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From inflation to a zero cosmological constant phase without fine-tuning

E. I. Guendelman* and A. B. Kaganovich†

Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
~Received 31 December 1997; published 5 May 1998!

We show that it is possible to obtain inflation and also solve the cosmological constant problem. The theory
is invariant under changes of the Lagrangian densityL to L1const. Then the constant part of a scalar field
potentialV cannot be responsible for inflation. However, we show that inflation can be driven by a condensate
of a four index field strength. A constraint appears which correlates this condensate toV. After a conformal
transformation, the equations are the standard GR equations with an effective scalar field potentialVe f f which
has generally an absolute minimumVe f f50 independently ofV and without fine tuning. We also show that,
after inflation, the usual reheating phase scenario~from oscillations around the absolute minimum! is possible.
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One of the biggest puzzles of modern physics is wha
referred to as the ‘‘cosmological constant problem,’’ i.e. t
absence of a possible constant part of the vacuum energ
the present day universe@1#. On the other hand, many que
tions in modern cosmology appear to be solved by the
called ‘‘inflationary model’’ which makes use of a big effe
tive cosmological constant in the early universe@2#. A
possible conflict between a successful resolution of the c
mological constant problem and the existence of an inflati
ary phase could be a ‘‘potential Achilles heel for the sc
nario’’ as has been pointed out@3#. Here we will see that
indeed there is no conflict between the existence of an in
tionary phase and the disappearance of the cosmolog
constant in the later phases of cosmological evolution~with-
out the need of fine tuning!.

In Refs.@4,5,6# we have developed an approach where
cosmological constant problem is treated as the absenc
gravitational effects of a possible constant part of the
grangian density. In order to achieve this, we assume tha
measure of integration in the action is not necessarilyA2g
@g5Det(gmn)# but it is determined dynamically throug
additional degrees of freedom. This theory is based on
demand that such a measure respects the principle of
gravitating vacuum energy~NGVE principle! @4# which
states that the Lagrangian densityL can be changed toL
1const without affecting the dynamics. This requiremen
imposed in order to offer a new approach for the solution
the cosmological constant problem. Clearly this invarianc
achieved if the measure of integration in the action is a to
derivative. This is satisfied if the measure appropriate
the integration in the space of 4 scalar fieldswa , a
51, . . . ,4, is dV5dw1`...`dw4[(F/4!)d4x where F
[«a1 ...a4

«m1 ...m4(]m1
wa1

)...(]m4
wa4

).
There are two well-known variational principles: the fir

and the second order formalisms, which are equivalent in
case of the general theory of relativity~GR!. However, as
was shown@5#, the first and the second order formalism
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~starting from the same looking form of Lagrangian! are not
equivalent in the context of the NGVE theories. The NGV
theory in the first order formalism leads to the resolution
the cosmological constant problem in a straightforward w
@5,6#, and in this paper, we will follow this approach. Fu
thermore, in the spirit of the theory, which assumes indep
dence of the measure degrees of freedom fromgmn , the first
order formalism, where the independence ofGmn

l andgmn in
the action is assumed, is of course much more natural.

According to the NGVE principle, the total action in th
4-dimensional space-time should be written in the formS
5*FLd4x. We assume thatL does not contain the measu
fields wa , that is the fields by means of whichF is defined.
If this condition is satisfied, then the theory has an additio
symmetries@4#. We start from the total Lagrangian densi
L5k21R(G,g)1Lm , where Lm is the matter Lagrangian
density and R(G,g) is the scalar curvatureR(G,g)
5gmnRmn(G) of the space-time with the affine connectio
Gmn

l ~the first order formalism is used; that is, in the actio
the connectionGmn

l and the metricgmn are dynamically in-
dependent variables!, Rmn(G)5Rmna

a (G), Rmnb
a (G)[Gmn,b

a

1Glb
a Gmn

l 2(n↔b). This curvature tensor is invariant unde
the l transformation@7# Gmn8a5Gmn

a 1dm
al,n . Its importance

in the NGVE theory is that allows us to eliminate the co
tribution to the torsion which appears as a result of the
troduction of the new measure@6#. However, even after we
fix a gauge where this contribution to the torsion disappe
still there is the non-metric contribution@6# to the symmetric
connection related to the measure. In fact, solving the eq
tions following from the variation of the action with respe
to Gmn

l ~in the case whereLm does not depend on the con
nectionGmn

l ! and making use of the appropriatel transfor-
mation, we get

Gmn
l 5$mn

l %1Smn
l ~1!

where$mn
a % are the Christoffel’s connection coefficients an

Smn
l ~s!5

1

2
~dm

l s,n1dn
ls,m2s,agmngla! ~2!
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s[ ln x, x[F/A2g. ~3!

