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Nonlinear metric perturbations and production of primordial black holes
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We consider a simple inflationary model with a peculiarity in the form of a “plateau” in the inflaton
potential. We use the formalism of a coarse-grained field in order to describe the production of metric pertur-
bationsh of an arbitrary amplitude, and obtain a non-Gaussian probability function for such metric perturba-
tions. We associate the spatial regions having large perturbdiieris with the regions going to primordial
black holes after inflation. We show that in our model the nonlinear effects can lead to overproduction of
primordial black holes[S0556-282(98)04712-2

PACS numbe(s): 98.80.Cq, 97.60.Lf, 98.70.Vc, 98.80.Hw

l. INTRODUCTION bations by a factor - 10* at small scales. Unfortunately
this cannot be reached in the simplest inflationary models,
Starting from the pioneering works by Zel'dovich and since in these model§, logarithmically grows with the
Novikov [1], and also by Hawking2], the primordial black increase in scale, and one should use nonstandard models
holes (PBH’s) have been the subject of extensive ivestiga-having additional power at small scales to obtain a signifi-
tions. The presence of PBH’s may significantly influence thecant PBH amount.
physical processes and effects in the Univdmech as nu- - Recently, several models of such type were proposed. For
cleosynthesis, cosmic microwave background rad'at'or?nstance, Carr and Lidsd¥] proposed a toy model having a
(CMBR) sp'ec'tral distortions, or djstortions of-ray back- blue-type spectrurfthe spectrund, (k) <k, wherek is the
ground radiatioh due to the Hawking effeci3] and PBH's .2 e iumber, and is the spectral indéxand investigated

may be a component f)f _dark matt(enee, €.g. Refd4,5). the constraint on the spectral indexassociated with pos-
The formation of PBH’s is determined by small scale, but ible PBH formation in such a model. Lindi&5] has shown

large amplitude inhomogeneities in the early Universe, an . .
the processes of PBH formation, evolution, and decay lin hat blue-type spectra can be naturally obtained in the two-

the physical conditions of the early Universe with conditions ield model of so-called hyb”q mflatlo_n o
in the radiation-dominated epoch and present-day cosmol- Another type of model having a spike in the power spec-
ogy. Even the very absence of PBH’s may significantly con{TUm at some scaliy,, was proposed by Ivanov, Naselsky,
strain the models of the beginning of cosmological evolution@nd Novikov[5] (INN).” They considered a one-field infla-
Usually the processes of PBH formation are associatefionary model with inflatonp and assumed that the potential
with production of the scalar mode of perturbations duringV(¢) had a “plateau” region at some scalg, and a stan-
inflation (see, e.g., Refd5-9]) or phase transitions in the dard form(say, power-law formoutside the plateau region.
early Universd10]. In this paper we discuss the first possi- The field ¢ slows down in the plateau region increasing the
bility, which allows us to use the powerful and well- Spectrum of perturbations at the scélg, according to Eq.
elaborated theory of instability of the expanding Universe for(1). One can adjust the parameters of the plateau region to
analysis of the conditions under which PBH’s can form.  obtain the desired increase of the spectrum, and consequently
The theory of the generation of adiabatic perturbationghe desired PBH amount. Garcia-Belligb al. [8] and also
during inflation started from pioneering papgfsl—13. It ~ Randallet al.[9] considered more realistic two-field models
was established that the rms amplitude of metric perturbawhich had a saddle point in two-dimensional form of the

tions &,ms is connected with the parameters of inflationary potentialV(¢, ). Like the one-field model, the evolution of
theory by means of the relation the system of fields slows down near the saddle point in-

creasing the spectrum power. Randgllal. pointed out that
1 H2 such models solve several fine-tuning problems of standard
= (1) inflation, and therefore look very natural from the point of
2 | | view of high-energy physics. Garcia-Bellida al. carefully
investigated the process of PBH formation in such models

whereH is the Hubble parameter amflis the velocity of the ~ (Se€ also recent work by Yokoyarhiz8]).

field evolving during inflation. To get PBH abundance in an  If the primordial black holes are not superlarge, they
observable amount, one should haygs~ 10 2— 10" (see, probably collapse during the radiation-dominated epoch of
e.g., Ref[14]). On the other hand Cosmic Background Ex-

plorer (COBE) CMBR data, as well as the analysis of the

large-scale structure formation constrain the amplitude of iSee also the papers by Hodges and Blumenthal, Hodtak
perturbationsd,,s~10° at superlarge scales. Therefore to[16] and Kateset al. [17], who employed similar models in the
get PBH’s one should increase the amplitude of the pertureontext of the large-scale structure formation theory.
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the evolution of the Universe. This means that the amplitudehe plateau, is obviously determined Ay: alsoceHAt_ Since

h, of the metric inhomogeneities inside the regions going tagifferent regions of the Universe separated by distances
PBH's should be of order of unity to overcome the stronggreater tharH ~* evolve independently, the increase af
pressure forces during the collapse of the perturbed regioBorresponding to different regions is determined by different
[14]. These large amplitude metric inhomogeneities are asrealizations of the random process. Thus the scale fagor
sumed to be generated during inflation as rare events in thgaries from one region to another after the field passes the
random field of the metric perturbations. Since the amplitudeplateau, that is, the quantum effects generate the coordinate

qf th_e inhomogeneitiel, is rather large, the_ natural ques- dependence of the scale factor. The shape of funcatgﬁﬁ)
tion is to what extent can we rely on the linear theory ofg conserved during the subsequent evolution of the Universe
perturbations which usually gives Gaussian probability disyntj| the scale of inhomogeneity crosses the horizon the sec-

tribution of PBH formation? , ond time. At that time, in regions with a significant contrast
To answer this question we can apply the formalism of

