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Model of graceful exit in string cosmology
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We construct, for the first time, a model of graceful exit transition from a dilaton-driven inflationary phase
to a decelerated Friedmann-Robertson-Walker era. Exploiting a demonstration that classical corrections can
stabilize a high curvature string phase while the evolution is still in the weakly coupled regime, we show that
if additional terms of the type that may result from quantum corrections to the string effective action exist, and
induce violation of the null energy condition, then evolution towards a decelerated Friedmann-Robertson-
Walker phase is possible. We also observe that stabilizing the dilaton at a fixed value, either by capture in a
potential minimum or by radiation production, may require that these quantum corrections are turned off,
perhaps by nonperturbative effects or higher order contributions which overturn the null energy condition
violation. [S0556-282(197)04324-5

PACS numbd(s): 98.80.Cq, 04.50:h, 11.25-w

I. INTRODUCTION gularity theorems of Einstein’s general relativity3]. In par-
ticular, we showed that a successful exit requires violations
An inflationary scenarifl,2], inspired by duality symme- of the null energy conditiofNEC). Since most classical
tries of string cosmology equatioh$,3,4], is based on the sources obey the NEC this conclusion hints that quantum
fact that cosmological solutions to string dilaton gravity effects, known to violate the NEC in some cases, may be the
come in duality-related pairs, the plus branch)(and the correct sources to look at. To briefly recap the relevant re-
minus branch ) [5]. The (+) branch has kinetic inflation-  sults of[7] we need to recall that there are different confor-
ary solutions in which the Hubble parameter increases withnal frames in which to describe the equations. These are
time. The minus branch«) can be connected smoothly to a re|ated by local field redefinitions which, supposedly, do not
standard Friedmann-Robertson-WalkgiRW) decelerated  jffect physical observabléd4]. The two frames that we use
expansion of the Universe with a constant dilaton. The sceg e the string frame ) and the “lowest order Einstein

nario (the so-called “pre-big-bang” scenajiés that evolu- - ¢amer (E|) in which the lowest order classical action ki-
tion of the Universe starts from a state of very small curva-

tre and coupling and then undergoes a long phase qr%etic terms of gravity and the dilaton are diagonal. For brev-
dilaton-driven kinetic inflation described by the-J branch Y We callE| the Einstein frame. The general analysi¢ of

and at some later time joins smoothly standard radiationr€Suited in a set of necessary conditions on the evolution in

dominated cosmological evolution, thus giving rise to aterms of th? Hu.bble parameteks N the str|r_19 frame and
singularity-free inflationary cosmology. Recently, the re-Hein the Einstein frame and the dilatgh We include them
quired initial conditions of the Universe in this scenario werefOr completeness. _
discussed6]. Our focus in this paper is mainly on the final  Initial conditions of a(+) branch andHg,$>0 require
fate of the Universe at late times and we simply assume thai ¢<<O0.
the correct initial conditions were chosen such that a long A branch change fron{+) to (=) has to occur while
dilaton-driven inflationary phase was indeed part of the evoHg<0.
lution. A successful escape and exit completion requires NEC
The graceful exit transition from the initial long phase of violation accompanied by a bounce E| after the branch
dilaton-driven kinetic inflation to the subsequent standarcthange has occurred, ending up wila>0.
radiation-dominated evolution has been a subject of many Further evolution is required to bring about a radiation-
investigationd7—10.. In [5] it was argued, and later proved dominated era in which the dilaton effectively decouples
[11], that such a transition cannot occur while curvature wagrom the “matter” sources.
below the string scale and the string coupling was still weak, The guestion we set out to answer in this paper is the
leading to the conclusion that an intermediate ‘stringfollowing. Suppose that effective sources of the type that are
phase” of high curvaturépreviously suggested as a possi- expected to appear as corrections to the lowest order effec-
bility [1,2]) or strong coupling is actually requiréd2]. tive action of strings do provide NEC violation. Then would
In [7] we proposed to use an effective description in termsa complete exit transition actually occur? We answer this
of sources that represent arbitrary corrections to the lowesjuestion in the affirmative, but some surprising obstacles are
order equations. We were able to relate the necessary condeund on the way and we also suggest ways to overcome
tions for graceful exit to energy conditions appearing in sin-these obstacles.
Because in our scenario the Universe evolves towards
higher curvatures and stronger coupling, there will be some
*Email address: ramyb@bgumail.bgu.ac.il time when the lowest order effective action can no longer
"Email address: madden@bgumail.bgu.ac.il reliably describe the dynamics and it must be corrected. Cor-
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57 MODEL OF GRACEFUL EXIT IN STRING COSMOLOGY 713
rections to the lowest order effective action come from twoline details of the derivation of the equations of motion, nu-
sources. The first are classical corrections, due to the finitenerical integration, etc.

