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Model of graceful exit in string cosmology

Ram Brustein* and Richard Madden†

Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
~Received 12 August 1997; published 18 December 1997!

We construct, for the first time, a model of graceful exit transition from a dilaton-driven inflationary phase
to a decelerated Friedmann-Robertson-Walker era. Exploiting a demonstration that classical corrections can
stabilize a high curvature string phase while the evolution is still in the weakly coupled regime, we show that
if additional terms of the type that may result from quantum corrections to the string effective action exist, and
induce violation of the null energy condition, then evolution towards a decelerated Friedmann-Robertson-
Walker phase is possible. We also observe that stabilizing the dilaton at a fixed value, either by capture in a
potential minimum or by radiation production, may require that these quantum corrections are turned off,
perhaps by nonperturbative effects or higher order contributions which overturn the null energy condition
violation. @S0556-2821~97!04324-5#

PACS number~s!: 98.80.Cq, 04.50.1h, 11.25.2w
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I. INTRODUCTION

An inflationary scenario@1,2#, inspired by duality symme-
tries of string cosmology equations@1,3,4#, is based on the
fact that cosmological solutions to string dilaton grav
come in duality-related pairs, the plus branch (1) and the
minus branch (2) @5#. The (1) branch has kinetic inflation
ary solutions in which the Hubble parameter increases w
time. The minus branch (2) can be connected smoothly to
standard Friedmann-Robertson-Walker~FRW! decelerated
expansion of the Universe with a constant dilaton. The s
nario ~the so-called ‘‘pre-big-bang’’ scenario! is that evolu-
tion of the Universe starts from a state of very small cur
ture and coupling and then undergoes a long phase
dilaton-driven kinetic inflation described by the (1) branch
and at some later time joins smoothly standard radiati
dominated cosmological evolution, thus giving rise to
singularity-free inflationary cosmology. Recently, the r
quired initial conditions of the Universe in this scenario we
discussed@6#. Our focus in this paper is mainly on the fin
fate of the Universe at late times and we simply assume
the correct initial conditions were chosen such that a lo
dilaton-driven inflationary phase was indeed part of the e
lution.

The graceful exit transition from the initial long phase
dilaton-driven kinetic inflation to the subsequent stand
radiation-dominated evolution has been a subject of m
investigations@7–10#. In @5# it was argued, and later prove
@11#, that such a transition cannot occur while curvature w
below the string scale and the string coupling was still we
leading to the conclusion that an intermediate ‘‘stri
phase’’ of high curvature~previously suggested as a pos
bility @1,2#! or strong coupling is actually required@12#.

In @7# we proposed to use an effective description in ter
of sources that represent arbitrary corrections to the low
order equations. We were able to relate the necessary co
tions for graceful exit to energy conditions appearing in s
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gularity theorems of Einstein’s general relativity@13#. In par-
ticular, we showed that a successful exit requires violatio
of the null energy condition~NEC!. Since most classica
sources obey the NEC this conclusion hints that quan
effects, known to violate the NEC in some cases, may be
correct sources to look at. To briefly recap the relevant
sults of @7# we need to recall that there are different confo
mal frames in which to describe the equations. These
related by local field redefinitions which, supposedly, do n
affect physical observables@14#. The two frames that we us
are the string frame (SI u) and the ‘‘lowest order Einstein
frame’’ (EI u! in which the lowest order classical action k
netic terms of gravity and the dilaton are diagonal. For br
ity we call EI u the Einstein frame. The general analysis of@7#
resulted in a set of necessary conditions on the evolutio
terms of the Hubble parametersHS in the string frame and
HE in the Einstein frame and the dilatonf. We include them
for completeness.

Initial conditions of a~1! branch andHS ,ḟ.0 require
HE,0.

A branch change from~1! to (2) has to occur while
HE,0.

A successful escape and exit completion requires N
violation accompanied by a bounce inEI u after the branch
change has occurred, ending up withHE.0.

Further evolution is required to bring about a radiatio
dominated era in which the dilaton effectively decoup
from the ‘‘matter’’ sources.

The question we set out to answer in this paper is
following. Suppose that effective sources of the type that
expected to appear as corrections to the lowest order e
tive action of strings do provide NEC violation. Then wou
a complete exit transition actually occur? We answer t
question in the affirmative, but some surprising obstacles
found on the way and we also suggest ways to overco
these obstacles.

