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Evolution of cosmological perturbations in the long wavelength limit
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The relation between the long wavelength limit of solutions to the cosmological perturbation equations and
the perturbations of solutions to the exactly homogeneous background equations is investigated for scalar
perturbations on spatially flat cosmological models. It is shown that a homogeneous perturbation coincides
with the long wavelength limit of some inhomogeneous perturbation only when the former satisfies an addi-
tional condition corresponding to the momentum constraint if the matter consists only of scalar fields. In
contrast, no such constraint appears if the fundamental variables describing the matter contain a vector field as
in the case of a fluid. Further, as a byproduct of this general analysis, it is shown that there exist two universal
exact solutions to the perturbation equations in the long wavelength limit, which are expressed only in terms
of the background quantities. They represent adiabatic growing and decaying modes, and correspond to the
well-known exact solutions for perfect fluid systems and scalar field systems.@S0556-2821~98!03912-5#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

In the current standard scenario based on the gravitati
instability theory, the present large scale structures of
universe are formed through the following four stages: p
duction of seed fluctuations in the early universe, their lin
evolution on superhorizon scales, the subsequent lin
modulation after they enter the horizon, and the final non
ear evolution. In the inflationary universe models the se
fluctuations in the first stage are produced from quant
fluctuations on the Hubble horizon scales during inflatio
and we now have universal formulas to determine their
ture such as the amplitudes and the spectrum for a w
variety of inflation models. We can now also easily han
the evolution during the third stage because the matter c
tent of the universe during this stage is rather simple
restricted. Of course the actual behavior of perturbations
subhorizon scales are quite complicated even in the lin
stage, and we need numerical computations to determ
their details.

On the other hand universal formulae to determine
evolution of perturbations during the second stage have
been established yet, although it is generally believed
the so-called Bardeen parameter is conserved with good
curacy during this stage and this conservation law essent
determines the amplitudes and the spectrum of perturbat
when they reenter the horizon, from those at the first st
@1#. Of course the conservation of the Bardeen param
during the Friedmann stage is well established including
case in which the equation of state of cosmic matter chan
slowly @2,3#. The simplicity comes from that fact that th
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evolution of perturbations on superhorizon scales are de
mined with good accuracy by that on the long wavelen
limit @4–6#. In this limit the evolution of adiabatic modes i
determined by a set of simple first-order ordinary different
equations for two gauge-invariant variables, from which f
lows the exact conservation of the Bardeen parameter@2,3#.
However, for some important situations, such as the reh
ing stage of inflation models, this simple analysis does
work because the adiabatic mode may produce entr
modes which feed back to the behavior of the adiaba
modes@7#. In these situations the knowledge of the evoluti
of perturbations of all the components of matter in the lo
wavelength limit is required to determine the behavior of t
Bardeen parameter.

In this connection Nambu and Taruya recently wrote
interesting paper@8# in which they stated that solutions to th
gauge-invariant perturbation equations for a multicompon
scalar field system on expanding universe in the long wa
length limit are obtained as derivatives of exactly homog
neous solutions to the Einstein equations with respect to
solution parameters. If this result is correct and all the so
tions to the perturbation equations can be obtained in
way, it provides a very powerful tool to analyze the behav
of perturbations during inflation and reheating including t
problem of the conservation of the Bardeen parameter. H
ever, no proof nor explanation on their statement was gi
in their paper. Further, direct calculation shows that the p
turbation equations in the long wavelength limit do not c
incide with those for exactly homogeneous perturbations

In order to see whether or not the statement of Nambu
Taruya is true as well as to obtain a deeper understandin
the behavior of perturbations on superhorizon scale pertu
tions, in the present paper, we investigate the relation
tween the solutions to the perturbation equations in lo
wavelength limit and the exactly homogeneous solutions
the Einstein equations for multicomponent systems on
spatially flat Robertson-Walker universe. Our arguments

of
.
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7178 57HIDEO KODAMA AND TAKASHI HAMAZAKI
quite general except for the assumptions that the fundam
tal variables describing matter are scalar fields and/or ve
fields, and that the amplitude of anisotropic stress pertu
tions vanishes rapidly enough in the long wavelength lim
We will clarify general conditions under which the perturb
tion solutions in the long wavelength limit coincide wit
some exactly homogeneous perturbations to the hom
neous solutions to the Einstein equations. In particular,
will show that for the multicomponent scalar field system n
all the exactly homogeneous perturbations directly co
spond to perturbation solutions in the long wavelength lim
Further, as a by-product of our analysis, we will show th
the perturbation equations in the long wavelength limit ha
two universal adiabatic solutions which can be expressed
plicitly as time integrals of known background quantities.

