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Topological inflation with multiple winding
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We analyze the core dynamics of critically coupled, superheavy gauge vortices (@t dimensional
Einstein-Abelian Higgs system. By numerically solving the Einstein and field equations for various values of
the symmetry breaking scale, we identify the regime in which static solutions cease to exist and topological
inflation begins. We explicitly include the topological winding of the vortices into the calculation and extract
the dependence on the winding of the critical scale separating the static and inflating regimes. Extrapolation of
our results suggests that topological inflation might occur within high winding strings formed at the grand
unified scale[S0556-282(98)06112-9

PACS numbds): 98.80.Cq

[. INTRODUCTION significantly below the Planck scale, the spacetime around a
static cosmic string is conicdB], with a deficit angle pro-

Two of the most exciting possibilities suggested by mod-portional to »°. However, asy increases to the order of the
ern particle cosmology are the production of topological de-Planck mass, the deficit angle approachesahd static so-
fects and the existence of an inflationary stage in the earljutions cease to exi$#]. Recently, the criterion for topologi-
universe. In the last few years it has been pointed out indecal inflation has been made more precise by numerical simu-
pendently by Vilenkin[1] and by Linde[2] that these two lations of the spacetime structure around various defects:
phenomena may be related. A necessary condition for inflagauge monopolef5], domain walls[6], and global mono-
tion to occur is that the energy density of the universe bepoles[6,7]. These analyses all focus on defects with unit
dominated by the vacuum energy of a homogeneous scal&pological charge, and find that in that case, the criterion for
field, called the “inflaton.” Correspondingly, a central fea- topological inflation is
ture of topological defects is that their cores are regions of
spacetime in which a scalar field is forced to sit out of its 7> 7¢,=0.33M. 1.9
vacuum manifold, taking a value corresponding to a false
vacuum. Hence, the cores of topological defects are regionghe aim of this paper is first to verify that the above criterion
in which energy density is trapped in the form of the vacuumholds for the important case of gauge cosmic strings and,
energy of a scalar field. Vilenkin and Linde realized that if second, to investigate how the criteria for topological infla-
the energy density trapped in a defect core and the core rdion depend on the topological charge of the defects consid-
dius itself were large enough, this energy could be considered.
ered uniform(i.e. horizon sizef and the core would satisfy Our motivations are twofold. First, for defects of unit
the conditions for inflation. This scenario is what is known aswinding, Eq.(1.1) implies that, to realize topological infla-
topological inflation The advantage of this implementation tion, we must work very close to the Planck scale, at which
is that, while traditionally the necessary conditions requireour field theories may not be valid. Further, it is clear that
the fine tuning of a scalar potential, here inflation is inevi-topological inflation cannot occur at the grand unified theory
table if the vacuum manifold of the theory at high tempera-(GUT) scale for unit winding defects. We hope that, when
tures satisfies a topological constraint. Thus, the question dfigher topological charges are included, these constraints
initial conditions becomes one of topology. will be alleviated and the value of., will decrease. In fact,

If defects are produced when a scalar field gets a vacuurane might expect such behavior from considering the static
expectation value equal tg in the early universe, then an string solutions, since the deficit angle we mentioned above
approximate criterion proposed by Vilenkin and Linde foris also dependent on the windimg and so static solutions
topological inflation to occur isp>m,, wherem, is the  should cease to exist for lower values gfif n>1. The
Planck mass(Note that the energy density in the scalar field spacetime structure for such higher winding strings is the
is proportional tox »* which is assumed to be less than thefocus of this paper.

