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Is there chaos in low-energy string cosmology?
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Bianchi type IX, “mixmaster” universes are investigated in low-energy-effective-action string cosmology.
We show that, unlike in general relativity, there is no chaos in these string cosmologies for the case of the
tree-level action. The characteristic mixmaster evolution through a series of Kasner epochs is studied in detail.
In the Einstein frame an infinite sequence of chaotic oscillations of the scale factors on approach to the initial
singularity is impossible, as it was in general relativistic mixmaster universes in the presence of a massless
scalar field. A finite sequence of oscillations of the scale factors described by approximate Kasner metrics is
possible, but it always ceases when all expansion rates become positive. In the string frame the evolution
through Kasner epochs changes to a new form which reflects the duality symmetry of the theory. Again, we
show that chaotic oscillations must end after a finite time. The need for duality symmetry appears to be
incompatible with the presence of chaotic behaviot-a$. We also obtain our results using the Hamiltonian
gualitative cosmological picture for mixmaster models. We also prove that a time-independent pseudoscalar
axion fieldh is not admitted by the Bianchi type IX geometf{a0556-282(198)04312-4

PACS numbe(s): 98.80.Hw, 04.50th, 11.25.Mj, 98.80.Cq

I. INTRODUCTION factors occurs in general on any finite interval of proper time
including the singularity at=0. These oscillations are cre-
String cosmology has attracted a lot of interest recentlyated by the 3-curvature anisotropy of the spacetime and are
especially in the context of duality symmetry, which is aintrinsically general relativistic in origin. Physically, the
striking feature of the underlying string theory. The motion propagation of homogeneous gravitational waves alters the
of the simplest bosonic string in background fields is gov-curvature of spacetime along the direction of propagation, so
erned by the nonlinear sigma-model actidd. Cosmologi- that their non-linear back-reaction on the curvature reverses
cal solutions(to lowest order ina’—the inverse string ten- the direction of propagation.
sion) have been considered in detail in many papers with In the presence of a massless scalar fietgdalternatively,
special interest in the possibility of inflation, the behavior of “stiff matter,” with pressure,p, equal to densityp) the
inhomogeneities, and the relation between the so called praituation changes. Only a finite number of spacetime oscilla-
and post-big-bang phases of evolutid2]. The bosonic tions can occur before the evolution is changed into a state in
string spectrum of particles contains the graviton, dilaton andvhich all directions shrink monotonically to zero as the cur-
axion (antisymmetric tensor fieJdThe dilaton can always be vature singularity is reached and the oscillatory behavior
accommodated within homogeneous geometries, but this iseaseg7]. In this paper we want to investigate the oscilla-
not the case for the axion. It has been shown that the anttory approach to singularity in BIX low-energy-effective-
symmetric tensor-field potential does not necessarily have taction homogeneous string cosmologies with both axion and
be time-independent and this can prevent the isotropisatiodilaton fields.
of homogeneous models at late timgd. Moreover, the This investigation complements other recent studies of the
time-dependent antisymmetric tensor potential cannot be atehavior of string cosmologies at early times. The investiga-
commodated in all homogeneous anisotropic universes of Bition in [8] shows that there is an open neighborhood of initial
anchi or Kantowski-Sachs typ¢d]. In this paper we con- data space for string cosmologies which display velocity-
centrate on Bianchi type IXBIX) axion-dilaton cosmology dominated behavior. That is, on approach to the singularity
with a homogeneous ansatz as given originalljah Thisis  the spatial gradients become negligible compared to time
equivalent to the inclusion of a time-dependent pseudoscalaferivatives, velocities are non-relativistic, and curvature
axion field, h=h(t). The dilaton field is always homoge- anisotropies are negligible. These solutions resemble
neous,$= ¢(t). inhomogeneously-varying Kasner metrics, but the approxi-
It is well known that in the vacuum BIX homogeneous mation only hold on scales larger than the particle horizon.
cosmology one approaches the initial singularity chaoticallyBarrow and Kunzg9] found a large family of exact inho-
[6]. An infinite number of oscillations of the orthogonal scale mogeneous string cosmologies which are velocity-
dominated. They describe the evolution of the dilaton and
axion fields on all scales, showing how these fields oscillate
*Email address: J.D.Barrow@sussex.ac.uk once inhomogeneities in their distribution enter the horizon.
TEmail address: mpd@star.cpes.susx.ac.uk These studies show that the general behavior of the low-
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energy-string cosmology equations are considerably simpler -~ 1 . - -
than those of general relativity. The string gravity sector be- R~ 50,.R= KA(THD+TH), (2.9
haves in a quasi-Newtonian fashion in the vicinity of cosmo-
logical singularities. In general relativity the velocity- 1
dominated, quasi-Kasner, behavior is disrupted by the V VEp+ e 29H2=0, (2.5
chaotic oscillations of the three-curvature anisotropy on ap- ’ 6
proach to the singularity whenever the matter content is a
massless scalar field or perfect fluid satisfyipg p. It is v L(e72PHmre) =T (e‘2¢\/_H””“) 0, (2.6)
therefore important to determine what happens in the pres-
ence of three-curvature anisotropies in string cosmology. It ignd (x*=87G, c=1)
possible that there exists another stable neighborhood of evo-
lution on approach to the initial singularity which is chaotic ~, U U
rather than of quasi-Kasner form. We will investigate this KT = z(g,ﬁg - Egugx )VA¢VU¢' 27
situation by studying the Bianchi type IX string cosmologies
in order to discover whether chaotic behavior is possible or _ 1 _
whether it is destroyed by the presence of the dilaton and k2T = 1—2e‘2¢(3H
axion fields.

The paper is organized as follows. In Sec. Il we derive the

string low-energy-effective-action equations for BIX geom- ¢ ariant derivatives are formed with respect to the Bianchi

etry. We present the equations in both the string and th.?ype IX metric which, in the string frame, reads [4$8]
Einstein frames and we use orthonormal frames in the mai

body of the paper. In Sec. Ill we discuss the possible routes  ds2=dt2—a?(t)(ol)2—b2(t)(o?)2—c(t)(c°)?,

to chaos near a curvature singularity in both the Einstein and (2.9
the string frames with reference to the calculations given in

Ref.[6]. In Sec. IV we discuss the relation between the oswhere the orthonormal formsrt,o?,0° are given by
cillating mixmaster behavior of the scale factors and the du{i,j.k,1=0,1,2,3 are orthonormal basis indiges

ality symmetry of the string equations. In Sec. V we use the 1 .

Hamiltonian approach to represent the evolution of the BIX o~ =cogydf+singsinfde, (2.10
string cosmology as the motion of a “universe point” inside

1
va 2
waghl" = 551 )

(2.9

3

2 _ .
a curvature potential. This picture provides a simple picture o“=singd—cogysindde, (213
of the conditions needed for chaos to occur, and for it to be 3
absent, in the Einstein, string and so-called axion frames. In o°=dy+cogde, (2.12

Appendix A we give the relation between Ricci tensors for
BIX model in orthonormal and holonomi¢coordinate
frames and show why it is impossible to include a time-
independent pseudoscalar axion fiel in the non- O<y<4m, O<O<m O<e<2m. (2.13
axisymmetric and axisymmetric BIX models.

and the angular coordinated,f,¢ span the following
ranges:

In the Einstein frame the metric is
Il. LOW-ENERGY-EFFECTIVE-ACTION EQUATIONS

FOR BIANCHI TYPE IX UNIVERSES a8 2=d12-a2(t) (o) 2= 2(t)(62)2—T41)(d3)2,
The low-energy-effective-action field equations in the (2.14
string frame are given By[3,5] and
v 1 (¥ —¢l2
R V.V h=7H,.pH"F=0, (2.0 dt=e"%dt, (2.19
1 a=e ", (2.16
R—Vﬂ¢V”¢+2VMV"¢—1—2HW5H’”B=O, (2.2

whered,={3a,b,¢,} anda;={a,b,c}.
The nonzero Ricci tensor components in the orthonormal

