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We present the results of the first lattice study of semileptonic decays of baryons contaimingaak.
Predictions for the decay distributions are given and the Isgur-Wise functions for heavy baryons are computed
for values of the velocity transfer up to abawit 1.2. The computations are performed on &248 lattice at
B=6.2 using the Sheikholeslami-Wohlert action in the quenched approximf86656-282(198)04011-9

PACS numbsgps): 14.20.Mr, 12.38.Gc, 13.30.Ce, 14.20.Lq

I. INTRODUCTION data. In particular, we performed the simulations at two val-
ues of the light-quark maga little larger and a little smaller
The discovery of the\, baryon at the CERN"e™ col-  than that of the strange quarlélthough the results for these
lider LEP[1] and the observation of its semileptonic decaymasses are very encouraging, a significant uncertainty is in-
[2] makes the study of the weak interactions of heavy barytroduced when the results are extrapolated, as a function of
ons on the lattice timely. Knowledge of the strong interactionthe masses of the light quarks, to the chiral limit. We present
effects in semileptonic decays is necessary for the determthe results for the Isgur-Wise function for massless light
nation of the V., element of the Cabibbo-Kobayashi- quarks(relevant for the decap,— A +1v), as well as for
Maskawa(CKM) matrix from the experimentally measured the case in which one light quark is massless and the other is
rates and distributions. Up to noWW,| has been measured the strange quark, relevant for the procéSg—E +|v.
from the inclusive and exclusive decays of heavy mesons. One of the main goals of future simulations will be to deter-
In this paper we present the results of the first nonperturmine, in detail, the dependence &(fw) on the masses of the
bative computation of the semileptonic decays of heavyight quarks, and hence to reduce the uncertainty due to the
baryons performed using lattice QCD, encouraged by ouextrapolation of the results to physical masses.
previous results on the spectroscd@y. The main purpose We obtain, for the decay rate integrated over the range
of this first study is to establish whether such a calculation isv e[ 1,1.2],
feasible, and to identify the principal sources of systematic 2T
uncertainties and statistical fluctuations. Nevertheless, in : — . A+5 24 M3 1
spite of the exploratory character of this investigation, we are 1 do g (Ap=Actly) =145 Vey 109 s,
able to determine the main features exhibited by the six form
factors which enter in the decay amplitude for the processes 12 dr o
Ap,— A +1vandE,—E.+Iv, and hence to extract a con- j do 4~ (Ep—Ec+1v)=1.6"2|Ve/2108 571 (1)
siderable amount of phenomenologically interesting informa- ! @
tion. This range ofw corresponds to that for which we have the

. Using heavy quark symmetry It IS possible FO relate .themost reliable results. We also obtain the slope parameters of
six form factors to a unique baryonic Isgur-Wise function

£(w) [4] where w=v-v’, andv and v’ are the four- the differential-decay-rate form factors which are to be com-

- S ; ared to the slopes obtained by performing fits to experimen-
velocities of the initial and final state baryons. We compute,f)al results ford['/dw versusw, for » near 1. We find

¢(w), and by studying the dependence of the form factors on

the masgor massesof the heavy quarkn, we are able to p,%: 1.1+1.0 )

use heavy quark effective theofffQET) to give an estimate

of the O(1/mg) corrections to the infinite-mass resultera  for A, — A ./ decays and

review and references to the original literature see Fj.

The dependence of the Isgur-Wise function on the masses of pa=1.4+0.8 3

the light quarks is more uncertain because of our limited
for E,—E./ v decays. A more detailed discussion is pre-
sented in Sec. VI B. The plan of the paper is the following:

*Present address: Departamente de Fisica, Universidade de Coin Sec. || we recapitulate the theoretical framework for the

bra, 3000 Coimbra, Portugal. definition of the baryonic Isgur-Wise function. Section Il
"Present address: Department of Physics, University of Wuppergives details of the simulation and Sec. IV presents the re-
tal, Wuppertal D-42097, Germany. sults of the numerical analysis of both two- and three-point
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functions. We study the dependence of the Isgur-Wise funcfor a variety ofb andc quark masses in the region of the
tion on the velocity transfer and on the masses of the heavghysical charm quark mass, and extrapolate the results to the
and light quarks in Sec. V. In Sec. VI, we consider the phephysical values. HQET provides us with the theoretical
nomenological implications of our results for the baryonicframework to perform this extrapolation. The hadronic form
Isgur-Wise function and give estimates of differential andfactors F;,G; can be expanded in inverse powers of the
partially integrated decay rates. The main body of the papeneavy-quark masses; the nonperturbative QCD effects in the
is accompanied by three appendixes where we lay out someefficients of this expansion are universal mass-independent
lengthy parts of the calculation and of the analysis. functions of the velocity transfer. The analysis at leading

For the reader who is not interested in the details of theorder[4] establishes the important result that all the baryonic
computation we have attempted to write Sec(thieoretical form factors are described by a single universal function
framework and VI (results and implications for phenom- called the(baryonig Isgur-Wise functiont(w,u),

enology in a self-contained way. S = (1 _ -
(A (v")|cy (1= ys)b|Ay (v))

Il. THEORETICAL BACKGROUND =§(w,,u),t75)(v’)y,,(1— 7,s)ug)r)(v), (6)

C
In this section we outline the theoretical framework

needed to study the semileptonic decayégfand =, bary- o ) X
ons. The two baryons differ in their light flavor content, but the scale at whictt is renormalized. The relation between

are identical in all other quantum numbers and, in particulart.he SIX f_orm fa;cltorz_and tge rt()an?rr]mallzed |§%;;}/VIS€ func-
they can be described in the same manner within the framet'-On IS given at feading order by the expressi

work of HQET. For simplicity we will only consider here the - -

 ora plicity 4 Fi(w)=Ci(0)8(), Gi(w)=CXw)E®w), (7)

The nonperturbative strong interaction effects in the exyhere the scale dependence of the Isgur-Wise function
clusive semileptonic decay of thé,, are contained in the £y ) is reabsorbed into the definition of the short distance
matrix elements of theV-A weak currentd,=Cy,(1  coefficients C®)(w). The coefficient functionsC® are
—vs)b which can be written in terms of six invariant form | .o up to orde?(z In 2", wherez=m./m, is the ratio

factorsf; ,g; with 1=1,2,3, as follows: of the heavy-quark masses ane=0,1,2. The perturbative

which is normalized to the identity ai=1 and whereu is

(AP (PIIAL (D)) =T (P ,(F1— 7502) expansion ofC; andCj is of the form
+i0,,0" (2 7502) CP=1+ o (@) agt ", ®)

+iq,(f3— ysgs)]ug)(p). (4)  whereas the expansion 61(253) starts atO(«g). The pertur-
bative corrections are rather small since the coefficients;of
In Eq. (4), the momenta and polarizations of the initial and are typically of order 1, for our range of masses and values
final baryons have been explicitly indicated. The form fac-of », so that 6(253) are much smaller tharf:(f) (6(253
tors are functions ofj?, whereq is the four-momentum ~0.2). ’ '

transfer =p’—p). The decomposition above is conve- g aiso attempt below to obtain some information on the
nient since, if the lepton masses are neglected, only th?/mQ corrections to the form factors. In order to include

dominant form factors, andg, contribute to the rate. Since hege corrections it is convenient to define a new function
both the quarks destroyed and created Jy are heavy, (see Ref[5])
HQET provides a useful guide to the study of the form fac-

tors. In addition, theA, baryon has a particularly simple

structure in that it is composed of a heavy quark and lightéoq (@)= &*"+
degrees of freedom with zero total angular momentum, so

that heavy quark symmetry has considerable predictive ©)
power. Expressiold) can be rewritten in terms of the veloc- which is also scale independent and normalized at zero re-
ity variablesv,=p, /M, andv,=p,/M,_using a differ-  coil, since the functiony(w), arising from the higher-
ent set of form factors, which are functions of the velocity dimension operators in the HQET Lagrangian, vanishes at

w—1
re re
2mg 2m(’3 2x n(w)+a)+1§ )

transfero=v-v': w=1.
o A in Eqg. (9) is the binding energy of the heavy quark in
(AP (")[Cy (1~ ys)b|AY (v)) the corresponding\ baryon
=ug W 7u(F1= ¥5G1) +v,(F2~ ¥5G2) A=M, —m,=M, —m, (10
+0,(F3= vsG3) Uy (v). 5

In principle, we do not need to use HQET at all but can e graw the reader's attention to the fact that the Isgur-Wise
evaluate the matrix elements in Ed) directly. However, as  function which describes baryonic weak matrix elements is differ-

the inverse lattice spacing in our calculation is about 2.%nt from that entering in mesonic transitions. For simplicity we

GeV, we cannot use the physidalquark mass in our com- shall use the name Isgur-Wise function to refer to the baryonic one,
putation. Instead, we evaluate the matrix element in(By. whenever this does not lead to ambiguities.
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up to 1ing corrections. The quark masses in E§0) are At zero recoil, Luke’s theorenj7] protects the quantities
generally taken to be pole masses, which contain renormalol;F;(1) andG,(1) from O(1/mg) corrections:

ambiguities ofO(Aqcp). For the form factors, the ambigu-

ities due toA are cancelled by those arising from the higher- > Fi()=2 Ci(1)+ O(l/mé)

order terms in the perturbative series for the coefficients i

Ci(5)(w). In practice, we only know the coefficients S Fi(1)
C®)(w) up to one-loop order, and we implicitly assume that -
=t . : N - Nsun{1)
A is obtained from some physical quantity with a similar

precision. As we note in Sec. VI, some of the freedom of G4(1)
what to assign to the coefficients and what to the power Gy(1)= (1)+(9(1/mQ)H NE 5 1)
corrections cancels in the prediction for the physical form
factors obtained from those calculated on the lattice.

§QQ, is not a universal function and its dependence on the~or degenerate quark masseg,=mg: , the coefficient
flavor of the heavy quarks must be studied in desge Sec.

=1+0(1/m3)

=1+0(1/m3).
(14)

V A). The relation between the new functid@@o: () and B 2 ~ 20w-1) A
the form factors is given by NS“”‘(w)_zi Ni(@)=Cyw)+Cylw)| 1+ w+l 2mq
~ 2 e
Fi(w)zNi(a))fQQ,(w)-i-(’)(l/mQ(r)), - 20w—1) A
+Colo| 1+ =g e (15

Gi()=N3() &0 (@) +O(1m>,.), 11 _ .
i(@)=N7(0)éqq (@) +O(1my) e equals 1 at zero recoil, as required by vector current conser-

vation.
The coefficientg12) and(15) depend on the heavy-quark

masses and on the value of the baryonic binding endrgy

where the coefficientsl(® contain both radiative and
corrections. The exact expressions g5k

. 2 A A Different choices for the definition and values of the quark
Ni(w)=Cy(w)| 1+ + ) masses to be used in these expressions lead to differences
w+tl12mg  2mq which are ofO(a3) andO(1/m3), and hence are formally of
— the size of the terms we are neglecting. Moreover, we find
No(@) = Co(a)| 1+ 20 A that different choices of the quark mass lead to negligible
2 2 w+1 2mQ differences in the form factors fét;, =;F;, andG;. This is
— not the case for the form factofs,,F; and G,,G3, how-
—[E(@)+Cy(@)] —— A ever, for which the coefficient functions are zero at tree level
1 8 w+1 ZmQ and for which theO(1/mg) terms represent a major contri-
o bution. In these cases we tak&=M,— A, and A is ob-
- 20 A tained from a fit of the theoretical prediction for the form
N3(w)=Cs(w)| 1+ 1 W) factors to the lattice resultsee Sec. V € In all other cases,
Q . where the results are insensitive to the choice of the quark
mass, we take
“C@+ @] g g 12 -
R mQ:T(3MV+Mp)—200 MeV, (16)
N3(w)=Ci(w),
_ — whereM,, andM are the masses of the vector and pseudo-
5 ~5 2 A A scalar heavy-light mesons in lattice units as measured very
Nz(@)=C3(w)| 1+ o+l Zme + m_Q> precisely from a previous simulation performed on the same
_ set of configurations. 200 MeV is an estimate of the spin-
averaged mesonic binding enelf@}. For the lattice spacing,
_[Cl(_)”LCS(_) w+1 ZmQ as discussed in greater detail in Sec. Ill, we take
- = a 1=2.9+0.2 GeV. 1
NS _65 o)| 1+ LL_F A 40
3(0)=C3lw w+1 2mQ Mg The values of the quark masses obtained in this way are
— presented in Table I, and the coefficientS’ and C; which
+[é§(@ (—)] A are used in the rest of this paper are reported in Tables Il and
o+1 2m I for Aqcp=250 MeV andn¢=0 (as may be more appro-
priate for a quenched calculatipn
where the velocity transfer of the free quatkis given by Below, we will proceed as follows. Sind¢? andNg,,are
— close to unity and the form factoS;(w) and Z;F;(w) are
o=0+(w—1) A T i) (13)  Insensitive to the value of, we can use the measured values
Mo Mg of these form factors to determine the Isgur-Wise function