size of strings, arising when the fields are varying over the

string length scale\g= Ja'. These terms are important in Il. MODEL FOR EXIT COMPLETION

the regime of large curvature. The second are quantum loop
corrections. The loop expansion is parametrized by powers,
of the string coupling parametel‘”:ggtrmg, which in the

The string theory effective action in four dimensions takes
e general form,

models that we consider is, of course, time dependent. So e ¢ 1
guantum corrections will become important when the dilaton s§|ﬁ=f d*x{ V—g ,(R+ d,$d"P) +§ N—0Lqt,
becomes large, the regime we refer to as strong coupling. 16ma 2.1

In this paper we make use of both types of corrections.
The role ofa” correctiond 10] is to create an attractive fixed whereg,,, is the four-dimensional4D) metric andé is the
point which stabilizes the evolution in a high curvature re-gjjaton; the effective action is written here in the string frame
gime with linearly growing dilaton. The basin of attraction of (g)). The LagrangiarC, may contain arbitrary corrections to
this fixed point is large enough to allow it to be reached fromthe Jowest order 4D action coming from a variety of sources
generic initial conditions. Further, the location of this fixed as specified below.
point is such that it forces the evolution to undergo a branch We are interested in solutions to the equations of motion
change, and all of this may occur for small values of thederived from the actiorf2.1) of FRW type with a vanishing
dilaton (weak coupling, and so the quantum corrections can spatial curvaturénonvanishing spatial curvature may be in-
be ignored. With the linearly growing dilaton, the quantumcluded as an effective source in the equatiomss?
corrections will eventually become important. It is these we= —dt§+ ag(t)dxidxi and ¢= ¢(t). We will assemble the
will attempt to use to let the Universe escape the fixed poinequations of motion by deriving the correction energy-
and complete the transition to a decelerated FRW evolutionnomentum tensor
We allow ourselves the freedom to choose the coefficients of
the quantum correction terms arbitrarily, in particular, their - _ 1 s\-gL.
sign is chosen so as to induce NEC violation. Our reasoning py \/—_g SgHY
for allowing this freedom stems in part from a lack of any
real string calculations and in part by our desire to verify bywhich will have the formT# =diag(p,— p,— p,—p). In ad-

constructing explicit examples the general argumen{&bf  dition we have another form of source term arising from the
We use the general framework set up in, and rely forariation by ¢ equation,

analytical calculations mostly diY]. We perform a numeri-
cal integration of specific equations with limited new analyti- 1 1 5\/—_9£c
cal considerations. We show, by constructing explicit ex- A¢£C=§—T.
amples, that a complete exit transition is not forbidden, \/—_g

which, of course, does not yet prove that in string theory it

L ; ; In terms of these sources the equations of motion are
actually occurs. For that, an explicit string computation of

guantum correction terms is necessary. This may also require 2,1 52 Y1
taking into account the back reaction of the particles pro- 3Hs+ 2 ¢°~3Hsh=2 €%, (22
duced during the dilaton-driven phase. ) 5 121

A by-product of our analysis is a detailed description of —2Hs—3Hg+2Hgp— 3 p°+d=3€%, (2.3
the high curvaturd“string” ) phase in between the dilaton- _ _ _
driven inflationary phase and the decelerated FRW phase. 3Hs+6HE—3Hsh+ 3 p°—p=36e%A,L., (2.4
We obtain a more complicated phase than the one postulated
in [12] with nonconstant$p and Hg. We do not take the p+3Hg(p+ p):—A¢Ec¢, (2.5

details of the evolution in the string phase too seriously,
because the terms that determine those details have arbitra =ag/ag, and we have fixed our units such that
coefficients. However, our examples could be taken as afg;q’=1.
indication of what the real string phase may eventually look e will make the split
like.

