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Evolution of cosmological perturbations in the long wavelength limit
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The relation between the long wavelength limit of solutions to the cosmological perturbation equations and
the perturbations of solutions to the exactly homogeneous background equations is investigated for scalar
perturbations on spatially flat cosmological models. It is shown that a homogeneous perturbation coincides
with the long wavelength limit of some inhomogeneous perturbation only when the former satisfies an addi-
tional condition corresponding to the momentum constraint if the matter consists only of scalar fields. In
contrast, no such constraint appears if the fundamental variables describing the matter contain a vector field as
in the case of a fluid. Further, as a byproduct of this general analysis, it is shown that there exist two universal
exact solutions to the perturbation equations in the long wavelength limit, which are expressed only in terms
of the background quantities. They represent adiabatic growing and decaying modes, and correspond to the
well-known exact solutions for perfect fluid systems and scalar field sys{&0556-282(98)03912-5

PACS numbds): 98.80.Cq

[. INTRODUCTION evolution of perturbations on superhorizon scales are deter-
mined with good accuracy by that on the long wavelength
In the current standard scenario based on the gravitationéimit [4—6]. In this limit the evolution of adiabatic modes is
instability theory, the present large scale structures of theletermined by a set of simple first-order ordinary differential
universe are formed through the following four stages: pro-equations for two gauge-invariant variables, from which fol-
duction of seed fluctuations in the early universe, their lineatows the exact conservation of the Bardeen paran&&i.
evolution on superhorizon scales, the subsequent linediowever, for some important situations, such as the reheat-
modulation after they enter the horizon, and the final nonlining stage of inflation models, this simple analysis does not
ear evolution. In the inflationary universe models the seedvork because the adiabatic mode may produce entropy
fluctuations in the first stage are produced from quantummodes which feed back to the behavior of the adiabatic
fluctuations on the Hubble horizon scales during inflation,moded 7]. In these situations the knowledge of the evolution
and we now have universal formulas to determine their naef perturbations of all the components of matter in the long
ture such as the amplitudes and the spectrum for a wideiavelength limit is required to determine the behavior of the
variety of inflation models. We can now also easily handleBardeen parameter.
the evolution during the third stage because the matter con- In this connection Nambu and Taruya recently wrote an
tent of the universe during this stage is rather simple andhteresting pap€8] in which they stated that solutions to the
restricted. Of course the actual behavior of perturbations ogauge-invariant perturbation equations for a multicomponent
subhorizon scales are quite complicated even in the lineascalar field system on expanding universe in the long wave-
stage, and we need numerical computations to determinength limit are obtained as derivatives of exactly homoge-
their details. neous solutions to the Einstein equations with respect to the
On the other hand universal formulae to determine thesolution parameters. If this result is correct and all the solu-
evolution of perturbations during the second stage have naions to the perturbation equations can be obtained in this
been established yet, although it is generally believed thaway, it provides a very powerful tool to analyze the behavior
the so-called Bardeen parameter is conserved with good aof perturbations during inflation and reheating including the
curacy during this stage and this conservation law essentiallgroblem of the conservation of the Bardeen parameter. How-
determines the amplitudes and the spectrum of perturbatioresver, no proof nor explanation on their statement was given
when they reenter the horizon, from those at the first stagi their paper. Further, direct calculation shows that the per-
[1]. Of course the conservation of the Bardeen parameteurbation equations in the long wavelength limit do not co-
during the Friedmann stage is well established including théncide with those for exactly homogeneous perturbations.
case in which the equation of state of cosmic matter changes In order to see whether or not the statement of Nambu and
slowly [2,3]. The simplicity comes from that fact that the Taruya is true as well as to obtain a deeper understanding on
the behavior of perturbations on superhorizon scale perturba-
tions, in the present paper, we investigate the relation be-
*Email address: kodama@yukawa.kyoto-u.ac.jp tween the solutions to the perturbation equations in long
"Present address: Department of Physics, Tokyo Institute ofvavelength limit and the exactly homogeneous solutions to
Technology, Oh-Okayama, Megro, Tokyo 152-0033, Japanthe Einstein equations for multicomponent systems on the
Email address: hamazaki@th.phys.titech.ac.jp spatially flat Robertson-Walker universe. Our arguments are
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quite general except for the assumptions that the fundamen- A=A-T, (2.5
tal variables describing matter are scalar fields and/or vector

