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Vorton formation
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In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic
string equations of motion in Witten’s superconducting model, and show that in the relevant chiral limit these
coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically
study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a
given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the
evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string
networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed
at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some conse-
quences of our results are discussed.@S0556-2821~98!05312-0#

PACS number~s!: 98.80.Cq, 11.27.1d
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I. INTRODUCTION

As first pointed out by Witten@1#, cosmic strings can in
some circumstances~typically when the electromagneti
gauge invariance is broken inside the string! behave as ‘‘su-
perconducting wires’’ carrying large currents an
charges—up to the order of the string mass scale in ap
priate units. The charge carriers can be either bosons or
mions~see@2# for a review!. The former type occurs when
becomes energetically favorable for a charged Higgs field
have a non-zero vacuum expectation value in the string c
the latter happens when fermions couple to the string fie
creating fermion zero modes.

It is well known that arbitrarily large currents are n
allowed—there is a critical value beyond which the curre
saturates. In other words, for large enough winding num
per unit length, the superconducting condensate is quen
down, suppressing the current flow. Also, the current c
decay by magnetic flux-line tunnelling; this can be used
impose constraints on allowed particle physics models.

If superconducting strings carry currents, they must a
carry charges of similar magnitude. This includes not o
charges trapped at formation by the Kibble mechanism
also the ones due to string inter-commuting between reg
of the string network with different currents. Just like wi
currents, charge densities cannot have arbitrarily la
magnitude—there is a limit beyond which there will n
longer be an energy barrier preventing the charge carr
from leaving the string.

A rather important point is that the presence of charges
the string tends to counteract the current quenching ef
discussed above. In fact, numerical simulations of contr
ing string loops at fixed charge and winding number ha
shown@3# that a ‘‘chiral’’ state with equal charge and curre
densities is approached as the loop contracts. In this limi
chiral case, quenching is in fact eliminated completely. T
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has several important consequences. Strings that h
trapped charges as a consequence of a phase transitio
become superconducting even if the formation of a cond
sate was otherwise energetically unfavored. More imp
tantly, a string with both a charge and a current density w
have a non-zero angular momentum.

In the cosmological context, these strings would of cou
interact with the cosmic plasma, originating a number
interesting consequences. The most remarkable of th
however, has to do with the evolution of string loops. If
superconducting string loop has an angular momentum,
semi-classically conserved, and it tries to resist the loo
tension. This will at least increase the loop’s lifetime. If th
current is too large, charge carriers will leave the string
companied by a burst of electromagnetic radiation, but o
erwise it is possible that dynamically stable loops for
These are called vortons@4#—they are stationary rings tha
do not radiate classically, and at large distances they l
like point particles with quantized charge and angular m
mentum. Their cosmological significance comes from
fact that they provide very strong constraints on allowed p
ticle physics models, since they behave like non-relativis
particles. According to current belief@4,5#, if they are formed
at high enough energy scales, they are as dangerous as
netic monopoles, producing an over-density of matter in d
agreement with observations. On the other hand, low-m
vortons could be a very interesting dark matter candida
Understanding the mechanisms behind formation and ev
tion is therefore an essential cosmological task.

The overwhelming majority of the work done on cosm
strings so far has been concerned with the structureless G
Nambu strings~but see@6# and references therein for som
exceptions!. In the case of work on vortons, this means th
somewhatad hocestimates had to be made for some pro
erties of the cosmic string network—notably for microscop
quantities such as current and charge densities. This is
spite the fact it was recognized a long time ago that, e
though they might be computationally very useful@7–9#,
Goto-Nambu models cannot realistically be expected to
count for a number of cosmologically relevant phenome
due to the very limited number of degrees of freedom av

,

7155 © 1998 The American Physical Society



a

he
n
r
e
te
n

an
in
i

cl
e

o

b
ve

su
or
la

e

-

fie
-
T
ve
—
e

ce
n

x
ut
t a

t
T-

o
ed

d
o
al
on
o-
-
r t

s
io

n

ti
he
n

-
to a
all
ton
of a
t-

ess

rgy
on,
e-
hey
rlier
gy
ple,

se

in

ay
se
s-
ical

cept
a

alar

rm,
the
etic

lar

7156 57C. J. A. P. MARTINS AND E. P. S. SHELLARD
able. Two such phenomena are the buildup of small-sc
structure and charge and current densities.

In this paper we fill this important gap by discussing t
problem of vorton formation in the context of the superco
ducting string models of Witten@1# and of Carter and Pete
@10# ~Secs. II and III!. Strangely enough, the issue of th
conditions for vorton formation has been so far neglec
with respect to those of their stability and cosmological co
sequences. We will start by introducing these models
determining the microscopic string equations of motion
each case. It will be shown that in the relevant chiral lim
these equations coincide—this also provides the first con
sive evidence of the validity of the supersonic elastic mod
of Carter and Peter@10#.

We then proceed to study the evolution of a number
loop solutions of these equations numerically~Secs. IV and
V!, and from the results of this analysis parameters will
introduced which characterize the loop’s ability to evol
into a vorton state~Sec. VI!. Finally, we discuss a very
simple phenomenological model for the evolution of the
perconducting currents on the long cosmic string netw
@11#, based on the dynamics of a ‘‘superconducting corre
tion length’’ ~Secs. VII–VIII!. Using this model we can
therefore estimate the currents carried by string loops form
at all relevant times, and thus~in principle! decide if these
can become vortons~Sec. IX! and calculate the correspond
ing density~Sec. X!.

Based on our results, we do not expect any grand uni
theory ~GUT! vortons to form at all. This is essentially be
cause the friction-dominated epoch is very short for GU
scale strings@7#, and so their currents and charges are ne
large enough to prevent them from becoming relativistic
and therefore liable to losses. Even if they did form, th
would not be in conflict with the standard cosmological s
nario if they decayed soon after the end of the frictio
domination epoch.

Hence we conclude that, in contrast with previously e
isting estimates@4,5#, one cannot at the moment rule o
GUT superconducting string models. We should point ou
the outset that there are essentially three improvements in
present work which justify the different end result for GU
scale strings. First, by analyzing simple~but physically rel-
evant! loop solutions of the microscopic string equations
motion for the Witten model, we can get a much improv
idea of how superconducting loops evolve and of how~and
under which conditions! they reach a vorton state. Secon
by using a simple model for the evolution of the currents
the long strings@11# we can accurately determine the typic
currents on each string loop at the epoch of its formati
Finally, the use of the analytic formalism previously intr
duced by the present authors@7,9# allows us to use a quan
titative description throughout the paper, and in particula
determine the loop sizes at formation.

As will become clear below, when taken together the
allow a detailed analysis of the process of vorton format
to be carried out, in either the Witten model~as is done in
this paper! or any other that one considers relevant. In co
trast, note that Davis and Shellard@4# restrict themselves to
the particular case of the initial Brownian Vachaspa
Vilenkin loops with Kibble currents, and do not consider t
subsequent evolution of the network. On the other ha
le
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Brandenbergeret al. @5# make rather optimistic order-of
magnitude estimates about the process of relaxation in
vorton state. As it turns out, for high energy GUT scales,
these loops become relativistic before reaching a vor
state. Finally, neither of these treatments has the benefit
quantitative model for the evolution of the long-string ne
work @7# which allows one to accurately describe the proc
of loop production.

On the other hand, as we lower the string-forming ene
scale we expect more and more efficient vorton producti
and the ‘‘old’’ scenario still holds. Therefore intermediat
scale superconducting strings are still ruled out, since t
would lead to a universe becoming matter dominated ea
than observationally allowed. Finally, at low enough ener
scales, vortons will be a dark matter candidate. For exam
for a string network formed aroundT;102 GeV ~typical of
the electroweak phase transition! they can provide up to 6%
of the critical density. A more detailed discussion of the
issues is left to a forthcoming publication@12#.

Throughout this paper we will use fundamental units
which \5c5kB5GmPl

2 51.

II. WITTEN’S MICROSCOPIC MODEL

As first pointed out by Witten@1#, a low-energy effective
action for a superconducting string can be derived in a w
that is fairly similar to what is done in the Goto-Nambu ca
~see for example@2#!. One has to adopt the additional a
sumptions that the current is much smaller than the crit
current and that the electromagnetic vector potentialAm is
slowly varying on the scale of the condensate thickness.

The derivation then proceeds as in the neutral case, ex
for the use of the well-known fact that in two dimensions
conserved current can be written as the derivative of a sc
field. One obtains

S5E A2gF2m01
1

2
gabf ,af ,b2qAmx,a

m eab

A2g
f ,bGd2s

~2.1!

2
1

16pE d4xA2gFmnFmn; ~2.2!

the four terms are respectively the usual Goto-Nambu te
the inertia of the charge carriers, the current coupling to
electromagnetic potential and the external electromagn
field (eab is the alternating tensor!; note that this applies to
both the bosonic and the fermionic cases@2#.

Recalling the usual definitions

Aa5x,a
m Am , ~2.3!

Fab5Fmnx,a
m x,b

n 5Ab,a2Aa,b , ~2.4!

and definingYab to be the stress-energy tensor of the sca
field f,

Yab5f ,af ,b2
1

2
gabf ,cf

,c, ~2.5!

and the conserved currentJa as
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57 7157VORTON FORMATION
Ja5q
eab

A2g
f ,b , ~2.6!

we can obtain the following equations of motion by varyi
the action~2.2! with respect toAm , f andxm respectively:

F ;n
mn[24pq jm524pE d2seabx,a

m f ,bd4
„x2x~sa!…,

~2.7!