The paper is organized as follows. In Sec. Il we present Lo=Ly+ Lyt L, (2.6
and discuss solutions which exhibit branch change and exit
completion witha’ and quantum corrections. In Sec. Il we and we will divide up the source terms analogously. For
explain the remaining problem of correction-dominated evoexample,p=p, +pq+pn,. We take, for concreteness, the
lution, show how to model a shutoff of the corrections, andLagrangian’, to be of the specific form of the' classical
verify that once corrections are shut off, the usual decelercorrections proposed ifi0],
ated evolution such as radiation domination or capturing of )
the dilaton in a minimum of a potential may follow. We Rae (Vo)*
summarize our results and explain which further calculations 4 4 |
are necessary to reach a conclusive statement about the exit
transition in string models. In a technical Appendix we out-The contribution of this term to the effective sources is

%Ea':ed)( (27)
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FIG. 1. A solution to the classical equations with owly corrections,L,=L,,=0. (a) Evolution in the @/3,H5) plane. The four lines
plotted are, in order of increasing slope, thé)( branch vacuunip=0,¢=(3+3Y)Hg], branch change ¢=3Hg), Einstein frame
“bounce” (¢=2Hg), and () branch vacuurfip=0,¢=(3—3Y3)Hg]. The cross is at the location of the fixed point. The remaining figures
are various quantities plotted as a function of string tifl¥ The Einstein frame Hubble parametég . (c) The string frame source terms
e?(ps+ps) ande?ps. (d) The Einstein frame source terpg+pe. (€) ¢—3Hg, a quantity indicating branch sigfin Sec. Il this figure
will be replaced bye?ps from (c).] (f) ¢ evolution. Initial conditions at=0, ¢=—30, Hg=0.014 852 9, andp=0.069 960 2. The
following figures share these initial conditions, since quantum corrections are very small at this timé.elModution may be started at
arbitrarily small values by evolving these initial conditions further backward towards-thebanch vacuum.

. 3¢ Setting L4=L,=0, for the moment, we integrate the
pa,=e‘f’( 6H§¢— T) (2.8 equations of motion starting from initial conditions near the
(+) branch vacuum. To do this we solve E(®.3) and(2.4)
for the highest derivatives dflg and ¢ and use Eq(2.2) as

. oo . ¢4 - a constraint on the initial conditions. The conservation equa-
| a3 2,2 P 542 . q
Par=€ ( AHsp—AHsHsp+2Hsd™ - —2Hs¢ |, tion (2.5) is an identity owing to the usual redundancy in the
(2.9 equations, and only when we add radiation to the system will
we use this equation in the evolution. We recover the results
s . - - 3% e of [10] in four dimensions where they find attraction into a
AgLor=€ % —6Hg=BHgHs+3Hsd"™~ ——+3¢%9|.  fixed point atHg=0.616 ... $p=1.404. .. .

(2.10 As shown in Fig. 1a) the solution begins near thek()
branch vacuum and makes a branch change but does not

Although we have fixed our units differently froril0] “complete” the exit by proceeding to the>0 region. The
(whereka’ =1, k depending on the species of string thepry quantity characterizing branch sign is plotted in Fige)1
we have chosen the coefficient of this term so as to lead t¥#Ve examined more general forms of this Lagrangian involv-
solutions which are numerically identical to theirs for pur-ing different coefficients. Varying the coefficients moves the
poses of comparison. fixed point. For some ratios of coefficients the solutions en-

The LagrangianC, will designate quantum loop correc- counter singularities before reaching the fixed pome dis-
tions parametrized by powers ef. We will examine a va- cuss the form of these singularities in Sec) Ibut other
riety of candidates foL,. The LagrangiarC, will represent  ratios yield solutions of the same generic type as we have
such things as radiation or a dilaton potential when we dispresented here.
cuss the final transition to radiation domination and a fixed In spite of considerable progress we still need to look
dilaton. more closely at the sources and Einstein frame evolution to
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answer the question of how close we have come to the true Clearly, because of the factor ef on the right-hand side
goal of decelerated FRW evolution. of Egs.(2.2) and(2.3) this L‘;f can give us NEC violation of
The evolution ofp andp is easily found by substituting increasing strength ag increases. We show the results of
the solution back into the equations of motion and solvingthe numerical integration by presenting the same suite of
for the sources. We see that this phase does violate the NEfigures as in the previous case in Fig. 2. In this case we have
in the string frame. However, recalling our stronger claimchosen to graph the sources for a range of time emphasizing
that there should also be NEC violation in the “lowest orderthe Einstein frame bounce. As hoped, the solution now pro-
Einstein frame” (denoted with a subscrigE, and as ex- ceeds into the>0 region triggered by increased NEC vio-
plained in the Introduction, many times for brevity called |ation in the string frame. We also see the accompanying
just the Einstein frame we can compute the value of the Einstein frame NEC violation and bounce. Notice that the
Einstein frame sources by finding the Hubble parameter bounce occurs quickly, during a few units of time, compared

