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Nonlinear metric perturbations and production of primordial black holes

P. Ivanov
Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, O” Denmark

and Astro Space Center of P. N. Lebedev Institute, Profsoyznaya 84/32, 117810 Moscow, Russia
~Received 7 August 1997; published 1 June 1998!

We consider a simple inflationary model with a peculiarity in the form of a ‘‘plateau’’ in the inflaton
potential. We use the formalism of a coarse-grained field in order to describe the production of metric pertur-
bationsh of an arbitrary amplitude, and obtain a non-Gaussian probability function for such metric perturba-
tions. We associate the spatial regions having large perturbationsh;1 with the regions going to primordial
black holes after inflation. We show that in our model the nonlinear effects can lead to overproduction of
primordial black holes.@S0556-2821~98!04712-2#

PACS number~s!: 98.80.Cq, 97.60.Lf, 98.70.Vc, 98.80.Hw
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I. INTRODUCTION

Starting from the pioneering works by Zel’dovich an
Novikov @1#, and also by Hawking@2#, the primordial black
holes ~PBH’s! have been the subject of extensive ivestig
tions. The presence of PBH’s may significantly influence
physical processes and effects in the Universe@such as nu-
cleosynthesis, cosmic microwave background radiat
~CMBR! spectral distortions, or distortions ofg-ray back-
ground radiation# due to the Hawking effect@3# and PBH’s
may be a component of dark matter~see, e.g., Refs.@4,5#!.
The formation of PBH’s is determined by small scale, b
large amplitude inhomogeneities in the early Universe, a
the processes of PBH formation, evolution, and decay
the physical conditions of the early Universe with conditio
in the radiation-dominated epoch and present-day cosm
ogy. Even the very absence of PBH’s may significantly co
strain the models of the beginning of cosmological evoluti

Usually the processes of PBH formation are associa
with production of the scalar mode of perturbations dur
inflation ~see, e.g., Refs.@5–9#! or phase transitions in th
early Universe@10#. In this paper we discuss the first poss
bility, which allows us to use the powerful and wel
elaborated theory of instability of the expanding Universe
analysis of the conditions under which PBH’s can form.

The theory of the generation of adiabatic perturbatio
during inflation started from pioneering papers@11–13#. It
was established that the rms amplitude of metric pertur
tions d rms is connected with the parameters of inflationa
theory by means of the relation

d rms5
1

2p

H2

uḟu
, ~1!

whereH is the Hubble parameter andḟ is the velocity of the
field evolving during inflation. To get PBH abundance in
observable amount, one should haved rms;102221021 ~see,
e.g., Ref.@14#!. On the other hand Cosmic Background E
plorer ~COBE! CMBR data, as well as the analysis of th
large-scale structure formation constrain the amplitude
perturbationsd rms;1025 at superlarge scales. Therefore
get PBH’s one should increase the amplitude of the per
570556-2821/98/57~12!/7145~10!/$15.00
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bations by a factor 1032104 at small scales. Unfortunatel
this cannot be reached in the simplest inflationary mod
since in these modelsd rms logarithmically grows with the
increase in scale, and one should use nonstandard mo
having additional power at small scales to obtain a sign
cant PBH amount.

Recently, several models of such type were proposed.
instance, Carr and Lidsey@6# proposed a toy model having
blue-type spectrum@the spectrumd rms(k)}ka, wherek is the
wave number, anda is the spectral index# and investigated
the constraint on the spectral indexa associated with pos
sible PBH formation in such a model. Linde@15# has shown
that blue-type spectra can be naturally obtained in the t
field model of so-called hybrid inflation.

Another type of model having a spike in the power spe
trum at some scalekbh was proposed by Ivanov, Naselsk
and Novikov@5# ~INN!.1 They considered a one-field infla
tionary model with inflatonf and assumed that the potenti
V(f) had a ‘‘plateau’’ region at some scalekbh and a stan-
dard form~say, power-law form! outside the plateau region
The fieldf slows down in the plateau region increasing t
spectrum of perturbations at the scalekbh according to Eq.
~1!. One can adjust the parameters of the plateau regio
obtain the desired increase of the spectrum, and consequ
the desired PBH amount. Garcia-Bellidoet al. @8# and also
Randallet al. @9# considered more realistic two-field mode
which had a saddle point in two-dimensional form of t
potentialV(f,c). Like the one-field model, the evolution o
the system of fields slows down near the saddle point
creasing the spectrum power. Randallet al. pointed out that
such models solve several fine-tuning problems of stand
inflation, and therefore look very natural from the point
view of high-energy physics. Garcia-Bellidoet al. carefully
investigated the process of PBH formation in such mod
~see also recent work by Yokoyama@18#!.

If the primordial black holes are not superlarge, th
probably collapse during the radiation-dominated epoch

1See also the papers by Hodges and Blumenthal, Hodgeset al.
@16# and Kateset al. @17#, who employed similar models in the
context of the large-scale structure formation theory.
7145 © 1998 The American Physical Society
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7146 57P. IVANOV
the evolution of the Universe. This means that the amplitu
h* of the metric inhomogeneities inside the regions going
PBH’s should be of order of unity to overcome the stro
pressure forces during the collapse of the perturbed re
@14#. These large amplitude metric inhomogeneities are
sumed to be generated during inflation as rare events in
random field of the metric perturbations. Since the amplitu
of the inhomogeneitiesh* is rather large, the natural que
tion is to what extent can we rely on the linear theory
perturbations which usually gives Gaussian probability d
tribution of PBH formation?