fields, and that the amplitude of anisotropic stress perturba- . ok

tions vanishes rapidly enough in the long wavelength limit. B=B+alL+-T, (2.6
We will clarify general conditions under which the perturba- a
tion solutions in the long wavelength limit coincide with
some exactly homogeneous perturbations to the homoge-
neous solutions to the Einstein equations. In particular, we
will show that for the multicomponent scalar field system not
all the exactly homogeneous perturbations directly corre- Ho=Haot kL 2.9
spond to perturbation solutions in the long wavelength limit. T ' '

Further, as a by-product of our analysis, we will show thatwhere the overdot represents the derivative with respect to

the perturbation equations in the long wavelength limit hav%he proper timet and H is the cosmic expansion ratga

tvx{o'univer§al adiabatic solutions which can be expre;_sed ©%rom this it follows that the spatial curvature perturbation
plicitly as time integrals of known background quantities. and the sheas, defined by
9

The paper is organized as follows. First in the next section
we give basic definitions of perturbation variables used in the

— k
Hi=H_— 3 L-HT, 2.7

present paper and the perturbation equations for them. By Ri=H_+ 1 Hr, (2.9
inspecting the dependence of these quantities and equations 3

on the wave numbek of perturbations, in Sec. Ill we derive

the conditions on the exactly homogeneous perturbations to a -

coincide with thek— 0 limit of some solutions to the pertur- 997K Hr—B (2.10

bation equations wittkk#0. In Sec. IV, as a special applica-

tion of the argument in Sec. Ill, we show the existence ofyyansform as

two universal adiabatic modes in tke—0 limit. Then in

Secs. V and VI we specify our arguments to a multicompo- _ o

nent scalar field system and a multicomponent perfect fluid R=R—HT, og=04— 3 T. (2.11
system, respectively, and clarify the relation between the per-

turbations in th&k— 0 limit and those wittk=0. Sec. VIl is

devoted to summary and discussions. Hence we obtain the following two independent gauge-

invariant combinations:

Il. PERTURBATION EQUATIONS A1=A—(R/H)A, (.12
In this section we recapitulate the definitions of basic per-
turbation variables and their equations in the framework of D= R ﬁ 21
the gauge-invariant perturbation theory. We adopt the nota- T k ‘9 (213

tions used in the review article by Kodama and Saaki

We only consider perturbations on a spatially fl& ( All the other gauge-invariant combinations of metric pertur-
=0) Robertson-Walker universe throughout the paperpation variables are written as linear combinationsdoénd

Hence the background metric is given by d.
Here note that for the exactly homogeneous perturbations
ds?= —dt?+a(t)%dx?, (2.9 corresponding tk=0, the vectorlike and tensorlike pertur-
) ) bation variables should vanish. Hence for the metric pertur-
and its perturbation by bation,B=H;=0. Correspondingly, the gauge freedom for

: them is just the time reparametrizatidn andL should van-
2 _ 2_ g i 2 : L. . .
ds (1+2AY)dt"—2aBY;dtd¥ + a7 (1+2H,Y) 5 ish in the gauge transformation. Therefore there exists only
+2H 7Y Jdxidxs, (2.2  one gauge-invariant combination for the exactly homoge-
neous metric perturbations, which coincides with The

whereY, Y;, andY; are harmonic scalar, vector and tensorvariable ® has no counterpart for them. This point is very

for a scalar perturbation with wave vecteron flat three- ~ important in the argument on the correspondence between

space: the perturbations in the— 0 limit and the exactly homoge-
neous ones.
K K 1 kjkg Next we consider the matter perturbations. In this paper
Y= Y=Y Y=g ke |Y we assume that the fundamental variables describing matter

2.3 are scalar and vector quantities. This assumption is satisfied
in most of the realistic applications. Let us denote the corre-

Under the infinitesimal gauge transformation sponding perturbation variables lyy andvp wherel andP
are indices labeling components. Then they transform under
St=TY, &xi=LY/, (2.4  the gauge transformation as

the metric perturbation variables in E@.2) transform as z=)(,—-S,T, vp=vp+ aL, (2.19
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where S, is the background quantity corresponding to the 2