: I . of ai(x), primordial black holes are formed.
coarse-grained fieldéntroduced by Starobinskj19]) as an Ist .
alternative approach to the linear theory that can describe Usmg thg apprgach degcnbed rilbove_we calculate the
large amplitude deviations of the field and the metric fromProbability distribution functior ai(x)]. With the help of
background quantities. According to this approach, the spaa simple criterion of PBH formation we relafg a,(x) ] to
tially innomogeneous fields(x,t) is divided into two parts: the probability of PBH formation. We show that in our case
the large-scale pam,s, which consists of the modes with the nonlinear effects overproduce PBH's. Note that this re-
physical wavelengths ak~* greater than some character- Sult differs from what was claimed in Rg20]. In this paper
istic scalex, 4=H "1, and the small scale part which con- the non-Gaussian probability function for the field
sists of modes with\<\_4. During inflation, the physical ¥ (¢is.t) was calculated for similar models of the inflaton
wavelengths are stretched and new perturbations are addedRgtential, and it was mentioned that the functili¢ys ,tend
#1s. This effect may be considered a new random fdidg taken at the moment of the end of inflatiang can strongly
in the equation of motion of the fielghs, and usually the underproduce the large fluctuation of the figid. However,
dynamics of¢y is described in terms of a diffusion equation &S We mentioned above, the amplitude of the coarse-grained

for the probability density¥ (¢,t). This equation was the field is not conserved during its evolution out to the horizon,
subject of a number of works irslyconnection with problems Ofand therefore the statistics of the field fluctuations is not
quantum gravity and large-scale structure formation. Regirectly related to the statistics of the PBH formation. Al-

cently it was pointed out that this equation can be employed?0ugh our result is very important qualitatively, it does not
for calculations of the probability to find large amplitude Significantly change the estimate based on linear theory.
peaks in the random distribution of field,s, and it was We use the simple one-field model, proposed by i(sbe

2 . . . .
mentioned that such an approach can be applied to the profiS0 Refs[24,25)).” Because of the simplicity of this model
lem of PBH formation[20]. the bulk of our results are obtained analytically. We hope

that our approach provides a reasonable approximation to the

Here we would like to note that when studying the effects . ; ;
originating after the end of inflation, such as PBH formation,¢35¢€ of more complicated two-field models. We are going to

one should use the large scale part of the metric instead HSCUSS these models in a future work.

the large scale part of the field. Contrary to the figid, the The paper is organized as follows. We introduce our
large scale part of the metric, namely, the “inhomogeneoud) odel and discuss the classical dynamics of the metric and

scale factora|s(>?)” [see Eqs(23),(24) for an exact defini- ield in Sec. Il. In Sec. lll we obtain an expression for

tion] is the quantity conserved during the evolution outside L 2is(X)]. We consider the role of nonlinear effects on the

the horizon, and this property allows us to connect the physigtatistics of PBH production in Sec. IV. We summarize our

cal conditions during the inflation with the physical condi- conclusions and discuss the applicability of our approach in
tions during radiation-dominated epoch, when PBH’s are>eC: V.
formed. Moreover, the criterion for PBH formation can be

directly formulated in terms ddi(x) ( Refs.[21,22). There- IIl. THE DYNAMICS OF CLASSICAL MODEL

fore, the calculation ofg(x) gives us a tool to describe In this section we consider the classical dynamics of spa-
quantitatively the generation of nonlinear metric perturba-+ially homogeneous parts of the metric and field in the sim-
tions, and the evolution of these perturbations into PBH's. plest inflationary model with a single scalar figlitiflaton)

In this paper we calculate the probability distribution and with a peculiarity in the inflaton potential. In this case
function P[a(X)] in a model with an almost flat region in the system of dynamical equations contains only two dy-
the inflaton potential. The main idea of our calculations hagiamical variables —scale facta(t) and the spatially homo-
already been applied in the models of so-called stochastic
inflation (see, e.g., Ref.23], and references thergiand is

very simple. When the field);; evolves inside the plateau  2pjnough the one-field model with a plateau is not natural from a
region it slows down, and the random kidkiscribed by the  high-energy physics point of view, it can be considered as an ap-
force f(t)] significantly influence its evolution. So, the tra- proximation to the more realistic, but technically more complicated,
jectory of the field inside the plateau region becomes stowyo-field models. Note that the saddle point in the effectively one-
chastic, and the timat that the field spends on the plateau, field potential can be obtained because of vacuum intersections of
depends on the realization of the stochastic process. The totgle inflaton with other fieldgsee, e.g., Refl23], and references
increase of the scale factar, during the field evolution on therein.
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and Eq.(2) reduces to an algebraical relation betwétand
¢ (so-called slow-roll approximation

8
H= \/?V(sf’o)- (8

From Eq.(8) it follows that the Universe expands quasiex-
ponentially H~const andaxe"') at ¢o>1.

