2,212A3) respectively.
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One can check the solutions~3.77! by putting them into the
constraint~3.19! in order to recover the condition~3.54!, as
expected.

Now, we can express the scale factors in terms of the n
Kasner parameters

a5a08t
p18,

b5b08t
p28,

~3.79!

c5c08t
p38,

e2f5d08t
p48,

where

p1852
p12M

112p12M
,

p285
p212p12M

112p12M
,

~3.80!

p385
p312p12M

112p12M
,

p485
2M

112p12M
52M 8,

and

L85a08b08c08d08 ,

h5~L8!21lnt1const, ~3.81!

L85~112p12M !L.

If we take the axion field into account (AÞ0) and assume
that a@b@c in Eqs.~3.23!–~3.25!, then we obtain9

a ,hh5
1

2
~A22e4a!e22f,

b ,hh5
1

2
~A21e4a!e22f,

~3.82!

g ,hh5
1

2
~A21e4a!e22f,

f ,hh5A2e22f,

9If M.0, then the terme22f increases forh→2`. If, in turn,
p1,0, M.0, and 2p12M.0, then the terme2(2p12M )h decreases
for h→2` and the whole picture is dominated by the axion te
1/2A2e22f. It follows that the field equations become isotrop
a ,hh5b ,hh5g

8hh51/2f ,hh51/2A2e22f. We see that the axion
isotropises the model and chaos is impossible in such a cas
seems that the time-dependent axion field ansatz~cf. Appendix A!
would allow chaos, but it is not admitted by the BIX geometry.
w

with f(h) given by Eq. ~3.14!. The Kasner solutions in
terms ofh-time are now given by@compare Eq.~3.18!#

a~h!5
L

2
~p11M !h1const[Lq1h1const,

b~h!5
L

2
~p21M !h1const[Lq1h1const,

g~h!5
L

2
~p31M !h1const[Lq1h1const,

f~h!5LMh1const. ~3.83!

The solutions which fulfill the above initial condition
~3.83! for h→` (p1,0) are

a~h!52
1

2
lnS 1

p1
coshp1h D1

1

2
f~h!, ~3.84!

b~h!5
1

2
lnS 1

p1
coshp1h D1

1

2
~p11p2!h1

1

2
f~h!,

~3.85!

g~h!5
1

2
lnS 1

p1
coshp1h D1

1

2
~p11p3!h1

1

2
f~h!,

~3.86!

f~h!5 lnF coshMh1A12
A2

M2
sinhMhG , ~3.87!

or, alternatively

a~h!52
1

2
lnS 1

2q12M
cosh~2q12M !h D1

1

2
f~h!,

~3.88!

b~h!5
1

2
lnS 1

2q12M
cosh~2q12M !h D

1~q11q22M !h1
1

2
f~h!, ~3.89!

g~h!5
1

2
lnS 1

2q12M
cosh~2q12M !h D

1~q11q32M !h1
1

2
f~h!, ~3.90!

with f(h) unchanged.
One can easily check by putting these solutions into

constraint~3.19!, that the condition~3.54! is satisfied, which
in turn ensures that the conditions~3.50!,~3.51! are satisfied.
In particular, note that, for Eqs.~3.88!–~3.90!, we need to
replacepi8s by qi8s. In the limit h→2`, ~that is, t→0),
they approach the following forms:

a~h!;2
L

2
~p12M !h,

It
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b~h!;
L

2
~p212p12M !h,

g~h!;
L

2
~p312p12M !h,

f~h!;2
L

2
Mh, ~3.91!

or

a~h!;2L~q12M !h,

b~h!;L~q212q12M !h,

g~h!;L~q312p12M !h,

f~h!;2LMh. ~3.92!

Having given the conditions~3.50!,~3.51!, one can express
the indicesp2 andp3 by usingp1 andM , i.e.,

p25
1

2
@~M112p1!

2A23p1
212p1~M11!112M ~M12!#,

p35
1

2
@~M112p1!

1A23p1
212p1~M11!112M ~M12!#.

~3.93!