57 FIRST LATTICE STUDY OF SEMILEPTONIC DECA%.. .. 6951

TABLE |. Values of the quark masses in physical units, for results to determine the form factors for the physisatc
a~ '=2.9GeV andA=200 MeV, as obtained from the pseudo- decays.
scalar and vector meson masses in lattice ufits.is the heavy

quark’s hopping parametgr. lll. DETAILS OF THE SIMULATION
Ko Mpa Mya mo (GeV) Our calculation is performed with 60 $8) gauge field
0121 08744 0.896'5 538 ponﬁgurauons generated on a32<4_48 lattice gt,8=§.2, us-
' ' 3 o ' ing the hybrid over-relaxed algorithm described in Héf.
0.125 0.773'3 0.799' 2.10 Since we are studying the decays of quarks whose masses are
0.129 0.665'3 0.696°; 1.80 large in lattice units, we must control discretization errors. In
0.133 0.547 3 0.588% 1.48 order to reduce these errors, we useCm)-improved fer-

mion action originally proposed by Sheikholeslami and
Wohlert (SW) [10], given by

reliably. For the individual vector form factois,, F,, and

F3 (and similarly forG, and G3) the situation is different sw_oaw K —

since theO(1/mg) corrections are significant. From these SST=SEi 5 X%V AX)F LX) 0,,.a(x), (18
form factors, using the Isgur-Wise function already obtained,

we determine thé\ parameter. Finally we use the combined whereSt' is the Wilson action

TABLE Il. Radiative andO(1/mg) correction factors fow=1.0 and 1.1(xq and kg, are the initial and final heavy quark hopping
parameters.

Kq— Kg w 2 N3(0)=C3(w) Co(w) Cy(w) Nun{ )
0.121-0.121 1.0 1.0 0.961 0.019 0.961 1.0
0.121-0.125 1.0 1.0 0.965 0.024 0.965 1.01
0.121-0.129 1.0 1.0 0.971 0.03 0.971 1.02
0.121-0.133 1.0 1.0 0.98 0.04 0.98 1.04
0.125-0.121 1.0 1.0 0.956 0.016 0.956 0.992
0.125-0.125 1.0 1.0 0.959 0.02 0.959 1.0
0.125-0.129 1.0 1.0 0.965 0.027 0.965 1.01
0.125-0.133 1.0 1.0 0.973 0.037 0.973 1.03
0.129-0.121 1.0 1.0 0.949 0.011 0.949 0.982
0.129-0.125 1.0 1.0 0.952 0.016 0.952 0.989
0.129-0.129 1.0 1.0 0.957 0.022 0.957 1.0
0.129-0.133 1.0 1.0 0.964 0.031 0.964 1.02
0.133-0.121 1.0 1.0 0.938 0.0044 0.938 0.967
0.133-0.125 1.0 1.0 0.941 0.0086 0.941 0.973
0.133-0.129 1.0 1.0 0.945 0.015 0.945 0.984
0.133-0.133 1.0 1.0 0.952 0.024 0.952 1.0
0.121-0.121 1.1 1.15 0.932 0.018 0.932 0.968
0.121-0.125 1.1 1.15 0.937 0.022 0.937 0.977
0.121-0.129 1.1 1.16 0.944 0.028 0.944 0.99
0.121-0.133 1.1 1.17 0.955 0.037 0.955 1.01
0.125-0.121 1.1 1.15 0.927 0.014 0.927 0.96
0.125-0.125 1.1 1.16 0.931 0.018 0.931 0.969
0.125-0.129 1.1 1.16 0.938 0.024 0.938 0.981
0.125-0.133 1.1 1.17 0.948 0.033 0.948 1.0
0.129-0.121 1.1 1.16 0.92 0.01 0.92 0.95
0.129-0.125 1.1 1.16 0.924 0.014 0.924 0.958
0.129-0.129 1.1 1.17 0.93 0.02 0.93 0.97
0.129-0.133 1.1 1.17 0.94 0.028 0.94 0.99
0.133-0.121 1.1 1.17 0.91 0.0039 0.91 0.935
0.133-0.125 1.1 1.17 0.913 0.0077 0.913 0.943
0.133-0.129 1.1 1.17 0.919 0.013 0.919 0.954

0.133-0.133 11 1.18 0.929 0.021 0.929 0.973
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TABLE Ill. Radiative andO(1/mg) correction factors fow=1.2 and 1.3(kq and xq are the initial and final heavy quark hopping
parameters.

KQ— Ky 1) ® N?(w):é?(@ éz(@ él(m Nsunf @)
0.121-0.121 1.2 1.3 0.904 0.016 0.904 0.937
0.121-0.125 1.2 1.31 0.909 0.02 0.909 0.946
0.121-0.129 1.2 1.32 0.917 0.025 0.917 0.96
0.121-0.133 1.2 1.33 0.929 0.034 0.929 0.981
0.125-0.121 1.2 131 0.898 0.013 0.898 0.929
0.125-0.125 1.2 131 0.903 0.017 0.903 0.938
0.125-0.129 1.2 1.32 0.911 0.022 0.911 0.951
0.125-0.133 1.2 1.34 0.923 0.03 0.923 0.972
0.129-0.121 1.2 1.32 0.891 0.0091 0.891 0.919
0.129-0.125 1.2 1.32 0.896 0.013 0.896 0.928
0.129-0.129 1.2 1.33 0.903 0.018 0.903 0.941
0.129-0.133 1.2 1.35 0.915 0.026 0.915 0.961
0.133-0.121 1.2 1.33 0.881 0.0034 0.881 0.905
0.133-0.125 1.2 1.34 0.886 0.0069 0.886 0.913
0.133-0.129 1.2 1.35 0.893 0.012 0.893 0.925
0.133-0.133 1.2 1.36 0.904 0.019 0.904 0.945
0.121-0.121 1.3 1.45 0.876 0.015 0.876 0.907
0.121-0.125 1.3 1.46 0.882 0.018 0.882 0.916
0.121-0.129 1.3 1.48 0.89 0.023 0.89 0.93
0.121-0.133 1.3 15 0.903 0.031 0.903 0.951
0.125-0.121 1.3 1.46 0.871 0.012 0.871 0.899
0.125-0.125 1.3 1.47 0.876 0.015 0.876 0.909
0.125-0.129 13 1.49 0.884 0.02 0.884 0.922
0.125-0.133 1.3 1.51 0.897 0.028 0.897 0.943
0.129-0.121 1.3 1.48 0.864 0.0083 0.864 0.89
0.129-0.125 1.3 1.49 0.869 0.012 0.869 0.898
0.129-0.129 1.3 15 0.877 0.016 0.877 0.911
0.129-0.133 1.3 1.52 0.889 0.024 0.889 0.932
0.133-0.121 1.3 1.5 0.854 0.003 0.854 0.875
0.133-0.125 1.3 151 0.859 0.0062 0.859 0.884
0.133-0.129 1.3 1.52 0.866 0.011 0.866 0.896
0.133-0.133 1.3 1.54 0.878 0.018 0.878 0.916

where

SF=2 [a(x)a(x) =« [q(x)(1—y,)U,(x)q(x+ i)
X /2

- 1 - 1 .
. I“={1+=y-D|(1-y*)ys|1—= y-D|. (22
+q(x+a)(1+ y#)u;(x)q(x)]>. (19 ( 2”7 >( 4 )75( 27 ) 2

The use of the SW action reduces discretization errors fronThe gauge field configurations and the light quark propaga-
O(ma) to O(asma) [10,11] provided one also uses “im- tors were generated on the 64-node i860 Meiko Computing
proved” operators, for example, those obtained by “rotat-Surface at the University of Edinburgh. The heavy quark

ing” the field of the heavy quark): propagators were computed using the Cray T3D, also at Ed-
inburgh.

1 . In order to enhance the signal for the baryon correlation

Qx)—| 1~ > 7D Q(x). (200 functions, the light and heavy quark propagators have been

computed using the Jacobi smearing methidd, at both the
Thus, to obtain arO(a)-improved evaluation of the matrix sink and the sourc€SS. Since smearing is not a Lorentz-
element in Eq(5), we use a “rotated” improved current invariant operation, it alters some of the transformation prop-
L erties of computed quantities. In a previous publicafidh
J*F=Q' (xX)I'*Q(x), (21 we have shown that such an effect is evident in two-point
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baryonic correlators at nonzero momentum. In Appendix A, . 727 ,
we include a study of the smearing effects for SS three-point [C(ty, 1970 ~1EE e B (e FYy
functions.
Statistical errors are obtained from a bootstrap procedure X[(p'+MHFYRp+M)], (27)
[13]. This involves the creation of 1000 bootstrap samples ’
from the original set of 60 configurations by randomly se-
lecting 60 configurations per samleith replacement Sta-
tistical errors are then obtained from the central 68% of the v , \/ﬁ
corresponding bootstrap distributions as detailed in Ref. E=VM™+|pl%  E'=VM"+|p—dl%
In order to study semileptonic decays of the typg
— Al on the lattice, we consider the following three-point
correlators:

where

M:MAQ, M/:MAQ”

p.=(E.p), p,=(E'.p—a),
C(t,,t,)]9"Q = e ip Xg—id-y
[Clot)If =2 3 Z=Z[Aglpll. Z'=Z[Ag lp—d]l. (29

Q' Q—-Q' »Q
x{0 ()[I(y)] 0(0)), The weak matrix element can be written in terms of the six

(23 lattice form factors:

where the spinorial indices are implicit. The operator <Ag2(§’)|[3M(0,O)]Q_’Q/|AE§>(|5))
OX) = €anc(13'Cys19)Q° 24 51\ 7Q"Q( ! 5
(X)=€anc(l1 Cysl2)Q (24) :Ug?(p )]:S ,Q(p ,p)ug)(p) (29

is the interpolating operator for the baryon, and the current

which mediates the decay of a heavy quérinto a second  With

heavy quarkQ’ is given in Eq.(22). |, andl, represent light ' . . .

quark fields. The three-point functidfC(t,,t,)]2~?" can F %p',p)=[Fi(®)y, +F5(w)v,+F5(0)v,]

be written in terms of quark propagators, as _[G'i(w)ylﬁ— G'g(w)v#-F Gé(w)v;]%,

[Clty, 1)1~ (30)
) R ) e (9).(r) -
— E [3¢ d(O,y;tx,p)QrFMS%C (y,0)]e"d y>, (25) WhereuQ_(Q_,) gre.the spinors qf the heavy baryons aerhd
y r are helicity indices. The lattice form factof$ andG' are
e ) related to th_e physical form factoial and G; through Fhe
whereS5(y,0) is the propagator of th@ quark fromy to  renormalization constants of the lattice vector and axial cur-

the origin in the presence of a background field configurarent, respectively. This will be discussed in some detail be-
tion, low.

2Cd(oiy;tx ’ ﬁ)Q’
IV. DETAILS OF THE NUMERICAL ANALYSIS
= €ancearbrcr S € PITS T(x,00CysSY (X,0) y5C] In this section we describe our procedure for the extrac-
X ' 2 tion of the form factors from the lattice correlation functions.