The paper is organized as follows. First in the next sect
we give basic definitions of perturbation variables used in
present paper and the perturbation equations for them.
inspecting the dependence of these quantities and equa
on the wave numberk of perturbations, in Sec. III we deriv
the conditions on the exactly homogeneous perturbation
coincide with thek→0 limit of some solutions to the pertur
bation equations withkÞ0. In Sec. IV, as a special applica
tion of the argument in Sec. III, we show the existence
two universal adiabatic modes in thek→0 limit. Then in
Secs. V and VI we specify our arguments to a multicomp
nent scalar field system and a multicomponent perfect fl
system, respectively, and clarify the relation between the
turbations in thek→0 limit and those withk50. Sec. VII is
devoted to summary and discussions.

II. PERTURBATION EQUATIONS

In this section we recapitulate the definitions of basic p
turbation variables and their equations in the framework
the gauge-invariant perturbation theory. We adopt the n
tions used in the review article by Kodama and Sasaki@2#.

We only consider perturbations on a spatially flat (K
50) Robertson-Walker universe throughout the pap
Hence the background metric is given by

ds252dt21a~ t !2dx2, ~2.1!

and its perturbation by

ds̃252~112AY!dt222aBYjdtdxj1a2@~112HLY!d jk

12HTYjk#dxjdxk, ~2.2!

whereY, Yj , andYjk are harmonic scalar, vector and tens
for a scalar perturbation with wave vectork on flat three-
space:

Y:5eik–x, Yj :52 i
kj

k
Y, Yjk:5S 1

3
d jk2

kjkk

k2 DY.

~2.3!

Under the infinitesimal gauge transformation

dt5TY, dxj5LYj , ~2.4!

the metric perturbation variables in Eq.~2.2! transform as
n-
or
a-
.

e-
e
t
-
.
t
e
x-

n
e
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ns
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f

-
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-
f

a-

r.

r

Ā5A2Ṫ, ~2.5!

B̄5B1aL̇1
k

a
T, ~2.6!

H̄L5HL2
k

3
L2HT, ~2.7!

H̄T5HT1kL, ~2.8!

where the overdot represents the derivative with respec
the proper timet and H is the cosmic expansion rateȧ/a.
From this it follows that the spatial curvature perturbationR
and the shearsg defined by

R:5HL1
1

3
HT , ~2.9!

sg:5
a

k
ḢT2B ~2.10!

transform as

R̄5R2HT, s̄g5sg2
k

a
T. ~2.11!

Hence we obtain the following two independent gaug
invariant combinations:

A:5A2~R/H ! ˙ , ~2.12!

F:5R2
aH

k
sg . ~2.13!

All the other gauge-invariant combinations of metric pertu
bation variables are written as linear combinations ofA and
F.

Here note that for the exactly homogeneous perturbati
corresponding tok50, the vectorlike and tensorlike pertu
bation variables should vanish. Hence for the metric per
bation,B5HT50. Correspondingly, the gauge freedom f
them is just the time reparametrizationT, andL should van-
ish in the gauge transformation. Therefore there exists o
one gauge-invariant combination for the exactly homo
neous metric perturbations, which coincides withA. The
variableF has no counterpart for them. This point is ve
important in the argument on the correspondence betw
the perturbations in thek→0 limit and the exactly homoge
neous ones.

Next we consider the matter perturbations. In this pa
we assume that the fundamental variables describing m
are scalar and vector quantities. This assumption is satis
in most of the realistic applications. Let us denote the cor
sponding perturbation variables byx I andvP whereI andP
are indices labeling components. Then they transform un
the gauge transformation as

x̄ I5x I2ṠIT, v̄P5vP1aL̇, ~2.14!
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where SI is the background quantity corresponding to t
perturbationx I . Hence the corresponding gauge-invaria
variables are given by

XI :5x I2
ṠI

H
R, ~2.15!

VP:5vP2
a

k
ḢT . ~2.16!

In the exactly homogeneous system the matter is
scribed only by the scalar quantitiesSI . Hence its perturba-
tion gives only the scalar-type gauge-invariant variablesXI
as in the case of the metric perturbation.

The Einstein equations relate these matter variables
the metric variables through the energy-momentum ten
For scalar perturbations its generic form is written as

T̃0
052~r1drY!, ~2.17!

