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Tetraquarks with heavy flavors
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In the framework of a simple nonrelativistic potential model, we have previously studied the stability of a
system of two quarks and two antiquarks of identical light flavor. Here, we extend our analysis to quarks
~antiquarks! of different masses and discuss the role of heavy flavors on the stability of the system. This
analysis is performed by using a simple variational method which proved powerful in the treatment of other
few-body systems. We compare our results with other results from the literature and single out a few charac-
teristics of the spectrum of the tetraquarks.@S0556-2821~98!05811-1#

PACS number~s!: 12.39.Pn, 12.39.Jh
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I. INTRODUCTION

The existence of exotic hadrons of the two-quark–tw
antiquarks pair type, called tetraquarks or diquonia, is
problem which was already raised about 20 years ago
Jaffe@1# and has been studied within the MIT bag model@1#,
potential models@2–6#, and flux tube models@7#. The MIT
bag model indicates the presence of a large number of bo
states, the potential models of a few bound states and fl
tube models suggest instability. So far the experimental d
have not been conclusive regarding the identification of s
states in the light sector, because exotic mesonsqq̄qq̄ have
proved difficult to distinguish from the many convention
qq̄ states. But the most recent experiment in this field@8# can
revitalize the search. In Ref.@8#, it has been shown that th
data obtained from the reactionp2p→hp2p at 18 GeV/c
can be fitted to an exotic meson withJPC5121 and mass
M51370616 MeV. On the other hand, experiments are b
ing planned to search for double-charmed tetraquarks at
milab and CERN@9#.

From now on, a light quark (u, d, or s) will be denoted by
q and a heavy one (c or b) by Q. It has already been pointe
out in the literature that the mass of the quarks play an
portant role in the stability of a tetraquark system@4–6#.
Chiral perturbation theory studies also indicate stability o
tetraquark system with two heavy quarks ifQ is theb quark
or heavier@10#.

In the present work, we focus on theqqQ̄Q̄ or, equiva-
lently, theq̄q̄QQ system, the arguments being given belo
Another four-quark system with unequal masses isqq̄QQ̄,
which can have two distinct meson-meson thresholdsmQQ̄

1mqq̄ andmQq̄1mQ̄q . The latter is the same as forqqQ̄Q̄,
becausemQ̄q5mQq̄ . It can be shown that@11#

mQQ̄1mqq̄ < 2mQq̄ , ~1.1!

which means thatQQ̄1qq̄ is the lower threshold. Then
assuming that the mass ofqq̄QQ̄ is equal to the mass o
qqQ̄Q̄, the systemqqQ̄Q̄ has more of a chance to be boun
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than qq̄QQ̄ and a variational solution, which provides a
upper bound, is more conclusive about its stability than

the qq̄QQ̄ system. As an example, detailed arguments

favor of the stability of theccūd̄ system as compared t

cc̄dū system are given in@9#. Another important difference

betweenqqQ̄Q̄ andqq̄QQ̄ systems is that in the latter, ther
are meson-antimeson annihilation channels, which sho
also be taken into account@12#. Thus, it is simpler to study

qqQ̄Q̄ thanqq̄QQ̄.
The present work is closely related to that of Zouz

et al. @4# and of Silvestre-Brac and Semay@5,6#. Its purpose

is to studyqqQ̄Q̄ systems with a simple variational metho
Our framework is a constituent quark model based on
potential of@13#. This potential generally gives good resul
both in the meson and the baryon sectors. Moreover, ba
on the same potential, Silvestre-Brac and Semay made
extensive study of the tetraquarks in a variational calculat
with a large oscillator basis for various values of the sp
isospin, and angular momentum. Even in the first step, wit
or 4 oscillator quanta, these calculations required a b
varying from 10 vectors for a light system to 252 for a hea
one @6#.

In the present paper, we explore a different approa
based on Gaussian variational wave functions of the t
advocated by Kamimura in his studies of nuclear few-bo
systems@14#. A similar method is widely used in molecula
physics. Varga and Suzuki@15# have a recent publication in
this area which contains many useful references. A rea
for choosing the same potential as Silvestre-Brac and Se
is that we can compare our variational energies with the
In the calculations presented below, we show that a va
tional basis with five simple orbital wave functions is enou
to reach convergence for the low-spin and isosopin levels

the nnb̄b̄ system, but to values above those given in Re
@5# and@6#. Thus, some important components are still mi
ing from our wave function. The present paper presents
theoretical framework and some test calculations. It also
lows us to draw some conclusions about the spin-isos
6778 © 1998 The American Physical Society



e
th

ec
on
or

s
us
l

t

a

-
to

th

to
n

on

tu
e

ined

d
.
ent

the

e-
zed

due

be

nd

al
dy.
r-

a
e
ns

for
il-
he

c-
hat
We

ms.

r a

and

57 6779TETRAQUARKS WITH HEAVY FLAVORS
structure of the spectrum. More work needs to be done
identify the important regions of the variational space.

