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Topological inflation with multiple winding
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We analyze the core dynamics of critically coupled, superheavy gauge vortices in the~211!-dimensional
Einstein-Abelian Higgs system. By numerically solving the Einstein and field equations for various values of
the symmetry breaking scale, we identify the regime in which static solutions cease to exist and topological
inflation begins. We explicitly include the topological winding of the vortices into the calculation and extract
the dependence on the winding of the critical scale separating the static and inflating regimes. Extrapolation of
our results suggests that topological inflation might occur within high winding strings formed at the grand
unified scale.@S0556-2821~98!06112-8#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Two of the most exciting possibilities suggested by mo
ern particle cosmology are the production of topological
fects and the existence of an inflationary stage in the e
universe. In the last few years it has been pointed out in
pendently by Vilenkin@1# and by Linde@2# that these two
phenomena may be related. A necessary condition for in
tion to occur is that the energy density of the universe
dominated by the vacuum energy of a homogeneous sc
field, called the ‘‘inflaton.’’ Correspondingly, a central fea
ture of topological defects is that their cores are regions
spacetime in which a scalar field is forced to sit out of
vacuum manifold, taking a value corresponding to a fa
vacuum. Hence, the cores of topological defects are reg
in which energy density is trapped in the form of the vacu
energy of a scalar field. Vilenkin and Linde realized that
the energy density trapped in a defect core and the core
dius itself were large enough, this energy could be con
ered uniform~i.e. horizon sized!, and the core would satisfy
the conditions for inflation. This scenario is what is known
topological inflation. The advantage of this implementatio
is that, while traditionally the necessary conditions requ
the fine tuning of a scalar potential, here inflation is ine
table if the vacuum manifold of the theory at high tempe
tures satisfies a topological constraint. Thus, the questio
initial conditions becomes one of topology.

If defects are produced when a scalar field gets a vacu
expectation value equal toh in the early universe, then a
approximate criterion proposed by Vilenkin and Linde f
topological inflation to occur ish.mp , where mp is the
Planck mass.~Note that the energy density in the scalar fie
is proportional tolh4 which is assumed to be less than t
Planck energy density.! The supposition that, under this con
dition, time-dependent defect solutions are inevitable is s
ported by the traditional solutions for the spacetime arou
for example, a cosmic string. At symmetry breaking sca
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significantly below the Planck scale, the spacetime aroun
static cosmic string is conical@3#, with a deficit angle pro-
portional toh2. However, ash increases to the order of th
Planck mass, the deficit angle approaches 2p and static so-
lutions cease to exist@4#. Recently, the criterion for topologi
cal inflation has been made more precise by numerical si
lations of the spacetime structure around various defe
gauge monopoles@5#, domain walls@6#, and global mono-
poles @6,7#. These analyses all focus on defects with u
topological charge, and find that in that case, the criterion
topological inflation is

h.hcr[0.33mp . ~1.1!

The aim of this paper is first to verify that the above criteri
holds for the important case of gauge cosmic strings a
second, to investigate how the criteria for topological infl
tion depend on the topological charge of the defects con
ered.

Our motivations are twofold. First, for defects of un
winding, Eq. ~1.1! implies that, to realize topological infla
tion, we must work very close to the Planck scale, at wh
our field theories may not be valid. Further, it is clear th
topological inflation cannot occur at the grand unified theo
~GUT! scale for unit winding defects. We hope that, wh
higher topological charges are included, these constra
will be alleviated and the value ofhcr will decrease. In fact,
one might expect such behavior from considering the st
string solutions, since the deficit angle we mentioned ab
is also dependent on the windingn, and so static solutions
should cease to exist for lower values ofh if n.1. The
spacetime structure for such higher winding strings is
focus of this paper.

Our second motivation comes from models in which p
ticles are described as solitons@8#, and in particular from the
dual standard model@9#. In this theory, all the standard
model particles arise as monopoles of some bosonic fi
theory. In such a model it is natural to wonder what happ
to matter at high densities when the core structure of
solitons becomes important. For example, stars can be
as collections of huge numbers (;1057) of monopoles. If the
monopoles become squeezed together tightly enough f
7186 © 1998 The American Physical Society
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57 7187TOPOLOGICAL INFLATION WITH MULTIPLE WINDING
large region of the star to be in the false vacuum with h
winding, might topological inflation occur?