and its derivativd'-lE, with the very long duration of the dilaton-driven phase near
the (+) vacuum.
He=e??(Hs— 3 ¢)1 (2.12) However, inspecting the solution at late times shows that
the dominant terms in the equations of motion are
- _ .
Home?| Hom 14 3 Hom % (212 —6H2—3e% %+ 6Hp=0, 2.19
. . . . —B6H2+e%a? 3h=
All quantities on the right-hand side of these are given 6Hs+e%¢"+4Hs¢4=0, (2.20
strictly in terms of string frame quantities and time. The . -
Einstein equations are —6Hg+12e’Hg¢p*=0. (2.21
3H2=1pg, (2.13  This system has the solution
2 - 1 2t

Notice that we have absorbed the dilaton kinetic energy into 6
the definition ofpg and pg. _ t
. - $=In , (2.23
The resulting sources artdg are plotted in Figs. (b)— 3936
1(d). From the figures we see that there is no violation of the ) ) ) )
NEC in the Einstein frame, corresponding to the fact tha@Pproximating the nature of the true solution at late times.

there is no “bounce.” This solution represents a singular 1S form confirms that the solution has unbounded
collapse in the Einstein frame because of the linearly incread™oWth in the curvature and dilaton. Nonetheless, we have
ing dilaton plotted in Fig. (). In terms of sources this sug- Succeeded in our aim of completing the exit to w20
gests that there is insufficient NEC violation and that thef®gion of phase space. It may appear that we are now facing
addition of conventional sources f,, like radiation, which & New “graceful exit” problem since the equations of motion
do not violate the NEC cannot help the completion of the@t late times are dominated by corrections, spoiling the ex-
exit transition. pected stability of a{) branch. We suggest that the source
Perhaps generically any correction violating the NECOf this instability is the contmued_ NEC violation and will
strongly enough will complete the transition. In particular, S€arch for a cure in the next section. o
we consider terms modeling the form of quantum loop cor- To further _explore the sufﬂc!ency of NEC violation for
rections parametrized by powers ef. For example, at one exit we examine another generic form of one-loop quantum

loop, correction,
2
FLE=— (V) (2.15 LY =R?, (2.24)
pl=—3¢" (2.16 pF'=—108HZHg+ 18H3-36HHs,  (2.29
=—¢* 2.1 RY_ 108H2H o+ 54H2+ T2HH s+ 12HD | (2.2
pq ¢1 (7) pq SS+ S+ SS+ !(a
e ,
AyLi=3 (Hsd>+ 6°9). (218 A,LR =0, 2.2

As long as we include only one order of loop correction, theWe immediately notice that for evolution strictly in the fixed
overall coefficient of our corrections can be absorbed by goint, whereH = const, this correction will be zero, indicat-
shift of ¢, and it therefore determines the value ¢fat  ing it will not effectively contribute to NEC violation. Fur-
which the quantum corrections begin to be important, buthermore, this introduces higher derivatives into the equa-
does not lead to qualitatively different behavior. So at thistions of motion, which in turn introduces dangerous
stage we choose coefficients of order unity, and after thespathologies into the solutiorf45].

preliminary investigations are complete, we will choose These pathologies come from the extra degrees of free-
more realistic values. dom in the system coming from the extra initial conditions
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FIG. 2. %Lf]s: —(V¢)*, L£,=0. See Fig. 1 caption for details and initial conditions.

that need to be imposed. These extra degrees of freedom aréth a still growing dilaton as illustrated in Fig. 3. We set
associated with unstable modes of the solutions which weur initial conditions near a later phase of the )( branch
regard as physically spurious, since they are solutions ivacuum to avoid instabilities.