T̃j
05a~r1p!~v2B!Yj , ~2.18!

T̃k
j 5~pdk

j 1dpdk
j 1PYk

j !,
~2.19!

wherer andp are the background values of the energy d
sity and the pressure, respectively, and follow the equati

H25
k2

3
r, ~2.20!

ṙ523~r1p!H. ~2.21!

In the present paper we only consider the case in which
anisotropic stress perturbationP, which is gauge invarian
by itself, vanishes faster thank2 in the k→0 limit.

Applying the general argument on the matter perturbat
above, we can construct from the density perturbationdr, the
velocity perturbationv, and the isotropic stress perturbatio
dp the following three gauge-invariant combinations:

rDg:5dr13~r1p!R, ~2.22!

V:5v2
a

k
ḢT , ~2.23!

pG:5dp2cs
2dr, ~2.24!

wherecs
2:5 ṗ/ ṙ is the square of the sound velocity.

Now in terms of these gauge-invariant variables the p
turbation of the Einstein equations are written as

G̃0
05k2T̃0

0: A1
1

2
Dg5

k2

3a2H2 F, ~2.25!

G̃j
05k2T̃j

0: kFA1
3

2
~11w!ZG50,

~2.26!

G̃j
j5k2T̃j

j :
t

e-

th
r.

-
s

e

n

r-

HȦ1~2Ḣ13H2!A5
k2

2
~pG1cs

2rDg!2
k2

3
P,

~2.27!

G̃k
j 2G̃l

ldk
j 5k2~ T̃k

j 2T̃l
ldk

j !:

k2FA1
1

a S a

H
F D ˙ G52k2a2P, ~2.28!

wherew5p/r andZ is the Bardeen parameter defined by

Z:5F2
aH

k
V5R2

aH

k
~v2B!. ~2.29!

If we eliminate Dg from Eq. ~2.27! using Eq. ~2.25!, we
obtain

S A11wD ˙

5
cs

2

11w

1

H

k2

a2 F1
H

r1p S 3

2
pG2P D .

~2.30!

Note that we have not multiplied any power ofk in de-
riving these equations from the Einstein equations. He
putting k50 in these equations yields the equations for
exactly homogeneous perturbations if one takes accoun
the fact that the terms multiplied by inverse powers ofk
vanishes identically for these perturbations as mentio
above.

In general these equations must be supplemented by
expressions forDg , Z, G, andP in terms of the fundamenta
gauge-invariant matter variablesXI andVP and their evolu-
tion equations. We do not write them explicitly here becau
the details of these equations are not necessary until we
cialize the general arguments to specific models.

III. k50 vs k˜0 LIMIT

In this section we clarify under what conditions th
k→0 limit of solutions to Eqs.~2.25!–~2.28! coincide with
some solutions to the corresponding equations fork50. For
that purpose first note that the gauge-invariant variables
troduced in the previous section are classified into t
groups.

The first group consists of the gauge-invariant variab
whose expressions in terms of the gauge-variant perturba
variables do not contain inverse powers ofk. A, Dg , G, and
XI belong to this group. These variables always have w
defined finitek→0 limits which coincide with the corre-
sponding gauge-invariant variables for the exactly homo
neous perturbations. Of course in takingk→0 limit the
conditions

B,HT ,vP ,v,P/k2→0 ~3.1!

should be taken into account.
On the other hand the second group consists of the ga

invariant variables which contain inverse powers ofk when
expressed in terms of gauge-variant variables.F, Z ~or V!,
andVP belong to this group. These variables have no co
terpart for the exactly homogeneous perturbations, and t
k→0 limits depend on how fast the quantities in Eq.~3.1!
vanish in the limit.
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With these points in mind, let us first consider thek→0
limit of the perturbation of the equations for the fundamen
matter variables. When expressed in terms of the orig
gauge-variant perturbation variablesx I , vP , A, B, HL , and
HT , they do not contain inverse powers ofk. We can write
them in terms of gauge-invariant variables in the followi
way. First eliminatex I andA by replacing them byXI , A,
and R. Second eliminatevP using VPQ5vP2vQ and Z.
These procedures do not produce terms with inverse pow
of k, and the coefficient ofZ contains a positive power ofk.
Now since all the gauge-variant matter variables andA are
eliminated, the remaining terms should be proportional toF
~and its time derivatives!. This implies that in the final ex-
pressionsZ andF appear only in the formskmZ(m>1) and
knF(n>2). Further the other terms, which are proportion
toA, XI , or VPQ , contain no inverse power ofk. Therefore,
taking into account the condition~3.1!, the k→0 limit of a
solution to the perturbation equations satisfies the co
sponding equations fork50 if and only if

k2F→0, ~3.2!

kZ→0, ~3.3!