Since the expression under the square root should be
negative, one can extract the restriction~3.56! on the permis-
sible values ofM . However, we are interested in knowin
whether the curvature terms on the right-hand side of
field equations~3.23!–~3.25! really increase ash→2` (t
→0). This would require eithera4e22f, b4e22f, or c4e22f

to increase if the transition to another Kasner epoch is
occur @19,21#. Since

a4e22f}t ~2p12M !5t ~11p12p22p3!,

b4e22f}t ~2p22M !5t ~11p22p32p1!, ~3.94!

c4e22f}t ~2p32M !5t ~11p32p12p2!,

we need one of the following three conditions to be satisfi
~remember that we have assumedp1,0, M.0):

2p12M511p12p22p3,0,

2p22M511p22p32p1,0, ~3.95!

2p32M511p32p12p2,0.

The three conditions~3.95!, with the help of Eq.~3.93!, are
equivalent to
n-

e

o

d

p1,
M

2
, ~3.96!

23p1
212p1~M11!112M ~M12!.0.

~3.97!

A plot of these conditions is given in Fig. 3. The last of the
conditions,~3.97!, provides bounds on the possible values
M if a transition to occur:

22<M<
2

3
. ~3.98!

Now, we see that the regions where the Friedmann isotro
limit is possible~all the Kasner indices equal—this happe
for M5212A3 andM5211A3) are excluded. One ca
always find the range of the indices for a transition from o
Kasner epoch to another to occur in the string frame.

Instead of expressing the conditions for Kasner-type tr
sitions in terms ofp1 and M , we can follow the pattern of
@19# and write them in terms ofp1 andp2. From the condi-
tions ~3.50!,~3.51!, we can write

p35M112p12p2 , ~3.99!

M5p11p2216A12p1
22p2

2, ~3.100!

where the plus sign is forM.21, p3.0 and minus sign for
M,21, p3,0. So,p1 andp2 must be such that (M real!

12p1
22p2

2>0, ~3.101!

and one of the three conditions~3.95! must be satisfied, i.e.
either

p1
21p2

22p1p21p12p2,0,

FIG. 3. The plot of the conditions~3.96!,~3.97! for the transi-
tions from one Kasner epoch to another to begin in terms of the
and the ‘‘fourth’’ Kasner indicesp1 and M . Obviously, isotropic
FRW (1) and FRW (2) points (211A3,1/A3) and (212A3,
21/A3) respectively, are excluded. The transitions occur below
line p5M /2. From the picture one can see that in the vacu
general relativity case (M50) the transitions are possible whenev
21/3<p1<0. This is in agreement with the standard calculatio
However, in the dual case (M522) transitions do not occur at all
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p1
21p2

22p1p22p11p2,0, ~3.102!

p1
21p2

21p1p22p12p2.0,

for p3.0, or

p1
21p2

22p1p21p12p2,0,

p1
21p2

22p1p22p11p2,0, ~3.103!

p1
21p2

21p1p21p11p2.0,

for p3,0.
The plot of these conditions is given in Fig. 4.
In summary, we have been able to determine the rang

values that can be taken by the Kasner indices in the st
frame and have proposed a parametrization which descr
the evolution of these indices. Also, we have determined
values of the Kasner indices~see Figs. 3 and 4! for which the
spacetime oscillations can really take place. However, n
we have to determine whether the oscillations can be stop
once they have started ast→0. Before we come to this in
Sec. V we first discuss some relations between the Ka
indices and duality.

IV. EXCHANGE OF KASNER INDICES AND DUALITY

The low-energy-effective-action equations~2.1!–~2.3! ex-
hibit continuous globalO(d,d) symmetry (d is the number
of spatial dimensions! which is an example ofT-duality
within the string theory@23#. It differs from S-duality or the
SL(2,R) invariance of superstring models, mentioned in S
III ~see e.g.@26#!. For the class of homogeneous mode
under consideration T-duality is a globalO(3,3) invariance
under which~wheref̄ is the so-called shifted dilaton field!

M→M 85VTMV, f̄[f2 lnAdet G→f̄. ~4.1!

Here,V is 636 constant matrix satisfying

FIG. 4. The plot of the conditions~3.101!–~3.103! for the tran-
sitions from one Kasner epoch to another to begin, in terms of
two Kasner indicesp1 and p2. As in Fig. 3 the isotropic FRW
(1) and FRW (2) points, (1/A3,1/A3) and (21/A3,21/A3) re-
spectively, together with the two neighboring regions, are exclud
of
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e
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VTPV5P, P5S 0 1
1 0D , ~4.2!