X SgI(%,y), (26)
A. Analysis of two-point correlation functions
where T represents the transpose in spinor space, angular at nonzero momentum

brackets denote the average over gluon configurations, and The wave-function factorZ,z’ and the energies which

a,b,c.da’,b’.c’ are c9lor indices.S,l and S, are the appear in Eq(27) can be obtained from the analysis of the
propagators of the two light quarks. The extended propagatqippropriate two-point correlation functions
(26) can be evaluated using the standard source method re-

viewed in Ref[15].
In the limit of larget, andt,—t, (in the forward part of
the latticg, where the ground state contribution to the corre-

lation function should dominate, we can rewrite the cor-This correlator was evaluated for four values of the heavy-
relator as follows: quark hopping parameter corresponding to masses around
that of the charm quark, and for three combinations of the
light-quark masses, as shown in Table IV. We have com-
2This and the following expressions are only correct in the case ifPuted the correlator for momenta up [t =2pm,, where
which local operators are used. The actual case of smeared-smeagin=27/La=n/12a is the minimum nonzero momentum al-
correlators, which is discussed in Appendix A, is more complicatedowed on our lattice. For the analysis, equivalent momenta
but conceptually similar. have been averaged to reduce the statistical fluctuations.

Cg(ﬁ,t)=§i: e P X O(%,1)0%(0,0)). (31)
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TABLE IV. Quark hopping parameter combinations used in theto the present study, and for momenta ud ﬁb:\/?w/12a
calculation of baryon two-point functions«|; and ), are the two  are reported in Tables V and VI.

light-quark hopping parameters arg, that of the heavy quark. The case corresponding ;= k,,=0.14144 is further
studied in detail to check the precision with which the dis-
K1l ki e persion relations are satisfied as the momentum of the baryon
0.14144/0 14144 0.121 0.125 0.129 0.133 IS increased. It is nowadays customét®,17 to replace the
0.14144/0.14226 0.129 continuum dispersion relatiofCDR)
0.14226/0.14226 0.129
a’E’=a’m’+ p2a? (33

For the actual case of smeared-smeared operasaes
Appendix A), for large time separations and imposing anti-
periodic boundary conditions in time, the correlaf.bg2 be-

with the so-called lattice dispersion relatidrDR)

comes a’E?=a’m?+sirf(pa), (34)
CS(t,ﬁ)=Z§(|ﬁ|)[eEt E+M-a*(E-M) 1 which is suggested by the form of the free fermionic propa-
4E gator on a discrete lattice. For the heavy-quark masses in
) Table V the two dispersion relations yield essentially indis-
N E+tM+a(E-M)  2a 67| —e ETU tinguishable results for the energy @ = p,. In addition,
4E Y07 2E the theoretical predictions coincide with the measured val-

2 ues, confirming that the systematic effects at this low value
E+M—o (E-M) 1 of the momentum are negligible. For momentulj|

4E =v2pmin, We note that the predicted value is about 1%
larger than the measured one, although always compatible

X

2(E_
_EtM+a(E-M) Yo— 2a B- 77” (32 within one sigma. Given this result, it seems that the correc-
4E 4E tion obtained with the lattice dispersion relation goes in the

right direction. However, much more precise data are needed

where p# is defined in Eq.(28), p*#=(E,—p) is the four- to draw a firm conclusion on this issue.
momentum of the antibaryon propagating in the backward Finally, for the conversion of our values for masses and
part of the lattice, andZs, « are the amplitudes of the energies into physical units we need an estimate of the in-
smeared operatddefined in Eqs(A4) and (A6)]. verse lattice spacing in GeV. Following R¢8], we use the

At zero momentum, the analysis is particularly simplevalue given in Eq(17). The error in Eq(17) is large enough
since the only nonzero components are independent of tHe encompass all our estimates #r! from quantities such
unphysical amplituder. Details of this case are given in Ref. asm,,f ., my, the string tension/K, and the hadronic scale
[3]. At finite momentum, we have used both the diagonal andR,, discussed in Ref.18].
the off-diagonal components of the spinorial matrix to ex-
tract the energy from the exponential falloff. The values of _ _ _
the amplitudeZ, and « were obtained by fitting separately B. Three-point functions and lattice form factors
the contributions proportional to the identity, tg and to In this subsection we explain our procedure for extracting
vi, and by taking suitable linear combinations of the overallthe form factors from the computed three-poiand two-
factors, as explained in the appendix of R&}. The results point) correlation functions. We have computed the three-
of these fits, for those mass combinations which are relevargoint functions for the mass combinations tabulated in Table

TABLE V. Energies of theA baryon in lattice units for all the momenta and quark hopping parameters
relevant to the present study.

ki1l K1 Ko p=(0,0,0) p=(2/La,0,0) p=(2m/La,2m/La,0)
0.14144/0.14144 0.121 1.1387 1.167°3 119213
0.14144/0.14144 0.125 1.040°% 1.072'% 1.099' 33
0.14144/0.14144 0.129 0.938¢ 0.9738 1.002°13
0.14144/0.14144 0.133 0.829°¢ 0.868'8 0.901" 12
0.14144/0.14226 0.129 0.910'8 0.943°9 0.972'12
0.14226/0.14226 0.129 0.876'3 0.914'13 0.948' 17
chiral/chiral 0.129 0.807'13

chiral/strange 0.129 0.853 ¢
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TABLE VI. Amplitudes Z4 and « obtained from the analysis of the finite momentum two-point functions.

p=(0,0,0) P=(Pmin0,0) P=(Pmin :Pmin.0)
Ko z2x 10t z2x 10t a Z2x 10 @

(K11,K1)=(0.14144,0.14144)

0.121 4.44°%8 2.85'% 0.66'7 1.96" 33 0.56'3

0.125 4.41°%8 2.86"39 0.70"7 1.95'3 0.60"3°

0.129 4353 2843 0.77°7 1.94°%3 0.66 5"

0.133 41732 2.75 34 0.83°% 1.87°%° 0733
(Ki1,K12)=(0.14144,0.14226)

0.129 4.02"%2 25638 0.76"¢ 1.68'32 0.68'13
(Ki1,K12) = (0.14226,0.14226)

0.129 3778 24238 0.71°3 1.60"33 0.65' 15

VII. In order to study the dependence of the form factors on [C(t)]QHQ’
the masses of the heavy quarks, we have computed the cor- #
relation functions for all combinations af, and g/ taken B zZ' CE'(Tl2—t)amEt R
from 0.121, 0.125, 0.129, 0.133, but with the light-quark ~ 16EE’ © e " {Vu(a,,M,M",p,p")F1(w)
masses fixed by,; = x|,=0.14144(which is close to that of o L L
the strange quajkOn the other hand, the dependence on the +Wa,,M,M",p,p")[v,F3(0)+v,F3(w)]
Ilght.-q.u.ark masses was studied by_keepTg fixed thg mass of ~ A (a,8,M,M’ ,f),f)’)G'i(w)
the initial and final heavy quarkey= kg =0.129 which is
very close to that of the charm quark, and considering the +B(a,5,M,M ’,ﬁ,ﬁ’)[vﬂGg(w)Jrv,’LG;(w)]},
three light hopping-parameter combinationg,;= «, (35)
=0.14144, x1,=0.14226, «,=0.14144, and x1=k|,
=0.14226. In light of the encouraging results obtained bewhere we have sdt=T/2 (which is the value we chose in
low, we envisage the possibility of repeating the calculationour computations and have renamed the remaining time
on a larger sample of heavy-and light-quark masses. variablet,—t. The matrices/, W, A, B are different linear

We measure the six form factors for the different quarkcombinations of the Dirac matrices, with coefficients which
masses from the three-point functiof®3), whose expres- depend on the arguments shown. The overall normalization
sion, for large values of, andt,—t, in the forward part of ~factor, as well as the four matrice )V, A, B can be fully
the lattice and for local interpolating operators was given inf€constructed from the two-point functions at the corre-
Eq. (27). The more complicated case of SS correlators SPonding values of the masses and momenta, as illustrated in

o : : i : oo Sec. IV A,
which is explained in detail in Appendix A, can be written . . . .
schematically as follows: We will now consider separately the two cases in which

we keep either the axial or vector currents from WieA

TABLE VII. Quark hopping parameter combinations used in the calculation of baryon three-point func-
tions. (k;; andk, are the two light-quark hopping parameters whilg and ko, are those of the initial and
final heavy quarks.

K11 K2 KQ— Kqr

degenerate transitions

0.14144/

0.14144 0.12%:0.121 0.125-0.125 0.129-0.129 0.133-0.133
0.14144/

0.14226 0.129-0.129

0.14226/

0.14226 0.129-0.129

nondegenerate transitions

0.14144/ 0.123-0.125 0.123-0.129 0.121-0.133
0.14144 0.125-0.121 0.125-0.129 0.135-0.133

0.129-0.121 0.129-0.125 0.133-0.133
0.133-0.121 0.133-0.125 0.133-0.129
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FIG. 1. Examples of the plateaux used in the fifimm left to right, top to bottorh G(w), G,(w), 2iFi(w), andFy(w). k1= k|2
=0.14144,kq= ko =0.121, the initial particle is at rest and the final particle has momenpin®,0), wherep’=2x/La.

current which mediates the semileptonic weak decays of (2) Currentindexu=0. The large components of baty
heavy baryons. The following discussion is based on Egsand3 are located in the top-riglibottom-lefy corner matri-
(A8) and(A9) in Appendix A. ces in the forwardbackward part of the lattice. So the three
form factors contribute to the same spinorial components,
making the extraction of the form factors very uncertain.
Therefore, the equations obtained from the current with in-
The freedom to choose the Lorentz ingexnd the spinor  dex u=0 will not be considered in the analysis below.
components appropriately allows us to extract the required We conclude that from an analysis of the correlators with
form factors efficiently’ It is convenient to think of the four- index ©=1,2,3, it is possible to obtain a clean straightfor-
by-four spinorial matrix as subdivided into four two-by-two ward determination of the form factors. We consider the
matrices, as explained in Appendix B. We find the following. asymptotic form of Eq/(35), fitting for either Gi or G54
(1) Current indices u=i with i=1,2,3. The large separately, depending on the particular spinorial component
componentsof 4; are located in the tofbottom diagonal ~ under study.
submatrix in the forwardbackward part of the lattice. The Once the time-dependent factor in E§5) has been di-
large components of are located in the top-righbottom-  vided out, we observe long and stable plateaux, centered
left) corner submatrix. Thus the contributions of the formaroundt=12. As an example we exhibit in Figs(al and
factor G} can be separated from that 6f 5. 1(b), the plateaux for the form facto®] and G5, for one
set of masses and choice of momenta. We have fGéor
three, five, and seven time slices. The central values of the
3Alternatively we could use suitable projection operators in spinorfItS are |nsenSItlve FO the ch0|qe O.f fitting |nterve}l, and in
space. order to av0|ql possible cqntamlna_tl(_)ns due to exited states,
“Here and in the following, we refer to the numerical coefficients W€ have decided to restrict the f|2tt|ng range to three time
of the form factors in Eq(35) as large if they are proportional to Slices centered around=12. The xpoe for these fits were

the energy or mass of the baryon, and as small if they are propoglways very reasonable, ranging froy%o,:~0.5 to X%o,:
tional to the spatial momentuim. ~2.

1. Analysis of the axial form factors
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As was discussed in Sec. I, the form factors are related télowever, since these points are more affected by discretisa-
the physical renormalized Isgur-Wise function through ation errors, we do not include them in our determination of
multiplicative renormalization which takes into account thethe Isgur-Wise function.
short-distance QCD corrections. Furthermore an additional The estimates reported in Tables VIII and IX are also
renormalization constan¥(,) must be introduced in order to plotted in Fig. 2, for all the degenerate and nondegenerate
relate the lattice improved axial curre(22) to the con- transitions, atk;;= x;,=0.14144. We have included all the
tinuum one. Perturbative and nonperturbative calculations gboints obtained from baryons either at rest or with momenta
Z, are available in the literaturel9,20, but it can also be |pl,|p’|=pmin. The interpretation of the dependence of
estimated nonperturbatively in this computation. As can b%Qq,(w) on the velocity transfer is postponed to Sec. V A.
seen from Eqs(14), Gl(l)/Nf(l) is equal to 1 up to h‘lé We conclude this section with a comment on the determi-
and two-loop corrections. If we make the reasonable assumpration of the suppressed form fact@$ andG5 . As can be
tion that these corrections are small, a measurement afpserved from Fig. (b), the signal is very noisy and com-
GI(1)/N3(1) will give us a nonperturbative estimate of patible with zero. Because of this feature, which is common
Z,'. For degenerate transitions, to most of the momentum channels, we are unable to deter-

mine these form factors, within the available statistics.