— P Ay = —¢ [ qHura) — .
Vu(e PHE) =4, (e gH"")=0, 23 frame o' are (an overdot means a derivative with respect to
where ¢ is the dilaton field,H ,,5=64[,B, is the field the synchronous coordinate tinte[6]
strength of the antisymmetric tens&,,=—-B,,. In the A b e
Einstein frame we havgs] “RO= 4ot 2.17)
a b c
'Following standard notation we use Greek indices here to write 1_§ '§9+ EE 1 b2 c2)2_ g4 21
down the field equation€.1)—(2.8). However, beginning with the 13 ' ab ac 2a2b2c 2[( c)-a’l, (219

formula (2.90 we replace these Greek indices by Latin ones
i,j,k,1=0,1,2,3 because we are using an orthonormal basis. Greek b a b b e 1

indicesa, B, u,v= 0,1,2,3 are coordinate basis indices and will be _ RZ__+ -

2_2y2_ 14
used in Appendix A. b ab bc azbzcz[(a c)°=b"], (219
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JE 2_Kh2\2_ A4
the pupal@p e, (220

and the Ricci scalar reads

PP IPLIPL LI L PLL I
~"a b “c “ab “ac “bc 252p2c2?

X [a*+b*+c*—2a%b?—2b%c?—2a%c?]. (2.2

One can easily checkcf. Appendix A that the homoge-
neous ansatg2.25) is also appropriate for the axisymmetric
case.

Ill. TIME-DEPENDENT PSEUDOSCALAR AXION FIELD
AND THE OSCILLATORY APPROACH
TO A SINGULARITY

The ansatz2.29 is, in fact, equivalent to the inclusion of
a time-dependent pseudoscalar axion fiekdh(t) [3] (cf.
Appendix A). We are going to investigate the possible emer-

Since the model under consideration is homogeneous the dience of chaos in such models. Using E@s17)—(2.24) and

laton field can only depend on time and so we h&vk
Appendix A

VoVooh=o, (2.22
ViVig= §¢ (2.23
VopVoh= 2. (2.24

As for the axion field, we can use the following homoge-

neous ansat3,5]

A
He e \@AS=AT NG Ao?, (229

whereA is constant and

e=ao'. (2.26
Since
(HDZ=H; HIK, (2.27)
and
H2=H H'™", (2.28
we have
(H9)2=0, (2.29

(HD2=(H))2=(H3)?

A2
=2 g (230
2__ A2

The special case of axial symmety b gives the ortho-
normal forms(2.10—(2.12 as below[11]

ol=de, (2.32
o?=sinfd g, (2.33

o*=dy+cofde. (2.39

Egs. (2.29-(2.3) the field equationg2.1) in the string
frame read (=d/dt)

a+b+é $=0 3.1
2T e 270 (3.9

a ab ac a. 1

a ab ac a¢ 2a2p2c?

- =y, (3.2

———=0, (3.3

[(a®—b?)?—cf]

+ +
c ac bc c¢c” 232pc2

1 A?

- E mz 0. (34)

Equation(2.2), with Eq. (3.1), readg4,5]

Cc —(.;52

ab ac bec .
- +2¢

ab ac bc

a+b+.
a b c

+ [a*+b*+c*—2ab?

2a’h?c?

2

(3.5

1
—2a%c?-2b%c?]+ = =0.
! 2 32p2c?

Using Eq.(3.5), together with the sum of Eq$3.2—(3.4),
we have the dilaton equation of motion

AZ

a’b?c?

d—(p)*+ g+5+g-¢— 0. (3.6

In the Einstein frame, the field equatiof®.4) become[3]
('=d/dt)



57 IS THERE CHAOS IN LOW-ENERGY STRING COSMOLOGY? 7207

U 'B// T 1 e—2¢

_____ 4124 T A2
2 5 ¢ 20 TNamne O

a ab av L ey s s
2 ab ac amee o) 2l
(3.9
b’ a'b bT 1 -
_ =2_=2\2_R4
5 ab te mmeeo o) Pl
(3.9
T Db awe 1 -
P =2_TF2\2_=4
t "% ac amxes 0Vl
(3.10
and Eq.(2.5 now becomes
) ’ =/ = '6/ e e—ZqS
&'+ ¢ §+€+€ _AaZBZEZ' (3.11)

anddt=exp(@/2)dt in Eq.(3.12. The field equationé3.1)—
(3.4) in the string frame take the form

(a+,3+y)’m]—M2:2(a,,,,8,,7+a,,,y,,,+,8,,,y,,7)
—2(a,tB,t7.,)b ., (3.19

2e*%a = (b*—c?)?—a*+A? (3.20
2e?p . =(a?—c?)?—b*+A? (3.21)
2e?%y ,,=(a®=b?)?~c*+ A% (3.22

Equations(3.20—(3.22), using Eq.(3.13, can be rewritten
to give

(—¢+2a) ,,=[(b*~c)?~a’le"?, (323
(—¢+2B) ,,=[(a%—c?)?~b*e ¢,  (3.29
(—¢+2y) ,,=[(a%=bH)?—c*le 2?.  (3.29

Notice that there is no explicit dependence of the axfarin

A new time coordinate is introduced to simplify the field these equation€3.23—(3.25.

equations by defining3,5]

d—e¢d—1d~ 3.1
ﬂ—a—bct—N»«—EL (3.12

First, notice that the string-frame equati¢16) then simpli-
fies to

¢ ,,— A% 2?=0, (3.13

where (,,=d/d»). The Einstein-frame Eq3.11), with the

time coordinatet, gives the same result, E¢3.13. The
solution of Eq.(3.13 is [5]

AZ

e?=cosmMMzy+ \/1— sinnrAM 7, (3.19

A2M?

with M, A constant A>M?>A?). A useful relation, implied
by Eq.(3.14 is

2 _ A2pnp2
byt 5= AM (3.15
Let us introduce new forms for the scale factors;
a=e” b=ef c=e?, (3.16

and

b=ef t=e?, (3.17
so, from Eq.(2.16),

a=a—¢l2  B=B—¢l2  y=y—¢I2,
(3.18

On the other hand, using E¢3.12, Egs.(3.7—(3.10 in
the Einstein frame reduce to

- o o~ 1
2(a,,lﬁy,7+a’,,'y,,]+ﬁy,7yv,7)=(a+,8+'y)',m-i—EMZ,

(3.26
2a ,,=(0%-t»)2-7", (3.27
2B ,,=(@3%-T?»2-b*  (3.28
2y ,,=(@2-b??-t%  (3.29

These equationexcept for the constamtl which appears in
Eq. (3.26] have exactly the same form as the standard BIX
equations of general relativity6]. Equations(3.26—(3.29
can be explicitly transformed into Eq&3.23—(3.25 by us-
ing Egs.(3.16—(3.18.

In order to discuss possible emergence of chaos we con-
sider suitable initial conditions expressed in terms of the
Kasner parameters.