To answer this question we can apply the formalism
coarse-grained fields~introduced by Starobinsky@19#! as an
alternative approach to the linear theory that can desc
large amplitude deviations of the field and the metric fro
background quantities. According to this approach, the s
tially inhomogeneous fieldf(xW ,t) is divided into two parts:
the large-scale partf ls , which consists of the modes wit
physical wavelengthsl}ak21 greater than some characte
istic scalelc2g>H21, and the small scale part which con
sists of modes withl,lc2g . During inflation, the physica
wavelengths are stretched and new perturbations are add
f ls . This effect may be considered a new random forcef (t)
in the equation of motion of the fieldf ls , and usually the
dynamics off ls is described in terms of a diffusion equatio
for the probability densityC(f ls ,t). This equation was the
subject of a number of works in connection with problems
quantum gravity and large-scale structure formation. R
cently it was pointed out that this equation can be emplo
for calculations of the probability to find large amplitud
peaks in the random distribution of fieldf ls , and it was
mentioned that such an approach can be applied to the p
lem of PBH formation@20#.

Here we would like to note that when studying the effe
originating after the end of inflation, such as PBH formatio
one should use the large scale part of the metric instea
the large scale part of the field. Contrary to the fieldf ls , the
large scale part of the metric, namely, the ‘‘inhomogene
scale factorals(xW )’’ @see Eqs.~23!,~24! for an exact defini-
tion# is the quantity conserved during the evolution outs
the horizon, and this property allows us to connect the ph
cal conditions during the inflation with the physical cond
tions during radiation-dominated epoch, when PBH’s
formed. Moreover, the criterion for PBH formation can
directly formulated in terms ofals(xW ) ~ Refs.@21,22#!. There-
fore, the calculation ofals(xW ) gives us a tool to describ
quantitatively the generation of nonlinear metric perturb
tions, and the evolution of these perturbations into PBH’

In this paper we calculate the probability distributio
functionP@als(xW )# in a model with an almost flat region i
the inflaton potential. The main idea of our calculations h
already been applied in the models of so-called stocha
inflation ~see, e.g., Ref.@23#, and references therein! and is
very simple. When the fieldf ls evolves inside the platea
region it slows down, and the random kicks@described by the
force f (t)] significantly influence its evolution. So, the tra
jectory of the field inside the plateau region becomes s
chastic, and the timeDt that the field spends on the platea
depends on the realization of the stochastic process. The
increase of the scale factorals during the field evolution on
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the plateau, is obviously determined byDt: als}eHDt. Since
different regions of the Universe separated by distan
greater thanH21 evolve independently, the increase ofals
corresponding to different regions is determined by differ
realizations of the random process. Thus the scale factoals
varies from one region to another after the field passes
plateau, that is, the quantum effects generate the coordi
dependence of the scale factor. The shape of functionals(xW )
is conserved during the subsequent evolution of the Unive
until the scale of inhomogeneity crosses the horizon the s
ond time. At that time, in regions with a significant contra
of als(xW ), primordial black holes are formed.

Using the approach described above we calculate
probability distribution functionP@als(xW )#. With the help of
a simple criterion of PBH formation we relateP@als(xW )# to
the probability of PBH formation. We show that in our ca
the nonlinear effects overproduce PBH’s. Note that this
sult differs from what was claimed in Ref.@20#. In this paper
the non-Gaussian probability function for the fieldf ls
C(f ls ,t) was calculated for similar models of the inflato
potential, and it was mentioned that the functionC(f ls ,tend)
taken at the moment of the end of inflationtend can strongly
underproduce the large fluctuation of the fieldf ls . However,
as we mentioned above, the amplitude of the coarse-gra
field is not conserved during its evolution out to the horizo
and therefore the statistics of the field fluctuations is
directly related to the statistics of the PBH formation. A
though our result is very important qualitatively, it does n
significantly change the estimate based on linear theory.

We use the simple one-field model, proposed by INN~see
also Refs.@24,25#!.2 Because of the simplicity of this mode
the bulk of our results are obtained analytically. We ho
that our approach provides a reasonable approximation to
case of more complicated two-field models. We are going
discuss these models in a future work.

The paper is organized as follows. We introduce o
model and discuss the classical dynamics of the metric
field in Sec. II. In Sec. III we obtain an expression f
P@als(xW )#. We consider the role of nonlinear effects on t
statistics of PBH production in Sec. IV. We summarize o
conclusions and discuss the applicability of our approach
Sec. V.

