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First lattice study of semileptonic decays ofLb and Jb baryons
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We present the results of the first lattice study of semileptonic decays of baryons containing ab quark.
Predictions for the decay distributions are given and the Isgur-Wise functions for heavy baryons are computed
for values of the velocity transfer up to aboutv51.2. The computations are performed on a 243348 lattice at
b56.2 using the Sheikholeslami-Wohlert action in the quenched approximation.@S0556-2821~98!04011-9#
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I. INTRODUCTION

The discovery of theLb baryon at the CERNe1e2 col-
lider LEP @1# and the observation of its semileptonic dec
@2# makes the study of the weak interactions of heavy ba
ons on the lattice timely. Knowledge of the strong interact
effects in semileptonic decays is necessary for the dete
nation of the Vcb element of the Cabibbo-Kobayash
Maskawa~CKM! matrix from the experimentally measure
rates and distributions. Up to nowuVcbu has been measure
from the inclusive and exclusive decays of heavy meson

In this paper we present the results of the first nonper
bative computation of the semileptonic decays of hea
baryons performed using lattice QCD, encouraged by
previous results on the spectroscopy@3#. The main purpose
of this first study is to establish whether such a calculatio
feasible, and to identify the principal sources of systema
uncertainties and statistical fluctuations. Nevertheless
spite of the exploratory character of this investigation, we
able to determine the main features exhibited by the six fo
factors which enter in the decay amplitude for the proces
Lb→Lc1 l n̄ andJb→Jc1 l n̄, and hence to extract a con
siderable amount of phenomenologically interesting inform
tion.

Using heavy quark symmetry it is possible to relate
six form factors to a unique baryonic Isgur-Wise functi
j(v) @4# where v5v•v8, and v and v8 are the four-
velocities of the initial and final state baryons. We comp
j(v), and by studying the dependence of the form factors
the mass~or masses! of the heavy quarkmQ we are able to
use heavy quark effective theory~HQET! to give an estimate
of theO(1/mQ) corrections to the infinite-mass results~for a
review and references to the original literature see Ref.@5#!.
The dependence of the Isgur-Wise function on the masse
the light quarks is more uncertain because of our limi

*Present address: Departamente de Fisica, Universidade de C
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data. In particular, we performed the simulations at two v
ues of the light-quark mass~a little larger and a little smaller
than that of the strange quark!. Although the results for these
masses are very encouraging, a significant uncertainty is
troduced when the results are extrapolated, as a functio
the masses of the light quarks, to the chiral limit. We pres
the results for the Isgur-Wise function for massless lig
quarks~relevant for the decayLb→Lc1 l n̄!, as well as for
the case in which one light quark is massless and the oth
the strange quark, relevant for the processJb→Jc1 l n̄.
One of the main goals of future simulations will be to dete
mine, in detail, the dependence ofj(v) on the masses of the
light quarks, and hence to reduce the uncertainty due to
extrapolation of the results to physical masses.

We obtain, for the decay rate integrated over the ran
vP@1,1.2#,

E
1

1.2

dv
dG

dv
~Lb→Lc1 l n̄ !51.424

15uVcbu21013 s21,

E
1

1.2

dv
dG

dv
~Jb→Jc1 l n̄ !51.625

14uVcbu21013 s21. ~1!

This range ofv corresponds to that for which we have th
most reliable results. We also obtain the slope parameter
the differential-decay-rate form factors which are to be co
pared to the slopes obtained by performing fits to experim
tal results fordG/dv versusv, for v near 1. We find

rB
251.161.0 ~2!

for Lb→Lcl n̄ decays and

rB
251.460.8 ~3!

for Jb→Jcl n̄ decays. A more detailed discussion is pr
sented in Sec. VI B. The plan of the paper is the followin
in Sec. II we recapitulate the theoretical framework for t
definition of the baryonic Isgur-Wise function. Section I
gives details of the simulation and Sec. IV presents the
sults of the numerical analysis of both two- and three-po

im-

r-
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functions. We study the dependence of the Isgur-Wise fu
tion on the velocity transfer and on the masses of the he
and light quarks in Sec. V. In Sec. VI, we consider the p
nomenological implications of our results for the baryon
Isgur-Wise function and give estimates of differential a
partially integrated decay rates. The main body of the pa
is accompanied by three appendixes where we lay out s
lengthy parts of the calculation and of the analysis.

For the reader who is not interested in the details of
computation we have attempted to write Sec. II~theoretical
framework! and VI ~results and implications for phenom
enology! in a self-contained way.

II. THEORETICAL BACKGROUND

In this section we outline the theoretical framewo
needed to study the semileptonic decays ofLb andJb bary-
ons. The two baryons differ in their light flavor content, b
are identical in all other quantum numbers and, in particu
they can be described in the same manner within the fra
work of HQET. For simplicity we will only consider here th
Lb decay.

The nonperturbative strong interaction effects in the
clusive semileptonic decay of theLb are contained in the
matrix elements of theV-A weak current Jm5 c̄gm(1
2g5)b which can be written in terms of six invariant form
factors f i ,gi with i 51,2,3, as follows:

^Lc
~s!~p8!uJmuLb

~r !~p!&5ūc
~s!~p8!@gm~ f 12g5g1!

1 ismnqn~ f 22g5g2!

1 iqm~ f 32g5g3!#ub
~r !~p!. ~4!

In Eq. ~4!, the momenta and polarizations of the initial a
final baryons have been explicitly indicated. The form fa
tors are functions ofq2, where q is the four-momentum
transfer (q5p82p). The decomposition above is conv
nient since, if the lepton masses are neglected, only
dominant form factorsf 1 andg1 contribute to the rate. Sinc
both the quarks destroyed and created byJm are heavy,
HQET provides a useful guide to the study of the form fa
tors. In addition, theLb baryon has a particularly simpl
structure in that it is composed of a heavy quark and li
degrees of freedom with zero total angular momentum,
that heavy quark symmetry has considerable predic
power. Expression~4! can be rewritten in terms of the veloc
ity variablesvm5pm /MLb

andvm8 5pm8 /MLc
using a differ-

ent set of form factors, which are functions of the veloc
transferv5v•v8:

^Lc
~s!~v8!uc̄gm~12g5!buLb

~r !~v !&

5ū c
~s!~v8!@gm~F12g5G1!1vm~F22g5G2!

1vm8 ~F32g5G3!#ub
~r !~v !. ~5!

In principle, we do not need to use HQET at all but c
evaluate the matrix elements in Eq.~4! directly. However, as
the inverse lattice spacing in our calculation is about
GeV, we cannot use the physicalb-quark mass in our com
putation. Instead, we evaluate the matrix element in Eq.~4!
c-
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for a variety ofb and c quark masses in the region of th
physical charm quark mass, and extrapolate the results to
physical values. HQET provides us with the theoretic
framework to perform this extrapolation. The hadronic for
factors Fi ,Gi can be expanded in inverse powers of t
heavy-quark masses; the nonperturbative QCD effects in
coefficients of this expansion are universal mass-indepen
functions of the velocity transfer. The analysis at leadi
order@4# establishes the important result that all the baryo
form factors are described by a single universal funct
called the~baryonic! Isgur-Wise functionj~v,m!,1

^Lc
~s!~v8!uc̄gn~12g5!buLb

~r !~v !&

5j~v,m!m̄c
~s!~v8!gn~12g5!ub

~r !~v !, ~6!

which is normalized to the identity atv51 and wherem is
the scale at whichj is renormalized. The relation betwee
the six form factors and the renormalized Isgur-Wise fun
tion is given at leading order by the expressions@5,6#

Fi~v!5Ĉi~v!j ren~v!, Gi~v!5Ĉi
5~v!j ren~v!, ~7!

where the scale dependence of the Isgur-Wise func
j~v,m! is reabsorbed into the definition of the short distan
coefficients Ĉi

(5)(v). The coefficient functionsĈi
(5) are

known up to orderas
2(z ln z)n, wherez5mc /mb is the ratio

of the heavy-quark masses andn50,1,2. The perturbative
expansion ofĈ1 and Ĉ1

5 is of the form

Ĉ1
~5!511d1

~5!~v!as1¯ , ~8!

whereas the expansion ofĈ2,3
(5) starts atO(as). The pertur-

bative corrections are rather small since the coefficients oas
are typically of order 1, for our range of masses and val
of v, so that Ĉ2,3

(5) are much smaller thanĈ1
(5) (Ĉ2,3

(5)

;0.2Ĉ1
(5)).

We also attempt below to obtain some information on
1/mQ corrections to the form factors. In order to includ
these corrections it is convenient to define a new funct
~see Ref.@5#!

ĵQQ8~v!5j ren1S L̄

2mQ
1

L̄

2mQ8
D F2x ren~v!1

v21

v11
j ren~v!G

~9!

which is also scale independent and normalized at zero
coil, since the functionx~v!, arising from the higher-
dimension operators in the HQET Lagrangian, vanishes
v51.

L̄ in Eq. ~9! is the binding energy of the heavy quark
the correspondingL baryon

L̄5MLb
2mb5MLc

2mc , ~10!

1We draw the reader’s attention to the fact that the Isgur-W
function which describes baryonic weak matrix elements is diff
ent from that entering in mesonic transitions. For simplicity w
shall use the name Isgur-Wise function to refer to the baryonic o
whenever this does not lead to ambiguities.
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6950 57K. C. BOWLER et al.
up to 1/mQ corrections. The quark masses in Eq.~10! are
generally taken to be pole masses, which contain renorm
ambiguities ofO(LQCD). For the form factors, the ambigu
ities due toL̄ are cancelled by those arising from the high
order terms in the perturbative series for the coefficie
Ĉi

(5)(v). In practice, we only know the coefficient

Ĉi
(5)(v) up to one-loop order, and we implicitly assume th

L̄ is obtained from some physical quantity with a simil
precision. As we note in Sec. VI, some of the freedom
what to assign to the coefficients and what to the pow
corrections cancels in the prediction for the physical fo
factors obtained from those calculated on the lattice.

ĵQQ8 is not a universal function and its dependence on
flavor of the heavy quarks must be studied in detail~see Sec.
V A !. The relation between the new functionĵQQ8(v) and
the form factors is given by

Fi~v!5Ni~v!ĵQQ8~v!1O~1/m
Q~8!

2
!,

Gi~v!5Ni
5~v!ĵQQ8~v!1O~1/m

Q~8!

2
!, ~11!

where the coefficientsNi
(5) contain both radiative and 1/mQ

corrections. The exact expressions are@5#

N1~v!5Ĉ1~v̄ !F11
2

v11 S L̄

2mQ
1

L̄

2mQ8
D G ,

N2~v!5Ĉ2~v̄ !S 11
2v

v11

L̄

2mQ
D

2@Ĉ1~v̄ !1Ĉ3~v̄ !#
2

v11

L̄

2mQ8
,

N3~v!5Ĉ3~v̄ !S 11
2v

v11

L̄

2mQ8
D

2@Ĉ1~v̄ !1Ĉ2~v̄ !#
2

v11

L̄

2mQ
, ~12!

N1
5~v!5Ĉ1

5~v̄ !,

N2
5~v!5Ĉ2

5~v̄ !S 11
2

v11

L̄

2mQ8
1

L̄

mQ
D

2@Ĉ1
5~v̄ !1Ĉ3

5~v̄ !#
2

v11

L̄

2mQ8
,

N3
5~v!5Ĉ3

5~v̄ !S 11
2

v11

L̄

2mQ
1

L̄

mQ8
D

1@Ĉ1
5~v̄ !2Ĉ2

5~v̄ !#
2

v11

L̄

2mQ
,

where the velocity transfer of the free quarkv̄ is given by

v̄5v1~v21!S L̄

mQ
1

L̄

mQ8
D . ~13!
on

-
s

t

f
r

e

At zero recoil, Luke’s theorem@7# protects the quantities
( iFi(1) andG1(1) fromO(1/mQ) corrections:

(
i

Fi~1!5(
i

Ĉi~1!1O~1/mQ
2 !

→
( iFi~1!

Nsum~1!
511O~1/mQ

2 !

G1~1!5Ĉ1
5~1!1O~1/mQ

2 !→
G1~1!

N1
5~1!

511O~1/mQ
2 !.

~14!

For degenerate quark masses,mQ5mQ8 , the coefficient

Nsum~v!5(
i

Ni~v!5Ĉ1~v̄ !1Ĉ2~v̄ !S 11
2~v21!

v11

L̄

2mQ
D

1Ĉ3~v̄ !S 11
2~v21!

v11

L̄

2mQ8
D ~15!

equals 1 at zero recoil, as required by vector current con
vation.