A. Einstein frame

The Kasner solutions are obtained as approximate solu-
tions of the equation&3.7)—(3.11) when the right-hand sides
(describing the curvature anisotropiese neglected. In the

Einstein frame, in terms df-time, they are
B=Dgi, (3.30

while (A2<A%M?)
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- M When we approach singularity— — (t—0) we can-
¢=Indo+ =In[t|, (3.3)  not neglect all the terms on the right-hand side of Egs.
A (3.27—(3.29 since one of the Kasner indices in E.37
can be negative. We assurfig=—|p;/<0, which means

for A=0, and ° Y | .
that@a(»)>b(#%)>T(%), so Egs.(3.27—(3.29 are approxi-
1 A2 _ mated by
=Indy+In[ 5| 1+ \/1— =—|[t WA
¢ 0 5 AYE It o -
@ py=—5€"
1 A2\ -
HE R o L L1,
3,77712594“: (3.39
for A#0, where
=, _1 Ao
K:%"0’60?30- ao=const. (3.33 717777_58 :

From Eqs(3.9—(3.10, irrespective to the presence of the  Far away from singularity the approximate axisymmetric
axion termA, we have the following algebraic conditions on Kasner regime is fulfilled, but it is broken by ti#&* term
the Kasner indicesp; : when we approach singularity, so our Kasner solutions

(3.36 will be fulfilled for 7— (t—); suitable solutions

3 ; ;
5 of (3.39 which satisty(3.36) are
> Bi=1, (3.34
i=1 1
a(n)=— 2[p,|A

and, from Eq.(3.7), a(n)=-3In 2BiA —cosh —2[ByA7) |,

3 2

Elﬁzzl—lﬂ— (3.39 B(n)==In cosi{—2|p1|A n)

2P | 772" 2pR PR
which is exactly the case considered first by Belinskii and +7\(—|ﬁl|+T)2)n, (3.40
Khalatnikov [7].2 So, in the Einstein frame their argument
follows. _ 1 1

In terms of z-time from Eqs.(3.27)—(3.29 y(m=3In 2BR ————=COosh — 2|P1|A77)
P1
=APu7 4T, +A (= [Bal +PBa) 7.

B=APon+T,, (3.39 In the limit — —o (t—0) from Eq.(3.40 we have

37:}53,7+}'3, a(ﬂ):mﬁﬂ n= _Kblﬂ,
and the constraint equatidB.26 become® B(1)=A(P2—2[P1|) n=A(P2+2P1) 7, (3.4)

o i e LMP () =A(B,—2[Ps)) =R (P3+2P1) 7,
P1P2+P1P3+P2P3= 7 = (3.37
A which means that one Kasner epoch E36) with indices

. L . . i is replaced by another Kasner epoch with indices given by
This constraint is equivalent to the constrai(834—(3.35. Eq. (3.41). By virtue of Eq.(3.12

In order to get Eq(3.30 from Eq.(3.36 we need to use Eq.
(3.12 to relatet -time with z-time, i.e., 7=A'"tInt+const, (3.42

n=A"1Int+const. (3.39 and
a=ajtr,

2In their notation this occurs if we pud?/2A2=q?. Also, they
deflne the Lagrangian of the scalar field without a factor of{ L&,

§’ =(V ¢)?] while we follow standard notation. “This necessarily requireg;<0. Of course, one has the same

In [5] there isA? instead ofM? while in all our calculations we  solutions forp;>0, but in such a case our initial conditions would
obtainedM? both in the string frame and in the Einstein frame. have to be taken ay—o rather than aty— —. This does not
They claim they use the so-called “sigma frame,” which, however, change the physics of the problem and was assumgtbi21], but
seems to be just the Einstein frarfie)]. we prefer to follow the spirit of6].
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B=D/1P 34 singularity and the universe finally reaches a monotonic
(3.43 L :

stage of evolution with all three scale factors tending to zero

ast—0. Thus, there is no chaos in BIX homogeneous string

T=Toths, cosmology in the Einstein frame. Finally, we note that there
is an isotropic limit here, provided all the Kasner indices are
where NSRS
equal withp,=p,=P3=1/3.
Bl=— P4 _ P1 B. String frame
o1-2ipy| 1+2p, For the string frame we can follow the discussion given in
[19] (see alsd20,21).
= o= ~ o In terms oft-time, Kasner solutions of the systei®.1)—
2 +2
~é=p2 |~p1| _ P2 ~p1' (3.44 (3.4, for A=0, are given by
1-2[py| 1+2p,
a= aotp1,
~,:rJ3_2|l~31| _ P3+2p,
 1+42p,  1+2p, b=botP2, (3.48
and
C=CptP3,
o A _
A’t=3bcd, T:1+2ﬁ1, e~ ¢=d,tPs,
or, alternatively, the last of these conditio{®48 reads as
3 3 1 M2 $(t)=—1Ind Int, and p,=—M. (3.49
z ﬁi/=l, E ﬁi,2=l—§TQ. (3.45) o~ P4int, Pa ’ '
i=1 i=1 A

After putting Eq.(3.48 into Eq. (3.6) we have

As we can see from Ed3.32), the axion does not influence 3

these asymptotic solutions. _
One can easily show that p4_l_i=21 pi . (3.50
\F M \F i and from Eq.(3.1) we have
—\/z<=——=<1\/z .
=%z V3 (349 3
;1 p?=1, (3.51)

and, after ordering the Kasner indices Py<p,<pPj, we

require so EQ.(3.49 can be rewritten to give
—1/3<P,<1/3, 3
d(t)=—Indg+| >, pi—l)lnt. (3.52
=1
0<p,<2/3, (3.47
The last condition means, for instance, that a chqice
1/3<Pa=<1. (—1/3,2/3,2/3) givesEp;=1 and leads to a vanishing or

constant dilaton M =0), i.e., to general relativity(Other
This means that, unlike the vacuum case, all the Kasner inPermutations of the threp; with the signs changed are al-
dices can be positive and, as in the analysi§7dfthe final ~ lowed. Thus, the difference between general relativity and
situation is that the universe inevitably reaches a monotoniétring theory depends on the “fourth Kasner indep;=
stage of evolution in which all three Kasner indices are posi-——M.

tive (see also the discussion of Sed.\By means of Egs. Now, from Egs.(3.23—(3.25 (one can see thalp;
(3.30 and(3.32, which lead to the same relations between=2ApP, here

the Kasner indice£3.34), (3.35), one can extend this conclu-

sion into the axion-dilaton cosmology. The presence of the a=¢I2+ A(py/2) p+1 /2= pI2+ APyn+T14,

axion field cannot change the fate of the universe near to a

B= pI2+ A(pof2) p+1,12= GI2+ APon+T 5,
. (3.53
SThen, the terms of the type*®,e*# e*? decrease ifp— — (t
—0), and they do not allow a transition into another Kasner epoch y= b2+ A(P3l2) p+13/2= pI2+ APsn+T3,
to take place. This is just monotonic evolution such as in the iso-
tropic Friedman case. and, from Eq.(3.19,
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M2 The isotropic Friedmann solution is given when we
P1P2+ P1P3+ PaPs=— . (354  chooseM=—1+3, p;=p,=ps=1//3, while its dual
A with M= —1—/3, p;=p,=pz= — 1/y/3 does not appear in
The condition(3.54), in fact, can be obtained from Egs. the vacuum general relativity case. This shows that one can

generally have two different types of change in the Kasner
g'ig’(igész)' In order to get Eq(3.48 we need to use Eq. indices, and irM (effectively, a fourth Kasner indexThere

are oscillations as in general relativistic vacuum or stiff fluid
7=A"tnt+const, A=agboCodo. (3.55  cases[6,7], but there are also duality-related exchanges of
indices. We will discuss some points related to duality that
From the condition$3.50,(3.51) on thep;, we have nec- refer to the work of Ref[16].
essarily thaf7] There are eight possible permutations of the Kasner indi-
ces in which some are equal t01/,/3 or 1A/3, with suitable
—1-3sM<-1+3. (3560 M. These are the first two quadruplep;(p,,ps,M)