1 is the 333 identity matrix, and

M[S G21 2G21B
BG21 G2BG21BD , ~4.3!

where G5gi j (t) and B5Bi j (t) are 333 matrices. Any
636 constant matrixV obeying Eq.~4.2! generates new
solutionsM 8 from the original setM . Notice that for full
O(3,3) symmetry bothG andB have to be functions of time
This is especially important for the antisymmetric tensor p
tential Bi j which is time-dependent and so leads to a spa
dependent pseudoscalar axion field,h @see Eq.~A40! of the
Appendix#. This is called the ‘‘elementary ansatz’’ and
only admissible in a restricted class of metrics of spatia
homogeneous metrics@3,4#. As we prove in the Appendix
the elementary ansatz is not compatible with~even axisym-
metric! Bianchi type IX geometry. Thus, because of our h
mogeneous ansatz~2.25! @or Eq. ~A43! in terms of pseudo-
scalar axion field#, the full O(d,d) symmetry is broken and i
can only be recovered if the antisymmetric tensor fieldBi j
~or axionh) vanishes. If this happens, we can make a cho
V5P and consider the ‘‘scale factor duality’’ where

a82→
1

a2
,

b82→
1

b2
,

~4.4!

c82→
1

c2
,

f8→f22lnabc.

It is useful to define the logarithm of an average sc
factor b̄ and the so-called shifted dilatonf̄ defined
by @14,15#

b ī5
1

A3
lnai ,

b̄5
1

A3
ln~abc!, ~4.5!

f̄5f2A3b̄.

Using Eqs.~3.40!–~3.45! we have the relations~4.5! in terms
of Kasner indices: i.e.,

f̄5f2 lnL2~M11!lnt,

b̄ i5
1

A3
~ lna0i1pi lnt !, ~4.6!

b̄5
1

A3
@ lnL1~M11!lnt#,

e

d.
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wherea0i5$a0 ,b0 ,c0%. In these variables the duality sym
metry is just expressed by

b ī~ t !52b ī~ t !,

b̄~ t !52b̄~ t !, ~4.7!

f̄~ t !5f̄~ t !;

or, in terms of Kasner indices, it readspi→2pi , M11
→2(M11). After inclusion of time symmetry we hav
@15#

b ī~ t !52b ī~2t !,

b̄~ t !52b̄~2t !, ~4.8!

f̄~ t !5f̄~2t !.

In the isotropic casepi561/A3 and we recover exactly th
case given in Ref.@15#.

The same relations can be written down using the ti
coordinate h instead of t. Using the exact expression
~3.76!, for Kasner solutions we have

b̄5
L

A3
~M11!h,

f̄5f2A3b̄2Lh, ~4.9!

b̄ i5
L

A3
pih.

So, one could relate these by duality symmetries

f̄~h!→f̄~2h!, ~4.10!

b̄~h!→2b̄~2h!, ~4.11!

for h→6` respectively, using chaotic changespi→2pi .
In our analysis we have used the standard procedur

assuming that the mixmaster model is well described b
sequence of Kasner-to-Kasner transitions. This assumptio
an analogue of that of steep walls in the Hamiltonian
proach. Numerical studies of mixmaster models show it to
a good approximation even in the presence of chaotic be
ior. We do not find chaotic behavior and so the approxim
tion should be better over long periods of evolution. We n
also that the approximations made (a@b@c) to study single
Kasner-to-Kasner transitions reduce the equations to thes
the axisymmetric case. This describes a single Kasne
Kasner transition. We therefore expect the duality relati
ships characterizing Kasner-to-Kasner transitions to prov
good approximations to the properties of the exact mixm
ter behavior and we do not see any reason to consider
Abelian dualities of this exact model@24#. We do not know
whether the string Bianchi type IX model is integrable
general.
e
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-
e
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-
e
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-
e
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n-

V. HAMILTONIAN APPROACH TO BIANCHI IX STRING
MODELS

In this section we formulate a generalized Kasner mo
in Hamiltonian formalism as in Refs.@17,19,22# in order to
discuss the conditions for an infinite sequence of scatter
to occur against the walls of the curvature potential. As
the previous sections we discuss the problem in both
Einstein and the string frames. We also introduce the
called B-frame, or axion frame@26#, in which axion is mini-
mally coupled.