]a~A2ggabf ,b!1
1

2
qA2gẽabFab50, ~2.8!

and

]aFA2gS gab1
1

m0
YabD x,b

a G
1A2gS gab1

1

m0
YabDGsr

a x,a
s x,b

r ~2.9!

5A2g~Fa1 f a!, ~2.10!

whereGmn
a is the usual metric connection,

Gmn
a 5

1

2
gal~gam,n1gna,m2gmn,a!, ~2.11!

andFa is the Lorentz force,

Fa5
1

2m0
Fn

ax,a
n Ja. ~2.12!

We have also included the friction force

f a5
1

l f
~ua2x,a

a xs,aus!, ~2.13!

using the same procedure as described in@13,7#. As shown in
@11#, plasma effects are subdominant, except possibly in
presence of background magnetic fields—either of ‘‘prim
dial’’ origin or generated~typically by a dynamo mecha
nism! once proto-galaxies have formed. Hence one exp
Aharonov-Bohm scattering@14# to be the dominant effect
and consequently we have@7#

l f5
m

bTb
3

, ~2.14!

whereTb is the background temperature andb is a numeri-
cal factor related to the number of particle species interac
with the string.

The effect of self-inductance leads to the renormalizat
of both the electromagnetic coupling and the scalar fieldf.
Now, it is well known that the Maxwell-Faraday tensor i
cludes both the external field and the field produced by
string itself, but it can be shown that if one follows th
renormalization procedure, one can identify it with its ext
nal component, which henceforth we assume to vanish@2#.
e
-

ts

g

n

e

-

As we already pointed out, when dealing with superco
ducting string loops we are essentially interested in the ch
limit of this model, that is

gabJ
aJb50, ~2.15!

or equivalently

f825e2ḟ2. ~2.16!

In this limit, introducing the simplifying functionF defined
as

F~x!5
ḟ2

m0g00
, ~2.17!

and choosing the standard gauge conditions

s05t, ẋ•x850 ~2.18!

~with overdots and primes respectively denoting derivativ
with respect to the time-like and space-like coordinates
the worldsheet as usual! the string equations of motion in
Friedman-Robertson-Walker~FRW! background with the
line element

ds25a2~dt22dx2! ~2.19!

@which implies thatg005a2(12 ẋ2)] have the form

@e~11F!#–1
e

l d
ẋ25F822

ȧ

a
eF ~2.20!

and

e~11F!ẍ1
e

l d
~12 ẋ2!ẋ5F ~12F!

x8

e G8
1S Ḟ12

ȧ

a
F D x812F ẋ8,

~2.21!

where for simplicity we have introduced the ‘‘dampin
length’’

1

l d
5aS 2H1

1

l f
D . ~2.22!

Finally, the worldsheet charge and current densities are
spectively given by

rw5qeḟ ~2.23!

and

j w5q
f8

e
. ~2.24!

Note that the Witten action is ‘‘microscopic’’ in the sens
of being built using only the properties of the underlyin
particle physics model@1#. In the next section we will ana
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lyze the equations of motion obtained form the action for
elastic supersonic models of Carter and Peter@10#, which is
in this sense ‘‘macroscopic.’’

III. SUPERSONIC ELASTIC MODELS

In order to account for phenomena such as the buildu
charge and current densities on cosmic strings, one mus
troduce additional degrees of freedom on the string wo
sheet. One such class of models, originally introduced
Carter and co-workers, is usually referred to as elastic m
els ~see@6# and references therein, on which the followin
two subsections are based!.

A. Basics of elastic models

In general, elastic string models can be described b
Lagrangian density depending on the spacetime metricgmn ,
background fields such as a Maxwellian-type gauge poten
Am or a Kalb-Ramond gauge fieldBmn ~but not their gradi-
ents! and any relevant internal fields~which will be dis-
cussed in detail below!. Note that the Goto-Nambu mode
has a constant Lagrangian density: namely

LGN52m0 . ~3.1!

Upon infinitesimal variations in the background fields, a
provided that independent internal fields are kept fixed~or
alternatively that their dynamic equations of motion are s
isfied!, the action will change by

dS52
1

2E ~Tmndgmn1WmndBmn12JmAm!A2gd2s,

~3.2!

where

Tmn52
dL

dgmn
1Lhmn ~3.3!

is the worldsheet stress-energy tensor density,

Jm5
dL
dAm

~3.4!

is the worldsheet electromagnetic current density, and

Wmn52
dL

dBmn
~3.5!

is the worldsheet vorticity flux. The later will not be consi
ered further in this paper.

It useful to define two orthogonal unit vectors tangent
the worldsheet, one of them being time-like and the ot
space-like, such that

2UmUm5VmVm51, UmVm50. ~3.6!

The eigenvalues of this ortho-normal frame are the ene
density in the locally preferred string rest frame, which w
henceforth be denoted byU, and the local string tension
denotedT @there should be no confusion with the vectorUm
e

of
in-
-
y
d-

a

al

t-

r

y

defined in Eq.~3.6! and the stress-energy tensorTmn defined
in Eq. ~3.3!, respectively#, so that one can write

Tmn5UUmUn2TVmVn. ~3.7!

Note thatU and T are simply constants for a Goto-Namb
string,

U5T5m0 , ~3.8!

but they are variable in general—hence the name ‘‘ela
strings.’’ In particular, one should expect that the string te
sion in an elastic model will be reduced with respect to
Goto-Nambu case due to the mechanical effect of the c
rent.

Since elastic string models necessarily possess conse
currents, it is convenient to define a ‘‘stream function’’c on
the worldsheet that will be constant along the current’s fl
lines. The part of the Lagrangian densityL containing the
internal fields is usually called the ‘‘master function,’’ an
can be defined as a function of the magnitude of the grad
of this stream function,L5L(x), such that

x5gabc ;ac ;b , ~3.9!

where the gauge covariant derivative is defined as

c ;a5]ac2eAmx,a
m . ~3.10!

Note that the definition ofx differs by a minus sign from tha
of Carter @6#; the reason for this will become clear below
This ‘‘dynamic’’ term contains charge couplings, whose re
evance will be further discussed below. Neverthele
whether or not these or other background gauge fields
present, it is always the form of the master function whi
determines the equation—or equations—of state.

There is also a dual@15# potential c̃, whose gradient is
orthogonal to that ofc, and the corresponding dual mast
function L̃5L̃(x̃) such that

x̃5gabc̃ ;ac̃ ;b , ~3.11!

with the obvious definition forc̃ ;a . The duality between
these descriptions means that the field equations for
stream functionc obtained with the master functionL are
the same as those for the dual potentialc̃ obtained with the
dual master functionL̃. However, there will in general be
two different equation of state relating the energy densityU
and the tensionT; these correspond to what is known as t
‘‘magnetic’’ and ‘‘electric’’ regimes, respectively corre
sponding to the cases

x̃mg,0,xmg ~3.12!

and

xel,0,x̃el , ~3.13!

which are respectively characterized by space-like and ti
like currents. In the degenerate null state limit, howev
there will be a single equation

U5T5m0 . ~3.14!
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Note that the distinction between a given model and its d
disappears in the absence of charge couplings; such mo
are then called ‘‘self-dual’’ for obvious reasons.

In each case the equation of state provides the express

cE
25

T

U
, ~3.15!

cL
252

dT

dU
5

n

m

dm

dn
, ~3.16!

for the extrinsic~that is transverse, or ‘‘wiggle’’! and for the
sound-type~longitudinal or ‘‘woggle’’! perturbations of the
worldsheet. Both of these must obeyc2>0 ~a requirement
for local stability! andc2<1 ~a requirement for local causa
ity!. These two speeds can be used to characterize the e
model in question; in particular there is a straightforward
quite meaningful division of the models into supersonic~that
is, those obeyingcE.cL), transonic (cE5cL ; only in the
null limit is this common speed unity! and subsonic (cE
,cL).

B. Supersonic„superconducting… models

Carter and Peter@10# have recently proposed two supe
sonic elastic models to describe the behavior of curre
carrying cosmic strings. The Lagrangian density in the m
netic regime is

L̃mg52m21
x̃

2S 12
x̃

2k0ms
2 D 21

, ~3.17!

ms being the current carrier mass~which is at most of the
order of the relevant Higgs mass!; this is valid in the range

2
1

3
,

x̃

k0ms
2
,12

k0ms
2

2m21k0ms
2

, ~3.18!

and obeys the equation of state

U

m2
511

k0ms
2

4m2
2

Ak0

A2

ms

m S T

m2
211

k0ms
2

8m2 D 1/2

.

~3.19!

On the other hand, the electric regime is described by
Lagrangian density

L̃el52m22
k0ms

2

2
ln S 12

x̃

k0ms
2 D , ~3.20!

which is valid in the range

21,
x̃

k0ms
2
,12e22m2/k0ms

2
, ~3.21!

and the corresponding equation of state is

U

m2
5

T

m2
1

k0ms
2

m2 Fexp S 2
12T/m2

k0ms
2/m2D 21G . ~3.22!
al
els

ns

stic
t

t-
-

e

These models are supersonic for all space-like and w
time-like currents, with the exception that in the null lim
x̃50 one hascL5cE51.

C. Equations of motion

We now derive the microscopic equations of motion f
elastic cosmic string models. It is convenient to start by
fining the quantity

Qab[L̃gab22
]L̃

]x̃
c̃ ;ac̃ ;b; ~3.23!

then recalling the definition ofx̃, Eq.~3.11!, one can find the
free string equations of motion in the usual~variational! way,
obtaining

~A2gQabx,b
a ! ,a1A2gQabGmn

a x,a
m x,b

n 50. ~3.24!