Because in our scenario the Universe evolves towa
higher curvatures and stronger coupling, there will be so
time when the lowest order effective action can no long
reliably describe the dynamics and it must be corrected. C
712 © 1997 The American Physical Society
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57 713MODEL OF GRACEFUL EXIT IN STRING COSMOLOGY
rections to the lowest order effective action come from t
sources. The first are classical corrections, due to the fi
size of strings, arising when the fields are varying over
string length scalels5Aa8. These terms are important i
the regime of large curvature. The second are quantum
corrections. The loop expansion is parametrized by pow
of the string coupling parameteref5gstring

2 , which in the
models that we consider is, of course, time dependent
quantum corrections will become important when the dila
becomes large, the regime we refer to as strong couplin

In this paper we make use of both types of correctio
The role ofa8 corrections@10# is to create an attractive fixe
point which stabilizes the evolution in a high curvature
gime with linearly growing dilaton. The basin of attraction
this fixed point is large enough to allow it to be reached fro
generic initial conditions. Further, the location of this fixe
point is such that it forces the evolution to undergo a bra
change, and all of this may occur for small values of t
dilaton ~weak coupling!, and so the quantum corrections c
be ignored. With the linearly growing dilaton, the quantu
corrections will eventually become important. It is these
will attempt to use to let the Universe escape the fixed po
and complete the transition to a decelerated FRW evolut
We allow ourselves the freedom to choose the coefficient
the quantum correction terms arbitrarily, in particular, th
sign is chosen so as to induce NEC violation. Our reason
for allowing this freedom stems in part from a lack of a
real string calculations and in part by our desire to verify
constructing explicit examples the general arguments of@7#.

We use the general framework set up in, and rely
analytical calculations mostly on@7#. We perform a numeri-
cal integration of specific equations with limited new analy
cal considerations. We show, by constructing explicit e
amples, that a complete exit transition is not forbidd
which, of course, does not yet prove that in string theory
actually occurs. For that, an explicit string computation
quantum correction terms is necessary. This may also req
taking into account the back reaction of the particles p
duced during the dilaton-driven phase.

A by-product of our analysis is a detailed description
the high curvature~‘‘string’’ ! phase in between the dilaton
driven inflationary phase and the decelerated FRW ph
We obtain a more complicated phase than the one postu
in @12# with nonconstantḟ and HS . We do not take the
details of the evolution in the string phase too serious
because the terms that determine those details have arb
coefficients. However, our examples could be taken as
indication of what the real string phase may eventually lo
like.

The paper is organized as follows. In Sec. II we pres
and discuss solutions which exhibit branch change and
completion witha8 and quantum corrections. In Sec. III w
explain the remaining problem of correction-dominated e
lution, show how to model a shutoff of the corrections, a
verify that once corrections are shut off, the usual dece
ated evolution such as radiation domination or capturing
the dilaton in a minimum of a potential may follow. W
summarize our results and explain which further calculati
are necessary to reach a conclusive statement about the
transition in string models. In a technical Appendix we o
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line details of the derivation of the equations of motion, n
merical integration, etc.

II. MODEL FOR EXIT COMPLETION

The string theory effective action in four dimensions tak
the general form,

Seff
SI u 5E d4xH A2gF e2f

16pa8
~R1]mf]mf!G1

1

2
A2gLcJ ,

~2.1!

wheregmn is the four-dimensional~4D! metric andf is the
dilaton; the effective action is written here in the string fram
(SI u). The LagrangianLc may contain arbitrary corrections t
the lowest order 4D action coming from a variety of sourc
as specified below.

We are interested in solutions to the equations of mot
derived from the action~2.1! of FRW type with a vanishing
spatial curvature~nonvanishing spatial curvature may be i
cluded as an effective source in the equations! ds2

52dtS
21aS

2(t)dxidxi and f5f(t). We will assemble the
equations of motion by deriving the correction energ
momentum tensor

Tmn5
1

A2g

dA2gLc

dgmn
,

which will have the formT n
m 5diag(r,2p,2p,2p). In ad-

dition we have another form of source term arising from t
variation byf equation,

DfLc5
1

2

1

A2g

dA2gLc

df
.

In terms of these sources the equations of motion are

3HS
21 1

2 ḟ223HSḟ5 1
2 efr, ~2.2!

22ḢS23HS
212HSḟ2 1

2 ḟ21f̈5 1
2 efp, ~2.3!

3ḢS16HS
223HSḟ1 1

2 ḟ22f̈5 1
2 efDfLc , ~2.4!

ṙ13HS~r1p!52DfLcḟ, ~2.5!

HS5ȧS /aS , and we have fixed our units such th
16pa851.

We will make the split

Lc5La81Lq1Lm , ~2.6!

and we will divide up the source terms analogously. F
example,r5ra81rq1rm . We take, for concreteness, th
LagrangianLa8 to be of the specific form of thea8 classical
corrections proposed in@10#,

1
2 La85e2fS RGB

2

4
2

~¹f!4

4 D . ~2.7!

The contribution of this term to the effective sources is
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FIG. 1. A solution to the classical equations with onlya8 corrections,Lq5Lm50. ~a! Evolution in the (ḟ/3,HS) plane. The four lines

plotted are, in order of increasing slope, the (1) branch vacuum@r50,ḟ5(3131/2)HS#, branch change (ḟ53HS), Einstein frame