It can also be easily shown that outside the plateau region
the field moves with large friction aby>1, so

¢, 2
¢ | ol <|3H by (9)

FIG. 1. The schematic picture of the inflaton potential with the The friction dominated conditiori9) helps to simplify the
peculiarity in the form of the plateau. The plateau region is con-integration of the systert®),(3). Integrating Eqs(2),(3) with
tained between two field valueg,;, ¢, and has a slopeA  the help of inequalitie$7),(9) at ¢y> ¢,, we have

=(dldp)V. We assume the potential to have a power-law form
outside the plateau region. \F
| a‘”' o

t)=hoex
geneous pardq(t) of the field g—and reduces to the Hamil- o(t)= Poexp

tonian constraint equation

and
) 8 ¢§ - ~
H == V(¢o) + - 2 a(po)=apexd N(bo) —N(¢o)], (12)
and to the equation of motion for field, where?po anda, are some initial values of the field and scale
factor:
.. . J
ot 3Hdot ﬁV(qﬁo):O, (©))

o 2 42
Ngo) = | Hdt=m( 43— 4 12
2
whereH =a/a, and other symbols have their usual meaning.
We hereafter use the natural system of units. is the number ok folds of the scale factor during the field
We assume that the effective potenti&lé) has a small  rolling down starting from some initial value @f and down
almost flat regior(plateay between some characteristic val- to the field ¢,. Similar formulas hold atpeng< Po< 1:
ues of field¢p; and ¢, (see Fig. 1L

The potential is also assumed to be proportionakto A
outside the “plateau” region: bo(t)=daexp — \[g(t—ty) |, (13
A - _
V(d,):T (4) a(¢o) = a1€Xd Nend ¢1) — Nend &)1, (14

where ¢q(t1) = @1, a;=2a(ty), andNgnd @) is the number
at p<¢y, of e folds up to the end of inflationNend ¢o) = 7(da
_ — ¢2,9, where we assume that inflation ends at a standard
V($)=V(¢) +A(¢= ) ®) (for X ¢* theory) value of ¢en= 1/\/27. Note thatNg,d ¢1)
should be rather large. For example, to get a feature in the
at §y=<$= b, and spectrum at scales corresponding to the solar mass, we
X should have Nenc(¢1)~30: Therefore, the value ofp;
V()= —— (6)  should be greater than unifyp;~3 for Nend ¢1) ~30].
4 Now let us consider the dynamics of inflaton in the pla-
_ teau regiond; < ¢o< ¢». In this region Eq(3) is simplified
at ¢>¢,. Here V(¢)=\d1/4, N=N\(p1/$o)*+4A(¢,  toO
- ¢>1)/¢‘1‘. As we will see below the size of the flat region is
very smallA = dr— d1<d, A(do— 1)/V(d;)<1 so we do+3Hopo+A=0, (15)
can set\~N\. At sufficiently large values ofy>1 the ki-
netic term in Eq.(2) is negligible in comparison with the where Hy=/(87/3)V,. The solution of Eq.(15 can be
potential term written as
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1 . o A Thus, the correction due to the presence of the plateau prac-
bo= ot 3_H0¢in(1_e_ oty — 3, tically does not influence the dynamics of the field outside

plateau region and we can et \. On the other hand, the
size of plateau is much greater thidg — the typical size of
quantum fluctuationsA ¢, =H o /67 8,md(in) ~ 10°H,.
Typically, the estimateA ¢o/¢po<<1 holds for arbitrary
and for the field velocity we have power-low potentialsV($)x¢P provided powerp is not
very large. However, the opposite limiting case is also pos-
_ . A sible. For example, Bullock and Prima¢R0] proposed a
Bo= pine” o'~ T (17)  potential of the form

0
V(¢)=\ge l+arctari)], ¢>0,

(1_e—3Hot)_ -

3H, (16)

¢2_ 677(1)2

where bin= Bol gy=,= — (LI3Ho) (A1 )V (2) = o
— N6 ¢, is the field velocity at momerit=0 of entrance V(¢)=Ngp(1+4X10%%),  $<0, (19

of the field in the plateau region. The second term in#&6) _ 10 ; :
and the first term in Eq17) are due to inertial influence of where the constamtge=6x10"""is chosen to normallge
the large-scale part of spectrum to the rms amplitude

initial velocity ¢;,, and the last terms in both equations are._3%10°5. The flat region in this potential starts frog
due to the nonzero slope of the potential in the plateau '~ g and ends ath=—1.23x 102, and inflation ends itself

gion. The evolution of the field in the plateau region can beat b= oni= — 1.55¢ 1072, It was mentioned by Bullock
en . .