II. THE DYNAMICS OF CLASSICAL MODEL

In this section we consider the classical dynamics of s
tially homogeneous parts of the metric and field in the si
plest inflationary model with a single scalar field~inflaton!
and with a peculiarity in the inflaton potential. In this ca
the system of dynamical equations contains only two
namical variables —scale factora(t) and the spatially homo-

2Although the one-field model with a plateau is not natural from
high-energy physics point of view, it can be considered as an
proximation to the more realistic, but technically more complicat
two-field models. Note that the saddle point in the effectively on
field potential can be obtained because of vacuum intersection
the inflaton with other fields~see, e.g., Ref.@23#, and references
therein!.
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57 7147NONLINEAR METRIC PERTURBATIONS AND . . .
geneous partf0(t) of the fieldf—and reduces to the Hamil
tonian constraint equation

H25
8p

3
S V~f0!1

ḟ0
2

2
D ~2!

and to the equation of motion for fieldf0

f̈013Hḟ01
]

]f
V~f0!50, ~3!

whereH5ȧ/a, and other symbols have their usual meani
We hereafter use the natural system of units.

We assume that the effective potentialV(f) has a small
almost flat region~plateau! between some characteristic va
ues of fieldf1 andf2 ~see Fig. 1!.

The potential is also assumed to be proportional tof4

outside the ‘‘plateau’’ region:

V~f!5
lf4

4
~4!

at f,f1,

V~f!5V~f1!1A~f2f1! ~5!

at f1,f,f2, and

V~f!5
l̃f4

4
~6!

at f.f2. Here V(f1)5lf1
4/4, l̃5l(f1 /f2)414A(f2

2f1)/f1
4. As we will see below the size of the flat region

very smallDf5f22f1!f, A(f22f1)/V(f1)!1 so we
can setl'l̃. At sufficiently large values off0.1 the ki-
netic term in Eq.~2! is negligible in comparison with the
potential term

FIG. 1. The schematic picture of the inflaton potential with t
peculiarity in the form of the plateau. The plateau region is c
tained between two field valuesf1, f2, and has a slopeA
5(]/]f)V. We assume the potential to have a power-law fo
outside the plateau region.
.

ḟ0
2

2
!V~f0!, ~7!

and Eq.~2! reduces to an algebraical relation betweenH and
f0 ~so-called slow-roll approximation!:

H5A8p

3
V~f0!. ~8!

From Eq.~8! it follows that the Universe expands quasie
ponentially (H'const anda}eHt) at f0.1.

It can also be easily shown that outside the plateau reg
the field moves with large friction atf0.1, so

uf̈0u!u3Hḟ0u. ~9!

The friction dominated condition~9! helps to simplify the
integration of the system~2!,~3!. Integrating Eqs.~2!,~3! with
the help of inequalities~7!,~9! at f0.f2, we have

f0~ t !5f̃0exp2F SA l̃

6p
t D G , ~10!

and

a~f̃0!5a0exp@N~f̃0!2N~f0!#, ~11!

wheref̃0 anda0 are some initial values of the field and sca
factor:

N~f0!5E
f2

f0
Hdt5p~f0

22f2
2! ~12!

is the number ofe folds of the scale factor during the fiel
rolling down starting from some initial value off and down
to the fieldf2. Similar formulas hold atfend,f0,f1:

f0~ t !5f1expS 2A l

6p
~ t2t1! D , ~13!

a~f0!5a1exp@Nend~f1!2Nend~f!#, ~14!

wheref0(t1)5f1, a15a(t1), andNend(f0) is the number
of e folds up to the end of inflation:Nend(f0)5p(f0

2

2fend
2 ), where we assume that inflation ends at a stand

~for lf4 theory! value offend51/A2p. Note thatNend(f1)
should be rather large. For example, to get a feature in
spectrum at scales corresponding to the solar mass,
should haveNend(f1);30. Therefore, the value off1
should be greater than unity@f1;3 for Nend(f1);30#.

Now let us consider the dynamics of inflaton in the p
teau regionf1,f0,f2. In this region Eq.~3! is simplified
to

f̈013H0ḟ01A50, ~15!

where H05A(8p/3)V0. The solution of Eq.~15! can be
written as

-



f
re
r
b
e
lly

-

e
nd
i-

pl

e-
e

-

ing
u

t

f
e
e

on
e

,

rac-
ide

os-

de

n-

to
to

mo-
lin-
et-

r
.
ed

ff.
ne-
ale
ded

f a
re,
d in

me
fur-
the
e

-

7148 57P. IVANOV
f05f21
1

3H0
ḟ in~12e23H0t!2

At

3H0

5f22
1

6pf2
~12e23H0t!2

At

3H0
~16!

and for the field velocity we have

ḟ05ḟ ine
23H0t2

A

3H0
, ~17!

where ḟ in5ḟ0uf05f2
52(1/3H0)(]/]f)V(f2)5

2Al̃/6pf2 is the field velocity at momentt50 of entrance
of the field in the plateau region. The second term in Eq.~16!
and the first term in Eq.~17! are due to inertial influence o
initial velocity ḟ in , and the last terms in both equations a
due to the nonzero slope of the potential in the plateau
gion. The evolution of the field in the plateau region can
divided into two stages. At the first stage the field evolv
mainly due to the inertial term, and velocity exponentia
decreases with time. After some characteristic timet* the
nonzero slope of potentialA starts to determine the evolu
tion, the velocity tends to the constant valueḟ f d52A/3H0,
and the field amplitude starts to decrease linearly with tim
The time t* can be estimated by equating the inertial a
potential terms in Eq.~16!, and is determined by the cond
tion 3H0t* e3H0t

* 5B/A, whereB5(]/]f)V(f05f1). As
we discussed in the Introduction, the spectrum am
tude is inversely proportional to the field velocity@d rms

'(1/2p)(H2/uḟu)#, therefore we need to slow down the v
locity approximately by;1032104 times to get the increas
of the spectrum amplitude from the initial valued rms(in)
5(1/2p)(H3/B);1025 up to the typical one for PBH pro
ductiond rms;102221021. For that, we should fix the ‘‘am-
plification’’ parametera5B/A;1032104.