‘‘bounce’’ ( ḟ52HS), and (2) branch vacuum@r50,ḟ5(3231/2)HS#. The cross is at the location of the fixed point. The remaining figu
are various quantities plotted as a function of string time.~b! The Einstein frame Hubble parameterHE . ~c! The string frame source term

ef(rS1pS) andefrS . ~d! The Einstein frame source termrE1pE . ~e! ḟ23HS , a quantity indicating branch sign.@In Sec. III this figure

will be replaced byefrS from ~c!.# ~f! f evolution. Initial conditions att50, f5230, HS50.014 852 9, andḟ50.069 960 2. The
following figures share these initial conditions, since quantum corrections are very small at this time. Thef evolution may be started a
arbitrarily small values by evolving these initial conditions further backward towards the (1) branch vacuum.
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ra85e2fS 6HS
3ḟ2

3ḟ4

4
D , ~2.8!

pa85e2fS 24HS
3ḟ24HSḢSḟ12HS

2ḟ22
ḟ4

4
22HS

2f̈ D ,

~2.9!

DfLa85e2fS 26HS
426HS

2ḢS13HSḟ32
3ḟ4

4
13ḟ2f̈ D .

~2.10!

Although we have fixed our units differently from@10#
~whereka851, k depending on the species of string theor!,
we have chosen the coefficient of this term so as to lea
solutions which are numerically identical to theirs for pu
poses of comparison.

The LagrangianLq will designate quantum loop correc
tions parametrized by powers ofef. We will examine a va-
riety of candidates forLq . The LagrangianLm will represent
such things as radiation or a dilaton potential when we d
cuss the final transition to radiation domination and a fix
dilaton.
to

-
d

Setting Lq5Lm50, for the moment, we integrate th
equations of motion starting from initial conditions near t
(1) branch vacuum. To do this we solve Eqs.~2.3! and~2.4!
for the highest derivatives ofHS andf and use Eq.~2.2! as
a constraint on the initial conditions. The conservation eq
tion ~2.5! is an identity owing to the usual redundancy in t
equations, and only when we add radiation to the system
we use this equation in the evolution. We recover the res
of @10# in four dimensions where they find attraction into

fixed point atHS50.616 . . . ,ḟ51.404 . . . .
As shown in Fig. 1~a! the solution begins near the (1)

branch vacuum and makes a branch change but does
‘‘complete’’ the exit by proceeding to ther.0 region. The
quantity characterizing branch sign is plotted in Fig. 1~e!.
We examined more general forms of this Lagrangian invo
ing different coefficients. Varying the coefficients moves t
fixed point. For some ratios of coefficients the solutions e
counter singularities before reaching the fixed point~we dis-
cuss the form of these singularities in Sec. III! but other
ratios yield solutions of the same generic type as we h
presented here.

In spite of considerable progress we still need to lo
more closely at the sources and Einstein frame evolution
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57 715MODEL OF GRACEFUL EXIT IN STRING COSMOLOGY
answer the question of how close we have come to the
goal of decelerated FRW evolution.

The evolution ofr and p is easily found by substituting
the solution back into the equations of motion and solv
for the sources. We see that this phase does violate the
in the string frame. However, recalling our stronger cla
that there should also be NEC violation in the ‘‘lowest ord
Einstein frame’’ ~denoted with a subscriptE, and as ex-
plained in the Introduction, many times for brevity calle
just the Einstein frame!, we can compute the value of th
Einstein frame sources by finding the Hubble parameterHE

and its derivativeḢE ,

HE5ef/2~HS2 1
2 ḟ !, ~2.11!

ḢE5efS ḢS2 1
2 f̈1 1

2 ḟHS2
ḟ2

4
D . ~2.12!

All quantities on the right-hand side of these are giv
strictly in terms of string frame quantities and time. T
Einstein equations are

3HE
25 1

2 rE , ~2.13!

3HE
212ḢE52 1

2 pE . ~2.14!

Notice that we have absorbed the dilaton kinetic energy
the definition ofrE andpE .

The resulting sources andHE are plotted in Figs. 1~b!–
1~d!. From the figures we see that there is no violation of
NEC in the Einstein frame, corresponding to the fact t
there is no ‘‘bounce.’’ This solution represents a singu
collapse in the Einstein frame because of the linearly incre
ing dilaton plotted in Fig. 1~f!. In terms of sources this sug
gests that there is insufficient NEC violation and that
addition of conventional sources toLm , like radiation, which
do not violate the NEC cannot help the completion of t
exit transition.

Perhaps generically any correction violating the NE
strongly enough will complete the transition. In particula
we consider terms modeling the form of quantum loop c
rections parametrized by powers ofef. For example, at one
loop,

1
2 Lq

f52~¹f!4, ~2.15!

rq
f523ḟ4, ~2.16!

pq
f52ḟ4, ~2.17!

DfLq
f5 1

2 ~HSḟ31ḟ2f̈ !. ~2.18!