A. Einstein frame

We introduce the following standard parametrization
the Einstein-frame scale factors:

ã5eã1c11A3c2,

b̃5eã1c12A3c2, ~5.1!

c̃5eã22c2,

and we define the potential, which describes the spatial
vature anisotropy~2.21! felt by scale factors in the Einstein
frame by

Ṽ~c6!5e22ãV~c6!, ~5.2!

where

V~c6!5
1

2
@e28c112e4c1~cosh4A3c221!

24e22c1cosh2A3c2#. ~5.3!

Using Eqs.~5.1!,~5.2!, Eqs.~3.7!–~3.10! read as

ã825c18
21c28

21
1

12
f821

1

12
A2e22f26ã1

1

6
e22ãV~c6!.

~5.4!

This is the Hamiltonian constraint. The Einstein-frame act
in terms of the scale factors~5.1!, after integrating out spatia
variables, is given by~compare@25#!

S5E d t̃e3ãF26ã8216c18
216c28

21
1

2
f82

1
1

2
A2e2fs821e22ãV~c6!G , ~5.5!

and the conjugate momenta are

pã5212ã8e3ã,

p1512c18 e3ã,

p2512c28 e3ã, ~5.6!

pf5f8e3ã,

ps5s8e2f13ã5const5A,
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so the Hamiltonian is

H52
pa

2

24
1

p1
2

24
1

p2
2

24
1

pf
2

2
1

ps
2

2
1e4ãV~c6!. ~5.7!

Now, we follow the standard discussion of the potent
walls

V̄5e4ãV~c6! ~5.8!

being hit by a particle moving in the potential well~see Ref.
@22#!. In the regionc1!21 andc2'0, the approximate
distance from the origin of coordinatesc1 and c2 to the
wall is given by

D52
1

2
ã, ~5.9!

while the maximum apparent velocity of this wall is

vmax5ã8. ~5.10!

The velocity of a particle moving against the walls is

vp5Ac18
21c28

2, ~5.11!

and it will not be scattered infinitely many times if there
some region of the potential which the particle enters a
from which it cannot catch up with the wall, i.e., if

vp5Ac18
21c28

2,ã8

'Ac18
21c28

21~1/12!f821~1/12!A2e22f26ã.

~5.12!

Clearly, this condition is fulfilled in every case unlessf8
5A50 ~no dilaton and axion–that is, the general relativ
vacuum regime!, which reflects the fact that a particle cann
be scattered infinitely many times and thatthere is no chaos
in the Einstein frame. This result is expected since in th
Einstein frame both dilaton and axion fields behave as s
fluids with the equation of statep5%. A numerical discus-
sion of 10-dimensional axion-dilaton low-energy effectiv
action models in the Einstein frame where nine dimensi
were split into three isotropic 3-dimensional spaces lead
effectively to our anisotropic 4-dimensional model, was a
given in Ref.@27# with the same final conclusion about th
non-existence of chaos.

B. String frame and axion frame

In the string frame we can use the same parametriza
as in Eq.~5.1!, but we just drop the tildes. The potential~5.2!
can also be used without tildes. In that parametrization
~3.5! becomes

ȧ25ċ1
2 1ċ2

2 2
1

6
ḟ21

1

6
e22aV~c6!1

1

12
A2e26a1ȧḟ.

~5.13!

After applying the variablesb̄ andf̄ defined by Eq.~4.5! we
can remove theḟȧ term, obtaining
l

d

t

ff

s
g
o

n

q.

ḟ̄25 ḃ̄216ċ1
2 16ċ2

2 1e22~ b̄/A3!V~c6!1
1

2
A2e22A3b̄.

~5.14!

Following the analysis given in@15#, we apply a new time
coordinatet defined as

dt5dte2f̄, ~5.15!

and define a new variable,y, which is the logarithm of an
averaged scale factor in the conformally related axion fra
~or B-frame! in which the axion is minimally coupled@26#.
This is given by

y[A3f̄1b̄, ~5.16!

and brings Eq.~5.14! to the form@( . . . )t5d( . . . )/dt#

yt
25ft

2112c1t
2 112c2t

2 1A2e22f12e2~2/A3!yV~c6!.