Planck energy densityThe supposition that, under this con-  Our second motivation comes from models in which par-
dition, time-dependent defect solutions are inevitable is supticles are described as solitof8, and in particular from the
ported by the traditional solutions for the spacetime arounddual standard mode[9]. In this theory, all the standard
for example, a cosmic string. At symmetry breaking scalesnodel particles arise as monopoles of some bosonic field
theory. In such a model it is natural to wonder what happens
to matter at high densities when the core structure of the

*Email address: aad4@po.cwru.edu solitons becomes important. For example, stars can be seen
"Email address: trodden@theory1.phys.cwru.edu as collections of huge numbers-(0°") of monopoles. If the
*Email address: txv7@po.cwru.edu. monopoles become squeezed together tightly enough for a

0556-2821/98/5(1.2)/71866)/$15.00 57 7186 © 1998 The American Physical Society



57 TOPOLOGICAL INFLATION WITH MULTIPLE WINDING

large region of the star to be in the false vacuum with high
winding, might topological inflation occur?

In the present work, fueled by the above considerations,
we consider the simple example of an Abelian-Higgs vortex
with winding n in 2+1 spacetime dimensions. We do so
because it is easier to work with multiple winding vortices
than the analogous monopoles, although the problem of
monopoles fom>1 is under consideration. In the next sec-
tion we present the model and the equations of motion we
solve. We give our initial conditions and describe how we
expect solutions to behave in some asymptotic regimes. In
Sec. lll, we briefly discuss the implementation of the numeri-
cal algorithms we use to solve the equations and in Sec. IV
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we present our results. Section V contains a discussion of the
results and their implications for topological inflation.

1 N
+ —2h2f2——ec(f2— 7?2, (2.6
r 4
Il. MODEL
Consider the Abelian Higgs model with a complex scalar i Ben e © oo L oo
field ® and aU(1) gauge fieldA,, coupled to gravity in f-—e 1"+ 7h f+ E(B+C)f

2+1 spacetime dimensions. The action is

A
—e B f’+§(f2— 7?)f=0,

Lilec
T E( )

1
167G

R+L|, (2.7

S= f d3x\V—g

2.7

whereR is the Ricci scalar and the Lagrangian density for ) 1. .
the matter fields is h—e Bh"— E(C_ B)h
-B ’

1 e h
L=(D,®)*D*®——F , Fr'=V(D). (2.2 +T(C’+B’)h’+e‘BT+262f2h=0, (2.8

47w

Here, the covariant derivative B,®=(V ,+ieA,)P, the
gauge field strength i§,,=dJ,A,—d,A,, and the scalar

where an overddjprime) denotes a derivative with respect to

W time (r). At all times, we insist that the two additional con-

potential is straint equations
A ) L C’ !
V(®)= 2 (P* D=7, (2.3 BC+e ® —2c"—c'2+B'c'—4T+2T
i 327 . ¢ eBC
with A, e constants andy a mass scale. =2 f2 4 o Bfr24 h2+ h'2
In cylindrical polar coordinatesr( 8), we make the usual mr2> 2622 262r2
Nielsen-Olesen stringnsatzfor the fields
-C
e A
. 2¢2 2 2\2
(I)(X)Zf(l’,t)eme, +r—2h f +Z(f - n°) (2.9
1
A= ZIh(rD =], and
., .., ... C B 3m__ eC
where the integen is the winding number of the string. The —2C'-CC'+BC _2T+ZT:F 2ff’+ Ezrzhh
metric Ansatzis P (2.10

ds?=dt?—eBdr2—eCrtr2g 62, (2.9 be satisfied.

Now consider the initial conditions for these equations.
whereB and C are functions of the radial coordinate and We begin with a cylindrically symmetric string configuration
time. for the fieldsf andh, which is initially static. We define the

TheseAnsdze lead to four Einstein equations and two metric to be initially flat but with non-vanishing first time
field equations for a total of four unknown functiors: C, f derivatives. For the metric, these conditions are simply
and h. Two of the six equations are first order in time de-implemented as
rivatives and are the constraint equations. The four equations
we solve are

B(r,0)=C(r,00=0, (2.12)
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with B(r,0) andC(r,0) obtained from the constraint equa-

tion (2.9). For the fields, however, we need the initial profile

functions f(r,0) andh(r,0). To simplify this process, we

work in the Bogomoln’yi limitdefined by Thus, any inflationary behavior we observe should have an
associated Hubble constadtthat satisfies