Our model has two possible limiting variants depend
on the relation between timetc of the crossing of the platea
region by the fieldf0 @f0(tc)5f1# and t* . If tc't* the
field crosses the plateau mainly due to inertia. In this case
parametera determines the number ofe folds during plateau
crossingdN'H0tc'

1
3 ln a'2.3, and therefore the width o

the produced bump in the spectrum remains small and fix
A model of similar type was discussed by INN. Here w
consider another possible casetc.t* , where the field
spends some time on the plateau, evolving in the fricti
dominated approximation. In this case the width of the sp
trum is determined by the value oftc , which is the free
parameter of our model. Instead oftc we will parametrize
our model by the quantityg—the ratio of wave numbers
corresponding to the fieldsf1,f2, respectively, tc

5H0
21 ln g. The parameterg cannot be too smallg.a1/3

and we takeg'103 in the estimations. Ifg is not extremely
large lng!N(f1), the size of the plateauDf05f22f1 is of
order of typical sizeDf* 5B/9H2. The typical relative size
of the plateau is very small:

Df0

f0
5

1

6pf0
2
'

1

6N~f1!
'0.0055. ~18!
e-
e
s

.

i-

he

d.

-
c-

Thus, the correction due to the presence of the plateau p
tically does not influence the dynamics of the field outs
plateau region and we can setl5l̃. On the other hand, the
size of plateau is much greater thanH0 — the typical size of
quantum fluctuations,Df* 5H0 /6pd rms(in);105H0.

Typically, the estimateDf0 /f0!1 holds for arbitrary
power-low potentialsV(f)}fp provided powerp is not
very large. However, the opposite limiting case is also p
sible. For example, Bullock and Primack@20# proposed a
potential of the form

V~f!5lBP@11arctan~f!#, f.0,

V~f!5lBP~11431033f21!, f,0, ~19!

where the constantlBP56310210 is chosen to normalize
the large-scale part of spectrum to the rms amplitu
'331025. The flat region in this potential starts fromf
50 and ends atf521.2331022, and inflation ends itself
at f5fend521.5531022. It was mentioned by Bullock
and Primack that this potential leads to strongly no
Gaussian statistics of field perturbations.

III. NONLINEAR METRIC PERTURBATIONS
FROM THE QUANTUM DYNAMICS

OF COARSE-GRAINED FIELD

It is well known that there are two equivalent ways
describe an inhomogeneous Universe. The first way is
consider inhomogeneities as small corrections to the ho
geneous space-time and study them in the framework of
ear theory of perturbations. Another approach splits the m
ric and the field into a large-scale part~coarse grained ove
some scale greater than horizon scale! and a small-scale part
During inflation, the dynamical equations for coarse-grain
field f ls and coarse-grained scale-factorals are equivalent to
Eqs. ~3!,~8! provided the quantum effects are switched o
The quantum effects continuously produce new inhomoge
ities of random amplitude with scales greater than the sc
of coarse-graining. These inhomogeneities should be ad
to f ls andals and effectively this leads to the presence o
stochastic force term in the equations of motion. Therefo
the dynamics of coarse-grained variables can be describe
terms of the distribution functions off ls and als , and in
principal these distribution functions can provide the sa
information as the power spectrum of perturbations, and
thermore the coarse-grained formalism gives a tool for
description of the metric perturbations with amplitud
greater than 1.

The effective dynamical equation for the fieldf ls has the
form @19#3

f̈ ls13H lsḟ ls1
]

]f
V~f ls!5D1/2f ~ t !, ~20!

whereD59H ls
5/(2p)2, andf (t) is a delta-correlated random

force ^ f (t1) f (t2)&5d(t12t2). The equation for coarse
grained scale factorals remains unchanged:

3See also Ref.@26#, and references therein.
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H ls5A8p

3
V~f ls!. ~21!

The solution of the set of Eqs.~20!,~21! is an extremely
difficult problem, and can be done under some additio
simplifying assumptions. For example, if we choose the f
tureless potential, and consider the friction-dominated so
tions of Eq.~20!, we can obtain the solutions describing
self-reproduced inflationary Universe„provided the stochas
tic term in Eq. ~20! dominates the potential term, see, f
example, Linde@23#…. In our case we cannot use the frictio
dominated condition in the beginning of the field evoluti
inside the plateau region. However, we can adopt other s
plifying assumptions: first we can setH ls5H05const inside
and near the plateau region, and second, we can omit
stochastic term in Eq.~20! outside the plateau region, assum
ing the field moves along the classical trajectory there. Un
these assumptions the statistics of the scale factorals is to-
tally determined by the timeDt that field f ls spends in the
plateau region