=(1//3,1K3,113,— 1+ {3),(- 13, 1/y3,—-1/y3,—1
V3), plus another three pairs with-1/1/3,1A/3,14/3,
—1+(y3/3)],[11/3,- 1/{/3,— 1//3,— 1—(/3/3)] and the
permutations which are dual to each other. One can easily
show that these last three pairs of cases are duality related
L i o and describe exactly the transitions from one Kasner epoch
Pi=Pu P 7Pz Pa T ha to another given by Eq(3.80. Another interesting set of
M—M-p;—p,—ps=—(M+2). (857 “self-dual” (M=-1) combinations which describe LRS
] ) ) ) (locally rotationally symmetric Kasner solutions are given
Having given Eq.(3.57), we can delineate the two duality- by (V2/3,— 16,— 1/\6,— 1),(— \2/3,14/6,1//6,— 1) and
related domains of Kasner indices as follows: their permutations. Other interesting duality-related combi-
nations are {1/3,2/3,2/3,0), (1/3;2/3-2/3~-2) and

However, the domain oM given by Eq.(3.56) covers the
whole duality-related region since in the case of a Kasner
regime the duality symmetricf. Sec. I\V) simply means that
we change

1o B=M=-1, - t= g\ﬁ (0,1A2,— 1\2,~1),(0~1V2,1A2,~1). The last two
\/— give the so-called Taub poini$lat Minkowski spacetimge
[16].
2 1 /2 1 /2 The question arises whether the changes of the Kasner
-3 P2 >\V3 1spsg=-— >\V3 (3.58 indices(chaotic and duality-relatg¢dhave something in com-

mon. In order to answer this question one should try to find
and a suitable parametrization of the Kasner indices analogous to
the one given in Ref{7] for the stiff-fluid case. We have

2 1 checked that such a parametrization does not cover the right
—1sM<-1+3, - \[5< p1s=s——, range of the indices given by E(B.58 unless we multiply
@ p, by 3. After some searching, we have found the follow-
1 2 2 1 2 ing parametrization of the indices which has advantages
— f\é\ P<3. 3 \@g ps<1. (3.59  which we will explain in due course.

The u-parametrization we use is defined as folldws:

Of course, for-1—3<M<=—1, the indices are ordered so

thatps<p,=<p;; while, for —1<M<—1+ 3, they are or- 2u

dered ap;<p,<ps. -,
From Egs.(3.59—(3.59, we can draw some interesting 1+u

conclusions. First, that the vacuum general relativity case

M =0 (with —1/3<p;<0, 0sp,<2/3, 2/3<p3=<1) is dual 11

to the caseM=—2 (with —1<p;=<-2/3, —2/3<p,=<0, Po== ——[(1+M)(1+u?)—2u+P*(M,u)],

0=<pz=<1/3), while the cassM=—1 is “self-dual” in M 21+u?

giving M= —1 again, although thp/s change. Second, the

M= —1 plane is the dividing plane for the duality-related

range of the parameters which are defined by 11 )(1+Uu2)—2u—P*(M,u)]

P 21
Vamoe- 3V
J— _g = — — —
3 P1 >\3
1\F 1\F
~2\V3 2 V3

(3.60

whereu is constant and

=p,=
®In the general relativity caseV{=0) this parametrization can be
written down in terms of the one suggested [ib6] with p;
E\ﬁgp < \F =(1/3)(1-2co0s)), pp3=(1/3)(1+cosy=sing) with a suitable
2 V3 M3 choice of cog=(1/2)(u>—6u+1)(u?+1) in our case.
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PH(M,u)=\(1-2M—M?)(1+u?)?>+4u(M+1)(1+u?) — 120 (3.61

and to achieve;<0 we needu<0. Alternatively, we have

B 2u (3.62
= e '
Po== [(1+M)(1+u?)+2u+ P~ (M,u)]
2 14+u?
1
P3== [(1+M)(1+u®)+2u—P (M,u)]
21+0u2
where
P (M,u)=V(1-2M—M?)(1+u?)?—4u(M+1)(1+u?)—12u?, (3.63
|
and forp,;<0 we needu>0. These are very general trans- pi(M,—1u)=p;(M,u)=—p;(M,u). (3.68
formations that include all duality-related ca$8s%58),(3.59
and the vacuum general relativity case whdn=0. Simi- Second, one can consider the transformation
larly, as for stiff-fluid models in Ref.7], we draw a plot the
allowed values of the parametaragainstM and show the u——u, (3.69

duality-related regions in Figs. 1 and 2.

There are many possible transformations of the generalhich results in the same rules as E8.65. However, this
homographic typei— (au+b)/(cu+d) or some more gen- transformation is not enough to describe duality relations
eral types related to Pade other rational approximanf48]  petween the considered solutions. As one can see, the

which may be useful in the discussion of mixmaster oscilla-duality-reflecting transformations should be of the typee
tions. Although we are mainly interested Trduality sym-  also Fig. 1

metry of the low-energy-effective-action equatiofl)—

(2.3 in this paper(see the more extensive discussion of this u——u, M——(M+2), (3.70
in Sec. V), it is quite interesting to comment on the fact
these homographic transformation widd—bc=1 fulfill or, alternatively

the requirements foB-duality. This suggest$-duality may

be embedded at a certain level $aduality here, and vice 1

versa. However, we do not consider these general transfor- u——1 M——(M+2). (3.7
mations in this paper; we discuss only the simplest cases and

mainly address th&-duality.
First, notice that a transformation of the type From Eqs.(3.70 and(3.71) we see that

1 P*(—-M—-2,—u)=P*(—M—-2,—1lu)=P*(M,u),
U=, (3.649 3.72
gives and
Pi(M,1u)=p;(M,u), (3.68 pa(—u)=—pa(u),
pi(M,1/u) = p;(M,u), P2(—=M=2,—u)=—p3(M,u), (.73
wgere| = 1,2,3,' unless we take nggatlve value of the root of Pa(—M—2,—u)=—Pa(M,u):
P~ after applying the transformation. On the other hand the
transformation similarly,
1
u—-—=, (3.66 P1(—u)=—ps(u),
changes parametrizatidB.60 into (3.62, i.e., P2(=M—=2,—u)=—ps(M,u), 3.74

Pi(M, = 1) =pi(M,u)=—p;(M,u), (3.67) Ps(—M—=2,—u)=—p,(M,u).
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FIG. 1. The regions |, Il, Il of permissible values of the param-
etersu andM for the parametrizatioi3.60 of the Kasner indices
pi,p, and p;. We restricted ourselves te- 10<su<10 although
regions | and Il extend to infinity. Special isotropic FRW ] and
FRW (—) points are given for {3—2,—1++3) and (-3
+42,—1-/3) respectively.

We notice that the duality in Eq$3.73,(3.74 would entail
the exchange of the Kasner indices and p;.

If we assume thaa>b>c in Egs.(3.23, (3.24) then we
obtain the following set of approximating equatiofisr A
=0):

e4ae7 2AM 77,

4a —2AM~y

B, yy= 2 e

(3.79

1
__ pdapn—2AMy
Yom=5€ € '

¢,7/77:0’

together with the constraint8.19. The Kasner solutions in
terms of »-time are given by

a(n)=Apin+const,
=A + const,
B(n)=Apyn (3.76

y(7n)=Ap3n+const,

¢(n)=AM n+const.
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-
L /”—\ FRW (+)
L ——
o - (—1,0) —
m
= 7 H i —
I /
¢ o (1,-2) R
r FRW (-) 1
-10 —5 10
FIG. 2. The regions I, II, Il of permissible values of the param-

etersu andM for the parametrizatio3.62 of the Kasner indices
p1.p2 and p;. We restricted ourselves te- 10<u<10 although
regions | and lll extend to infinity. Special isotropic FRW ) and
FRW (=) points are given for € 3++2,—1++3) and (/3
—/2,—1—/3) respectively.

singularity), providedp,=—|p;|<0 and Z;—M=—2|p,|
—M<0, can be chosen to be
= ! Mm(2 M 1AM
a(m)== 3 Tzp, =) oS (2Pi=M)n |+ 5AM7,
== ! Mm(2 M
,3(77)—5” mcos (2p1—M)7n
1
! Mm(2 M
y(n)= mcos (2p1—M)7n
1

In the limit »— —o (t—0, i.e. on the approach to the
singularity they approach the following asymptotic forfis:

a(n)~—A(p1—M)n,

B(n)~A(po+2p;—M) 7,

(3.78

Y(n)~A(p3+2p1—M)7n,

$(7)~AM 7.