As long as we include only one order of loop correction, t
overall coefficient of our corrections can be absorbed b
shift of f, and it therefore determines the value off at
which the quantum corrections begin to be important,
does not lead to qualitatively different behavior. So at t
stage we choose coefficients of order unity, and after th
preliminary investigations are complete, we will choo
more realistic values.
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Clearly, because of the factor ofef on the right-hand side
of Eqs.~2.2! and~2.3! thisLq

f can give us NEC violation of
increasing strength asf increases. We show the results
the numerical integration by presenting the same suite
figures as in the previous case in Fig. 2. In this case we h
chosen to graph the sources for a range of time emphasi
the Einstein frame bounce. As hoped, the solution now p
ceeds into ther.0 region triggered by increased NEC vio
lation in the string frame. We also see the accompany
Einstein frame NEC violation and bounce. Notice that t
bounce occurs quickly, during a few units of time, compar
with the very long duration of the dilaton-driven phase ne
the (1) vacuum.

However, inspecting the solution at late times shows t
the dominant terms in the equations of motion are

26HS
223efḟ416HS

3ḟ50, ~2.19!

26HS
21efḟ414HS

3ḟ50, ~2.20!

26HS
4112efHSḟ350. ~2.21!

This system has the solution

HS5
2t

3
, ~2.22!

f5 lnS t6

39366D , ~2.23!

approximating the nature of the true solution at late time
This form confirms that the solution has unbound

growth in the curvature and dilaton. Nonetheless, we h
succeeded in our aim of completing the exit to ther.0
region of phase space. It may appear that we are now fa
a new ‘‘graceful exit’’ problem since the equations of motio
at late times are dominated by corrections, spoiling the
pected stability of a (2) branch. We suggest that the sour
of this instability is the continued NEC violation and wi
search for a cure in the next section.

To further explore the sufficiency of NEC violation fo
exit we examine another generic form of one-loop quant
correction,

Lq
R2

5R2, ~2.24!

rq
R2

52108HS
2ḢS118ḢS

2236HSḦS , ~2.25!

pq
R2

5108HS
2ḢS154ḢS

2172HSḦS112HS
~3! , ~2.26!

DfLq
R2

50. ~2.27!

We immediately notice that for evolution strictly in the fixe
point, whereHS5const, this correction will be zero, indica
ing it will not effectively contribute to NEC violation. Fur-
thermore, this introduces higher derivatives into the eq
tions of motion, which in turn introduces dangero
pathologies into the solutions@15#.

These pathologies come from the extra degrees of f
dom in the system coming from the extra initial conditio
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FIG. 2. 1
2 Lq

f52(¹f)4, Lm50. See Fig. 1 caption for details and initial conditions.
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that need to be imposed. These extra degrees of freedom
associated with unstable modes of the solutions which
regard as physically spurious, since they are solutions
which the ‘‘correction’’ becomes much larger than the ter
to which it is supposed to be a small correction. Refere
@15# suggests two remedies to this problem. The first is ‘‘
duction of order,’’ in which we differentiate the large term
in the equations of motion~in this case the tree-level terms!
and use them to rewrite the higher derivatives in terms
lower derivatives, justified by the assumption the correctio
will remain small. The second is simply to carefully choo
initial conditions to avoid the unstable modes.

Since our purpose is to make a qualitative survey of
effect of corrections and the reduction of order prescript
is computationally prohibitive, we take the second appro
and choose initial conditions so that the evolution is n
dominated by the corrections for a reasonable span of ti

Exploring these solutions confirms thatLq
R2

corrections
themselves do not help the exit process. The other one-
curvature squared termsRmnRmn and RmnsrRmnsr yield
sources which are constant multiples of those ofR2, and as is
well known, the Gauss-Bonnet combination, which does
contribute higher derivatives, vanishes in the equations
motion.

But putting curvature squared terms together with corr
tions that do not vanish in the fixed point, for examp

Lq5Lq
f2Lq

R2
/3, does yield qualitatively different solution

which do exit, in this case a solution approaching str
frame de Sitter evolution~with constantHS), though again
are
e
in
s
e
-

f
s

e
n
h
t
e.

op

t
of

-
,

g

with a still growing dilaton as illustrated in Fig. 3. We s
our initial conditions near a later phase of the (1) branch
vacuum to avoid instabilities.

Finally, we present a two-loop Gauss-Bonnet correct
which we choose because it represents the influence of
vature squared terms but does not contribute higher der
tive terms:

1
2 Lq

RGB
2

5efRGB
2 , ~2.28!

r
q

RGB
2

5ef~224HS
3ḟ !, ~2.29!

p
q

RGB
2

5ef~16HS
3ḟ116HSḢSḟ18HS

2ḟ218HS
2f̈ !,

~2.30!

DfLq

RGB
2

5ef~24HS
4124HS

2ḢS!. ~2.31!

Again we find that introducing this correction with an appr
priate sign can complete the transition tor.0 as in Fig. 4,
but with increasing domination by the correction terms lea
ing to a singularity soon after the transition. We have a
tried other combinations of sources with different coef
cients and found that many of them yield solutions that
similar to the ones we presented, leading us to believe
our results are quite general and do not depend in a str
way on particular initial conditions or coefficients.