divided into two stages. At the first stage the field evolvesand Primack that this potential leads to strongly non-

mainly due to the inertial term, and velocity exponentially Gaussian statistics of field perturbations.
decreases with time. After some characteristic tipethe

nonzero slope of potentigd starts to determine the evolu-

. . - IlI. NONLINEAR METRIC PERTURBATIONS
tion, the velocity tends to the constant valig;= — A/3H,,

FROM THE QUANTUM DYNAMICS

and the field amplitude .starts to decreage Iinear!y wiFh time. OF COARSE-GRAINED FIELD
The timet, can be estimated by equating the inertial and
potential terms in Eq(16), and is determined by the condi- It is well known that there are two equivalent ways to

tion 3H,t, e3Hol« =B/A, whereB=(d/d¢$)V(¢po= ;). As  describe an inhomogeneous Universe. The first way is to

we discussed in the Introduction, the spectrum ampliconsider inhomogeneities as small corrections to the homo-

tude is inversely proportional to the field velocifys,,s  geneous space-time and study them in the framework of lin-

~(1/27) (H?/| ¢|)], therefore we need to slow down the ve- €ar theory of perturbations. Another approach splits the met-

locity approximately by~ 10— 10* times to get the increase '€ and the field into a large-scale pdcbarse grained over

of the spectrum amplitude from the initial valug,(in) ~ SOMe scale greater than horizon staled a small-scale part.

= (1/27)(H3/B)~10"° up to the typical one for PBH pro- During inflation, the dynamical equations for coarse-grained

duction 8,,«~10"2—10"L. For that, we should fix the “am- field ¢s and coarse-grained scale-factqy are equivalent to

plification” parametera=B/A~10°— 10%. Egs. (3),(8) provided the quantum effects are switched off.
Our model has two possible limiting variants dependingThe guantum effects continuously produce new inhomogene-

on the relation between tinte of the crossing of the plateau ities of random amplitude with scales greater than the scale

region by the fieldd, [¢o(te) = ¢1] andt, . If to~t, the of coarse-graining. These inhomogeneities should be added
C * Cc *

field crosses the plateau mainly due to inertia. In this case thi® ®is anda,s and effectively this leads to the presence of a

parametew determines the number effolds during plateau stochastic force term in the equations of motion. Therefore,

crossingdN~Hot.~LIn a~2.3, and therefore the width of the dynamics of coarse-grained variables can be described in
C ]

the produced bump in the spectrum remains small and fixed®Ms Of the distribution functions ofys and a5, and in

A model of similar type was discussed by INN. Here we principal these distribution functions can provide the same

consider another possible casg>t, , where the field information as the power spectrum of perturbations, and fur-
*

spends some time on the plateau, evolving in the friction-thermore the coarse-grained formalism gives a tool for the

dominated approximation. In this case the width of the specdeScription of the metric perturbations with amplitude

trum is determined by the value @f, which is the free greakt]er tft}an .1' d ical ion for the fi has th
parameter of our model. Instead tf we will parametrize The effective dynamical equation for the fiag has the

our model by the quantityy—the ratio of wave numbers, form [19°

corresponding to the fields¢q,¢,, respectively, t. P

=Hy ' In y. The parametery cannot be too smaly> a/® bist+ 3H s+ = V(g = DY (1), (20)
and we takey~10? in the estimations. Ify is not extremely I

large Iny<N(¢y), the size of the plateali o= ¢, — ¢, is of
order of typical sizeA ¢, =B/9H2. The typical relative size
of the plateau is very small:

whereD =9H?/(2)2, andf(t) is a delta-correlated random
force (f(t,)f(ty))=48(t;—t,). The equation for coarse-
grained scale factom remains unchanged:

Agy 1

bo  6mgpd BN(¢1)

~(0.0055. (18
3See also Ref26], and references therein.
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S sical trajectory when the stochastic term in HGO) is
His= ?V(QS.S). (2)  switched off. Note that in the limit of smalh<1, the metric
assumes the form

The solution of the set of Eqg20),(21) is an extremely
difficult problem, and can be done under some additional

simplifying assumptions. For example, if we choose the fea- o i _
tureless potential, and consider the friction-dominated solu@nd the definitior(25) is reduced to the standard expression
tions of Eq.(20), we can obtain the solutions describing afor 'the growing que of adiabatic perturbation outside the
self-reproduced inflationary Univergprovided the stochas- Norizon. Namely, in this casé reduces to the gauge-
tic term in Eq.(20) dominates the potential term, see, for independent quantities, introduced by a nu_mber of authors
example, Lindd23]). In our case we cannot use the friction- [11-13,27 up to a constant factor. The variablez5),(26)
dominated condition in the beginning of the field evolutiond0 Not depend on time outside the horizon. Therefore, the
inside the plateau region. However, we can adopt other sini/S€ of these variables is very convenient to match the per-
plifying assumptions: first we can sklic= H,= const inside turbat_lons, g_enerated during inflation with the p_erturbatlons,
and near the plateau region, and second, we can omit tHg0SSINg horizon at the normal stage of the unlverse evolu-
stochastic term in Eq20) outside the plateau region, assum- ion. As one can see from the E@5) the metric perturba-
ing the field moves along the classical trajectory there. Undeions are determined by stochastic variahkeand the distri-
these assumptions the statistics of the scale famtais to- ~ Pution of At must follow from the solution of E20). Note
tally determined by the tim@t that field ¢ spends in the that the definition of nonlinear metric perturbations should