which the “correction” becomes much larger than the terms ~ Finally, we present a two-loop Gauss-Bonnet correction
to which it is supposed to be a small correction. Referencavhich we choose because it represents the influence of cur-
[15] suggests two remedies to this problem. The first is ure_yature squared terms but does not contribute higher deriva-
duction of order,” in which we differentiate the large terms tive terms:

in the equations of motiofin this case the tree-level terjns

R2
and use them to rewrite the higher derivatives in terms of 3 L eP=e’Rgg, (2.28
lower derivatives, justified by the assumption the corrections ,
will remain small. The second is simply to carefully choose pSGB: e¢(—24H§¢), (2.29

initial conditions to avoid the unstable modes.
Since our purpose is to make a qualitative survey of the Res_ 4 3 .o 249 5
effect of corrections and the reduction of order prescription ~ Pq°°=€"(16H5¢+ 18HsHs¢+8Hs5¢ "+ 8Hs4),

is computationally prohibitive, we take the second approach (2.30
and choose initial conditions so that the evolution is not 2 .
dominated by the corrections for a reasonable span of time. Ad,ﬁqesz e¢(24H§+ 24H§HS). (2.31

. . . 2 .

Exploring these solutions confirms thalff corrections

themselves do not help the exit process. The other one-loop* . - N
riate sign can complete the transitiondo-0 as in Fig. 4,

rvatur red termB*'R nd R*"“PR iel S ) o .
curvature squa ed termg wy @ d Lrop yeq but with increasing domination by the correction terms lead-
sources which are constant multiples of thos®afand as is

L ) n ingulari n after the transition. We have al
well known, the Gauss-Bonnet combination, which does nokg to a singularity soon after the transitio € have a'so

ib higher derivati ishes in th . ied other combinations of sources with different coeffi-
contribute higher derivatives, vanishes in the equations Of;ons and found that many of them yield solutions that are

motion. , similar to the ones we presented, leading us to believe that
But putting curvature squared terms together with correcyr results are quite general and do not depend in a strong
tions that do not vanish in the fixed point, for example,ay on particular initial conditions or coefficients.
£q=£¢—£§ /3, does yield qualitatively different solutions  In summary, we have seen that generic forms of quantum
which do exit, in this case a solution approaching stringcorrections can complete the exit from the fixed poinftidf]
frame de Sitter evolutioriwith constantHs), though again to the region ofp>0, showing the NEC violation is not only

gain we find that introducing this correction with an appro-
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FIG. 3. £q=L;§’—§L§2, L,=0. Initial conditions att=0, ¢=—5, Hg=0.092603 1, ¢=0.383 925, Hg=0.018 527, and
H¢=0.026 033 5. See Fig. 1 caption for explanation.

necessary, but is in some sense sufficient. The resulting sehange in the dilaton through theH3¢ “friction” term in
lutions are quite varied, but we have also noted they havgq. (2.4) or, more directly, by capturing the dilaton in a
unbounded growth of the dilaton at late times, continue to bgotential minimum.

domiﬂated by corrections, and C'OHtinue to ViOla..te the NEC. Concentrating on the Simp|est of the NEC_Vio|ating guan-
In spite of being ¢-) branch solutions they are still unstable. tym corrections, Eq2.15, we are surprised to find obstacles
However, inducing the exit seems to be a generic property ofp this program. Attempting to moderate the evolution
NEC violation and not of the SpeCIfIC form of the CorreCtlonS.through the use of a potentia| Strong enough to affect the
In the next section we will attack this new exit problem, thesolution actually drives the solution into cusp singularities

exit from the epoch of correction domination. (singularities ing andHyg). The sources for a potential are

3 Ly=V(4), (3.
I1l. MODEL FOR TRANSITION TO DECELERATED
AND STABLE EVOLUTION pV=V(4), (3.2
We have seen that by using plausible forms for quantum
corrections we can induce NEC violation and push the evo- pm=V(#), (3.3
lutions into a region we would like to call a completed exit.
However, we have also seen that these evolutions are domi- AyLy=V'(¢). (3.4

nated by corrections and have a singular behavior unlike the ) ) ) )

desired () branch solutions. We associate this behavioVe illustrate a particular case in Fig. 5, with'(¢)
with two overlapping sources. First is the continued NEC=—0.01¢”e”. We have added graphs of the locations of the
violation itself, which tends to feed accelerated evolution inSingularity curves. The curve on the right is the location of
the Einstein frame. Second, and more directly, it is the conthe singularities agp— —o. The curve on the left is their
tinuing growth of ¢ that supports the strength of the quan- location when the solution collides with them. Adding radia-
tum correction terms through the powersedf occurring in ~ tion can produce S|m|Iar_smguIar|t|es or it is quickly red-
the equations of motion. shifted away by the growingls.