N3(1)
0] =0.98"8 at «;=k,=0.14144 andk,=0.133, 2. Analysis of the vector form factors
The analysis of the vector form factors proceeds along the
N3(1) 8 same lines as those followed for the axial form factors, with
ST T at x1=k2=0.14144 andkp=0.129,  gyme significant differences. It is interesting to measure not
only the three form factorEiL, with i=1,2,3, separately, but

Ni(l) also their sum because of the normalization conditibf).
———=0.983 at k;=x,=0.14144 andk,=0.125, Indeed, as we will see below, it proves to be easier to deter-
Gi(1) mine the sum precisely than the individual form factors.

5 We now study the different spinor components of the two
N1(1) matricesV,, , W for different values of the index. As was

_ 10 . _
=0.98"3° at «j;=«,=0.14144 andx,=0.121, the case for the axial current, the discussion is based on Egs.
(36)  (A8) and(A9) in Appendix A. We find the following.
(1) For indicesu =i with i=1,2,3, the large components
to be compared with the nonperturbative estimateZgf  of V), are located in the top-rightbottom-lef) submatrix in

Gi(1)

obtained for light quark$20] the forward(backward part of the lattice, whereas the non-
N 1 vanishing components ofV are located along the diagonal.
ZRX"P=1.0477 (37 Thus, the form factor§} and F5 ; give separate contribu-

o s ) tions to different spinorial components. However, as shown
The coefficientsN; used in Eqs(36) were computed from iy Appendix B, spinorial components located in the off-
expressiong12). Within the statistical precision of our cal- diagonal submatrices are always proportional to the ampli-
culation, we have no evidence of discretization errors nor ofydesa and B and thus are noisier than those located in the
O(lfmczg) correctiongassuming that these two effects do not diagonal submatrices. From this feature we can already an-
partially cancel, which is very unlikely given the range of ticipate that the determination &% is going to be less pre-
masses we consideindeed, we observe that the four values gjse than that o3 .

in Eq. (36) are exceptionally stable with the quark mass. (2) For current indicesu=0: the large components of
In Tables VIII, IX, and X, we present our results, for the i V, andW are located in the tofbottom-diagonal sub-
quantity matrix in the forward(backward part of the lattice. In this

L 5 case one obtains the linear combination of the three form
’ Gi(w) Ni(1) factors FL+voF5+viF5 which | imatel I t
0o/ (®)= —1 - (39) actors Fy+voF;+uvoF3 which is approximately equal to
G1(1) Ni(w) F,+F,+F3 at the low momenta which we are using. These
channels have a very clean and precise signal, which is the
for all the quark masses and for initial and final momenta upeason for the accurate determination of the sum of the form
to |p|,|p’|=v2. It follows from the above discussion that factors.
this quantity is independent of the lattice renormalization |n view of the above discussion, it has proved to be ad-
constantZ . vantageous to consider equations both witki and with
We observe the following. =0, minimizing the full covariance matrix with respect to
Our determinations of,o/(w) have statistical errors the three form factors, and reconstructing their sum. Ex-
ranging from 3 to 15%. As a general rule, we note that foramples of plateaux obtained from channels witk0 and
the same heavy-quark masses, errors increase with the m@ith x =i are shown in Figs. (t) and Xd), respectively. As
mentum of the final baryon. Furthermore, errors are ampliexpected, the relative statistical error is smaller in the first
fied as the light quarks approach the chiral limit. case, and we find that the stability and symmetry of the pla-
The estimates of,q/(w) obtained from transitions with teau is also better. In extracting the values of the form factors
final momentunp’| =v2p,, are in agreement with those of we have again restricted the fitting range to three time slices
similar o obtained from channels with lower momentum. centered arount=12, and we find very reasonable values of
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TABLE VIII. Estimates of the functior:g’QQ/ as obtained from the axial form fact@r; . All the transitions, corresponding to initial heavy
x=0.121 and 0.125 and initial and final momenta up@h|p’|=v2pmi» are shown. Statistical errors i are in the last digit or beyond.

Kj1=0.14144, «,=0.14144

. 0.121-0.121 0.121-0.125 0.121-0.129 0.121-0.133
p.p’ . . . .
[ Prmin] @ $oor @ Soor @ ooy w ooy
(0'0101 7#3 3 4F4 +4
(100 1.026 0.97°3 1.030 0.96"3 1.037 0.94°% 1.048 0.91°%
(gig 1.050 0.957§ 1.060 0.93°] 1.073 0.91°8 1.09 0.90°§
%3% 1.052 0.94' 13 1.057 0.92"10 1.064 0.91"32 1.07 0.89"°
((11%% 1.000 1.02°19 1.000 0.95' 13 1.001 0.94"13 1.003 0.93'13
((_1,1069(,)) 1.10 0.813 1.11 0.76"3 1.13 0.74"3 1.15 0.70"%
1,0
(( o 0’%’ 1.026 0.95"2 1.026 0.95"3 1.026 0.95';
(1.0,0, 1.077 0.95'3 1.09 0.92'1f 1.10 0.88"12 1.12 0.80'1Z
(0,1, : ] : -Je-16 : 0015 : OW15
o 0.125-0.125 0.125-0.121 0.125-0.129 0.125-0.133
p.p’ . . . .
[ Pmin] @ €oor @ éoor @ ooy w ooy
(0,0,0, 3 2 4 +5
(1.0.0 1.030 0.95°3 1.026 0.99"% 1.037 0.94"% 1.048 0.917;
(8(1% 1.060 0.95°5 1.050 0.96"3 1.073 0.93"% 1.09 0.89"%
(1.0,0, 1.062 0.91° 15 1.057 0.92"15 1.069 0.89"3* 1.08 0.87"2°
(0,1,0 : -JL-10 : ~J4-10 : 098 : Ofl_g
((11%% 1.000 1.02°32 1.000 0.97'13 1.000 0.95'33 1.002 0.94°13
(1,00, 8 10 +9 8
(~1.00) 1.12 0.76'3 1.11 0.75' 3 1.14 0.7173 1.16 0.67"¢
(1.0,0, +5 6 5
0.0.0 1.030 0.94°2 1.030 0.94°; 1.030 0.94°3
(1,0,0,
011 1.09 0.90" 3¢ 1.08 0.9171] 1.11 0.85'12 1.13 0.78'1;
0.1,

X50r Confirming the indications of the preliminary discus- The numerical values oy obtained in this way are
sion above, we measuf€;, F5, andF} individually with o
relatively large statistical errors, ranging from 6 to 20%, Zv=084¢ at x;1=x2=0.14144 andx,=0.133,
whereas the errors on their sum are never more than 10%.

In order to extract the form factors from the correlation Zy=0.85"% at xj;=x,=0.14144 andk,=0.129,
functions measured on the lattice it is necessary to determine
the renormalization constadt, which relates the lattice and ~ 7,=0.87"3 at «;;=«,=0.14144 andk,=0.125,
physical vector currents. This constant has previously been
determined nonperturbatively, by studying the matrix ele- ZV=O.88f§ at k1= K|,=0.14144 andi,=0.121,
ments of the charge operator between meson states, and the (40)
results are reviewed in Appendix C. Noting that for degen-

erate transitions between baryon states at @#Yg is the  which are in agreement with the other nonperturbative esti-
charge operator, we find here that mates presented in Appendix C, obtained with a different
method. Below we will us&,,= Ng,{1)/3;F;(1) to normal-
ize the lattice vector current. The factor Nf,(1) is re-
1:Zv( E FiL(l))_ (39) ((qlujr;]ed when considering nondegenerate transitises Egs.
1 .
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TABLE IX. Estimates of the functio@QQ/ as obtained from the axial form fact@; . All the transitions, corresponding to initial heavy
x=0.133 and 0.129 and initial and final momenta up@h|p’|=v2pmi» are shown. Statistical errors in are in the last digit or beyond.

Kj1=0.14144, «,=0.14144

. 0.133-0.133 0.133-0.121 0.133+0.125 0.133+0.129
p.p’ . . . R
[ Prmin] @ ooy @ ooy @ ooy w ooy
0,00, 1.048 0.91°2 1.026 1.02"2 1.030 1.00"3 1.037 0.96'3
(100 ) 913 } .02"2 . 003 . 963
0,00, 1.09 0.82%8 1.050 0.96'7 1.08 0.97"7 1.073 0.93"8
110 } 82"8 ) 967 . 977 . 938
(1,0,0, 9 10 10 9
0.0 1.10 0.823 1.074 0.88'5 1.07 0.87'3 1.09 0.85'3
(1,0,0, 12 12 13 12
(1.0.0 1.000 1.02°13 1.003 0.98 % 1.002 0.9815 1.001 0.97° 13
(l,O,Q, 6 10 9 7
(=1.0.0) 1.20 0.57°¢ 1.15 0.69"7 1.16 0.67°3 1.173 0.63°{
(1,00, 6 +6 5
000 1.048 0.90"% 1.048 0.91°¢ 1.048 0.92°2
(1,00, 1.15 0.71° 14 1.100 0.83'16 1.111 0.80' 18 1.13 0.76"1>
0,1, : -f4-13 : 09-14 : OV-13 : 10-14
o 0.129-0.129 0.129-0.121 0.129-0.125 0.129-0.133
p,p’ . R . .
[ Pmin] @ éoor @ ooy @ ooy ® ooy
(010101 +3 +3 3 +4
(1,00 1.037 0.943 1.026 1.01°3 1.030 0.98'3 1.048 0.91°%
(0,0,0, 6 8 7 6
(110 1.073 0.93"3 1.050 0.97°3 1.060 0.96"7 1.09 0.88°3
(1,00, 9 11 410 8
010 1.076 0.88°3 1.064 0.91° 1.069 0.89'3 1.09 0.84'3
(1,00, 1.000 1.02°11 1.001 0.98'12 1.000 0.97" 1 1.001 0.96' 13
(1,0,0 : Ve : Jo-1n : Ji-12 : J0-13
(1,0,0, 7 10 +9 6
(~1.00) 1.15 0.68°¢ 1.13 0.723 1.14 0.713 1.17 0.63¢
(1,00, 6 6 4
0.0.0 1.037 0.92°2 1.037 0.92°% 1.037 0.92;
(1,00,
1.11 0.81°1¢ 1.09 0.89'1; 1.10 0.86"1; 1.13 0.74' 1
0,12

In Tables Xl, Xll, and XllII, we present our results for the the values of the heavy-quark masgesich in the present
guantity study vary by almost a factor 21,e[1.48,2.38). In Fig. 3,
we plot our estimates of
5 Fi(@)+F5(0) +F5(@) Ngynf 1)
(W)= 41
fear(@) SFED Nego) Y Naurf 1)

Fosw)=F54w) SFND) (42

for all the combinations of quark masses and for initial and )
final momenta up tdp|,|p’|=pmin. The results reported in We observe that these form factors are small and negative as
Tables XI and Xl are also plotted in Fig. 2, for all the one would expect from E¢12). Our measurements of
degenerate and nondegenerate transitions, kgt «,
=0.14144. The study of the dependencetgfy (w) on the _ e, Neunl1)

) > - Filow)=Fl(0) o=~ (43
velocity transfer is again postponed to Sec. V A. 3Fir(1)

We end this subsection with a discussion of the determi-

nation of the form factor$,, F,, andF; separately. The for degenerate transitions are also presented in Fig. 3. In
form factorsF, andF; start atO(«s) in perturbation theory order to decrease the number of parameters in the fit, we
and at next-to-leading order in theni4 expansion and they restricted the analysis to degenerate transitions, for which
are thus expected to be small relativeRp and sensitive to  one can use the symmetry relatibp(w) =F3(w).
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TABLE X. Estimates of the functio@QQ/ as obtained from the axial form fact@; . All the degenerate
transitions ko= ko' =0.129 and light masses corresponding«q, «;,=0.14144, 0.14226 and 0.14226,
0.14226 with initial and final momenta up I9|,|p’ | =v2pmi, are shown. Statistical errors inare in the last
digit or beyond.

