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In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic
string equations of motion in Witten's superconducting model, and show that in the relevant chiral limit these
coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically
study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a
given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the
evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string
networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed
at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some conse-
guences of our results are discusg&0556-282(98)05312-(

PACS numbegps): 98.80.Cq, 11.2%:d

I. INTRODUCTION has several important consequences. Strings that have
trapped charges as a consequence of a phase transition can

As first pointed out by Witteri1], cosmic strings can in become superconducting even if the formation of a conden-
some circumstancestypically when the electromagnetic sate was otherwise energetically unfavored. More impor-
gauge invariance is broken inside the stjibghave as “su- tantly, a string with both a charge and a current density will
perconducting wires” carrying large currents andhave a non-zero angular momentum.
charges—up to the order of the string mass scale in appro- In the cosmological context, these strings would of course
priate units. The charge carriers can be either bosons or feinteract with the cosmic plasma, originating a number of
mions(see[2] for a review. The former type occurs when it interesting consequences. The most remarkable of these,
becomes energetically favorable for a charged Higgs field thiowever, has to do with the evolution of string loops. If a
have a non-zero vacuum expectation value in the string corguperconducting string loop has an angular momentum, it is
the latter happens when fermions couple to the string fieldssemi-classically conserved, and it tries to resist the loop’s
creating fermion zero modes. tension. This will at least increase the loop’s lifetime. If the

It is well known that arbitrarily large currents are not current is too large, charge carriers will leave the string ac-
allowed—there is a critical value beyond which the currentcompanied by a burst of electromagnetic radiation, but oth-
saturates. In other words, for large enough winding numbeerwise it is possible that dynamically stable loops form.
per unit length, the superconducting condensate is quenchéthese are called vortorjg]—they are stationary rings that
down, suppressing the current flow. Also, the current caro not radiate classically, and at large distances they look
decay by magnetic flux-line tunnelling; this can be used tdike point particles with quantized charge and angular mo-
impose constraints on allowed particle physics models. mentum. Their cosmological significance comes from the

If superconducting strings carry currents, they must alsdact that they provide very strong constraints on allowed par-
carry charges of similar magnitude. This includes not onlyticle physics models, since they behave like non-relativistic
charges trapped at formation by the Kibble mechanism buparticles. According to current beligt,5], if they are formed
also the ones due to string inter-commuting between regionat high enough energy scales, they are as dangerous as mag-
of the string network with different currents. Just like with netic monopoles, producing an over-density of matter in dis-
currents, charge densities cannot have arbitrarily largagreement with observations. On the other hand, low-mass
magnitude—there is a limit beyond which there will no vortons could be a very interesting dark matter candidate.
longer be an energy barrier preventing the charge carriergnderstanding the mechanisms behind formation and evolu-
from leaving the string. tion is therefore an essential cosmological task.

A rather important point is that the presence of charges on The overwhelming majority of the work done on cosmic
the string tends to counteract the current quenching effedtrings so far has been concerned with the structureless Goto-
discussed above. In fact, numerical simulations of contractNambu stringgbut see[6] and references therein for some
ing string loops at fixed charge and winding number haveexceptions In the case of work on vortons, this means that
shown([3] that a “chiral” state with equal charge and current somewhaiad hocestimates had to be made for some prop-
densities is approached as the loop contracts. In this limitingrties of the cosmic string network—notably for microscopic
chiral case, quenching is in fact eliminated completely. Thisuantities such as current and charge densities. This is de-

spite the fact it was recognized a long time ago that, even

though they might be computationally very usefa9],
*Also at C. A. U. P,, Rua do Campo Alegre 823, 4150 Porto, Goto-Nambu models cannot realistically be expected to ac-
Portugal. Electronic address: C.J.A.P.Martins@damtp.cam.ac.uk count for a number of cosmologically relevant phenomena,
"Electronic address: E.P.S.Shellard@damtp.cam.ac.uk due to the very limited number of degrees of freedom avail-
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able. Two such phenomena are the buildup of small-scalBrandenbergeret al. [5] make rather optimistic order-of-
structure and charge and current densities. magnitude estimates about the process of relaxation into a
In this paper we fill this important gap by discussing thevorton state. As it turns out, for high energy GUT scales, alll
problem of vorton formation in the context of the supercon-these loops become relativistic before reaching a vorton
ducting string models of Wittefil] and of Carter and Peter state. Finally, neither of these treatments has the benefit of a
[10] (Secs. Il and II). Strangely enough, the issue of the quantitative model for the evolution of the long-string net-
conditions for vorton formation has been so far neglectedVork [7] which allows one to accurately describe the process
with respect to those of their stability and cosmological con-Of l00p production. , _
sequences. We will start by introducing these models and ©On the other hand, as we lower the string-forming energy

determining the microscopic string equations of motion insc?jlethwe“e::jr?,ect more anﬂl rﬂolr(tja ef_T_lﬁlentfvortpl: prodOlIJ_cttlon,
each case. It will be shown that in the relevant chiral limjt&"¢ th€ 0ld” scenario stil holds. 1herelore intermediate-

these equations coincide—this also provides the first conclus-Cale superconducting strings are still ruled out, since they

sive evidence of the validity of the supersonic elastic model%ﬁou'd Lead tot_a ur;llverI.Te bedcog)mglgl maittla‘r domlnatﬁd earlier
of Carter and Petdf0]. an observationally allowed. Finally, at low enough energy

We then proceed to study the evolution of a number Ofscales, vortons will be a dark matter candidate. For example,

loop solutions of these equations numericdBecs. IV and for a string network formed arourii~10° GeV (typical of

V), and from the results of this analysis parameters will bethe electroweak phase transitjhey can provide up to 6%

introduced which characterize the loop’s ability to evoIve.Of the <_:ritica| density. A more detgile(_j discussion of these
into a vorton state(Sec. V). Finally, we discuss a very 'SSUeS1S lett to a forthcoming p_ubllcaucﬁmz]. .
simple phenomenological model for the evolution of the su- Throughout this paper we will use fundamental units in
perconducting currents on the long cosmic string networkVhich #=c=kg=Gmp=1.

[11], based on the dynamics of a “superconducting correla-

tion length” (Secs. VII-VIIl). Using this model we can Il WITTEN'S MICROSCOPIC MODEL

therefore estimate the currents carried by string loops formed

i, e e, aclon for & superconcucing sing can b dered 1 a vy
ing density(Sec. % ' that is fairly similar to what is done in the Goto-Nambu case
Based on ou.r résults we do not expect any grand unifieg(gSee fpr examplg2]). One has to adopt the additional as-

' umptions that the current is much smaller than the critical

::giosg (tﬁ:-fl})ic\;ﬁ)r;?gzr;?n;gg Zt ggh -Il—glielrs esssgrr:t;%lrlbeS:r_current and that the electromagnetic vector poterfiglis
P y slowly varying on the scale of the condensate thickness.

scale string¢7], and so their currents and charges are never The derivation then proceeds as in the neutral case, except
large enough to prevent them from b_ecoming. reIaﬁViStiC_for the use of the well-known fact that in two dimensi'ons a
and therefore. liable to Io_sses. Even if they did form, theyconserved current can be written as the derivative of a scalar
would not be in conflict with the standard cosmological SC€%iald. One obtains
nario if they decayed soon after the end of the friction- ’
domination epoch.

Hence we conclude that, in contrast with previously ex- S:f [~y

isting estimateg4,5], one cannot at the moment rule out

As first pointed out by Wittefil], a low-energy effective

eab

1
_:u’0+§’yab¢,a¢,b_qu,X:ua \/Ty(b,b d20.

GUT superconducting string models. We should point out at (2.9
the outset that there are essentially three improvements in the

present work which justify the different end result for GUT- _ 1 4 o -

scale strings. First, by analyzing simpleut physically rel- 167 d*xV=gF, B 22

evanj loop solutions of the microscopic string equations of

motion for the Witten model, we can get a much improvedthe four terms are respectively the usual Goto-Nambu term,
idea of how superconducting loops evolve and of Hawd  the inertia of the charge carriers, the current coupling to the
under which conditionsthey reach a vorton state. Second, electromagnetic potential and the external electromagnetic
by using a simple model for the evolution of the currents onfield (€3 is the alternating tensprnote that this applies to
the long stringg11] we can accurately determine the typical both the bosonic and the fermionic ca$g$

currents on each string loop at the epoch of its formation. Recalling the usual definitions

Finally, the use of the analytic formalism previously intro-

duced by the present authdrg9] allows us to use a quan- Aa=x5A,, 2.9
titative description throughout the paper, and in particular to
determine the loop sizes at formation. Fab=F . XaX5=Apa—Aap, (2.9