2
B(O,t)~C(0,t)~(87-r)\)1’2(l) t. (2.18
my

_ A =1 2.1
=oa2 b (212 n\2
H<(8\)Y3 — (2.19

In this case, there are no forces between static strings and the P

energy saturates a topological bound. Since we are primarily T . . .
concerned with gravitational effects, we do not expect results . Our Intuition for_ believing that hlgh(_ar topological charges
for B#1 to be significantly different. In the Bogomoln'yi will alley|at(e_ the_hlgh symmetry breaking scales_ requwed_ for
limit, the static field equations reduce to the two first ordermp()log'c"’II |nflat|on comes from t\.NO SOUTCEs. First, 'cons!der

the asymptotic form of the metric for static cosmic string

equations solutions(in 2+1 dimensions
hf
’ B-C)/2 — ~
' +el®-o— o, (2.13 ds?, =dt?—dr?—r2de?, (2.20
A where @ is the angle in a locally Minkowski but globally
r e aBHO)2r g2 2y i . ! . .
h'+ 51€ (f*=7%=0, 214 conical spatial section, taking values in the range

which can be solved numerically. 5 7
Our procedure is as follows. We first complete our initial 0= 0<27r( 1—4n| —2) . (2.21
conditions by solving Eqgs(2.13, (2.14 subject to the mp
boundary conditions
For strings of unit winding, this metric is applicable as long

lim f(r)=7 as the deficit angle is less thanr2that is, for symmetry
r—e breaking scaley<m,. However, for higher winding, static
solutions cease to exist for
h(0)=—n. (2.15
2
We then solve Eqs(2.5), (2.6), (2.7), (2.8) with the initial 4|n|<l) <1. (2.22
conditions we have just described. Throughout the evolution mp

we verify that the constraint equatiof.9), (2.10 are sat-
isfied at each step as a check of our numerical scheme. Thus, we expect that asymptotically static solutions become
For a given topological charge, this procedure is per- impossible at a lower critical symmetry breaking scale for
formed over a range of values of the symmetry breakinglefects with multiple windings and we might guess that the
scaler. We define a solution exhibiting topological inflation critical value of » at which static solutions cease to exist
to be one for which the total physical volumé, (), in the  falls off as 14/n. It is natural to wonder if the same is true in
core of the defect is increasing exponentially. We definghe core of these defects, although, of course, the absence of
V(1) by static solutions does not guarantee that the core will inflate.
Second, a perturbative analysis of the matter fields around

Y (t)Ewar*(t)drr eXF{B(I’,t)-FC(I’,t)} (219 the center of such defects demonsrates that defects with

* 0 2 ’ ’ [n|>1 have a wider core and higher energy density than the
corresponding unit charge configurations. Both these effects

where the core radius,, (t), is defined by suggest that topological inflation might be more easily

achieved in high winding defects. Unfortunately, it does not
i seem possible to quantitatively understand the effect of mul-
flre(V]= 2" (2.17 tiple windings on topological inflation with an analytic ap-
proach. Thus, here we have solved the system numerically,
Determining the functional form of(n) is the central re- in the spirit of other authors in the unit winding cd43e5,6].
sult of this paper.

It is a useful check of our results that one may simply
derive an upper bound for the expansion rate in the core.
Assume that inflation occurs and that the metric components In this section, we present the results of our numerical
B andC become very large compared to other fields in thesimulations of the (2+1)-dimensional Einstein-Abelian-
core of the defect. Further, assume that only the vacuuriliggs system. The system of non-linear partial differential
energy of the scalar field is important in the core, i.e. thatequations we study is non-trivial to solve numerically.
¢ =0 with no derivatives important there. In this approxima- Therefore, before we present our results, let us briefly dis-
tion, the equations of motion for the metric simplify dramati- cuss the numerical techniques we use, in the hope that this
cally and are easily solved to give discussion will help others investigating similar problems.