In summary, we have seen that generic forms of quan
corrections can complete the exit from the fixed point of@10#
to the region ofr.0, showing the NEC violation is not only
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FIG. 3. Lq5Lq
f2

1
3Lq

R2
, Lm50. Initial conditions at t50, f525, HS50.092 603 1, ḟ50.383 925, ḢS50.018 527, and

ḦS50.026 033 5. See Fig. 1 caption for explanation.
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necessary, but is in some sense sufficient. The resulting
lutions are quite varied, but we have also noted they h
unbounded growth of the dilaton at late times, continue to
dominated by corrections, and continue to violate the NE
In spite of being (2) branch solutions they are still unstabl
However, inducing the exit seems to be a generic propert
NEC violation and not of the specific form of the correction
In the next section we will attack this new exit problem, t
exit from the epoch of correction domination.

III. MODEL FOR TRANSITION TO DECELERATED
AND STABLE EVOLUTION

We have seen that by using plausible forms for quant
corrections we can induce NEC violation and push the e
lutions into a region we would like to call a completed ex
However, we have also seen that these evolutions are d
nated by corrections and have a singular behavior unlike
desired (2) branch solutions. We associate this behav
with two overlapping sources. First is the continued NE
violation itself, which tends to feed accelerated evolution
the Einstein frame. Second, and more directly, it is the c
tinuing growth off that supports the strength of the qua
tum correction terms through the powers ofef occurring in
the equations of motion.

Since these solutions do not spontaneously suppress
corrections, we might hope that simply controlling th
growth of the dilaton would tame the solutions. This can
done by modeling radiation production, which can slow t
o-
e
e
.

of
.

-

i-
e
r

-

the

e
e

change in the dilaton through the 3HSḟ ‘‘friction’’ term in
Eq. ~2.4! or, more directly, by capturing the dilaton in
potential minimum.

Concentrating on the simplest of the NEC-violating qua
tum corrections, Eq.~2.15!, we are surprised to find obstacle
to this program. Attempting to moderate the evoluti
through the use of a potential strong enough to affect
solution actually drives the solution into cusp singulariti
~singularities inf̈ and ḢS). The sources for a potential are

1
2 Lm

V5V~f!, ~3.1!

rm
V52V~f!, ~3.2!

pm
V5V~f!, ~3.3!

DfLm
V5V8~f!. ~3.4!

We illustrate a particular case in Fig. 5, withV(f)
520.01f2ef. We have added graphs of the locations of t
singularity curves. The curve on the right is the location
the singularities atf→2`. The curve on the left is their
location when the solution collides with them. Adding radi
tion can produce similar singularities or it is quickly re
shifted away by the growingHS .

The source of these singularities is easy to underst
mathematically. The sources introduce additional terms c
taining the highest derivativesḢS andf̈ to the terms coming
from the lowest order terms in the action. When we solve
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FIG. 4. 1
2 Lq

RGB
2

5efRGB
2 , Lm50. See Fig. 1 caption for details and initial conditions.
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ple,
equations of motion forḢS and f̈ in terms of the lower
derivatives we find a denominator which has, in gene
zeros in the (x,y) plane, wherex5ḟ/3 andy5HS . In this
particular case this leads to the equation for the singula
curves:

1
3 29x2236ef~ t !x212xy127x3y1108ef~ t !x3y12y21y4

50. ~3.5!

The terms containing theef are coming from the quantum
correction, so that the location of the singularity curves
now a function off.

Perversely, the singularity curves follow the solution t
wards smallḟ and largeHS . So any attempt to tinker with
the solution causes it to collide with them. Modeling t
production of radiation produces a similar effect. While w
do not have a direct physical interpretation of these sin
larities we do regard them as an indication of the gene
instability of NEC-violating solutions.

A direct approach to completing the exit transition is
assume that there exists some mechanism that shuts of
correction terms and, hence, NEC violation. A concrete w
of modeling such an idea is simply replacing the quant
correction in the action withf (f)Lq

f where f (f) is a posi-
tive constant forf,f0 for some constantf0 and then
smoothly goes to zero, and sof (f) has the form of a
smoothed step function. This successfully eliminates
loop corrections at late times, and so the dilaton may
easily captured by a potential or slowed by radiation prod
l,

ty

s

-

-
al

the
y

e
e
-

tion as shown in Fig. 6. In this suite of figures we ha
dropped the branch sign graph, since all of the followi
solutions are similar in that region of the evolution and ha
now chosen a range of time to graph the sources empha
ing the epoch when NEC violation ceases and the evolu
becomes decelerated. We have also tinkered with the
malization of this term, and so the figure may be direc
compared with the previous figures. While we have exac
the desired behavior, a function such asf (f) will not appear
by summing a few terms in the loop expansion:

1
2 Lq

f ~f!52 f ~f!~¹f!4, ~3.6!

rq
f ~f!523 f ~f!ḟ4, ~3.7!

pq
f ~f!52 f ~f!ḟ4, ~3.8!

DfLq
f ~f!512f ~f!HSḟ313 f 8~f!ḟ4112f ~f!ḟ2f̈.

~3.9!