As will become clear below, when taken together these
allow a detailed analysis of the process of vorton formationand definingY ,, to be the stress-energy tensor of the scalar
to be carried out, in either the Witten modeals is done in field ¢,
this paper or any other that one considers relevant. In con-
trast, note that Davis and Shelld restrict themselves to Y. — 1 . 5
the particular case of the initial Brownian Vachaspati- ab= Pabp Eyab¢v°¢ : 29
Vilenkin loops with Kibble currents, and do not consider the
subsequent evolution of the network. On the other handand the conserved curredt as
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prL As we already pointed out, when dealing with supercon-
a=q b, (2.6)  ducting string loops we are essentially interested in the chiral
NTY limit of this model, that is
we can obtain the following equations of motion by varying Yapd23P=0, (2.1

the action(2.2) with respect toA,, ¢ andx* respectively:
or equivalently

V— _ [ 2 b. _ .
F’ll;} = 4’7qu'”'— 47Tf dcoée? Xf;(ﬁ‘béél(x X(O'a)), ¢!2:62¢2' (21@
(2.7
In this limit, introducing the simplifying functiomb defined
1 as
G(N= 1y P p)+ 5V 7€ Fap=0, (2.9 _
¢2
D(y)= , 2.1
and ) M0Yoo 219
1 and choosing the standard gauge conditions
9q \/__7, ,yab+ _Yab> X% -
o =7, x-x'=0 2.18

1
+- 7( ¥+ —Yab)rﬁpxzxf’b (2.9  (with overdots and primes respectively denoting derivatives
Ko with respect to the time-like and space-like coordinates on
the worldsheet as usyahe string equations of motion in a

=V=y(F*+19), (2.10 Friedman-Robertson-WalkefFRW) background with the
. . . line element
wherel';, is the usual metric connection,
L ds’=a?(dr?—dx?) (2.19
a _ " ~ah + — . ) 3 . y
Fr=29"Gap ¥ Gva ™ Gv.a)s 219 [which implies thatyg,=a?(1—x?)] have the form
andF¢ is the Lorentz force, €. a
[e(1+D)] + —X°2=D'—2—€D (2.20
1 ld a
Fo=o—Fox",J2 2.1
210 vXad 212 and
We have also included the friction force . € g x|’
e(l+d)x+ l—(l—x )X= (1—@)?
d
1
f“=|—(u“—xf;x°'aug), (2.13 . a
f | @+2_0 X' +2dx,

using the same procedure as describdd 87]. As shown in
[11], plasma effects are subdominant, except possibly in the (2.21)
presence of background magnetic fields—either of “primor-

dial” origin or generated(typically by a dynamo mecha- where for simplicity we have introduced the “damping

nism) once proto-galaxies have formed. Hence one expectls(,ength
Aharonov-Bohm scatterinffl4] to be the dominant effect, 1 1
and consequently we hayé] =2 2H+ e (2.22
d f
|f:L, (2.14  Finally, the worldsheet charge and current densities are re-
BT: spectively given by
whereT,, is the background temperature a@ds a numeri- pw="0ed (2.23
cal factor related to the number of particle species interacting
with the string. and

The effect of self-inductance leads to the renormalization
of both the electromagnetic coupling and the scalar figld .
Now, it is well known that the Maxwell-Faraday tensor in- J""_q?' (2.29
cludes both the external field and the field produced by the
string itself, but it can be shown that if one follows this  Note that the Witten action is “microscopic” in the sense
renormalization procedure, one can identify it with its exter-of being built using only the properties of the underlying
nal component, which henceforth we assume to vaffigh  particle physics moddl1]. In the next section we will ana-

!
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lyze the equations of motion obtained form the action for thedefined in Eq(3.6) and the stress-energy tendat” defined
elastic supersonic models of Carter and PEL&f, which is  in Eq. (3.3), respectively, so that one can write
in this sense “macroscopic.”

TA'=UU U~ TVAV?, (3.7

lll. SUPERSONIC ELASTIC MODELS Note thatU and T are simply constants for a Goto-Nambu

In order to account for phenomena such as the buildup oftfing.
charge and current densities on cosmic strings, one must in- U=T= (3.9
troduce additional degrees of freedom on the string world- Ho '

Carter and co-workers, is usually referred to as elastic modstrings.” In particular, one should expect that the string ten-
els (see[6] and references therein, on which the following sjon in an elastic model will be reduced with respect to the

two subsections are baged Goto-Nambu case due to the mechanical effect of the cur-
rent.
A. Basics of elastic models Since elastic string models necessarily possess conserved

urrents, it is convenient to define a “stream functio#’on
the worldsheet that will be constant along the current’s flow
aunes. The part of the Lagrangian densifycontaining the
internal fields is usually called the “master function,” and
can be defined as a function of the magnitude of the gradient
| of this stream functionA =A(x), such that

In general, elastic string models can be described by
Lagrangian density depending on the spacetime mgiic
background fields such as a Maxwellian-type gauge potenti
A, or a Kalb-Ramond gauge fieH,,, (but not their gradi-
enty and any relevant internal fieldsvhich will be dis-
cussed in detail below Note that the Goto-Nambu mode

has a constant Lagrangian density: namely =700 (3.9
arins .
Len= = Ho- 3D where the gauge covariant derivative is defined as
Upon infinitesimal variations in the background fields, and 0= dgth— e AXH (3.10

provided that independent internal fields are kept fixed
alternatively that their dynamic equations of motion are satiote that the definition of differs by a minus sign from that
isfied), the action will change by of Carter[6]; the reason for this will become clear below.
1 This “dynamic” term contains charge couplings, whose rel-
_ Y " 2 evance will be further discussed below. Nevertheless,
5= EJ (17709 ,,+W* 5Bﬂ”+2‘]MA“)\/—7d o whether or not these or other background gauge fields are
(3.2 present, it is always the form of the master function which
determines the equation—or equations—of state.

There is also a dudll5] potential s, whose gradient is
orthogonal to that ofy, and the corresponding dual master

+ Lt (3.9  functionA=A(x) such that

where

L
THr=2

wv

~ e~
, . = al-p 3.1
is the worldsheet stress-energy tensor density, X=7" (319
Y with the obvious definition fon~//;a. The duality between
Jh=—_ (3.4)  these descriptions means that the field equations for the
oA, stream functiornys obtained with the master functioh are

the same as those for the dual potentfabbtained with the

dual master functiom\. However, there will in general be
two different equation of state relating the energy density
(3.5 and the tensiofM; these correspond to what is known as the
my “magnetic” and “electric” regimes, respectively corre-
sponding to the cases

is the worldsheet electromagnetic current density, and

W= SC
T °5B

is the worldsheet vorticity flux. The later will not be consid-
ered further in this paper.

It useful to define two orthogonal unit vectors tangent to Xmg=0<Xmg (.12
the worldsheet, one of them being time-like and the othegq
space-like, such that
Xe1<O<Xer, (3.13

-U*U,=VvH*V,=1, U*V,=0. (3.6
which are respectively characterized by space-like and time-

The eigenvalues of this ortho-normal frame are the energyke currents. In the degenerate null state limit, however,
density in the locally preferred string rest frame, which will there will be a single equation

henceforth be denoted by, and the local string tension,
denotedT [there should be no confusion with the vectdf U=T=pug. (3.19
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Note that the distinction between a given model and its dual’hese models are supersonic for all space-like and weak
disappears in the absence of charge couplings; such moddime-like currents, with the exception that in the null limit
are then called “self-dual’_’ for obvious reasons. ~ x=0 one has =cg=1.

In each case the equation of state provides the expressions

T C. Equations of motion
2 _ . . . . .
CE_U1 (3.19 We now derive the microscopic equations of motion for
elastic cosmic string models. It is convenient to start by de-
dT v du fining the quantity
=AU pdy 319 .
o , , @3P="A 30— 2— i3y, (3.23
for the extrinsic(that is transverse, or “wiggle)’and for the ax

sound-type(longitudinal or “woggle”) perturbations of the _

worldsheet. Both of these must obe§=0 (a requirement then recalling the definition of, Eq.(3.11), one can find the
for local stability) andc®<1 (a requirement for local causal- free string equations of motion in the usieriationa) way,
ity). These two speeds can be used to characterize the elastibtaining

model in question; in particular there is a straightforward but

quite meaningful division of the models into supersaftiat (V=y0%%}) ot = ¥OFT 2 x4x%=0. (3.2
is, those obeyingg>c ), transonic ¢g=c ; only in the

null limit is this common speed unityand subsonic dg Also in a s_lm_llar way to \_/vhat was done in S_ec. I, t_he
<c,). effect of the frictional forces is accounted for by introducing

a term \— yF* on the right-hand side of Eq3.24). For

: _ exactly the same reasons as those of Sec. I, we will have
B. Supersonic(superconducting models

Carter and Petdrl0] have recently proposed two super- Fo=— BTp(u*—x%xP2up). (3.29
sonic elastic models to describe the behavior of current- ) ) o
carrying cosmic strings. The Lagrangian density in the magHowever, it should be remarked that the generalized defini-

netic regime is tion of the friction length scale for elastic models is
X, x|\ A
Rmg=—m?+ 5| 1— : 3.1 li==—= (3.26
mg 2( 2kom? (317 BT

m, being the current carrier magwhich is at most of the (note thatA is negative.

order of the relevant Higgs masshis is valid in the range Of course we now have a further equation for the scalar
_ field ¢, namely
L X,k (3.18
— _< — ~
2 2" : N -
3 komo_ 2m2+ komo. aa< - ’y(9—~ ’yabdl;b) :0 (327}
X

and obeys the equation of state
Furthermore, the spacetime energy-momentum tensor and