ds?=dt?—a?(¢o)[ 1+ 2h(x)] & dx dx, (26)

plateau region b'e'taken with caution. In principal, one can use another defi-
nition related to Eq(25) by some nonlinear transformation,
AN=In(ao,/ai,) =HoAt, (22 and having the same limi6) in the case of smak. For
example, Bond and SalopeR8] used the quantityh
wherea;, is the value of the scale factor at the time0 of  =In[as(¢is)/a(pg)] to define nonlinear metric perturba-

the entrance of the field into the plateau region, agg  tions. However, the criterion for PBH formation can be di-
corresponds to the moment when the field leaves the pla- rectly expressed in terms of the quantib) (see next sec-
teau region. To see this let us consider the evolution of th&éion), and therefore this quantity is the most natural variable
scale factora in the comoving coordinate system. Outside for our purposes.

the horizon the hypersurfaces of constant comoving time Although the assumption of consta} greatly simplifies
practically coincide with hypersurfaces of constant energythe problem it is still rather complicated for a simple analyti-
density e=const. On the other hand, the fiel|s evolves cal treatment. For further progress we have to make some
slowly during inflation and hypersurfaces of constant energyadditional assumptions. We will consider below a plateau
density are close to hypersurfacgg=const, and therefore region of sufficiently large size. For this case the field ap-
we can puiag(teon) = ai( @) . After the field passes the pla- proachfas the end. of the pIatgau in the fncuon—domma;ed
teau region, the evolution @f(¢,) can be described by the approximation, which greatly simplifies the treatment of dif-

standard expressioil4), so we have fusion processes. To estimate the relevance of the friction-
dominated approximation we should compare the tigrend
ais( i) =anexp [ m(pi— )+ AN], (23)  the timet, ~In(a) of the decay of the inertial ternp in Egs.

(15—(17),(20). If t.>t, and thereforey>a'? the inertial
where AN is nearly constant inside the coarse-grained referm in these equations can be neglecte att<t. In this
gions with comoving scale\, g~a,Hg ., but changes egime the solution of the classical equation of motiab)
from one region to the other. Thus, the metric outside thd'as the form
horizon has the quasi-isotropic form

bo(T)~dp—ar, (27)
_At2_ a2 ) S dx dx
ds*=dt*— ai( ¢o)a(X) 5;dx;dxl, @) g Eq.(20) becomes
where we represent the scale factQf ¢) as a multiplica- b
- S
tion of two factors:a(¢,) and a(x)=e*N. Here a( o) F+a=d1’2f(7), (28

and ¢o(t) are determined by the classical equations

(13),(14), and the spatial coordinatesare coarse grained where 3=3H,, and we introduce the dimensionless time

over regions with scale.. 4. To estimate the change of _ gt a—a/82 and d=D/283=H2/24w2. The stochastic
metric from one region to another quantitatively, we intro-

duce the definition of nonlinear metric perturbation

a dis) —al bo) “In this case our problem is reduced to the first-passage problem
h=—"" " —expHy(At—ty)—1 (25 for the one-dimensional Fokker-Plangkramers equation, associ-
a(¢o) ated with Eq.(20) [29]. The general solution of this problem de-

_ . ) ) ) mands too much formalisii80], and is not considered here. Note,
[we remind the reader thag=H, " In y is the time which  however, that the simple asymptotic estimates are still possible in
the field spends in the plateau region moving along the clashis cas€30,31].
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equation(28) is associated with a simple diffusion type equa-

1
tion, describing the evolution of position probability distri- V¥ (¢,7)= —————
bution ¥ (7, ¢): (&7 Vamd(T— 1)
1

P 72 J Xexp[—m[¢—¢*+a(7—7*)]z

—=d—V+a—V. (29

ar dp? d 1

|1 exp{ d(’T_ 7_*)((7ZS (rbl)
Now we assume that the distributioh is not spread out
sufficiently beforer, =gt, and take thes-distributed ¥ X (b —¢1)] ) (33)
function at the moment= 7, as the initial condition for our *
problem,
Substituting Eq(33) into Eq. (32) we find the explicit ex-
pression forP(7):
W (7,)=6(hs— by ), (30)
_ / d’* - d’l
where¢, =A¢d—ar, is the value of the field corresponding P(7)= dmd(7—1 )\ T— Ty
to the Eeginning of the friction-dominated part of the plateau *
region:
Together with initial conditior{30) we should specify the X eXP{ - m[(ﬁl— b ta(r— 7).