Since these solutions do not spontaneously suppress the The source of these singularities is easy to understand
corrections, we might hope that simply controlling the mathematically. The sources mtrodgce additional terms con-
growth of the dilaton would tame the solutions. This can betaining the highest derivativddg and ¢ to the terms coming
done by modeling radiation production, which can slow thefrom the lowest order terms in the action. When we solve the
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FIG. 4. %LEGB=e¢RéB, L,=0. See Fig. 1 caption for details and initial conditions.

equations of motion fO'HS and ¢ in terms of the lower tion as shown in Flg 6. In this suite of figures we have
derivatives we find a denominator which has, in generaldropped the branch sign graph, since all of the following
zeros in the X,y) plane, wherex=$/3 andy=Hs. In this solutions are similar in that region of the evolution and have
particular case this leads to the equation for the singularit pow chosen a range of time to _graph the sources empha_S|z-
curves: ng the epoch when NEC violation ceases and the evolution
becomes decelerated. We have also tinkered with the nor-
malization of this term, and so the figure may be directly

1 0y2_ 2pad(t)y2 3 B(1)y3 2.4
3~ X7 36T X 2xy + 27y + 1087 Xy 2y +y compared with the previous figures. While we have exactly

=0. (3.5  the desired behavior, a function suchfgg) will not appear
by summing a few terms in the loop expansion:

The terms containing the? are coming from the quantum 1 () 4
correction, so that the location of the singularity curves is 2Lg "=~ H(H)(Ve), (3.6
now a function of¢. o) 4

Perversely, the singularity curves follow the solution to- pq ' =—31($) 9", 3.7
wards smallg and largeHs. So any attempt to tinker with ) ”
the solution causes it to collide with them. Modeling the Py ¥'=—f(¢) ", (3.9

production of radiation produces a similar effect. While we

do. not have a direct physical interpretation of these singu- A¢Lg(¢>=12f(¢)|-|s¢3+ 3f'(P)p*+12f () P2 .
larities we do regard them as an indication of the general (3.9
instability of NEC-violating solutions.

A direct approach to completing the exit transition is to However, we have found that a complete suppression of
assume that there exists some mechanism that shuts off titfee quantum corrections is not necessary. Suspecting that the
correction terms and, hence, NEC violation. A concrete waynstabilities are due to continued NEC violation we propose
of modeling such an idea is simply replacing the quantumvhat is, perhaps, a simpler model. Since the NEC violation
correction in the action witﬁ(¢)ﬁg’ wheref(¢) is a posi- was induced in our models by one-loop quantum corrections,
tive constant for¢p<¢, for some constanip, and then higher loop terms can suppress the NEC violation once it is
smoothly goes to zero, and si{¢) has the form of a NoO longer needed if they have the correct sign. For example,
smoothed step function. This successfully eliminates thé& two-loop contribution of the form
loop corrections at late times, and so the dilaton may be L 20 4
easily captured by a potential or slowed by radiation produc- 2 Lg"=e?(Ve)", (3.10
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can overwhelm the one-loop NEC violation wheh be-
comes large enough. Since now the scaling of different termmum, but the early evolution is indistinguishable from
with respect to a shift in the dilatofwhich determines the Fig. 7.
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value of the string coupling at which various terms become
importan} is more complicated, we will introduce these cor-
rections with explicit large coefficients accounting for the
expected large number of degrees of freedom contributing to
the loop corrections. We expect, in string theory, large and
approximately the same order of magnitude coefficients for
certain one- and two-loop corrections, which, perhaps, may
even be justified with some larghl techniques. Taking
Lq=C1LE+C,L5? we observe that since the sources occur
in the equations of motion with coefficient§,e? and
C,e??, respectively, and these terms will be important to the
evolution when these coefficients are of order unity, then
having C;~C,>1 leads to a situation where the one-loop
terms become important at a smaller value¢ofand there-
fore an earlier timgthan the two-loop. Thus we can still
have an era of NEC violation which is ended by the onset of
the two-loop terms in a rather natural way. We have numeri-
cally solved the equations for a range of coefficients and
observe a generic behavior which we illustrate with the spe-
cific example in Fig. 7.