U kom? komy( T kom? 172 electromagnetic current will be given by
m2  4m? 2 Mm? 8m?
(3.19 \/—_gT”“”=—f V=702x4x5, 8(x—X( 0, 7)d%0
On the other hand, the electric regime is described by the (3.28
Lagrangian density and
S X .
Ag=—m"=——In | 1- ko2’ (3.20 V—gd¢= —ZeJ V- yyab?w,axfgé(x—x((r,r))dzcr.
4 X
o - (3.29
which is valid in the range
~ The total string energy and charge in a spacetime where the
o2k’ line element is Eq(2.19 are then defined dsve are again
_1<k0m2<1_e o, (321 using the gauge choid@.18]
and the corresponding equation of state is E= d3x\/T3)gT8=aJ _"AJFZ‘;_/N\%O@;O) edo
X

U_ T, km,
m2 m2 2

m

1-T/m? (3.30
2——|-1|. (3.22
komz/m? and
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IA i*=ej*, (3.4)
sz d3x\/—<3)gJ0=—2eaf —oedo.  (3.3D)
Ix where
The corresponding worldsheet charge and current densities (h_yhia (3.42
are defined via T ha :
IR is the corresponding spacetime current. Note that(B@7)
j#=—2e—— yy2% XE=XK b (3.32 is then just a Noether identity,
ax o '
, i%2=0. (3.43
and have the following values: '
" IN D. Chiral limit
P=1T= _Zegel/l;o’ (333 We now consider thécommon chiral limit of the two
supersonic elastic models of Carter and P¢1€), defined
JA T by the Lagrangian densitig8.17) and (3.20), respectively,
j=—jl=—-2e— RaLy (3.39  for the magnetic and electric regimes. Also, as we did in Sec.
x € I for the Witten model, we will interpret the charge coupling

) i _ and the scalar field as being renormalized and neglect the
Again, for the reasons explained above, a particularly re"coupling to external electromagnetic fields.

evant situation will be that of a chiral current, that is one in Then, with our usual gauge choices and definitions of the
which damping and friction length scales, the microscopic string

Ca equations of motiori3.24 simplify to
Yai %j°=0. 33y 1 '12.24 simplity
This is equivalent to L o2
[e(1+T)] +|—x =V —Zae\lf (3.49
~ - d
Y'i= ey, (336
and
and therefore it implies that
. € - x|’
ap 9] e(1+W¥)x+ —(1—x°)x=|(1-¥ —}
ap_ 9 537 (L W)t - (1=xx=| (1)
JT  do _
. a .
and that the totalspacetimg charge and current are also +|¥+2-V X' +2¥X,
equal. Note that in the chiral case one also has a
_ (3.45
~ I\
x=0, 3:1, (3389 whereW is defined as
and so this is not equivalent to the Goto-Nambu case despite V(%)= lzz (3.46
the fact that the equation of state is v= HoYoo '
U=T=puo. (3.39 That is, these are exactly the same equations of motion as

ose of Witten's model, Eq$2.20),(2.21), if one identifies

. t
Last but not least, one can always define the fundamentqlﬂe corresponding scalar fields:

worldsheet current density vector

X X =i (3.4
I IN -
i2=—\—y—=—=2— y—=7%,. A4
yaw;a an [ (3.49 Then, the worldsheet charge and current densities also
coincide:
Although we have included the charge coupling term in
the master function and its dual, it should be said that charge pwzqe,fb’ (3.48

coupling effects are subdominant, and thus for most purposes
they can be neglectgd nothing else, at least to a first-order ~,
approximation. This has been confirmed by Pefég], and J'W=q¢—- (3.49
is a consequence of the smallness of the coupling €
constants—for example, the electromagnetic coupling con-
stant ise?~1/137. In most of what follows we will therefore Finally, the total energy of a piece of string is given by
neglect the charge coupling.

If an electromagnetic coupling does exist, it will be sim-

ply given by E:Moaf (1+WV)edo, (3.50
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which we can immediately interpret as being split in an ob-
vious way into a “string” component and a “current” com-
ponent. This interpretation will be relevant below.

Note that if we had preserved Carter’s original sign con-
ventions, we would have found a difference of a factor of
between the two fields. But the important point is that the
equality between the two theories in the chiral limit is not
entirely trivial since, as we already pointed out, the motiva-
tions behind the build up of each of them are quite different.> of
We have thus provided the first substantive evidence of the
validity of the supersonic elastic models of Carter and Petel -
[10].

IV. CHIRAL LOOPS IN FLAT SPACETIME

We will now study the evolution of current-carrying cos-
mic string loops, starting by considering the simplest case o
circular loops in flat spacetime. We therefore choosefthe

satz , ®
X(7)=r(7)(sing,cosh,0); 4. ook i
we also need aAnsatzfor the scalar fieldj (or ¢), which o8r 1
we will take to be sl |
U= \mol F(r) +nolt, 42 oo
where the winding number per unit, n, is a constantdue o2
to the symmetry of our loop solutiprandt, is a character- 0]
istic time scale—say the epoch of network formation. The || |

chirality condition implies that

eF=n. (4.3 . |
Then the string equations of motion reduce to ol e
2,2 ’
el 1+ ¢ =1, (4.4) FIG. 1. The_ flat spacetime evolution _of chiral _circular string
r2 loops characterized by a conserved quamntifglefined in Eq(4.2)]

having the value (solid lineg, 0.1 (dashed lines 0.3 (dot-dashed

n4t4 lines), 0.45 (dotted line$ and 0.5(stap. Note that the first corre-
r+l 1= _C)rzo, (4.5 sponds to a simple Goto-Nambu loop, while the last is a static
ré solution. Plots respectively showas function ofr [defined in Eq.
(4.1)] (a) and the fraction of the energy in the string as a function of
together with the constraint r (b).

N =

In|< (4.6 in this case the energy is equally divided between the string
and the current.

It should also be noted that energy is transferred back and
forth between the string and the current as the loop oscillates.
We can easily determine the following quantitigse aver-

ages are over one oscillation perjiod

Note that opposite signs of correspond to left and right
moving currents; naturally it always appears résin any
relevant equation, and we will therefore be takimgo be
positive.

In Fig. 1 we have plotted some relevant evolutionary
properties of chiral superconducting loops with differatg
in flat spacetime. Note that these loops never collapse to zero r2 1,
size, and that their microscopic velocity is always less than —o7 n- (4.8
unity (unlike in the Goto-Nambu case-urthermore, there is
a static solution with

I 2\ 1
n=§=t—, r=0; (47) - 2—2, (49)
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<'r2>=%(1—4n2), (4.10

Current branch

while the energy in the string obeys

Eqtri z
<—S“'”9>=1—n, 411 £
Etotal g
2 : of
Estring> 3 S
=1->n; 412 5|
< Etzotal 2 g ?
note that the energy of these loopsHg, /tc=27w. -4r

Finally, we discuss two other points that will have further
relevance below. First, a loop with a given conserved num- ¢
bern will reach a maximum microscopic velocitand cor-

String branch

_8 1 1

responding Lorentz factpgiven by e 25 =2 I_lfsb ) = 205 0
log (nbar)
L2 _1_4n2 :i FIG. 2. The logarithm of the ratio of the energies in the current
rmax 1 4n ! ymax . (413) . . . . . .
2n and in the string for chiral circular loops with zero velocity, as a

. - . . function of the logarithm of paramete? Note that there are two
Secqnd, for _f'xech and initial velocity, there W'_” be tWO_ different branches, hereafter called the “current branétgp) and
possible choices of; that can be made—the difference is ¢ “string branch” (bottom.

that in one of them most of the energy will be in the string,
while in the other it will be in the current. We will call these — .
two cases the “string branch” and the “current branch.” In ilso n:O Forresponds to the Goto-Nambu F:ase, w_hﬂe the
flat spacetime, the two choices give physically the same sd1=1 limit is the analogous of the flat spacetime static solu-
lution (they simply correspond to different initial phases of ion, here characterized by
the oscillation, but this will not be true in general.
Estring: Ecurrents  1=0; (5.9
V. CHIRAL LOOPS IN THE EXPANDING UNIVERSE
in the approach to this limit one can easily establish that the

The case of circular loops in expanding universes IS1oop’s, velocity (in the radiation epochand length in string

analogous, and we keep thesazefor x and - evolve according to
b=l F()+nolte. (5.9)
t _ n Istring _ n i
The winding number per unit and the functionF are also UE— 27 ?tc_ 1—'r2, (5.7

constrained as before. In terms of these quantities the total

energy of the loop can be written as _ ) ]
these will be humerically confirmed below.

nztg An important difference with respect to the flat spacetime
Etotalzﬂoltotalzﬂoaf 1+ = edo case is that now the string branch and the current brésesh
ar Fig. 2 for a relevant particular caseepresent two physically

(5.2) different solutions—something to be expected since damping
forces(that is, friction and expansigract differently on the
and the loops evolve according to string and current energies. Since we will be mostly inter-
ested in chiral superconducting string loops formed in the
n2t§ 1 friction-dominated regimdgas no vortons will form in the
! a’r2|r

= wol string ™ Ecurrents

. ol
r+(1-r? E+ =0. (5.3  “free” regime), we can safely assume that these loops are

2,2

n-t
(1+ —
awr formed with zero velocity. Now, there is a very simple rela-

It is convenient to define a macroscopic dimensionles$ion betweer o), lstring @andn: namely
parameter which, as we will show later, turns out to measure
the loop’s stability against collapse. We will define it by | 2 —
ol _ 2 (1+V1-n?). (5.8
4mnt, Istring n?