VPQ→0. ~3.4!

Next let us examine the Einstein equations. Among
four equations it is easy to see that Eqs.~2.25! and ~2.27!
reduce to the perturbation of Eqs.~2.20! and ~2.21! in the k
→0 limit under the conditionk2F→0. On the other hand
Eqs. ~2.26! and ~2.28! become trivial for the exactly homo
geneous perturbations. However, forkÞ0, these equations
yield nontrivial perturbation equations

A1
3

2
~11w!Z50, ~3.5!

A1
1

a S a

H
F D ˙

50, ~3.6!

where we have putP50 because it does not affect the a
guments on thek→0 limit under the assumptionP/k2→0
adopted in the present paper.

The second equation of these can be solved in terms oF
as

F5
H

a S C2E
t0

a~ t !A~ t !dtD , ~3.7!

whereC is an integration constant andt0 is an initial time.
This equation can be regarded as an equation to deter
thek→0 limit of F from a solution forA to the perturbation
equations withk50. In this viewpoint the consistency con
dition ~3.2! is simply replaced by the condition on thek
dependence ofC,

k2C~k!→0. ~3.8!

On the other hand the condition~3.3! is always satisfied un
der Eq.~3.5!. Further, the condition~3.4! just select a subse
of solutions to the perturbation equations withkÞ0, and
does not give any restriction on the exactly homogene
l
al

rs

l

e-

e

ine

s

perturbations. Therefore starting from any solution to t
perturbation equations withk50, one can always construc
the gauge-invariant quantities representing thek→0 limit of
a solution to the perturbation equations withkÞ0 by supple-
mentingA andXI for the exactly homogeneous perturbatio
with F determined by Eq.~3.7!, provided that Eq.~3.5! does
not yield any additional constraint on the seed exactly hom
geneous perturbation.

In the case in which the fundamental variables describ
matter contains a dynamical vector field, thek→0 limit of Z
depends on the value limk→0(v2B)/k which cannot be de-
termined from the information of the exactly homogeneo
perturbations. Hence Eq.~3.5! can be simply regarded as th
equation to determine thek→0 limit of Z.

In contrast, in the case in which the matter is describ
only by scalar fields,v2B in T̃j

0 should be written as a
combination of the spatial derivatives ofx I . Hence it must
be proportional to a positive power ofk, andZ has a well-
definedk→0 limit which is written only in terms ofXI .
Thus the condition Eq.~3.5! yields a restriction on the see
exactly homogeneous perturbation in order for it to be ak
→0 limit of some solution to the perturbation equations w
kÞ0.

IV. UNIVERSAL ADIABATIC SOLUTIONS

Let a(t) and SI(t) be an exactly homogeneous solutio
describing the background. Then, since the scale factora(t)
comes into the evolution equations only throughH5ȧ/a,
(11l)a(t) and SI(t) also gives an exactly homogeneo
solution to the Einstein equation wherel is a constant. If we
regard this solution as an exactly homogeneous perturba
all the corresponding gauge-variant perturbation variab
for matter vanish, and the metric perturbation is given by

A5B50, R5HL5l. ~4.1!

From this we obtain

A52SRH D ˙

52
3

2
~11w!l. ~4.2!

Equation~3.7! determinesF from this as

F5C
H

a
1

3

2
l

H

a E
t0

~11w!a~ t !dt. ~4.3!

If there exists a dynamical vector field describing matt
this equation and Eq.~3.5! determinesZ as

Z52
2

3~11w!
A5l. ~4.4!

On the other hand, if the matter is described only by sca
fields, v2B is written asv2B5kx wherex is a combina-
tion of the scalar field perturbationsx I which does not con-
tain a negative power ofk. Since the matter perturbatio
vanishes in the present case, this term should vanish, w
implies thatZ5l2aHx5l. Hence the condition~3.5! is
satisfied.

Thus we find that the perturbation equations have alw
two solution for which thek→0 limits of A, F, andZ are
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given by Eqs.~4.2!–~4.4!. Since the matter is not perturbe
G50 for them. Hence they represent adiabatic modes in
k→0 limit. Clearly the solution proportional toC is a decay-
ing mode, while that proportional tol is a growing mode
because the Bardeen parameterZ is a nonvanishing constan
Note that these solutions are universal in the sense that
are valid for any matter contents and interactions.