Also in a similar way to what was done in Sec. II, th
effect of the frictional forces is accounted for by introducin
a term A2gFa on the right-hand side of Eq.~3.24!. For
exactly the same reasons as those of Sec. II, we will hav

Fa52bTb
3~ua2x,a

a xb,aub!. ~3.25!

However, it should be remarked that the generalized defi
tion of the friction length scale for elastic models is

l f52
L̃

bTb
3

~3.26!

~note thatL̃ is negative!.
Of course we now have a further equation for the sca

field c̃, namely

]aS A2g
]L̃

]x̃
gabc̃ ;bD 50. ~3.27!

Furthermore, the spacetime energy-momentum tensor
electromagnetic current will be given by

A2gTmn52E A2gQabx,a
m x,b

n d„x2x~s,t!…d2s

~3.28!

and

A2gJm522eE A2ggab
]L̃

]x̃
c̃ ,ax;b

m d„x2x~s,t!…d2s.

~3.29!

The total string energy and charge in a spacetime where
line element is Eq.~2.19! are then defined as@we are again
using the gauge choice~2.18!#

E5E d3xA2 ~3!gT0
05aE S 2L̃12

]L̃

]x̃
c̃ ;0c̃ ;0D eds

~3.30!

and
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Q5E d3xA2 ~3!gJ0522eaE ]L̃

]x̃
c̃ ;0eds. ~3.31!

The corresponding worldsheet charge and current dens
are defined via

j m522e
]L̃

]x̃
A2ggabc̃ ,ax,b

m [x,b
m j b, ~3.32!

and have the following values:

r[ j 0522e
]L̃

]x̃
ec̃ ;0 , ~3.33!

j [2 j 1522e
]L̃

]x̃

c̃ ;1

e
. ~3.34!

Again, for the reasons explained above, a particularly
evant situation will be that of a chiral current, that is one
which

gabj aj b50. ~3.35!

This is equivalent to

c̃825e2c8 2, ~3.36!

and therefore it implies that

]r

]t
5

] j

]s
~3.37!

and that the total~spacetime! charge and current are als
equal. Note that in the chiral case one also has

x̃50, 2
]L̃

]x̃
51, ~3.38!

and so this is not equivalent to the Goto-Nambu case des
the fact that the equation of state is

U5T5m0 . ~3.39!

Last but not least, one can always define the fundame
worldsheet current density vector

i a52A2g
]L̃

]c̃ ;a

52A2g
]L̃

]x̃
gabc̃ ;b . ~3.40!

Although we have included the charge coupling term
the master function and its dual, it should be said that cha
coupling effects are subdominant, and thus for most purpo
they can be neglected~if nothing else, at least to a first-orde
approximation!. This has been confirmed by Peter@16#, and
is a consequence of the smallness of the coup
constants—for example, the electromagnetic coupling c
stant ise2;1/137. In most of what follows we will therefore
neglect the charge coupling.

If an electromagnetic coupling does exist, it will be sim
ply given by
es

l-

ite

tal

e
es

g
n-

i m5e jm, ~3.41!

where

i m5x,a
m i a ~3.42!

is the corresponding spacetime current. Note that Eq.~3.27!
is then just a Noether identity,

i ;a
a 50. ~3.43!

D. Chiral limit

We now consider the~common! chiral limit of the two
supersonic elastic models of Carter and Peter@10#, defined
by the Lagrangian densities~3.17! and ~3.20!, respectively,
for the magnetic and electric regimes. Also, as we did in S
II for the Witten model, we will interpret the charge couplin
and the scalar field as being renormalized and neglect
coupling to external electromagnetic fields.

Then, with our usual gauge choices and definitions of
damping and friction length scales, the microscopic str
equations of motion~3.24! simplify to

@e~11C!#–1
e

l d
ẋ25C822

ȧ

a
eC ~3.44!

and

e~11C!ẍ1
e

l d
~12 ẋ2!ẋ5F ~12C!

x8

e G8
1S Ċ12

ȧ

a
C D x812C ẋ8,

~3.45!

whereC is defined as

C~c̃!5
c8 2

m0g00
. ~3.46!

That is, these are exactly the same equations of motio
those of Witten’s model, Eqs.~2.20!,~2.21!, if one identifies
the corresponding scalar fields:

f[c̃. ~3.47!

Then, the worldsheet charge and current densities
coincide:

rw5qec8 , ~3.48!

j w5q
c̃8

e
. ~3.49!

Finally, the total energy of a piece of string is given by

E5m0aE ~11C!eds, ~3.50!
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which we can immediately interpret as being split in an o
vious way into a ‘‘string’’ component and a ‘‘current’’ com
ponent. This interpretation will be relevant below.

Note that if we had preserved Carter’s original sign co
ventions, we would have found a difference of a factor oi
between the two fields. But the important point is that t
equality between the two theories in the chiral limit is n
entirely trivial since, as we already pointed out, the motiv
tions behind the build up of each of them are quite differe
We have thus provided the first substantive evidence of
validity of the supersonic elastic models of Carter and Pe
@10#.

IV. CHIRAL LOOPS IN FLAT SPACETIME

We will now study the evolution of current-carrying co
mic string loops, starting by considering the simplest case
circular loops in flat spacetime. We therefore choose theAn-
satz

x~t!5r ~t!~sinu,cosu,0!; ~4.1!

we also need anAnsatzfor the scalar fieldc̃ ~or f), which
we will take to be

c̃5Am0@F~t!1ns#tc, ~4.2!

where the winding number per units, n, is a constant~due
to the symmetry of our loop solution! and tc is a character-
istic time scale—say the epoch of network formation. T
chirality condition implies that

eḞ5n. ~4.3!

Then the string equations of motion reduce to

eS 11
n2tc

2

r 2 D 51, ~4.4!

r̈ 1S 12
n4tc

4

r 4 D r 50, ~4.5!

together with the constraint

unu<
1

2
. ~4.6!

Note that opposite signs ofn correspond to left and righ
moving currents; naturally it always appears asn2 in any
relevant equation, and we will therefore be takingn to be
positive.

In Fig. 1 we have plotted some relevant evolutiona
properties of chiral superconducting loops with differentn’s
in flat spacetime. Note that these loops never collapse to
size, and that their microscopic velocity is always less th
unity ~unlike in the Goto-Nambu case!. Furthermore, there is
a static solution with

n5
1

2
5

r

tc
, ṙ 50; ~4.7!
-

-

e
t
-
t.
e
r

of

e

ro
n

in this case the energy is equally divided between the st
and the current.

It should also be noted that energy is transferred back
forth between the string and the current as the loop oscilla
We can easily determine the following quantities~the aver-
ages are over one oscillation period!:

K r 2

tc
2L 5

1

2
2n2, ~4.8!

K tc
2

r 2L 5
1

n2
, ~4.9!

FIG. 1. The flat spacetime evolution of chiral circular strin
loops characterized by a conserved quantityn @defined in Eq.~4.2!#
having the value 0~solid lines!, 0.1 ~dashed lines!, 0.3 ~dot-dashed
lines!, 0.45 ~dotted lines! and 0.5~star!. Note that the first corre-
sponds to a simple Goto-Nambu loop, while the last is a st

solution. Plots respectively showṙ as function ofr @defined in Eq.
~4.1!# ~a! and the fraction of the energy in the string as a function

ṙ ~b!.
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^ ṙ 2&5
1

2
~124n2!, ~4.10!

while the energy in the string obeys

K Estring

Etotal
L 512n, ~4.11!

K Estring
2

Etotal
2 L 512

3

2
n; ~4.12!

note that the energy of these loops isEtotal /tc52pm.
Finally, we discuss two other points that will have furth

relevance below. First, a loop with a given conserved nu
ber n will reach a maximum microscopic velocity~and cor-
responding Lorentz factor! given by

ṙ max
2 5124n2, gmax5

1

2n
. ~4.13!

Second, for fixedn and initial velocity, there will be two
possible choices ofr i that can be made—the difference
that in one of them most of the energy will be in the strin
while in the other it will be in the current. We will call thes
two cases the ‘‘string branch’’ and the ‘‘current branch.’’
flat spacetime, the two choices give physically the same
lution ~they simply correspond to different initial phases
the oscillation!, but this will not be true in general.

V. CHIRAL LOOPS IN THE EXPANDING UNIVERSE

The case of circular loops in expanding universes
analogous, and we keep theAnsätze for x and c̃:

c̃5Am0@F~t!1ns#tc. ~5.1!

The winding number per units and the functionF are also
constrained as before. In terms of these quantities the
energy of the loop can be written as

Etotal5m0l total5m0aE S 11
n2tc

2

a2r 2D eds

[m0l string1Ecurrent , ~5.2!

and the loops evolve according to

S 11
n2tc

2

a2r 2D r̈ 1~12 ṙ 2!F ṙ

l d
1S 12

n2tc
2

a2r 2D 1

r G50. ~5.3!