~5.17!

Equation ~5.17! is, in fact, the Hamiltonian constraint ob
tained from the action (ls

258pG)

S5
ls

4 E dt@ft
22yt

2112~c1t
2 1c2t

2 !

2A2e22f22e22~A3y!V~c6!#. ~5.18!

The canonical momenta are then

pf5
ls

2
ft ,

py52
ls

2
yt ,

p156lsc1t ,

p256lsc2t , ~5.19!

and the Hamiltonian is just

H5
1

ls
Fpf

2 2py
21

1

12
~p1

2 1p2
2 !

1
ls

2

4
A2e22f1

ls
2

2
e2~2/A3!yV~c6!G . ~5.20!

Following the analysis of the previous section, V A, we s
that the maximum apparent velocity of the wall atc1!
21, c2'0 is given by

vmax5
1

2A3
yt , ~5.21!

and the condition for chaotic scatterings to cease is just

vp5Ac1t
2 1c2t

2 ,
1

2A3
yt
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'Ac1t
2 1c2t

2 1
1

12
ft

21
1

12
A2e22f , ~5.22!

This is clearly fulfilled except in the general relativity ca
wheref5A50 ~i.e., no axion and dilaton fields!. This gives
our final conclusion thatthere is no chaos in BIX string
cosmology in the string or axion frames.

It is not surprising that the physical behavior should
similar in every frame@8#, so that if there is no chaos in th
Einstein frame there should not be chaos in any other fra
String theory appears to impose too much symmetry thro
its duality invariances for chaos to appear.10

VI. DISCUSSION

In this paper we have carried out a detailed analysis of
spatially homogeneous universes of Bianchi type IX in
context of low-energy string theory. These universes are
special interest in relativistic cosmology because they
play chaotic behavior in vacuum and in the presence of flu
with p,r. They were originally termed ‘‘mixmaster’’ uni-
verses by Misner because they offered the possibility
light to travel all the way around the universe in differe
directions. Moreover, they are the most general closed
verses which are spatially homogeneous and may be clo
related to parts of the general solution of Einstein’s equati
in the neighborhood of a strong curvature singularity of
sort that characterizes the initial state of general relativi
cosmological models. This behavior has also been ex
sively investigated because it is of intrinsic mathemati
interest. It is also known that its occurrence in general re
tivity depends upon the dimensionality of space. We inv
tigated the string cosmological equations for the type
metric. We found that chaotic behavior does not occur
string cosmology in either the Einstein or the string or ax
frames. While it is possible for finite sequences of oscil
tions to occur in the scale factors’ evolution on approach
t50, these oscillations cannot continue indefinitely. Th
inevitably terminate in a state in which all the three orthog
nal scale factors decrease with decreasing time monot
cally on approach to the initial singularity. We investigat
the detailed sequences of evolutionary changes that can
place in the evolution during the finite sequences of osci
tions between epochs which are well approximated by K
ner universes. We found that the duality symmetry requi
of the string evolution introduced new invariances for t
possible changes in the Kasner parameters in additio
those which characterize the Kasner-to-Kasner cycles of
cillations. The requirements of duality invariance on the e
lution of the metric appear to be so constraining that cha
behavior is excluded. We have obtained these results in
complementary ways: by direct matching of asymptotic
pansions to the solutions of the sytem of non-linear ordin
differential equations of string cosmology and by use of
Hamiltonian formulation of cosmology. In the Hamiltonia
picture the evolution of the type IX string cosmology is re
resented as the motion of a ‘‘universe point’’ inside a pote

10Chaos has been studied in other related situations in Ref.@28#.
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tial that is open only along three narrow channels. The w
of this ‘‘almost closed’’ potential of He´non-Heiles type ex-
pand outwards as the singularity is reached. Whereas in
vacuum models of general relativity, the universe point
ways catches the walls and bounces chaotically aro
within the potential, in string theory the universe point ne
never catch the walls. If it is moving towards a wall at a ve
oblique angle then the normal component of its velocity
wards the wall can become too small for it ever to catch
wall. In general, we find that this situation always arises a
a finite number of collisions have occurred in the Mixmas
string cosmology. The resulting asymptotic state is theref
similar to that in a model with no potential walls at all; th
is, to the Bianchi type I or Kasner universe.
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APPENDIX A: RICCI TENSOR IN A COORDINATE
FRAME