0.129-0.129
o k11=0.14144, x,=0.14226 k11 =0.14226, x,=0.14226
p.p’ . .
[Pmin] ® gQQ’ @ gQQ'
(8'%% 1.040 0.92'3 1.043 0.92'3
((11(())% 1.000 1024 1.000 0.85'%
((71’10606) 116 0.68' 1.18 07233
(1,00,
011 1.121 0.77°33 1.131 0.59'5¢
0,1,

As anticipated above, the errors in the individual form A. %QQ,(co) as a function of w and of heavy-quark mass
factors are larger than that in their sum. To make this clear,

we plot in Fig. 4 the form factor$:1_,F2 and the surF, . the sum of the vector form factos;F;, are protected from
+2F, for the degenerate channel with heavy quark h°pp'”91/mQ corrections at zero recofsee Eq.(14)]. Away from

parameterKQz_O.lzl. It can be seen that th_e fluctuations_ ir'zero recoil, these quantities are no longer protected by
F, andF, partially compensate each other in the determinay o' theorem and they sufferrty corrections. We recall

tion of the functiongqq . A more detailed discussion of the thejr expansion in powers of the inverse heavy-quark mass,
behavior of bothF; and F, 5 and of their relation with the  given in Egs.(11) and (9):

Isgur-Wise function, will be presented in Sec. V A.

As discussed in Sec. I, both the axial form fac®y and

Gulw) _2Fi(0) 5 | e[ A A )
V. THE ISGUR-WISE FUNCTION N3(w) Neufw) Q9 2mg | 2mq,
In this section we study the dependence of the function (0—1)

2
+O( 1/mQ(,)).
(44)

éoor(w) on the masses of the initial and final heavy quarks
S0 as to extract the corresponding Isgur-Wise function. We
also study its dependence on the velocity tranafeand the

mass of the light quarks. We further attempt to estimate thén this section we study the dependence of the form factors

X o7 €M)+ 20" w)

size of 1mq corrections. on w in order to extract some phenomenologically interesting
L2 ——— . . — — L2 r — ]
n : : 14l : :
g1 1E -
& 10— $ — 210 i —
£ 3 4 & - .
5 8
o0 ﬂ TE % ]
i | ls | ]
% 08— — § 0.8 — —
gt ?} H - ;‘; 1
- L 4 [} L 4
- &
3o \ BEORME Hﬁ 7
0‘4 | 1 1 1 | 1 1 1 | 1 1 04 | 1 1 1 L | i1 1 1 i l 1 1
1.0 1.1 12 1.0 11 1.2
%) w

FIG. 2. %QQ,(a}), as obtained from axidleft) and vector(right) current matrix elements.
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TABLE XI. Estimates of the functior&QQ, as obtained from the vector form factor combinatif; . All the transitions, corresponding
to initial heavyx=0.121 and 0.125 and initial and final momenta updio| B’ | =v2pmi, are shown. Statistical errors imare in the last digit
or beyond.

K11 =0.14144, K,=0.14144

o 0.121-0.121 0.121-0.125 0.121-0.129 0.121-0.133
p.p’ . . . .
[ Prmin] @ éoor @ ooy @ ooy w ooy
0,00, 1.026 1.00°3 1.030 0.942 1.037 0.91°3 1.048 0.84';
(1.0.0 . .00"3 . 943 . 913 : 844
(1,00, 10 10 9 +9
©0.1.0 1.052 0.99°3 1.057 0.87°13 1.064 0.833 1.074 0.79'3
(1,00, +10 12 11 11
(1.0.0 1.000 1.00° 1) 1.000 1.08°33 1.001 0.97' 13 1.003 0.86" 15
(1,0,0, 9 8 7 +6
(=1.0.0) 1.103 0.73°, 1.113 0.74°3 1.127 0.67°7 1.145 0.617¢
(1,00,
1.026 0.99"%2 1.026 0.98"% 1.026 0.953
(0,0,0
o 0.125-0.125 0.125-0.121 0.125-0.129 0.125-0.133
p.p’ . . . .
[ Pmin] @ éoor @ ooy @ ooy ® ooy
(0,0,0, 2 2 3 4
(1.0.0 1.030 0.99°% 1.026 0.94°% 1.037 0.92°3 1.048 0.85"%
(110101 9 10 9 8
0.1.0 1.062 0.95°3 1.057 0.86'19 1.069 0.833 1.080 0.783
(110101 11 +13 11 +11
(1,00 1.000 1.00°1 1.000 11433 1.000 1.03"1; 1.002 0.91°13
(1.0,0, 1.124 0.68'5 1.113 0.728 1.138 0.66'¢ 1.157 0.59°2
(=1.0,0) . 688 . 728 . 66°% : 592
(1,00,
1.030 0.94"2 1.030 0.97"% 1.030 0.94"%
(0,0,0

quantities. In particular, the slope 6§ (w) at zero recoil masses given in Table VII, but with fixed light-quark masses

can be related to the slope of the physical form facteee  around that of the strange«(;= «,=0.14144). It can be

also Sec. VI through the correction coefficients given in seen from Fig. 5 that there is no statistical evidence of a

Egs.(11) and(12). The form factors, in turn, are needed in dependence dfoq (@) on the heavy-quark mass. In order to

the calculation of the decay rates and asymmetry parameterguantify this statement, we have fitted separately to the func-
In order to obtain reliable estimates of phenomenologication (45), each of the four data sets corresponding to degen-

guantities, we must learn how to extrapolate our data, oberate transitions obtaining

tained for initial and final heavy quarks with masses around

that _of the cha_rm quark, _to the physictal—w dece_lys. HQET _ p2=2.4f§ at ko= Ko =0.121,

provides us with the guide for this extrapolation, and it is

important to understand the role of themly corrections,

present in the functioit44), and to check that higher-order p?=2.4"5 at Kkq=rKq =0.125,
corrections are small.
With the aim of reducing the statistical error we exploit p2=2.4f2 at rkg=Kg=0.129

the relation(44), and fit the vector and axial data together.
This is correct up to terms cﬁ)(l/mé) and two-loop pertur- ) s
bative corrections, which we neglect throughout this study. pT=2.4_, at kqo=xrq =0.133, (46)
Nearo=1 we expandqqo (w) as a linear function ob,

A confirming that no dependence on the heavy-quark mass can

foo(@)=1-pA0—1)+0[(0—1)%], (45 be detected. _ L

_ Our conclusion from this analysis is that our data for

and we study whether there is any dependence of the slogq (@) do not show any evidence of sizablerly correc-
parametep? on the masses of the heavy quarks. Our resultgions, within our precision. So even thougho () is not,
are obtained for the set of initial- and final-state heavy-quarkn principle, a universal function, it appears to be a good
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TABLE XII. Estimates of the functio@QQ, as obtained from the vector form factor combinatiyfr; . All the transitions, corresponding
to initial heavyx=0.133 and 0.129 and initial and final momenta updo|p’ | =v2pmi, are shown. Statistical errors imare in the last digit
or beyond.

K11 =0.14144, K,=0.14144

o 0.129-0.129 0.129-0.121 0.129-0.125 0.129-0.133

p.p’ . . . -

[ Prmin] @ éoor @ ooy @ ooy w ooy
(010101 3 2 2 5
(1.0.0 1.037 0.96"3 1.026 1.00°5 1.030 0.97% 1.048 0.8372
%3% 1.076 0.90°§ 1.064 0.87°19 1.069 0.8573° 1.087 0.77°%

1

(( 1’%’%’ 1.000 0.98"13 1.001 11913 1.000 117713 1.001 0.98"'13
(1101Q1 8 8 8 6
(—1.00) 1.152 0.62"3 1.127 0.70°3 1.138 0.68"3 1.173 0.57"2
(1,0,0, 6 5 4

1.037 0.93°¢ 1.037 0.9372 1.037 0.917,

(0,0,0

o 0.133-0.133 0.133-0.121 0.133-0.125 0.133-0.129

p.p’ . . . .

[ Pmin] @ éoor @ ooy @ ooy ® ooy
(010101 3 2 2 2
(1.0.0 1.048 0.92°3 1.026 1.00°5 1.030 0.96"5 1.037 0.88"%
%3% 1.098 0.82°% 1.074 0.86'5° 1.080 0.847° 1.087 0.79°3

1

(( l’%’%’ 1.000 0.97"13 1.003 1.21°33 1.002 1.20" 1 1.001 11313
(110101 6 8 7 6
(—1.00) 1.195 0.53°¢ 1.145 0.66'5 1.157 0.63"{ 1.173 0.58¢
(1,0,0,

1.048 0.88"7 1.048 0.88"¢ 1.048 0.87°2

(0,0,0

TABLE XIII. Estimates of the functiort,o, as obtained from the form factdi;F; . All the degenerate
transitions kg= ko =0.129 and light masses corresponding«q, «;,=0.14144, 0.14226 and 0.14226,
0.14226 with initial and final momenta up It],|B’ | =v2pmi, are shown. Statistical errors inare in the last
digit or beyond.

0.129-0.129

o Ky1=0.14144,k,,=0.14226 K11=0.14226,k,=0.14226
p.p’ . .

[ Prmin] @ fQQ’ w gQQ’
(0,0,0, 3 5
(1.0.0 1.040 0.957; 1.043 0.932
(1,00

010 1.081 0.87"19 1.088 0.77°1%
(1,00,

100 1.000 0.86" 12 1.000 0.63"2;
(1,0,0,

1.16 0.62"3 1.18 0.64'13

(—1,0,0)
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Form Factor F,(w) B
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FIG. 3. Form factors; andF,=F3, as obtained from degenerate quark transitions. Different symbols correspond to different heavy-
quark hopping parameters. The light-quark hopping parameters are akyayg ,=0.14144.

approximation to the Isgur-Wise function, i.e., thexly(1)  strated that such a dependence is not negligible in the case of
corrections in Eq(44) appear to be negligible in the ranges mesons, where the brown muck contains only one light
of » and heavy-quark mass we study. Thus, from now onquark. Thus we might expect to measure an even stronger
we will considerégqo (w) to be our estimate of the Isgur- dependence of the baryonic Isgur-Wise function on the
Wise function£™\ o). masses of the light quarks, and we investigate whether this is
For the slope of the Isgur-Wise function corresponding tothe case in the present subsection.
light-quark masses around that of the strange we take the We study the dependence &f(w) on the light quarks
result in Eq.(46), which will be used later to study thera, ~ by keeping the masses of the heavy quarks fixedat
corrections to the individual vector form factors. This choice = ko =0.129 and letting the light quarks take the three val-
is motivated by the fact that the analysis of thend/correc-  Ues listed in Table VII. By simultaneously fittir@, (») and
tions is based on the data obtained from degenerate transiiFi(®) to Eq.(45), we find

tions.
p?=2.4"%

at k,=0.14144, x,=0.14144,

B. £*"(w) as a function of the light-quark masses 5
, , p?=2.0"2 at «;;=0.14144, «,=0.14226,
The Isgur-Wise function depends on the quantum num-

bers of the light degrees of freedom, i.e., on the so-called

“brown muck.” Previous studies on the latti¢@1] demon- at k;;=0.14226, «,=0.14226. (47)

1 . 2 | T T T T T T T T | T T
degenerate transition

0 1q=0.121
o Kg=0.125

X 1q=0.129
% 16q=0.133
1.0

4
3
]
T
&~
=~
o]
9]
1] - — = i
g 1 ¥ S _
5 L - )
3 } > ]
™ B | o i
g o Fy(w) o Faa(w) g 08 -
S Xt ] =
9 © ]
a2 -
00— — =
IR £ oe ]
' t t 1 _
- — E 4
- ] 8 0. I | ]
I | | | Wan 004 1 1 1 1 1 1 Il 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 11 12
1.00 1.05 1.10 1.15 @
w

FIG. 5. %QQ,(w) from degenerate transitions, using vector and
FIG. 4. Example of the relative size of the normalized vectoraxial current data. Different graphical symbols denote different
form factors.x|; = k,=0.14144 andkq= kg =0.121. heavy quark masses, which appear to follow the same curve.
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1‘2 T T T T T T T . T T T T T T T
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;o8 - § o8 —
s B T > B T
06— — 0.6 |— —
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FIG. 6. Plot of the Isgur-Wise function at fixed heavy-quark masses=(xq =0.129) and various light quark masses, down to the
chiral limit. Both vector(crossesand axial(boxes determinations were used for the fits.