; (5.9

ltotal
ot The negative sign corresponds to the string branch, where as

note that unliken, which is a constant for each loop,is a  n goes from zero to unity we go from the Goto-Nambu case
variable parameter obeying to the static case where the energy is split equally between
the string and the current; the positive sign corresponds to

O=n=l; (5.5 the current branch, where the ratio of the energies in the
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FIG. 3. The evolution of chiral circular GUT-scale string loops formed=at.. All loops have an initial total energ¥, /27 ut,
=10, but different initial string energies—respectively 9.3, 7.2, 5.0, 2.8 and 0(&) and(d), these are respectively shown in solid, dashed,
dash-dotted, dotted and starred lines, whilgipand (c) they are correspondingly shown by lighter shades of gray. Plots show the total

energyE, 5 relative tot; (a), the microscopic velocityb), the fraction of the loop’s energy in the currén} and the paramet& defined
in Eq. (5.4)(d).

string and in the current decreases until it vanishes when mum velocity reached by each loop configuration during its
reaches zero again. Note that E§.8) can be inverted to evolution,v ! .t;,n;). If the loop does become a vorton,

give then its length will asymptotically be given By(l; ,n;).
| | 12 In Figs. 3—5 we plot the cosmological evolution of some
n=2 S“ing( total _ 1) _ (5.9 relevant GUT-scale chiral circular loops. We should mention
ltotal \ I'string that in order to save space, only 1 out of every 40 points

resulting from the numerical integrations is plotted, and this

In practice, it is not easily conceivable that in cosmologi-is the reason why some plots show irregularities.
cal contexts loops can be formed with more energy in the Figure 3 shows some relevant properties of the evolution
current than in the string itself. Therefore, although for theof chiral circular GUT-scale loops formed &tt,; all have
sake of completeness we will be discussing the currengn initial total energyE,q,/2mut.= 10, but the distribution
branch in the remainder of this section, we will neglect itof the energy between the string and the current varies.
afterwards. Obviously, loops with higher currents will have smaller

Thus from Eq.(5.3) one obtains the evolution equation physical radii, and hence they will be less stretched by ex-
for I(1;,t;,n; 1), v(l; ,t;,n; ,t) and other relevant quantities. pansion and enter the horizon earlier, at which point they
As we will see below, a crucial quantity will be the maxi- start oscillating—as can be confirmed in Fig&a)3B(b). Re-
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FIG. 4. The evolution of chiral circular GUT-scale string loops formed=at, . All loops have an initial total energi,../27wut,
=10, but different initial string energies—respectively 9.3, 7.2, 5.0, 2.8 and 0(&) and(d), these are respectively shown in solid, dashed,
dash-dotted, dotted and starred lines, whilébnand (c) they are correspondingly shown by lighter shades of gray. Plots show the total
energyE, ., relative tot, (a), the microscopic velocityb), the fraction of the loop’s energy in the currdnj and the parameter defined
in Eq. (5.4)(d).

garding the velocities, note the significant differences be- The evolution of the fraction of the loop’s energy in the
tween loops in the “string branch{which still reach fairly  current is particularly illuminatingsee Fig. 8)]. This will
high microscopic velocities, but never=1) and in the obviously decrease while the loop is being stretched, and it
“current branch” (which quickly become non-relativistic ~ Will start oscillating when the loop falls in side the horizon.
Therefore the latter ones should definitely become vortonslhe oscillations are around the state with equipartition of the
and so it is perhaps fortunate that, as we pointed out abov€nergy between the string and the current, which as we saw
we do not expect loops with such high currents to be procorresponds to a static solution in flat spacetime. Note that
duced in the early universét least, for GUT-scale net- the effect of the friction force is to reduce the amplitude of
works). Note that in one of the cases shown the initial cur-these oscillations, and so one can see that friction is in fact
rent is so high that the loop “overshoots” and acquires acrucial for vorton formation. Naturally, loops with smaller
fairly large velocity, but friction quickly slows it down again. Vvelocities will undergo oscillations with smaller amplitudes,
On the other hand, in the string branch the velocity isand so again we confirm that these are the strongest vorton
reduced with respect to the Goto-Nambu case, and a momandidates. Finally, we have plotted the parametgwhich
detailed investigation will be needed to set up some criteriowas defined in Eq(5.4)] in Fig. 3(d), and as one can easily
defining which velocities will allow vorton formation— see by comparison with the other three plots this is indeed a
recall that relativistic velocities will imply charge losses andgood indicator of whether or not a given loop can become a
it will therefore be unrealistic to make any definite claims orvorton—in fact, the “phenomenological” criterion that we
predictions about such cases. mentioned above will be basically expressed in terms of the
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FIG. 5. The evolution of chiral circular GUT-scale string loops formed=at.. All loops have an initial string energiiing/27 ut,
=0.1, but different initial ratios of energies in the current and the string—the casés 102, 10 %, 1.0 and 2.0 are respectively shown
in solid, dashed, dash-dotted, dotted and starred lines. Plots show the total Epgggyelative tot. (a), the (base-10 logarithm of the

microscopic velocity(b), the fraction of the loop’s energy in the currdioj and the(base-10 logarithm of the parameter&?(d).

value ofn once the loop is “free”—that is, much smaller Egtring 3_
than the damping length defined in E§.22. > =1- 2 (5.12
On the other hand, radiative backreaction also tends to Efotal

damp these energy oscillations, and consequently increase
Note that this has been shown to have the approximate for
E=T,J? and sincd".m~ 100, the time scale for this pro-
cess is expected to be relatively short. £ 1
Note that when loops become smaller than the damping A=Y (1), (5.13
length scald 4 and reach the “free” regime the following Etota 4
averages over a period holdote thain becomes a constant
in this limit—hence its usefulness

e variance of the fraction of the energy in string is there-

In Fig. 4 we show chiral loops with the same initial con-
ditions as Fig. 3, but starting to evolve at the epogchvhen
when friction becomes negligiblg7]. The differences are

<f2>= Z(1-m) (5.10 self-evident. Now, after a first period of growth of the total
2 ' ' radius due to expansion, there is no mechanism forcing the
loops to return this extra energy back to the medium when
they fall inside the horizon. Consequently there is also no

<Estring> 1 }F (5.11) velocity damping(all loops will have microscopic velocities

Eiotal 27 larger than 0.5) and the energy oscillations between the
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string and the current always have a large amplitude—so tha

n will never stabilize close to unity when the loops fall inside
the horizon. 08
Note that a loop with a very high initial current will again .,
“overshoots,” but unlike in the case with friction here it can £,,
actually end up oscillating faster than another one in the o,
“current branch” but with a smaller current. This is because
now there is no friction force that can damp this velocity 1 - 1og (1)
overshoot.
It can therefore be seen that vortons can only form during
the friction-dominated epoctas we expectedand also that 1
the earlier a loop is formed, the larger will be the region of os
the space of initial conditions that will originate them— 508

because as we said the effect of friction is to increase =°*
Therefore, for cosmic strings formed at the GUT phase tran- °*
sition, the most favorable case for vorton formation is having i
the strings becoming superconducting at the GUT scale ac 108 (Ry,/)

well. We will use this assumption in the remainder of the FIG. 6. The maximum microscopic velocity reached by circular
paper. . . L GUT-scale chiral superconducting string loops formed at a time
Flnz_illy, in Fig. 5 we plot the more real!gtlc case of t_he —t,~10% s (top lefy andt,=10t,,10Q, ,858, (clockwise, the
i\cl)otllutlon of G”UT;ﬁcaI?hloohps.havmg gnd,'fr;'t'al ft,r"f‘t_g lradtl_us latter beingt, . The x axis corresponds to the initial value of the
imes smaller than the horizon, and different initial ratios - N
of energies in the current and in the string—rangin fromparametem, going from zera(the Goto-Nambu casdo unity; in
g 9 ging they axis the base-10 logarithm of the string radius relative to the

-3
10 " to 2. . horizon size goes from-2 to 1. Note that in the first graph the
Now the total radius only suffers a small decrease, exceftiction length scale corresponds to lp~ — 1.5, while in the last

in the case where one starts with-1, in which case the one log,/t=0.
velocity is so small that friction does not significantly affect

e _ o . . -
the loop. Note that as approaches unity we have<t = as  assumed that all such loops start their evolution with a neg-
we predicted, although for loops in the string branch there igjgihly small velocity—a reasonable assumption, since the
an initial transient where=t~*. Nevertheless, in the string network dynamics is friction dominated unt}. In each

branch loops do reach fairly high velocities during their first _ - —
few oscillations, so that once more the issue of whether of@S€ the horizontal axes correspond to the initial value of

not these become vortons is not entirely straightforward. ~and 1o the base-10 logarithm of the initial string radius rela-

Also note that for loops of this size the amplitude of the ive t0 the horizon; recall that we only consider loops having
energy oscillations between the string and the current is nedtitially most of their energy in the stringn other words,
ligibly small, except for the short transient peritigipically ~ 100ps in the string branghNote that the friction length scale
lasting less than one Hubble tinér loops in the “string corresponds to about 1.5 in the vertical axis on the first
branch” with fairly small currents. Clearly the relation be- plot and to 0 on the lagivhere it is equal to the horizon, by
tween the initial conditions and the valuesrofindv needs  definition).