The coefficients~12! and~15! depend on the heavy-quar
masses and on the value of the baryonic binding energyL̄.
Different choices for the definition and values of the qua
masses to be used in these expressions lead to differe
which are ofO(as

2) andO(1/mQ
2 ), and hence are formally o

the size of the terms we are neglecting. Moreover, we fi
that different choices of the quark mass lead to negligi
differences in the form factors forF1 , ( iFi , andG1 . This is
not the case for the form factorsF2 ,F3 and G2 ,G3 , how-
ever, for which the coefficient functions are zero at tree le
and for which theO(1/mQ) terms represent a major contr
bution. In these cases we takemQ5ML2L̄, and L̄ is ob-
tained from a fit of the theoretical prediction for the for
factors to the lattice results~see Sec. V C!. In all other cases,
where the results are insensitive to the choice of the qu
mass, we take

mQ5
a21

4
~3MV1M P!2200 MeV, ~16!

whereMV andM P are the masses of the vector and pseu
scalar heavy-light mesons in lattice units as measured v
precisely from a previous simulation performed on the sa
set of configurations. 200 MeV is an estimate of the sp
averaged mesonic binding energy@8#. For the lattice spacing
as discussed in greater detail in Sec. III, we take

a2152.960.2 GeV. ~17!

The values of the quark masses obtained in this way
presented in Table I, and the coefficientsNi

(5) andĈi which
are used in the rest of this paper are reported in Tables II
III for LQCD5250 MeV andnf50 ~as may be more appro
priate for a quenched calculation!.

Below, we will proceed as follows. SinceN1
5 andNsumare

close to unity and the form factorsG1(v) and ( iFi(v) are
insensitive to the value ofL̄, we can use the measured valu
of these form factors to determine the Isgur-Wise funct
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reliably. For the individual vector form factorsF1 , F2 , and
F3 ~and similarly forG2 and G3! the situation is different
since theO(1/mQ) corrections are significant. From thes
form factors, using the Isgur-Wise function already obtain
we determine theL̄ parameter. Finally we use the combine

TABLE I. Values of the quark masses in physical units, f
a2152.9 GeV andL̄5200 MeV, as obtained from the pseud
scalar and vector meson masses in lattice units.~kQ is the heavy
quark’s hopping parameter.!

kQ M Pa MVa mQ ~GeV!

0.121 0.87423
14 0.89624

15 2.38
0.125 0.77323

13 0.79923
14 2.10

0.129 0.66523
13 0.69624

14 1.80
0.133 0.54723

13 0.58825
14 1.48
,

results to determine the form factors for the physicalb→c
decays.

III. DETAILS OF THE SIMULATION

Our calculation is performed with 60 SU~3! gauge field
configurations generated on a 243348 lattice atb56.2, us-
ing the hybrid over-relaxed algorithm described in Ref.@9#.
Since we are studying the decays of quarks whose masse
large in lattice units, we must control discretization errors.
order to reduce these errors, we use anO(a)-improved fer-
mion action originally proposed by Sheikholeslami a
Wohlert ~SW! @10#, given by

SF
SW5SF

W2 i
k

2 (
x,m,n

q̄~x!Fmn~x!smnq~x!, ~18!

whereSF
W is the Wilson action
g
TABLE II. Radiative andO(1/mQ) correction factors forv51.0 and 1.1.~kQ and kQ8 are the initial and final heavy quark hoppin
parameters.!

kQ→kQ8 v v̄ N1
5(v)5Ĉ1

5(v̄) Ĉ2(v̄) Ĉ1(v̄) Nsum(v)

0.121→0.121 1.0 1.0 0.961 0.019 0.961 1.0
0.121→0.125 1.0 1.0 0.965 0.024 0.965 1.01
0.121→0.129 1.0 1.0 0.971 0.03 0.971 1.02
0.121→0.133 1.0 1.0 0.98 0.04 0.98 1.04

0.125→0.121 1.0 1.0 0.956 0.016 0.956 0.992
0.125→0.125 1.0 1.0 0.959 0.02 0.959 1.0
0.125→0.129 1.0 1.0 0.965 0.027 0.965 1.01
0.125→0.133 1.0 1.0 0.973 0.037 0.973 1.03

0.129→0.121 1.0 1.0 0.949 0.011 0.949 0.982
0.129→0.125 1.0 1.0 0.952 0.016 0.952 0.989
0.129→0.129 1.0 1.0 0.957 0.022 0.957 1.0
0.129→0.133 1.0 1.0 0.964 0.031 0.964 1.02

0.133→0.121 1.0 1.0 0.938 0.0044 0.938 0.967
0.133→0.125 1.0 1.0 0.941 0.0086 0.941 0.973
0.133→0.129 1.0 1.0 0.945 0.015 0.945 0.984
0.133→0.133 1.0 1.0 0.952 0.024 0.952 1.0

0.121→0.121 1.1 1.15 0.932 0.018 0.932 0.968
0.121→0.125 1.1 1.15 0.937 0.022 0.937 0.977
0.121→0.129 1.1 1.16 0.944 0.028 0.944 0.99
0.121→0.133 1.1 1.17 0.955 0.037 0.955 1.01

0.125→0.121 1.1 1.15 0.927 0.014 0.927 0.96
0.125→0.125 1.1 1.16 0.931 0.018 0.931 0.969
0.125→0.129 1.1 1.16 0.938 0.024 0.938 0.981
0.125→0.133 1.1 1.17 0.948 0.033 0.948 1.0

0.129→0.121 1.1 1.16 0.92 0.01 0.92 0.95
0.129→0.125 1.1 1.16 0.924 0.014 0.924 0.958
0.129→0.129 1.1 1.17 0.93 0.02 0.93 0.97
0.129→0.133 1.1 1.17 0.94 0.028 0.94 0.99

0.133→0.121 1.1 1.17 0.91 0.0039 0.91 0.935
0.133→0.125 1.1 1.17 0.913 0.0077 0.913 0.943
0.133→0.129 1.1 1.17 0.919 0.013 0.919 0.954
0.133→0.133 1.1 1.18 0.929 0.021 0.929 0.973
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TABLE III. Radiative andO(1/mQ) correction factors forv51.2 and 1.3.~kQ andkQ8 are the initial and final heavy quark hoppin
parameters.!

kQ→kQ8 v v̄ N1
5(v)5Ĉ1

5(v̄) Ĉ2(v̄) Ĉ1(v̄) Nsum(v)

0.121→0.121 1.2 1.3 0.904 0.016 0.904 0.937
0.121→0.125 1.2 1.31 0.909 0.02 0.909 0.946
0.121→0.129 1.2 1.32 0.917 0.025 0.917 0.96
0.121→0.133 1.2 1.33 0.929 0.034 0.929 0.981

0.125→0.121 1.2 1.31 0.898 0.013 0.898 0.929
0.125→0.125 1.2 1.31 0.903 0.017 0.903 0.938
0.125→0.129 1.2 1.32 0.911 0.022 0.911 0.951
0.125→0.133 1.2 1.34 0.923 0.03 0.923 0.972

0.129→0.121 1.2 1.32 0.891 0.0091 0.891 0.919
0.129→0.125 1.2 1.32 0.896 0.013 0.896 0.928
0.129→0.129 1.2 1.33 0.903 0.018 0.903 0.941
0.129→0.133 1.2 1.35 0.915 0.026 0.915 0.961

0.133→0.121 1.2 1.33 0.881 0.0034 0.881 0.905
0.133→0.125 1.2 1.34 0.886 0.0069 0.886 0.913
0.133→0.129 1.2 1.35 0.893 0.012 0.893 0.925
0.133→0.133 1.2 1.36 0.904 0.019 0.904 0.945

0.121→0.121 1.3 1.45 0.876 0.015 0.876 0.907
0.121→0.125 1.3 1.46 0.882 0.018 0.882 0.916
0.121→0.129 1.3 1.48 0.89 0.023 0.89 0.93
0.121→0.133 1.3 1.5 0.903 0.031 0.903 0.951

0.125→0.121 1.3 1.46 0.871 0.012 0.871 0.899
0.125→0.125 1.3 1.47 0.876 0.015 0.876 0.909
0.125→0.129 1.3 1.49 0.884 0.02 0.884 0.922
0.125→0.133 1.3 1.51 0.897 0.028 0.897 0.943

0.129→0.121 1.3 1.48 0.864 0.0083 0.864 0.89
0.129→0.125 1.3 1.49 0.869 0.012 0.869 0.898
0.129→0.129 1.3 1.5 0.877 0.016 0.877 0.911
0.129→0.133 1.3 1.52 0.889 0.024 0.889 0.932

0.133→0.121 1.3 1.5 0.854 0.003 0.854 0.875
0.133→0.125 1.3 1.51 0.859 0.0062 0.859 0.884
0.133→0.129 1.3 1.52 0.866 0.011 0.866 0.896
0.133→0.133 1.3 1.54 0.878 0.018 0.878 0.916
ro
-
at

ga-
ting
rk
Ed-

ion
een

-
op-

int
SF
W5(

x
S q̄~x!q~x!2k(

m
@ q̄~x!~12gm!Um~x!q~x1m̂ !

1q̄~x1m̂ !~11gm!Um
† ~x!q~x!# D . ~19!

The use of the SW action reduces discretization errors f
O(ma) to O(asma) @10,11# provided one also uses ‘‘im
proved’’ operators, for example, those obtained by ‘‘rot
ing’’ the field of the heavy quarkQ:

Q~x!→S 12
1

2
g•DW DQ~x!. ~20!

Thus, to obtain anO(a)-improved evaluation of the matrix
element in Eq.~5!, we use a ‘‘rotated’’ improved current

Jm[Q̄8~x!G̃mQ~x!, ~21!
m

-

where

G̃m5S 11
1

2
g•DQ D ~12gm!g5S 12

1

2
g•DW D . ~22!

The gauge field configurations and the light quark propa
tors were generated on the 64-node i860 Meiko Compu
Surface at the University of Edinburgh. The heavy qua
propagators were computed using the Cray T3D, also at
inburgh.

In order to enhance the signal for the baryon correlat
functions, the light and heavy quark propagators have b
computed using the Jacobi smearing method@12#, at both the
sink and the source~SS!. Since smearing is not a Lorentz
invariant operation, it alters some of the transformation pr
erties of computed quantities. In a previous publication@3#,
we have shown that such an effect is evident in two-po



A
oi

u
le
e

th

nt

t

ra

u
a

at

re
or

six

ur-
be-

ac-
s.

e

vy-
und

the
m-

l-
nta
.

e
ea
te

57 6953FIRST LATTICE STUDY OF SEMILEPTONIC DECAYS . . .
baryonic correlators at nonzero momentum. In Appendix
we include a study of the smearing effects for SS three-p
functions.

Statistical errors are obtained from a bootstrap proced
@13#. This involves the creation of 1000 bootstrap samp
from the original set of 60 configurations by randomly s
lecting 60 configurations per sample~with replacement!. Sta-
tistical errors are then obtained from the central 68% of
corresponding bootstrap distributions as detailed in Ref.@14#.

In order to study semileptonic decays of the typeLb
→Lcl n̄ l on the lattice, we consider the following three-poi
correlators:

@C~ tx ,ty!#m
Q→Q85(

xW
(

yW
e2 ipW 8•xWe2 iqW •yW

3^OQ8~x!@Jm~y!#Q→Q8ŌQ~0!&,

~23!

where the spinorial indices are implicit. The operator

OQ~x!5eabc~ l 1
aTCg5l 2

b!Qc ~24!

is the interpolating operator for theL baryon, and the curren
which mediates the decay of a heavy quarkQ into a second
heavy quarkQ8 is given in Eq.~21!. l 1 andl 2 represent light

quark fields. The three-point function@C(tx ,ty)#m
Q→Q8 can

be written in terms of quark propagators, as

@C~ tx ,ty!#m
Q→Q8

52K (
yW

@Sc8d~0,y;tx ,pW !Q8GmSQ
dc8~y,0!#e2 iqW •yW L , ~25!

whereSQ
dc(y,0) is the propagator of theQ quark fromy to

the origin in the presence of a background field configu
tion,

Scd~0,y;tx ,pW !Q8

5eabcea8b8c8(
xW

e2 ipW •xWTr@Sl 1
aa8T~x,0!Cg5Sl 2

bb8~x,0!g5C#

3SQ8
cd

~x,y!, ~26!

where T represents the transpose in spinor space, ang
brackets denote the average over gluon configurations,
a,b,c,d,a8,b8,c8 are color indices.Sl 1

and Sl 2
are the

propagators of the two light quarks. The extended propag
~26! can be evaluated using the standard source method
viewed in Ref.@15#.

In the limit of largetx and tx2ty ~in the forward part of
the lattice!, where the ground state contribution to the cor
lation function should dominate, we can rewrite the c
relator as follows:2

2This and the following expressions are only correct in the cas
which local operators are used. The actual case of smeared-sm
correlators, which is discussed in Appendix A, is more complica
but conceptually similar.
,
nt

re
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e

-

lar
nd

or
re-

-
-

@C~ tx ,ty!#m
Q→Q85

ZZ8

4EE8
e2E8~ tx2ty!e2Ety

3@~p” 81M 8!Fm
Q8,Q~p”1M !#, ~27!

where

E5AM21upW u2, E85AM 821upW 2qW u2,

M5MLQ
, M 85MLQ8

,

pm5~E,pW !, pm8 5~E8,pW 2qW !,

Z5Z@LQ,upW u#, Z85Z@LQ8,upW 2qW u#. ~28!