DN5 ln~aout/ain!5H0Dt, ~22!

whereain is the value of the scale factor at the timet50 of
the entrance of the field into the plateau region, andaout
corresponds to the momentDt when the field leaves the pla
teau region. To see this let us consider the evolution of
scale factorals in the comoving coordinate system. Outsi
the horizon the hypersurfaces of constant comoving timetcom
practically coincide with hypersurfaces of constant ene
density e5const. On the other hand, the fieldf ls evolves
slowly during inflation and hypersurfaces of constant ene
density are close to hypersurfacesf ls5const, and therefore
we can putals(tcom)5als(f ls). After the field passes the pla
teau region, the evolution ofals(f ls) can be described by th
standard expression~14!, so we have

als~f ls!5ainexp @p~f1
22f ls

2 !1DN#, ~23!

where DN is nearly constant inside the coarse-grained
gions with comoving scalelc2g'aoutH0

21, but changes
from one region to the other. Thus, the metric outside
horizon has the quasi-isotropic form

ds25dt22als
2~f0!als~xW !d j

i dxidxj , ~24!

where we represent the scale factorals(f ls) as a multiplica-
tion of two factors:a(f0) and als(xW )[eDN. Here als(f0)
and f0(t) are determined by the classical equatio
~13!,~14!, and the spatial coordinatesxW are coarse grained
over regions with scalelc2g . To estimate the change o
metric from one region to another quantitatively, we intr
duce the definition of nonlinear metric perturbation

h[
als~f ls!2a~f0!

a~f0!
5exp H0~Dt2tc!21 ~25!

@we remind the reader thattc5H0
21 ln g is the time which

the field spends in the plateau region moving along the c
l
-
-

-
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e
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y

-

e
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-
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sical trajectory when the stochastic term in Eq.~20! is
switched off#. Note that in the limit of smallh!1, the metric
assumes the form

ds25dt22a2~f0!@112h~xW !#d j
i dxidxj , ~26!

and the definition~25! is reduced to the standard expressi
for the growing mode of adiabatic perturbation outside
horizon. Namely, in this caseh reduces to the gauge
independent quantities, introduced by a number of auth
@11–13,27# up to a constant factor. The variables~25!,~26!
do not depend on time outside the horizon. Therefore,
use of these variables is very convenient to match the
turbations, generated during inflation with the perturbatio
crossing horizon at the normal stage of the Universe evo
tion. As one can see from the Eq.~25! the metric perturba-
tions are determined by stochastic variableDt and the distri-
bution ofDt must follow from the solution of Eq.~20!. Note
that the definition of nonlinear metric perturbations shou
be taken with caution. In principal, one can use another d
nition related to Eq.~25! by some nonlinear transformation
and having the same limit~26! in the case of smallh. For
example, Bond and Salopek@28# used the quantityh̃
5 ln@als(f ls)/a(f0)# to define nonlinear metric perturba
tions. However, the criterion for PBH formation can be d
rectly expressed in terms of the quantity~25! ~see next sec-
tion!, and therefore this quantity is the most natural varia
for our purposes.

Although the assumption of constantH0 greatly simplifies
the problem it is still rather complicated for a simple analy
cal treatment.4 For further progress we have to make som
additional assumptions. We will consider below a plate
region of sufficiently large size. For this case the field a
proaches the end of the plateau in the friction-domina
approximation, which greatly simplifies the treatment of d
fusion processes. To estimate the relevance of the frict
dominated approximation we should compare the timetc and
the timet* ; ln(a) of the decay of the inertial termf̈ in Eqs.
~15!–~17!,~20!. If tc.t* and thereforeg@a1/3, the inertial
term in these equations can be neglected att* ,t,tc . In this
regime the solution of the classical equation of motion~15!
has the form

f0~t!'f22at, ~27!

and Eq.~20! becomes

df ls

dt
1a5d1/2f ~t!, ~28!

whereb53H0, and we introduce the dimensionless timet
5bt, a5A/b2, and d5D/2b35H0

2/24p2. The stochastic

4In this case our problem is reduced to the first-passage prob
for the one-dimensional Fokker-Planck~Kramers! equation, associ-
ated with Eq.~20! @29#. The general solution of this problem de
mands too much formalism@30#, and is not considered here. Not
however, that the simple asymptotic estimates are still possibl
this case@30,31#.
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equation~28! is associated with a simple diffusion type equ
tion, describing the evolution of position probability distr
bution C(t,f):

]C

]t
5d

]2

]f2
C1a

]

]f
C. ~29!

Now we assume that the distributionC is not spread out
sufficiently beforet* 5bt* and take thed-distributed C
function at the momentt5t* as the initial condition for our
problem,

C~t* !5d~f ls2f* !, ~30!

wheref* 5Df2at* is the value of the field correspondin
to the beginning of the friction-dominated part of the plate
region.5

Together with initial condition~30! we should specify the
boundary condition atf ls5f1. This condition depends on
the form of the transition layer between the plateau reg
and the part of the potential with steep slope (]/]f)V(f)
5B. We assume this transition to be sharp, and therefore
the condition of the absorbing wall at the downstream po
f ls5f1:

C~f1 ,t!50. ~31!