However, these solutions are not directly obtained by us-

ing the relations(3.18 between the Einstein frame and

"Note, we can derive them in a similar way to the:0 case(see

string-frame scale factors. This is very important in the casene rest of this sectionbut here it is more convenient to follow the

when the axion field is taken into account and will be dis-
cussed below.

The solutions of equation@®.75 which satisfy the above
conditions,(3.76), in the limit 7—o (t—~, i.e. far from the

results given inf21].
81f we assumep;<0 and P, —M<O0, thenp;—M <0, provided
M >0, which means we have changed expansioa(af) into con-

traction.
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One can check the solutiori3.77) by putting them into the
constraint(3.19 in order to recover the conditiof8.54), as
expected.

Now, we can express the scale factors in terms of the new

Kasner parameters
a= a(’,t”i,
b=b{tP2,
(3.79
c=citPs,
e ¢=djtPs,
where

B p1—M
1+2p,—M’

!

p1=

, _P2t2p;—M

P2~ 1+ 2p, M 50

,:p3+ 2p;—M
Ps= 11 2p, M

r__ _M _ M!
Pa=12p,-m M
and

A’ =ajbgcgydg,

7=(A") " Int+const, (3.8))

A'=(1+2p;—M)A.

If we take the axion field into accounfg 0) and assume
thata>b>c in Egs.(3.23—(3.25, then we obtaih

1
(AZ_ e4a)672¢>,

a’w:E

1
B.yn=75 (A*+et)e 27,
(3.82
1
7,”ﬂ=§(A2+ et)e 2%,

¢,nn:Aze_2¢'

%f M>0, then the terme~2¢ increases fom— —o. If, in turn,
p;<0,M>0, and ;—M>0, then the terne®?P1~M)7 decreases
for »— — and the whole picture is dominated by the axion term
1/2A%e~2¢, It follows that the field equations become isotropic
& 0= Booyn= V1 yy=12¢ ,,=112A%e"??_ We see that the axion
isotropises the model and chaos is impossible in such a case.
seems that the time-dependent axion field an&&dtzAppendix A
would allow chaos, but it is not admitted by the BIX geometry.

IS THERE CHAOS IN LOW-ENERGY STRING COSMOLOGY?
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with ¢(7n) given by Eq.(3.14). The Kasner solutions in
terms of »-time are now given bycompare Eq(3.18)]

A

a(n)= §(p1+ M)+ const= A q, 7+ const,
A

B(n)= 5(p2+ M) n+const=Aqq »+ const,

A
v(n)= §(p3+ M) 5+ const= Aq, 7+ const,

¢(n)=AM 7+ const. (3.83

The solutions which fulfill the above initial conditions
(3.83 for p—o (p;<0) are

1 1 1
a( 77)=—§|n(ECOSVP177 + 59l 7), (3.89
_ 1 1 1 1
B(n)= Eln(acosmw + E(pl"' p2)n+ §¢( 7),
(3.85
_ 1 1 1 1
y(n)=3In ECOSVPM +5(Pitpa)t 5 é(7),
(3.89
A2
¢(7n)=In| costM 5+ 1- WsinI’M 7|, (3.8

or, alternatively

1 1
a(n)=— 5'”( 20— Mcosf(qu— M)n) + §¢>(7/),
(3.89
1
B(n)= zln( T MCOSHqu— M)n)
1
A+ a2 = M)+ 5 ¢(7), (3.89
1
y(n)= Eln( 20— Mcosf(qu— M)??)
1
A+ az= M)+ 5 (7)., (3.90

with ¢(#7) unchanged.

One can easily check by putting these solutions into the
constraint(3.19, that the condition3.549) is satisfied, which
in turn ensures that the conditiof®.50,(3.51) are satisfied.
In particular, note that, for Eq$3.88—(3.90, we need to
replacep;s by g/s. In the limit — —o, (that is, t—0),
they approach the following forms:
It

A
a(ﬂ)~—§(p1—M)n,
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A

B(m)~ 5 (P2+2p,—M) 7,
A

y(n)~ E(p3+ 2p;—M) 7,

A
B(n) == F M, (3.9

or

a(n)~—A(q—M)7,

B(m)~A(dz2+2q,—M) 7,
FIG. 3. The plot of the condition§3.96),(3.97) for the transi-

y(7)~A(g3+2p;— M) 7, tions from one Kasner epoch to another to begin in terms of the first
and the “fourth” Kasner indicegp; and M. Obviously, isotropic
B(7)~—AM7. (3.92 FRW (+) and FRW (-) points (~1+ V3,14/3) and (1—4/3,

—1/{/3) respectively, are excluded. The transitions occur below the

Having given the condition$3.50),(3.51), one can express line p=M/2.. Erom the picture one can see that iln the vacuum

the indice and p- by usin andM, ie., general relativity _ca_sel_\.a =0) the trans!tlons are possible when(_aver
P2 Ps by 9P —1/3<p;=<0. This is in agreement with the standard calculations.

However, in the dual caseM = —2) transitions do not occur at all.

1
P2=5[(M+1-py)

M
—\=3pZ+2p;(M+1)+1-M(M+2)], p1<7, (3.96

1 —3p2+2p;(M+1)+1—M(M+2)>0.
p3:§[(M +1-p,) (3.9%

+ \/—3p§+2p1(M F1)+1-M(M+2)]. A plo_t_of these conditigns is given in Fig. 3. Thg last of these
conditions,(3.97), provides bounds on the possible values of
(3.93 M if a transition to occur:

Since the expression under the square root should be non-
negative, one can extract the restricti@®66) on the permis- —2sMs=
sible values ofMl. However, we are interested in knowing

whether the curvature terms on the right-hand side of thoy, we see that the regions where the Friedmann isotropic
field equations(3.23—(3.29 really increase asy——o (t  |imit js possible(all the Kasner indices equal—this happens
—0). This would require eithea’e 2%, b*e™ 2%, orc*e > (' m=_1_ J3 andM = —1+ y3) are excluded. One can
to increase if the transition to another Kasner epoch is 1y ays find the range of the indices for a transition from one
occur[19,21. Since Kasner epoch to another to occur in the string frame.
Instead of expressing the conditions for Kasner-type tran-
sitions in terms ofp; and M, we can follow the pattern of
[19] and write them in terms gb; andp,. From the condi-

(3.98

W N

ate 2%cct(2P1—M) = (1+p1— Pz*P3)1

bie 2¢act(2P2~ M) = (1 P2~ P3=P1), (3.949  tions(3.50,(3.51), we can write
C4e_2¢o(t(2p3_M):t(1+p3_pl_p2)’ p3:M+1_pl_p21 (399
we need one of the following three conditions to be satisfied M=p;+p,—1*1—pZ—p3, (3.100

(remember that we have assunmed<0, M>0):
where the plus sign is favl > — 1, p;>0 and minus sign for

2p;—M=1+p;—p,—p3<0, M<—1, p3<0. So,p; andp, must be such that\ real

2p,~M=1+p,—ps—p;<0, (3.99 1-pi-p3=0, (3.10)

2p3—M=1+p3—p;—p»<0. and one of the three conditioi3.95 must be satisfied, i.e.,
either