In the present work, fueled by the above consideratio
we consider the simple example of an Abelian-Higgs vor
with winding n in 211 spacetime dimensions. We do s
because it is easier to work with multiple winding vortic
than the analogous monopoles, although the problem
monopoles forn.1 is under consideration. In the next se
tion we present the model and the equations of motion
solve. We give our initial conditions and describe how w
expect solutions to behave in some asymptotic regimes
Sec. III, we briefly discuss the implementation of the nume
cal algorithms we use to solve the equations and in Sec
we present our results. Section V contains a discussion o
results and their implications for topological inflation.

II. MODEL

Consider the Abelian Higgs model with a complex sca
field F and aU(1) gauge fieldAm , coupled to gravity in
211 spacetime dimensions. The action is

S5E d3xA2gS 1

16pG
R1LD , ~2.1!

whereR is the Ricci scalar and the Lagrangian density
the matter fields is

L5~DmF!* DmF2
1

4
FmnFmn2V~F!. ~2.2!

Here, the covariant derivative isDmF5(¹m1 i eAm)F, the
gauge field strength isFmn5]mAn2]nAm , and the scalar
potential is

V~F!5
l

4
~F* F2h2!, ~2.3!

with l, e constants andh a mass scale.
In cylindrical polar coordinates (r , u), we make the usua

Nielsen-Olesen stringAnsatzfor the fields

F~x!5 f ~r ,t !einu,

Au5
1

e
@h~r ,t !2n#,

where the integern is the winding number of the string. Th
metric Ansatzis

ds25dt22eB~r ,t !dr22eC~r ,t !r 2du2, ~2.4!

where B and C are functions of the radial coordinate an
time.

TheseAnsätze lead to four Einstein equations and tw
field equations for a total of four unknown functions:B, C, f
and h. Two of the six equations are first order in time d
rivatives and are the constraint equations. The four equat
we solve are
h

s,
x
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eB~22C̈2Ċ2!5
32p

mp
2 FeBḟ 21 f 821

eB2C

2e2r 2
ḣ21

e2C

2e2r 2
h82

2
eB2C

r 2
h2f 22

l

4
eB~ f 22h2!2G , ~2.5!

eC~22B̈2Ḃ2!5
32p

mp
2 FeCḟ 22eC2Bf 822

1

2e2r 2
ḣ2

1
e2B

2e2r 2
h82

1
1

r 2
h2f 22

l

4
eC~ f 22h2!2G , ~2.6!

f̈ 2e2Bf 91
e2C

r 2
h2f 1

1

2
~Ḃ1Ċ! ḟ

2e2BF1

r
1

1

2
~B81C8!G f 81

l

2
~ f 22h2! f 50,

~2.7!

ḧ2e2Bh92
1

2
~Ċ2Ḃ!ḣ

1
e2B

2
~C81B8!h81e2B

h8

r
12e2f 2h50, ~2.8!

where an overdot~prime! denotes a derivative with respect
time (r ). At all times, we insist that the two additional con
straint equations

ḂĊ1e2BS 22C92C821B8C824
C8

r
12

B8

r D
5

32p

mp
2 F ḟ 21e2Bf 821

e2C

2e2r 2
ḣ21

e2B2C

2e2r 2
h82

1
e2C

r 2
h2f 21

l

4
~ f 22h2!2G ~2.9!

and

22Ċ82ĊC81ḂC822
Ċ

r
12

Ḃ

r
5

32p

mp
2 F2 ḟ f 81

e2C

e2r 2
ḣh8G
~2.10!

be satisfied.
Now consider the initial conditions for these equation

We begin with a cylindrically symmetric string configuratio
for the fieldsf andh, which is initially static. We define the
metric to be initially flat but with non-vanishing first tim
derivatives. For the metric, these conditions are sim
implemented as

B~r ,0!5C~r ,0!50, ~2.11!
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7188 57DE LAIX, TRODDEN, AND VACHASPATI
with Ḃ(r ,0) andĊ(r ,0) obtained from the constraint equ
tion ~2.9!. For the fields, however, we need the initial profi
functions f (r ,0) and h(r ,0). To simplify this process, we
work in theBogomoln’yi limitdefined by

b[
l

2e2
51. ~2.12!