This universal solutions cover most of the exact solutio
in the k→0 limit found so far, and the general argume
developed here explains why such exact solutions w
found for large variety of matter content. For example,
the case in which matter consists of a single-component
fect fluid, there exist two adiabatic modes. The above so
tions just give theirk→0 limit, and in terms of the standar
variablesD5dr/r13(11w)aH(v2B)/k and V they are
expressed as

D5
2k2

3a2H2 F5
2k2

3Ha3 FC1
3

2
lE

t0

~11w!adtG , ~4.5!

V5
k

aH
~F2Z!5

k

a2 FC2lS a~ t0!/H~ t0!1E
t0

adtD G ,
~4.6!

which recover the well-known exact solutions@2#.
Another example is the case in which matter consists

multicomponent scalar fieldf5(f I). In terms of the gauge
invariant variable for the scalar field perturbation defined

XI5df I2
ḟ I

H
R, ~4.7!

the above solution gives

XI52
ḟ I

H
l ~4.8!

and

F5C
H

a
1l

k2

2

H

a E aḟ2

H2 dt. ~4.9!

These give the extension of the well-known exact solution
the k→0 limit for the single component scalar field ca
@5,6,9#.

V. SCALAR FIELD SYSTEMS

In this section we examine how the condition~3.5! is
expressed explicitly for a multicomponent scalar field s
tem. The Lagrangian density for a multicomponent sca
f5(f I) is generally expressed as

L52A2gF1

2
gmn]mf•]nf1U~f!G , ~5.1!

whereU(f) is a potential. For a homogeneous backgrou
the energy densityr and the pressurep are expressed as

r5
1

2
ḟ21U~f!, p5

1

2
ḟ22U~f!, ~5.2!
e

ey

s
t
re
r
r-
-

a

y

n

-
r

d

where ḟ25ḟ•ḟ. The background equation of motion an
the Einstein equations are given by

f̈13Hḟ1DU50, ~5.3!

whereDU5(]U/]f I), and Eq.~2.20!.
Since the energy-momentum tensor for the Lagrang

density~5.1! is given by

Tn
m5¹mf•¹nf2

1

2
dn

m~¹lf•¹lf12U !, ~5.4!

the perturbation variables for the energy-momentum ten
are expressed as

dr52Aḟ21ḟḋf1DU•df, ~5.5!

~r1p!~v2B!5
k

a
ḟ•df, ~5.6!

dp52Aḟ21ḟḋf2DU•df. ~5.7!

Hence Dg and Z are expressed in terms of the gaug
invariant variableX for the scalar field perturbation define
by Eq. ~4.7! as

rDg52Aḟ21ḟ•Ẋ1DU•X, ~5.8!

Z52H
ḟ•X

ḟ2
. ~5.9!

Inserting this expression forDg into Eq.~2.25!, we obtain

2UA1ḟ•Ẋ1DU•X52
1

k2

k2

a2 F. ~5.10!

From this, the expression forZ and the background field
equation, it follows that

A1
3

2
~11w!Z52

H

2U
WS ḟ

H
,XD 1

1

k2U

k2

a2 F,

~5.11!

where

W~X1 ,X2!:5X1•Ẋ22Ẋ1•X2 . ~5.12!

Hence the condition~3.5! is expressed as

lim
k→0

WS ḟ

H
,XD 50. ~5.13!

Now let us see what kind of restriction this conditio
gives for exactly homogeneous perturbations. Let us den
the gauge-invariant variable for an exactly homogene
perturbationdf of the scalar field asX5df2Rḟ/H, where

R5HL5da/a. ~5.14!

Then from the perturbation of Eqs.~5.3! and ~2.20!, we ob-
tain
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Ẍ13HẊ1D2U~X!2ḟȦ12DUA50, ~5.15!

2UA1ḟ•Ẋ1DU•X50, ~5.16!

where D2U(X)5(XJ]
2U/]f I]fJ). Here note thatX

5ḟ/H andA53ḟ2/(3r)53(11w)/2 is a solution to this
equation, which corresponds to the adiabatic growing m
obtained in the previous section.

EliminatingA from these equations we obtain the follow
ing second-order differential equation forX:

L~X!52
H2

U S ḟ

H D ˙

WS ḟ

H
,XD , ~5.17!

where

L~X!:5Ẍ13HẊ1FD2U2
k2

a3 S a3

H
ḟ+ḟ D˙ GX.