The three condition$3.95), with the help of Eq(3.93, are A
equivalent to P1+ P2~ P1P2+P1—P2<0,
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o mno=1 = 0 1 4.2

—h “\1 o 4.2
transition 1is the 3x 3 identity matrix, and

[ Gt -G'B 3

8 M=lgc-1 g-BG !B (4.3

— where G=g;;(t) and B=B;;(t) are 3x3 matrices. Any
transition ] 6X6 constant matrix2 obeying Eq.(4.2) generates new
1 solutionsM’ from the original setM. Notice that for full
0(3,3) symmetry botlc andB have to be functions of time.
This is especially important for the antisymmetric tensor po-
tential B;; which is time-dependent and so leads to a space-
dependent pseudoscalar axion fidid,see Eq.(A40) of the
AppendiX. This is called the “elementary ansatz” and is
i s only admissible in a restricted class of metrics of spatially
sitions from one Kasner epoch to another to begin, in terms of th?]omogeneous metrid@,4]. As we prove in the Appendix
two Kasner indiceg; and p,. As in Fig. 3 the isotropic FRW L . . . !
(+) and FRW () points, (143,1A/3) and (113, — 1//3) re- the elementary ansatz is not compatible wigven axisym-

spectively, together with the two neighboring regions, are excludedr.netric) Bianchi type IX geometry. Thqs, because of our ho-
mogeneous ansat2.29 [or Eqg. (A43) in terms of pseudo-

scalar axion field] the full O(d,d) symmetry is broken and it

FIG. 4. The plot of the condition3.101)—(3.103 for the tran-

2, -2 .
Pit Py~ PPz~ Pyt P20, (3102 (can only be recovered if the antisymmetric tensor fig|
- (or axionh) vanishes. If this happens, we can make a choice
Pt P2+ P1P2—P1—P2>0, Q=1I and consider the “scale factor duality” where
for p3>0, or 1
a/Z_)_,
2 2 a2
P1+P2—P1P2t P1—P2<0,
2 2 12 1
P1+P2—P1P2— P11t P2<0, (3.103 b —>E,
2, .2 (4.9
P1+ P2+ PPzt Pt p2>0,
C,2—> ,
for p3<0. c?
The plot of these conditions is given in Fig. 4.
In summary, we have been able to determine the range of ¢'— ¢—2Inabc.

values that can be taken by the Kasner indices in the string ] ]
frame and have proposed a parametrization which describes It is useful to define the logarithm of an average scale
the evolution of these indices. Also, we have determined théactor 8 and the so-called shifted dilatorp defined
values of the Kasner indicgsee Figs. 3 and)4or which the by [14,15
spacetime oscillations can really take place. However, now

we have to determine whether the oscillations can be stopped

once they have started &s-0. Before we come to this in Bi= ﬁlnai ’
Sec. V we first discuss some relations between the Kasner
indices and duality. 1
,8=ﬁln(abc), (4.5
IV. EXCHANGE OF KASNER INDICES AND DUALITY
The low-energy-effective-action equatiof®&s1)—(2.3) ex- d=d— \/@

hibit continuous globaD(d,d) symmetry @ is the number
of spatial dimensionswhich is an example ofl-duality
within the string theorn23]. It differs from S-duality or the
SL(2,R) invariance of superstring models, mentioned in Sec.
Il (see e.g[26]). For the class of homogeneous models
under consideration T-duality is a glob@k3,3) invariance

Using Eqs(3.40—(3.45 we have the relationgl.5) in terms
of Kasner indices: i.e.,

$=¢d—InA—(M+1)nt,

_ — 1
under which(where ¢ is the so-called shifted dilaton field Bi= ﬁ(lnaoﬁr piint), (4.6
M—M'=Q™MQ, ¢=¢—InJdetG—¢. (4.1

1

B=-—=[INA+(M+1)Int],
Here,Q is 6X 6 constant matrix satisfying A \/5[ ( it}
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whereag ={ag,bg,Co}. In these variables the duality sym- V. HAMILTONIAN APPROACH TO BIANCHI IX STRING

metry is just expressed by MODELS
— — In this section we formulate a generalized Kasner model
Bi()=—Bi(1), in Hamiltonian formalism as in Ref$17,19,23 in order to
_ _ discuss the conditions for an infinite sequence of scatterings
B(t)=—pB(1), (4.7 to occur against the walls of the curvature potential. As in
the previous sections we discuss the problem in both the
()= (1); Einstein and the string frames. We also introduce the so-

called B-frame, or axion fram26], in which axion is mini-

or, in terms of Kasner indices, it reagg— —p;, M+1  mally coupled.
——(M+1). After inclusion of time symmetry we have

[15] A. Einstein frame
—_— — We introduce the following standard parametrization for
Bi()=—Bi(—1), the Einstein-frame scale factors:
B(t)=—B(-1), (4.9 a=et
H(H=¢(~1). b=e®" V30, (5.
In the isotropic cas@; =+ 1/,/3 and we recover exactly the T=e" ",

case given in Refl15]. . . . . :
The same relations can be written down using the timeénd we define the potential, which describes the spatial cur-

coordinate 7 instead oft. Using the exact expressions, vature anisotropy2.21) felt by scale factors in the Einstein-

(3.76), for Kasner solutions we have frame by
— A V() =e 2V(y.), (5.2
ﬁ:ﬁ(M+l)n’ where
é=¢—38—An, (4.9 V()= %[e’8¢++2e4‘/’+(cosh4\/§z//,—l)
= A —4e~2"+cosh2/3y_]. (5.3
Bi \/§p| 7.

Using Eqgs.(5.1),(5.2), Egs.(3.7—(3.10 read as
So, one could relate these by duality symmetries
o 2, 2. L 0 L o apea, L —2a

@2yt Y S e A ¢-6ay 58 “V(y-).

b A — 12
d(m)—p(— 1), (4.10 (5.4
B(n)——pB(—n), (4.1)  This is the Hamiltonian constraint. The Einstein-frame action
in terms of the scale facto(5.1), after integrating out spatial
for »— * o respectively, using chaotic changes— —p; . variables, is given bycompare[25))
In our analysis we have used the standard procedure of

assuming that the mixmaster model is well described by a T ' 2. 1,
sequence of Kasner-to-Kasner transitions. This assumption is S‘f dte™| —6a’+ 64, "+ 6y "+ §¢

an analogue of that of steep walls in the Hamiltonian ap-

proach. Numerical studies of mixmaster models show it to be

a good approximation even in the presence of chaotic behav-
ior. We do not find chaotic behavior and so the approxima-

tion should be better over long periods of evolution. We noteand the conjugate momenta are
also that the approximations mades{b>c) to study single

1 _
+§A2e2¢a’2+e‘2“V(¢t) , (5.5

Kasner-to-Kasner transitions reduce the equations to these of 7= —12a' e,

the axisymmetric case. This describes a single Kasner-to- 5

Kasner transition. We therefore expect the duality relation- 7 =12y e%,

ships characterizing Kasner-to-Kasner transitions to provide _

good approximations to the properties of the exact mixmas- m_=12y' 3% (5.6
ter behavior and we do not see any reason to consider non- ~

Abelian dualities of this exact modg24]. We do not know my= ¢'e3%,

whether the string Bianchi type IX model is integrable in ~
general. m,=0'e??3=constA,
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so the Hamiltonian is o _ : - 1 —
¢?= B+ 6y% +6y% +e 2OV (y.)+ S A%,

2 2 2 2 2
T, Ty T Ty

H=— -5+ Ty T T ey, (5.7) (5.14

2472472472 "2
Following the analysis given ifil5], we apply a new time
Now, we follow the standard discussion of the potentialcoordinater defined as
walls B
_ dt=dre ¢, (5.15
V=e*V(y.) (5.8
and define a new variablg, which is the logarithm of an
being hit by a particle moving in the potential weslee Ref.  averaged scale factor in the conformally related axion frame