In addition to this, in the vacuum and in some mat
models, the theory possesses a local symmetry which pla
major role. This symmetry consists of a conformal transf
mation of the metricgmn8 (x)5J(x)gmn(x) accompanied by a
corresponding diffeomorphismwa→wa85wa8(wb) in the
space of the scalar fieldswa such thatJ5Det(]wa8/]wb).
Then forF we haveF8(x)5J(x)F(x). In the presence o
fermions this symmetry is appropriately generalized@6#. For
models where it holds it is possible to choose a gauge wh
the measureF coincides with the measure of general relat
ity, A2g. This is why we call this symmetry local Einstei
symmetry~LES!.

Varying the action with respect towa we get

Ab
a]a@~21/k!R~G,g!1Lm#50

where

Ab
a5«a1a2a3b«m1m2m3a~]m1

wa1
!~]m2

wa2
!~]m3

wa3
!.

Since Ab
a]awb85

1
4 dbb8F, it follows that Det(Ab

a)
5(424/4!)F3. If FÞ0, we obtain

2
1

k
R~G,g!1Lm5M5const. ~4!

Varying the action with respect togmn we get ~for sim-
plicity we present here the calculations for the case w
there are no fermions!

2
1

k
Rmn~G!1

]Lm

]gmn 50. ~5!

In the case whereLm does not depend onGmn
a , Eq. ~4!

takes the form

hx1/22
1

6
@R~g!2k~Lm2M !#x1/250 ~6!

whereR(g) is the Riemannian scalar curvature.
Contracting Eq.~5! with gmn and making use Eq.~4! we

get the constraint

gmn
]~Lm2M !

]gmn 2~Lm2M !50. ~7!

For the cases where the LES is an exact symmetry,
can eliminate the above-mentionedx contribution to the con-
nection. Indeed, forJ5x we get x8[1 and Gmn8a5$mn

a %8,
where$mn

a %8 are the Christoffel’s coefficients correspondin
to the new metricgmn8 . In this gauge the metric-affine spac
time becomes a Riemannian space-time~in the absence o
fermions!.

In the presence of matter, the LES may be lost. Howev
the theory still makes sense@5# and the resolution of the
cosmological constant problem is retained. Together w
this, the LES appears to have a deep geometric meaning@6#.

Now let us consider cases when the constraint~7! is not
satisfied without restrictions on the dynamics of the ma
r
s a
-

re

n

e

r,

h

r

fields. Nevertheless, the constraint~7! holds as a conse
quence of the variational principle in any situation.

A simple situation where the constraint~7! is not auto-
matic is the case of a single scalar field with a nontriv
potentialV(f). In this case the constraint~7! implies

V~f!1M50. ~8!

Therefore we conclude that, providedFÞ0, there is no dy-
namics for the theory of a single scalar field, since the c
straint~8! forces this scalar field to be a constant@5#. Insert-
ing Eq. ~8! into Eq. ~6!, we obtainhx1/22 1

6 R(g)x1/250.
This conformal coupling ofx1/2 with R(g) shows that on the
mass shell the LES is restored~this can be seen in all the
other equations as well!. Making use then of the gaugex
51, we see thatR(g)50 and therefore the only maximall
symmetric solution is Minkowski space. Consistency w
the scalar field equation requiresV8[]V/]f50; that is,f
is located on an extremum ofV(f).

As follows from our analysis above, a model with only
scalar field cannot give rise to inflation since the gravi
tional effects of the scalar field potential are always ca
celled by the integration constantM . We will see that non-
trivial dynamics of a single scalar field including th
possibility of inflation can be obtained by considering
model with an additional degree of freedom described b
three-index potentialAbmn as in the Lagrangian density

L52
1

k
R~G,g!1

1

2
f,af ,a2V~f!1

1

4!
FabmnFabmn.

~9!