Zouzouet al.have shown that theqqQ̄Q̄ system becomes
stable if the mass ratiomQ /mq is large enough. They found
that, for values ofmQ /mq>20, only the 3̄3 color component
of the wave function is important. However, in their pap
they give only a schematic discussion of the effect of
spin-spin interaction, while here we consider it explicitly.

In the next section we introduce the Hamiltonian. In S
III, we construct the basis states and describe the variati
procedure. In Sec. IV, we discuss the role of heavy flav
and, in Sec. V we present numerical results for theqqb̄b̄
system. Our study is summarized in the last section.

II. HAMILTONIAN

We choose a nonrelativistic Hamiltonian of the form

H5(
i 51

4 S mi1
pi

2

2mi
D 2

3

4 (
i ,1

4
l i

c

2
•

l j
c

2
~Vi j

C1Vi j
SS!, ~2.1!

wheremi are the quark masses andl i
c (c51, . . . ,8) are the

SU~3! Gell-Mann matrices. For the interquark potentialsVi j
C

andVi j
SS, we choose the following forms@13#:

Vi j
C52

k

r i j
1

r i j

a0
2

2D, ~2.2!

Vi j
SS5

\2c2k

mimjc
4

1

r 0
2r i j

e2r i j /r 0si•si , ~2.3!

where r i j is the distance between the quarksi and j of
massesmi and mj , respectively. The parameters of Eq
~2.2! and~2.3! have been chosen to be the same as those
by Silvestre-Brac and Semay@5,6# so that the variationa
results given in the present paper can be compared with
ones in Refs.@5,6#. The parameter values are given in@13#
and were determined, for a choice of the charmed qu
massmc51870 MeV, by fitting the 1S, 1P, and 2S states of
the charmonium. Their values are

k5102.67 MeV fm, a050.0326 ~MeV21 fm!1/2,

D5913.5 MeV, r 050.4545 fm. ~2.4!

In @13#, the massesmu5md5337 MeV were chosen to re
produce the magnetic moments of the nucleon. The bot
quark massmb55259 MeV was obtained by fitting theY
(1S) meson considered to have a mass of 9434 MeV. At
time Ref.@13# appeared, only theY (nS) mesons (n51, 2,
3, and 4! were experimentally known and the fit seemed
be good for all these mesons. Since then, the experime
spectrum of bottonium has been enriched and improved
that the value ofmb found in Ref.@13# underestimates the
presently known experimental massYexp(1S)59460 MeV.
We noticed that there is a difficulty with the parametrizati
~2.4! to fit precisely both theY (1S) and theB meson, un-
known at the time this parametrization was produced. Ac
ally, mb55259 MeV is a bit too small for reproducing th
correct mass ofY (1S) but too large to fit theB and B*
to
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meson masses, needed below. However, we are constra
to use the samemb as in Refs.@5,6# in order to compare our
variational solution to theirs. Moreover, in the calculate
quantityE2ET ~see Table IV!, mb appears only through Eq
~2.3!, so that its fine tuning is not necessary for the pres
purpose. We chose to study tetraquarks containingb quarks
rather thanc quarks because with the parameters~2.4!
Silvestre-Brac and Semay found that the ground state of
nnb̄b̄ is bound, while the ground state ofnnc̄c̄ is not.

Other choices of the quark Hamiltonian are possible. R
cently, the baryon spectroscopy have also been analy
within a chiral constituent quark model@16# where, instead
of one-gluon exchange, the interaction between quarks is
to one-meson~pseudoscalar Goldstone boson! exchange.
This makes the spin part of the quark-quark interaction to
flavor dependent. It has been shown@17,18# that the hyper-
fine splittings and especially the correct order of positive a
negative parity states of baryons withu, d, ands quarks is
better reproduced with this model than with a convention
one-gluon-exchange model, as the one used in this stu
Actually, there is evidence from lattice QCD that the hype
fine splittings in light baryons are related mostly toqq̄ exci-
tations rather than to forces mediated by gluonic fields in
qq pair @19#. In the present paper, the aim is to explore th
variational method based on Gaussian orbital wave functio
and we choose to use the Hamiltonian of Ref.@13# for which
an elaborate solution@5,6# is available.

In the next section, we introduce internal coordinates
four-body systems and in Sec. IV, we rewrite the Ham
tonian in the internal coordinate system appropriate for t
present study.