In this case, there are no forces between static strings an
energy saturates a topological bound. Since we are prima
concerned with gravitational effects, we do not expect res
for bÞ1 to be significantly different. In the Bogomoln’y
limit, the static field equations reduce to the two first ord
equations

f 81e~B2C!/2
h f

r
50, ~2.13!

h81
l

2
re~B1C!/2~ f 22h2!50, ~2.14!

which can be solved numerically.
Our procedure is as follows. We first complete our init

conditions by solving Eqs.~2.13!, ~2.14! subject to the
boundary conditions

lim
r→`

f ~r !5h

h~0!52n. ~2.15!

We then solve Eqs.~2.5!, ~2.6!, ~2.7!, ~2.8! with the initial
conditions we have just described. Throughout the evolu
we verify that the constraint equations~2.9!, ~2.10! are sat-
isfied at each step as a check of our numerical scheme.

For a given topological chargen, this procedure is per
formed over a range of values of the symmetry break
scaleh. We define a solution exhibiting topological inflatio
to be one for which the total physical volume,V* (t), in the
core of the defect is increasing exponentially. We defi
V* (t) by

V* ~ t ![2pE
0

r
* ~ t !

drr expFB~r ,t !1C~r ,t !

2 G , ~2.16!

where the core radius,r * (t), is defined by

f @r * ~ t !#[
h

2
. ~2.17!

Determining the functional form ofhcr(n) is the central re-
sult of this paper.

It is a useful check of our results that one may simp
derive an upper bound for the expansion rate in the c
Assume that inflation occurs and that the metric compone
B andC become very large compared to other fields in
core of the defect. Further, assume that only the vacu
energy of the scalar field is important in the core, i.e. t
f50 with no derivatives important there. In this approxim
tion, the equations of motion for the metric simplify drama
cally and are easily solved to give
the
ily
ts

r

l

n

g

e

e.
ts
e
m
t

-

B~0,t !;C~0,t !;~8pl!1/2S h

mp
D 2

t. ~2.18!

Thus, any inflationary behavior we observe should have
associated Hubble constantH that satisfies

H,~8pl!1/2S h

mp
D 2

. ~2.19!

Our intuition for believing that higher topological charge
will alleviate the high symmetry breaking scales required
topological inflation comes from two sources. First, consid
the asymptotic form of the metric for static cosmic strin
solutions~in 211 dimensions!

ds211
2 5dt22dr22r 2dũ2, ~2.20!

where ũ is the angle in a locally Minkowski but globally
conical spatial section, taking values in the range

0<ũ,2pS 124unu
h2

mp
2D . ~2.21!

For strings of unit winding, this metric is applicable as lon
as the deficit angle is less than 2p, that is, for symmetry
breaking scalesh!mp . However, for higher winding, static
solutions cease to exist for

4unuS h

mp
D 2

,1. ~2.22!

Thus, we expect that asymptotically static solutions beco
impossible at a lower critical symmetry breaking scale
defects with multiple windings and we might guess that
critical value of h at which static solutions cease to exi
falls off as 1/An. It is natural to wonder if the same is true i
the core of these defects, although, of course, the absen
static solutions does not guarantee that the core will infla

Second, a perturbative analysis of the matter fields aro
the center of such defects demonstrates that defects
unu.1 have a wider core and higher energy density than
corresponding unit charge configurations. Both these effe
suggest that topological inflation might be more eas
achieved in high winding defects. Unfortunately, it does n
seem possible to quantitatively understand the effect of m
tiple windings on topological inflation with an analytic ap
proach. Thus, here we have solved the system numeric
in the spirit of other authors in the unit winding case@7,5,6#.