In this appendix we discuss a possibility of admittinig
time-dependent antisymmetric tensor potentialBmn5Bmn(t)
as given in Ref.@3# to the axisymmetric Bianchi type IX
model. It has been proven@4# that such a potential cannot b
admitted to a general~i.e. non-axisymmetric case!. However,
to achieve this, we first give the components of Ricci ten
for the axisymmetric Bianchi type IX model in terms of co
ordinates rather than in orthonormal frames of Sec. II. F
the sake of generality, we start with a general metric.

The metric~2.9! in a coordinate frame has the followin
components:

g0̄0̄51, ~A1!

g1̄1̄52c2~ t !, ~A2!

g2̄2̄52@a2~ t !cos2c1b2~ t !sin2c#, ~A3!

g3̄3̄52sin2u@a2~ t !sin2c1b2~ t !cos2c#

2c2~ t !cos2u, ~A4!

g1̄3̄52c2~ t !cosu, ~A5!

g2̄3̄52sinccoscsinu@a2~ t !2b2~ t !#. ~A6!

The Ricci tensor components in the coordinate frame can
calculated using the relations@6# @cf. Eqs.~2.9!–~2.12!#

Rab5ea
j eb

k Rjk , ~A7!

Ra
b5ea

j ek
bRj

k , ~A8!

whereRab is the Ricci tensor in the coordinate frame whi
Rjk is the Ricci tensor in the orthonormal frame~correspond-
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ingly a,b50̄,1̄,2̄,3̄ are the coordinate frame indices an
i , j 50,1,2,3 are the orthonormal frame indices!. Thus, 1,2,3
refer tos1,s2,s3, while 1̄,2̄,3̄ refer toc,u,w respectively.
According to Eqs.~2.10!–~2.12!,

e2̄
1
5acosc,

e3̄
1
5asincsinu,

e2̄
2
5bsinc, ~A9!

e3̄
2
52bcoscsinu,

e1̄
3
5c,

e3̄
3
5ccosu,

and

e1
1̄52

1

a
sinccotu, ~A10!

e2
1̄5

1

b
cosccotu,

e3
1̄5

1

c
,

e1
2̄5

1

a
cosc, ~A11!

e2
2̄5

1

b
sinc,

e1
3̄5

1

a

sinc

sinu
,

e2
3̄52

1

b

cosc

sinu
.

Then, the Ricci tensor components in the coordin
frame are given by

R1̄1̄5c2R33, ~A12!

R2̄2̄5a2cos2cR111b2sin2cR22, ~A13!

R3̄3̄5a2sin2csin2uR111b2cos2csin2uR221c2cos2uR33,

~A14!

R1̄3̄5c2cosuR33, ~A15!

R2̄3̄5sinccoscsinu~a2R112b2R22!, ~A16!

R1̄2̄50, ~A17!

and
e

R1̄
1̄
5R3

3 , ~A18!

R2̄
2̄
5cos2cR1

11sin2cR2
2 , ~A19!

R3̄
3̄
5sin2cR1

11cos2cR2
2 , ~A20!

R3̄
1̄
5@2sin2cR1

12cos2cR2
21R3

3#cosu,
~A21!

R3̄
2̄
5sinccoscsinu~R1

12R2
2!, ~A22!

R2̄
3̄
5

sinccosc

sinu
~R1

12R2
2!, ~A23!

R2̄
1̄
52sinccosccotu~R1

12R2
2!, ~A24!

R1̄
3̄
50, ~A25!

R1̄
2̄
50. ~A26!

If two axes are the same@a(t)5b(t)# the metric~2.9! @or
its components given by Eqs.~A1!–~A6!# simplifies to
@11,12#

ds25dt22c2~dc1cosudw!22a2~du21sin2udw2!.
~A27!