to be looked at in more detail, and we shall do that in the It can be seen that any loop initially larger than the hori-
next section. zon will inevitably become relativistic. This is essentially

because expansion wiltemporarily, at leagtdecrease the

fraction of the loop’s energy in the currefdnd hencen).
On the other hand, loops smaller than the friction ler{gtid
In the previous section we saw that the evolution of chiralthe horizon have essentially no mechanism that can change
superconducting cosmic string loops depends sensitively OR (neglecting radiation and so we will need fairly high ini-
the conditions at formation. In particular, one would need Q5| cyrrents in order to get non-relativistic velocities.
know in Wh'(.:h cases one en_ds UD.W'th a vorton. . Finally, for the case of loops being produced with sizes
at g}lizaggézmgsrvgﬁtg:; :Zthl(;ﬁlg%g%r::ﬂgggi wsgg:c'zgietween the friction length scale and the horizon, which is of
o ’ ; . course the cosmologically relevant case during the friction-
ity is always smallin a sense that will need to be made more | ated 71 fricti " the | t0 shrink
precis¢ will become vortons, while those that are relativistic ominate epocﬂji riction wilf force the loop to shrin
at some stage will suffer significant charge losses, so thdthereby increasing), while the effect of the cosmological
their fate cannot be clearly asserted until a rigorous quantunXpansion will be small, and so in order to have non-
mechanica| treatment of these processes iS ava”ab'e_ relatiViStiC_Velocities we are a”OWed to haVe Sma”er |n|t|al
Thus we will explore in more detail the phase space ofvalues ofn than in the previous case.
possible initial conditions in order to determine relevant From the analysis of Figs. 3—6 one can see that we need
properties of these loops. Figure 6 shows the maximum Mitajrly high values ofn when the loops reach the “free”
croscopic velocityv ha4li,t;,n;) reached by GUT loops regime in order to have reasonable chances of producing
formed att=t.,10t.,10Q, andt, ~85%,, respectively; itis GUT vortons in the “string branch.” Now, according to Ref.

t=100t
c

2 1 2 1
2 nbar log (Rsnm 2 nbar

VI. CRITERIA FOR VORTON FORMATION
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[4], the energy of a superconducting loop configuration withlarly significant. Hence we require that,,x<v o, if a given
radiusR is approximately loop is to form a vorton. Of course,,, depends orx; for

) x=0.1, we have

E:27T:U’R+27TE?:Estring+ Ecurrents (6.1 Uyor~0.29. (6.7)

Such a velocity limit is physically plausible, but a rigorous

h ° ! quantum mechanical treatment will be required to obtain
particle number. The parametgris the result of an integral 1,5re precise values. Note that the size of this vorton-

over the string cross section; it is a variable in general, but forming region of parameter space is maximataand de-
constant in the chiral case, and expected to be of the order @toases with time vanishing not later thian

the inverse of a coupling constari>20; we will in fact If we choose less stringent criteria, say 0.5 or everx
take 2, =20 unless otherwise stated. This is minimized for a_ 1.0, our bounds will respectively be

radius

whereW is the winding number and25 W~ N> is the net

— 2
R, _ ) 1/2_ 6.2 nfree>§r Uyor~0.53, (6.8
W o \u '
— 1
this corresponds to a vorton state. As expected, this mini- Nfree™ 5, Vpor~0.61; 6.9

mum value isE, = 2Ejng and corresponds to=1.

Now, suppose that the energy of a given configuration is ave will comment on the importance of the precise choice of
little higher than this minimum. That is, l&=(1+Xx)E, . x in Sec. IX.
Then such a configuration will have a radius Clearly, this only solves half of the problem—the other
half is determining what exactly are the initial conditions at
the formation of these loops, and in particular what are their
currents. In other words, we need to know where in Fig. 6 do
the loops form. This is a non-trivial problem, but we will
we will choose the plus sign since it corresponds to thediscuss a simplified “toy model” for current evolution in the
“string branch.” Then we can use E@5.9) to find the cor-  following section.

responding value offi:

Rstring _

= =1+x*[(1+x)2—1]"> (6.3

U

VII. EVOLUTION OF THE CURRENTS

> 1+ X+ yX(2+Xx) 6.4) Because of the strings’ statistical nature, analytic evolu-
1+[1+x+VX(2+%)]% tion methods must be “thermodynamic;” that is, one must

describe the network by a small number of macroscégpic

These are useful expressions to introduce “phenomenc-averaged”) quantities whose evolution equations are de-
logical” criteria for deciding which loop configurations will rived from the microscopic string equations of motion. The
produce vortons. We note that these should be established &ifst such model providing a quantitative picture of the com-
the basis of more detailed numerical studies of the microplete evolution of a string networkand the corresponding
physics of the currents; in particular, significant model de-oop population has been recently developed by the present
pendence is of course expected. authors[7], and we briefly summarize it here.

As an example, if we take as a necessary condition for We start by defining our averaged quantities, the energy
vorton formation that the energy of a given configuration beof a piece of string,

at most 10% higher thalg, , we find that the value af once

the loop size becomes smaller than the damping length E:“a(T)f edo (7.2
should obey
10 (e being the coordinate energy per unij, and the string
Ntree= 1_1~0.91' (6.5  rms velocity, defined by
V2
or equivalently that the average fraction of the loop’s energy ) J x“eda
in the current must be =T (7.2
fsda'
E
<M> =0.45. (6.6) o o ,
Etotal /1 Distinguishing between longor “infinite” ) strings and

loops, and knowing that the former should be Brownian, we
Another (approximately equivalent way of stating this is can define the long-string correlation length @s= u/L?
that a loop will not form a vorton state if it exceeds some(see[7] for an extensive discussion of these quantities and
maximum velocityv,,, above which charge and current others to be introduced belgwA phenomenological term
losses become effective. Note that a fast-moving loop willmust then be included for the interchange of energy between
tend to develop cusps at which such losses should be particleng strings and loops. A “loop chopping efficiency” pa-
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rameter, expected to be slightly smaller than unity, is intro-
duced to characterize loop production: \ (@) \<"/
dp- ~ P \ yanaN
W =CUcp—. (7.3)
to loops

One can then derive the evolution equation for the corre- /\

lation lengthL [7], which has the form
(b)

dL ) oL~
2 g7 =2HL(A1+ ) Tos -+ o (7.9
f
we point out again that the “friction length scaldf will in
general be that due to Everett scattering. (©

One can also derive an evolution equation for the long
string velocity with only a little more than Newton’s second

law: FIG. 7. Some relevant inter-commuting configurations. The ar-

rows mark the limits of regions with correlated currents. Rt
. (7.5 shows a typical inter-commuting creating four new current regions,
while (b),(c) show that on scales smaller than the current correlation

) ) . length loop production mayc) or may not(b) remove current re-
herek is another phenomenological parameter that is equalions from the long-string network.

to unity during the friction-dominated epoch and of order

unity later[7]. Our analysis will be based on the assumption that there is
Finally, a careful analysis of the loop production mecha-5 “syperconducting correlation length,” denotegd which

nism leads to an expression for the energy density in l00psneasures the scale over which one has coherent current and

The idea is that at a given time one looks back at all thesharge densities on the strings. Associated with this we can

loops that have formedand still have not decaygdfinds  gefineN to be the number of uncorrelated current regitins

their present lengths and then adds them together. Distin,e long-string networkin a co-moving volume/=a3L3 as
guishing between “dynamical” and “primordial(that is,  fgjiows: 0

Vachaspati-Vilenkin loops, we have

1
2H+—
It

E_U

t L.V
po(t)= ftcndyn(t.t')l(t,tht’ N=F e 78

Leut , , , where L., is the total long string length in the co-moving
+ ) Npri (17, D1 (17, 0dI". (7.6 yolume.
C

Now, & andN will obviously change in the course of the

Above I(t,t) is the length at time of a loop produced at €volution of the string network, and we can immediately

time t’ (this will vanish if the loop has decaygdwhile identify four possible sources of change—expansion, inter-
Nayn(t,t")a(t) = nieop(t’)a*(t’), where commuting, loop production and internal dynamics on the

string worldsheet. We now consider each one of them. First,
we expect that in a co-moving volume the number of uncor-

~ U
n|00p(t)=g,uc? (7.7 related regions will not be affected by expansion, and so
o
: - : dN
is the number of loops produced per unit time per unit vol- at =0. (7.9
ume. The factog~ 1/y2 accounts for the fact that not all of expansion

the energy lost by the long-string network ends up in the . . .
loops—part of it is lost by velocity redshift. We are assum-Now consider the effect of inter-commutingshether or not

ing that loops produced at tintehave an initial length(t) a loop is produced Laguna and Matznel7] have'numer!-
= a(t)L(t)—in other words, that loop production is “mono- cally shown that whenever two current-carrying strings

chromatic” (see[7] for a discussion of this poiptSimilarly, cross, they inter-commute and a region of intermediate cur-

S\ ; ; rent is created. This means that inter-commutings will in
for the Vachaspati-Vilenkin loopk,,;(l’,t) is the length at . . .
time t of ap loop formed p%ﬁiﬁ I()angth I’ vg\]/hile general create four new regiofsee Fig. 7a)]. Since accord-