boundary condition atps;= ¢1. This condition depends on *
the form of the transition layer between the plateau region (34)

and the part of the potential with steep slop ) V() The expression for the probability distribution of the metric

=B. We assume this transition to be sharp, and therefore set . . :
the condition of the absorbing wall at the downstream poincan be readily obtained from E(B4). Using Eqs.(22)—(25)

0 express the time in terms ofh, taking into account Eq.

b1s= b1 (27) and the definitions of, d, and assuminga>0, we
obtain
V(¢y,7)=0. (31 ,
1 Ng dN Ng—N
' N ,P(h): (;I/2 stex _( st2 cl) ’ (35)
Note that this boundary condition was used by Aryal and 27 Ng dh 265Ny

Vilenkin [32] for an analysis of stochastic inflation in the

theory with top-hat potentials. In that paper it was shown thatvhere 6, = 3H32mA= a8;ndin) is the standard metric am-
the more reasonable smooth transitions between the flat aqditude calculated for the plateau parameters, and

steep regions of the potential are unlikely to significantly

modify the resulting distribution. Ng=In y—7,/3, Ng=In (1+h)+Ng (36)
In our case the probability densiB(7) of time 7 relates
to the solution of Eq(27) as are the numbers of folds for the classical patkp(t) and
for a random pathp4(t), which start atp, = ¢(t,) and end
at ¢1.
P(r)=Sy 4. = di\p, (32 When the perturbations are smbilll,— N,~h<1, the dis-
=P T de tribution (35) has a standard Gaussian form:

where we define by S the probability current S P(h)=Pg(h)= 1 expl — h? (37)
=d(d/d¢)¥+aW¥. The conservation of the probability cur- ¢ V2785 Ng 283Ny
rent allows us to estimate the correction term to B8 due
to nonzeroW¥(¢;). Assuming that field moves along the and in the opposite case of very large metric perturbations
classical trajectory after¢,=¢,, we have S(— ¢,) h>1 and Ng~In h>N, the distribution P(h) deviates
~BIB*W~S(+ ¢1)~d(d/d¢p)¥. Therefore the correction sharply from the Gaussian law and has the power-law form
to the expressioni32) is B%a/B=a 1~10"3—-10"* times
smaller than the leading term. P(h)oh¥2+ 5514 (39)

The conditions(30),(31) determine the solution of Eq.
(29). This solution can be found by standard methods of the As seen from Eqs(35)—(38), the non-Gaussian effects
theory of diffusion equationtsee, e.g., Ref33]), and in our  overproduce the metric perturbations of high amplitude in
case has the form our model. To understand this fact, let us discuss the origin
of non-Gaussian effects in our model. There are two sources
for such effects. First, note that the “effective dispersion”
5The estimates show that the characteristic widthigf, ) is of o= OpiNst in Ed. (35) depends itself on the value of the

order of H and much less than the size of the friction-dominatedStochastic variabl&lg;. Qualitatively, it can be explained as
region ¢, — . follows. In linear theory the dispersiar’= 5S|Nc, is propor-



57 NONLINEAR METRIC PERTURBATIONS AND . .. 7151

tional to the time spent by the classical background figdd should be—1, since the metric perturbations with< — 1 are

on the plateau. In nonlinear theory the coarse-grained fieldut off). The contribution ofM; should be added to the
¢(t) plays the role of background field, and therefore thebackground part of the metric, and further we will use the
distribution of the family of neighbors t@b= ¢(t) paths renormalized metric perturbatidmzh—%b‘m instead ofh.
should be described in terms of the probability distributionThe probability to find the metric perturbatiohs with am-
with dispersiono?, which is proportional to the time spent plitude greater than some threshold valig P(h,)

by field ¢, on the plateau. Second, the amplitude of Iargezfﬁ*dh P(h) can be estimated as

metric perturbationsh depends onNg exponentially b
~eNis), so an order of magnitude increaseNyf leads to the

exponential increase df. Obviously, these two effects in- P(h, )~ 1 /25p|(X*+1)1’2) p|— x2 ]
E(r)enass.e the probability of large amplitude metric perturba- * \/ﬁ\ Xy (X4 +2) 25,2)|(X*+1) (’41)

IV. PROBABILITY OF BLACK HOLE FORMATION
wherex, =In(1+38,+h,), and we assumé, > 5,. The

Although the distributior{35) provides very important in- same quantity, but calculated for the Gaussian distribution
formation about the geometry of the spatial part of the metridakes the well-known form
outside horizon, it cannot be directly applied to the estimates

of PBH formation. Indeed, the distributigB5) is formed by 2
the field inhomogeneities with wave numbérin the range Po(h)~ 1 @ex _hy _ 42
(Ak=[Kmin~ainHo<k<Kma=aouHol). The process of ¢ V2 hy 282