HereFabmn[] [aAbmn] is the field strength which is invari
ant under the gauge transformationAbmn→Abmn1] [b f mn] .
In ordinary 4-dimensional GR, theFabmnFabmn term gives
rise to a cosmological constant depending on an integra
constant@8#. In our case, as a result of the constraint~7!, the
degrees of freedom contained inFabmn and those of the sca
lar field f will be intimately correlated. The sign in front o
the FabmnFabmn term is chosen so that in this model th
resulting expression for the energy density of the scalar fi
f is a positive definite one for any possible space-time
pendence off in an effective ‘‘Einstein picture’’~see be-
low!. Notice also that the two last terms in the action w
the Lagrangian~9! break explicitly the LES.

The gravitational equations~5! now take the form

2
1

k
Rmn~G!1

1

2
f,mf,n1

1

6
FmabgFn

abg50. ~10!

Notice that the scalar field potentialV(f) does not appea
explicitly in Eqs. ~10!. However, the constraint~7!, which
takes now the form

V~f!1M52
1

8
FabmnFabmn, ~11!

allows us to express the last term in Eq.~10! in terms of the
potential V(f) ~using the fact thatFabmn}«abmn in 4-
dimensional space-time!.
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Varying the action with respect toAnab , we get the equa-
tion ]m(FFmnab)50. Its general solution has a form@see
definition ~3!#

Fabmn5
l

F
«abmn[

l

xA2g
«abmn, ~12!

where l is an integration constant. ThenFabmnFabmn

52l24!/x2 and therefore

V~f!1M53l2/x2 ~13!

andFmabgFn
abg52(6l2/x2)gmn522@V(f)1M #gmn ~no-

tice thatFabmnFabmn is not a constant now as opposed to t
GR case@8#!. This shows how the potentialV(f) appears in
Eq. ~10!, spontaneously violating the symmetry of the acti
V(f)→V(f)1const, which now corresponds to a redefin
tion of the integration constantM .

The equation of motion of the scalar fieldf is
(2g)21/2]m(A2ggmn]nf)1s,mf ,m1V8(f)50, whereV8
[]V/]f.

The derivatives of the fields enter both in the gravita
tional equations~10! ~through the connection! and in the
scalar field equation. In order to see easily the physical c
tent of this model, we have to perform a conformal transf
mation ḡmn(x)5xgmn(x) to obtain an ‘‘Einstein picture.’’
Notice that now this transformation is not a symmetry a
indeed changes the form of equations. In this new frame,
gravitational equations become those of GR in the Riema
ian space-time with metricḡmn ,

Rmn~ ḡab!2
1

2
ḡmnR~ ḡab!5

k

2
Tmn

e f f~f!, ~14!

where the source is the minimally coupled scalar fieldf,

Tmn
e f f~f!5f ,mf ,n2

1

2
ḡmnfafbḡab1ḡmnVe f f~f! ~15!

with the new effective potential

Ve f f[
2

l3)
~V1M !3/2. ~16!

The scalar field equation takes a conventional fo

(2ḡ)21/2]m(A2ḡḡmn]nf)1Ve f f8 (f)50. Notice again that
the potentialVe f f(f) is a non-negative one which is a resu
of the choice of sign in front of theFabmnFabmn term in Eq.
~9!.

We see that in the Einstein picture, for any analyticV(f),
Ve f f(f) has an extremum, that isVe f f8 50, either when V8
50 or V1M50. The extremum whenV1M50 corre-
sponds to an absolute minimum@since Ve f f(f) is non-
negative# and therefore it isa vacuum with zero effectiv
cosmological constant. It should be emphasized that all th
is required is thatV1M touch zero atsomepoint f0 but V8
at this point does not need to vanish. Thereforeno fine tuning
in the usual sense, of adjusting a minimum of a potentia
coincide with the point where this potential itself vanishes
required. And the situation is even more favorable since e
n-
-

d
e

n-

o
s
n

if V1M happens not to touch zero for any value off, we
always have an infinite set of other integration consta
where this will happen.

In the context of cosmology, for the Friedman
Robertson-Walker universe where in the Einstein picturef

5f(t) and ds̄25ḡmndxmdxn5dt22ā2(t)dl2, dl25@dr2/
(12kr2)1r 2dV2#, we notice that due to the positivity o
Ve f f , all the known inflationary scenarios@2# for the very
early universe can be implemented depending on the ch
of the potentialV(f). It is very interesting that the param
eters ruling the inflation are controlled by the integrati
constantsM andl.

After inflation, when the scalar fieldf approaches the
positionf0 of the absolute minimum of the potentialVe f f ,
the x field approaches infinity as seen from the constra
~13!. To clarify the meaning of this effect, let us go back
the picture with the originalgmn while still using the cosmic
time t that was defined in the Einstein picture. Then t
equation forf is

f̈13
ȧ

a
ḟ2

3V8

4~V1M !
ḟ21

AV1M

l)
V850, ~17!

wherea2(t)5ā2(t)/x(t), g00(t)51/x(t) and constraint~13!
have been used.