Note that this boundary condition was used by Aryal a
Vilenkin @32# for an analysis of stochastic inflation in th
theory with top-hat potentials. In that paper it was shown t
the more reasonable smooth transitions between the flat
steep regions of the potential are unlikely to significan
modify the resulting distribution.

In our case the probability densityP(t) of time t relates
to the solution of Eq.~27! as

P~t!5Suf ls5f1
5d

]

]f
C, ~32!

where we define by S the probability current S
5d(]/]f)C1aC. The conservation of the probability cu
rent allows us to estimate the correction term to Eq.~32! due
to nonzeroC(f1). Assuming that field moves along th
classical trajectory afterf ls5f1, we have S(2f1)
'B/b2C'S(1f1)'d(]/]f)C. Therefore the correction
to the expression~32! is b2a/B5a21;102321024 times
smaller than the leading term.

The conditions~30!,~31! determine the solution of Eq
~29!. This solution can be found by standard methods of
theory of diffusion equations~see, e.g., Ref.@33#!, and in our
case has the form

5The estimates show that the characteristic width ofC(t* ) is of
order of H and much less than the size of the friction-domina
regionf* 2f1.
-
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C~f,t!5
1

A4pd~t2t* !

3expH 2
1

4d~t2t* !
@f2f* 1a~t2t* !#2J

3S 12expH 2
1

d~t2t* !
~f2f1!

3~f* 2f1!J D . ~33!

Substituting Eq.~33! into Eq. ~32! we find the explicit ex-
pression forP(t):

P~t!5
1

A4pd~t2t* !
S f* 2f1

t2t*
D

3expH 2
1

4d~t2t* !
@f12f* 1a~t2t* !#2J .

~34!

The expression for the probability distribution of the met
can be readily obtained from Eq.~34!. Using Eqs.~22!–~25!
to express the timet in terms ofh, taking into account Eq.
~27! and the definitions ofa, d, and assuminga.0, we
obtain

P~h!5
1

A2pdpl
2

Ncl

Nst
3/2

dNst

dh
expH 2

~Nst2Ncl!
2

2dpl
2 Nst

J , ~35!

wheredpl53H0
3/2pA5ad rms(in) is the standard metric am

plitude calculated for the plateau parameters, and

Ncl5 ln g2t* /3, Nst5 ln ~11h!1Ncl ~36!

are the numbers ofe folds for the classical pathf0(t) and
for a random pathf ls(t), which start atf* 5f(t* ) and end
at f1.

When the perturbations are smallNst2Ncl'h!1, the dis-
tribution ~35! has a standard Gaussian form:

P~h!5PG~h!5
1

A2pdpl
2 Ncl

expH 2
h2

2dpl
2 Ncl

J , ~37!

and in the opposite case of very large metric perturbati
h@1 and Nst; ln h.Ncl the distribution P(h) deviates
sharply from the Gaussian law and has the power-law fo

P~h!}h3/21dpl
22/4. ~38!

As seen from Eqs.~35!–~38!, the non-Gaussian effect
overproduce the metric perturbations of high amplitude
our model. To understand this fact, let us discuss the or
of non-Gaussian effects in our model. There are two sour
for such effects. First, note that the ‘‘effective dispersion
seff

2 5dpl
2 Nst in Eq. ~35! depends itself on the value of th

stochastic variableNst. Qualitatively, it can be explained a
follows. In linear theory the dispersions25dpl

2 Ncl is propor-
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tional to the time spent by the classical background fieldf0
on the plateau. In nonlinear theory the coarse-grained fi
f ls(t) plays the role of background field, and therefore t
distribution of the family of neighbors tof5f ls(t) paths
should be described in terms of the probability distributi
with dispersionseff

2 , which is proportional to the time spen
by field f ls on the plateau. Second, the amplitude of lar
metric perturbationsh depends onNst exponentially (h
;eNls), so an order of magnitude increase ofNst leads to the
exponential increase ofh. Obviously, these two effects in
crease the probability of large amplitude metric pertur
tions.

IV. PROBABILITY OF BLACK HOLE FORMATION

Although the distribution~35! provides very important in-
formation about the geometry of the spatial part of the me
outside horizon, it cannot be directly applied to the estima
of PBH formation. Indeed, the distribution~35! is formed by
the field inhomogeneities with wave numbersk in the range
(Dk5@kmin'ainH0,k,kmax'aoutH0#). The process of
PBH formation is determined mainly by the field modes w
wave numbers (dk'kbh!Dk), wherekbh is the typical PBH
wave number. The modes withk,kbh compose the large
scale background part of the metric at the moment of P
formation, and do not influence the formation of PBH’s s
nificantly. The modes withk.kbh lead to high-frequency
modulation of the perturbation withk;kbh , which is also
unimportant, provided the mode withk;kbh crosses the ho
rizon the second time at the radiation-dominated epo
Therefore, in order to obtain the probability of PBH form
tion, we should subtract the contribution of the large-sc
and small-scale metric perturbations.