PBH formation is determined mainly by the field modes with

wave numbers dk~k,,<Ak), whereky, is the typical PBH . .
wave number. The modes with<k,, compose the large- The observed quantitigsuch as, e.g., the matter density

scale background part of the metric at the moment of peHPf PBH'S in different cosmological epochsan be easily

formation, and do not influence the formation of PBH’s Sig_expressed in ter,ms of the probabiliB(h, ), provided the
nificantly. The modes wittk>k,, lead to high-frequency Mass of the PBH’s and some criterion for PBH formation are

modulation of the perturbation witk~ky;,, which is also fixed. In our case the criterion for PBH formation should
unimportant, provided the mode with-k,, crosses the ho- giye t.he information a.bout the threshold vahq,e. Sinc_:e_ this
rizon the second time at the radiation-dominated epoch‘?”te”on plays a very important role, let us discuss it in some

Therefore, in order to obtain the probability of PBH forma- d€tail- First let us note that PBH's are formed from high

tion, we should subtract the contribution of the large-scal@MPlitude peaks in the density distribution which are ap-
and small-scale metric perturbations. proximately spherically symmetritsee, e.g., Ref[34]). It

In general it is very difficult to separate the perturbations®@" also be easily shown that the maxima in theﬁmatter den-
of a given scale in the framework of the nonlinear approachsity correspond to the maxima in the functiap(x). The
However, we can estimate the probability density of the perform of a(x) totally specifies the number of regions going
turbations, corresponding to the smallest ségle~a,,Ho.> to PBH's as well as dynamics of the collapsing regions.
For that we simply pulNy=1 in Egs.(35),(36), assuming Therefore we formulate the criterion of PBH formation in
that the random process starts when the mode with wavgrms of conditions imposed on the functiag(X).
numberk, =€~ *a,,Ho crosses the horizon. This procedure  The first criterion was formulated by Carr in his seminal
automatically subtracts the large-scale contribution of modepaper[14]. It was shown that an overdense region forms a
with k<k;. The small-scale contribution is also absent dueppH if the density contrast at the horizon scale/p lies

to our absorbing boundary condition. We have approximately within the limitst < 8p/p<1. The first part
5 of this inequality tells us that the overdense region should
P(h)= 1 exn — X (39 stop expansion before the scale of the region crosses the
\/2775;2)| (x+1)372 25§|(X+ 1) sound horizon. The second part requires that the overdense

region not collapse before crossing the causal horizon, and
from Eq.(35), wherex=In (1+h), and in the limit of smalh consequently the perturbation does not produce a closed

we obtain again the Gaussian distribution world separated from the rest of the Universe. Then the cri-
terion for PBH formation was improved by Nadegin, No-
1 h2 vikov, and Polnarey21] (NNP), and also by Biknell and
P(h)y~Pg(h)= > exp{ - —2] (40)  Henrikser22] with the help of numerical computations. The
278y 25y initial condition used by NNP was chosen as a nonlinear

o , metric perturbation having the form of a part of the closed

Thew distribution 3(39) has nonzero first momenturM;  Friegman Universe matched with the spatially flat Universe

=J/Z,dhhP(h)=3 5y (the lower limit of the integration through an intermediate layer of negative density perturba-

tion. The conditions for PBH formation depend on the size of

this part(i.e., the amplitude of the perturbatigras well as

8In this connection, let us note that the black holes of smalleson the size of the matching layer. The smaller the matching
mass should give the major contribution to the present fraction ofayer is, the larger the pressure gradients needed to prevent

black holes, provided the PBH spectrum is fi@arr[14]). collapse will be. Therefore, the amplitude of the perturbation
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forming a PBH must be greater in the case of a narrow in- 0.20[ ' ' ' ‘ "]

termediate layer. In terms of our functicn(i) the NNP
criterion reads

a
h*Ea—+—1>0.75—0.9, (43

wherea, is the value ofa(i) at the maximum of the per-
turbation anda_ is the same quantity outside the perturbed

0.05F .

region’ The first number on the right-hand side of E43) !

corresponds to the matching layer of a size comparable with 15 10 s o 5

the size of the overdense region, and the second number In (M,u/Mo)

corresponds to the narrow matching layer. Assuming the ?

matching layer is sufficiently large we talkg, =0.75 as a FIG. 2. We plot the dependence of plateau paraméfgon
criterion of PBH formation. PBH’s massM pgy, assuming that the PBH's abundance is given by

Once the criterion is specified, we can link the desiredeq. (44). The solid line represents the solution of E4p) (i.e, we
PBH abundance8(Mpgp) ~P(h,pgr) With the parameters calculate§y, taking into account the non-Gaussian effects in this
of our model. For instance, consider a model having a mattetas¢. The dashed line represens calculated in the standard
density of PBH'’s equal to the critical orfghe density pa- Gaussian theory. The PBH masses lie in the range'®M;

rameterQpgy=1). In this model we havgs,6] <Mpgy<10°Mpgy. The PBH's of mass 10*M o~ 10"g should
be evaporated at the present time. Actually, the abundance of these

M |\ 2 PBH'’s is constrained much larger than is assumed in our calcula-
B(M)= 10—8< _) . (44) tions.
Mo

As we have seen, the ambiguity in the choice of the plateau
slope due to these effects is about 1.5. This ambiguity seems
to be less than the ambiguity in other parameters and can be
obviously absorbed by a small change of the potential slope.