It is convenient to define a macroscopic dimensionl
parameter which, as we will show later, turns out to meas
the loop’s stability against collapse. We will define it by

n̄5
4pntc
l total

; ~5.4!

note that unliken, which is a constant for each loop,n̄ is a
variable parameter obeying

0<n̄<1; ~5.5!
-

,

o-

s

tal

s
re

also n̄50 corresponds to the Goto-Nambu case, while
n̄51 limit is the analogous of the flat spacetime static so
tion, here characterized by

Estring5Ecurrent , ṙ 50; ~5.6!

in the approach to this limit one can easily establish that
loop’s velocity ~in the radiation epoch! and length in string
evolve according to

v
t

tc
5

n

2
,

l string

2ptc
5

n

A12 ṙ 2
; ~5.7!

these will be numerically confirmed below.
An important difference with respect to the flat spacetim

case is that now the string branch and the current branch~see
Fig. 2 for a relevant particular case! represent two physically
different solutions—something to be expected since damp
forces~that is, friction and expansion! act differently on the
string and current energies. Since we will be mostly int
ested in chiral superconducting string loops formed in
friction-dominated regime~as no vortons will form in the
‘‘free’’ regime!, we can safely assume that these loops
formed with zero velocity. Now, there is a very simple rel
tion betweenl total , l string and n̄: namely

l total

l string
5

2

n̄2
~16A12n̄2!. ~5.8!

The negative sign corresponds to the string branch, wher
n̄ goes from zero to unity we go from the Goto-Nambu ca
to the static case where the energy is split equally betw
the string and the current; the positive sign correspond
the current branch, where the ratio of the energies in

FIG. 2. The logarithm of the ratio of the energies in the curre
and in the string for chiral circular loops with zero velocity, as

function of the logarithm of parametern̄. Note that there are two
different branches, hereafter called the ‘‘current branch’’~top! and
the ‘‘string branch’’ ~bottom!.
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FIG. 3. The evolution of chiral circular GUT-scale string loops formed att5tc . All loops have an initial total energyEtot/2pmtc

510, but different initial string energies—respectively 9.3, 7.2, 5.0, 2.8 and 0.7; in~a! and~d!, these are respectively shown in solid, dashe
dash-dotted, dotted and starred lines, while in~b! and ~c! they are correspondingly shown by lighter shades of gray. Plots show the

energyEtotal relative totc ~a!, the microscopic velocity~b!, the fraction of the loop’s energy in the current~c! and the parametern̄ defined
in Eq. ~5.4!~d!.
n

gi
th
he
e
i

n
.
i-

its

,

e
ion
nts
his

ion

er
ex-
ey
string and in the current decreases until it vanishes when̄
reaches zero again. Note that Eq.~5.8! can be inverted to
give

n̄52
l string

l total
S l total

l string
21D 1/2

. ~5.9!

In practice, it is not easily conceivable that in cosmolo
cal contexts loops can be formed with more energy in
current than in the string itself. Therefore, although for t
sake of completeness we will be discussing the curr
branch in the remainder of this section, we will neglect
afterwards.

Thus from Eq.~5.3! one obtains the evolution equatio
for l ( l i ,t i ,n̄i ,t), v( l i ,t i ,n̄i ,t) and other relevant quantities
As we will see below, a crucial quantity will be the max
-
e

nt
t

mum velocity reached by each loop configuration during

evolution,vmax( l i ,t i ,n̄i). If the loop does become a vorton

then its length will asymptotically be given byl v( l i ,n̄i).
In Figs. 3–5 we plot the cosmological evolution of som

relevant GUT-scale chiral circular loops. We should ment
that in order to save space, only 1 out of every 40 poi
resulting from the numerical integrations is plotted, and t
is the reason why some plots show irregularities.

Figure 3 shows some relevant properties of the evolut
of chiral circular GUT-scale loops formed att5tc ; all have
an initial total energyEtotal/2pmtc510, but the distribution
of the energy between the string and the current varies.

Obviously, loops with higher currents will have small
physical radii, and hence they will be less stretched by
pansion and enter the horizon earlier, at which point th
start oscillating—as can be confirmed in Figs. 3~a!,3~b!. Re-
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FIG. 4. The evolution of chiral circular GUT-scale string loops formed att5t! . All loops have an initial total energyEtot/2pmt!

510, but different initial string energies—respectively 9.3, 7.2, 5.0, 2.8 and 0.7; in~a! and~d!, these are respectively shown in solid, dash
dash-dotted, dotted and starred lines, while in~b! and ~c! they are correspondingly shown by lighter shades of gray. Plots show the

energyEtotal relative tot! ~a!, the microscopic velocity~b!, the fraction of the loop’s energy in the current~c! and the parametern̄ defined
in Eq. ~5.4!~d!.
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garding the velocities, note the significant differences
tween loops in the ‘‘string branch’’~which still reach fairly
high microscopic velocities, but neverv51) and in the
‘‘current branch’’ ~which quickly become non-relativistic!.
Therefore the latter ones should definitely become vorto
and so it is perhaps fortunate that, as we pointed out ab
we do not expect loops with such high currents to be p
duced in the early universe~at least, for GUT-scale net
works!. Note that in one of the cases shown the initial c
rent is so high that the loop ‘‘overshoots’’ and acquires
fairly large velocity, but friction quickly slows it down again

On the other hand, in the string branch the velocity
reduced with respect to the Goto-Nambu case, and a m
detailed investigation will be needed to set up some criter
defining which velocities will allow vorton formation—
recall that relativistic velocities will imply charge losses a
it will therefore be unrealistic to make any definite claims
predictions about such cases.
-

s,
e,
-

-

s
re
n

r

The evolution of the fraction of the loop’s energy in th
current is particularly illuminating@see Fig. 3~c!#. This will
obviously decrease while the loop is being stretched, an
will start oscillating when the loop falls in side the horizo
The oscillations are around the state with equipartition of
energy between the string and the current, which as we
corresponds to a static solution in flat spacetime. Note
the effect of the friction force is to reduce the amplitude
these oscillations, and so one can see that friction is in
crucial for vorton formation. Naturally, loops with smalle
velocities will undergo oscillations with smaller amplitude
and so again we confirm that these are the strongest vo
candidates. Finally, we have plotted the parametern̄ @which
was defined in Eq.~5.4!# in Fig. 3~d!, and as one can easil
see by comparison with the other three plots this is indee
good indicator of whether or not a given loop can becom
vorton—in fact, the ‘‘phenomenological’’ criterion that w
mentioned above will be basically expressed in terms of
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FIG. 5. The evolution of chiral circular GUT-scale string loops formed att5tc . All loops have an initial string energyEstring/2pmtc

50.1, but different initial ratios of energies in the current and the string—the cases 1023, 1022, 1021, 1.0 and 2.0 are respectively show
in solid, dashed, dash-dotted, dotted and starred lines. Plots show the total energyEtotal relative to tc ~a!, the ~base-10! logarithm of the

microscopic velocity~b!, the fraction of the loop’s energy in the current~c! and the~base-10! logarithm of the parameter 12n̄ ~d!.
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value of n̄ once the loop is ‘‘free’’—that is, much smalle
than the damping length defined in Eq.~2.22!.

On the other hand, radiative backreaction also tends
damp these energy oscillations, and consequently increasn̄.
Note that this has been shown to have the approximate f
Ė5GemJ2, and sinceGem;100, the time scale for this pro
cess is expected to be relatively short.

Note that when loops become smaller than the damp
length scalel d and reach the ‘‘free’’ regime the following
averages over a period hold~note thatn̄ becomes a constan
in this limit—hence its usefulness!:

^ ṙ 2&5
1

2
~12n̄2!, ~5.10!

K Estring

Etotal
L 512

1

2
n̄, ~5.11!
to

m

g

K Estring
2

Etotal
2 L 512

3

4
n̄ ; ~5.12!

the variance of the fraction of the energy in string is the
fore

D
Estring

Etotal
5

1

4
n̄~12n̄!. ~5.13!

In Fig. 4 we show chiral loops with the same initial co
ditions as Fig. 3, but starting to evolve at the epocht! when
when friction becomes negligible@7#. The differences are
self-evident. Now, after a first period of growth of the tot
radius due to expansion, there is no mechanism forcing
loops to return this extra energy back to the medium wh
they fall inside the horizon. Consequently there is also
velocity damping~all loops will have microscopic velocities
larger than 0.5) and the energy oscillations between
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string and the current always have a large amplitude—so
n̄ will never stabilize close to unity when the loops fall insid
the horizon.

Note that a loop with a very high initial current will agai
‘‘overshoots,’’ but unlike in the case with friction here it ca
actually end up oscillating faster than another one in
‘‘current branch’’ but with a smaller current. This is becau
now there is no friction force that can damp this veloc
overshoot.

It can therefore be seen that vortons can only form dur
the friction-dominated epoch~as we expected!, and also that
the earlier a loop is formed, the larger will be the region
the space of initial conditions that will originate them—
because as we said the effect of friction is to increasen̄.
Therefore, for cosmic strings formed at the GUT phase tr
sition, the most favorable case for vorton formation is hav
the strings becoming superconducting at the GUT scale
well. We will use this assumption in the remainder of t
paper.

Finally, in Fig. 5 we plot the more realistic case of th
evolution of GUT-scale loops having an initial string radi
10 times smaller than the horizon, and different initial rat
of energies in the current and in the string—ranging fro
1023 to 2.

Now the total radius only suffers a small decrease, exc
in the case where one starts withn̄;1, in which case the
velocity is so small that friction does not significantly affe
the loop. Note that asn̄ approaches unity we havev}t21 as
we predicted, although for loops in the string branch ther
an initial transient wherev}t24. Nevertheless, in the strin
branch loops do reach fairly high velocities during their fi
few oscillations, so that once more the issue of whethe
not these become vortons is not entirely straightforward.

Also note that for loops of this size the amplitude of t
energy oscillations between the string and the current is n
ligibly small, except for the short transient period~typically
lasting less than one Hubble time! for loops in the ‘‘string
branch’’ with fairly small currents. Clearly the relation be
tween the initial conditions and the values ofn̄ andv needs
to be looked at in more detail, and we shall do that in
next section.