However, we have found that a complete suppression
the quantum corrections is not necessary. Suspecting tha
instabilities are due to continued NEC violation we propo
what is, perhaps, a simpler model. Since the NEC violat
was induced in our models by one-loop quantum correctio
higher loop terms can suppress the NEC violation once
no longer needed if they have the correct sign. For exam
a two-loop contribution of the form

1
2 Lq

2f5ef~¹f!4, ~3.10!



rm

me
r-
e

g to
nd
for
ay

ur

he
en
p

ll
t of
eri-
nd

pe-

or
o
tion
Fig.
is
o-

ate
ini-
m

.

57 719MODEL OF GRACEFUL EXIT IN STRING COSMOLOGY
rq
2f53efḟ4, ~3.11!

pq
2f5efḟ4, ~3.12!

DfLq
2f52ef~12HSḟ313ḟ4112ḟ2f̈ ! ~3.13!

can overwhelm the one-loop NEC violation whenf be-
comes large enough. Since now the scaling of different te
with respect to a shift in the dilaton~which determines the

FIG. 5. Lq5Lq
f , Lm520.02f2ef. Quantities plotted and ini-

tial conditions are as in Fig. 1~a!. Also shown are the singularity
curves, defined in the text. The right curve is forf→2` and the
left curve is for the value off at which the solution hits the curve
s

value of the string coupling at which various terms beco
important! is more complicated, we will introduce these co
rections with explicit large coefficients accounting for th
expected large number of degrees of freedom contributin
the loop corrections. We expect, in string theory, large a
approximately the same order of magnitude coefficients
certain one- and two-loop corrections, which, perhaps, m
even be justified with some largeN techniques. Taking
Lq5C1Lq

f1C2Lq
2f we observe that since the sources occ

in the equations of motion with coefficientsC1ef and
C2e2f, respectively, and these terms will be important to t
evolution when these coefficients are of order unity, th
having C1'C2@1 leads to a situation where the one-loo
terms become important at a smaller value off ~and there-
fore an earlier time! than the two-loop. Thus we can sti
have an era of NEC violation which is ended by the onse
the two-loop terms in a rather natural way. We have num
cally solved the equations for a range of coefficients a
observe a generic behavior which we illustrate with the s
cific example in Fig. 7.

We show the results of a sample evolution in Fig. 7. F
the graphs ofHE and rE1pE we choose a time range t
emphasize the epoch after the bounce, where NEC viola
ceases and the evolution becomes decelerated FRW. In
8 we show that with this form of corrections the behavior
mild enough that it is easy to capture the dilaton into a p
tential minimum. In these figures we emphasize the l
phase where the dilaton is rolling around the potential m
mum, but the early evolution is indistinguishable fro
Fig. 7.
lar,
FIG. 6. Lq5Lq
f (f) , f (f)5

1
2 e6@12tanh(8f136)#. See Fig. 1 caption for details and initial conditions. All quantities are nonsingu

but peaks are out of scale to emphasize details.
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FIG. 7. Lq51000Lq
f11000Lq

2f . The peaks ofef(rS1pS).55 andrE1pE.55 have been cut off to emphasize the sign change, bu
quantities are nonsingular. See Fig. 1 caption for details and initial conditions.
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We would also like to show that these solutions are sta
enough that the growing dilaton can be halted by introduc
radiation, and that they can pass into a radiation-domina
phase and be smoothly joined to standard cosmologies.
search for the simplest consistent, but not necessarily re
tic, method of producing radiation. Since the radiation co
servation equation~2.5! can be derived from the other thre
equations of motion, simply placing an arbitrary source in
Eq. ~2.5! is not satisfactory and produces an inconsist
system. Practically, since we are using the equations con
ing the highest derivatives to integrate the system, this me
that when the radiation source turns on, we will begin v
lating the constraint equation~2.2!.

Instead we use the same ansatz used to model radi
production from the oscillation of the inflaton in slow-ro
inflation models. We will produce the radiation from the d
laton kinetic energy. To do this we introduce a coupling
the radiation to the dilaton by introducing aDfLrad into Eq.
~2.5! and the same term into Eq.~2.4!. The natural form to
use isDfLrad}ḟ, since this will ensure that our radiatio
source is non-negative. We repeat for emphasis that we
not claim this is the actual way radiation is produced, es
cially since it violates the generic expectation that the dila
will couple to the trace of the energy-momentum ten
which vanishes for radiation. The true source of radiat
will likely consist of the particles produced abundantly in t
dilaton-driven phase. But in the spirit of this paper, it w
serve to model the physics.

The results are shown in Fig. 9. The produced radiat
slows the dilaton to a halt, in turn suppressing the correcti
le
g
d
e

is-
-

o
t

in-
ns
-

ion

f

do
-

n
r
n

n
s

and creating a radiation-dominated evolution as is shown
Fig. 9~d!. In Fig. 9~d! we have plotted both the totalrE1pE
and the contribution from the radiation alonerR1pR . The
relation between radiation density in the string frame a
Einstein frame is given byrE5e2frS .