. . K2 K
perturbationy, . Hence the corresponding gauge-invariant H.A+(2H+3H?) A= > (pI'+cZpAg) — 3 IL

variables are given by (2.27
S i Slei— 2T Ty
X|::X| _ ﬁl R, (215) Gk G|5 =K (Tk T| 6k)
1({a \
a . K?| A+ b i) }: — k%a?1l, (2.28
Vp::Up_ E HT' (216)

wherew=p/p andZ is the Bardeen parameter defined by

In the exactly homogeneous system the matter is de-
scribed only by the scalar quantiti€s. Hence its perturba- 7 ﬁ V=TR— ﬂ (v—B
' : . ; : = = v—B). (2.29
tion gives only the scalar-type gauge-invariant variatdes k k
as in the case of the metric perturbation. o )

The Einstein equations relate these matter variables wit We eliminate Ay from Eq. (2.27) using Eq.(2.25, we
the metric variables through the energy-momentum tensofbtain
For scalar perturbations its generic form is written as

A)'_ c2 1k2q>+ H ( -
:[-g:_(p+5py), (2.17) 1+w) 1+wH a? pt+pl2 P '

(2.30
To_
Ti=a(p+p)(v-B)Yj, (2.18 Note that we have not multiplied any power bfin de-
~. _ _ _ riving these equations from the Einstein equations. Hence
Ti=(pdk+ opoi+11Y)), putting k=0 in these equations yields the equations for the

(219 exactly homogeneous perturbations if one takes account of

h d the back d val f th d the fact that the terms multiplied by inverse powerskof
wherép andp are theé background values ol the energy deny ,,iqaq identically for these perturbations as mentioned
sity and the pressure, respectively, and follow the equatlona

bove.
2 In general these equations must be supplemented by the
HZ:? P, (2.20  expressions foAy, Z, I', andIl in terms of the fundamental

gauge-invariant matter variablés andVp and their evolu-
. tion equations. We do not write them explicitly here because
p=—3(p+p)H. (2.23) the details of these equations are not necessary until we spe-

In the present paper we only consider the case in which thglahze the general arguments to specific models.

anisotropic stress perturbatidh, which is gauge invariant _
by itself, vanishes faster thae in the k—0 limit. . k=0 vsk—0 LIMIT

Applying the general argument on the matter perturbation | this section we clarify under what conditions the
above, we can construct from the density perturbajarthe 0 limit of solutions to Eqs(2.25—(2.28 coincide with
velocity perturbatiorv, and the isotropic stress perturbation some solutions to the corresponding equationskfe0. For

op the following three gauge-invariant combinations: that purpose first note that the gauge-invariant variables in-
. troduced in the previous section are classified into two
pAg=6p+3(p+PR, (2.22 groups.
The first group consists of the gauge-invariant variables
Vi=p— a |'_|T’ (2.23 whose expressions in terms of the gauge-variant perturbation
k variables do not contain inverse powerskof4, Ay, I', and
X, belong to this group. These variables always have well-
pl':= 8p—cZdp, (2.24  defined finitek—0 limits which coincide with the corre-
o sponding gauge-invariant variables for the exactly homoge-
wherecZ=p/p is the square of the sound velocity. neous perturbations. Of course in takitkg~0 limit the

Now in terms of these gauge-invariant variables the perconditions

turbation of the Einstein equations are written as

B,Ht,vp,v,Il1/k?—0 (3.1
2

Go= KTy A+ % Afw D, (2.259  should be taken into account.
a On the other hand the second group consists of the gauge-
3 invariant variables which contain inverse powerskoithen
A+ = (1+W)4 =0, expressed in terms of gauge-variant variabfesZ (or V),
2 andV; belong to this group. These variables have no coun-
(2.26 terpart for the exactly homogeneous perturbations, and their
~ ~ k—0 limits depend on how fast the quantities in E§.1)
Gl=«?Tl: vanish in the limit.