The comparison between these fits and the data is shown polating to one strange and extrapolating to one chiral quark.
Fig. 6, for all three combinations of light-quark masses andrhe numerical results are also presented in Table XIV. Our
also for the results extrapolated to the chiral limit. best estimate for the slope parameter for #ebaryon is

In order to obtain the slope parameie? in the chiral
limit, we extrapolate the three estimates of bathand
£®(w) obtained withko= kq,=0.129 and with the combi-
nations of light-quark masses in Ed¢.7). We assume thab
and £*w) depend linearly on the sum of the two light- In this exploratory study we have only used a very limited
qguark masses, that is, set of light-quark masses, and hence our conclusions on the
dependence of the Isgur-Wise function on these masses are
rather weak, and the extrapolation to the chiral limit is not
very precise. This should be remedied in future simulations.

In Table XV we compare our result for the zero-recoll
slope parameter of the baryonic Isgur-Wise function for the
and similarly for&™" This assumption is supported by our decayA,— Al v with the predictions of other authorS’he
results for the spectrum presented in H&]. The results of slope parameter of the Isgur-Wise function f8p— E | v
the extrapolation to the chiral limit, which are relevant for decays is not readily available in most of these referehces.
the semileptonic decajr,— A lv, are presented in Table Though our uncertainties, especially in the case Aqf
XIV and in Fig. 6. Our best estimate of the slope parameter— A | v decays, forbid us to draw very firm conclusions, our
of the renormalized Isgur-Wise function for thg, baryon is  results appear to disfavor some of the larger predictions for
these slope parameters.

We wish also to mention the nonrelativistic quark model
results of Refs[33,34] and the light-front constituent quark
Using the functional forn{48), we also obtain the values of model results of Ref[35], where the authors observe that
w and £*(w) for the semileptonic decag,— =l v, inter-  values of the slope such as ours favor collinear-type configu-

p?=15" (50)

1 1
w(k ,K ,K =wlK +C +—_
( QK1 12) ( Q) 2K11  2K|2 Kt

(48)

p?=1.2+0.8-1.1. (49
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TABLE XIV. Estimates of £*{w) from both axial @) and TABLE XV. Comparison of our lattice results for the slope
vector (V) form factors, atkg= ko =0.129 and for three combi- parameter of the\ ,— Al v Isgur-Wise function aiw=1 with the
nations of the light-quark masses, as well as at the physical limitstheoretical predictions of various authors. Values in parentheses
The results atv=1 correspond to those from the momentum chan-correspond to a second value of the slope parameter obtained by the
nel (1,0,0)-(1,0,0). authors for another choice of their parametd8R3 stands for
three-point sumrules; IMF for infinite momentum frame quark

K1/ Ko ® £°YA) £°Y(V) model; RQM for relativistic quark model; R3QM for the relativistic
1 " three-quark model; larghl; for the largeN.; heavy meson-soliton
0.14144/0.4144 1.0 1.02 3 0.98'1 bound state approach; MIT bag for an MIT bag model calculation;
1.0373f‘5‘ 0.9{3 0.96f§ BS_ Eq. for_a Bet_he-SaIpeter equation appro_ach; dlpole_for an Isgur-
Wise function with anw dependence determined by a dipole at the
1.0761°3 0.88"3 0.90'% lowestB? (J°=1") resonanca.
2 7 8
11522 068t6 0627 Reference pZ(Ab)
15 16
0.14144/0.14226 1.0 0.97' 0.86'15 This work 12008-11
1.0399°2 0.93"3 0.97°2 SR3[22] 1.15+0.20
SR3[232 0.55+0.15
+1 12 v+ 10
1.081°; 0.86"17 0.90" 15 IMF [24,30 2.93.7)
1.1633 0.71°3 0.65'3 IMF [25] 1.44
o2 52 RQM [26] 1.0
0.14226/0.14226 1.0 0.85"22 0.63°37 R3QM [27] 133
1.0429° ¢ 0.9373 0.9572 LargeN, [28] 13
) s 1 MIT bag [29] 2.23
1_1752 0.75" ig 0.68iﬁ Dipole [31,32,25 1.77
Chiral/Chiral 1.0 1.023‘31 o_79j§g aThis value ofp? was obtained in Ref23] by fitting a line to the
sumrule result for the Isgur-Wise function in the semileptonic re-
1.0475 3 0.92°7 0.96"§ gion.
1.097"2 0.90"23 0.95"13 _ _
~ -1 A ~ 1 A
1.194°4 0.78'17 0.74"18 - el I = A
4 17 15 No(w)=Cy(w)| 1 o1 mg Ci(w) oT1mg
Chiral/Strange 1.0 1.03°18 0.87°% (52)
1.0439°§ 0.9373 0.96"¢ . . I
Combining Egs(51) and(52) and using the functiongq e
1.090'3 0.90'1¢ 0.921¢ which were determined from the fits to the dominant form
factorsG,; andXF; (see Sec. V A one can view the form
1.179°3 0.75'13 0.70'13 ! i ( A

factorsF, andF, as functions ofA alone. In fact, Eqs(51)

and (52), together with the coefficient function€;(®),
rations, in which the heavy-quark lies close to the center-ofevaluated at one loop order in perturbation theory, can be
mass of the light quark pair, over diquark-type configura-considered as our definiti¢g) of the binding energy. As
tions. mentioned in Sec. Il, these form factors are sufficiently sen-
sitive to A for us to attempt an estimate from the lattice
data.

To the order at which we are working the power correc-
tions can be expressed as powers of the inverse quark mass
or of the inverse mass of any hadron containing the heavy
quark, provided that the same prescription is used in the
evaluation of the coefficient function8®. We have de-
cided to use the inverse quark mass, defined as

C. O(1/img) corrections

In this section we attempt to extract a valueofor the A
baryon, from the study of the i, corrections in the vector
form factorsF;(w) andF, iw). We start by recalling the
relevant expressions given in Sec. |

F1(0)=Ny(0)égq (@) +O(Lmy ),

Fa(@)=F3(0) =Na(@)éqq (@) + O(Lmy), (5D

the last equality being valid in the limit of equal heavy-quark The analysis is performed using our data for degenerate ini-
masses, to which the present discussion is restricted. Also i@l and final heavy quarkéxqg= g =0.121, 0.125, 0.129,
this limit, we have and 0.133 for fixed light-quark masses, ;= k|,
=0.14144. The fit td~,(w) is good, and we obtain

Ny(w)=Cy(®)

A=0.75"19*% GeV with x3oe=1.0. (59

2 A}
1+ ———|,
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TABLE XVI. %QQ/ as obtained from the form factois,; for We have neglected all higher-ordernty corrections.
degenerate heavy quark transitions using EgB.and(52) and the = These could alter the results of Eq&4) and (55) by as
value of A given in Eq.(54). much as 30%.

= = The separation of M, corrections from discretization
KQ— KQ' ® éoor o éoor errors is difficult. Although we have used an improved action
" 2 to reduce these errors, and have normalized the form factors
0.121-0.121 1.0 0.99'5 1.026 1.02°; by Z,, defined by Eq(39), the stability of the results as the
0.125-0.125 1.0 0.95" L0 1.030 0.98"3 lattice spacing and action are varied should be checked in
future simulations. The consistency of the two res(h4)
0.129-0.129 1.0 0.89"3° 1.037 09173 and(55) may be evidence that discretization errors are rela-
0.133-0.133 1.0 08I'l° 1048 0832 tively small. _ o
Although we have only performed this study with light
0.121-0.121  1.050  0.95'§ 1103  0.94°3% quarks with masses correspondingd@= «|,=0.14144, we
0.12550.125 1.060  0.91°8 1.124 0.90°1 can nevertheless calculate, and Az by using
0.129-0.129 1.073  0.8372 1152 0853 — — 1
A=A\=M baryon Mj+0O _)
0.133-0.133 1.093  0.717% 1195  0.74°} Mq
and
The less certain fit t¢,(w) confirms this value with unex- 1
pected precision, given the statistical errors affecting indi- A=Az=Mpayoi- Mz +0O _) (56)
vidual points, - Mq

A— 10 +5 : 2 _ Where/Tandearyon are the binding energy and mass of the
A=0743; 25 GV with xpopr=16. (59 baryons which we study in our computation. In this way we

In both Egs.(54) and(55) the first error is statistical and the find

second is due to the uncertainty in the value of the lattice Ay=0.37"13 GeV

spacing, see Ed17). Using these values of we evaluate

the coefficientsN; (w) and estimate the functiofigq () and

from the form factorsF; and F, using Egs.(51). These o

estimates are presented in Tables XVI and XVII, and are A==0.50"1} GeV, (57)

compared with the function§oq (w) obtained using the

dominant form factorsG, andXF;, in Fig. 7. where statistical and systematic errors have been combined
Let us comment on the results for thebaryon binding in quadrature. The value of, would correspond to a me-

energy. sonic binding energy oA ,.<=80*+120 MeV, in agreement,
As expected, the form factofS;(w) andF,(w) have a  within the large error, with the result quoted in Rgg]. The

significant dependence on the masses of the heavy quarkscantral values of the quark masses obtained using(&#.

dependence which can be partially understood in terms of thgre different from those used throughout this paper which

1/mq corrections in Egs(51) and(52) with the values oA  were obtained from Eq16). We have checked that this dif-

in Egs.(54) and(55). ference does not noticeably affect the correction coefficients
R Ci(5), and hence our estimates of physical quantities.
TABLE XVII. §qq as obtained from the form factofs,=F3 In addition to the systematic uncertainties arising from
for degenerate heavy quark transitions using 8. and(52) and  |attice artifacts, it must be remembered that the computation
the value ofA given in Eq.(55). of power corrections in general is a complicated subfst
~ - a recent review see Rdf36)). In the present case, following
KQ— Kq @ foq w Soqr standard procedure, we are trying to quantifynd/correc-
012150121 10 0.9650 1.026 1.10°1 tions yvhen we are ignorant of t_f(_@(ag) terms in the per-
turbation series for the coefficient functions. Although,
0.125-0.125 1.0 079'2% 1030 092, within our errors, we have found no inconsistencies, we can-
0.129-0.129 10 0.61°% 1037 0.75'% not be.sur.e that the values ﬂf_would not change signifi-
cantly if higher-order perturbative terms were included, or
0.133-0.133 1.0 042°3  1.048 05873 that the values would agree with other definitions\of

0.121-0.121 1.050 1152 1103 1873

. o VI. PHENOMENOLOGICAL IMPLICATIONS
0.125-0.125  1.060 091°%  1.124 1.79°%

In this section we use the results for the baryonic Isgur-
Wise function and for the baryon binding energycom-
0.133-0.133 1.094 0474 1.195 1.38"38 puted above, to obtain the physical form factors correspond-
ing to the semileptonic decays

0.129-0.129 1.073 0683 1152  1.63¢
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FIG. 7. %QQ,(w) as obtained from the form factofs, and F,=F;. The points are compared with the best fit%@Q,(w) obtained
previously from the dominant form factofs; and3F; .

Ap—A.+ev m,=4.8 GeV, m,=1.45 GeV. (59

and The factors<C(® depend on the quark masses very mildly. On
the other hand, the correction coefficieMS’ are very sen-
sitive to the quark masses, because they contain, Jor-

, i rections. In this case, we have expressgdandm, as
We also derive the expressions for the decay rates near zero

recoil and use them to make quantitative predictions. We
will discuss in detail the decay of th&, ; that of theZ,, is
very similar.