, , N ing to our analytic evolution model the inter-commuting rate
Npri(17,)2%(8) =Nigop(17)@3(ts), Where niop(l’) is the 9 y 9

well-known Vachaspati-Vilenkin loop distribution. IS
The above quantities are sufficient to quantitatively de-
; ot : : dn luv, V
scribe the large-scale characteristics of a cosmic string net- - 7= (7.10
work. We will describe the evolution of the currents by a a L4
recently introduced toy mod€1 1], which we now discuss in
more detail. we immediately obtain the following effect dx:

intercommuting
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dN v V proximately independent of the parameter characterizing the
(d—) =2— - (7.1)  loop size,a. In the friction-dominated regimey is of order
t intercommuting ¢ L unity, and when it becomes much smallgn the free re-

gime) the a dependences in the numerator and in the de-
nominator cancel out. One can readily see that this is physi-
Sally plausible: wherx~ 1 (in the friction-dominated epogh
few loops are produced, but each one of them removes a
n%igniﬁcant number of regions; on the other hand, wheis
small, many more loops are produced, but only a few of
them will remove regions.
Finally, there is the dynamic term. When regions with
opposite currents inter-commute, new charged regions are
created, setting up alternate currents. One expects electro-
Fl(—) =1, —=>1 (7.12 magnetic processes to make these currents die down, so that
¢ ¢ the charged region will eventually equilibrate with its neigh-

again this assumes that loops have a ${tg= a(t)L(t) at
formation, and that once the long-string network reaches th

for the fact that when regions with size of ordeor smaller
self-intersect it is possiblgsee Figs. {),7(c)] that no new
regions are produced. Thus we must multiply Eq11) by a
correction factor

| | | bors. The simulations of Laguna and Matzh&¥] provide

Fl(_) = +(1—a)=, =<1. (7.13  Qualitative support for this intuitive picture. Clearly, this in-

£ € & & dicates that some kind of “equilibration” process is effec-

. . . : tively acting between neighboring current regions, which

The slightly complicated behavior &, is nevertheless easy i “counteract the creation of new regions by inter-

to understand. The point is that numerical simulations Sho"l’:ommuting. While it is beyond our means to derive an
that there are two types of inter-commutings. First, “large-«gqyilibration term” from first principles we will, as a first

scale” ones always occur at a scdle a fractiona of the 555 5yimation, introduce a phenomenological term. We will

inter-commutings should be of this type. If this happens beynqqe this current decay by assuming that after each Hubble
tween two long-stringdthat is, no loop is producédwe  (ime 5 fractionf of the N regions existing at its start will
always expect to create new regions, since there is no reasgl .« equilibrated with one of its neighbors:

for currents in different “infinite” stings to be correlated. On

the other hand, if what we have is a long string self- dN
intersecting to produce a loop of size smaller tifafa frac- (H)
tion 2¢ of these inter-commutings should produce loops

then we might not form new regions—for each length, thé oo that new regions are obviously created by inter-
fraction of these self-intersections that produce new regionﬁommuting during the Hubble time in question, so thaan

is essentially given by the ratio of the size of the region and,g |arger than unity. Alternatively we can say that for a given
the superconducting correlation length. The remainder of th the number of regions in a given volume at a titneill

inter-commutings are associated with the presence of smal jave disappeared due to equilibration at a tme)—l_

_scale str_ucture on _the 5”'0951 and occur by repeated SelQC/Ve therefore obtain the following evolution equation fér
intersections of a given string, and so tHé& cutoff always

~ I
1—20( 1--

= —fHN; (7.17)

dynamics

applies. Notice that the second term vanishesg=#1 (as it dN No. V
should but it rapidly becomes dominant asstarts deviating = G(_>_°° — —fHN, (7.18
from unity. Also note that the overall inter-commuting effect dt § aL*

is approximatelya independenfmore on this beloyw ) )
Of course, when the inter-commuting does produce avhere we have re-defined the correction factor
loop, the regions in the corresponding segment are removed

from the network, together with one of the newly created G<|—> —2-% |_+2) |_>1 (7.19

“intermediate” regions, and we similarly have 13 13 < '
(dN (|+2F )NU'” v (7.14 G(I) 2(1-2¢)a+(2—3c—2a+4 ~)I | 1
— =—|= c— —, . -]=2(1-2c —-3c— )=, -=<=1.
0 fops (€ 2T L8 ¢ : e

(7.20

where the analogous correction factey is of the form ) .
Note that wherny’> ¢ the net effect of inter-commuting and

loop production is to remove uncorrelated regidhscause
Fz(g) =1, §>1 (7.19 each loop formed removes a large number of thesther-
wise, the net effect is to create new regions.
| | | However, for what follows it is convenient to re-write it
2(5) = E Esl. (7.16 in two alternative forms. First, we can defifg to be the

number of uncorrelated current regions per long-string cor-

Note that string length is always removed from the long'elation length:
string network when loops form, regardless of whether or not
current regions are. This is in fact the main effect of loop N, =

L
. . X =N—; (7.22
production, as can be seen by noting that &ql4) is ap- L

|
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this is useful because, as was first pointed out by Davis anc ' ' ' ' '
_— First order

Shellard[4], we expect the net charge of a superconducting | |00 Second order
loop to be given by R

Q~eN2. (7.22

In terms ofN , Eq.(7.18 has the form

dNL—s2 f)HN +3U§’N+ L staN N, |2 T
dt _( Uy ) L 2 If L @ (a L) 2C L Ln ol |

(7 23 Allowed f
note that to obtain this one needs to substitute the evolutior
equation for the long-string correlation length Eq. (7.4),

and that one can equivalently defiGeas

5k 4

3 4

G(aNL)ZZ—E(aNL-i-Z), aN; >1, (7.249 Yo 05 1 o 2 25 3
G(aNL)=2(1—2?:)a+(2—3?:—2a+4a?:)aNL, FIG. 8. The evolution off;, (lower pair of curvesand f .
(upper pair of curvesfor first order(solid lines and second order
aN =<1. (7.2 (dotted line$ string-forming phase transitions. Time is in orders of
magnitude from the epoch of string formation.
Yet another useful form follows from defining, to be

the number of uncorrelated current regions in one Hubblger epoch. We explicitly write the dependences éf,, to

volume, emphasize that this is the maximum valuefofvhich satis-
3 fies Eq.(8.1) for a given set of properties of the cosmic string
Nz H N di . (726  nework
H™ g e ' On the other hand, if an equilibration mechanism such as

that modelled by Eq(7.17) exists[17], it is reasonable to
in this case we have assume that it will preveritl,, from growing without limit—
possibly through a backreaction mechanism as in the case of
H v, A gravitational radiation for wiggly Goto-Nambu strings—and
T (3= HHNy+G( “NL)Z L4 (7.2 eventually it will make it become constaftheaning that is
scaling linearly. In other words, we can assume that there
should be a largd\}, (which we need not specifisuch that

3

VIIl. IMPORTANCE OF EQUILIBRATION

intuitive point of view, an equivalent question is the follow- dt

ing: given a particular piece of string with a given current, is

it more likely to disappear from the network by this equili- ¢ ¢4 therefore find a lower bound bavhich satisfies this,
bration mechanism or by being incorporated in a loop? Even

though a precise answer can probably only be given by 5 v,

means of a numerical simulation, some very simple physical fmin(C, ¥,05)=3—2C—. (8.9
arguments can be used to restrict it. We should point out, Y

however, that many of the results of the following sections, . . .
do not depend crucially on the value bf Again this varies as the network evolves. Note that the cru-

First, correlations cannot obviously be established faste.Ial point about this construction is that E@.17) depends

than the speed of lighthat is, we must havé<t), so that mear_ly ONN. o .
we should impose that Using the quantitative evolution model of the present au-

thors we have plotted,,x and f,,;, during the friction-

Now the question is, of course, whatfi® From a more (dNH) <0- 8.3
N*

dNy dominated epoch with initial conditions typical of first and
(W) =0; (8.1)  second order phase transitions, in Fig. 8. These plots are
Ny=Ly/t fairly easy to interpret. Perhaps the most surprising result is

) i ) the large values of,,, allowed when the long-string corre-
this leads to an upper bound dn which we can write, |ation length is well below the horizon. This is because in

definingL = yt, as this case the loops chopped off by the network are small, so
that each one of them removes relatively few current
~ =V regions—one could therefore have an extremely efficient
»)=3+4(1-2¢c)—. . o . )
fma €,y 0) =3+4(1=2¢) Y .2 equilibration mechanism and still obey the constrgt).

Hence we can see from Fig. 8 that if our toy model, and in
(In this section we will concentrate on the boundsfdn the  particular theAnsatz(7.17), is valid, the constraints ohare
radiation epoch—analogous results can obtained for the mamuch stronger for a first-order phase transition. One can also
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see thaff = 3 is the only value that is acceptable at all times, * ' ' ' ' ' ' ' ' ' A
regardless of the initial condition. However, it is at present e
unclear if there is something “special” about this value. A 1o e 1
numerical simulation is presumably the only way to clarify
this issue.