[22]). In the regiony, <—1 andy_~0, the approximate (or B-frame in which the axion is minimally couplef6].
distance from the origin of coordinates, and ¢ to the  This is given by

wall is given by

L y=\3¢+8, (5.16
b=-3a, 59 nd brings Eq(5.14) to the form[(...),=d(...)/d7]
while the maximum apparent velocity of this wall is y2= 2+ 1207 + 1207 +A%e 2%+ 20 @vy(y, ).
Dma='. (5.10 (5.179

Equation(5.17) is, in fact, the Hamiltonian constraint ob-

The velocity of a particle moving against the walls is tained from the actionX2=8wG)
S

V= VY Y (5.12)

}\5 2 2 2 2
. . P . . . S: Z d7[¢7_y7+12(¢+7+ lp—‘r)
and it will not be scattered infinitely many times if there is

some region of the potential which the particle enters and — A2e26_ e~ 2(3Y)y 51
from which it cannot catch up with the wall, i.e., if € € (¢:)]. (5.18
- = ., The canonical momenta are then
Vp=\YH Y <a
- A
~ P2+ ¢ %+ (112 ¢’ 2+ (1/112) A%e 2467 %:?S b,
(5.12
. L ' . N

Clearly, this condition is fulfilled in every case unlegs my=— ?Syﬂ

=A=0 (no dilaton and axion—that is, the general relativity
vacuum regimg which reflects the fact that a particle cannot

be scattered infinitely many times and tlia¢re is no chaos T =6Nsth s,
in the Einstein frameThis result is expected since in the
Einstein frame both dilaton and axion fields behave as stiff m_=6Asy_., (5.19

fluids with the equation of state=go. A numerical discus-
sion of 10-dimensional axion-dilaton low-energy effective-
action models in the Einstein frame where nine dimensions

and the Hamiltonian is just

were split into three isotropic 3-dimensional spaces leading H= i 7o — it — (7l + 72)
effectively to our anisotropic 4-dimensional model, was also AN P Y 12n T T
given in Ref.[27] with the same final conclusion about the \2 \2
non-existence of chaos. S A2p— 244 S o—(213)y *
+—A + Y, . 2
7 A% 5 € () (5.20

B. String frame and axion frame . . . .
g Following the analysis of the previous section, V A, we see

In the String frame we can use the same parametrizatiorhat the maximum apparent Ve|ocity of the wall @it <

as in Eq(5.1), but we just drop the tildes. The potenti&l2) 1 4 ~0 is given by
can also be used without tildes. In that parametrization Eq.
(3.5 becomes 1
Umax=—"=Y7 5.2
max 2\/§y ( 1)

U I 1 .
a?= i+ — Gt pe TPV (P + AT M ad.
(5.13 and the condition for chaotic scatterings to cease is just that

After applying thg variableg a_ndq& defined by Eq(4.5 we D= W< v,
can remove thepa term, obtaining 23
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1 1 tial that is open only along three narrow channels. The walls
~ \/1p2+7+ P+ 1—2¢3+1—2A2e*2¢ ,  (5.22  of this “almost closed” potential of Fieon-Heiles type ex-
pand outwards as the singularity is reached. Whereas in the
vacuum models of general relativity, the universe point al-
This is Clearly fulfilled except in the general relatiVity case ways catches the walls and bounces Chaotica”y around
where¢=A=0 (i.e., no axion and dilaton fielglsThis gives  wjithin the potential, in string theory the universe point need
our final conclusion thathere is no chaos in BIX string never catch the walls. If it is moving towards a wall at a very
cosmology in the string or axion frames oblique angle then the normal component of its velocity to-

It is not surprising that the physical behavior should bewards the wall can become too small for it ever to catch the
similar in every framd8], so that if there is no chaos in the wall. In general, we find that this situation always arises after
Einstein frame there should not be chaos in any other framey finite number of collisions have occurred in the Mixmaster
String theory appears to impose too much symmetry througBtring cosmology. The resulting asymptotic state is therefore
its duality invariances for chaos to appéar. similar to that in a model with no potential walls at all; that

is, to the Bianchi type | or Kasner universe.
VI. DISCUSSION
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related to parts of the general solution of Einstein’s equations FRAME
in the neighborhood of a strong curvature singularity of the
sort that characterizes the initial state of general relativisticﬁme_dependent antisymmetric tensor poterBial=B. ()
cosmological models. This behavior has also been exten—S iven in Ref[3] to the axisymmetric Biar?chi tWe IX
sively investigated because it is of intrinsic mathematical® g L It has b ) 4] th ty h tential yp tb
interest. It is also known that its occurrence in general relal'0de It Nas been prov alsuch a potential cannot be

tivity depends upon the dimensionality of space. We invesf’idmltted o a generdl.e. non-axisymmetric cageHowever,

tigated the string cosmological equations for the type Ixto achieve this, we first give the components of Ricci tensor

metric. We found that chaotic behavior does not occur infor the axisymmetric Bianchi type IX model in terms of co-

string cosmoloav in either the Einstein or the strind or aXionordinates rather than in orthonormal frames of Sec. Il. For
9 ology . . 9 .1 the sake of generality, we start with a general metric.

frames. While it is possible for finite sequences of oscilla- ; . ; ;

. . , ! The metric(2.9) in a coordinate frame has the following

tions to occur in the scale factors’ evolution on approach to

In this appendix we discuss a possibility of admittinig a

t=0, these oscillations cannot continue indefinitely. Theycomponents.

inevitably terminate in a state in which all the three orthogo- goo=1, (A1)
nal scale factors decrease with decreasing time monotoni-

cally on approach to the initial singularity. We investigated g71= — C(1), (A2)
the detailed sequences of evolutionary changes that can take

place in the evolution during the finite sequences of oscilla- Uz=—[a%(t)cofy+bA(t)sirty], (A3)
tions between epochs which are well approximated by Kas-

ner universes. We found that the duality symmetry required g33= —sirte[a%(t)sirfy+ b2(t)coy]

of the string evolution introduced new invariances for the

possible changes in the Kasner parameters in addition to —c?(t)cos'o, (A4)
those which characterize the Kasner-to-Kasner cycles of os- 5

cillations. The requirements of duality invariance on the evo- g13=—C*(t)cosd, (AS5)
lution of the metric appear to be so constraining that chaotic o ) ) ) )

behavior is excluded. We have obtained these results in two 023= — singrcogpsing[a(t) —b*(t)]. (A6)

complementary ways: by direct matching of asymptotic ex- .

pansions to the solutions of the sytem of non-linear ordinar ; ;
differential equations of string cosmology and by use of thecalculated using the relatiofs] [cf. Egs.(2.9~(2.12)]