Ep— B+ ev. (59

mp= MAb_A

and

A. Physical form factors me=M, —A (60)

The physical form factors can be reconstructed from the .
computed Isgur-Wise functiod®Y ), using the relations in  with M, =5.64 GeV andM, =2.285 GeV, respectively.
Eqg. (11). In the following we will use the result, discussed in We report our estimates of the correction coefficieNfs’

Sec. V A, that the functiodqq (w) is effectively indepen-  for various values ofo, for the A and E decays, in Table
dent of the mass of the heavy quark. Therefore, the formxviil.

factors depend on the masses of the heavy quarks It is convenient to expand the physical form factors in
only through the correction coefficientsNi(S)(w) w—1, near zero recoil:

=N{®(w,mq,mgq), which are calculated using expressions
(12). The short-distance coefficien®®)(w,m,,m.) were
computed forAqcp=250 MeV, n;=4 and by fixing the _
quark masses to the values Gi(w,my,me) =7 —pP(w—1); (61)

Filw,my,m)=7'-pY(0—1),

TABLE XVIII. Correction factors needed to relate the form factors at the physical limit with the Isgur-Wise function.

decay o N, N, N3 N3 N3 N3
1.0 1.28°¢ -0.197; -0.0672 0.99 —-0.2475 0.09°3
Ap— 1.1 1.25'¢ -0.18"% -0.06"} 0.97 -0.23"3 0.08"2
Ae 1.2 1.21°2 -0.17°5 -0.05'1 0.95 —-0.217 0.08°3
1.3 1.15°3 -0.16'4 -0.05'1 0.91 -0.19'% 0.07°}
1.0 1.32°3 -0.23"% -0.07"} 0.99 -0.28"3 0.10"3
Ep— 1.1 1.30°3 -0.22"% -0.07'1 0.97 -0.26"3 0.10"2
= 1.2 1.26°2 -0.20'5 -0.06'1 0.95 —-0.2475 0.09°3

1.3 11972 -0.1875 —-0.06'1 0.91 -0.22'4 0.08"}
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TABLE XIX. Slope parameters of the physical form factors near zero recoil.

decay - Fl F2 F3 Gl G2 G3
Ac— A, D 1.8°92 —-0.4"2 -0.10"; 1.3798 -0.4"3 0.16"%,
E.—E, D 2397 -0.5"2 -0.15"} 1.6'9% -0.6"3 0.22"7,

where the normalizatiomaiv'A and the new slopes are related
to the coefficientsN® and to the slope of the Isgur-Wise
function by

7' =Ni(1m,,me), 7=N>(1m,,m), (62
_ dN-(w,mb,m)
pi\/ZpZNi(l,mb,mc)—% , (63
@ w=1
and
_ dNP(@,m,,m;)
pﬁszN?(l,mb,mc)—ld—c (64)
w w=1

Our results foip,’* are presented in Table XIX. We observe

that this procedure has the effect of taking us back to the

form factors for physicab—c decays from the Isgur-Wise
function, which, in turn, was determined by dividing the lat-
tice data for the form factorffor unphysical quark masses
by the Coefficientsl\li(5). Clearly, most of the uncertainty in
the factorsN(®, due to their dependence dnand the quark

masses, is now cancelled, as it should be for any physical
quantity. To quantify this statement, we report the result of
the following exercise. We have measured the ratio of the

slope parameters of the form fact@,(w), at the chiral
limit, letting A vary from 200 to 600 MeV, and changing the
coefficientsNi(s) accordingly. We obtain

PAA=200 o,

PAimeon e ©

where the relatively large error is largely due to the extrapo-

lation to the chiral limit.

B. Decay rates

Following Refs[32] and[37], we define the helicity am-
plitudes, in terms of the physical form facto{8l), in the
velocity basis:

V2My My (0F 1)

HV,A
JM3 +Mi —2M, M, o
Ay Ac Ap A

12,0~

[(My, =My )FYA

=My (@ DFYAEMy (0 1)FYA]

HYjpu=—2 M M, (0F 1)F}A, (66)
where, for brevity, we set
F/=Fi(0), F'=Gj(w), 67)

and where the upper sign correspond¥tand the lower one
to A.

The helicity amplitudesH)”, carry information about
the helicity of the curren\ = 0 for a longitudinally polar-
izedW and\,= * 1 for transversely polarized opeand of
the daughter baryom\. (A\.==*=1/2). The missing ampli-
tudes can be computed by means of the relations

A

HYR = HNA, - (68)
For convenience, we also define
Hag = Hre g H ny (69)
Differential decay rates can then be evaluated:
dr; G2 g°M3 V(w®~1)
do ~ 2n)? [Vep|? i,
X (Hypd*+H 1417,
dr, G2 g’Mi V(0®—1)
do ~ 23 [Vepl? i,
X (|Hy2,0%+[H 124, (70

wherel'; andI'| are the contributions to the rate from trans-
versely and longitudinally polarizeW/'’s, respectively, and
whose sum is

dar G2 , MA@ =1)
do  (27)3 [Veol 12M,,

X (|Hal >+ H 12— 1|*+Hyp 2+ [H_120%). (7D

As can be seen from Eq&/0) and(71), these quantities can
be estimated, near zero recoil, using our results for the form
factors, in a model-independent way. In complete analogy
with what is done foB— D) /v decays, we define a form
factor B(w), which reduces, in the heavy-quark limit, to the
Isgur-Wise functionf™Yw) defined in Eq.(7). In terms of
this form factor, the rate of Eq71) is

2

dr G2
9o = 73 Vel "M} (Ma, =M, )?V0? 1
w+1) 1+r?=2r(2w+1)/3
2 (1-r)?
e w—1\ 1+r>=2r(2w—1)/3 Bo)l?
lov1) T zrzerna) B @

(72
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TABLE XX. Partial decay rates, in units d¥,|?> 10 s%, for the A and E semileptonic decays for
various values ofv,,,. The transverse decay rate is very sensitive to quadratic terms-irilj, and the
predictions foro>1.2 are no longer reliable.

Ap—A v Ep—Eclv
Omax [part FEart r _pll_art [Part FEart F_;l)_art
1.1 0.57"3 0.23"3 0.34"5 0.66"4 0.28"3 0.38"2
1.15 0.98°% 0.44% 0531 1.13 0.54°§ 0.58'12
1.20 1.43 0.71°15 0.7°3 1.6 0.86" 18 0.7"3
1.25 1.8"3 1.0°3 0.8°2 1.9 1.2+2
1.30 2.2°13 1.45 2.2°1% 1.7

with r=M, /M, . Nearo=1, the form factor can be ex- oa omax  dI
panded as i n(wmax):jl dw do (77)

B(w)=G1(1){1-px0—1)+O0[(0—1)%]} (73  as a function of the upper limit of integration, for each of the
ratesi=T, L, andT+L.
and the results of Tables XVIII and XIX can be used to In Table XX, we present our results for the quantities
determine G,(1) and p3. We find, combining errors in TP w,...) for several values ofy,y. For the case of the

guadrature, a slope parameter A, theA, and theE . we have used the experimental values
for the masses, whereas, for thg,, which is as yet undis-
pf;:l.li 1.0 (74 covered, we have used the value computed in our previous

paper on heavy baryon spectroscdpy.

for A,— A lv decays and
MEC:2-47 GeVexpl MEb:5-76 GeV [latt]. (78
pa=1.4+0.8 (75)

At present, a direct comparison of our results with experi-
for 2,—E | » decays. These values are the ones that shoulflents is not possible. Although the semileptonic decaypf
be compared to the slopes obtained by performing fits tdas been observed by various experim¢a{38], a measure-
experimental results fodI'/dw versusw, for @ near 1. A
preliminary measurement of the slope parameter for the de-
cay A,— Al v has, in fact, been reported in R¢&8]. The
authors quote

5

§ Free quark

T T | T T
i
i
i
pa=1.81"5£9 (stah+0.32 (sysb, (76) |
P
i
i
#
|

with which our result is entirely compatible. Because this I
measurement is preliminary and because the authors them-

selves do not present results for the rate, we will not attempt 2
to use this measurement in what follows to obtain “experi-
mental” estimates for partially integrated decay rates.

The results of Eqg.74) and(75) can also be compared to
the slope parameters we found for the corresponding Isgur-
Wise functiond Egs.(49) and(50)]. These two sets of slope
parameters are virtually indistinguishable, especially given 1.0 1.2 1.4
the size of our present errors. ©max

For both decays we fin@(1)=0.99 which is jusf:f(l),

& sra
4 Dipole
§ MIT Bag

:!,HMF (0=3.7)

. . . FIG. 8. Partially integrated decay rate for the procags— A,
as it should be at the level of precision at which we are+|7’ in units of |V,|?1013 s, as a function of the limit of inte-

Work_lng [see qu(ll) and_(12)]. In prl_nC|pIe, though(,(1) . grationwya. The solid curve corresponds to our central values for
recelvgs also mQ Corref:tlons and higher-order pgrturbatlve ‘p and the dotted curves to the errors on these values. A comparison
corrections, both of which are beyond the precision reachegit 4 sample of theoretical estimates is shownwat1.2 andw
in the present paper. o =1.3. The names of the estimates are the same as those used in
We now turn to integrated rates. The physical limit @r  Taple XV (SR3 from Ref[22]; dipole from Refs[31,32,25; MIT
extends up ta=1.43, which is beyond the range of velocity pag from Ref.[29]; and IMF from Refs[24,30). The results at
transfer accessible to us»E[1.0,1.9) in the present Simu- »=1.2 have the same ordering as thoseat1.3. The free quark
lation. We thus define the partially integrated decay rate result was obtained by assuming a flat Isgur-Wise function.
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VIl. CONCLUSIONS APPENDIX A: THE USE OF EXTENDED INTERPOLATING

. . . . OPERATORS
During the past few years lattice simulations have been

applied very successfully to weak decays of heavy mesons, In order to enhance the signal for the baryonic correlation
and in this work we have extended these techniques to heafynctions, the light and heavy quark propagators have been
baryons. We have presented an extensive lattice study of themputed using the Jacobi smearing methad]. Since
semileptonicA,— A +lv and E,— E.+ | v decays, result- smearing is not a Lorentz-invariant operation, it alters the
ing in predictions for the decay rates, for values of the vetransformation properties of the correlation functions, par-
locity transfer up to aboutv=1.2. We have developed the ticularly at nonzero momentum. In this appendix we present
formalism necessary for extracting the decay amplitudesthe formalism required to extract the form factors from two-
demonstrated the feasibility of obtaining phenomenologi-and three-point correlation functions computed using ex-
cally interesting results, and presented the first set of predidended(smeareglinterpolating operators for the baryons.
tions. We anticipate that the application of lattice QCD to Consider the local operat@?(x) defined in Eq.(24),

studies of the forthcoming experimental data on heavy-

ibﬂzr;;gg ggfna:zz \;vglal:: an active area of phenomenology dur 0,(x)= eabo[lTT(X)Cyslg(X)]Qf,(X), (A1)

HQET is an important tool in the application of lattice \,ere, is a spinor index. Here we have suppressed the index

QCD to weakddecaylf of rllea_vy ba?/ons, as it 'Sb?ISO folrQ in labeling the operato® has nonzero overlap with spin-
mesons. In order to keep lattice artifacts reasonably smallf giatacsuch as the baryon

we are forced to perform the computations with heavy
quarks with masses not much larger than that of the charm (0|0,(0)|p r>=Zu<”(ﬁ) (A2)
quark, and then to extrapolate the results to phydicalc P ' Pz

decays. HQET provides us with a sound theoretical formalynerer is the polarization indeX.The ket in Eq.(A2) rep-

ism for performing this extrapolation. ___resents a heawyt state(e.g.,A,, or A.). The amplitudeZ is
Perhaps the weakest feature of our study was the inability | grentz scalar.

to determine the behavior of the decay amplitudes with the The smeared baryonic operator can be written as
mass of the light quarks with sufficient precision. We did

perform the computations for three combinations of masses

for the two light quarks, which allowed us to attempt an S(% )= FO=gD (17— %D (=%
extrapolation to the physicak (with two almost massless O, (%) eabcyz ([y=xDF(Z=xDT(jw=x])
valence quarksand & (with one strange and one almost aT, = b, = ¢/

massless quaykbaryons. However, in performing these ex- X[ (¥.0Cy512(Z,D]1Q,(W,1). (A3)

trapolations the statistical errors are amplified, and one of thE h _ ; d onlv in th tial di
priorities of a future simulation should be to generate sub- ecause the smearing 1S pertormed only in n€ spatial direc-

stantial datasets for a larger set of light-quark masses. Fdens, Lorentz.symmetry is lost and only ;paﬂal translations,
example, it will be very interesting to check whether theotations, parity, and “Q“i revgrsal survwe; Thgrefore, the
slope parameter of the Isgur-Wise function decreases as tifYerap of the operataD;(x,t) with the statelp,r) is given
masses of the light quarks are reduced, as expected from th¥ the more general expression

heuristic argument that lighter light degrees of freedom have

less inertia and therefore recoil more easily. In the present

simulation we have a hint that this is the case, but the statis-°0Our spinors are normalized such thatNTu®=y® 1O
tical errors are too large to draw a definitive conclusion.  =(E/m)é's.