IIl. NUMERICAL IMPLEMENTATION AND RESULTS
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A. Numerical implementation 12

There are two stages to solving the equations. The first is 10
to generate the field configurations that will serve as the ini- .
tial values for the time dependent evolution equations, and o
the second is to integrate the partial differential equations
that describe the time dependence of the fields. To attack the
former, we observe that the Bogomoln'yi equatidi@sl3
and(2.14) have asymptotic solution

o N s~ O

lim f(r)~for", (3.1

r—0

wheref, is a constant of integration. This constant can be
used as a free parameter in a shooting method solution to the
boundary value problem. We find that shooting is effective
in generating accurate solutions out to a radius af,1€uf-
ficient for both fields to reach thefr—«~ asymptotic values

for the windings we consider.

With the initial conditions in hand, we must now consider
how to integrate the time dependent partial differential equa- G, 1. The metric field8(r) andC(r) for ann=1 string with
tions. Typically one replaces derivatives with finite differ- symmetry breaking scalg=0.2m,> 7, . The functions are plot-
ence approximations. For a generic variallfr,t), one ted at equal time steps with the higher amplitude curves occurring
solves for values on a latticg(r,t)—y!, where subscripts at later times.
indicate the position in the space lattice and superscripts in-
dicate the location in the time lattice. Derivatives are re-whereF just represents the terms on the right hand side of

B

o]
(o]
—_
o

rm

placed with finite difference approximations, e.g. the equation. Treating as an independent variable such that
oyt aylyin Cl"'=C]"'+2dtC], we found that it is necessary to evalu-
y~ BT — ate C implicitly for Eq. (3.3 to be stable, i.e.
. o citt-¢ci-t .
s (i —qr — (C"=FL (34
dr2

The above quadratic has two solutions, but one may easily
obtain the right one by taking the limit a&— 0 and noting

which are second order approximationsdnanddr. How-  that, for the correct roolC] "*—Cl™* should vanish. These
ever, there is in general no guarantee that a particular diffeSuggestions worked well for us, although they do not repre-
encing scheme is stable. That is to say, for poor schemes ti§€nt the only stable differencing schemes and they may not
result from integrating the difference equations may divergéleneralize to other similar problems.

exponentially from the true solution. To test the differencing

methods, we may use the stability analysis for linear equa- B. Results

tions which is covered in any good reference on partial dif-
ferential equationgsee e.g{10], Chap. 19, and references
therein. The results of such an analysis also provide goo
intuition when dealing with the non-linear equations for the
metric and fields we are considering. For our equations, we . : =
find that when solving fof andh, stability is assured if the W'th symme?ry breaking scale;—O.Zmp> Ter - FOI com-
spatial derivatives of these fields are evaluated implicitly.par'son’ in Fig. 2 we show the same fields fomans5 string

That is, for thejth time step we evaluate the second spatialv.wth 1=0.07> 7, . These plots demonstrate that the metric
derivative off as fields grow exponentially in the core but that the core size

decreases exponentially. It is the competition between these
f”=(y{Ii—2yf+l+y§f%)/dr2, (3.2 two effects that d_etermings whethgr inflation occurs or not.
In both cases inflation is occurring in the core of the de-
and similarly for the others. At each time step, the implicit fect, although this is not clear until we apply our criterion
scheme gives us a set of coupled linear equations for théhat the total volume of physical space be increasing expo-
fields f1 ™1 and h! ™!, solving which reduces to inverting a nentig!ly in the core. Note that,_ as an_artifact. of our initial
tri-diagonal matrix, a standard problem in linear algebra. weeonditions, there is an _|n|t|al period of time during which the
also find that care is needed when evaluating the metri€yStem relaxes to its final state. _ _
equations(2.5) and (2.6). Both can be written in the form _ To illustrate how the criterion is applied, Fig. 3 shows
. V/V as a function of time& for two values ofz, one for
C+C?=F, (3.3  which the core inflates, and the other for which it does not,