III. WAVE FUNCTION

Here, we present the orbital, color-spin, and flavor stru
ture of a tetraquark system wave function. We suppose t
particles 1 and 2 are quarks and 3 and 4 are antiquarks.
choose

m15m25mq , m35m45mQ , mQ>mq. ~3.1!

A. Orbital part

One can introduce three alternative coordinate syste
These are~see Fig. 1!

r5
1

A2
~r12r3!, r85

1

A2
~r22r4!,

FIG. 1. Three possible ways to define relative coordinates fo

2q22q̄ system. Darkened and open circles represent quark
antiquarks, respectively.
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x5
1

2
~r12r21r32r4!, ~3.2!

a5
1

A2
~r12r4!, a85

1

A2
~r22r3!,

y5
1

2
~r12r22r31r4!, ~3.3!

s5
1

A2
~r12r2!, s85

1

A2
~r32r4!,

l5
1

2
~r11r22r32r4!. ~3.4!

In all cases, the fourth coordinate isR5(1/M )(mir i where
M5(mi . The coordinates~3.2! or ~3.3! are convenient in
describing the direct and exchange meson-meson chan
while coordinates~3.4! are handy for incorporating strongl
correlated subsystems of identical quarks or antiquarks
permutation (i j ) of two particles i and j applied on the
above coordinates gives

~12!r5a8, ~12!r85a, ~34!r5a, ~34!r85a8,

~12!x52y, ~34!x5y, ~23!x5l, ~14!x52l,
~3.5!

~12!l5l, ~34!l5l, ~23!y5y, ~14!y5y.

Note that one can also use a coordinate system formed o
vectors x, y, l as well. Transformations between vario
coordinate systems are

S r

r8

x

D 5S 0 A1

2
A1

2

0 2A1

2
A1

2

1 0 0

D S x

y

l

D

la
ks

t t

th

a
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ls,

A
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5S 1

2
2

1

2
A1

2

2
1

2

1

2
A1

2

A1

2
A1

2
0

D S s

s8

l

D , ~3.6!

S a

a8

y

D 5S A1

2
0 A1

2

2A1

2
0 A1

2

0 1 0

D S x

y

l

D
5S 1

2

1

2
A1

2

2
1

2
2

1

2
A1

2

A1

2
2A1

2
0

D S s

s8

l

D , ~3.7!

S s

s8

l

D 5SA1

2
A1

2
0

A1

2
2A1

2
0

0 0 1

D S x

y

l

D . ~3.8!

Let us denote byRs the orbital part of the wave function
The most general form withL50 is a function of six scalar
quantities expressed in either of the coordinate syste
~3.2!–~3.4!. We choose the following simple form:
Rs5exp@2~A11
s r21A22

s r821A33
s x212A12

s r•r812A13
s r•x12A23

s r8•x!#5exp@2~B11
s a21B22

s a821B33
s y212B12

s a•a8

12B13
s a•y12B23

s a8•y!#5exp@2~C11
s s21C22

s s821C33
s l212C12

s s•s812C13
s s•l12C23

s s8•l!#. ~3.9!
g

in

m

These forms of the wave function allow for nonzero angu
momental 12 or l 34 in the subsystems of quarks or antiquar
~see, for example, Tables I, II, or III!.

If Rs describes an asymptotic channel, it is convenien
use the first or second form of Eq.~3.9! whereas, for a closed
channel, the third form is more adequate. The reason is
using the appropriate coordinate system among Eqs.~3.2!–
~3.4!, one can have a better initial choice of the variation
parameters contained in the symmetric matricesAs, Bs, or Cs

of Eq. ~3.9!. But, in the practical calculations of the matr
r

o

at,

l

elements, it may sometimes be convenient to expressRs in
either form of Eq.~3.9!. This can be easily done by knowin
the transformation relations between the matricesAs, Bs, and
Cs ~Appendix A!. In the shorthand notation introduced
Appendix A, the wave functionsRs can be rewritten as

Rs5e2XTAsX5e2YTBsY5e2LTCsL. ~3.10!

Our variational solution is a linear combination of the for

s s
(
s

CnR , ~3.11!
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where the coefficientsCn
s are determined by diagonalizin

the Hamiltonian ~2.1! integrated in the spin-flavor-colo
space. We are, of course, interested in the lowest state, w
corresponds ton50. In the spirit of Refs.@14# and@20#, it is
important to incorporate in the sum~3.11! all the channels
which accelerate the convergence process. This problem
be discussed in Sec. V. Even if theRs belonging to distinct
channels are no longer orthogonal, this does not create
problem in the diagonalization procedure. An important a
vantage of the functions~3.9! is that one can easily perform
analytic calculations for a fixed coordinate system, or
choosing a coordinate system in the bra and another in
ket. Our procedure of calculating the overlap^RsuRt&, the
kinetic energy matrix elementŝRsuTuRt&, and the potential
energy matrix elements is given in Appendix B.