=

Z,
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<0|(9f)(0)|ﬁ,r)=[(Zl(lﬁl)+Zz(||5|)yo)u(’>(|6)]p, with the restricted symmetries of the system.

1. Smeared two-point functions

S o\ — (R 2 3
<O|Op(0)|p,r)—[5( )(p)(zl(|p|)_22(|p|)70)]13’ (A4) We now study the consequences of the above discussion
in the case of smeared source and 88 two-point func-
where the amplitudeZ; andZ, may depend on the magni- tions. Using Eq(A4), we can derive the general expression
tude of the three-momentum of the stdfr), in accord for the two-point function at large valuesf t and (T—t)

Goo(t.p)=2 e P X(0,(%,1)0,(0,0) = % > E'(nq) e 1P e E@id-30|0 (0,0)d,r)(.r|0,(0,0)[0)

—e E@T-0-1d%0|0_(3,0|G,r)(d,r|0,(6,0)0)]
m
:Er E(p)

~[e EPT0Zy(|B)) — Za(| B) yo)o (= B)o ™ (= B)(Z1(|B]) — Z2(1B]) Y0 o (A5)

{Le” EPYZy(1p]) + Z2(| ) You " (HU™(B) (Z1(|B)) + Z2(18) v0)] oo

We find it convenient to write the spin matr&> in terms ~[(GH(@) y,+ G5(w)v,+G5(w)v,) ys]}
of the parameters
X{[E'+M'+B(M'—E"]I

Zszzl+22, a:(zl_ZZ)/(Zl+Zz), (AG) +[E’+M’—B(M’—E’)]fy
0

rather tharz, andz, C[(1=B)P - Fyol-[(1+ BF- 71},  (AB)

sS/s S\ 52/ <r e E(BR E+m—a?(E—m)
Goo(t,p)=Z5(|pl)e =P = 1 whereas in the backward halBJ, for largeT—t,
E+m+a?(E—m) 2a0 CB(ty,ty) =K(T—t,, T-t){[E+ M+ a(M-E)]L
+ 1E Yo~ zg PV .
—[E+M—-a(M—-E)]yo—[(1-a)p- yv0]
2B Lo
_ e-EG(T-y| EXM :‘E(E m . —[(1+a)p- 71}
, X{[Fi(®) ¥, ~F3(0)v, —F5(w)v,]
E+m+a*(E—m) 2a »”
- Yo~ = PV ~ ~
4E ° 4E +[(G}(0) v, + G(w)T,, + G5()7,) 5]}
(A7) X{[E'+M'+B(M’'—E)]l
Local operators, and full four-dimensional cubic symmetry, —[E'+M'=B(M'—E)]vo+[(1=B)F" 770
correspond to the case=1, i.e.,Z,=0.
—[(1+B)p"- ¥1}, (A9)

2. Smeared three-point functions for the study _ _
of the semileptonic decay of theA wherev = (E, - ﬁ)/M (S|m|IarIy forv ,) and where in both

. these equations the normalization factor is given b
We now present the expressions for the smeared-smearede q 9 y

three-point functions from which the form factors are ex- 7 7

tracted. Thev-A weak currentl, is of course a local opera- K(te,ty)= > e Bl tygE'ty, (A10)
tor; it is the interpolating operators for the baryons in Eq. 16EE

(23) which are now smeared. In the forward half of the lat-

tice (F), for larget, so that only the lightest state contrib- Sincet,=24=T/2 in our simulations, the dependence tgn

utes, we obtain is the same in both halves of the lattice. In E¢&8) and
. (A9) a and B are the functions defined iA6), for the final
Cr(ty,ty) =K(t t){[E+ M+ a(M-E)]1 and initial particle respectively. They are identical only for

degenerate transitions whep|=|p’|. For local operators,

FEAM=a(M=E)]yo*[(1=a)p- y70l a=B=1 and expression@8) and(A9) reduce to Eq(27).

—[(1+a)p- ¥}

L L L
X{[F1(w) Yt Fa( w)v;/ﬁ Fs(w)v,] ®Note that we are using anti-periodic boundary conditions in time.
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ExpressiongA8) and (A9) are used in Sec. IV to extract X (1+ o) +4B[(M+E)p! %y
the values of the form factors from the correlation functions.
Further clarification of the procedures which are used is pre- +(E'=M")piyivid(1—vo) +4LpiP; i v« vi]
sented in the following appendix. ,
X (14 yo) +4aBLpip] ¥ivcy;1(1=v0)} s,
APPENDIX B: ON THE ANALYSIS OF THREE-POINT (B3)

CORRELATORS

gvhich also has the structure of E@R2).

In thi ndix we di in gr r il the analysi . . .
this append e discuss in greater detail the analys The relative sizes of the components of the matrigh

procedure used to extract the six form factors from the cor-
relation functions. Such an analysis is complicated both b)gnd(BB) are as .fOHOWS' . . :

the very large number of nonvanishing components of the. The subm’atrlces proportional to the _|d9nt|ty are propor-
three-point correlation function, which has both spinorial an ional toMM” (plus small terms quadratic n the momenta
Lorentz indices, and by the effect of the smearing on theand are therefo_rtarge and p_remsely determined. .
baryonic operators discussed in the previous appendix. It |N€ Submatrices proportional toand 5 are proportional

) , , . .
proved to be convenient to restrict the analysis to those conf© terms likeMp; or M'p; and are thereforenediumsized.

ponents which are proportional to large, and hence Iorecise@urthermore they have an additional statistical uncertainty

measured, kinematical coefficients, as we now explain.  du€ to the presence of the amplitude factorer .
For illustration we consider here the forward half of the _ 1he Submatrices proportional @3 are proportional to

lattice; the extension to the backward half is straightforward(E' —M")(E—M) or other terms which are quadratic in the
We consider two typical cases. momenta, and are therefosenall

Example 1: Coefficient of the form factort For u=0 Finally, we note that, as a general feature, the vector cur-

We rewrite the expression in EGA8), which is a 4<4 ma- rent will give large contributions fow=0 and the axial
trix in spinor space, in terms of>22 matrices" current wherw =i, 1=1,2,3.

vecto .
b —4[(E+M)(E"+M’)+p-5'1(1+ 7o) APPENDIX C: DETERMINATION OF 2z,

K(toty) In this appendix we discuss the normalization of the lat-
+4aB[—(E=M)(E'=M")—p-p"1(1- o) tice vector current, used for extracting the vector form fac-
) - ) - tors. The normalization factog,, has previously been deter-
+4ip;pj o’ (1+ yvo) —4aBip;pj o (1- vo) mined from matrix elements between heavy meson states,

/ / using the same configurations, and for the same values of the
+4al(M=E)pi=(E"+MOpilyi(1+ 7o) quar?< masses as thoge used in the present $Ridyand we
—4B[(M+E)pi—(E'—=M")p;]17(l—v), (B1)  present the results below. We start, however, with a determi-

nation of Z, from matrix elements between heavy baryon
where vectqy denotes the time component of the three pointStates.

correlation function with the vector current. So the matrix ~Zv can be measured from the correlat28), computed

structure shared by the coefficients of the vector form factoréor degenerate initial and final heavy quarkd=<Q’). For
is of the form instance, with Dirac indek=1,2, we define

vectoy, oc((1) (,3))
Kttty ((a) (aB))’

where each of the submatrices is & 2 matrix. 1

[CR(P,T/2)];
[C(B.G=0,T/2) =T

(B2) zZy (=K

Example 2. Coefficient of the form factor; Gor u=k = C 3 (CY
=1,2,3. A similar manipulation of EqQA8) for the axial F1(1)+F2(1)+F5(1)
current leads to
with
axial ={4[(M+E)(M'+E") ]y (1+ vg)
K(ty 1) naiTve o (EXM) 2E -
+4aB[(M=E)(M'~E") %1~ o) 28 E+M-a*(M-E)’

+ _ ' o "L END: v
Aal(M=B)piyicvi— (M"+Epiyivd and whereC$ was defined in Eq(31) andt is taken in

(0,T/2). Zy is then obtained by fittin@,,(t) to a constant in
the plateau region.
"The following representation for the gamma matrices is used We have computed the necessary two- and three-point

here: correlators for two different forward channef=0 and p

_ 1 0} _ 0 o = (Pmin:0,0). From the correlation functions with the baryon
Wlo —1) "l-g o0 at rest we obtain

) with i=1,2,3.



2,=0.8983 at «j3=x,=0.14144, ko=0.133,

Zy=0.924'3 at «j;1=kj,=0.14144, ko=0.129,

2,=09482% at xj3=K,=0.14144, ko=0.125,

Zy=0.970"; at &= kK=0.14144, ko=0.121.

(C3

The statistical errors are very smélthough not as small as
for meson statgs which is not unexpected since we are
studying the effects of the charge operator. Egrmeasured
from correlation functions withp= (pin,0,0), the statistical

errors are too large for us to make any comparison with the

results in Eq(C3J). In this case we find

Z,=0.881] at «j;=x,=0.14144, xo=0.133,

(C4
Z,=0.90"}

at k;=k2=0.14144, k5=0.129,

Zy=0.94"11 at K= Kj,=0.14144, x5=0.125,

Zy=0.97"1 at k1= kj,=0.14144, xo=0.121.
We now compare the results f@, obtained between bary-
onic state§Eq. (C3)], and those obtained in RgR21] from
matrix elements between pseudoscalar states using the sa
configurations and quark masses:

Z,=0.8913% at «=0.14144, k=0.133,
Zy=0.91773 at x=0.14144, k=0.129,
Zy=0.9428% at x=0.14144, k=0.125,
Z,=0.96595 at «=0.14144, ko=0.121. (C5)

The agreement of the results obtained Zgrusing mesonic
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The variation of the values df,, with the mass of the
heavy quark in Eqs(C3) and(C5) is an effect of the discre-
tisation errors, due to the fact that the qu&lkis heavy. To
see this more clearly we compare the results with those ob-
tained between light pseudoscalar mesomigh degenerate
valence quarks

Z,=0.83144)

at k=0.14144, (C6)

Z,=0.824%4) at x=0.14226,

Z,=0.82146) at x=0.14262.

The results in Eq(C6) were obtained on a subset of ten
gluon configuration$20]. The dependence on the masses of
the light quarks is seen to be very mild, and the results are
consistent with the expectations from one-loop perturbation
theory[40]

Zy=1-0.10%+O0(g*)=0.83 at 3=6.2 (C?)
when evaluated using the boosted value of the coupling con-
stant, obtained from the mean field resummation of tadpole
diagramg41].

The results foiZy, in Egs.(C3) and(C5), obtained using
heavy baryon and meson states, differ from those obtained
With light mesons(C6), by about 10—20 % for the range of
quark masses used in our simulations. This difference is a
good indication of the size of mass-dependent discretization
errors in our calculation; it is consistent with our expectation
that they should be oO(asamg) and O(azmé). Further-
more, such behavior is qualitatively in accord with that sug-
gested by El-Khadra&t al. [42], although we see no corre-
sponding mass dependenceZin. Future simulations with a
fully O(a)-improved action should clarify this issue. Finally,
we note that, as explained in Sec. IV, the errors in the com-
puted form factors are expected to be considerably smaller,

and baryonic correlation functions to within less than 1% isbecause we normalize all of them 1%, also determined

reassuring.

between heavy baryon states.
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