As we mentioned in Sec. Il, our strategy was to evolve the
d’nitial configurations for a given value of the windimg for
various values of the scalg. As an example, in Fig. 1 we
ghow the metric field8(r,t) andC(r,t) for ann=1 string
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FIG. 2. The metric field8(r) andC(r) for ann=>5 string with FIG. 4. A log-log plot of 7., , in units ofm,, versus the topo-
symmetry breaking scalg=0.07m,> 7., . The functions are plot- logical chargen. The “error bars” denote the ranges within which
ted at equal time steps with the higher amplitude curves occurringve could numerically brackey., . Their differing sizes reflect our
at later times. initial trial and error guesses for the bracketing.

for two cases of the topological winding=1 andn=5. It  where
is the qualitative difference between these two classes of
scales that allows us to home in a),=0.16 forn=1 and

7er=0.06 forn=5. In then=1 case, the lower curve ap- This is in excellent agreement with the naive estimate
pears to turn up at late times. We believe this to be due to our 9 alis

rigid definition of the core radius, which does not take ac-_ 0.5 obtained by analyzing the point at which the static

count of oscillations that appear in the matter fields. HOW_asymptotlc metric ceases to exist.

ever, finite-size effects in the simulations limit our ability to
test this. IV. CONCLUSIONS AND DISCUSSION

Finally, in Fig. 4 we show the relationship betweeg,
and the topological chargeon a log-log plot. The points are
best fit by a linear relationship

a=0.16, p=—0.56. (3.6

We have analyzed the onset of topological inflation in the
cores of cosmic string solutions to the Einstein-Abelian-
Higgs system in 21 dimensions. For a soliton in a given
—— (3.5) sector of topological charge, inflation occurs in the defect

“f ' core if the symmetry breaking scaigis greater than a criti-
cal value n..(n). The functional dependence af., on the

° ' bt ' winding n was determined numerically and was found to be
I 1 monotonically decreasing roughly, though not exactly, as
1R n=1 T 1/\n. This result supports the intuition about defects with
§ - . multiple windings gained from the asymptotic metric of
oL static solutions and from perturbative analyses of the core
| | fields. If our results can be extrapolated to very lang@nd
L if string§ with spch a high windiljg fqrm in phase transition.s,
-1 then it is possible that topological inflation could occur in
0.4 — T GUT scale defects.
- . The present analysis is especially relevant in theories in
0.2 L =5 4 which particles are viewed as solitons. In these theories one
> | i would expect that, at high densities, the solitonic nature of
~ . .
L . particles would become important. Our results then show
that, provided the number of particles is large enough, the
i i tightly squeezed state of particles can start inflating. This
-020 : ; : L't : E'; : é : T may be relevant for the gravitational collapse of stars since

the number of particles in a star is of order®10In the
context of the dual standard model, all particles correspond
FIG. 3. V/V as a function of time for two values ofy, one for 0 magnetic monopoles and so we would expect the present
which the core inflategupper curve in each figureand the other ~considerations to apply there also. However, in this model,
for which it does noflower curve in each figubefor two cases of baryon number is not a conserved quantity and it is possible
the topological windingn=1 andn=5. that the star evaporates before inflation can set in, much like

tn
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in the scenarios recently considered iri,12]. nate topological inflation after a certain number of e-folds?
A number of related investigations are suggested by ou¥We hope to return to some of these questions in future in-

analysis. First, is it possible that the collision of a monopolevestigations.

and an antimonopole can result in an inflating region? Some

years ago, Farhi, Guth and GuvglB] considered the possi-

bility of creating a universe in particle collisions. Is their

(negative conclusion applicable even in soliton collisions? We would like to thank Inyong Cho, Martin Lemoine,

Second, we have only considered strings at critical couplingGlenn Starkman and Alex Vilenkin for helpful discussions.

For different choices of couplings, the strings could attract ofA.D. and T.V. are thankful to the U.S. Department of Energy

repel each other. How do our results depend on the couplingPOE) for support. The work of M.T. was supported by the

constants? Does the instability of higher winding strings toDOE, the National Science Foundation, and by funds pro-

decay into those of lower winding come into play and termi-vided by Case Western Reserve University.
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