(~3?= KZTF?: k
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With these points in mind, let us first consider thke-0  perturbations. Therefore starting from any solution to the
limit of the perturbation of the equations for the fundamentalperturbation equations witk=0, one can always construct
matter variables. When expressed in terms of the originathe gauge-invariant quantities representingkhe0 limit of
gauge-variant perturbation variablgs, vp, A, B, H_, and  a solution to the perturbation equations wkt# 0 by supple-
Ht, they do not contain inverse powerslaf We can write  menting.4 andX, for the exactly homogeneous perturbation
them in terms of gauge-invariant variables in the followingwith ® determined by Eq(3.7), provided that Eq(3.5) does
way. First eliminatey, and A by replacing them by, A, not yield any additional constraint on the seed exactly homo-
and R. Second eliminate)p using Vpg=vp—vqg and Z. geneous perturbation.

These procedures do not produce terms with inverse powers In the case in which the fundamental variables describing
of k, and the coefficient aZ contains a positive power &f matter contains a dynamical vector field, #ie:0 limit of Z
Now since all the gauge-variant matter variables andre  depends on the value limy(v —B)/k which cannot be de-
eliminated, the remaining terms should be proportionabto termined from the information of the exactly homogeneous
(and its time derivatives This implies that in the final ex- perturbations. Hence E¢3.5) can be simply regarded as the
pression&Z and® appear only in the formk™Z(m=1) and equation to determine the—0 limit of Z.

k"®(n=2). Further the other terms, which are proportional In contrast, in the case in which the matter is described
to A, X, orVpq, contain no inverse power & Therefore, only by scalar fieldsp —B in TJ-O should be written as a
taking into account the conditiof8.1), thek—0 limit of a  combination of the spatial derivatives gf. Hence it must
solution to the perturbation equations satisfies the correbe proportional to a positive power & andZ has a well-
sponding equations fdt=0 if and only if definedk—0 limit which is written only in terms ofX; .
Thus the condition Eq(3.5) yields a restriction on the seed

2

k“®—0, (3.2 exactly homogeneous perturbation in order for it to bk a
KZ—0, 33 kj&oohmn of some solution to the perturbation equations with
Vpo—0. (3.9

IV. UNIVERSAL ADIABATIC SOLUTIONS
Next let us examine the Einstein equations. Among the

: o Let a(t) and S;(t) be an exactly homogeneous solution
four equations it is easy to see that E(®.25 and (2.27) S ' .
reduce to the perturbation of Eq®.20 and (2.21) in the k describing the background. Then, since the scale fadt)r

—0 limit under the conditiork?d—0. On the other hand ¢9™M€S int the evolution equations only through=a/a,
Egs.(2.26 and(2.28 become trivial for the exactly homo- (1+M\)a(t) and S(t) also gives an exactly homogeneous

geneous perturbations. However, for 0, these equations solution to the Einstein equation whexds a constant. If we
yield nontrivial perturbétion equat’ions ' regard this solution as an exactly homogeneous perturbation,

all the corresponding gauge-variant perturbation variables

3 for matter vanish, and the metric perturbation is given by
A+ = (1+w)Z=0, (3.5
2 A=B=0, R=H, =\. (4.2)
1/a | From this we obtain
A+ a ﬁ o | =0, (3.6 .

A= R = 3 1+w)N 4.2
where we have pull=0 because it does not affect the ar- ~ \H/ 2 (1+WA. “.2
guments on thé&—0 limit under the assumptiohl/k?—0 ) ) .

The second equation of these can be solved in ternds of H 3 H
as =C —+ — )\ —
b=C a + 5 A a to(1+w)a(t)dt. 4.3
H
b= (C—J't a(t)A(t)dt), 3.7 If there exists a dynamical vector field describing matter,
0

this equation and Eq3.5) determine< as

whereC is an integration constant artg is an initial time.
. . . . 2

This equation can be regarded as an equation to determine Z=—— A=

thek— 0 limit of ® from a solution forA to the perturbation 3(1+w)

equations withk=0. In this viewpoint the consistency con-

dition (3.2 is simply replaced by the condition on the

dependence of,

A (4.4)

On the other hand, if the matter is described only by scalar

fields,v —B is written asv —B=Kky where y is a combina-

tion of the scalar field perturbationg which does not con-
k2C(k)—0. (3.9 tain a negative power ok. Since the matter perturbation

vanishes in the present case, this term should vanish, which

On the other hand the conditidB.3) is always satisfied un- implies thatZ=\—aH, =\. Hence the condition3.5) is

der Eq.(3.5). Further, the conditior(3.4) just select a subset satisfied.