VI. CRITERIA FOR VORTON FORMATION

In the previous section we saw that the evolution of ch
superconducting cosmic string loops depends sensitively
the conditions at formation. In particular, one would need
know in which cases one ends up with a vorton.

Clearly, since we are not including radiative mechanis
at this stage, our criterion should be that loops whose ve
ity is always small~in a sense that will need to be made mo
precise! will become vortons, while those that are relativis
at some stage will suffer significant charge losses, so
their fate cannot be clearly asserted until a rigorous quant
mechanical treatment of these processes is available.

Thus we will explore in more detail the phase space
possible initial conditions in order to determine releva
properties of these loops. Figure 6 shows the maximum
croscopic velocityvmax( l i ,t i ,n̄i) reached by GUT loops
formed att5tc ,10tc ,100tc andt!;855tc , respectively; it is
at
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assumed that all such loops start their evolution with a n
ligibly small velocity—a reasonable assumption, since
network dynamics is friction dominated untilt! . In each

case the horizontal axes correspond to the initial value on̄
and to the base-10 logarithm of the initial string radius re
tive to the horizon; recall that we only consider loops havi
initially most of their energy in the string~in other words,
loops in the string branch!. Note that the friction length scale
corresponds to about21.5 in the vertical axis on the firs
plot and to 0 on the last~where it is equal to the horizon, b
definition!.

It can be seen that any loop initially larger than the ho
zon will inevitably become relativistic. This is essential
because expansion will~temporarily, at least! decrease the

fraction of the loop’s energy in the current~and hencen̄).
On the other hand, loops smaller than the friction length~and
the horizon! have essentially no mechanism that can cha

n̄ ~neglecting radiation!, and so we will need fairly high ini-
tial currents in order to get non-relativistic velocities.

Finally, for the case of loops being produced with siz
between the friction length scale and the horizon, which is
course the cosmologically relevant case during the fricti
dominated epoch@7#, friction will force the loop to shrink

~thereby increasingn̄), while the effect of the cosmologica
expansion will be small, and so in order to have no
relativistic velocities we are allowed to have smaller init
values ofn̄ than in the previous case.

From the analysis of Figs. 3–6 one can see that we n
fairly high values of n̄ when the loops reach the ‘‘free’
regime in order to have reasonable chances of produ
GUT vortons in the ‘‘string branch.’’ Now, according to Re

FIG. 6. The maximum microscopic velocity reached by circu
GUT-scale chiral superconducting string loops formed at a timet f

5tc;10239 s ~top left! and t f510tc ,100tc ,855tc ~clockwise!, the
latter beingt! . The x axis corresponds to the initial value of th

parametern̄, going from zero~the Goto-Nambu case! to unity; in
the y axis the base-10 logarithm of the string radius relative to
horizon size goes from22 to 1. Note that in the first graph th
friction length scale corresponds to loglf /t;21.5, while in the last
one loglf /t50.
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@4#, the energy of a superconducting loop configuration w
radiusR is approximately

E52pmR12pS
W2

R
5Estring1Ecurrent , ~6.1!

whereW is the winding number and 2pSW;NL
1/2 is the net

particle number. The parameterS is the result of an integra
over the string cross section; it is a variable in general, b
constant in the chiral case, and expected to be of the orde
the inverse of a coupling constant,S>20; we will in fact
takeS520 unless otherwise stated. This is minimized fo
radius

Rv

W
5S S

m D 1/2

; ~6.2!

this corresponds to a vorton state. As expected, this m
mum value isEv52Estring and corresponds ton̄51.

Now, suppose that the energy of a given configuration
little higher than this minimum. That is, letE5(11x)Ev .
Then such a configuration will have a radius

Rstring

Rv
511x6@~11x!221#1/2; ~6.3!

we will choose the plus sign since it corresponds to
‘‘string branch.’’ Then we can use Eq.~5.9! to find the cor-
responding value ofn̄:

n̄52
11x1Ax~21x!

11@11x1Ax~21x!#2
. ~6.4!

These are useful expressions to introduce ‘‘phenome
logical’’ criteria for deciding which loop configurations wil
produce vortons. We note that these should be establishe
the basis of more detailed numerical studies of the mic
physics of the currents; in particular, significant model d
pendence is of course expected.

As an example, if we take as a necessary condition
vorton formation that the energy of a given configuration
at most 10% higher thanEv , we find that the value ofn̄ once
the loop size becomes smaller than the damping len
should obey

n̄f ree>
10

11
;0.91, ~6.5!

or equivalently that the average fraction of the loop’s ene
in the current must be

K Ecurrent

Etotal
L

T

>0.45. ~6.6!

Another ~approximately! equivalent way of stating this is
that a loop will not form a vorton state if it exceeds som
maximum velocity vvor above which charge and curre
losses become effective. Note that a fast-moving loop w
tend to develop cusps at which such losses should be par
h
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larly significant. Hence we require thatvmax,vvor if a given
loop is to form a vorton. Of coursevvor depends onx; for
x50.1, we have

vvor;0.29. ~6.7!

Such a velocity limit is physically plausible, but a rigorou
quantum mechanical treatment will be required to obt
more precise values. Note that the size of this vorto
forming region of parameter space is maximal attc and de-
creases with time, vanishing not later thant! .

If we choose less stringent criteria, sayx50.5 or evenx
51.0, our bounds will respectively be

n̄f ree>
2

3
, vvor;0.53, ~6.8!

n̄f ree>
1

2
, vvor;0.61; ~6.9!

we will comment on the importance of the precise choice
x in Sec. IX.

Clearly, this only solves half of the problem—the oth
half is determining what exactly are the initial conditions
the formation of these loops, and in particular what are th
currents. In other words, we need to know where in Fig. 6
the loops form. This is a non-trivial problem, but we w
discuss a simplified ‘‘toy model’’ for current evolution in th
following section.

VII. EVOLUTION OF THE CURRENTS

Because of the strings’ statistical nature, analytic evo
tion methods must be ‘‘thermodynamic;’’ that is, one mu
describe the network by a small number of macroscopic~or
‘‘averaged’’! quantities whose evolution equations are d
rived from the microscopic string equations of motion. T
first such model providing a quantitative picture of the co
plete evolution of a string network~and the corresponding
loop population! has been recently developed by the pres
authors@7#, and we briefly summarize it here.

We start by defining our averaged quantities, the ene
of a piece of string,

E5ma~t!E eds ~7.1!

(e being the coordinate energy per units), and the string
rms velocity, defined by

v25

E ẋ2eds

E eds

. ~7.2!

Distinguishing between long~or ‘‘infinite’’ ! strings and
loops, and knowing that the former should be Brownian,
can define the long-string correlation length asr`[m/L2

~see@7# for an extensive discussion of these quantities a
others to be introduced below!. A phenomenological term
must then be included for the interchange of energy betw
long strings and loops. A ‘‘loop chopping efficiency’’ pa



ro

rre

n
d

u
e

a
p

th

ti

t

ol
f
th
m

-

e
ne
a

e is

t and
can

g

e
ly

ter-
he
irst,
or-

gs
ur-
in

te

ar-

ns,
tion

7168 57C. J. A. P. MARTINS AND E. P. S. SHELLARD
rameter, expected to be slightly smaller than unity, is int
duced to characterize loop production:

S dr`

dt D
to loops

5 c̃v`

r`

L
. ~7.3!

One can then derive the evolution equation for the co
lation lengthL @7#, which has the form

2
dL

dt
52HL~11v`

2 !1v`
2 L

l f
1 c̃v` ; ~7.4!

we point out again that the ‘‘friction length scale’’l f will in
general be that due to Everett scattering.

One can also derive an evolution equation for the lo
string velocity with only a little more than Newton’s secon
law:

dv
dt

5~12v2!F k

L
2vS 2H1

1

l f
D G ; ~7.5!

herek is another phenomenological parameter that is eq
to unity during the friction-dominated epoch and of ord
unity later @7#.

Finally, a careful analysis of the loop production mech
nism leads to an expression for the energy density in loo
The idea is that at a given time one looks back at all
loops that have formed~and still have not decayed!, finds
their present lengths and then adds them together. Dis
guishing between ‘‘dynamical’’ and ‘‘primordial’’~that is,
Vachaspati-Vilenkin! loops, we have

r0~ t !5E
tc

t

ndyn~ t,t8!l ~ t,t8!dt8

1E
Lc

Lcut
npri~ l 8,t !l pri~ l 8,t !dl8. ~7.6!

Above l (t,t8) is the length at timet of a loop produced a
time t8 ~this will vanish if the loop has decayed!, while
ndyn(t,t8)a

3(t)5nloop(t8)a
3(t8), where

nloop~ t !5gm c̃
v`

aL4
~7.7!

is the number of loops produced per unit time per unit v
ume. The factorg;1/A2 accounts for the fact that not all o
the energy lost by the long-string network ends up in
loops—part of it is lost by velocity redshift. We are assu
ing that loops produced at timet have an initial lengthl (t)
5a(t)L(t)—in other words, that loop production is ‘‘mono
chromatic’’ ~see@7# for a discussion of this point!. Similarly,
for the Vachaspati-Vilenkin loopsl pri( l 8,t) is the length at
time t of a loop formed with length l 8, while
npri( l 8,t)a

3(t)5nloop( l 8)a
3(tc), where nloop( l 8) is the

well-known Vachaspati-Vilenkin loop distribution.
The above quantities are sufficient to quantitatively d

scribe the large-scale characteristics of a cosmic string
work. We will describe the evolution of the currents by
recently introduced toy model@11#, which we now discuss in
more detail.
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Our analysis will be based on the assumption that ther
a ‘‘superconducting correlation length,’’ denotedj, which
measures the scale over which one has coherent curren
charge densities on the strings. Associated with this we
defineN to be the number of uncorrelated current regions~in
the long-string network! in a co-moving volumeV5a3L0

3 as
follows:

N[
L`

j
5

V

jL2
, ~7.8!

where L` is the total long string length in the co-movin
volume.

