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From inflation to a zero cosmological constant phase without fine-tuning
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(Received 31 December 1997; published 5 May 1998

We show that it is possible to obtain inflation and also solve the cosmological constant problem. The theory
is invariant under changes of the Lagrangian derisity L +const. Then the constant part of a scalar field
potentialV cannot be responsible for inflation. However, we show that inflation can be driven by a condensate
of a four index field strength. A constraint appears which correlates this condensateAfter a conformal
transformation, the equations are the standard GR equations with an effective scalar field pétgntihich
has generally an absolute minimwih=0 independently o/ and without fine tuning. We also show that,
after inflation, the usual reheating phase scendr@n oscillations around the absolute minimuis possible.
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One of the biggest puzzles of modern physics is what igstarting from the same looking form of Lagrangiame not
referred to as the “cosmological constant problem,” i.e. theequivalent in the context of the NGVE theories. The NGVE
absence of a possible constant part of the vacuum energy theory in the first order formalism leads to the resolution of
the present day univergé]. On the other hand, many ques- the cosmological constant problem in a straightforward way
tions in modern cosmology appear to be solved by the sok5,6], and in this paper, we will follow this approach. Fur-
called “inflationary model” which makes use of a big effec- thermore, in the spirit of the theory, which assumes indepen-
tive cosmological constant in the early univerfg]. A  dence of the measure degrees of freedom fgom, the first
possible conflict between a successful resolution of the cogrder formalism, where the independencegf, andg,,,, in
mological constant problem and the existence of an inflationthe action is assumed, is of course much more natural.

ary phase could be a “potential Achilles heel for the sce- According to the NGVE principle, the total action in the
nario” as has been pointed o{]. Here we will see that 4-dimensional space-time should be written in the fddm

fdLd*x. We assume thdt does not contain the measure
Ids ¢4, that is the fields by means of whieh is defined.
It this condition is satisfied, then the theory has an additional

indeed there is no conflict between the existence of an infla-
tionary phase and the disappearance of the cosmologic

gﬁ??;aen;;léhgflzfé i)uhnailggs of cosmological evolutioith symnleltries[4]. We start from the total Lagrangian derjsity
In Refs.[4,5,6] we have developed an approach where theld‘= " R(F’O?)Rﬂl:m’ wherehLm IS tlhe matter Lalgr?nglan

cosmological constant problem is treated as the absence O_F nflg ?IE]) of( th'g)s Igceﬁt'%escatﬁrthgu;]{?;lgeco(nn’ggt'on

gravitational effects of a possible constant part of the La_g my P ime wi ! !

: ) : ; T (the first order formalism i ; that is, in the action
grangian density. In order to achieve this, we assume that t v (the first order fo sm is used; ’ © action,

- . . )
measure of integration in the action is not necessafityg d N cognectlorl_“ugl and th? nletrllycgwrare gyn?mE?J? n-
[g=Det(g,,)] but it is determined dynamically through epsn fnt varia ¢SRM( )=Ruva(D), R;_w_ﬁ( )_= uv,B
additional degrees of freedom. This theory is based on thd 'xgl u»— (v B). This curvature tensor is invariant under
demand that such a measure respects the principle of nof1€ N transformation(7] ' /S=T"7,+ &\, . Its importance
gravitating vacuum energyNGVE principl® [4] which N the_: NGVE theory is tha_t allows us to eliminate the con-
states that the Lagrangian densitycan be changed tb tr|but|0n to the torsion which appears as a result of the in-
+const without affecting the dynamics. This requirement istroduction of the new measufé]. However, even after we
imposed in order to offer a new approach for the solution offiX @ gauge where this contribution to the torsion disappears,
the cosmological constant problem. Clearly this invariance istill there is the non-metric contributid®] to the symmetric
achieved if the measure of integration in the action is a totafonnection related to the measure. In fact, solving the equa-
derivative. This is satisfied if the measure appropriate td!o"S following from the variation of the action with respect
the integration in the space of 4 scalar fielgg, a O I',, (in the case wheré,, does not depend on the con-
=1,...,4, isdV=de;/A\...Nde,=(P/41)d*x where ® nectionFZ,,) and making use of the appropriatetransfor-
Esal_‘_a48m...u4(aﬂl¢al)___((9“4%4)_ mation, we get

There are two well-known variational principles: the first
and the second order formalisms, which are equivalent in the szz W}+22V @)
case of the general theory of relativi(GR). However, as

was shown[5], the first and the second order formahsmswhere{zv} are the Christoffel’'s connection coefficients and
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57 FROM INFLATION TO A ZERO COSMOLOGICA. . ..

x=®/-g. 3 ss, the constral > 28
quence of the variational principle in any situation.