The weak matrix element can be written in terms of the
lattice form factors:

^LQ8
~r !

~pW 8!u@Jm~0,0W !#Q→Q8uLQ
~s!~pW !&

5ūQ8
~r !

~pW 8!Fm
Q8,Q~p8,p!uQ

~s!~pW ! ~29!

with

Fm
Q8,Q~p8,p!5@F1

L~v!gm1F2
L~v!vm1F3

L~v!vm8 #

2@G1
L~v!gm1G2

L~v!vm1G3
L~v!vm8 #g5 ,

~30!

whereuQ(Q8)
(s),(r ) are the spinors of the heavy baryons ands and

r are helicity indices. The lattice form factorsFi
L andGi

L are
related to the physical form factorsFi and Gi through the
renormalization constants of the lattice vector and axial c
rent, respectively. This will be discussed in some detail
low.

IV. DETAILS OF THE NUMERICAL ANALYSIS

In this section we describe our procedure for the extr
tion of the form factors from the lattice correlation function

A. Analysis of two-point correlation functions
at nonzero momentum

The wave-function factorsZ,Z8 and the energies which
appear in Eq.~27! can be obtained from the analysis of th
appropriate two-point correlation functions

C2
Q~pW ,t !5(

xW
e2 ipW •xW^OQ~xW ,t !ŌQ~0W ,0!&. ~31!

This correlator was evaluated for four values of the hea
quark hopping parameter corresponding to masses aro
that of the charm quark, and for three combinations of
light-quark masses, as shown in Table IV. We have co
puted the correlator for momenta up toupW u52pmin , where
pmin52p/La5p/12a is the minimum nonzero momentum a
lowed on our lattice. For the analysis, equivalent mome
have been averaged to reduce the statistical fluctuations

in
red
d
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For the actual case of smeared-smeared operators~see
Appendix A!, for large time separations and imposing an
periodic boundary conditions in time, the correlatorC2

Q be-
comes

C2
Q~ t,pW !5Zs

2~ upW u!H e2EtFE1M2a2~E2M !

4E
1

1
E1M1a2~E2M !

4E
g02

2a

4E
pW •gW G2e2E~T2t !

3FE1M2a2~E2M !

4E
1

2
E1M1a2~E2M !

4E
g02

2a

4E
pW •gW G J , ~32!

wherepm is defined in Eq.~28!, p̃ m5(E,2pW ) is the four-
momentum of the antibaryon propagating in the backw
part of the lattice, andZs , a are the amplitudes of the
smeared operator@defined in Eqs.~A4! and ~A6!#.

At zero momentum, the analysis is particularly simp
since the only nonzero components are independent of
unphysical amplitudea. Details of this case are given in Re
@3#. At finite momentum, we have used both the diagonal a
the off-diagonal components of the spinorial matrix to e
tract the energy from the exponential falloff. The values
the amplitudesZs anda were obtained by fitting separate
the contributions proportional to the identity, tog0 and to
g i , and by taking suitable linear combinations of the over
factors, as explained in the appendix of Ref.@3#. The results
of these fits, for those mass combinations which are relev

TABLE IV. Quark hopping parameter combinations used in t
calculation of baryon two-point functions.~k l1 andk l2 are the two
light-quark hopping parameters andkQ , that of the heavy quark.!

k l1 /k l2 kQ

0.14144/0.14144 0.121 0.125 0.129 0.133
0.14144/0.14226 0.129
0.14226/0.14226 0.129
-

d

he

d
-
f

ll

nt

to the present study, and for momenta up toupW u5&p/12a
are reported in Tables V and VI.

The case corresponding tok l15k l250.14144 is further
studied in detail to check the precision with which the d
persion relations are satisfied as the momentum of the ba
is increased. It is nowadays customary@16,17# to replace the
continuum dispersion relation~CDR!

a2E25a2m21p2a2 ~33!

with the so-called lattice dispersion relation~LDR!

a2E25a2m21sin2~pa!, ~34!

which is suggested by the form of the free fermionic prop
gator on a discrete lattice. For the heavy-quark masse
Table V the two dispersion relations yield essentially ind
tinguishable results for the energy atupW u5pmin . In addition,
the theoretical predictions coincide with the measured v
ues, confirming that the systematic effects at this low va
of the momentum are negligible. For momentumupW u
5&pmin , we note that the predicted value is about 1
larger than the measured one, although always compa
within one sigma. Given this result, it seems that the corr
tion obtained with the lattice dispersion relation goes in
right direction. However, much more precise data are nee
to draw a firm conclusion on this issue.

Finally, for the conversion of our values for masses a
energies into physical units we need an estimate of the
verse lattice spacing in GeV. Following Ref.@3#, we use the
value given in Eq.~17!. The error in Eq.~17! is large enough
to encompass all our estimates fora21 from quantities such
asmr , f p ,mN , the string tensionAK, and the hadronic scale
R0 discussed in Ref.@18#.

B. Three-point functions and lattice form factors

In this subsection we explain our procedure for extract
the form factors from the computed three-point~and two-
point! correlation functions. We have computed the thre
point functions for the mass combinations tabulated in Ta
ters
TABLE V. Energies of theL baryon in lattice units for all the momenta and quark hopping parame
relevant to the present study.

k l1 /k l2 kQ pW 5(0,0,0) pW 5(2p/La,0,0) pW 5(2p/La,2p/La,0)

0.14144/0.14144 0.121 1.13827
17 1.16729

19 1.192212
113

0.14144/0.14144 0.125 1.04026
16 1.07229

19 1.099212
113

0.14144/0.14144 0.129 0.93826
16 0.97327

18 1.002213
113

0.14144/0.14144 0.133 0.82926
16 0.86827

18 0.901213
114

0.14144/0.14226 0.129 0.91027
18 0.94329

19 0.972214
112

0.14226/0.14226 0.129 0.87628
19 0.914210

110 0.948217
117

chiral/chiral 0.129 0.807210
115

chiral/strange 0.129 0.85326
114
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TABLE VI. AmplitudesZs anda obtained from the analysis of the finite momentum two-point functio

pW 5(0,0,0) pW 5(pmin0,0) pW 5(pmin ,pmin,0)

kQ Zs
23104 Zs

23104 a Zs
23104 a

(k11,k12)5(0.14144,0.14144)
0.121 4.44238

148 2.85232
140 0.6627

17 1.96232
142 0.5628

19

0.125 4.41237
148 2.86232

140 0.7027
17 1.95232

140 0.6028
110

0.129 4.35236
145 2.84230

135 0.7727
17 1.94232

140 0.6629
111

0.133 4.17235
141 2.75228

134 0.8328
17 1.87231

140 0.73211
113

(k l1 ,k l2)5(0.14144,0.14226)
0.129 4.02236

142 2.56229
136 0.7628

18 1.68230
139 0.68211

113

(k l1 ,k l2)5(0.14226,0.14226)
0.129 3.77275

187 2.42232
138 0.7128

19 1.60233
145 0.65212

115
o
c

rk

th
s

th

be
io

rk

i
rs
n

e

ch
tion

re-
d in

ich
VII. In order to study the dependence of the form factors
the masses of the heavy quarks, we have computed the
relation functions for all combinations ofkQ andkQ8 taken
from 0.121, 0.125, 0.129, 0.133, but with the light-qua
masses fixed byk l15k l250.14144~which is close to that of
the strange quark!. On the other hand, the dependence on
light-quark masses was studied by keeping fixed the mas
the initial and final heavy quarkskQ5kQ850.129 which is
very close to that of the charm quark, and considering
three light hopping-parameter combinationsk l15k l2
50.14144, k l150.14226, k l250.14144, and k l15k l2
50.14226. In light of the encouraging results obtained
low, we envisage the possibility of repeating the calculat
on a larger sample of heavy-and light-quark masses.

We measure the six form factors for the different qua
masses from the three-point functions~23!, whose expres-
sion, for large values oftx and tx2ty in the forward part of
the lattice and for local interpolating operators was given
Eq. ~27!. The more complicated case of SS correlato
which is explained in detail in Appendix A, can be writte
schematically as follows:
n
or-

e
of

e

-
n

n
,

@C~ t !#m
Q→Q8

5
ZZ8

16EE8
e2E8~T/22t !e2Et$Vm~a,b,M ,M 8,pW ,pW 8!F1

L~v!

1W~a,b,M ,M 8,pW ,pW 8!@vmF2
L~v!1vm8 F3

L~v!#

2Am~a,b,M ,M 8,pW ,pW 8!G1
L~v!

1B~a,b,M ,M 8,pW ,pW 8!@vmG2
L~v!1vm8 G3

L~v!#%,

~35!

where we have settx5T/2 ~which is the value we chose in
our computations!, and have renamed the remaining tim
variablety→t. The matricesV,W, A, B are different linear
combinations of the Dirac matrices, with coefficients whi
depend on the arguments shown. The overall normaliza
factor, as well as the four matricesV, W, A, B can be fully
reconstructed from the two-point functions at the cor
sponding values of the masses and momenta, as illustrate
Sec. IV A.

We will now consider separately the two cases in wh
we keep either the axial or vector currents from theV-A
func-
TABLE VII. Quark hopping parameter combinations used in the calculation of baryon three-point
tions. ~k l1 andk l2 are the two light-quark hopping parameters whilekQ andkQ8 are those of the initial and
final heavy quarks.!

k l1 /k l2 kQ→kQ8

degenerate transitions
0.14144/
0.14144 0.121→0.121 0.125→0.125 0.129→0.129 0.133→0.133
0.14144/
0.14226 0.129→0.129
0.14226/
0.14226 0.129→0.129

nondegenerate transitions
0.14144/ 0.121→0.125 0.121→0.129 0.121→0.133
0.14144 0.125→0.121 0.125→0.129 0.135→0.133

0.129→0.121 0.129→0.125 0.133→0.133
0.133→0.121 0.133→0.125 0.133→0.129
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FIG. 1. Examples of the plateaux used in the fit to~from left to right, top to bottom! G1(v), G2(v), S iFi(v), andF2(v). k l15k l2

50.14144,kQ5kQ850.121, the initial particle is at rest and the final particle has momentum (p8,0,0), wherep852p/La.
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current which mediates the semileptonic weak decays
heavy baryons. The following discussion is based on E
~A8! and ~A9! in Appendix A.

1. Analysis of the axial form factors

The freedom to choose the Lorentz indexm and the spinor
components appropriately allows us to extract the requ
form factors efficiently.3 It is convenient to think of the four-
by-four spinorial matrix as subdivided into four two-by-tw
matrices, as explained in Appendix B. We find the followin

~1! Current indices m5 i with i 51,2,3. The large
components4 of Ai are located in the top~bottom! diagonal
submatrix in the forward~backward! part of the lattice. The
large components ofB are located in the top-right~bottom-
left! corner submatrix. Thus the contributions of the for
factor G1

L can be separated from that ofG2,3
L .

3Alternatively we could use suitable projection operators in spi
space.

4Here and in the following, we refer to the numerical coefficie
of the form factors in Eq.~35! as large if they are proportional t
the energy or mass of the baryon, and as small if they are pro
tional to the spatial momentump.
of
s.

d

.

~2! Current indexm50. The large components of bothA0
andB are located in the top-right~bottom-left! corner matri-
ces in the forward~backward! part of the lattice. So the thre
form factors contribute to the same spinorial componen
making the extraction of the form factors very uncerta
Therefore, the equations obtained from the current with
dex m50 will not be considered in the analysis below.

We conclude that from an analysis of the correlators w
index m51,2,3, it is possible to obtain a clean straightfo
ward determination of the form factors. We consider t
asymptotic form of Eq.~35!, fitting for either G1

L or G2,3
L

separately, depending on the particular spinorial compon
under study.

Once the time-dependent factor in Eq.~35! has been di-
vided out, we observe long and stable plateaux, cente
aroundt512. As an example we exhibit in Figs. 1~a! and
1~b!, the plateaux for the form factorsG1

L andG2
L , for one

set of masses and choice of momenta. We have fittedG1
L for

three, five, and seven time slices. The central values of
fits are insensitive to the choice of fitting interval, and
order to avoid possible contaminations due to exited sta
we have decided to restrict the fitting range to three ti
slices centered aroundt512. ThexDOF

2 for these fits were
always very reasonable, ranging fromxDOF

2 ;0.5 to xDOF
2

;2.
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As was discussed in Sec. II, the form factors are relate
the physical renormalized Isgur-Wise function through
multiplicative renormalization which takes into account t
short-distance QCD corrections. Furthermore an additio
renormalization constant (ZA) must be introduced in order t
relate the lattice improved axial current~22! to the con-
tinuum one. Perturbative and nonperturbative calculation
ZA are available in the literature@19,20#, but it can also be
estimated nonperturbatively in this computation. As can
seen from Eqs.~14!, G1(1)/N1

5(1) is equal to 1 up to 1/mQ
2

and two-loop corrections. If we make the reasonable assu
tion that these corrections are small, a measuremen
G1

L(1)/N1
5(1) will give us a nonperturbative estimate

ZA
21. For degenerate transitions,

N1
5~1!