These provide the first concrete examples of a comple
graceful exit based on a classical evolution from an effect
action. We have presented solutions interpolating betw
the inflationary (1) branch to decelerated (2) branch evo-
lution in which the dilaton can be captured by a potential
stopped by radiation production. Using our analysis of
qualities and energy conditions required of sources to p
duce this transition we have arrived at an elusive destinat

IV. SUMMARY AND CONCLUSIONS

The graceful exit transition in string cosmology is n
forbidden in principle as a variety of concrete examp
show explicitly. We have verified the general arguments
@7#, showing that NEC violation is not just a necessary co
dition, but in some generic sense, also, a sufficient condit
We have encountered yet another ‘‘exit problem’’ from
correction-dominated evolution to a standard decelera
FRW evolution, which had to be overcome. We sugges
that effective terms coming from higher loop correctio
may do the job, and presented, for the first time, an effec
Lagrangian whose equations of motion possess nonsing
solutions interpolating between a (1) branch vacuum and
ordinary radiation-dominated FRW evolution with a fixe
dilaton.
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FIG. 8. 1
2 Lq51000Lq

f11000Lq
2f , 1

2 Lm520.1(f21)2ef21. See Fig. 1 caption for details and initial conditions.
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The remaining questions concern whether specific st
models produce coefficients of appropriate sign and size.
need to know if the one-loop terms do indeed violate N
and whether a physical shutoff mechanism does operat
string theory. Note that the form of induced terms at o
loop is guaranteed, from general arguments, to be the on
used.

Each of our nonsingular string cosmology solutions p
vides a detailed description of the high curvature phase
between the dilaton-driven inflationary phase and the FR
decelerated phase~the ‘‘string phase’’!. In all solutions we
find that a phase rich in structure appears which is m
more complicated than the one postulated in@12# of constant
ḟ andHS . We do not suggest taking the details of the ev
lution in the string phase too seriously, because the te
that determine those details have arbitrary coefficients. H
ever, our examples could be taken as an illustration of w
the real string phase may eventually look like.
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APPENDIX: EFFECTIVE TERMS, EQUATIONS
OF MOTION, AND THEIR SOLUTIONS

Before embarking on determining whether a defin
string model has correction terms of the form required
induce the graceful exit, we have made this survey of lik
forms of source terms. To do this required the variation
many forms of Lagrangian terms with many combinations
coefficients. Our interest was not in any one specific acti
To make this feasible we have developed software to han
many of the aspects of the journey from action, throu
equations of motion and numerical integration and finally
graphical representation of the resulting dynamics in a us
form.

The core of the process is the automated derivation of
equations of motion by varying the action, in a form suitab
for numerical integration. Making the process difficult w
the requirement that we handle essentially any form of c
rection term in the action. But making the prospect eas
was our specializing on homogeneous and isotropic solut
and the use of a tireless symbol manipulatorMATHEMATICA

@16#. This enables us to use an almost embarrassingly b
approach. First we construct a matrix to represent the me
in our case, diag„g00(t),g11(t,r ),g22(t,r ),g33(t,r ,f)…. Then
we construct the tensor quantities we need in the most di
possible way. We use the metric to compute the Christo
symbols and proceed to the Riemann tensor and contrac
thereof, all of which are stored in lists. From here we co
pute any required geometrical scalars for the action, wh
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FIG. 9. Lq51000Lq
f11000Lq

2f ,DfLrad5210ḟ. See Fig. 1 caption for details and initial conditions. We have superimposedrR1pR ,
the source quantities for the radiation onto~d! to show the onset of radiation domination.
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all emerge in a raw form, completely in terms ofg00•••g33
and their various partial derivatives and any other fields.

From here we construct ther and p and other quantities
by directly varying with respect to the metric fields and oth
quantities. Our techniques for doing this were helped gre
by study of @17#. Then we put in the cosmic time gaug
choiceg00521 and the components of the usual FRW m
ric a(t)2dV for g11, g22, and g33. Finally we replace the
derivatives ofa(t) with their corresponding expressions
terms of the Hubble parameterH5ȧ/a.

The very crudeness of this process enhances our beli
its correctness. Other consistency checks are possible;
we make the redundant check thatT1

15T2
25T3

3. We also
r
ly

-

in
.g.,

verify the conservation equation~2.5! for these sources
They replicate many known results, e.g., the vanishing
sources from the one-loop Gauss-Bonnet combination,
we can reproduce the numerical integration of other
amples in the literature. On a case-by-case basis we ch
the accuracy of numerical integrations by verifying the co
straint equation~2.2!.

Finally, we present a table of generalized sources, su
cient to construct all of the equations of motion used in t
work, a generalized form of the dilaton kinetic term~A1!, the
Ricci scalar with arbitrary dilaton dependence~A2!, and
variousR2 combinations~A3!, ~A4!, and~A5!. k is the sign
of the spatial curvature:
Lq
g„~¹f!2

…5 f ~f!g„~¹f!2
…,

rq
g„~¹f!2

…5
2@ f ~f!g„~¹f!2

…#

2
2 f ~f!g8„~¹f!2

…ḟ2,

pq
g„~¹f!2

…5
f ~f!g„~¹f!2

…

2
,

DfLq
g„~¹f!2

…5
g„~¹f!2

…f 8~f!