~5.18!

From this it follows thatW5W(ḟ/H,X) follows the differ-
ential equation

Ẇ2S 3wH1
1

U
DU•ḟ DW50. ~5.19!

This equation shows that ifW vanishes at an initial time
t5t0 , it vanishes at any time. Hence Eq.~5.13! reduces to
the condition on the initial value of solutions to Eq.~5.17!.
Therefore, taking into account the fact thatX5ḟ/H is one of
such solutions, we find that for aN-component scalar field
system (2N21) independent solutions to Eq.~5.17! corre-
spond to thek→0 limit of solutions to the perturbation equa
tion with kÞ0.

Here note that we have already obtained two unive
solutions in thek→0 limit in the previous section. Among
them, the growing mode, coincides with one of the solutio
obtained fromX. On the other hand, the decaying mode
not contained in the latter becauseX50 (da/a50) for it.
Hence we have obtained 2N independent solutions in thek
→0 limit. Since the number of the dynamical degrees
freedom of theN-component scalar field system is 2N, these
exhaust all the solutions to the perturbation equations in
k→0 limit. However, if one wants to determine thek depen-
dence of the solutions aroundk50 beyond thek→0 limit by
solving the perturbation equations iteratively with respec
k, one needs all the solutions to the perturbation equation
X in the k→0 limit to find the Green function. Fortunatel
we can obtain the remaining one independent solution foX
explicitly from a solution forX with WÞ0 in the following
way.1

First note that the perturbation equation forX with kÞ0
is expressed in terms of the operatorL defined in Eq.~5.18!
as

1This point was first suggested by Sasaki and Tanaka from
consideration on the role of thek→0 limit of HT in the discrepancy
between the equations forX andX ~private communication!.
e

al

s

f

e

o
or

L~X!1
k2

a2 X50. ~5.20!

From this we see that in thek→0 limit X satisfies the equa
tion L(X)50, which confirms the above argument.

On the other hand, from Eq.~5.19! it follows that

a3H2

U
WS ḟ

H
,XD 5const. ~5.21!

From this find that

L~ f ḟ/H !5
ḟ

a3H
~a3 ḟ ! ˙ 12 ḟ S ḟ

H D ˙

~5.22!

coincides with the right-hand side of Eq.~5.17! if f satisfies

a3 ḟ 52
a3H2

2U
WS ḟ

H
,XD . ~5.23!

This implies that

X5X1
ḟ

H E dt
H2

2U
WS ḟ

H
,XD ~5.24!

satisfiesL(X)50 for any solutionX to Eq. ~5.17!. Since the
second term on the right-hand side of this equation vanis
if W(ḟ/H,X)50, and W(ḟ/H,X) does not vanish if
W(ḟ/H,X)Þ0 from

WS ḟ

H
,XD 5

r

U
WS ḟ

H
,XD , ~5.25!

X given by Eq.~5.24! exhausts all the solutions to the pe
turbation equation forX in the k→0 limit.

VI. PERFECT FLUID SYSTEMS

In this section we apply the argument in Sec. III to
multicomponent perfect fluid system as an example of n
trivial systems in which matter variables contain a dynami
vector field. The equations of motion of a perturbed mu
component system are given by

¹̃nT̃Im
n 5Q̃Im[Q̃I ũm1 f̃ Im , ~6.1!

where Q̃Im represents the energy-momentum transfer te
for the componentI , ũm is the four-velocity of the whole
matter system, andQ̃I :52ũmQ̃Im . Because of the conserva
tion of the total energy-momentum,Q̃Im satisfies

(
I

Q̃Im50. ~6.2!

For the scalar perturbation, the energy-momentum ten
and the energy-momentum transfer vector of each individ
component are expressed as

T̃I0
0 52~r I1dr IY!, ~6.3!

T̃I j
0 5a~r I1pI !~v I2B!Yj , ~6.4!

e
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T̃Ik
j 5~pIdk

j 1dpIdk
j 1P IYk

j !, ~6.5!

Q̃I052@QI1~QIA1dQI !Y#, ~6.6!

Q̃I j 5a@QI~v2B!1FcI#Yj , ~6.7!

wherer I , pI , andQI are the background values of the e
ergy density, the pressure and the energy transfer of the c
ponentI , respectively. In terms of these quantities the ba
ground part of Eq.~6.1! is written as

ṙ I523hI~12qI !H, ~6.8!

where

hI :5r I1pI , qI :5QI /~3HhI !. ~6.9!