of solutions to the perturbation equations witk 0, and Thus we find that the perturbation equations have always

does not give any restriction on the exactly homogeneoutwo solution for which thek— 0 limits of A, ®, andZ are
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given by Egs(4.2)—(4.4). Since the matter is not perturbed, where ¢2= ¢- ¢. The background equation of motion and

I'=0 for them. Hence they represent adiabatic modes in théhe Einstein equations are given by

k— 0 limit. Clearly the solution proportional t6 is a decay- . .

ing mode, while that proportional ta is a growing mode ¢+3Hap+DU=0, (5.3

because the Bardeen paramétds a nonvanishing constant.

Note that these solutions are universal in the sense that theyhereDU=(dU/d¢,), and Eq.(2.20.

are valid for any matter contents and interactions. Since the energy-momentum tensor for the Lagrangian
This universal solutions cover most of the exact solutionglensity(5.1) is given by

in the k—0 limit found so far, and the general argument

developed here explains why such exact solutions were T“=V“¢~VV¢>—E SV -V, ¢+ 2U), (5.4)

found for large variety of matter content. For example, for v 2

the case in which matter consists of a single-component per- . )

fect fluid, there exist two adiabatic modes. The above soluth€ perturbation variables for the energy-momentum tensor

tions just give theik— 0 limit, and in terms of the standard aré expressed as

variablesA = 6p/p+3(1+w)aH(v—B)/k and V they are

— A2 g
expressed as op=—A¢"+$o¢+DU- ¢, (5.9
2k? 2k? 3 k-
- - z _ +p)(v—B)= = ¢-5¢, (5.6
A= ®=353|C+5 xfto(1+w)adt , (4.5 (ptp g ¢ 99
K K Sp=—Ap2+ $p5h—DU- 5. (5.7
V=—H(<1>—Z)=—2 C—)\(a(to)/H(to)va adt| |,
a a to Hence Ay and Z are expressed in terms of the gauge-
(4.6) invariant variableX for the scalar field perturbation defined
which recover the well-known exact solutiof. by Eq.(4.7) as
Another example is the case in which matter consists of a _ T
multicomponent scalar field¢=(¢,). In terms of the gauge- pAg=— A"+ $-X+DU-X, (5.8
invariant variable for the scalar field perturbation defined by Y x
5 Z=—H —¢.'2 : (5.9
Xi=64— 4 R. (4. ¢
Inserting this expression fa, into Eq.(2.29, we obtain
the above solution gives .
) .o 1k
b, 2UA+¢-X+DU-X=2— — D. (5.10
Xi==—g A (4.8 K- a
From this, the expression fof and the background field
and equation, it follows that
dD—CH+)\K2Hfa¢2dt 4.9 3 Hol 2 LK
Catrza ) : At AWZ=—ogWMx X Tev 2 ®
(5.1
These give the extension of the well-known exact solution in
the k—0 limit for the single component scalar field case where
[5,6,9. .
W(X1,Xz)= X1 Xo— Xy X;. (5.12
V. SCALAR FIELD SYSTEMS Hence the conditiorf3.5) is expressed as
In this section we examine how the conditig8.5 is )
expressed explicitly for a multicomponent scalar field sys- ) ¢ _
tem. The Lagrangian density for a multicomponent scalar l'i':) W ﬁ’x =0. 5.13

¢=(¢,) is generally expressed as

1 Now let us see what kind of restriction this condition
L=——g > 93,6 9,6+U()], (5.1  gives for exactly homogeneous perturbations. Let us denote
the gauge-invariant variable for an exactly homogeneous

whereU(¢) is a potential. For a homogeneous backgroundperturbatlon&lS of the scalar field ad'= ¢ —R$/H, where
the energy densitp and the pressurp are expressed as R=H_=dala. (5.14

Then from the perturbation of Eq&.3) and(2.20, we ob-

Lo U _Loe U 5.2



7182 HIDEO KODAMA AND TAKASHI HAMAZAKI 57
X+3HX+D2U(X)— pA+2DUA=0, (5.1 k?
(A)=¢A A (5.19 L(X)+ 5 X=0. (5.20
2UA+ ¢ X+DU- X=0, (5.16

where D?U(X)=(X;0°U/d¢d¢,). Here note that X
=¢/H and A=3¢?/(3p)=3(1+w)/2 is a solution to this

equation, which corresponds to the adiabatic growing mode

obtained in the previous section.