In general it is very difficult to separate the perturbatio
of a given scale in the framework of the nonlinear approa
However, we can estimate the probability density of the p
turbations, corresponding to the smallest scalekbh'aoutH0.6

For that we simply putNcl51 in Eqs.~35!,~36!, assuming
that the random process starts when the mode with w
numberk15e21aoutH0 crosses the horizon. This procedu
automatically subtracts the large-scale contribution of mo
with k,k1. The small-scale contribution is also absent d
to our absorbing boundary condition. We have

P~h!5
1

A2pdpl
2

1

~x11!3/2
expH 2

x2

2dpl
2 ~x11!

J ~39!

from Eq.~35!, wherex5 ln (11h), and in the limit of smallh
we obtain again the Gaussian distribution

P~h!'PG~h!5
1

A2pdpl
2

expH 2
h2

2dpl
2 J . ~40!

The distribution ~39! has nonzero first momentumM1

5*21
` dhhP(h)5 3

2 dpl ~the lower limit of the integration

6In this connection, let us note that the black holes of smal
mass should give the major contribution to the present fraction
black holes, provided the PBH spectrum is flat~Carr @14#!.
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should be21, since the metric perturbations withh,21 are
cut off!. The contribution ofM1 should be added to the
background part of the metric, and further we will use t
renormalized metric perturbationhr5h2 3

2 dpl instead ofh.
The probability to find the metric perturbationshr with am-
plitude greater than some threshold valueh* P(h* )
5*h

*

` dh P(h) can be estimated as

P~h* !'
1

A2p
S 2dpl~x* 11!1/2

x* ~x* 12! DexpH 2
x
*
2

2dpl
2 ~x* 11!

J ,

~41!

where x* 5 ln(113
2dpl1h* ), and we assumeh* @dpl . The

same quantity, but calculated for the Gaussian distribut
takes the well-known form

PG~h!'
1

A2p

dpl

h*
expH 2

h
*
2

2dpl
2 J . ~42!

The observed quantities~such as, e.g., the matter densi
of PBH’s in different cosmological epochs! can be easily
expressed in terms of the probabilityP(h* ), provided the
mass of the PBH’s and some criterion for PBH formation a
fixed. In our case the criterion for PBH formation shou
give the information about the threshold valueh* . Since this
criterion plays a very important role, let us discuss it in so
detail. First let us note that PBH’s are formed from hig
amplitude peaks in the density distribution which are a
proximately spherically symmetric~see, e.g., Ref.@34#!. It
can also be easily shown that the maxima in the matter d
sity correspond to the maxima in the functionals(xW ). The
form of als(xW ) totally specifies the number of regions goin
to PBH’s as well as dynamics of the collapsing region
Therefore we formulate the criterion of PBH formation
terms of conditions imposed on the functionals(xW ).

The first criterion was formulated by Carr in his semin
paper@14#. It was shown that an overdense region forms
PBH if the density contrast at the horizon scaledr/r lies
approximately within the limits1

3 ,dr/r,1. The first part
of this inequality tells us that the overdense region sho
stop expansion before the scale of the region crosses
sound horizon. The second part requires that the overde
region not collapse before crossing the causal horizon,
consequently the perturbation does not produce a clo
world separated from the rest of the Universe. Then the
terion for PBH formation was improved by Nadegin, N
vikov, and Polnarev@21# ~NNP!, and also by Biknell and
Henriksen@22# with the help of numerical computations. Th
initial condition used by NNP was chosen as a nonlin
metric perturbation having the form of a part of the clos
Friedman Universe matched with the spatially flat Unive
through an intermediate layer of negative density pertur
tion. The conditions for PBH formation depend on the size
this part~i.e., the amplitude of the perturbation!, as well as
on the size of the matching layer. The smaller the match
layer is, the larger the pressure gradients needed to pre
collapse will be. Therefore, the amplitude of the perturbat

t
f
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7152 57P. IVANOV
forming a PBH must be greater in the case of a narrow
termediate layer. In terms of our functiona(xW ) the NNP
criterion reads

h* [
a1

a2
21.0.7520.9, ~43!

wherea1 is the value ofa(xW ) at the maximum of the per
turbation anda2 is the same quantity outside the perturb
region.7 The first number on the right-hand side of Eq.~43!
corresponds to the matching layer of a size comparable
the size of the overdense region, and the second num
corresponds to the narrow matching layer. Assuming
matching layer is sufficiently large we takeh* 50.75 as a
criterion of PBH formation.

Once the criterion is specified, we can link the desir
PBH abundanceb(MPBH)'P(h*PBH) with the parameters
of our model. For instance, consider a model having a ma
density of PBH’s equal to the critical one~the density pa-
rameterVPBH51). In this model we have@3,6#

b~M !51028S M

M (
D 1/2

. ~44!

Equating the expression~44! to the probability function~39!,
we have the equation determining the amplituded1pl required
for PBH abundance~44! as a function ofMPBH,

P~h*PBH,d1pl!5b~MPBH!, ~45!

and equating the expressions~42! and ~44! we obtain the
analogous equation for determining the reference amplit
d2pl when the non-Gaussian effects are switched off. T
solution of these equations is given in Fig. 2.