2
13 f ~f!Hg8„~¹f!2

…ḟ1 f 8~f!g8„~¹f!2
…ḟ21 f ~f!g8„~¹f!2

…f̈22 f ~f!ḟ2g9„~¹f!2
…f̈,

„~¹f!2
…52ḟ2, ~A1!
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Lq
R5R f~f!,

rq
R5

23k f~f!

a~ t !2
23 f ~f!H223H f 8~f!ḟ,

pq
R5

k f~f!

a~ t !2
13 f ~f!H212 f ~f!Ḣ12H f 8~f!ḟ1ḟ2f 9~f!1 f 8~f!f̈,

DfLq
R5

3k f8~f!

a~ t !2
16H2f 8~f!13 f 8~f!Ḣ, ~A2!

Lq
R2

5R2f ~f!,

rq
R2

5
218k2f ~f!

a~ t !4
1

36k f~f!H2

a~ t !2
2108f ~f!H2Ḣ118f ~f!Ḣ22

36kH f8~f!ḟ

a~ t !2
272H3f 8~f!ḟ236H f 8~f!Ḣḟ236f ~f!HḦ,

pq
R2

5
26k2f ~f!

a~ t !4
2

12k f~f!H2

a~ t !2
2

24k f~f!Ḣ

a~ t !2
1108f ~f!H2Ḣ154f ~f!Ḣ22

24kH f8~f!ḟ

a~ t !2
148H3f 8~f!ḟ

1120H f 8~f!Ḣḟ1
12kḟ2f 9~f!

a~ t !2
124H2ḟ2f 9~f!112Ḣḟ2f 9~f!172f ~f!HḦ124f 8~f!ḟḦ1

12k f8~f!f̈

a~ t !2

124H2f 8~f!f̈112f 8~f!Ḣf̈112f ~f!H ~3!,

DfLq
R2

5
18k2f 8~f!

a~ t !4
1

72kH2f 8~f!

a~ t !2
172H4f 8~f!1

36k f8~f!Ḣ

a~ t !2
172H2f 8~f!Ḣ118f 8~f!Ḣ2, ~A3!

Lq
RmnRmn5RmnRmn f ~f! ,

rq
RmnRmn5

26k2f ~f!

a~ t !4
1

12k f~f!H2

a~ t !2
236f ~f!H2Ḣ16 f ~f!Ḣ22

6kH f8~f!ḟ

a~ t !2
218H3f 8~f!ḟ212H f 8~f!Ḣḟ212f ~f!HḦ,

pq
RmnRmn5

22k2f ~f!

a~ t !4
2

4k f~f!H2

a~ t !2
2

8k f~f!Ḣ

a~ t !2
136f ~f!H2Ḣ118f ~f!Ḣ22

8kH f8~f!ḟ

a~ t !2
112H3f 8~f!ḟ

136H f 8~f!Ḣḟ1
2kḟ2f 9~f!

a~ t !2
16H2ḟ2f 9~f!14Ḣḟ2f 9~f!124f ~f!HḦ18 f 8~f!ḟḦ

1
2k f8~f!f̈

a~ t !2
16H2f 8~f!f̈14 f 8~f!Ḣf̈14 f ~f!H ~3!,

DfLq
RmnRmn5

6k2f 8~f!

a~ t !4
1

18kH2f 8~f!

a~ t !2
118H4f 8~f!1

6k f8~f!Ḣ

a~ t !2
118H2f 8~f!Ḣ16 f 8~f!Ḣ2, ~A4!

Lq
RmnslRmnsl5RmnslRmnsl f ~f!,

rq
RmnslRmnsl5

26k2f ~f!

a~ t !4
1

12k f~f!H2

a~ t !2
236f ~f!H2Ḣ16 f ~f!Ḣ2212H3f 8~f!ḟ212H f 8~f!Ḣḟ212f ~f!HḦ,
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pq
RmnslRmnsl5

22k2f ~f!

a~ t !4
2

4k f~f!H2

a~ t !2
2

8k f~f!Ḣ

a~ t !2
136f ~f!H2Ḣ118f ~f!Ḣ22

8kH f8~f!ḟ

a~ t !2
18H3f 8~f!ḟ

132H f 8~f!Ḣḟ14H2ḟ2f 9~f!14Ḣḟ2f 9~f!124f ~f!HḦ18 f 8~f!ḟḦ14H2f 8~f!f̈

14 f 8~f!Ḣf̈14 f ~f!H ~3!,

DfLq
RmnslRmnsl5

6k2f 8~f!

a~ t !4
1

12kH2f 8~f!

a~ t !2
112H4f 8~f!112H2f 8~f!Ḣ16 f 8~f!Ḣ2. ~A5!
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