Eliminating.A from these equations we obtain the follow-

ing second-order differential equation fat

H2 (¢) ¢ )
L(V)=—17 ﬁ) W(ﬁ,X : (5.1
where
. . K2 aS . .
L(X):=X+3HX+ Dzu—gg<ﬁ¢o¢) X.
(5.18

From this it follows thatW= W(&/H,X) follows the differ-
ential equation

\N—(3wH+i Du-ézs)w:o. (5.19

u

This equation shows that W vanishes at an initial time
t=ty, it vanishes at any time. Hence E&.13 reduces to
the condition on the initial value of solutions to E&.17).
Therefore, taking into account the fact thét ¢/H is one of
such solutions, we find that for Id-component scalar field
system (N —1) independent solutions to E¢6.17) corre-

From this we see that in the—0 limit X satisfies the equa-
tion L(X) =0, which confirms the above argument.
On the other hand, from E@5.19 it follows that

astW d) X|= 5.2
U o =const. (5.21)
From this find that
. ~ ) . b\
L(f¢/H)—a3—H(a f)+2f ﬁ) (5.22

coincides with the right-hand side of E(p.17) if f satisfies

3f = a3H2W ¢ X 5.2
=m0 M) (523
This implies that
~ ébj H2 (¢
X—X‘Fﬁ dtmw H,X (5.29

satisfies. (X) =0 for any solutionX to Eq. (5.17). Since the
second term on the right-hand side of this equation vanishes
if W(¢/H,X)=0, and W(¢/H,X) does not vanish if
W(op/H,X)#0 from

W & x|~ Lw

¢
H U _'X)'

H

(5.29

X given by Eq.(5.29 exhausts all the solutions to the per-

spond to th&k— 0 limit of solutions to the perturbation equa- {,rhation equation foX in thek—0 limit.

tion with k#0.

Here note that we have already obtained two universal
solutions in thek—0 limit in the previous section. Among
them, the growing mode, coincides with one of the solutions

VI. PERFECT FLUID SYSTEMS

In this section we apply the argument in Sec. Ill to a

obtained fromX. On the other hand, the decaying mode ismulticomponent perfect fluid system as an example of non-

not contained in the latter becaud&e=0 (sa/a=0) for it.
Hence we have obtained\Rindependent solutions in tHe

trivial systems in which matter variables contain a dynamical
vector field. The equations of motion of a perturbed multi-

—0 limit. Since the number of the dynamical degrees ofcomponent system are given by

freedom of theN-component scalar field system isl2these

exhaust all the solutions to the perturbation equations in the

k— 0 limit. However, if one wants to determine tkalepen-
dence of the solutions aroutkd=0 beyond th&k— 0 limit by

%V:li—ll/l,c:QU,LEéla/L_'—?lﬂv (61)

where Q, . represents the energy-momentum transfer term

solving the perturbation equations iteratively with respect tdfor the component, U* is the four-velocity of the whole
k, one needs all the solutions to the perturbation equation fomatter system, an@, = —U“Qm . Because of the conserva-
X in the k—0 limit to find the Green function. Fortunately tion of the total energy-momentur@, , satisfies
we can obtain the remaining one independent solutiorXfor
explicitly from a solution forX with W0 in the following
way!

First note that the perturbation equation ¥mwith k+0
is expressed in terms of the operatodefined in Eq(5.18 For the scalar perturbation, the energy-momentum tensor
as and the energy-momentum transfer vector of each individual

component are expressed as

Y Q,=0. 6.2

~
1This point was first suggested by Sasaki and Tanaka from the Tio==(pi3p,Y), 6.3

consideration on the role of the—0 limit of Hy in the discrepancy ~0

between the equations fo¢ and X' (private communication Tij=alp+p)(vi—B)Yj, (6.9
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The= (P18t Spy S+ T Y, (6.5 =QA+QEq, (6.17
A - _ hz\
Qio=—[Qi+(QIA+35Q)Y], (6.6) VTI-Qp: k[(%) +3hZ 4 hy At T
Qj=a[Qi(v—B)+F¢]Yj, (6.7) 5
2
wherep,, p;, andQ, are the background values of the en- +CipiAg— 3 HI}
ergy density, the pressure and the energy transfer of the com-
ponentl, respectively. In terms of these quantities the back- _ %
ground part of Eq(6.1) is written as =—aFqtk H Z, (6.18
pi=—3h,(1—q)H, (6.8 where
where aH aH
hi=p+p;, d=Q/(3Hh)). (6.9