G1
L~1!

50.9828
18 at k l15k l250.14144 andkh50.133,

N1
5~1!

G1
L~1!

50.9728
18 at k l15k l250.14144 andkh50.129,

N1
5~1!

G1
L~1!

50.9828
19 at k l15k l250.14144 andkh50.125,

N1
5~1!

G1
L~1!

50.9829
110 at k l15k l250.14144 andkh50.121,

~36!

to be compared with the nonperturbative estimate ofZA ,
obtained for light quarks@20#

ZA
nonpert51.0421

11. ~37!

The coefficientsN1
5 used in Eqs.~36! were computed from

expressions~12!. Within the statistical precision of our ca
culation, we have no evidence of discretization errors no
O(1/mQ

2 ) corrections~assuming that these two effects do n
partially cancel, which is very unlikely given the range
masses we consider!. Indeed, we observe that the four valu
in Eq. ~36! are exceptionally stable with the quark mass.

In Tables VIII, IX, and X, we present our results, for th
quantity

ĵQQ8~v!5
G1

L~v!

G1
L~1!

N1
5~1!

N1
5~v!

~38!

for all the quark masses and for initial and final momenta
to upW u,upW 8u5&. It follows from the above discussion tha
this quantity is independent of the lattice renormalizat
constantZA .

We observe the following.
Our determinations ofĵQQ8(v) have statistical errors

ranging from 3 to 15%. As a general rule, we note that
the same heavy-quark masses, errors increase with the
mentum of the final baryon. Furthermore, errors are am
fied as the light quarks approach the chiral limit.

The estimates ofĵQQ8(v) obtained from transitions with
final momentumupW 8u5&pmin are in agreement with those o
similar v obtained from channels with lower momentum
to

al

of

e

p-
of

f
t

p

r
o-

i-

However, since these points are more affected by discre
tion errors, we do not include them in our determination
the Isgur-Wise function.

The estimates reported in Tables VIII and IX are al
plotted in Fig. 2, for all the degenerate and nondegene
transitions, atk l15k l250.14144. We have included all th
points obtained from baryons either at rest or with mome
upW u,upW 8u5pmin . The interpretation of the dependence
ĵQQ8(v) on the velocity transfer is postponed to Sec. V A

We conclude this section with a comment on the deter
nation of the suppressed form factorsG2

L andG3
L . As can be

observed from Fig. 1~b!, the signal is very noisy and com
patible with zero. Because of this feature, which is comm
to most of the momentum channels, we are unable to de
mine these form factors, within the available statistics.

2. Analysis of the vector form factors

The analysis of the vector form factors proceeds along
same lines as those followed for the axial form factors, w
some significant differences. It is interesting to measure
only the three form factorsFi

L , with i 51,2,3, separately, bu
also their sum because of the normalization condition~14!.
Indeed, as we will see below, it proves to be easier to de
mine the sum precisely than the individual form factors.

We now study the different spinor components of the t
matricesVm ,W for different values of the indexm. As was
the case for the axial current, the discussion is based on
~A8! and ~A9! in Appendix A. We find the following.

~1! For indicesm5 i with i 51,2,3, the large component
of Vi are located in the top-right~bottom-left! submatrix in
the forward~backward! part of the lattice, whereas the non
vanishing components ofW are located along the diagona
Thus, the form factorsF1

L and F2,3
L give separate contribu

tions to different spinorial components. However, as sho
in Appendix B, spinorial components located in the o
diagonal submatrices are always proportional to the am
tudesa andb and thus are noisier than those located in
diagonal submatrices. From this feature we can already
ticipate that the determination ofF1

L is going to be less pre
cise than that ofG1

L .
~2! For current indicesm50: the large components o

bothVm andW are located in the top~bottom!-diagonal sub-
matrix in the forward~backward! part of the lattice. In this
case one obtains the linear combination of the three fo
factors F1

L1v0F2
L1v08F3

L which is approximately equal to
F11F21F3 at the low momenta which we are using. The
channels have a very clean and precise signal, which is
reason for the accurate determination of the sum of the fo
factors.

In view of the above discussion, it has proved to be a
vantageous to consider equations both withm5 i and with
m50, minimizing the full covariance matrix with respect t
the three form factors, and reconstructing their sum. E
amples of plateaux obtained from channels withm50 and
with m5 i are shown in Figs. 1~c! and 1~d!, respectively. As
expected, the relative statistical error is smaller in the fi
case, and we find that the stability and symmetry of the p
teau is also better. In extracting the values of the form fact
we have again restricted the fitting range to three time sli
centered aroundt512, and we find very reasonable values
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TABLE VIII. Estimates of the functionĵQQ8 as obtained from the axial form factorG1 . All the transitions, corresponding to initial heav
k50.121 and 0.125 and initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last digit or beyond

k l150.14144, k l250.14144

pW ,pW 8
@pmin#

0.121→0.121 0.121→0.125 0.121→0.129 0.121→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.026 0.9723

13 1.030 0.9623
13 1.037 0.9423

14 1.048 0.9124
14

~1,0,0!
~0,0,0!,

1.050 0.9528
16 1.060 0.9328

17 1.073 0.9127
18 1.09 0.9028

17

~1,1,0!
~1,0,0!,

1.052 0.94212
111 1.057 0.92210

110 1.064 0.9129
112 1.07 0.8928

110

~0,1,0!
~1,0,0!,

1.000 1.02211
110 1.000 0.95212

111 1.001 0.94212
112 1.003 0.93212

112

~1,0,0!
~1,0,0!,

1.10 0.8128
19 1.11 0.7628

19 1.13 0.7427
19 1.15 0.7027

18

(21,0,0)
~1,0,0!,

1.026 0.9525
14 1.026 0.9524

15 1.026 0.9524
15

~0,0,0!
~1,0,0!,

1.077 0.9522
12 1.09 0.92216

117 1.10 0.88215
118 1.12 0.80215

117

~0,1,1!

pW ,pW 8
@pmin#

0.125→0.125 0.125→0.121 0.125→0.129 0.125→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.030 0.9523

13 1.026 0.9923
12 1.037 0.9423

14 1.048 0.9124
15

~1,0,0!
~0,0,0!,

1.060 0.9528
16 1.050 0.9628

16 1.073 0.9327
18 1.09 0.8927

18

~1,1,0!
~1,0,0!,

1.062 0.91210
110 1.057 0.92210

110 1.069 0.8928
111 1.08 0.8728

110

~0,1,0!
~1,0,0!,

1.000 1.02211
110 1.000 0.97212

111 1.000 0.95211
113 1.002 0.94212

113

~1,0,0!
~1,0,0!,

1.12 0.7628
18 1.11 0.7528

110 1.14 0.7126
19 1.16 0.6726

18

(21,0,0)
~1,0,0!,

1.030 0.9425
15 1.030 0.9424

16 1.030 0.9424
15

~0,0,0!
~1,0,0!,

1.09 0.90216
117 1.08 0.91216

117 1.11 0.85215
118 1.13 0.78214

117

~0,1,1!
s-

%
%
on

i
d
ee
le
d
n

sti-
ent
xDOF
2 . Confirming the indications of the preliminary discu

sion above, we measureF1
L , F2

L , andF3
L individually with

relatively large statistical errors, ranging from 6 to 20
whereas the errors on their sum are never more than 10

In order to extract the form factors from the correlati
functions measured on the lattice it is necessary to determ
the renormalization constantZV which relates the lattice an
physical vector currents. This constant has previously b
determined nonperturbatively, by studying the matrix e
ments of the charge operator between meson states, an
results are reviewed in Appendix C. Noting that for dege
erate transitions between baryon states at rest,ZVV0

L is the
charge operator, we find here that

15ZVS (
i

Fi
L~1! D . ~39!
,
.

ne

n
-
the
-

The numerical values ofZV obtained in this way are

ZV50.8426
17 at k l15k l250.14144 andkh50.133,

ZV50.8527
18 at k l15k l250.14144 andkh50.129,

ZV50.8727
19 at k l15k l250.14144 andkh50.125,

ZV50.8828
19 at k l15k l250.14144 andkh50.121,

~40!

which are in agreement with the other nonperturbative e
mates presented in Appendix C, obtained with a differ
method. Below we will useZV5Nsum(1)/S iFi(1) to normal-
ize the lattice vector current. The factor ofNsum(1) is re-
quired when considering nondegenerate transitions@see Eqs.
~14!#.
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TABLE IX. Estimates of the functionĵQQ8 as obtained from the axial form factorG1 . All the transitions, corresponding to initial heav
k50.133 and 0.129 and initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last digit or beyond

k l150.14144, k l250.14144

pW ,pW 8
@pmin#

0.133→0.133 0.133→0.121 0.133→0.125 0.133→0.129

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.048 0.9123

13 1.026 1.0223
12 1.030 1.0023

13 1.037 0.9623
13

~1,0,0!
~0,0,0!,

1.09 0.8228
16 1.050 0.9627

17 1.08 0.9727
17 1.073 0.9327

16

~1,1,0!
~1,0,0!,

1.10 0.8228
19 1.074 0.8829

110 1.07 0.8728
110 1.09 0.8528

19

~0,1,0!
~1,0,0!,

1.000 1.02213
112 1.003 0.98211

112 1.002 0.98212
113 1.001 0.97213

112

~1,0,0!
~1,0,0!,

1.20 0.5726
16 1.15 0.6927

110 1.16 0.6727
19 1.173 0.6326

17

(21,0,0)
~1,0,0!,

1.048 0.9026
16 1.048 0.9125

16 1.048 0.9225
15

~0,0,0!
~1,0,0!,

1.15 0.71213
114 1.100 0.83214

116 1.111 0.80213
116 1.13 0.76214

115

~0,1,1!

pW ,pW 8
@pmin#

0.129→0.129 0.129→0.121 0.129→0.125 0.129→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.037 0.9423

13 1.026 1.0123
13 1.030 0.9823

13 1.048 0.9124
14

~1,0,0!
~0,0,0!,

1.073 0.9328
16 1.050 0.9727

18 1.060 0.9627
17 1.09 0.8828

16

~1,1,0!
~1,0,0!,

1.076 0.8829
19 1.064 0.9129

111 1.069 0.8928
110 1.09 0.8428

18

~0,1,0!
~1,0,0!,

1.000 1.02211
111 1.001 0.98211

112 1.000 0.97212
113 1.001 0.96213

113

~1,0,0!
~1,0,0!,

1.15 0.6826
17 1.13 0.7227

110 1.14 0.7127
19 1.17 0.6326

16

(21,0,0)
~1,0,0!,

1.037 0.9225
16 1.037 0.9224

16 1.037 0.9224
14

~0,0,0!
~1,0,0!,

1.11 0.81214
116 1.09 0.89214

117 1.10 0.86214
117 1.13 0.74214

114

~0,1,1!
e

n

e

m

e as

. In
we
ich
In Tables XI, XII, and XIII, we present our results for th
quantity

ĵQQ8~v!5
F1

L~v!1F2
L~v!1F3

L~v!

S iFi
L~1!

Nsum~1!

Nsum~v!
~41!

for all the combinations of quark masses and for initial a
final momenta up toupW u,upW 8u5pmin . The results reported in
Tables XI and XII are also plotted in Fig. 2, for all th
degenerate and nondegenerate transitions, atk l15k l2

50.14144. The study of the dependence ofĵQQ8(v) on the
velocity transfer is again postponed to Sec. V A.

We end this subsection with a discussion of the deter
nation of the form factorsF1 , F2 , and F3 separately. The
form factorsF2 andF3 start atO(as) in perturbation theory
and at next-to-leading order in the 1/mQ expansion and they
are thus expected to be small relative toF1 and sensitive to
d

i-

the values of the heavy-quark masses~which in the present
study vary by almost a factor 2:mqP@1.48,2.38#!. In Fig. 3,
we plot our estimates of

F2,3~v!5F2,3
L ~v!

Nsum~1!

S iFi
L~1!

. ~42!

We observe that these form factors are small and negativ
one would expect from Eq.~12!. Our measurements of

F1~v!5F1
L~v!

Nsum~1!

S iFi
L~1!

~43!

for degenerate transitions are also presented in Fig. 3
order to decrease the number of parameters in the fit,
restricted the analysis to degenerate transitions, for wh
one can use the symmetry relationF2(v)5F3(v).
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TABLE X. Estimates of the functionĵQQ8 as obtained from the axial form factorG1 . All the degenerate
transitionskQ5kQ850.129 and light masses corresponding tok l1 ,k l250.14144, 0.14226 and 0.14226
0.14226 with initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last
digit or beyond.