In addition to this, in the vacuum and in some matter A simple situation where the constraifif) is not auto-
models, the theory possesses a local symmetry which playsraatic is the case of a single scalar field with a nontrivial
major role. This symmetry consists of a conformal transfor-potentialV(¢). In this case the constraiff) implies
mation of the metricg;LV(x) =J(x)g,.,(x) accompanied by a
corresponding  diffeomorphismp,— .= ¢,(¢p,) in the
space of the scalar fieldg, such thatJ=Det(d¢,/dey). ) )
Then for® we haved’(x)=J(x)®(X). In the presence of Therefore we conclude that, providde 0, there is no dy-
models where it holds it is possible to choose a gauge wher@raint(8) forces this scalar field to be a constgs}. Insert-
the measure coincides with the measure of general relativ-ing Ed. (8) into Eq. (6), we obtainClx**~$R(g)x"*=0.
ity, V—g. This is why we call this symmetry local Einstein This conformal coupling of*** with R(g) shows that on the
symmetry(LES). mass shell the LES is restoréthis can be seen in all the

Varying the action with respect t, we get other equations as wellMaking use then of the gauge
=1, we see thaR(g) =0 and therefore the only maximally
symmetric solution is Minkowski space. Consistency with
the scalar field equation requirss=dV/d¢$=0; that is, ¢
is located on an extremum &f(¢).

As follows from our analysis above, a model with only a
scalar field cannot give rise to inflation since the gravita-
tional effects of the scalar field potential are always can-
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o=Iny, fields. Nevertheless, the constraifit) holds as a conse-

V(¢)+M=0. (8)

ARl [(—1/k)R(T',g)+Ly]=0
where

Ag =g ala2a3b8M1M2’u3a( &Ml(pal) ( ‘9;42@&2) ( (9M3(Pa3) :

Since Ald,pp =30y ®, it follows that Det@y) celled by the integration constaiht. We will see that non-
=(4"%41)®3. If ®+0, we obtain trivial dynamics of a single scalar field including the
possibility of inflation can be obtained by considering a
1 model with an additional degree of freedom described by a
~ < R(I9) +Lym=M=const. @ three-index potentiah,,, as in the Lagrangian density

Varying the action with respect tg*” we get(for sim-

1 1 1
plicity we present here the calculations for the case when L==—R(I'9)+5¢.,¢*~V(¢)+ EFaBWF“ﬁ’”-
there are no fermions ’ 9
9
! L HereF 5,,=,Ag,.1 is the field strength which is invari
—;R#V(F)JragW:O. (5) ereF ,5,,=d[aAp,, IS the field strength which is invari-

ant under the gauge transformatién, ,— Az, ,+ d;pf .. -

In ordinary 4-dimensional GR, the gz, ,F*"*” term gives
rise to a cosmological constant depending on an integration
constan{8]. In our case, as a result of the constrdif)t the
degrees of freedom containedfy s, and those of the sca-

In the case wheré, does not depend ohy,,, Eq. (4)
takes the form

Ox"?- %[R(g)—K(Lm—M)]X”Z:O (6)

whereR(g) is the Riemannian scalar curvature.
Contracting Eq(5) with g*” and making use Eq4) we
get the constraint

lar field ¢ will be intimately correlated. The sign in front of
the F,z,,F*#*" term is chosen so that in this model the
resulting expression for the energy density of the scalar field
¢ is a positive definite one for any possible space-time de-
pendence ofp in an effective “Einstein picture”(see be-
low). Notice also that the two last terms in the action with

the Lagrangian(9) break explicitly the LES.
é’(Lm_ M) e .
w— T~ (L,—M)=0 7) The gravitational equation®) now take the form
&g/.LV m '
For the cases where the LES is an exact symmetry, we
can eliminate the above-mentiongaontribution to the con-
nection. Indeed, fod=y we gety'=1 and Fl’f;= wot s
where{; }" are the Christoffel's coefficients corresponding
to the new metricg;w. In this gauge the metric-affine space-