We show the results of a sample evolution in Fig. 7. For
the graphs ofHg and pg+ pg we choose a time range to
emphasize the epoch after the bounce, where NEC violation
ceases and the evolution becomes decelerated FRW. In Fig.
8 we show that with this form of corrections the behavior is
mild enough that it is easy to capture the dilaton into a po-
tential minimum. In these figures we emphasize the late
phase where the dilaton is rolling around the potential mini-
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FIG. 6. Lq=L{?, f(¢)= 7 €[ 1—tanh(8+36)]. See Fig. 1 caption for details and initial conditions. All quantities are nonsingular,
but peaks are out of scale to emphasize details.
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FIG. 7. Ly= 1000C§+ 10006(21"’. The peaks 0&%(ps+ ps) =55 andpe + pe=55 have been cut off to emphasize the sign change, but all
quantities are nonsingular. See Fig. 1 caption for details and initial conditions.

We would also like to show that these solutions are stabl@nd creating a radiation-dominated evolution as is shown in
enough that the growing dilaton can be halted by introducindig. 9d). In Fig. 9d) we have plotted both the totak+ pe
radiation, and that they can pass into a radiation-dominatednd the contribution from the radiation alopg+ pg. The
phase and be smoothly joined to standard cosmologies. Welation between radiation density in the string frame and
search for the simplest consistent, but not necessarily reali€instein frame is given byg=e??ps.
tic, method of producing radiation. Since the radiation con- These provide the first concrete examples of a completed
servation equatio2.5 can be derived from the other three graceful exit based on a classical evolution from an effective
equations of motion, simply placing an arbitrary source intoaction. We have presented solutions interpolating between
Eg. (2.5 is not satisfactory and produces an inconsistenthe inflationary @) branch to decelerated<) branch evo-
system. Practically, since we are using the equations contairtution in which the dilaton can be captured by a potential or
ing the highest derivatives to integrate the system, this mearnsopped by radiation production. Using our analysis of the
that when the radiation source turns on, we will begin vio-qualities and energy conditions required of sources to pro-
lating the constraint equatio2.2). duce this transition we have arrived at an elusive destination.

Instead we use the same ansatz used to model radiation
production from the oscillation of the inflaton in slow-roll
inflation models. We will produce the radiation from the di-

laton kinetic energy. To do this we introduce a coupling of  The graceful exit transition in string cosmology is not
the radiation to the dilaton by introducingAg,L,qinto Eq.  forbidden in principle as a variety of concrete examples
(2.5 and the same term into E(.4). The natural form to  show explicitly. We have verified the general arguments of
use iSA 4L ¢, since this will ensure that our radiation [7], showing that NEC violation is not just a necessary con-
source is non-negative. We repeat for emphasis that we ddition, but in some generic sense, also, a sufficient condition.
not claim this is the actual way radiation is produced, espeWWe have encountered yet another “exit problem” from a
cially since it violates the generic expectation that the dilatorcorrection-dominated evolution to a standard decelerated
will couple to the trace of the energy-momentum tensorFRW evolution, which had to be overcome. We suggested
which vanishes for radiation. The true source of radiationthat effective terms coming from higher loop corrections
will likely consist of the patrticles produced abundantly in themay do the job, and presented, for the first time, an effective
dilaton-driven phase. But in the spirit of this paper, it will Lagrangian whose equations of motion possess nonsingular
serve to model the physics. solutions interpolating between at+{ branch vacuum and

The results are shown in Fig. 9. The produced radiatiorordinary radiation-dominated FRW evolution with a fixed
slows the dilaton to a halt, in turn suppressing the correctiondilaton.

IV. SUMMARY AND CONCLUSIONS
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FIG. 8. 5 £4=1000C¢+1000C2%, 5 £,,= —0.1(¢—1)%?"*. See Fig. 1 caption for details and initial conditions.