Now, j andN will obviously change in the course of th
evolution of the string network, and we can immediate
identify four possible sources of change—expansion, in
commuting, loop production and internal dynamics on t
string worldsheet. We now consider each one of them. F
we expect that in a co-moving volume the number of unc
related regions will not be affected by expansion, and so

S dN

dt D
expansion

50. ~7.9!

Now consider the effect of inter-commutings~whether or not
a loop is produced!. Laguna and Matzner@17# have numeri-
cally shown that whenever two current-carrying strin
cross, they inter-commute and a region of intermediate c
rent is created. This means that inter-commutings will
general create four new regions@see Fig. 7~a!#. Since accord-
ing to our analytic evolution model the inter-commuting ra
is

S dn

dt D
intercommuting

5
1

2

v`

a

V

L4
, ~7.10!

we immediately obtain the following effect onN:

FIG. 7. Some relevant inter-commuting configurations. The
rows mark the limits of regions with correlated currents. Plot~a!
shows a typical inter-commuting creating four new current regio
while ~b!,~c! show that on scales smaller than the current correla
length loop production may~c! or may not~b! remove current re-
gions from the long-string network.
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S dN

dt D
intercommuting

52
v`

a

V

L4
; ~7.11!

again this assumes that loops have a sizel (t)5a(t)L(t) at
formation, and that once the long-string network reaches
linear scaling regime we havea(t)5asc5const~see@7#!.

However, an important correction is necessary to acco
for the fact that when regions with size of orderj or smaller
self-intersect it is possible@see Figs. 7~b!,7~c!# that no new
regions are produced. Thus we must multiply Eq.~7.11! by a
correction factor

F1S l

j D51,
l

j
.1 ~7.12!

F1S l

j D5aF122c̃S 12
l

j D G1~12a!
l

j
,

l

j
<1. ~7.13!

The slightly complicated behavior ofF1 is nevertheless eas
to understand. The point is that numerical simulations sh
that there are two types of inter-commutings. First, ‘‘larg
scale’’ ones always occur at a scaleL; a fractiona of the
inter-commutings should be of this type. If this happens
tween two long-strings~that is, no loop is produced!, we
always expect to create new regions, since there is no re
for currents in different ‘‘infinite’’ stings to be correlated. O
the other hand, if what we have is a long string se
intersecting to produce a loop of size smaller thanj ~a frac-
tion 2c̃ of these inter-commutings should produce loop!,
then we might not form new regions—for each length, t
fraction of these self-intersections that produce new regi
is essentially given by the ratio of the size of the region a
the superconducting correlation length. The remainder of
inter-commutings are associated with the presence of sm
scale structure on the strings, and occur by repeated
intersections of a given string, and so thel /j cutoff always
applies. Notice that the second term vanishes ifa51 ~as it
should! but it rapidly becomes dominant asa starts deviating
from unity. Also note that the overall inter-commuting effe
is approximatelya independent~more on this below!.

Of course, when the inter-commuting does produce
loop, the regions in the corresponding segment are remo
from the network, together with one of the newly creat
‘‘intermediate’’ regions, and we similarly have

S dN

dt D
loops

52S l

j
12F2D c̃

v`

a

V

L4
, ~7.14!

where the analogous correction factorF2 is of the form

F2S l

j D51,
l

j
.1 ~7.15!

F2S l

j D5
l

j
,

l

j
<1. ~7.16!

Note that string length is always removed from the lo
string network when loops form, regardless of whether or
current regions are. This is in fact the main effect of lo
production, as can be seen by noting that Eq.~7.14! is ap-
e
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proximately independent of the parameter characterizing
loop size,a. In the friction-dominated regime,a is of order
unity, and when it becomes much smaller~in the free re-
gime! the a dependences in the numerator and in the
nominator cancel out. One can readily see that this is ph
cally plausible: whena;1 ~in the friction-dominated epoch!
few loops are produced, but each one of them remove
significant number of regions; on the other hand, whena is
small, many more loops are produced, but only a few
them will remove regions.

Finally, there is the dynamic term. When regions w
opposite currents inter-commute, new charged regions
created, setting up alternate currents. One expects ele
magnetic processes to make these currents die down, so
the charged region will eventually equilibrate with its neig
bors. The simulations of Laguna and Matzner@17# provide
qualitative support for this intuitive picture. Clearly, this in
dicates that some kind of ‘‘equilibration’’ process is effe
tively acting between neighboring current regions, whi
will counteract the creation of new regions by inte
commuting. While it is beyond our means to derive
‘‘equilibration term’’ from first principles we will, as a first
approximation, introduce a phenomenological term. We w
model this current decay by assuming that after each Hub
time, a fractionf of the N regions existing at its start wil
have equilibrated with one of its neighbors:

S dN

dt D
dynamics

52 f HN; ~7.17!

note that new regions are obviously created by int
commuting during the Hubble time in question, so thatf can
be larger than unity. Alternatively we can say that for a giv
f , the number of regions in a given volume at a timet will
have disappeared due to equilibration at a timet1( f H)21.
We therefore obtain the following evolution equation forN:

dN

dt
5GS l

j D v`

a

V

L4
2 f HN, ~7.18!

where we have re-defined the correction factor

GS l

j D522 c̃S l

j
12D ,

l

j
.1 ~7.19!

GS l

j D52~122c̃!a1~223c̃22a14a c̃!
l

j
,

l

j
<1.

~7.20!

Note that whenl @j the net effect of inter-commuting an
loop production is to remove uncorrelated regions~because
each loop formed removes a large number of them!; other-
wise, the net effect is to create new regions.

However, for what follows it is convenient to re-write
in two alternative forms. First, we can defineNL to be the
number of uncorrelated current regions per long-string c
relation length:

NL[
L

j
5N

L

L`
; ~7.21!



an
in

tio

b

-
is

li-
ve
b

ic
ou
n

st

a

g

as

e of
d

re

ru-

u-

d
are

lt is
-
in

, so
nt

ent

in

also

of

7170 57C. J. A. P. MARTINS AND E. P. S. SHELLARD
this is useful because, as was first pointed out by Davis
Shellard@4#, we expect the net charge of a superconduct
loop to be given by

Q;eNL
1/2. ~7.22!

In terms ofNL , Eq. ~7.18! has the form

dNL

dt
5~3v`

2 2 f !HNL1
3

2

v`
2

l f
NL1S 1

a
G~aNL!1

3

2
c̃NLD v`

L
;

~7.23!

note that to obtain this one needs to substitute the evolu
equation for the long-string correlation lengthL, Eq. ~7.4!,
and that one can equivalently defineG as

G~aNL!522 c̃~aNL12!, aNL.1, ~7.24!

G~aNL!52~122c̃!a1~223c̃22a14a c̃!aNL ,

aNL<1. ~7.25!

Yet another useful form follows from definingNH to be
the number of uncorrelated current regions in one Hub
volume,

NH[
LH

j
5NL

dH
3

L3
; ~7.26!

in this case we have

dNH

dt
5~32 f !HNH1G~aNL!

v`

a

dH
3

L4
. ~7.27!

VIII. IMPORTANCE OF EQUILIBRATION

Now the question is, of course, what isf ? From a more
intuitive point of view, an equivalent question is the follow
ing: given a particular piece of string with a given current,
it more likely to disappear from the network by this equi
bration mechanism or by being incorporated in a loop? E
though a precise answer can probably only be given
means of a numerical simulation, some very simple phys
arguments can be used to restrict it. We should point
however, that many of the results of the following sectio
do not depend crucially on the value off .

First, correlations cannot obviously be established fa
than the speed of light~that is, we must havej<t), so that
we should impose that

S dNH

dt D
NH5LH /t

>0; ~8.1!

this leads to an upper bound onf , which we can write,
definingL5gt, as

f max~ c̃,g,v`!5314~122c̃!
v`

g2
. ~8.2!

~In this section we will concentrate on the bounds onf in the
radiation epoch—analogous results can obtained for the m
d
g

n

le

n
y
al
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s

er
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ter epoch.! We explicitly write the dependences off max to
emphasize that this is the maximum value off which satis-
fies Eq.~8.1! for a given set of properties of the cosmic strin
network.

On the other hand, if an equilibration mechanism such
that modelled by Eq.~7.17! exists @17#, it is reasonable to
assume that it will preventNH from growing without limit—
possibly through a backreaction mechanism as in the cas
gravitational radiation for wiggly Goto-Nambu strings—an
eventually it will make it become constant~meaning thatj is
scaling linearly!. In other words, we can assume that the
should be a largeNH

! ~which we need not specify! such that

S dNH

dt D
N

H
!
<0; ~8.3!

we can therefore find a lower bound onf which satisfies this,

f min~ c̃,g,v`!5322c̃
v`

g
. ~8.4!

Again this varies as the network evolves. Note that the c
cial point about this construction is that Eq.~7.17! depends
linearly onNH .