III. NUMERICAL IMPLEMENTATION AND RESULTS

In this section, we present the results of our numeri
simulations of the ~211!-dimensional Einstein-Abelian
Higgs system. The system of non-linear partial different
equations we study is non-trivial to solve numerical
Therefore, before we present our results, let us briefly d
cuss the numerical techniques we use, in the hope that
discussion will help others investigating similar problems
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57 7189TOPOLOGICAL INFLATION WITH MULTIPLE WINDING
A. Numerical implementation

There are two stages to solving the equations. The firs
to generate the field configurations that will serve as the
tial values for the time dependent evolution equations,
the second is to integrate the partial differential equati
that describe the time dependence of the fields. To attack
former, we observe that the Bogomoln’yi equations~2.13!
and ~2.14! have asymptotic solution

lim
r→0

f ~r !; f 0r n, ~3.1!

where f 0 is a constant of integration. This constant can
used as a free parameter in a shooting method solution to
boundary value problem. We find that shooting is effect
in generating accurate solutions out to a radius of 10h, suf-
ficient for both fields to reach theirr→` asymptotic values
for the windings we consider.

With the initial conditions in hand, we must now consid
how to integrate the time dependent partial differential eq
tions. Typically one replaces derivatives with finite diffe
ence approximations. For a generic variabley(r ,t), one
solves for values on a latticey(r ,t)→yi

j , where subscripts
indicate the position in the space lattice and superscripts
dicate the location in the time lattice. Derivatives are
placed with finite difference approximations, e.g.

ÿ'
yi

j 1122yi
j1yi

j 21

dt2

y9'
yi 11

j 22yi
j1yi 21

j

dr2

A

which are second order approximations indt anddr. How-
ever, there is in general no guarantee that a particular di
encing scheme is stable. That is to say, for poor scheme
result from integrating the difference equations may dive
exponentially from the true solution. To test the differenci
methods, we may use the stability analysis for linear eq
tions which is covered in any good reference on partial d
ferential equations~see e.g.@10#, Chap. 19, and reference
therein!. The results of such an analysis also provide go
intuition when dealing with the non-linear equations for t
metric and fields we are considering. For our equations,
find that when solving forf andh, stability is assured if the
spatial derivatives of these fields are evaluated implici
That is, for thej th time step we evaluate the second spa
derivative of f as

f 95~yi 11
j 1122yi

j 111yi 21
j 11!/dr2, ~3.2!

and similarly for the others. At each time step, the impli
scheme gives us a set of coupled linear equations for
fields f i

j 11 and hi
j 11 , solving which reduces to inverting

tri-diagonal matrix, a standard problem in linear algebra.
also find that care is needed when evaluating the me
equations~2.5! and ~2.6!. Both can be written in the form

C̈1Ċ25F, ~3.3!
is
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whereF just represents the terms on the right hand side
the equation. TreatingĊ as an independent variable such th
Ċi

j 115Ċi
j 2112dtĊi

j , we found that it is necessary to evalu

ate Ċ implicitly for Eq. ~3.3! to be stable, i.e.

Ċi
j 112Ċi

j 21

dt
1~Ċi

j 11!25Fi
j . ~3.4!

The above quadratic has two solutions, but one may ea
obtain the right one by taking the limit asdt→0 and noting
that, for the correct root,Ċi

j 112Ċi
j 21 should vanish. These

suggestions worked well for us, although they do not rep
sent the only stable differencing schemes and they may
generalize to other similar problems.

B. Results

As we mentioned in Sec. II, our strategy was to evolve
initial configurations for a given value of the windingn, for
various values of the scaleh. As an example, in Fig. 1 we
show the metric fieldsB(r ,t) andC(r ,t) for an n51 string
with symmetry breaking scaleh50.2mp.hcr . For com-
parison, in Fig. 2 we show the same fields for ann55 string
with h50.07.hcr . These plots demonstrate that the met
fields grow exponentially in the core but that the core s
decreases exponentially. It is the competition between th
two effects that determines whether inflation occurs or n

In both cases inflation is occurring in the core of the d
fect, although this is not clear until we apply our criterio
that the total volume of physical space be increasing ex
nentially in the core. Note that, as an artifact of our init
conditions, there is an initial period of time during which th
system relaxes to its final state.