As in Sec. II, we construct from the density perturbati
dr I , the velocity perturbationv I , the isotropic stress pertur
bation dpI , and the energy transfer perturbationdQI the
following four gauge-invariant combinations:

r IDgI:5dr I13~r I1pI !R, ~6.10!

VI :5v I2
a

k
ḢT , ~6.11!

pIG I :5dpI2cI
2dr I , ~6.12!

QIEgI:5dQI2
Q̇I

H
R, ~6.13!

wherecI
25 ṗI / ṙ I . The anisotropic stress perturbationP I and

the momentum transfer perturbationFcI of the componentI
are gauge invariant by themselves.

From the relationT̃mn5( I T̃Imn the variables for the
whole system are expressed in terms of those for each c
ponent as

r5(
I

r I , p5(
I

pI , h5(
I

hI , ~6.14!

rDg5(
I

r IDgI , hV5(
I

hIVI ,

pG5(
I

pIG I1pG rel , P5(
I

P I , ~6.15!

wherepG rel5( I(cI
22cs

2)r IDgI . Further Eq.~6.2! gives the
constraints

(
I

QI50, (
I

QIEgI50, (
I

FcI50. ~6.16!

In terms of these gauge-invariant variables the pertur
equations of motion Eq.~6.1! are written as

¹̃nT̃I0
n 5Q̃I0 : ~r IDgI! ˙ 13Hr IDgI1

k2

a2H
hI~F2ZI !

13H~pIG I1cI
2r IDgI!
m-
-

m-

d

5QIA1QIEgI , ~6.17!

¹nTIi
n 5QIi : kF S hIZI

H D •13hIZI1hIA1pIG I

1cI
2r IDgI2

2

3
P I G

52aFcI1k
QI

H
Z, ~6.18!

where

ZI :5F2
aH

k
VI5R2

aH

k
~v I2B!. ~6.19!

In deriving these equations from the equations of motion
~6.1!, we have not multiplied any power ofk. Hence putting
k50 in these equations yields the equations for the exa
homogeneous perturbations.

Now let us examine the relation of thek→0 limit of these
equations and the corresponding equations for the exa
homogeneous perturbations withk50. First note thatp̃I and
Q̃I depend on the metric and the matter variables thro
their scalar combinations. In particular the four-velocities a
pear in the formũI

mũJm and/or the scalar combinations ofũI
m

and its covariant derivatives. In the linear perturbation
terms proportional tov I produced from them all come with
positive powers ofk. This implies thatG I andEgI are written
as linear combinations ofA, k2F, DgI , k2Z, and kVIJ
5k(v I2vJ) with coefficients which do not contain negativ
powers ofk. Hence thek→0 limit of Eq. ~6.17! and the
correspondingk50 equation coincide with each other und
the conditionk2F→0.

On the other hand, Eq.~6.18!, which vanishes identically
for k50 due to the vector origin ofFcI , gives a nontrivial
equation in thek→0 limit. If we require the condition

P I→0, ~6.20!

it is written as

S hIZI

H D ˙

13hIZI1hIA1pIG I1cI
2r IDgI

5
QI

H
Z1 lim

k→0
FcI /k. ~6.21!

Since Z is related toA by Eq. ~3.5!, this equation can be
regarded as one determining thek→0 limit of ZI , or
limk→0(v I2B)/k, which has no relation to the quantities d
scribing homogeneous perturbations, from a solution forA
and DgI to the perturbation equations withk50 ~recall the
argument onG I!. This is in accordance with the general a
gument in Sec. III.

In general this gives a set of coupled equations forZI .
However, if the condition

FcI /k→0 ~6.22!

is satisfied, it can be explicitly integrated to give
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hIZI5
H

a3 FCI2E
t0

dta3~hIA1pIG I1cI
2r IDgI23hIqIZ!G ,

~6.23!

whereCI is an integration constant andt0 is an initial time.
In particular, for the universal adiabatic modes given in S
IV, this gives

hIZI5
H

a3 FCI1lH a3

H
hI2S a3

H
hI D

0
J G , ~6.24!

where the subscript 0 denotes the value att5t0 . Here note
that Eq.~6.22! is a rather strong condition in realistic situ
tions whereFcI is usually proportional to the relative veloc
ties VIJ .