Generally,ḟ does not go to zero asf→f0 @and V(f)
1M→0#. In this asymptotical region we can find the fir
integral of Eq.~17!. Assuming thatV8(f0)Þ0, i.e. without
fine tuning, we get

ḟa3~ t !.c@V~f!1M #3/4, c5const ~as f→f0!,
~18!

which means thata(t)→0 as f→f0 „notice that if we
would have chosen a coordinate frame in the original pict
such thatds25dt822a2(t8)dl2, then instead of Eq.~18! we
would have gottena3(t8)df/dt8.c@V(f)1M #1/2 as f
→f0…. Then integrating the gravitational equations we g
asymptotically~as f→f0! that a2(t)5a0

2/x(t), a05const;
that is, in the original frame there is a collapse of the u
verse from a finitea to a50 in a finite time and therefore th
Riemannian curvature goes to infinity asf→f0 . This pa-
thology is not seenin the Einstein frame due to the singula
ity of the conformal transformationā25xa2 at f5f0 . In
fact, this is not a problem from the point of view of physic
since asf→f0 @and V(f)1M→0#, the LES becomes re
stored at the critical pointf[f0 whereV(f0)1M50. In
the presence of the LES, the conformal transformat
ḡmn(x)5xgmn(x) becomes part of the LES transformatio
and represents a non-singular gauge choice.

A real problem in the scenario discussed above is the
that at the pointf5f0 we haveVe f f50, Ve f f8 50 but Ve f f9
diverges atf5f0 . This causes problems both in the cosm
logical picture when considering the possibility of small o
cillations around the minimum and in the associated part
physics, since masses of scalars, like for example the H
boson mass, will appear always infinite.

It turns out that the model with the Lagrangian density~9!
described above is only a representative of a family of p
sible models with actionsS5*FLd4x where
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L52
1

k
R~G,g!1

1

2
f,af ,a

2V~f!2
1

4p21
~2FabmnFabmn!p, ~19!

where stillFabmn[] [aAbmn] . HerepÞ1/4 is a real number
parametrizing the family of Lagrangians~19!. In this case,
once again solving the equation of motion obtained fr
variation with respect toAmna and then using the associate
constraint that replaces Eq.~11! we obtain instead of Eq
~13!

l2/x25
1

24
@V~f!1M #221/p. ~20!

Then instead of Eq.~16! the associated effective potenti
in the Einstein picture is

Ve f f[
1

lA24
~V1M !221/2p. ~21!

As before, the extremum whenV1M50 corresponds to
an absolute minimum~for any p.1/2! and therefore it isa
vacuum with zero effective cosmological constant. We can
now notice that the limitp→` is critical one, since in this
limit Ve f f5(1/lA24)(V1M )2, and for any analytical func-
tion V(f), all derivatives of the effective potentialVe f f(f)
In

I

s.
are finite at the absolute minimumf5f0 where V(f0)
1M50. In particular,Ve f f9 (f0)}@V8(f0)#2 is finite @and
non-zero if we do not carry out the fine tuningV8(f0)50#.
Therefore the Higgs boson, in particular, can reappear a
physical particle of the theory. In the context of cosmolo
whereVe f f(f) plays the role of the inflaton potential, a finit
mass of the inflaton allows one to recover the usual osc
tory regime of the reheating period after inflation that is us
ally considered.

The incorporation of gauge fields and fermions into t
family of Lagrangians~19! has also many interesting fea
tures in the Einstein picture like the appearance of norm
Maxwell dynamics in the low energy limit in the Abelia
case and standard Yang-Mills behavior in the non-Abel
case, the appearance of mass for fermions, etc. In the a
ciated particle physics, thep→` limit has remarkable fea-
tures as well. These subjects will be studied in a longer p
lication @9#.

The picture presented here should be regarded as a
liminary one. In particular, questions that concern reheat
and density perturbations have to be analyzed. Here, in
dition to the usual possibility of choosing the potential of t
scalar field which governs the cosmological processes m
tioned before, this model has the additional integration c
stantsM and l which also enter in the effective potentia
Therefore we hope that this model will provide more pos
bilities to obtain naturally the correct density perturbatio
and reheating.
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o-
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