The nonvanishing Christoffel symbols for the metric~A27!
are

G 0̄1̄
1̄

5
ċ

c
, G 0̄2̄

2̄
5

ȧ

a
, G 0̄3̄

3̄
5

ȧ

a
,

G 0̄3̄
1̄

5S ċ

c
2

ȧ

aD cosu, G 1̄1̄
0̄

5 ċc, G 2̄2̄
0̄

5ȧa,

G 3̄3̄
0̄

5 ċccos2u1ȧasin2u, G 1̄3̄
0̄

5 ċccosu,

G 2̄1̄
1̄

5
1

2

c2

a2
cotu, G 2̄3̄

1̄
5

1

2sinuS c22a2

a2
cos2u21D ,

~A28!

G 3̄1̄
2̄

5
1

2

c2

a2
sinu, G 3̄3̄

2̄
5sinucosu

c22a2

a2
,

G 1̄2̄
3̄

52
1

2

c2

a2

1

sinu
, G 2̄3̄

3̄
5cotuS 12

1

2

c2

a2D .

The gradients of the dilaton calculated with respect to
metric ~A27! are given by

¹ 0̄¹ 0̄f5f̈, ~A29!

¹ 1̄¹ 1̄f5
ċ

c
ḟ, ~A30!
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¹ 2̄¹ 2̄f5¹ 3̄¹ 3̄5
ȧ

a
ḟ, ~A31!

¹ 3̄¹ 1̄f5ḟS ċ

c
2

ȧ

aD cosu,

~A32!

and

¹ 0̄f¹ 0̄f5ḟ2. ~A33!

The nonzero components of the Ricci tensor in a coo
nate frame for the metric~A27! can be obtained from Eqs
~A12!–~A26! by putting R1

15R2
2 and using Eqs.~2.17!–

~2.20! for a5b or directly using the Christoffel symbols
This gives

R1̄1̄5 c̈c12ċc
ȧ

a
1

1

2

c4

a4
, R1̄3̄5R1̄1̄cosu,

R2̄2̄5äa1ȧ21ȧa
ċ

c
112

1

2

c2

a2
, R0̄0̄52

c̈

c
22

ä

a
,

~A34!

R3̄3̄5R1̄1̄cos2u1R2̄2̄sin2u,

so

2R0̄
0̄
5

c̈

c
12

ä

a
, ~A35!

2R1̄
1̄
5

c̈

c
12

ȧ

a

ċ

c
1

1

2

c2

a4
, ~A36!

2R2̄
2̄
52R3̄

3̄
5

ä

a
1

ȧ2

a2
1

ȧ

a

ċ

c
1

1

a2
2

1

2

c2

a4
, ~A37!

R3̄
1̄
5S ä

a
2

c̈

c
2

ȧ

a

ċ

c
1

ȧ2

a2
1

1

a2
2

c2

a4D cosu, ~A38!

and the Ricci scalar reads

R522
c̈

c
24

ä

a
24

ȧ

a

ċ

c
22

ȧ2

a2
22

1

a2
1

1

2

c2

a4
. ~A39!

Note that in the coordinate frameR2̄
2̄
5R3̄

3̄ while in the ortho-
normal frame@cf. Eqs.~2.18!,~2.19!# R1

15R2
2. This is reason-

able, since the metric tensor is given by Eq.~A27!, for the
former case, and by Eq.~2.9! with a5b for the latter case,
where the indices refer to the orthonormal basis rather t
to the chosen coordinates.

Now we convert our notation in terms of the three-ind
torsion fieldH to the notation given in@3# using the pseudo
scalar torsion fieldh. Following @3# we define (a,b,m,n
50̄,1̄,2̄,2̄)

Hmna5efemnabh,b . ~A40!
i-

n

The equation of motion forh-field obtained via integrability
conditions is then

¹m¹mh1¹mf¹mh50. ~A41!

One can easily see that for the time-independent antisymm
ric tensor potentialBmn5Bmn(x) theh field can only depend
on time and Eq.~A41! reads as

ḧ1S ȧ

a
1

ḃ

b
1

ċ

c
D ḣ1ḟḣ50, ~A42!

which integrates to give

ḣ52A
e2f

abc
, ~A43!

so from Eq.~A40! we have

H 1̄2̄3̄52
A

a2b2c2sinu
, ~A44!

or

H 1̄2̄3̄5Asinu, ~A45!

as required by Eq.~2.25! andH2526A2/a2b2c2. With the
H field chosen as above the equation of motion~2.3! is easily
fulfilled. There is also a trivial solution of Eq.~A42!, ḣ50,
but it corresponds to a constant torsion field. For the tim
independent pseudoscalar axion fieldh5h(x) @time-
dependent antisymmetric tensor potentialBmn5Bmn(t)# the
equation of motion~A41! reads

]m]mh1Grm
m ]rh50, ~A46!

which for the metric~2.9! reads as

g1̄1̄] 1̄
2
h1g2̄2̄] 2̄

2
h1g3̄3̄] 3̄

2
h1g1̄3̄] 1̄] 3̄h1g2̄2̄cotu] 2̄h50.