One can see from this figure that the quantitiesd1pl and
d2pl increase with increasingMPBH andd1pl is always smaller
thand2pl . This means that non-Gaussian effects overprod
PBH’s in our model@at least when the simple criterion~43!
is used#, and the slope of the potential can be steeper t
that required in the Gaussian case. Typically, the ra
d2pl /d1pl is about 1.5. Say, for the case ofMPBH5M ( , we
have d1pl(M ()'0.089 andd2pl(M ()'0.134. We plot the
probability functionP(h) for d1pl(M ()50.089 in Fig. 3.

In this figure, we also plot the Gaussian probability fun
tion PG(h) for d2pl(M ()50.134~dashed line! and the same
quantity for d1pl(M ()50.089 ~dotted line!. Comparing the
curves that correspond to the same PBH abundance, we
that the non-Gaussian curve is flatter having larger value
P(h) at largeh. The values of the Gaussian curve with t
same plateau parameterd1pl(M () is smaller by many orders
of magnitude than the values of the non-Gaussian curv
the case of largeh.

Finally, let us note that the non-Gaussian effects do
significantly modify the estimates based on Gaussian the

7In linear theory the density perturbation at the horizon scale
related to the metric perturbation bydr/r5(4/9)h ~see, e.g., Ref.
@27#!. Therefore the estimate~43! is in agreement with Carr’s result
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As we have seen, the ambiguity in the choice of the plat
slope due to these effects is about 1.5. This ambiguity se
to be less than the ambiguity in other parameters and ca
obviously absorbed by a small change of the potential slo

V. DISCUSSION

We demonstrated that non-Gaussian effects related to
dynamics of the coarse-grained field~inflaton! and to the
evolution of the large-scale part of the metric overprodu
large-amplitude inhomogeneities of the metric compared
the prediction of the Gaussian~linear! theory of perturba-
tions. We derived an analytical expression for the no

is

FIG. 2. We plot the dependence of plateau parameterdpl on
PBH’s massMPBH assuming that the PBH’s abundance is given
Eq. ~44!. The solid line represents the solution of Eq.~45! ~i.e, we
calculatedpl taking into account the non-Gaussian effects in t
case!. The dashed line representsdpl calculated in the standard
Gaussian theory. The PBH masses lie in the range 10218M (

,MPBH,106MPBH. The PBH’s of mass 10218M (;1015g should
be evaporated at the present time. Actually, the abundance of t
PBH’s is constrained much larger than is assumed in our calc
tions.

FIG. 3. The dependence of probability densityP(h) on the met-
ric amplitudeh. The non-Gaussian curve~solid line! is calculated
with help of Eq. ~39! assuming PBH abundanceb(M ()'1028.
That gives d1pl(M ()'0.089. The dashed line is the referen
Gaussian probability density calculated for the same abunda
For that curve we haved2pl(M ()'0.134. The dotted curve repre
sents the Gaussian distribution taken withd1pl(M ()'0.089. This
distribution strongly underproduces PBH’s, and in this case
haveb;10217.
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Gaussian probability distribution for nonlinear metric pertu
bations, and estimated the influence of nonlinear effects
the probability of primordial black hole formation. We use
the simple single-field inflationary model with a peculiari
in the form of the flat region in inflaton potentialV(f) and a
power-law slope of the potential outside the peculiarity
gion. The key point of our approach is in the use of inhom
geneous coarse-grained metric functiona(xW ) instead of the
coarse-grained fieldf ls as a basic quantity. This allowed u
to match the physical condition of production of inhomog
neities during inflation with the ‘‘observable’’ quantities.

Our results can be considered as semiqualitative only.
uncertainties come from the phenomenological characte
our inflationary model as well as from the oversimplifie
treatment of the process of PBH formation. The uncertain
related to the choice of parameters of the inflationary mo
are mainly due to the unknown form of the potential betwe
the steep and flat regions, and also due to our fricti
dominated assumption in the consideration of the stocha
process. These uncertainties can be eliminated with the
of numerical simulations of stochastic processes in more
alistic models of inflation. The ambiguities concerning t
criterion of PBH formation are mainly due to the one-po
treatment of this process. Actually, PBH formation is non
cal, and the dynamics of collapsing region depends stron
on the form of the spatial profile of the density perturbati
n.
.
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~see, e.g., Refs.@22,35# for discussions of this point!. The
form of the spatial profile can be studied by means ofn-point
correlation functions of the coarse-grained metric and fie
Unfortunately, the formalism ofn-point correlation functions
is still not elaborated~see, however, Ref.@36# for the first
discussion!. Note that the influence of the spatial profile
the collapsing region can probably be taken into account
a redefinition of the threshold valueh* , and this value might
be effectively less. In this case the role of nonlinear effe
would be lessened.

Finally we would like to note that the form of the distr
bution ~35! does not depend explicitly on the specific para
eters of our model. This allows us to suppose that sim
distributions can be obtained in more complicated mod
say, in the two-field models proposed in Refs.@8,9#. We are
going to check this very interesting assumption in our futu
work.
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