0.129→0.129

pW ,pW 8
@pmin#

k l150.14144, k l250.14226 k l150.14226, k l250.14226

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.040 0.9224

13 1.043 0.9226
15

~1,0,0!
~0,0,0!,

1.078 0.9529
16 1.084 0.98210

17

~1,1,0!
~1,0,0!,

1.081 0.85211
112 1.088 0.80215

118

~0,1,0!
~1,0,0!,

1.000 1.02211
111 1.000 0.85225

124

~1,0,0!
~1,0,0!,

1.16 0.6829
19 1.18 0.72212

113

(21,0,0)
~1,0,0!,

1.121 0.77219
120 1.131 0.59225

127

~0,1,1!
m
a

in
in

na
e

io
rk
W

th

by

ss,

tors
ing
As anticipated above, the errors in the individual for
factors are larger than that in their sum. To make this cle
we plot in Fig. 4 the form factorsF1 ,F2 and the sumF1
12F2 for the degenerate channel with heavy quark hopp
parameterkQ50.121. It can be seen that the fluctuations
F1 andF2 partially compensate each other in the determi
tion of the functionĵQQ8 . A more detailed discussion of th
behavior of bothF1 and F2,3 and of their relation with the
Isgur-Wise function, will be presented in Sec. V A.

V. THE ISGUR-WISE FUNCTION

In this section we study the dependence of the funct
ĵQQ8(v) on the masses of the initial and final heavy qua
so as to extract the corresponding Isgur-Wise function.
also study its dependence on the velocity transferv, and the
mass of the light quarks. We further attempt to estimate
size of 1/mQ corrections.
r,

g

-

n
s
e

e

A. ĵQQ8„v… as a function of v and of heavy-quark mass

As discussed in Sec. II, both the axial form factorG1 and
the sum of the vector form factorsS iFi , are protected from
1/mQ corrections at zero recoil@see Eq.~14!#. Away from
zero recoil, these quantities are no longer protected
Luke’s theorem and they suffer 1/mQ corrections. We recall
their expansion in powers of the inverse heavy-quark ma
given in Eqs.~11! and ~9!:

G1~v!

N1
5~v!

5
S iFi~v!

Nsum~v!
5 ĵQQ8~v!5j ren~v!1S L̄

2mQ
1

L̄

2mQ8
D

3F ~v21!

~v11!
j ren~v!12x ren~v!G1O~1/mQ~8!

2
!.
~44!

In this section we study the dependence of the form fac
on v in order to extract some phenomenologically interest
FIG. 2. ĵQQ8(v), as obtained from axial~left! and vector~right! current matrix elements.
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TABLE XI. Estimates of the functionĵQQ8 as obtained from the vector form factor combinationS iFi . All the transitions, corresponding
to initial heavyk50.121 and 0.125 and initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last digit
or beyond.

k l150.14144, k l250.14144

pW ,pW 8
@pmin#

0.121→0.121 0.121→0.125 0.121→0.129 0.121→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.026 1.0023

13 1.030 0.9425
14 1.037 0.9124

13 1.048 0.8424
14

~1,0,0!
~1,0,0!,

1.052 0.9929
110 1.057 0.87210

110 1.064 0.8329
19 1.074 0.7928

19

~0,1,0!
~1,0,0!,

1.000 1.00211
110 1.000 1.08213

112 1.001 0.97213
111 1.003 0.86212

111

~1,0,0!
~1,0,0!,

1.103 0.7329
19 1.113 0.7427

18 1.127 0.6727
17 1.145 0.6126

16

(21,0,0)
~1,0,0!,

1.026 0.9925
14 1.026 0.9824

14 1.026 0.9524
13

~0,0,0!

pW ,pW 8
@pmin#

0.125→0.125 0.125→0.121 0.125→0.129 0.125→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.030 0.9923

12 1.026 0.9423
12 1.037 0.9224

13 1.048 0.8524
14

~1,0,0!
~1,0,0!,

1.062 0.9529
19 1.057 0.86210

110 1.069 0.8329
19 1.080 0.7828

18

~0,1,0!
~1,0,0!,

1.000 1.00212
111 1.000 1.14214

113 1.000 1.03214
111 1.002 0.91213

111

~1,0,0!
~1,0,0!,

1.124 0.6828
18 1.113 0.7227

18 1.138 0.6626
17 1.157 0.5926

15

(21,0,0)
~1,0,0!,

1.030 0.9426
15 1.030 0.9724

14 1.030 0.9424
14

~0,0,0!
in
in
te
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quantities. In particular, the slope ofĵQQ8(v) at zero recoil
can be related to the slope of the physical form factors~see
also Sec. VI! through the correction coefficients given
Eqs. ~11! and ~12!. The form factors, in turn, are needed
the calculation of the decay rates and asymmetry parame

In order to obtain reliable estimates of phenomenolog
quantities, we must learn how to extrapolate our data,
tained for initial and final heavy quarks with masses arou
that of the charm quark, to the physicalb→c decays. HQET
provides us with the guide for this extrapolation, and it
important to understand the role of the 1/mQ corrections,
present in the function~44!, and to check that higher-orde
corrections are small.

With the aim of reducing the statistical error we explo
the relation~44!, and fit the vector and axial data togethe
This is correct up to terms ofO(1/mQ

2 ) and two-loop pertur-
bative corrections, which we neglect throughout this stu
Nearv51 we expandĵQQ8(v) as a linear function ofv,

ĵQQ8~v!512r2~v21!1O@~v21!2#, ~45!

and we study whether there is any dependence of the s
parameterr2 on the masses of the heavy quarks. Our res
are obtained for the set of initial- and final-state heavy-qu
rs.
l
-

d

.

.

pe
ts
k

masses given in Table VII, but with fixed light-quark mass
around that of the strange (k l15k l250.14144). It can be
seen from Fig. 5 that there is no statistical evidence o
dependence ofĵQQ8(v) on the heavy-quark mass. In order
quantify this statement, we have fitted separately to the fu
tion ~45!, each of the four data sets corresponding to deg
erate transitions obtaining

r252.423
13 at kQ5kQ850.121,

r252.424
13 at kQ5kQ850.125,

r252.424
14 at kQ5kQ850.129,

r252.424
14 at kQ5kQ850.133, ~46!

confirming that no dependence on the heavy-quark mass
be detected.

Our conclusion from this analysis is that our data f
ĵQQ8(v) do not show any evidence of sizable 1/mQ correc-
tions, within our precision. So even thoughĵQQ8(v) is not,
in principle, a universal function, it appears to be a go
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TABLE XII. Estimates of the functionĵQQ8 as obtained from the vector form factor combinationS iFi . All the transitions, corresponding
to initial heavyk50.133 and 0.129 and initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last digit
or beyond.

k l150.14144, k l250.14144

pW ,pW 8
@pmin#

0.129→0.129 0.129→0.121 0.129→0.125 0.129→0.133

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.037 0.9623

13 1.026 1.0022
12 1.030 0.9723

12 1.048 0.8325
15

~1,0,0!
~1,0,0!,

1.076 0.9028
18 1.064 0.87210

110 1.069 0.8529
110 1.087 0.7728

18

~0,1,0!
~1,0,0!,

1.000 0.98212
111 1.001 1.19214

113 1.000 1.17214
113 1.001 0.98214

113

~1,0,0!
~1,0,0!,

1.152 0.6227
18 1.127 0.7027

18 1.138 0.6827
18 1.173 0.5725

16

(21,0,0)
~1,0,0!,

1.037 0.9326
16 1.037 0.9326

15 1.037 0.9124
14

~0,0,0!

pW ,pW 8
@pmin#

0.133→0.133 0.133→0.121 0.133→0.125 0.133→0.129

v ĵQQ8
v ĵQQ8

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.048 0.9223

13 1.026 1.0022
12 1.030 0.9622

12 1.037 0.8823
12

~1,0,0!
~1,0,0!,

1.098 0.8228
18 1.074 0.8629

110 1.080 0.8429
110 1.087 0.7929

19

~0,1,0!
~1,0,0!,

1.000 0.97212
112 1.003 1.21215

113 1.002 1.20215
113 1.001 1.13214

113

~1,0,0!
~1,0,0!,

1.195 0.5326
16 1.145 0.6627

18 1.157 0.6326
17 1.173 0.5826

16

(21,0,0)
~1,0,0!,

1.048 0.8827
17 1.048 0.8826

16 1.048 0.8725
15

~0,0,0!

TABLE XIII. Estimates of the functionĵQQ8 as obtained from the form factor( iFi . All the degenerate
transitionskQ5kQ850.129 and light masses corresponding tok l1 ,k l250.14144, 0.14226 and 0.14226,
0.14226 with initial and final momenta up toupW u,upW 8u5&pmin are shown. Statistical errors inv are in the last
digit or beyond.

0.129→0.129

pW ,pW 8
@pmin#

k l150.14144,k l250.14226 k l150.14226,k l250.14226

v ĵQQ8
v ĵQQ8

~0,0,0!,
1.040 0.9524

13 1.043 0.9325
15

~1,0,0!
~1,0,0!

1.081 0.87211
110 1.088 0.77213

114

~0,1,0!
~1,0,0!,

1.000 0.86215
116 1.000 0.63226

127

~1,0,0!
~1,0,0!,

1.16 0.6228
19 1.18 0.64210

113

(21,0,0)
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FIG. 3. Form factorsF1 andF25F3 , as obtained from degenerate quark transitions. Different symbols correspond to different h
quark hopping parameters. The light-quark hopping parameters are alwaysk l15k l250.14144.
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approximation to the Isgur-Wise function, i.e., the 1/mQ(1)
corrections in Eq.~44! appear to be negligible in the range
of v and heavy-quark mass we study. Thus, from now
we will consider ĵQQ8(v) to be our estimate of the Isgur
Wise functionj ren(v).

For the slope of the Isgur-Wise function corresponding
light-quark masses around that of the strange we take
result in Eq.~46!, which will be used later to study the 1/mQ
corrections to the individual vector form factors. This choi
is motivated by the fact that the analysis of the 1/mQ correc-
tions is based on the data obtained from degenerate tra
tions.

B. j ren
„v… as a function of the light-quark masses

The Isgur-Wise function depends on the quantum nu
bers of the light degrees of freedom, i.e., on the so-ca
‘‘brown muck.’’ Previous studies on the lattice@21# demon-

FIG. 4. Example of the relative size of the normalized vec
form factors.k l15k l250.14144 andkQ5kQ850.121.
,

o
he

si-

-
d

strated that such a dependence is not negligible in the cas
mesons, where the brown muck contains only one li
quark. Thus we might expect to measure an even stron
dependence of the baryonic Isgur-Wise function on
masses of the light quarks, and we investigate whether th
the case in the present subsection.

We study the dependence ofj ren(v) on the light quarks
by keeping the masses of the heavy quarks fixed atkQ
5kQ850.129 and letting the light quarks take the three v
ues listed in Table VII. By simultaneously fittingG1(v) and
S iFi(v) to Eq. ~45!, we find

r252.424
14 at k l150.14144, k l250.14144 ,

r252.025
15 at k l150.14144, k l250.14226,

r251.728
16 at k l150.14226, k l250.14226 . ~47!

r
FIG. 5. ĵQQ8(v) from degenerate transitions, using vector a

axial current data. Different graphical symbols denote differ
heavy quark masses, which appear to follow the same curve.
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FIG. 6. Plot of the Isgur-Wise function at fixed heavy-quark masses (kQ5kQ850.129) and various light quark masses, down to
chiral limit. Both vector~crosses! and axial~boxes! determinations were used for the fits.
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The comparison between these fits and the data is show
Fig. 6, for all three combinations of light-quark masses a
also for the results extrapolated to the chiral limit.

In order to obtain the slope parameterr2 in the chiral
limit, we extrapolate the three estimates of bothv and
j ren(v) obtained withkQ5kQ850.129 and with the combi-
nations of light-quark masses in Eq.~47!. We assume thatv
and j ren(v) depend linearly on the sum of the two ligh
quark masses, that is,

v~kQ ,k l1 ,k l2!5v~kQ!1CS 1

2k l1
1

1

2k l2
2

1

kcrit
D

~48!

and similarly forj ren. This assumption is supported by o
results for the spectrum presented in Ref.@3#. The results of
the extrapolation to the chiral limit, which are relevant f
the semileptonic decayLb→Lcl n̄, are presented in Tabl
XIV and in Fig. 6. Our best estimate of the slope parame
of the renormalized Isgur-Wise function for theLb baryon is

r251.210.821.1. ~49!

Using the functional form~48!, we also obtain the values o
v andj ren(v) for the semileptonic decayJb→Jcl n̄, inter-
in
d

r

polating to one strange and extrapolating to one chiral qu
The numerical results are also presented in Table XIV. O
best estimate for the slope parameter for theJb baryon is

r251.529
17. ~50!