Note that any valuef ,,;,<f<f,ax, Once the network
reaches the linear scaling regime

1.88-3 2 f<3+ 4(1-20) 224, (8.5
. ——=<I< o = L, 224, .

k+c kY4(k+c)3?
leads to a constant value Nf and that this corresponds o 7 — Sting 1st Current 1st
scaling as the long-string correlation length Different val- ok "7 gt curenizng ]
ues off lead to different scaling values df_ (with largerf’s A [P Siting 204 Current 200
corresponding to smalléd, 's as expectedat least in some ) . . . . . , , , ,
region of the space of initial conditions, but for afiy 3 one (a') L PR A

can think of some set of physically viable initial conditions
for which either causality would be violated at some stage of : ' ' ' '
the evolution or the number of uncorrelated regions would
grow without bound. The scaling value Nf can be written

in terms of the properties of the string network as

4(1-¢)

(k+E)f—E—3k; ®9

AscNL=

log NL

one can see that in this regime thedependence is rather
weak, unlesd is just abovef ;.
We emphasize that while thig,,, bound is unavoidable

(being a consequence of causality,,;, is less robust and 7 ——  String 1st Current 1t

could well be disproved by a detailed numerical study. |/ IR i
Therefore, in what follows we will discuss two casés; 0 Al - sting2nd Current 2nd .
andf=3, which should represent the scenarios of ineffective . . . , ,

(or non-existentand effective equilibration. b) 0 05 ! log () 2 28

For a givenf, we can now solve Eq7.23 numerically,
coupled with the evolution equations for the long-string cor- FIG. 9. The evolution of the number of uncorrelated current
relation length and average velocisee[7]). This therefore regions per long-string correlation lengtN, , for the casef=0
allows us to know the size of the loops formed by the net-{the bottom plot is a friction-dominated epoch closeup of the top
work at each time anfthrough Eq(7.22] the initial current ~ one assuming that the orders of the string-forming and supercon-
they will carry. One is then in a position of applying the ducting phase transitions are respectively: 1st andslsid lines,
criteria established in Sec. VI in order to decide whether oftst and 2nddashed lines 2nd and 1stdash-dotted lingsand 2nd
not each loop will form a vorton. and 2nd(dot_ted lines. _Time is in orders of magnitude from the
We should also say at this stage that once the networkPOch of string formation.
leaves the friction-dominated regime and strings become
relativistic other mechanism@otably radiatioh can cause the value ofa in the linear scaling regime i85~ 103 (see
charge losses in the long stringgs well as in loops Hence ~ Ref.[7]).
our toy model can at best provide order-of-magnitude esti- The differences between the two cases are considerable.
mates in this regime. On the other hand, we expect it to b&irst, if there is no equilibration mechanish<0; see Fig.
quite accuratépending a more detailed numerical study ~ 9), the number of uncorrelated regions per long-string corre-
the friction-dominated epoch—which is of course relevantlation length,N_, never decreases. In this case there are
for vorton formation. simple scaling laws foN, and . One finds that is con-
formally stretched during the stretching regirtpest like the
long-string correlation length, «t'?), and saN, is approxi-
mately constant. However, as inter-commutings start creat-
In Figs. 9 and 10 we plot the result of the numericaling new regionsN, begins to increase, and it grows &§
integration of Eq(7.23, for initial conditions representative during the Kibble regimgwhereL«t%4 and so&s«t™14).
of string-forming and superconducting phase transitions ofinally, once the network reaches the linear scaling regime,
first and second order, for the cades0 andf=3. We are L«t, the number of uncorrelated current regions grows as
assuming that these occur at around the se®iéT) energy N, ot, which corresponds tg«const. As expected, in this
scale since, as we have shown in Sec. VI, this is most favorease the network keeps a “memory” of its initial conditions.
able situation for vorton formation. It was also assumed that On the other hand, if there is an efficient enough equili-

IX. GUT-SCALE ANALYSIS
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have a reasonable possibility of becoming vortons.

Our quantitative string evolution modgT] allows us to
determine the size of the loops formed at each epbh,
=qa(t)L(t). On the other hand, according to E&.9), to

find the initialn we need to know the ratio of the energies in
the string and in the current. Now, the energy of a supercon-
ducting loop configuration with a radilR is given by Eq.
(6.1), and so after some algebra we find

Ecurrent _ 16m3N GuN,

. : = 9.1
' ———  String 1st Current 1st . 2 2,2° (
1k -—- String 1st Current 2nd 4 Estrlng 452 o 7 X
'''''' 8tring 2nd Current 1st
»»»»»»» String 2nd Current 2nd
-2 ] p s , s 5 7 s s  WhereL=+t, t=xt. and A is the number of e_ff_ectively
(a) log ) massless degrees of freedom. Note that the minimum value
.5 , , , : : of y is of the order of Gu)*? (but slightly larger—se¢7]),
T and so the crucial factor in this equation, and hence for vor-
AN =TT ton formation, is how muciN, can grow. This alone tells us

that the higher the energy scale at which the string network
forms, the less likely it is to produce vortons, since it will be
friction dominated(and hence non-relativistidor a shorter
period of time. In order to make vortons, loops should be
formed with a high enougN, to allow them to remain non-
relativistic thereafter—otherwise, they will eventually be-
come relativistic and hence liable to charge losses. As we
already pointed out, making the strings become supercon-
ducting sometime after they form does not help—it merely

05

String 1st Current 1st reduces the time available to build up charges and currents.
ol T 2:::3;;23';2::2? 1 Contrary to current beliefwhich is based on rather more
-------- String 2nd Current 2nd qualitative estimatgswe do not expect any vortons to be
s , , . , . produced by GUT-scale cosmic string networks. In Figs. 11
®) ° ' g (1) : 2 and 12 we plot the paths of initial conditionsniFR space for

dynamic and Vachaspati-Vilenkin loop&8] formed during
FIG. 10. The evolution of the number of uncorrelated currentthe friction-dominated epoch in the cafes0 andf=3. For
regions per long-string correlation length, , for the casef=3 the “dynamic” loops, we only plot loops formed until 1QQ

(the bottom plot is a friction-dominated epoch closeup of the top(notlce thah decreases after this epockiVe consider initial
ong assuming that the orders of the string-forming and SUPETCONEonditions for the string network that are characteristic of

ducting phase transitions are respectively: 1st andskdid lines,
1st and 2nddashed lines 2nd and 1stdash-dotted linésand 2nd first- and second-order string-forming and superconductmg

and 2nd(dotted lines. Time is in orders of magnitude from the Phase transitions. Note that the difference in the initial
epoch of string formation. between the two cases is smaller than the difference between

the correspondingN, ’s; this is because is approximately

bration mechanisntsee Fig. 10 for the casfe=3), thenN, proportional toN,f’z.
decreases while the network is being conformally stretched. One can see that, even if we choose the less stringent of
In the Kibble regime, the increased number of inter-our three suggested criteria, calling a vorton any loop con-
commutings again drived, up, and aftew has evolved into  figuration with an energy up to twice the minimum value
its linear regime valuef itself reaches a scaling value and (that is,x=1), we still get no GUT vortons. In fact, one
henceN, becomes a constant. In the intermediate case of would need to choose a limiting velocity,,,~0.7 for GUT
small but non-zerd, N, decreases during the stretching re- vorton production to occur in this model—and even so, only
gime but grows without limit afterwards, and the precisein the case when equilibration is efficient and the string-
values of the scaling laws depend énAlso, the network forming phase transition is of second order. However, we
will preserve a “memory” of the order of the string-forming should emphasize that the issues of the precise vorton for-
phase transition, but not of the order of the superconductingnation criterion, as well as that of the value of the “equili-
one. bration parameter’f, can only be settled by means of more

This therefore solves the other half of our problem.detailed numerical studies of the microphysics of these loop
Knowing the loop size at formation at all tim¢g] at the  configurations.
typical current that each loop carries at that ep@obm the This is an appropriate point at which to add a cautionary
above toy modglone can then apply some criteri¢possi-  note about the quantum-mechanical stability of vortons. This
bly of the type discussed in Sec. Mb decide which loops is a rather involved and model-dependent question which has
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FIG. 11. The initial conditions for loop formation imR space,
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FIG. 12. The initial conditions for loop formation imR space,

for the casd =0, assuming that the orders of the string-forming andfor the case =3, assuming that the orders of the string-forming and
superconducting phase transitions are, respectively, 1st and 18wperconducting phase transitions are, respectively, 1st and 1st

(solid lineg, 1st and 2nddashed linegs 2nd and 1stdash-dotted
lines) and 2nd and 2nddotted line$. The top plot corresponds to
dynamic loops formed betweépand 10@, (in the first two curves
loops formed at, are at largeR; in the latter two they are at small
R). The bottom corresponds to “primordial” Vachaspati-Vilenkin
loops formed at. and having lengths betweén and 1Q .

been briefly discussed in Rdi4]. The vorton gains addi-

(solid lineg, 1st and 2nddashed lines 2nd and 1stdash-dotted
lines) and 2nd and 2nddotted line$. The top plot corresponds to
dynamic loops formed betweépand 10@, (in the first two curves
loops formed at, are at largeR; in the latter two they are at small
R). The bottom corresponds to “primordial” Vachaspati-Vilenkin
loops formed at. and having lengths betweén and 1@ .