To illustrate how the criterion is applied, Fig. 3 show
V̇/V as a function of timet for two values ofh, one for
which the core inflates, and the other for which it does n

FIG. 1. The metric fieldsB(r ) andC(r ) for ann51 string with
symmetry breaking scaleh50.2mp.hcr . The functions are plot-
ted at equal time steps with the higher amplitude curves occur
at later times.
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7190 57DE LAIX, TRODDEN, AND VACHASPATI
for two cases of the topological winding,n51 andn55. It
is the qualitative difference between these two classes
scales that allows us to home in onhcr.0.16 forn51 and
hcr.0.06 for n55. In the n51 case, the lower curve ap
pears to turn up at late times. We believe this to be due to
rigid definition of the core radius, which does not take a
count of oscillations that appear in the matter fields. Ho
ever, finite-size effects in the simulations limit our ability
test this.

Finally, in Fig. 4 we show the relationship betweenhcr
and the topological chargen on a log-log plot. The points are
best fit by a linear relationship

hcr.anp, ~3.5!

FIG. 2. The metric fieldsB(r ) andC(r ) for ann55 string with
symmetry breaking scaleh50.07mp.hcr . The functions are plot-
ted at equal time steps with the higher amplitude curves occur
at later times.

FIG. 3. V̇/V as a function of timet for two values ofh, one for
which the core inflates~upper curve in each figure!, and the other
for which it does not~lower curve in each figure!, for two cases of
the topological winding,n51 andn55.
of

ur
-
-

where

a50.16, p520.56. ~3.6!

This is in excellent agreement with the naive estimatep5
20.5 obtained by analyzing the point at which the sta
asymptotic metric ceases to exist.

IV. CONCLUSIONS AND DISCUSSION

We have analyzed the onset of topological inflation in t
cores of cosmic string solutions to the Einstein-Abelia
Higgs system in 211 dimensions. For a soliton in a give
sector of topological chargen, inflation occurs in the defec
core if the symmetry breaking scaleh is greater than a criti-
cal valuehcr(n). The functional dependence ofhcr on the
winding n was determined numerically and was found to
monotonically decreasing roughly, though not exactly,
1/An. This result supports the intuition about defects w
multiple windings gained from the asymptotic metric
static solutions and from perturbative analyses of the c
fields. If our results can be extrapolated to very largen, and
if strings with such a high winding form in phase transition
then it is possible that topological inflation could occur
GUT scale defects.

The present analysis is especially relevant in theories
which particles are viewed as solitons. In these theories
would expect that, at high densities, the solitonic nature
particles would become important. Our results then sh
that, provided the number of particles is large enough,
tightly squeezed state of particles can start inflating. T
may be relevant for the gravitational collapse of stars si
the number of particles in a star is of order 1057. In the
context of the dual standard model, all particles corresp
to magnetic monopoles and so we would expect the pre
considerations to apply there also. However, in this mod
baryon number is not a conserved quantity and it is poss
that the star evaporates before inflation can set in, much

g

FIG. 4. A log-log plot ofhcr , in units ofmp , versus the topo-
logical chargen. The ‘‘error bars’’ denote the ranges within whic
we could numerically brackethcr . Their differing sizes reflect our
initial trial and error guesses for the bracketing.
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57 7191TOPOLOGICAL INFLATION WITH MULTIPLE WINDING
in the scenarios recently considered in@11,12#.
A number of related investigations are suggested by

analysis. First, is it possible that the collision of a monop
and an antimonopole can result in an inflating region? So
years ago, Farhi, Guth and Guven@13# considered the possi
bility of creating a universe in particle collisions. Is the
~negative! conclusion applicable even in soliton collision
Second, we have only considered strings at critical coupl
For different choices of couplings, the strings could attrac
repel each other. How do our results depend on the coup
constants? Does the instability of higher winding strings
decay into those of lower winding come into play and term
ev
r
e
e

g.
r
g

o
-

nate topological inflation after a certain number of e-fold
We hope to return to some of these questions in future
vestigations.
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