In this exploratory study we have only used a very limit
set of light-quark masses, and hence our conclusions on
dependence of the Isgur-Wise function on these masses
rather weak, and the extrapolation to the chiral limit is n
very precise. This should be remedied in future simulatio

In Table XV we compare our result for the zero-reco
slope parameter of the baryonic Isgur-Wise function for
decayLb→Lcl n̄ with the predictions of other authors.~The
slope parameter of the Isgur-Wise function forJb→Jcl n̄
decays is not readily available in most of these referenc!
Though our uncertainties, especially in the case ofLb
→Lcl n̄ decays, forbid us to draw very firm conclusions, o
results appear to disfavor some of the larger predictions
these slope parameters.

We wish also to mention the nonrelativistic quark mod
results of Refs.@33,34# and the light-front constituent quar
model results of Ref.@35#, where the authors observe th
values of the slope such as ours favor collinear-type confi
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rations, in which the heavy-quark lies close to the center
mass of the light quark pair, over diquark-type configu
tions.

C. O„1/mQ… corrections

In this section we attempt to extract a value ofL̄ for theL
baryon, from the study of the 1/mQ corrections in the vecto
form factorsF1(v) and F2,3(v). We start by recalling the
relevant expressions given in Sec. II

F1~v!5N1~v!ĵQQ8~v!1O~1/m
Q~8!

2
!,

F2~v!5F3~v!5N2~v!ĵQQ8~v!1O~1/m
Q~8!

2
!, ~51!

the last equality being valid in the limit of equal heavy-qua
masses, to which the present discussion is restricted. Als
this limit, we have

N1~v!5Ĉ1~v̄ !F11
2

v11

L̄

mQ
G ,

TABLE XIV. Estimates of j ren(v) from both axial (A) and
vector (V) form factors, atkQ5kQ850.129 and for three combi
nations of the light-quark masses, as well as at the physical lim
The results atv51 correspond to those from the momentum cha
nel (1,0,0)→(1,0,0).

k l1 /k l2 v j ren(A) j ren(V)

0.14144/0.4144 1.0 1.02211
111 0.98212

111

1.037325
14 0.9423

13 0.9623
13

1.076129
19 0.8829

19 0.9028
18

1.15222
12 0.6826

17 0.6227
18

0.14144/0.14226 1.0 0.97216
115 0.86217

116

1.039925
15 0.9324

13 0.9724
13

1.08121
11 0.86211

112 0.90210
110

1.16322
12 0.7129

19 0.6528
19

0.14226/0.14226 1.0 0.85225
124 0.63227

127

1.042926
16 0.9326

15 0.9525
15

1.08821
11 0.82215

118 0.80214
113

1.17523
13 0.75212

113 0.68211
113

Chiral/Chiral 1.0 1.02224
123 0.79232

126

1.047529
19 0.9227

17 0.9629
18

1.09722
12 0.90220

122 0.95219
119

1.19424
14 0.78217

117 0.74215
116

Chiral/Strange 1.0 1.03219
118 0.87222

122

1.043928
18 0.9326

15 0.9626
16

1.09022
12 0.90216

117 0.92215
116

1.17924
13 0.75213

113 0.70212
112
f-
-

in

N2~v!5Ĉ2~v̄ !F11
v21

v11

L̄

mQ
G2Ĉ1~v̄ !

1

v11

L̄

mQ
.

~52!

Combining Eqs.~51! and ~52! and using the functionsĵQQ8
which were determined from the fits to the dominant fo
factorsG1 and SFi ~see Sec. V A!, one can view the form
factorsF1 andF2 as functions ofL̄ alone. In fact, Eqs.~51!
and ~52!, together with the coefficient functionsĈi(v̂),
evaluated at one loop order in perturbation theory, can
considered as our definition~s! of the binding energy. As
mentioned in Sec. II, these form factors are sufficiently s
sitive to L̄ for us to attempt an estimateL̄ from the lattice
data.

To the order at which we are working the power corre
tions can be expressed as powers of the inverse quark m
or of the inverse mass of any hadron containing the he
quark, provided that the same prescription is used in
evaluation of the coefficient functionsĈi

(5) . We have de-
cided to use the inverse quark mass, defined as

mQ5MLQ
2L̄. ~53!

The analysis is performed using our data for degenerate
tial and final heavy quarks~kQ5kQ850.121, 0.125, 0.129
and 0.133! for fixed light-quark masses,k l15k l2
50.14144. The fit toF1(v) is good, and we obtain

L̄50.75213 26
110 15 GeV with xDOF

2 51.0. ~54!

s.
-

TABLE XV. Comparison of our lattice results for the slop
parameter of theLb→Lcl n̄ Isgur-Wise function atv51 with the
theoretical predictions of various authors. Values in parenthe
correspond to a second value of the slope parameter obtained b
authors for another choice of their parameters.@SR3 stands for
three-point sumrules; IMF for infinite momentum frame qua
model; RQM for relativistic quark model; R3QM for the relativist
three-quark model; largeNc for the largeNc heavy meson-soliton
bound state approach; MIT bag for an MIT bag model calculati
BS Eq. for a Bethe-Salpeter equation approach; dipole for an Is
Wise function with anv dependence determined by a dipole at t
lowestBc* (JP512) resonance.#

Reference r2(Lb)

This work 1.210.821.1
SR3 @22# 1.1560.20
SR3 @23#a 0.5560.15

IMF @24,30# 2.9~3.7!
IMF @25# 1.44
RQM @26# 1.0
R3QM @27# 1.33

LargeNc @28# 1.3
MIT bag @29# 2.23
BS Eq.@30# 1.4~2.4!

Dipole @31,32,25# 1.77

aThis value ofr2 was obtained in Ref.@23# by fitting a line to the
sumrule result for the Isgur-Wise function in the semileptonic
gion.



-
d

e
tic

ar

ks
t

on
tors
e
d in

la-

t

he
e

ined
-
,

ich
-
nts

m
tion

h,
an-

or

ur-

nd-

6966 57K. C. BOWLER et al.
The less certain fit toF2(v) confirms this value with unex
pected precision, given the statistical errors affecting in
vidual points,

L̄50.74211 25
110 15 GeV with xDOF

2 51.6. ~55!

In both Eqs.~54! and~55! the first error is statistical and th
second is due to the uncertainty in the value of the lat
spacing, see Eq.~17!. Using these values ofL̄ we evaluate
the coefficientsN1,2(v) and estimate the functionĵQQ8(v)
from the form factorsF1 and F2 using Eqs.~51!. These
estimates are presented in Tables XVI and XVII, and
compared with the functionsĵQQ8(v) obtained using the
dominant form factors,G1 andSFi , in Fig. 7.

Let us comment on the results for theL-baryon binding
energy.

As expected, the form factorsF1(v) and F2(v) have a
significant dependence on the masses of the heavy quar
dependence which can be partially understood in terms of
1/mQ corrections in Eqs.~51! and ~52! with the values ofL̄
in Eqs.~54! and ~55!.

TABLE XVI. ĵQQ8 as obtained from the form factorsF1 for
degenerate heavy quark transitions using Eqs.~51! and~52! and the
value ofL̄ given in Eq.~54!.

kQ→kQ8 v ĵQQ8
v ĵQQ8

0.121→0.121 1.0 0.9929
110 1.026 1.0223

14

0.125→0.125 1.0 0.9529
110 1.030 0.9822

13

0.129→0.129 1.0 0.8928
110 1.037 0.9122

13

0.133→0.133 1.0 0.8128
110 1.048 0.8323

13

0.121→0.121 1.050 0.9526
16 1.103 0.94214

118

0.125→0.125 1.060 0.9125
16 1.124 0.90213

117

0.129→0.129 1.073 0.8325
15 1.152 0.85212

116

0.133→0.133 1.093 0.7124
14 1.195 0.74211

114

TABLE XVII. ĵQQ8 as obtained from the form factorsF25F3

for degenerate heavy quark transitions using Eqs.~51! and~52! and
the value ofL̄ given in Eq.~55!.

kQ→kQ8 v ĵQQ8
v ĵQQ8

0.121→0.121 1.0 0.96270
150 1.026 1.10217

111

0.125→0.125 1.0 0.79258
143 1.030 0.92212

17

0.129→0.129 1.0 0.61245
137 1.037 0.75285

152

0.133→0.133 1.0 0.42235
130 1.048 0.5828

15

0.121→0.121 1.050 1.15244
132 1.103 1.87266

159

0.125→0.125 1.060 0.91236
125 1.124 1.79260

153

0.129→0.129 1.073 0.68228
120 1.152 1.63251

145

0.133→0.133 1.094 0.47222
114 1.195 1.38240

138
i-

e

e

, a
he

We have neglected all higher-order 1/mQ corrections.
These could alter the results of Eqs.~54! and ~55! by as
much as 30%.

The separation of 1/mQ corrections from discretization
errors is difficult. Although we have used an improved acti
to reduce these errors, and have normalized the form fac
by ZV defined by Eq.~39!, the stability of the results as th
lattice spacing and action are varied should be checke
future simulations. The consistency of the two results~54!
and ~55! may be evidence that discretization errors are re
tively small.

Although we have only performed this study with ligh
quarks with masses corresponding tok l15k l250.14144, we
can nevertheless calculateL̄L and L̄J by using

L̄2L̄L5Mbaryon2ML1OS 1

mQ
D

and

L̄2L̄J5Mbaryon2MJ1OS 1

mQ
D , ~56!

whereL̄ andMbaryonare the binding energy and mass of t
baryons which we study in our computation. In this way w
find

L̄L50.37212
111 GeV

and

L̄J50.50213
111 GeV, ~57!

where statistical and systematic errors have been comb
in quadrature. The value ofL̄L would correspond to a me
sonic binding energy ofL̄mes.806120 MeV, in agreement
within the large error, with the result quoted in Ref.@8#. The
central values of the quark masses obtained using Eq.~57!
are different from those used throughout this paper wh
were obtained from Eq.~16!. We have checked that this dif
ference does not noticeably affect the correction coefficie
Ĉi

(5) , and hence our estimates of physical quantities.
In addition to the systematic uncertainties arising fro

lattice artifacts, it must be remembered that the computa
of power corrections in general is a complicated subject~for
a recent review see Ref.@36#!. In the present case, following
standard procedure, we are trying to quantify 1/mQ correc-
tions when we are ignorant of theO(as

2) terms in the per-
turbation series for the coefficient functions. Althoug
within our errors, we have found no inconsistencies, we c
not be sure that the values ofL̄ would not change signifi-
cantly if higher-order perturbative terms were included,
that the values would agree with other definitions ofL̄.

VI. PHENOMENOLOGICAL IMPLICATIONS

In this section we use the results for the baryonic Isg
Wise function and for the baryon binding energyL̄ com-
puted above, to obtain the physical form factors correspo
ing to the semileptonic decays
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FIG. 7. ĵQQ8(v) as obtained from the form factorsF1 and F25F3 . The points are compared with the best fit ofĵQQ8(v) obtained
previously from the dominant form factorsG1 andSFi .
ze
W

th

in

rm
ar

ns

n

.

in
Lb→Lc1en̄

and

Jb→Jc1en̄. ~58!

We also derive the expressions for the decay rates near
recoil and use them to make quantitative predictions.
will discuss in detail the decay of theLb ; that of theJb is
very similar.

A. Physical form factors

The physical form factors can be reconstructed from
computed Isgur-Wise functionj ren(v), using the relations in
Eq. ~11!. In the following we will use the result, discussed
Sec. V A, that the functionĵQQ8(v) is effectively indepen-
dent of the mass of the heavy quark. Therefore, the fo
factors depend on the masses of the heavy qu
only through the correction coefficientsNi

(5)(v)
5Ni

(5)(v,mQ ,mQ8), which are calculated using expressio
~12!. The short-distance coefficientsĈi

(5)(v̄,mb ,mc) were
computed forLQCD5250 MeV, nf54 and by fixing the
quark masses to the values
ro
e

e

ks

mb54.8 GeV, mc51.45 GeV. ~59!

The factorsĈi
(5) depend on the quark masses very mildly. O

the other hand, the correction coefficientsNi
(5) are very sen-

sitive to the quark masses, because they contain 1/mQ cor-
rections. In this case, we have expressedmb andmc as

mb5MLb
2L̄

and

mc5MLc
2L̄ ~60!

with MLb
55.64 GeV andMLc

52.285 GeV, respectively

We report our estimates of the correction coefficientsNi
(5)

for various values ofv, for the L and J decays, in Table
XVIII.