As in Sec. I, we construct from the density perturbation!n deriving these equations from the equations of motion Eq.
Sp, , the velocity perturbation, , the isotropic stress pertur- (6.1, we have not multiplied any power & Hence putting
bation 8p,, and the energy transfer perturbatio®, the k=0 in these equations yields the equations for the exactly

following four gauge-invariant combinations: homogeneous perturbations. n
Now let us examine the relation of ttke- 0 limit of these
p1Agi=3p;+3(p+p)R, (6.10  equations and the corresponding equations for the exactly
homogeneous perturbations wkk- 0. First note thap, and
Ve p a ¥ 6.1 Q, depend on the metric and the matter variables through
U T (6.1 their scalar combinations. In particular the four-velocities ap-
pear in the fornli{‘U;,, and/or the scalar combinations'ajf
pT:=8p,—cZdp,, (6.12  and its covariant derivatives. In the linear perturbation the
terms proportional tw, produced from them all come with
QI positive powers ok. This implies thal’, andE,, are written
QEg =6~ R (6.13  as linear combinations of4, k*®, Ay, k?Z, and kV,;

=k(v,—v,) with coefficients which do not contain negative
wherec?=p, /p, . The anisotropic stress perturbatiinand ~ Powers ofk. Hence thek—0 limit of Eq. (6.17 and the
are gauge invariant by themselves. the conditionk“®—0. _ _ o
From the reIationTFMV=E,TF|MV the variables for the On the other hand, E6.18, which vanishes identically

whole system are expressed in terms of those for each c0nf1Qr k:_O F’“e to the vector origin dF.C' - gIves a f.“?”‘”‘"a'
ponent as equation in thek— 0 limit. If we require the condition

I1,—0, (6.20
Pzzl P, p:EI pl! hZZI h|, (614)

it is written as

h,z
phe=3 pidg, V=3 hv,, (%

+3h|Z|+h|A+ p|r|+C|2p|Ag|

Q..
pr=23 pLi+pla, MN=31, (619 = Z+1im Fo k. (620
| | k—0

wherepl' ==, (cf—c2)p|Aq . Further Eq.(6.2) gives the  SinceZ is related to.A by Eq. (3.5), this equation can be
constraints regarded as one determining the-0 limit of Z,, or
lim,_ o(v,—B)/k, which has no relation to the quantities de-
-0, E. =0, F. =0 (61 scribing homogeneous perturbations, from a solution4or
Z Q Z Qg Z ol (616 and Ay, to the perturbation equations with=0 (recall the
argument orl")). This is in accordance with the general ar-
In terms of these gauge-invariant variables the perturbegument in Sec. III.
equations of motion Eq6.1) are written as In general this gives a set of coupled equationsZpr
5 However, if the condition

ViTio=Qio: (p1Ag) +3HpAg+ 7 hi(P=2) Fo /k—0 (6.22

+3H(p T +clpiAg) is satisfied, it can be explicitly integrated to give
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H Robertson-Walker universe. The main result is summarized
h|Z|:g§ [CFJ dta(h, A+ p,F|+C,2p|Ag|—3h,q|Z)}, as follows.
fo First for the case in which the fundamental variables de-
(6.23 scribing cosmic matter contain a dynamical vector field, for
whereC, is an integration constant ariglis an initial ime. ~ any solution to the perturbation equations witk0 there
In particular, for the universal adiabatic modes given in Secexists a solution to the perturbation equations whth 0

IV, this gives which coincides with the former in thie—0 limit. On the
other hand if cosmic matter consists only of scalar fields,
H as a® such a correspondence holds if and only if the exact homo-
hZ, Pt Ci+A H h— H hl)o] } (624 geneous perturbation satisfies an additional constraint corre-

sponding to the momentum constraint which is expressed by
a linear equation on the initial condition for the homoge-
neous perturbation. This implies that for thecomponent
scalar field system one can obtain the:0 limit of 2N—1
independent solutions to the perturbations equations if one
knows all the solutions to the homogeneous background
equations.