As the chiral state tends to be an attractor for a wide range of

initial conditions[ 3] this again encourages us to believe that

string by taking both charge and angular momentum; the\evertheless, one can make special parameter choices for
larger a vorton is, the more stable it is. With electromagnetiGvhich vorton lifetimes are very brief, notably when the
fields present, pair creation provides an alternative decaytring and current-forming phase transitions are widely sepa-

mechanism, but for a chiral vorton with null fieldE{

=B?) near the string, this mechanism is strongly suppressedhorough investigation.

rated in energy scale. This subject clearly deserves a more
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X. CALCULATING VORTON DENSITIES vortons form at two different time intervals. Valuestgf, .

Vorton densities can be calculated using a fairly straight-f"mdtStop in specific models will be discussed in a forthcom-

forward modification to the method developed [in] and mgSFi)rlljgl.lcaglsOI\j\EéZJ.ointed out, there is some uncertainty in
summarized above. We now have ' P ’ y

some crucial parameters of this model, we will limit our-
¢ selves in this paper to calculate the vorton density for GUT
Pv(t):f Wi (t )ngyq(t,t)I(t,t")dt’ (10.2) and electroweak string networks in the “besr “worst”
tc according to opinionpossible case where there is no equili-
bration(that is,f =0), the string-forming and superconduct-
Leut ing phase transitions are both of second order, and all the
+f Wo (1) ng (17 D)1 (17, t)dl . loo =
L, ps produce vortonghence our criterion is simplyy,ee
(10.2  >0). Notice that this last condition is unrealistic for GUT
networks(where, as we already indicated, we do not expect

The original model for Goto-Nambu strings included anvortons to from but is plausible for electroweak networks.
averaged evolution equation for the lendtlof each loop, Still, we will assume that vortons can only be formed while
which made the above calculation relatively easy. Here, aithe network is in the friction-dominated regime. Also, since
analogous averaged equation for a superconducting loop ®ne presumably needs to have quite efficient radiation
presently unavailable, but the loop si@nd velocity can be  mechanisms for all loops to relax into vortons, we will as-
determined by evolving the microscopic equation of motionsume that such relaxation is instantaneous—tis=1,
(5.3. The functionsW,(t') and W,(l') are “window” while W; is unity in the friction-dominated epoch and van-
functions—typically combinations of Heaviside functions— ishes afterwards.
selecting the time interval in the evolution of the network Figure 13 displays the resulting vorton densities, relative
(and the interval in the length of Vachaspati-Vilenkin lopps to the background and matter densities. First, we confirm that
which will produce vortons, according to the particular cri- most of the energy density in vortons is produced soon after
terion that one chooses to impose. Notice that these wilthe network forms. In the case of GUT strings, we see that
depend on a number of parameters, including the initial convortons would only dominate the energy density of the uni-
ditions of the cosmic string network. Also, they should in verse about four orders of magnitude in time after the epoch
principle include a factor accounting for the fact that it takesof network formation, that is soon after friction domination
some time for each loop to reach a vorton configurattbat ~ ends(recall that for a GUT network,~85Q). Thus, even
is, even if a given loop will eventually form a vorton, it if all these vortons formed, they would not contradict the
should not be included in the vorton density until some timestandard cosmological scenario provided that they decayed
after it is “chopped off’ from the long-string netwojk  soon aftert,, when the network becomes free. In any case
However, note that Fig. 5 seems to indicate that this evoluwe emphasize that this “worst case” scenario is not realistic
tion, if it happens at all, is quite fast—it takes less than ondor GUT-scale strings, and indedds discussed previougly
Hubble time. we do not expect GUT-scale vortons to form at all.

Note that although in the evolution of the loops the effects On the other hand, electroweak string networks are fric-
of the currents are properly accounted faith the exception tion dominated until after the radiation-matter transition, and
of radiative mechanismsthe evolution of the long string so the vorton density has been slowly building up relative to
network does not take account of possible effects of théhat of matter until very recently. We find that this density
buildup of the currents. Still, we expect the neglect of thesdoday would be about 6% of the critical density. On the other
effects to be a reasonable assumption. This is because suband, a string network formed at~10* GeV would pro-
effects should only become importa(ift ever) at late times vide a maximal vorton density equal to the critical density.
when the network has had time to build up large currentsThis is therefore the strongest possible vorton constraint—it
while, as we will shortly see, most of the energy density inis based on the assumption that all loops form vortons. Natu-
vortons is produced fairly soon after the network forthat  rally, realistic models are not expected to be fully efficient in
a possible exception to this can occur if there are backgroungroducing vortons, and furthermore the relevant phase tran-
magnetic fields which can increase the current buildup) rate sitions are not necessarily of second order. One can therefore

Thus calculation of vorton densities is a two-stage pro-conjecture that the dark matter problem might be solved by a
cess. First, one must study the microphysics of the particulasuperconducting string network formed at an energy scale of
model that one is interested in, in order to derive its micro-T~10°—10° GeV. Note that there are a number of super-
scopic equations of motion and in particular to construct apsymmetric models producing such netwotkee for example
propriate expressions for the “window functiondV,(t") [19]). We will present a more detailed analysis of these is-
andW,(l") which will determine at which stages of the evo- sues in a future publicatiofl2].
lution of the string network one can form vortons. Second,
one can use the velocity-dependent one-scale model and the
model for the evolution of the currents on the long strings,
together with the microscopic loop equations of motion In this paper we have presented the first rigourous study
an averaged version of themo determine the vorton den- of the cosmological evolution of superconducting strings in
sity using Eq.(10.2. Typically there will be a single time the limit of chiral currents. We have shown that in this limit
interval to<tga<t<tgp<t, at which vortons will form, the elastic string model of Carter and Pef&0] coincides
but it is relatively easy to think of initial conditions for which with the model derived from first principles by Witté].

XI. CONCLUSIONS
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_ Maximal GUT vorton denstty . which tends to decrease the fraction of the loops’ energy in
the current—whereas friction tends to increase it.

After introducing a simple “toy model” for the evolution
of currents on the stringd 1], we have considered the cases
of first- and second-order GUT-scale string-forming and su-
perconducting phase transitiofwhich is the most favorable
GUT case of vorton formation since frictional forces can act
longen. We have presented evidence suggesting that GUT-
scale string networks might well produce no vortons, and
that even if they do, this will not necessarily rule out such
models. This is in contradiction with previous, less detailed
studieq[4,5], and hence calls for a re-examination of a num-
ber of cosmological scenarios involving superconducting
o2 ] strings. Notably, these strings could be at the origin of the
observed galactic magnetic fielf20].

Finally, we have explicitly calculated the vorton density

¢
[
L

Relative density

o
~
L

0 L L L L L

0 10 20 o 40 50 60 in two “extreme” cases to illustrate the method that one
o] (s} . . .
@) o should follow once the microphysical properties of these net-
, Maximal EW vorton density works are known in more detail. For electroweak-scale string

networks, we have found that vortons can produce up to
about 6% of the critical density of the universe. On the other
hand, it is conceivable that superconducting string networks
formed at an energy scale~10*—10° GeV (depending on
details of the modelcan solve the dark matter problem.

The detailed analysis presented in this paper for GUT
stings can obviously be extended to other energy scales—
this will be the subject of a forthcoming publicatigt2].
Obviously, as we lower the energy scale, the frictional force
becomes more and more important and acts for a longer
time. Hence the vorton-forming region of parameter space
increases, and by the electroweak scale almost all loops
chopped off the long-string network will become vortons.
We therefore conclude that in addition to the |@y: regime
s , , , , , (which as we saw includes the electroweak scaleere vor-

(b) 0 5 10 I°g1(f/tc) 20 25 30 tons can be a source of dark matter and to an intermediate-
Gu range in which vortons would be too massive to be

FIG. 13. The maximum possible vorton densities relative to thecompatible with standard cosmologfthereby excluding
background(solid lines and ordinary mattetdotted line$ densi-  these mode)s there is also a higeu regime(of which the
ties, for GUT- and electroweak-scale string networks. Time is inGUT scale is paytin which vortons do not form at all and
orders of magnitude from the epoch of string formation; the plotstherefore no cosmological constraints based on them can be
end at the present epoch. set. It is then curioufto say the leastthat vorton constraints

can be used to rule out cosmic string models in a wide range

By analyzing physically relevant loop solutions of the mi- of energy scale&u, but not those formed around the GUT
croscopic equations of motion for these strings, we haver the electroweak scales, where cosmic strings can be cos-
verified that the effect of frictional damping is crucial for mologically useful.
vorton formation. We then defined suitable parameters char-
acterizing the evolution of these loops, and in particular
whether or not they become vortons. In particular, we have

established the usefulness of the “stability parameter’in C.M. is funded by JNICT(Portugal under “Programa
general, it is more difficult to form vortons when the string- PRAXIS XXI” (Grant No. PRAXIS XXI/BD/3321/94
forming phase transition is of first order. This is becauseE.P.S. is funded by PPARC and we both acknowledge the
such networks produce, during their evolution in the stretchsupport of PPARC and the EPSRC, in particular the Cam-
ing regime, loops with a size close to that of the horizon;bridge Relativity rolling gran{GR/H71550 and a Compu-
these will therefore be significantly affected by expansiontational Science Initiative grafiGR/H67652.

Relative density
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