Using the quantitative evolution model of the present a
thors we have plottedf max and f min during the friction-
dominated epoch with initial conditions typical of first an
second order phase transitions, in Fig. 8. These plots
fairly easy to interpret. Perhaps the most surprising resu
the large values off max allowed when the long-string corre
lation length is well below the horizon. This is because
this case the loops chopped off by the network are small
that each one of them removes relatively few curre
regions—one could therefore have an extremely effici
equilibration mechanism and still obey the constraint~8.1!.
Hence we can see from Fig. 8 that if our toy model, and
particular theAnsatz~7.17!, is valid, the constraints onf are
much stronger for a first-order phase transition. One can

FIG. 8. The evolution off min ~lower pair of curves! and f max

~upper pair of curves! for first order~solid lines! and second order
~dotted lines! string-forming phase transitions. Time is in orders
magnitude from the epoch of string formation.
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57 7171VORTON FORMATION
see thatf 53 is the only value that is acceptable at all time
regardless of the initial condition. However, it is at prese
unclear if there is something ‘‘special’’ about this value.
numerical simulation is presumably the only way to clar
this issue.

Note that any valuef min, f , f max, once the network
reaches the linear scaling regime

1.88;32
2c̃

k1 c̃
, f ,31

4~122c̃!

k1/2~k1 c̃!3/2
;22.4, ~8.5!

leads to a constant value ofNL and that this corresponds toj
scaling as the long-string correlation lengthL. Different val-
ues off lead to different scaling values ofNL ~with larger f ’s
corresponding to smallerNL’s as expected! at least in some
region of the space of initial conditions, but for anyf Þ3 one
can think of some set of physically viable initial condition
for which either causality would be violated at some stage
the evolution or the number of uncorrelated regions wo
grow without bound. The scaling value ofNL can be written
in terms of the properties of the string network as

ascNL5
4~12 c̃!

~k1 c̃! f 2 c̃23k
; ~8.6!

one can see that in this regime thef dependence is rathe
weak, unlessf is just abovef min .

We emphasize that while thef max bound is unavoidable
~being a consequence of causality!, f min is less robust and
could well be disproved by a detailed numerical stud
Therefore, in what follows we will discuss two cases,f 50
and f 53, which should represent the scenarios of ineffect
~or non-existent! and effective equilibration.

For a givenf , we can now solve Eq.~7.23! numerically,
coupled with the evolution equations for the long-string c
relation length and average velocity~see@7#!. This therefore
allows us to know the size of the loops formed by the n
work at each time and@through Eq.~7.22!# the initial current
they will carry. One is then in a position of applying th
criteria established in Sec. VI in order to decide whether
not each loop will form a vorton.

We should also say at this stage that once the netw
leaves the friction-dominated regime and strings beco
relativistic other mechanisms~notably radiation! can cause
charge losses in the long strings~as well as in loops!. Hence
our toy model can at best provide order-of-magnitude e
mates in this regime. On the other hand, we expect it to
quite accurate~pending a more detailed numerical study! in
the friction-dominated epoch—which is of course releva
for vorton formation.

IX. GUT-SCALE ANALYSIS

In Figs. 9 and 10 we plot the result of the numeric
integration of Eq.~7.23!, for initial conditions representative
of string-forming and superconducting phase transitions
first and second order, for the casesf 50 and f 53. We are
assuming that these occur at around the same~GUT! energy
scale since, as we have shown in Sec. VI, this is most fa
able situation for vorton formation. It was also assumed t
,
t

f
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.

e
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r-
t

the value ofa in the linear scaling regime isasc;1023 ~see
Ref. @7#!.

The differences between the two cases are considera
First, if there is no equilibration mechanism (f 50; see Fig.
9!, the number of uncorrelated regions per long-string cor
lation length,NL , never decreases. In this case there
simple scaling laws forNL and j. One finds thatj is con-
formally stretched during the stretching regime~just like the
long-string correlation length,L}t1/2), and soNL is approxi-
mately constant. However, as inter-commutings start cr
ing new regionsNL begins to increase, and it grows ast3/2

during the Kibble regime~whereL}t5/4, and soj}t21/4).
Finally, once the network reaches the linear scaling regi
L}t, the number of uncorrelated current regions grows
NL}t, which corresponds toj}const. As expected, in this
case the network keeps a ‘‘memory’’ of its initial condition

On the other hand, if there is an efficient enough equ

FIG. 9. The evolution of the number of uncorrelated curre
regions per long-string correlation length,NL , for the casef 50
~the bottom plot is a friction-dominated epoch closeup of the
one! assuming that the orders of the string-forming and superc
ducting phase transitions are respectively: 1st and 1st~solid lines!,
1st and 2nd~dashed lines!, 2nd and 1st~dash-dotted lines! and 2nd
and 2nd~dotted lines!. Time is in orders of magnitude from th
epoch of string formation.



e
r

d
of
e-
se

g
tin

m

in
on-

alue

or-

ork
e

be

e-
we
on-

ely
nts.
e
e
11

of
ting

een

t of
on-
e

e

nly
g-
we
for-
li-
re
op

ary
his
has

en

to
o

e

7172 57C. J. A. P. MARTINS AND E. P. S. SHELLARD
bration mechanism~see Fig. 10 for the casef 53), thenNL
decreases while the network is being conformally stretch
In the Kibble regime, the increased number of inte
commutings again drivesNL up, and aftera has evolved into
its linear regime value,j itself reaches a scaling value an
henceNL becomes a constant. In the intermediate case
small but non-zerof , NL decreases during the stretching r
gime but grows without limit afterwards, and the preci
values of the scaling laws depend onf . Also, the network
will preserve a ‘‘memory’’ of the order of the string-formin
phase transition, but not of the order of the superconduc
one.

This therefore solves the other half of our proble
Knowing the loop size at formation at all times@7# at the
typical current that each loop carries at that epoch~from the
above toy model! one can then apply some criterion~possi-
bly of the type discussed in Sec. VI! to decide which loops

FIG. 10. The evolution of the number of uncorrelated curr
regions per long-string correlation length,NL , for the casef 53
~the bottom plot is a friction-dominated epoch closeup of the
one! assuming that the orders of the string-forming and superc
ducting phase transitions are respectively: 1st and 1st~solid lines!,
1st and 2nd~dashed lines!, 2nd and 1st~dash-dotted lines! and 2nd
and 2nd~dotted lines!. Time is in orders of magnitude from th
epoch of string formation.
d.
-

a

g

.

have a reasonable possibility of becoming vortons.
Our quantitative string evolution model@7# allows us to

determine the size of the loops formed at each epoch,l (t)
5a(t)L(t). On the other hand, according to Eq.~5.9!, to

find the initial n̄ we need to know the ratio of the energies
the string and in the current. Now, the energy of a superc
ducting loop configuration with a radiusR is given by Eq.
~6.1!, and so after some algebra we find

Ecurrent

Estring
5

16p3N
45S

GmNL

a2g2x2
, ~9.1!

where L5gt, t5xtc and N is the number of effectively
massless degrees of freedom. Note that the minimum v
of g is of the order of (Gm)1/2 ~but slightly larger—see@7#!,
and so the crucial factor in this equation, and hence for v
ton formation, is how muchNL can grow. This alone tells us
that the higher the energy scale at which the string netw
forms, the less likely it is to produce vortons, since it will b
friction dominated~and hence non-relativistic! for a shorter
period of time. In order to make vortons, loops should
formed with a high enoughNL to allow them to remain non-
relativistic thereafter—otherwise, they will eventually b
come relativistic and hence liable to charge losses. As
already pointed out, making the strings become superc
ducting sometime after they form does not help—it mer
reduces the time available to build up charges and curre

Contrary to current belief~which is based on rather mor
qualitative estimates! we do not expect any vortons to b
produced by GUT-scale cosmic string networks. In Figs.
and 12 we plot the paths of initial conditions inn̄-R space for
dynamic and Vachaspati-Vilenkin loops@18# formed during
the friction-dominated epoch in the casesf 50 andf 53. For
the ‘‘dynamic’’ loops, we only plot loops formed until 100tc

~notice thatn̄ decreases after this epoch!. We consider initial
conditions for the string network that are characteristic
first- and second-order string-forming and superconduc
phase transitions. Note that the difference in the initialn̄’s
between the two cases is smaller than the difference betw
the correspondingNL’s; this is becausen̄ is approximately
proportional toNL

1/2.
One can see that, even if we choose the less stringen

our three suggested criteria, calling a vorton any loop c
figuration with an energy up to twice the minimum valu
~that is, x51), we still get no GUT vortons. In fact, on
would need to choose a limiting velocityvvor;0.7 for GUT
vorton production to occur in this model—and even so, o
in the case when equilibration is efficient and the strin
forming phase transition is of second order. However,
should emphasize that the issues of the precise vorton
mation criterion, as well as that of the value of the ‘‘equi
bration parameter’’f , can only be settled by means of mo
detailed numerical studies of the microphysics of these lo
configurations.

This is an appropriate point at which to add a caution
note about the quantum-mechanical stability of vortons. T
is a rather involved and model-dependent question which

t

p
n-
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57 7173VORTON FORMATION
been briefly discussed in Ref.@4#. The vorton gains addi-
tional stability because its charge carriers must tunnel off
string by taking both charge and angular momentum;
larger a vorton is, the more stable it is. With electromagne
fields present, pair creation provides an alternative de
mechanism, but for a chiral vorton with null fields (E2

5B2) near the string, this mechanism is strongly suppres

FIG. 11. The initial conditions for loop formation inn̄-R space,
for the casef 50, assuming that the orders of the string-forming a
superconducting phase transitions are, respectively, 1st and
~solid lines!, 1st and 2nd~dashed lines!, 2nd and 1st~dash-dotted
lines! and 2nd and 2nd~dotted lines!. The top plot corresponds to
dynamic loops formed betweentc and 100tc ~in the first two curves
loops formed attc are at largeR; in the latter two they are at sma
R). The bottom corresponds to ‘‘primordial’’ Vachaspati-Vilenk
loops formed attc and having lengths betweenLc and 10Lc .
e
e
c
y

d.