time becomes a Riemannian space-tifmethe absence of

1 1 1 up
R+ 56,0+ GFuapyF"7=0. (10

Notice that the scalar field potenti®l(¢) does not appear
explicitly in Egs. (10). However, the constrain7), which
takes now the form

fermions. 1
In the presence of matter, the LES may be lost. However, V($)+M=—=F FaBuv (11)
the theory still makes sengé®] and the resolution of the g abur '

cosmological constant problem is retained. Together with

this, the LES appears to have a deep geometric meqfijing allows us to express the last term in Eg0) in terms of the
Now let us consider cases when the constréiitis not  potential V(¢) (using the fact thatF*f#’«cg®Pu? in 4-

satisfied without restrictions on the dynamics of the mattedimensional space-time
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Varying the action with respect ®,,,5, we get the equa- if V+M happens not to touch zero for any value gfwe
tion aﬂ(de“”“ﬁ)=0. Its general solution has a forisee always have an infinite set of other integration constants
definition (3)] where this will happen.

In the context of cosmology, for the Friedmann-
Robertson-Walker universe where in the Einstein pictire
=¢(t) and ds°=g, dx“dx"=dt?—a?(t)dI?, dI?=[dr?/
(1—kr?)+r2dQ?], we notice that due to the positivity of
FaPrr Vg, all the known inflationary scenaridg] for the very

A
FaBuy— __ caBuv= SOIBMV, (12

x-g

where \ is an integration constant. TheR,g,,

= —\241/x? and therefore early universe can be implemented depending on the choice
of the potentialV(¢). It is very interesting that the param-
V(¢p)+M=3\?/x? (13 eters ruling the inflation are controlled by the integration
constantdV andA.
andF ,.g,F %"=~ (6)\%/x))9,,= —2[V(¢) +M]g,,, (no- After inflation, when the scalar fieldp approaches the

tice thatF , 5,,,F “#** is not a constant now as opposed to theposition ¢, of the absolute minimum of the potentiell;;,

GR casg8]). This shows how the potenti®l(¢) appears in  the y field approaches infinity as seen from the constraint
Eq. (10), spontaneously violating the symmetry of the action(13). To clarify the meaning of this effect, let us go back to
V(¢)— V() +const, which now corresponds to a redefini- the picture with the originag,,, while still using the cosmic

tion of the integration constamd. time t that was defined in the Einstein picture. Then the
The equation of motion of the scalar fielg is equation forg is

(—9) Y%9,(V=09""9,¢) + 0., +V'($) =0, whereV’

=Vlag. Looa. 3V L VM
The derivatives of the fieldr enter both in the gravita- ¢+37 ¢- AVEM) ¢+ 3 V'=0, (17

tional equations(10) (through the connectignand in the
scalar field equation. In order to see easily the physical con-

tent of this model, we have to perform a conformal transfor-Wherea“(t =a*(t)/x(1), goo{t) = /x(1) and constrain(13)
' have been used.

mationaﬂ,,(x)=)(gw(x) to obtain an “Einstein picture.” :
Notice that now this transformation is not a symmetry and Generally,qs_does hot g0 to Z€ro a— ¢o [a_nd V(d’)_
+M—0]. In this asymptotical region we can find the first

indeed changes the form of equations. In this new frame, the : , . .
gravitational equations become those of GR in the Riemann'f-megr"’“.of Eq.(17). Assuming thal’ (o) #0, i.e. without
; . . — ine tuning, we get
ian space-time with metrig,,,,,
L pad(t)=c[V(4)+M]¥% c=const (as ¢— o),

Ru0ep)~ 5 0uR(Gep) = 5 Tol(B),  (14) (18
which means that(t)—0 as ¢— ¢, (notice that if we
where the source is the minimally coupled scalar fig)d would have chosen a coordinate frame in the original picture
such thads’=dt’2—a?(t’)dI?, then instead of Eq18) we
would have gottena®(t’)d¢/dt’=c[V(¢)+M]¥? as ¢
—¢g). Then integrating the gravitational equations we get
_ _ _ asymptotically(as ¢— ) thata?(t)=a3/x(t), a,=const;
with the new effective potential that is, in the original frame there is a collapse of the uni-
verse from a finitex to a=0 in a finite time and therefore the
Riemannian curvature goes to infinity @s— ¢,. This pa-
thologyis not seerin the Einstein frame due to the singular-
ity of the conformal transformatioa®= ya? at ¢=¢,. In
The scalar field equation takes a conventional formfact, this is not a problem from the point of view of physics,
(—9) ¥22,(N—99""3,8) + VL) =0. Notice again that Since as— ¢, [andV(¢)+M—0], the LES becomes re-

the potentiaV,(¢) is a non-negative one which is a result stored at the critical poin= ¢, whereV(¢o)+M=0. In
of the choice of sign in front of thE FePuv termin Eq. the presence of the LES, the conformal transformation