It is convenient to expand the physical form factors
v21, near zero recoil:

Fi~v,mb ,mc!5h i
V2 r̃ i

V~v21!,

Gi~v,mb ,mc!5h i
A2 r̃ i

A~v21!; ~61!
TABLE XVIII. Correction factors needed to relate the form factors at the physical limit with the Isgur-Wise function.

decay v N1 N2 N3 N1
5 N2

5 N3
5

1.0 1.2826
16 20.1924

14 20.0621
12 0.99 20.2424

15 0.0922
12

Lb→ 1.1 1.2525
16 20.1824

14 20.0621
11 0.97 20.2324

15 0.0822
12

Lc 1.2 1.2125
15 20.1723

14 20.0521
11 0.95 20.2124

14 0.0822
12

1.3 1.1525
15 20.1623

14 20.0521
11 0.91 20.1923

14 0.0721
11

1.0 1.3226
15 20.2324

14 20.0721
11 0.99 20.2824

15 0.1022
12

Jb→ 1.1 1.3026
15 20.2224

14 20.0721
11 0.97 20.2624

15 0.1022
12

Jc 1.2 1.2625
15 20.2023

14 20.0621
11 0.95 20.2424

14 0.0922
11

1.3 1.1925
14 20.1823

14 20.0621
11 0.91 20.2223

14 0.0821
11
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TABLE XIX. Slope parameters of the physical form factors near zero recoil.

decay 2 F1 F2 F3 G1 G2 G3

Lc→Lc r̃ 1.821.5
10.9 20.421

12 20.1024
17 1.321.2

10.8 20.422
13 0.16210

16

Jc→Jc r̃ 2.321.4
10.9 20.522

12 20.1524
17 1.621.0

10.6 20.622
13 0.22210

17
d
e

e
th

t-

ic
o

th

e

po

s-

rm
gy

e

where the normalizationsh i
V,A and the new slopes are relate

to the coefficientsNi
(5) and to the slope of the Isgur-Wis

function by

h i
V5Ni~1,mb ,mc!, h i

A5Ni
5~1,mb ,mc!, ~62!

r̃ i
V5r2Ni~1,mb ,mc!2

dNi~v,mb ,mc!

dv U
v51

, ~63!

and

r̃ i
A5r2Ni

5~1,mb ,mc!2
dNi

5~v,mb ,mc!

dv
U

v51

. ~64!

Our results forr̃ i
V,A are presented in Table XIX. We observ

that this procedure has the effect of taking us back to
form factors for physicalb→c decays from the Isgur-Wise
function, which, in turn, was determined by dividing the la
tice data for the form factors~for unphysical quark masses!
by the coefficientsNi

(5). Clearly, most of the uncertainty in
the factorsNi

(5) , due to their dependence onL̄ and the quark
masses, is now cancelled, as it should be for any phys
quantity. To quantify this statement, we report the result
the following exercise. We have measured the ratio of
slope parameters of the form factorG1(v), at the chiral
limit, letting L̄ vary from 200 to 600 MeV, and changing th
coefficientsNi

(5) accordingly. We obtain

r̃ 1
A~L̄5200!

r̃ 1
A~L̄5600!

51.0028
112, ~65!

where the relatively large error is largely due to the extra
lation to the chiral limit.

B. Decay rates

Following Refs.@32# and@37#, we define the helicity am-
plitudes, in terms of the physical form factors~61!, in the
velocity basis:

H1/2,0
V,A 5

A2MLb
MLc

~v71!

AMLb

2 1MLc

2 22MLb
MLc

v
@~MLb

6MLc
!F1

V,A

6MLc
~v61!F2

V,A6MLb
~v61!F3

V,A#

H1/2,1
V,A 522AMLb

MLc
~v71!F1

V,A , ~66!

where, for brevity, we set

Fi
V5Fi~v!, Fi

A5Gi~v!, ~67!
e

al
f
e

-

and where the upper sign corresponds toV and the lower one
to A.

The helicity amplitudesHlc ,lW

V,A carry information about

the helicity of the current~lW50 for a longitudinally polar-
ized W andlW561 for transversely polarized one!, and of
the daughter baryonLc (lc561/2). The missing ampli-
tudes can be computed by means of the relations

H2lc ,2lW

V,A 56Hlc ,lW

V,A . ~68!

For convenience, we also define

Hlc ,lW
5Hlc ,lW

V 1Hlc ,lW

A . ~69!

Differential decay rates can then be evaluated:

dGT

dv
5

GF
2

~2p!3 uVcbu2
q2MLc

2 A~v221!

12MLb

3~ uH1/2,1u21uH21/2,21u2!,

dGL

dv
5

GF
2

~2p!3 uVcbu2
q2MLc

2 A~v221!

12MLb

3~ uH1/2,0u21uH21/2,0u2!, ~70!

whereGT andGL are the contributions to the rate from tran
versely and longitudinally polarizedW’s, respectively, and
whose sum is

dG

dv
5

GF
2

~2p!3 uVcbu2
q2MLc

2 A~v221!

12MLb

3~ uH1/2,1u21uH21/2,21u21uH1/2,0u21uH21/2,0u2!. ~71!

As can be seen from Eqs.~70! and~71!, these quantities can
be estimated, near zero recoil, using our results for the fo
factors, in a model-independent way. In complete analo
with what is done forB̄→D (* )l n̄ decays, we define a form
factorB(v), which reduces, in the heavy-quark limit, to th
Isgur-Wise functionj ren(v) defined in Eq.~7!. In terms of
this form factor, the rate of Eq.~71! is

dG

dv
5

GF
2

4p3 uVcbu2MLc

3 ~MLb
2MLc

!2Av221

3S v11

2 D 11r 222r ~2v11!/3

~12r !2

3X11S v21

v11D 11r 222r ~2v21!/3

11r 222r ~2v11!/3
CuB~v!u2,

~72!
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TABLE XX. Partial decay rates, in units ofuVcbu2 1013 s21, for the L and J semileptonic decays for
various values ofvmax. The transverse decay rate is very sensitive to quadratic terms in (v21), and the
predictions forv.1.2 are no longer reliable.

Lb→Lcl n̄ Jb→Jcl n̄

vmax Gpart GL
part GT

part Gpart GL
part GT

part

1.1 0.5727
19 0.2322

13 0.3424
16 0.6628

17 0.2823
12 0.3825

15

1.15 0.98218
125 0.4426

18 0.53214
116 1.122

12 0.5428
17 0.58215

113

1.20 1.424
15 0.71213

117 0.723
13 1.625

14 0.86216
114 0.723

13

1.25 1.827
19 1.022

13 0.825
16 1.928

17 1.223
12

1.30 2.221.2
11.4 1.424

15 2.221.3
11.2 1.724
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with r 5MLc
/MLb

. Nearv51, the form factor can be ex
panded as

B~v!5G1~1!$12rB
2~v21!1O@~v21!2#% ~73!

and the results of Tables XVIII and XIX can be used
determineG1(1) and rB

2. We find, combining errors in
quadrature, a slope parameter

rB
251.161.0 ~74!

for Lb→Lcl n̄ decays and

rB
251.460.8 ~75!

for Jb→Jcl n̄ decays. These values are the ones that sho
be compared to the slopes obtained by performing fits
experimental results fordG/dv versusv, for v near 1. A
preliminary measurement of the slope parameter for the
cay Lb→Lcl n̄ has, in fact, been reported in Ref.@38#. The
authors quote

rB
251.8120.67

10.70 ~stat!60.32 ~syst!, ~76!

with which our result is entirely compatible. Because th
measurement is preliminary and because the authors th
selves do not present results for the rate, we will not atte
to use this measurement in what follows to obtain ‘‘expe
mental’’ estimates for partially integrated decay rates.

The results of Eqs.~74! and~75! can also be compared t
the slope parameters we found for the corresponding Is
Wise functions@Eqs.~49! and~50!#. These two sets of slop
parameters are virtually indistinguishable, especially giv
the size of our present errors.

For both decays we findG1(1)50.99 which is justĉ1
5(1),

as it should be at the level of precision at which we a
working @see Eqs.~11! and~12!#. In principle, though,G1(1)
receives also 1/mQ

2 corrections and higher-order perturbati
corrections, both of which are beyond the precision reac
in the present paper.

We now turn to integrated rates. The physical limit forv
extends up tov.1.43, which is beyond the range of veloci
transfer accessible to us (vP@1.0,1.2#) in the present simu-
lation. We thus define the partially integrated decay rate
ld
o

e-

m-
pt
-

r-

n

e

d

G i
part~vmax!5E

1

vmax
dv

dG i

dv
, ~77!

as a function of the upper limit of integration, for each of t
ratesi 5T, L, andT1L.

In Table XX, we present our results for the quantiti
G i

part(vmax) for several values ofvmax. For the case of the
Lc , theLb and theJc we have used the experimental valu
for the masses, whereas, for theJb , which is as yet undis-
covered, we have used the value computed in our prev
paper on heavy baryon spectroscopy@3#:

MJc
52.47 GeV@exp# MJb

55.76 GeV @ latt#. ~78!

At present, a direct comparison of our results with expe
ments is not possible. Although the semileptonic decay ofLb
has been observed by various experiments@2,38#, a measure-

FIG. 8. Partially integrated decay rate for the processLb→Lc

1 l n̄, in units of uVcbu21013 s21, as a function of the limit of inte-
grationvmax. The solid curve corresponds to our central values
r̃ and the dotted curves to the errors on these values. A compa
with a sample of theoretical estimates is shown atv51.2 andv
51.3. The names of the estimates are the same as those us
Table XV ~SR3 from Ref.@22#; dipole from Refs.@31,32,25#; MIT
bag from Ref.@29#; and IMF from Refs.@24,30#!. The results at
v51.2 have the same ordering as those atv51.3. The free quark
result was obtained by assuming a flat Isgur-Wise function.
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ment of the decay rate is not yet available. The problem
determining the rate of theLb andJb semileptonic decays
has been addressed theoretically, making use of diffe
models and approaches, by the authors whose results o
zero-recoil slope we gave in Sec. V B. A sampling of th
predictions for the rate integrated up tov51.2 and v
51.3, which covers the full range of predicted values,
reported in Fig. 8, and compared with the functionG(vmax).
Because of our rather large uncertainties, only extreme
ues of this rate are made unlikely by our results.

Finally, we note that many other interesting quantit
could be computed and confronted with future experime
e.g., asymmetry parameters and the ratio of the longitud
to transverse rates~see, for example, Refs.@39,25,27,32,
24,31,33#!. However, all these quantities are sensitive to
ther 1/mQ

2 effects or to terms proportional to (v21)2. Both
of these effects are beyond the precision reached in
present study.

VII. CONCLUSIONS

During the past few years lattice simulations have be
applied very successfully to weak decays of heavy mes
and in this work we have extended these techniques to he
baryons. We have presented an extensive lattice study o
semileptonicLb→Lc1 l n̄ andJb→Jc1 l n̄ decays, result-
ing in predictions for the decay rates, for values of the
locity transfer up to aboutv51.2. We have developed th
formalism necessary for extracting the decay amplitud
demonstrated the feasibility of obtaining phenomenolo
cally interesting results, and presented the first set of pre
tions. We anticipate that the application of lattice QCD
studies of the forthcoming experimental data on hea
baryon decays will be an active area of phenomenology d
ing the coming years.

HQET is an important tool in the application of lattic
QCD to weak decays of heavy baryons, as it is also
mesons. In order to keep lattice artifacts reasonably sm
we are forced to perform the computations with hea
quarks with masses not much larger than that of the ch
quark, and then to extrapolate the results to physicalb→c
decays. HQET provides us with a sound theoretical form
ism for performing this extrapolation.

Perhaps the weakest feature of our study was the inab
to determine the behavior of the decay amplitudes with
mass of the light quarks with sufficient precision. We d
perform the computations for three combinations of mas
for the two light quarks, which allowed us to attempt
extrapolation to the physicalL ~with two almost massles
valence quarks! and J ~with one strange and one almo
massless quark! baryons. However, in performing these e
trapolations the statistical errors are amplified, and one of
priorities of a future simulation should be to generate s
stantial datasets for a larger set of light-quark masses.
example, it will be very interesting to check whether t
slope parameter of the Isgur-Wise function decreases as
masses of the light quarks are reduced, as expected from
heuristic argument that lighter light degrees of freedom h
less inertia and therefore recoil more easily. In the pres
simulation we have a hint that this is the case, but the sta
tical errors are too large to draw a definitive conclusion.
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APPENDIX A: THE USE OF EXTENDED INTERPOLATING
OPERATORS

In order to enhance the signal for the baryonic correlat
functions, the light and heavy quark propagators have b
computed using the Jacobi smearing method@12#. Since
smearing is not a Lorentz-invariant operation, it alters
transformation properties of the correlation functions, p
ticularly at nonzero momentum. In this appendix we pres
the formalism required to extract the form factors from tw
and three-point correlation functions computed using
tended~smeared! interpolating operators for the baryons.

Consider the local operatorO(x) defined in Eq.~24!,

Or~x!5eabc@ l 1
aT~x!Cg5l 2

b~x!#Qr
c~x!, ~A1!

wherer is a spinor index. Here we have suppressed the in
Q in labeling the operator.O has nonzero overlap with spin
1
2 states, such as theL baryon

^0uOr~0!upW ,r &5Zur
~r !~pW !, ~A2!

wherer is the polarization index.5 The ket in Eq.~A2! rep-
resents a heavyL state~e.g.,Lb or Lc!. The amplitudeZ is
a Lorentz scalar.