The remaining questions concern whether specific string APPENDIX: EFFECTIVE TERMS, EQUATIONS
models produce coefficients of appropriate sign and size. We OF MOTION, AND THEIR SOLUTIONS

need to know if the pne-loop terms do i_ndeed vilate NEC_ Before embarking on determining whether a definite
and whether a physical shutoff mechanism does operate igying model has correction terms of the form required to
string theory. Note that the form of induced terms at on€nqyce the graceful exit, we have made this survey of likely
loop is guaranteed, from general arguments, to be the one Wgms of source terms. To do this required the variation of
used. many forms of Lagrangian terms with many combinations of

Each of our nonsingular string cosmology solutions pro-coefficients. Our interest was not in any one specific action.
vides a detailed description of the high curvature phase iTo make this feasible we have developed software to handle
between the dilaton-driven inflationary phase and the FR\Nnany of the aspects of the journey from action, through
decelerated phasghe “string phase’). In all solutions we equations of motion and numerical integration and finally to
find that a phase rich in structure appears which is muclgraphical representation of the resulting dynamics in a useful
more complicated than the one postulatefilig] of constant  form.

¢ andHs. We do not suggest taking the details of the evo- The core of the process is the automated derivation of the
lution in the string phase too seriously, because the termgquations of motion by varying the action, in a form suitable
that determine those details have arbitrary coefficients. Howfor numerical integration. Making the process difficult was
ever, our examples could be taken as an illustration of whathe requirement that we handle essentially any form of cor-

the real string phase may eventually look like. rection term in the action. But making the prospect easier
was our specializing on homogeneous and isotropic solutions

and the use of a tireless symbol manipula&THEMATICA
[16]. This enables us to use an almost embarrassingly blunt
approach. First we construct a matrix to represent the metric,
We thank G. Veneziano for discussions about the coeffiin our case, dia@qg(t),g11(t,r),925(t,1),g34(t,r,#)). Then
cients of quantum correction terms and comments on theve construct the tensor quantities we need in the most direct
manuscript, for which we are also thankful to J. Maharanapossible way. We use the metric to compute the Christoffel
This work is supported in part by the Israel Science Foundasymbols and proceed to the Riemann tensor and contractions
tion administered by the Israel Academy of Sciences andhereof, all of which are stored in lists. From here we com-
Humanities. pute any required geometrical scalars for the action, which
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FIG. 9. £4=1000C¢+ 1000227 A 4L,.q= — 10¢. See Fig. 1 caption for details and initial conditions. We have superimpasegr,
the source quantities for the radiation orith to show the onset of radiation domination.

all emerge in a raw form, completely in terms@yy- - -gs;  Vverify the conservation equatiof2.5 for these sources.
and their various partial derivatives and any other fields. They replicate many known results, e.g., the vanishing of
From here we construct the and p and other quantities sources from the one-loop Gauss-Bonnet combination, and
by directly varying with respect to the metric fields and otherwe can reproduce the numerical integration of other ex-
quantities. Our techniques for doing this were helped greatlymples in the literature. On a case-by-case basis we check

by study of[17]. Then we put in the cosmic time gauge the accuracy of numerical integrations by verifying the con-
choicegge=—1 and the components of the usual FRW met-siraint equation(2.2).

ric a(t)?dQ for gi1, gop, andgss. Finally we replace the  Finally, we present a table of generalized sources, suffi-
derivatives ofa(t) with their corresponding expressions in cient to construct all of the equations of motion used in this
terms of the Hubble parameter=a/a. work, a generalized form of the dilaton kinetic tef#l), the

The very crudeness of this process enhances our belief iRicci scalar with arbitrary dilaton dependen¢a2), and
its correctness. Other consistency checks are possible; e.gariousR? combinationgA3), (A4), and(A5). k is the sign
we make the redundant check tHB}=T5=T3. We also of the spatial curvature:

LITPI=£($)g(V ),

o —[f V) :

o(ve_ H(D)9(V¢)?)
pq _f’

Ay

2 Vé)d)f’ ) . . . .
(V¢) ’=w+3f(¢>Hg'((V¢>2)¢+f'<¢>g'(<V¢>2)¢2+f(¢>g'(<V¢>2)¢—2f<¢>¢zg"((w>2)¢,

(V$)D)=—¢%, (A1)
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