Hamiltonian formulation of cosmology. In the Hamiltonian R .—el kR A7
. . . . ap™ €aCpRjk s (A7)
picture the evolution of the type IX string cosmology is rep-
resented as the motion of a “universe point” inside a poten- -
P P RE=elefR", (A8)

whereR,; is the Ricci tensor in the coordinate frame while
10Chaos has been studied in other related situations in[R&f. R is the Ricci tensor in the orthonormal frarf@rrespond-
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ingly @,8=0,1,2,3 are the coordinate frame indices and R%: RS, (A18)
i,j=0,1,2,3 are the orthonormal frame indigethus, 1,2,3
refer to o, 02,03, while 1,2,3 refer to, 6, ¢ respectively. 2 1, 2,02
According to Eqs(2.10—(2.12, RZ_COSZl//RlJFS'nZ"bRZ' (AL9)
e;—= acosy, R%z siff YR} +cogyR3, (A20)
ez=asinysing, Ri=[ —siryR}— codyR3+ R3] cod),
(A21)
e2=bsiny, (A9) _
R§= sinycosysing(RI—R3), (A22)
2 .
e;= —bcos/sing,
3 singcosp
e, g (R—RD, (A23)
eg—: ccod, R3= — sinycosjcotd(Ri—R2), (A24)
and R=0, (A25)
1 7
er=— asmwcota, (A10) R;=0. (A26)
_ 1 If two axes are the sanja(t) =b(t)] the metric(2.9) [or
eéz_cos/,cow, its components given by Eg9A1)—(A6)] simplifies to
b [11,12
eT:E ds?=dt?—c?(dy+ cosfdp)?— a?(d 6§+ sirf 0d ¢?).
3= 5 (A27)
— The nonvanishing Christoffel symbols for the met(&27)
efzacos,zf, (A11) are
7 € 5 a 3 a
5 1 01 g’ 102 ' 03 g’
eEZBsim//, c a a
1 (€ a o . o .
3 1 siny FF(;‘; cos, I7=cc, I =aa,
€174 sing’ 3 B
Fg—3=Ccco§0+aasin20, F(l)—szé:ccosﬁ,
3 1 cosy
©2= " b sing - o1c? o1 [c2-a?
FZZE —200'09, ngﬂ 2 00520— 1/,
Then, the Ricci tensor components in the coordinate a sin a
frame are given by (A28)
=C?Rg;, Al2 > 1lc¢? > c?—a?
1 3 (A12) Fg—l=— —sing, I'2. = sinfcosd ,
2 32 33 a2
220= a200§ $R11+ bzsinzlﬂRzz, (A13)
2 ; 2 ; 2 3 1c¢® 1 3 1c?
33= a’sirtysirt OR,;+ b?cog yYsir? OR,,+ c2coS IRy, >=--——, I'=cotg| 1--—].
12 2 g2 sind 23 252
(A14)
Riz=Cc?cofRg;3, (A15) The gradients of the dilaton calculated with respect to the
metric (A27) are given by
Ry3=singcosysind(a’Ry;— bR,,), A16 - .
23= sinycosysing(aRyy 22) (A16) VevOs— (A29)
Rz=0, (A17) .
- ¢C.
1,_ -
and Vivig= o, (A30)
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and
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V2Vih=V3Vi=_¢, (A31)
- .[c a
VaVig=¢ c 5/ co%,
(A32)
VohVOd= 2. (A33)
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The equation of motion foh-field obtained via integrability
conditions is then

VAV ,h+V#pV h=0. (A41)

One can easily see that for the time-independent antisymmet-
ric tensor potentiaB,,,=B,,,(x) theh field can only depend

on time and Eq(A41) reads as

The nonzero components of the Ricci tensor in a coordi-
nate frame for the metri€A27) can be obtained from Eqgs. which integrates to give
(A12)—(A26) by putting RI=R5 and using Eqs(2.17—

(2.20 for a=b or directly using the Christoffel symbols.

This gives
) o a 1c¢t
Riy=¢c+2cc-+5—, Rz=Rgicos,
a 24
=aa+a’+é C+1 L Roo= ¢ 251
p—aata aaE E?’ 00— E 5,
(A34)
R33=R11C0s 0+ Ry5Sirt 6,
so
0o S5 (A35)
o ¢ “a’
Ri—é Zac L A36
1 ¢ “ac 24 (A36)
R b a2+ac 1 1¢? A37
2~ 3_a a2 ac a2 2a4’ ( )
T ([a ¢ ac a 1 c? 9 38
3acaca2a2a4co’ (A38)
and the Ricci scalar reads
R= ZC 46.1 4ab G 1+102 A39
- “c a ac g2 g2 24 (A39)

Note that in the coordinate franfezzfz R%while in the ortho-
normal framgcf. Egs.(2.18,(2.19] RI=R3. This is reason-

able, since

the metric tensor is given by E427), for the

former case, and by E@2.9 with a=b for the latter case,

where the indices refer to the orthonormal basis rather than

to the chosen coordinates.

Now we convert our notation in terms of the three-index
torsion fieldH to the notation given ifi3] using the pseudo-

scalar torsi
=0,1,2,2)

on fieldh. Following [3] we define @,8,u,v

Heve=ePet Ph 4. (A40)

h+ a+b+t h+¢h=0 A42
atete $h=0, (A42)
hoa®
=—Ape (A43)
so from Eq.(A40) we have
— A
H= - —— A44
a’b?c?sind (Ad4)
or
Hi;z=Asind, (A45)

as required by Eq(2.25 andH?= —6A%ab?c2. With the

H field chosen as above the equation of moti@13) is easily
fulfilled. There is also a trivial solution of EqA42), h=0,

but it corresponds to a constant torsion field. For the time-
independent pseudoscalar axion field=h(x) [time-
dependent antisymmetric tensor potenigl,=B,,(t)] the
equation of motionA41) reads

*d,h+T1 d’h=0, (A46)
which for the metric(2.9) reads as

gUa5h+gZ25h-+ g*d3h + g2 arsh + gZcothzh =O0.
(A47)

For simplicity, let us introduce

(H,)?=H ,,gH"*P=—2e%%(5,9°— 87,9"°)d,hd,h,
(A48)

H2=H,,,zH**~. (A49)
The non-zero components of these quantitibe energy-

momentum tensgrwhich are used in the field equations
(2.1)—(2.3) for the metric component\27) are given by

(Hp)2=—2€?%(g*gthazh+ 29 gzh a3

+g2azhazh + g% azhaszh), (A50)
(H})?=—262(ggihagh + g2z
+9§&37w§h), (A51)
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(H3)2=—26?%(g " gharh+ 2g™gzhazh

+g3azhazh), (A52)
(H?2= - 262%(gMg3haih+ g a3hagh
+g?2azhah), (A53)
(Hy)2=2e**(g* arhash+ g azhazh),
(A54)
and
H2= - 6e*#(g* a1haih+ 29 3arhash
+g?2ashazh+ g%ashazh). (ASS5)
With the choice
dzh=Esing+#0 gth=ad;h=0, (A56)
the field equations remain homogeneous and
_ — — E2e2¢
0 1 2
(Hp)?=(HD?=(H3)?=2 2 (A57)
(H)?=0, (A58)
I, E2g2¢
(H3)?=2——co9, (A59)
a
E2e2?
H%2=6 5 (A60)
a

and the equation of motio(A47) becomes

7221
9%4,(Esing)=0, (A61)
and it is satisfied. Finally, from EqA40), we have
N Ee¢’
HOZ=——o) (A62)
a‘c
Hoz=Ece?, (A63)

andH?=6Ee?*?/a. This obeys the axion equation of motion
(2.3 but is in contradiction with the axisymmetry condition
for the Ricci component§A37) since R5=Rj there while
(H%)2=O and Q—I%)%&O here.

A possible ansatz which would satisfy the axisymmetry
condition would be

B Ba(t)sing
~ Ja(t)ZsirP0+c(t)%co26’

1 (A64)

but it leads to both time and space dependences of the pseu-
doscalar axion fieldh=h(t,, ), and does not satisfy the
equation of motion(A41) [nor Eq.(A47) which is obtained
for h=h(x)].

One could also try to add

dh=D=const, (AB5)

to the nonzero componeriA56), but again this does not
satisfy the equatiofA47).

The final conclusion is that one is not able to impose the
axion field even in axisymmetric BIX models despite the fact
that there is a distinguished direction in the mogehich is
different from electromagnetic field case—sEgEL]). The
reason seems to be that even in the axisymmetric case there
is still SO(3) symmetry group present and we are only add-
ing an additional symmetr O(2) which does not cancel the
former one, giving the total symmet&O(3)® SO(2) rather
than justSO(2).
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