As the chiral state tends to be an attractor for a wide rang
initial conditions@3# this again encourages us to believe th
vortons should generically be quantum mechanically sta
Nevertheless, one can make special parameter choice
which vorton lifetimes are very brief, notably when th
string and current-forming phase transitions are widely se
rated in energy scale. This subject clearly deserves a m
thorough investigation.

1st

FIG. 12. The initial conditions for loop formation inn̄-R space,
for the casef 53, assuming that the orders of the string-forming a
superconducting phase transitions are, respectively, 1st and
~solid lines!, 1st and 2nd~dashed lines!, 2nd and 1st~dash-dotted
lines! and 2nd and 2nd~dotted lines!. The top plot corresponds to
dynamic loops formed betweentc and 100tc ~in the first two curves
loops formed attc are at largeR; in the latter two they are at sma
R). The bottom corresponds to ‘‘primordial’’ Vachaspati-Vilenki
loops formed attc and having lengths betweenLc and 10Lc .
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X. CALCULATING VORTON DENSITIES

Vorton densities can be calculated using a fairly straig
forward modification to the method developed in@7# and
summarized above. We now have

rv~ t !5E
tc

t

W1~ t8!ndyn~ t,t8!l ~ t,t8!dt8 ~10.1!

1E
Lc

Lcut
W2~ l 8!npri~ l 8,t !l pri~ l 8,t !dl8.

~10.2!

The original model for Goto-Nambu strings included
averaged evolution equation for the lengthl of each loop,
which made the above calculation relatively easy. Here,
analogous averaged equation for a superconducting loo
presently unavailable, but the loop size~and velocity! can be
determined by evolving the microscopic equation of mot
~5.3!. The functionsW1(t8) and W2( l 8) are ‘‘window’’
functions—typically combinations of Heaviside functions
selecting the time interval in the evolution of the netwo
~and the interval in the length of Vachaspati-Vilenkin loop!
which will produce vortons, according to the particular c
terion that one chooses to impose. Notice that these
depend on a number of parameters, including the initial c
ditions of the cosmic string network. Also, they should
principle include a factor accounting for the fact that it tak
some time for each loop to reach a vorton configuration~that
is, even if a given loop will eventually form a vorton,
should not be included in the vorton density until some ti
after it is ‘‘chopped off’’ from the long-string network!.
However, note that Fig. 5 seems to indicate that this evo
tion, if it happens at all, is quite fast—it takes less than o
Hubble time.

Note that although in the evolution of the loops the effe
of the currents are properly accounted for~with the exception
of radiative mechanisms!, the evolution of the long string
network does not take account of possible effects of
buildup of the currents. Still, we expect the neglect of the
effects to be a reasonable assumption. This is because
effects should only become important~if ever! at late times
when the network has had time to build up large curre
while, as we will shortly see, most of the energy density
vortons is produced fairly soon after the network forms~but
a possible exception to this can occur if there are backgro
magnetic fields which can increase the current buildup ra!.

Thus calculation of vorton densities is a two-stage p
cess. First, one must study the microphysics of the partic
model that one is interested in, in order to derive its mic
scopic equations of motion and in particular to construct
propriate expressions for the ‘‘window functions’’W1(t8)
andW2( l 8) which will determine at which stages of the ev
lution of the string network one can form vortons. Seco
one can use the velocity-dependent one-scale model an
model for the evolution of the currents on the long strin
together with the microscopic loop equations of motion~or
an averaged version of them!, to determine the vorton den
sity using Eq.~10.2!. Typically there will be a single time
interval tc<tstart,t,tstop<t! at which vortons will form,
but it is relatively easy to think of initial conditions for whic
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vortons form at two different time intervals. Values oftstart
and tstop in specific models will be discussed in a forthcom
ing publication@12#.

Since, as we pointed out, there is some uncertainty
some crucial parameters of this model, we will limit ou
selves in this paper to calculate the vorton density for G
and electroweak string networks in the ‘‘best’’~or ‘‘worst’’
according to opinion! possible case where there is no equ
bration~that is, f 50), the string-forming and superconduc
ing phase transitions are both of second order, and all
loops produce vortons~hence our criterion is simplyn̄f ree
.0). Notice that this last condition is unrealistic for GU
networks~where, as we already indicated, we do not exp
vortons to from! but is plausible for electroweak network
Still, we will assume that vortons can only be formed wh
the network is in the friction-dominated regime. Also, sin
one presumably needs to have quite efficient radiat
mechanisms for all loops to relax into vortons, we will a
sume that such relaxation is instantaneous—thusW251,
while W1 is unity in the friction-dominated epoch and va
ishes afterwards.

Figure 13 displays the resulting vorton densities, relat
to the background and matter densities. First, we confirm
most of the energy density in vortons is produced soon a
the network forms. In the case of GUT strings, we see t
vortons would only dominate the energy density of the u
verse about four orders of magnitude in time after the ep
of network formation, that is soon after friction dominatio
ends~recall that for a GUT networkt!;850tc). Thus, even
if all these vortons formed, they would not contradict t
standard cosmological scenario provided that they deca
soon aftert! , when the network becomes free. In any ca
we emphasize that this ‘‘worst case’’ scenario is not realis
for GUT-scale strings, and indeed~as discussed previously!
we do not expect GUT-scale vortons to form at all.

On the other hand, electroweak string networks are f
tion dominated until after the radiation-matter transition, a
so the vorton density has been slowly building up relative
that of matter until very recently. We find that this dens
today would be about 6% of the critical density. On the oth
hand, a string network formed atT;104 GeV would pro-
vide a maximal vorton density equal to the critical densi
This is therefore the strongest possible vorton constraint
is based on the assumption that all loops form vortons. Na
rally, realistic models are not expected to be fully efficient
producing vortons, and furthermore the relevant phase t
sitions are not necessarily of second order. One can there
conjecture that the dark matter problem might be solved b
superconducting string network formed at an energy scal
T;1052106 GeV. Note that there are a number of supe
symmetric models producing such networks~see for example
@19#!. We will present a more detailed analysis of these
sues in a future publication@12#.

XI. CONCLUSIONS

In this paper we have presented the first rigourous st
of the cosmological evolution of superconducting strings
the limit of chiral currents. We have shown that in this lim
the elastic string model of Carter and Peter@10# coincides
with the model derived from first principles by Witten@1#.
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57 7175VORTON FORMATION
By analyzing physically relevant loop solutions of the m
croscopic equations of motion for these strings, we ha
verified that the effect of frictional damping is crucial fo
vorton formation. We then defined suitable parameters ch
acterizing the evolution of these loops, and in particu
whether or not they become vortons. In particular, we ha
established the usefulness of the ‘‘stability parameter’’n̄. In
general, it is more difficult to form vortons when the strin
forming phase transition is of first order. This is becau
such networks produce, during their evolution in the stret
ing regime, loops with a size close to that of the horizo
these will therefore be significantly affected by expansio

FIG. 13. The maximum possible vorton densities relative to
background~solid lines! and ordinary matter~dotted lines! densi-
ties, for GUT- and electroweak-scale string networks. Time is
orders of magnitude from the epoch of string formation; the pl
end at the present epoch.
r
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e
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which tends to decrease the fraction of the loops’ energy
the current—whereas friction tends to increase it.

After introducing a simple ‘‘toy model’’ for the evolution
of currents on the strings@11#, we have considered the cas
of first- and second-order GUT-scale string-forming and
perconducting phase transitions~which is the most favorable
GUT case of vorton formation since frictional forces can a
longer!. We have presented evidence suggesting that G
scale string networks might well produce no vortons, a
that even if they do, this will not necessarily rule out su
models. This is in contradiction with previous, less detai
studies@4,5#, and hence calls for a re-examination of a nu
ber of cosmological scenarios involving superconduct
strings. Notably, these strings could be at the origin of
observed galactic magnetic fields@20#.

Finally, we have explicitly calculated the vorton densi
in two ‘‘extreme’’ cases to illustrate the method that o
should follow once the microphysical properties of these n
works are known in more detail. For electroweak-scale str
networks, we have found that vortons can produce up
about 6% of the critical density of the universe. On the oth
hand, it is conceivable that superconducting string netwo
formed at an energy scaleT;1042106 GeV ~depending on
details of the model! can solve the dark matter problem.

The detailed analysis presented in this paper for G
stings can obviously be extended to other energy scale
this will be the subject of a forthcoming publication@12#.
Obviously, as we lower the energy scale, the frictional fo
becomes more and more important and acts for a lon
time. Hence the vorton-forming region of parameter spa
increases, and by the electroweak scale almost all lo
chopped off the long-string network will become vorton
We therefore conclude that in addition to the low-Gm regime
~which as we saw includes the electroweak scale! where vor-
tons can be a source of dark matter and to an intermed
Gm range in which vortons would be too massive to
compatible with standard cosmology~thereby excluding
these models!, there is also a high-Gm regime~of which the
GUT scale is part! in which vortons do not form at all and
therefore no cosmological constraints based on them ca
set. It is then curious~to say the least! that vorton constraints
can be used to rule out cosmic string models in a wide ra
of energy scalesGm, but not those formed around the GU
or the electroweak scales, where cosmic strings can be
mologically useful.
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