As discussed in Sec. III, in order for thisk→0 limit so-
lution to correspond to ak50 solution, the consistency con
ditions ~3.3! and~3.4! should be satisfied. Under the requir
ment ~6.22!, these conditions are simply reduced to t
asymptotic condition

kCI~k!→0. ~6.25!

Further,ZI is also restricted by thek→0 limit equation~3.5!.
SinceZ is expressed as

hZ5(
I

hIZI

5
H

a3 F(
I

CI1E
t0

dta3~2hA2pG2cs
2rDg!G

5
H

a3 F(
I

CI2
2

3 H a3

H
rA2S a3

H
rAD

0
J G , ~6.26!

from Eqs.~2.25! and ~2.30!, this condition is expressed as

(
I

CI1
2

3 S a3

H
rAD

0

50. ~6.27!

This is just the equation~3.5! at the initial timet5t0 .
For aN-component perfect fluid system, the perturbati

of the exactly homogeneous solutions generatesN indepen-
dent solutions forDgI andA, which satisfy thek→0 limit of
Eq. ~6.17! and the Einstein equations. Each of these soluti
in turn determinesZI through Eq.~6.23! with N21 indepen-
dent integration constants satisfying the condition~6.27!. By
this procedure we obtain 2N21 independent solutions to th
whole perturbation equations in thek→0 limit. Thus, by
adding the universal adiabatic decaying mode correspon
to the trivial homogeneous perturbation, we can obtain
the 2N independentk→0 limit solutions for this system
from the exactly homogeneous solutions.

VII. SUMMARY AND DISCUSSIONS

In this paper we have investigated the relation betw
thek→0 limit of solutions to the perturbation equations wi
kÞ0 and the exactly homogeneous perturbations (k50) for
quite general multicomponent systems on a spatially
.

s

ng
ll

n

t

Robertson-Walker universe. The main result is summari
as follows.

First for the case in which the fundamental variables
scribing cosmic matter contain a dynamical vector field,
any solution to the perturbation equations withk50 there
exists a solution to the perturbation equations withkÞ0
which coincides with the former in thek→0 limit. On the
other hand if cosmic matter consists only of scalar fiel
such a correspondence holds if and only if the exact hom
geneous perturbation satisfies an additional constraint co
sponding to the momentum constraint which is expressed
a linear equation on the initial condition for the homog
neous perturbation. This implies that for theN-component
scalar field system one can obtain thek→0 limit of 2N21
independent solutions to the perturbations equations if
knows all the solutions to the homogeneous backgro
equations.

We have also shown that from trivial exactly homog
neous perturbations one can always construct two adiab
solutions to the perturbation equations in thek→0 limit
which can be explicitly expressed in terms of integrals
background quantities, irrespective of the content and
interactions of cosmic matter. One of them corresponding
the vanishing homogeneous perturbation represents a de
ing mode for which the Bardeen parameter vanishes.
other corresponds to a simple constant scaling of the s
factor and gives a growing mode whose Bardeen param
is a nonvanishing constant. This constant scaling is no
gauge transformation, but an extra symmetry of the ba
ground equations which holds only for spatially homog
neous Robertson-Walker universes. Thus this extra sym
try is the hidden reason why exact solutions in thek→0 limit
have been so far found for various systems in spite of
nontrivial structure of their perturbation equations.

For the multicomponent scalar field system these univ
sal adiabatic modes and the solutions obtained from the n
trivial exact homogeneous perturbations exhaust all the s
tions to the perturbation equations in thek→0 limit. Hence
the evolution of perturbations on superhorizon scales can
determined only from the knowledge on the homogene
solutions to the background equations in the lowest-or
approximation. However, if one wants to know the highe
order correction ink, one must solve the perturbation equ
tions kÞ0 iteratively @6#. In this procedure one needs thek
→0 limit of all the solutions to the perturbation equations f
the gauge-invariant variable describing the perturbation
the scalar fields. As we have shown, this information can
also obtained from the exactly homogeneous solutions to
perturbation equations. Thus the behavior of superhori
perturbations of this system can be determined with any
curacy from the knowledge on the homogeneous solutio

This argument can be directly extended to the scalar fi
system coupled with radiation, for which all thek→0 limit
of the solutions to the perturbation equations are direc
determined from the homogeneous background solutio
This correspondence may provide a very powerful method
analyze the evolution of perturbations during reheating in
inflationary models because the structure of the equations
the homogeneous scalar fields decaying to radiation is m
simpler than that for the perturbation equations with ene
transfer terms.
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