The smeared baryonic operator can be written as

Or
s~xW ,t !5eabc (

yW ,zW,wW
f ~ uyW2xW u! f ~ uzW2xW u! f ~ uwW 2xW u!

3@ l 1
aT~yW ,t !Cg5l 2

b~zW,t !#Qr
c~wW ,t !. ~A3!

Because the smearing is performed only in the spatial di
tions, Lorentz symmetry is lost and only spatial translatio
rotations, parity, and time reversal survive. Therefore,
overlap of the operatorOr

s(xW ,t) with the stateupW ,r & is given
by the more general expression

5Our spinors are normalized such thatu(r )†u(s)5v (r )†v (s)

5(E/m)d rs.
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^0uOr
s~0!upW ,r &5@~Z1~ upW u!1Z2~ upW u!g0!u~r !~pW !#r ,

^0uŌr
s~0!upW ,r &5@ v̄ ~r !~pW !~Z1~ upW u!2Z2~ upW u!g0!#r , ~A4!

where the amplitudesZ1 andZ2 may depend on the magn
tude of the three-momentum of the stateupW ,r &, in accord
ry

a
x
-
q
t
-

with the restricted symmetries of the system.

1. Smeared two-point functions

We now study the consequences of the above discus
in the case of smeared source and sink~SS! two-point func-
tions. Using Eq.~A4!, we can derive the general expressi
for the two-point function at large values6 of t and (T2t)
Grs
SS~ t,pW !5(

xW
e2 ipW •xW^Or~xW ,t !Ōs~0W ,0!&5 (

uqW ,r &
(

xW

m

E~qW !
e2 ipW •xW@e2E(qW )t1 iqW •xW^0uOr~0W ,0!uqW ,r &^qW ,r uŌs~0W ,0!u0&

2e2E~qW !~T2t !2 iqW •xW^0uŌs~0W ,0!uqW ,r &^qW ,r uOr~0W ,0!u0&#

5(
r

m

E~pW !
$@e2E~pW !t

„Z1~ upW u!1Z2~ upW u!g0…u
~r !~pW !ū~r !~pW !„Z1~ upW u!1Z2~ upW u!g0…#rs

2@e2E~pW !~T2t !
„Z1~ upW u!2Z2~ upW u!g0…v

~r !~2pW !v̄ ~r !~2pW !„Z1~ upW u!2Z2~ upW u!g0…#rs%. ~A5!
or

e.
We find it convenient to write the spin matrixGrs
SS in terms

of the parameters

Zs5Z11Z2 , a5~Z12Z2!/~Z11Z2!, ~A6!

rather thanZ1 andZ2

Grs
ss ~ t,pW !5Zs

2~ upW u!e2E~pW !tH FE1m2a2~E2m!

4E
1

1
E1m1a2~E2m!

4E
g02

2a

4E
pW •gW G

2e2E~pW !(T2t)FE1m2a2~E2m!

4E
1

2
E1m1a2~E2m!

4E
g02

2a

4E
pW •gW G J .

~A7!

Local operators, and full four-dimensional cubic symmet
correspond to the casea51, i.e.,Z250.

2. Smeared three-point functions for the study
of the semileptonic decay of theLb

We now present the expressions for the smeared-sme
three-point functions from which the form factors are e
tracted. TheV-A weak currentJm is of course a local opera
tor; it is the interpolating operators for the baryons in E
~23! which are now smeared. In the forward half of the la
tice (F), for large t, so that only the lightest state contrib
utes, we obtain

CF~ tx ,ty!5K~ tx ,ty!$@E1M1a~M2E!#1

1@E1M2a~M2E!#g01@~12a!pW •gW g0#

2@~11a!pW •gW #%

3$@F1
L~v!gm1F2

L~v!vm8 1F3
L~v!vm#
,

red
-

.
-

2@„G1
L~v!gm1G2

L~v!vm8 1G3
L~v!vm…g5#%

3$@E81M 81b~M 82E8!#1

1@E81M 82b~M 82E8!#g0

2@~12b!pW 8•gW g0#2@~11b!pW 8•gW #%, ~A8!

whereas in the backward half (B), for largeT2t,

CB~ tx ,ty!5K~T2tx ,T2ty!$@E1M1a~M2E!#1

2@E1M2a~M2E!#g02@~12a!pW •gW g0#

2@~11a!pW •gW #%

3{ @F1
L~v!gm2F2

L~v!ṽm82F3
L~v!ṽm#

1@~G1
L~v!gm1G2

L~v!ṽm81G3
L~v!ṽm!g5#}

3{ @E81M 81b~M 82E8!#1

2@E81M 82b~M 82E!#g01@~12b!pW 8•gW g0#

2@~11b!pW 8•gW #}, ~A9!

whereṽ[(E,2pW )/M ~similarly for ṽ 8! and where in both
these equations the normalization factor is given by

K~ tx ,ty!5
ZsZs8

16EE8
e2E~ tx2ty!e2E8ty. ~A10!

Sincetx5245T/2 in our simulations, the dependence ontx
is the same in both halves of the lattice. In Eqs.~A8! and
~A9! a andb are the functions defined in~A6!, for the final
and initial particle respectively. They are identical only f
degenerate transitions whenupW u5upW 8u. For local operators,
a5b51 and expressions~A8! and~A9! reduce to Eq.~27!.

6Note that we are using anti-periodic boundary conditions in tim
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Expressions~A8! and ~A9! are used in Sec. IV to extrac
the values of the form factors from the correlation functio
Further clarification of the procedures which are used is p
sented in the following appendix.

APPENDIX B: ON THE ANALYSIS OF THREE-POINT
CORRELATORS

In this appendix we discuss in greater detail the analy
procedure used to extract the six form factors from the c
relation functions. Such an analysis is complicated both
the very large number of nonvanishing components of
three-point correlation function, which has both spinorial a
Lorentz indices, and by the effect of the smearing on
baryonic operators discussed in the previous appendix
proved to be convenient to restrict the analysis to those c
ponents which are proportional to large, and hence preci
measured, kinematical coefficients, as we now explain.

For illustration we consider here the forward half of t
lattice; the extension to the backward half is straightforwa
We consider two typical cases.

Example 1: Coefficient of the form factor F1
L for m50.

We rewrite the expression in Eq.~A8!, which is a 434 ma-
trix in spinor space, in terms of 232 matrices:7

vector0
K~ tx ,ty!

54@~E1M !~E81M 8!1pW •pW 8#~11g0!

14ab@2~E2M !~E82M 8!2pW •pW 8#~12g0!

14ipipj8s
i j ~11g0!24ab ipipj8s

i j ~12g0!

14a@~M2E!pi2~E81M 8!pi #g i~11g0!

24b@~M1E!pi2~E82M 8!pi #g i~12g0!, ~B1!

where vector0 denotes the time component of the three po
correlation function with the vector current. So the mat
structure shared by the coefficients of the vector form fac
is of the form

vector0
K~ tx ,ty!

}S ~1! ~b!
~a! ~ab! D , ~B2!

where each of the submatrices is a 232 matrix.
Example 2. Coefficient of the form factor G1

L for m5k
51,2,3. A similar manipulation of Eqs.~A8! for the axial
current leads to

axialk
K~ tx ,ty!

5$4@~M1E!~M 81E8!#gk~11g0!

14ab@~M2E!~M 82E8!#gk~12g0!

14a@~M2E!pi8gkg i2~M 81E8!pig igk#

7The following representation for the gamma matrices is u
here:

g05S1 0

0 21D; gi5S 0 si

2si 0 D with i 51,2,3.
.
-

is
r-
y
e
d
e
It
-

ly

.

t

rs

3~11g0!14b@~M1E!pi8gkg i

1~E82M 8!pig igk#~12g0!14@pipj8g igkg j #

3~11g0!14ab@pipj8g igkg j #~12g0!%g5 ,

~B3!

which also has the structure of Eq.~B2!.
The relative sizes of the components of the matrices~B1!

and ~B3! are as follows.
The submatrices proportional to the identity are prop

tional to MM 8 ~plus small terms quadratic in the momenta!,
and are thereforelarge and precisely determined.

The submatrices proportional toa andb are proportional
to terms likeMpi8 or M 8pi and are thereforemediumsized.
Furthermore they have an additional statistical uncerta
due to the presence of the amplitude factorsa or b.

The submatrices proportional toab are proportional to
(E82M 8)(E2M ) or other terms which are quadratic in th
momenta, and are thereforesmall.

Finally, we note that, as a general feature, the vector c
rent will give large contributions form50 and the axial
current whenm5 i , i 51,2,3.

APPENDIX C: DETERMINATION OF ZV

In this appendix we discuss the normalization of the l
tice vector current, used for extracting the vector form fa
tors. The normalization factor,ZV has previously been deter
mined from matrix elements between heavy meson sta
using the same configurations, and for the same values o
quark masses as those used in the present study@21#, and we
present the results below. We start, however, with a deter
nation of ZV from matrix elements between heavy bary
states.

ZV can be measured from the correlators~23!, computed
for degenerate initial and final heavy quarks (Q5Q8). For
instance, with Dirac indexi 51,2, we define

ZV~ t !5K
@C2

Q~pW ,T/2!# i i

@C~pW ,qW 50W ,T/2,t !m50
Q→Q# i i

5
1

F1
L~1!1F2

L~1!1F3
L~1!

~C1!

with

K5
~E1M !

2E

2E

E1M2a2~M2E!
, ~C2!

and whereC2
Q was defined in Eq.~31! and t is taken in

(0,T/2). ZV is then obtained by fittingZV(t) to a constant in
the plateau region.

We have computed the necessary two- and three-p

correlators for two different forward channels:pW 50W and pW
5(pmin,0,0). From the correlation functions with the baryo
at rest we obtain

d
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ZV50.89822
13 at k l15k l250.14144, kQ50.133,

ZV50.92422
12 at k l15k l250.14144, kQ50.129,

ZV50.94822
12 at k l15k l250.14144, kQ50.125,

ZV50.97022
11 at k l15k l250.14144, kQ50.121.

~C3!

The statistical errors are very small~although not as small a
for meson states!, which is not unexpected since we a
studying the effects of the charge operator. ForZV measured
from correlation functions withpW 5(pmin,0,0), the statistical
errors are too large for us to make any comparison with
results in Eq.~C3!. In this case we find

ZV50.88210
115 at k l15k l250.14144, kQ50.133,

~C4!

ZV50.90211
114 at k l15k l250.14144, kQ50.129,

ZV50.94211
114 at k l15k l250.14144, kQ50.125,

ZV50.97212
115 at k l15k l250.14144, kQ50.121.

We now compare the results forZV obtained between bary
onic states@Eq. ~C3!#, and those obtained in Ref.@21# from
matrix elements between pseudoscalar states using the
configurations and quark masses:

ZV50.891321
12 at k l50.14144, kQ50.133,

ZV50.917722
13 at k l50.14144, kQ50.129,

ZV50.942822
14 at k l50.14144, kQ50.125,

ZV50.965923
16 at k l50.14144, kQ50.121. ~C5!

The agreement of the results obtained forZV using mesonic
and baryonic correlation functions to within less than 1%
reassuring.
.

e

me

s

The variation of the values ofZV with the mass of the
heavy quark in Eqs.~C3! and~C5! is an effect of the discre-
tisation errors, due to the fact that the quarkQ is heavy. To
see this more clearly we compare the results with those
tained between light pseudoscalar mesons~with degenerate
valence quarks!:

ZV50.8314~4! at k50.14144, ~C6!

ZV50.8245~4! at k50.14226,

ZV50.8214~6! at k50.14262.

The results in Eq.~C6! were obtained on a subset of te
gluon configurations@20#. The dependence on the masses
the light quarks is seen to be very mild, and the results
consistent with the expectations from one-loop perturbat
theory @40#

ZV5120.10g21O~g4!.0.83 at b56.2 ~C7!

when evaluated using the boosted value of the coupling c
stant, obtained from the mean field resummation of tadp
diagrams@41#.

The results forZV in Eqs.~C3! and ~C5!, obtained using
heavy baryon and meson states, differ from those obtai
with light mesons,~C6!, by about 10–20 % for the range o
quark masses used in our simulations. This difference
good indication of the size of mass-dependent discretiza
errors in our calculation; it is consistent with our expectati
that they should be ofO(asamQ) andO(a2mQ

2 ). Further-
more, such behavior is qualitatively in accord with that su
gested by El-Khadraet al. @42#, although we see no corre
sponding mass dependence inZA . Future simulations with a
fully O(a)-improved action should clarify this issue. Finall
we note that, as explained in Sec. IV, the errors in the co
puted form factors are expected to be considerably sma
because we normalize all of them byZV also determined
between heavy baryon states.
,
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