Equating the expressigd4) to the probability function39),
we have the equation determining the amplitdglg required
for PBH abundancé44) as a function oM pgyy,

P(h,pah, 91p) = B(Mpgh), (45
V. DISCUSSION

and equating the expressiof$2) and (44) we obtain the .
. . . We demonstrated that non-Gaussian effects related to the
analogous equation for determining the reference amp“tUdgynamics of the coarse-grained fieliflator) and to the

d,p When the non-Gaussian effects are switched off. The . :
. : o O evolution of the large-scale part of the metric overproduce
solution of these equations is given in Fig. 2.

S . large-amplitude inhomogeneities of the metric compared to
Qne can see ffom th'? figure that th(_a quantitis and the prediction of the Gaussiainear theory of perturba-
d,p increase with increasinfl pgy and 61 is always smaller

than,,. This means that non-Gaussian effects overproducgons' We derived an analytical expression for the non-
PBH'’s in our modelat least when the simple criteriga3)

is used, and the slope of the potential can be steeper than 109F
that required in the Gaussian case. Typically, the ratio [
Oopil 01p1 is about 1.5. Say, for the case Wfpgy=Mg, we :
have 6,,(M)~0.089 andd,,(M)~0.134. We plot the 10-9L
probability function(h) for 6,,(M)=0.089 in Fig. 3.

In this figure, we also plot the Gaussian probability func-
tion Pg(h) for ,,(Mp)=0.134(dashed lingand the same
quantity for 61,(M ) =0.089 (dotted ling. Comparing the
curves that correspond to the same PBH abundance, we see
that the non-Gaussian curve is flatter having larger values of 10 3 . . . .
P(h) at largeh. The values of the Gaussian curve with the 0.0 0.2 04 0.6 0.8 1.0
same plateau parametéy, (M) is smaller by many orders h
of magnitude than the values of the non-Gaussian curve in
the case of largé. FIG. 3. The dependence of probability dengigh) on the met-

Finally, let us note that the non-Gaussian effects do nofic amplitudeh. The non-Gaussian curvsolid line) is calculated

i ; ~10-8
significantly modify the estimates based on Gaussian theor)ﬁ/r']tzt hg;if)esog El?"vfzs)’)wzszgg'”gth:a ;beudno:;r;q?(thﬁz;r}e?erénce
lp ~VU. .

Gaussian probability density calculated for the same abundance.
For that curve we havé,,(My)~0.134. The dotted curve repre-
’In linear theory the density perturbation at the horizon scale issents the Gaussian distribution taken with, (M) ~0.089. This
related to the metric perturbation Bp/p=(4/9)h (see, e.g., Ref. distribution strongly underproduces PBH's, and in this case we
[27)). Therefore the estimatd?3) is in agreement with Carr’s result. have3~10"1,

£)
&
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Gaussian probability distribution for nonlinear metric pertur- (see, e.g., Refd.22,35 for discussions of this point The
bations, and estimated the influence of nonlinear effects oform of the spatial profile can be studied by meana-gint
the probability of primordial black hole formation. We used correlation functions of the coarse-grained metric and field.
the simple single-field inflationary model with a peculiarity Unfortunately, the formalism af-point correlation functions
in the form of the flat region in inflaton potentil ¢) and a s still not elaboratedsee, however, Ref.36] for the first
power-law slope of the potential outside the peculiarity re-discussion Note that the influence of the spatial profile of
gion. The key point of our approach is in the use of inhomo-the collapsing region can probably be taken into account by
geneous Coarse-grained metric funct'gdn-()) instead of the & redefinition of the threshold Vallllec , and this value mlght
coarse-grained fielgh,s as a basic quantity. This allowed us be effectively less. In this case the role of nonlinear effects
to match the physical condition of production of inhomoge-would be lessened.
neities during inflation with the “observable” quantities. Finally we would like to note that the form of the distri-
Our results can be considered as semiqualitative only. Theution(35) does not depend explicitly on the specific param-
uncertainties come from the phenomenological character d¥ters of our model. This allows us to suppose that similar
our inflationary model as well as from the oversimplified distributions can be obtained in more complicated models,
treatment of the process of PBH formation. The uncertaintie§ay, in the two-field models proposed in Ré#,9]. We are
related to the choice of parameters of the inflationary mode@0ing to check this very interesting assumption in our future
are mainly due to the unknown form of the potential betweerWvork.
the steep and flat regions, and also due to our friction-
dominated assumption in the consideration of the stochastic
process. These uncertainties can be eliminated with the help
of numerical simulations of stochastic processes in more re- The author acknowledges P. Naselsky and I. Novikov for
alistic models of inflation. The ambiguities concerning themany valuable discussions, and also A. Beloborodov, A.
criterion of PBH formation are mainly due to the one-point Dolgov, and D. Markovic for useful comments. This work
treatment of this process. Actually, PBH formation is nonlo-was supported in part by the Danish Research Foundation
cal, and the dynamics of collapsing region depends stronglthrough its establishment of the Theoretical Astrophysics
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