~A47!

For simplicity, let us introduce

~Hm
n !25HmabHnab522e2f~dm

n gr«2dm
r gn«!]«h]rh,

~A48!

H25HmabHmab. ~A49!

The non-zero components of these quantities~the energy-
momentum tensor! which are used in the field equation
~2.1!–~2.3! for the metric components~A27! are given by

~H 0̄
0̄
!2522e2f~g1̄1̄] 1̄h] 1̄h12g1̄3̄] 1̄h] 3̄h

1g2̄2̄] 2̄h] 2̄h1g3̄3̄] 3̄h] 3̄h!, ~A50!

~H 1̄
1̄
!2522e2f~g1̄3̄] 1̄h] 3̄h1g2̄2̄] 2̄h] 2̄h

1g3̄3̄] 3̄h] 3̄h!, ~A51!
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~H 2̄
2̄
!2522e2f~g1̄1̄] 1̄h] 1̄h12g1̄3̄] 1̄h] 3̄h

1g3̄3̄] 3̄h] 3̄h!, ~A52!

~H 3̄
3̄
!2522e2f~g1̄1̄] 1̄h] 1̄h1g1̄3̄] 1̄h] 3̄h

1g2̄2̄] 2̄h] 2̄h!, ~A53!

~H 3̄
1̄
!252e2f~g1̄1̄] 1̄h] 3̄h1g1̄3̄] 3̄h] 3̄h!,

~A54!

and

H2526e2f~g1̄1̄] 1̄h] 1̄h12g1̄3̄] 1̄h] 3̄h

1g2̄2̄] 2̄h] 2̄h1g3̄3̄] 3̄h] 3̄h!. ~A55!

With the choice

] 3̄h5EsinuÞ0 ] 1̄h5] 2̄h50, ~A56!

the field equations remain homogeneous and

~H 0̄
0̄
!25~H 1̄

1̄
!25~H 2̄

2̄
!252

E2e2f

a2
, ~A57!

~H 3̄
3̄
!250, ~A58!

~H 3̄
1̄
!252

E2e2f

a2
cosu, ~A59!

H256
E2e2f

a2
~A60!

and the equation of motion~A47! becomes
.
.

g3̄3̄]w~Esinu!50, ~A61!

and it is satisfied. Finally, from Eq.~A40!, we have

H 0̄1̄2̄5
Eef

a2c
, ~A62!

H 0̄1̄2̄5Ecef, ~A63!

andH256Ee2f/a2. This obeys the axion equation of motio
~2.3! but is in contradiction with the axisymmetry conditio
for the Ricci components~A37! since R2

25R3
3 there while

(H 3̄
3̄)250 and (H 2̄

2̄)2Þ0 here.
A possible ansatz which would satisfy the axisymme

condition would be

] 1̄h5
Ba~ t !sinu

Aa~ t !2sin2u1c~ t !2cos2u
, ~A64!

but it leads to both time and space dependences of the p
doscalar axion field,h5h(t,c,u), and does not satisfy the
equation of motion~A41! @nor Eq.~A47! which is obtained
for h5h(x)#.

One could also try to add

] 2̄h5D5const, ~A65!

to the nonzero component~A56!, but again this does no
satisfy the equation~A47!.

The final conclusion is that one is not able to impose
axion field even in axisymmetric BIX models despite the fa
that there is a distinguished direction in the model~which is
different from electromagnetic field case—see@11#!. The
reason seems to be that even in the axisymmetric case
is still SO(3) symmetry group present and we are only ad
ing an additional symmetrySO(2) which does not cancel th
former one, giving the total symmetrySO(3)^ SO(2) rather
than justSO(2).
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