We have also shown that from trivial exactly homoge-
neous perturbations one can always construct two adiabatic
solutions to the perturbation equations in tke>0 limit
which can be explicitly expressed in terms of integrals of
kC,(k)—0. (6.2 _backgro_und quantitigs, irrespective of the content an_d the

interactions of cosmic matter. One of them corresponding to
the vanishing homogeneous perturbation represents a decay-
ing mode for which the Bardeen parameter vanishes. The
other corresponds to a simple constant scaling of the scale
factor and gives a growing mode whose Bardeen parameter
hZ:E h,Z, is a nonvanishing constant. This constant scaling is not a
! gauge transformation, but an extra symmetry of the back-

where the subscript 0 denotes the valug¢=at,. Here note
that Eq.(6.22 is a rather strong condition in realistic situa-
tions whereF, is usually proportional to the relative veloci-
tiesV,;.

As discussed in Sec. lll, in order for this—0 limit so-
lution to correspond to &=0 solution, the consistency con-
ditions (3.3) and(3.4) should be satisfied. Under the require-
ment (6.22), these conditions are simply reduced to the
asymptotic condition

Further,Z, is also restricted by thke— 0 limit equation(3.5).
SinceZ is expressed as

H ground equations which holds only for spatially homoge-
=— E C,+f dta®(—hA— pF—cﬁpAg)} neous Robertson-Walker universes. Thus this extra symme-

a to try is the hidden reason why exact solutions inkheO limit

H 2 (g3 a3 have been so far found for various systems in spite of the
=— >C-= {— pA—|— pA) ] , (6.26  nontrivial structure of their perturbation equations.

a | 3|H H 0 For the multicomponent scalar field system these univer-

) L sal adiabatic modes and the solutions obtained from the non-
from Egs.(2.29 and(2.30), this condition is expressed as  trjyial exact homogeneous perturbations exhaust all the solu-
3 tions to the perturbation equations in tke-0 limit. Hence
a A) =0 (6.27) the evolution of perturbations on superhorizon scales can be
p : : .
H 0 determined only from the knowledge on the homogeneous
solutions to the background equations in the lowest-order
This is just the equatiofB.5) at the initial timet=t,. approximation. However, if one wants to know the higher-
For aN-component perfect fluid system, the perturbationorder correction irk, one must solve the perturbation equa-
of the exactly homogeneous solutions generdtdadepen- tionsk#0 iteratively[6]. In this procedure one needs tke
dent solutions fon, and.4, which satisfy th&k—0 limitof ~ —0 limit of all the solutions to the perturbation equations for
Eg.(6.17 and the Einstein equations. Each of these solutionthe gauge-invariant variable describing the perturbation of
in turn determineg, through Eq.6.23 with N—1 indepen- the scalar fields. As we have shown, this information can be
dent integration constants satisfying the conditir27. By  also obtained from the exactly homogeneous solutions to the
this procedure we obtainN— 1 independent solutions to the perturbation equations. Thus the behavior of superhorizon
whole perturbation equations in the—0 limit. Thus, by  perturbations of this system can be determined with any ac-
adding the universal adiabatic decaying mode correspondinguracy from the knowledge on the homogeneous solutions.
to the trivial homogeneous perturbation, we can obtain all This argument can be directly extended to the scalar field
the 2N independentk—0 limit solutions for this system system coupled with radiation, for which all tike-0 limit
from the exactly homogeneous solutions. of the solutions to the perturbation equations are directly
determined from the homogeneous background solutions.
This correspondence may provide a very powerful method to
analyze the evolution of perturbations during reheating in the
In this paper we have investigated the relation betweernflationary models because the structure of the equations for
thek— 0 limit of solutions to the perturbation equations with the homogeneous scalar fields decaying to radiation is much
k+#0 and the exactly homogeneous perturbatidns @) for ~ simpler than that for the perturbation equations with energy
quite general multicomponent systems on a spatially flatransfer terms.

2
EIC|+§

VIl. SUMMARY AND DISCUSSIONS
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