1— - —
To( )= b= 5 9usbadpd™+ 9 Ver(d) (19

2 3/2
VeffE ﬁ(v-i- M), (16)

afuy —
(9). 9,,(X)=x9,.,(x) becomes part of the LES transformation
We see that in the Einstein picture, for any analit{ep), and represents a non-singular gauge choice.
Vei1(¢) has an extremum, that M;;=0, either whenV’ A real problem in the scenario discussed above is the fact

=0 or V+M=0. The extremum whe/+M=0 corre- that at the pointp= ¢y we haveVq;=0, V. ;=0 but Vg,
sponds to an absolute minimufisince V¢i1(¢) is non-  diverges atp= ¢o. This causes problems both in the cosmo-
negativd and therefore it isa vacuum with zero effective logical picture when considering the possibility of small os-
cosmological constantt should be emphasized that all that cillations around the minimum and in the associated particle
is required is tha¥ + M touch zero asomepoint ¢ but V'’ physics, since masses of scalars, like for example the Higgs
at this point does not need to vanish. Therefuodine tuning  boson mass, will appear always infinite.

in the usual sense, of adjusting a minimum of a potential to It turns out that the model with the Lagrangian deng&ty
coincide with the point where this potential itself vanishes, isdescribed above is only a representative of a family of pos-
required. And the situation is even more favorable since everible models with action§= [®Ld*x where



_ 1 1 ,a
L= ~RI.Q)+ 50t

1
— (-F

aBuvyp
4p—-1 F "

—V(¢)- (19

afuv

where stillF ,5,,,=d[,Ag,, - Herep#1/4 is a real number
parametrizing the family of Lagrangiarf49). In this case,
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are finite at the absolute minimump= ¢, where V(¢g)
+M=0. In particular, V2 ¢o)=[V' ()] is finite [and
non-zero if we do not carry out the fine tunivj( ¢g) =0].
Therefore the Higgs boson, in particular, can reappear as a
physical particle of the theory. In the context of cosmology
whereVe( @) plays the role of the inflaton potential, a finite
mass of the inflaton allows one to recover the usual oscilla-
tory regime of the reheating period after inflation that is usu-

once again solving the equation of motion obtained fromally considered.

variation with respect t@ ,,, and then using the associated

constraint that replaces E@ll) we obtain instead of Eq.
(13

1
AZ/XZ:Q[V(@JFM]Z*“P. (20)
Then instead of Eq16) the associated effective potential
in the Einstein picture is

(V+M)2~ Y, (21)

1
Vesi= ——=
T \24

As before, the extremum wheén+M =0 corresponds to
an absolute minimuntfor any p>1/2) and therefore it isa
vacuum with zero effective cosmological constalie can
now notice that the limipp—c is critical one, since in this
limit Vesi=(1/\\24)(V+M)?, and for any analytical func-
tion V(¢), all derivatives of the effective potenti®@l.;¢( )

The incorporation of gauge fields and fermions into the
family of Lagrangians(19) has also many interesting fea-
tures in the Einstein picture like the appearance of normal
Maxwell dynamics in the low energy limit in the Abelian
case and standard Yang-Mills behavior in the non-Abelian
case, the appearance of mass for fermions, etc. In the asso-
ciated particle physics, the—« limit has remarkable fea-
tures as well. These subjects will be studied in a longer pub-
lication [9].

The picture presented here should be regarded as a pre-
liminary one. In particular, questions that concern reheating
and density perturbations have to be analyzed. Here, in ad-
dition to the usual possibility of choosing the potential of the
scalar field which governs the cosmological processes men-
tioned before, this model has the additional integration con-
stantsM and A which also enter in the effective potential.
Therefore we hope that this model will provide more possi-
bilities to obtain naturally the correct density perturbations
and reheating.
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