B. Spin-color part

In the color space, one can construct a color sing
qqQ̄Q̄ state by using three different couplings, convenien
associated with the three coordinate systems~3.2!–~3.4!. The
three resulting bases are@1#

TABLE II. Same as Table I, but forS51 and color-spin states
defined by Eq.~3.20!.

Q̄Q̄ qq

CS State CP SP l 34
P CP SP

l12
P I P

f1
1 32 02 12

3̄2 11 H01 11

12 02

f2
1 32 11 01

3̄2 11 H01 11

12 02

f3
1 32 11 01

3̄2 02 H01 02

12 11

f4
1

6̄1 02 01 61 11 H01 02

12 11

f5
1

6̄1 11 12 61 11 H01 02

12 11

f6
1

6̄1 11 12 61 02 H01 11

12 02

TABLE I. The lowestqqQ̄Q̄ S50 states. The color-spin CS
states—column 1—are defined in Eq.~3.18!. C, S, andl i j stand for
color, spin, and orbital angular momenta of the quark or antiqu
pairs. I denotes the isospin of the light quark pair, andP denotes
the permutation symmetry.

Q̄Q̄ qq

CS state CP SP l 34
P CP SP l 12

P I P

f1
0 32 11 01 3̄2 11 01 11

f2
0 32 02 12 3̄2 02 01 02

f3
0

6̄1 11 12 61 11 01 02

f4
0

6̄1 02 01 61 02 01 11
ich

ill

ny
-

y
he

t
y

u113124&, u813824&, ~3.12!

u114123&, u814823&, ~3.13!

u3̄12334&, u6126̄34&. ~3.14!

The first two bases are convenient to asymptotic chann
while Eq.~3.14! is more adequate for closed channels. Th
and 3̄ states are antisymmetric and 6 and 6¯are symmetric
under transposition~12! or ~34!.

One can use three different couplings in the spin spac
well. By coupling four fermions of spin 1/2, the total spin
S50, 1, or 2. ForS50, in each coupling, there are tw
independent basis vectors, as in the color space. The c
sponding bases are

uP13P24&, uV13V24&, ~3.15!

uP14P23&, uV14V23&, ~3.16!

x15uA12A34&, x25uS12S34&, ~3.17!

whereA, S, P, andV stand for axial, scalar, pseudoscala
and vector mesons subsystems@2#. The definition of each
basis vector and the transformations from one basis to
other are given explicitly in Appendix A of Ref.@20#. There-
fore, for S50, one can introduce the following four
dimensional orthogonal color-spin basis@20#:

TABLE III. Same as Table I, but forS52 and color-spin states
defined by Eq.~3.21!.

Q̄Q̄ qq

CS state CP SP l 34
P CP SP

l12
P I P

f1
2 32 11 01

3̄2 11 H01 11

12 02

f2
2

6̄1 11 12 61 11 H01 02

12 11

TABLE IV. The heavy flavor tetraquark massE(qqb̄b̄) calcu-
lated with Gaussian variational wave functions. Column 1: spinS,
isospinI ; column 2: one Gaussian basis; column 3: five Gaussi
basis; column 4: results of Refs.@5,6#; column 6: the lowest meson
mesonM1M 8 threshold; column 6: the quantityE2ET where
ET5mM1M M8.

SI

E(qqb̄b̄) ~MeV!

Threshold E2ET1 Gaussian 5 Gaussians Brac-Semay

10 10 577.7 10 558.1 10 525 B1B* 298.9
01 10 802.4 10 766.2 B1B 156.2
11 10 812.1 10 774.1 10 712 B1B* 117.1
21 10 831.5 10 789.8 10 735 B* 1B* 85.8

k
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uf1
0&5u3̄12334&x1 , uf2

0&5u3̄12334&x2 ,

uf3
0&5u6126̄34&x1 , uf4

0&5u6126̄34&x2 . ~3.18!

In theS51 sector, group-theoretical arguments indicate t
there are three spin independent states. We denote t
states by

x15uV12P34&, x25uV12V34&, x35uP12V34&.
~3.19!

Their definition, properties, and the relation to asympto
channels are given in Appendix C. Hence, forS51, one
deals with a six-dimensional color-spin basis formed of

uf1
1&5u3̄12334&x1 , uf2

1&5u3̄12334&x2 , uf3
1&5u3̄12334&x3

~3.20!

uf4
1&5u6126̄34&x1 , uf5

1&5u6126̄34&x2 , uf6
1&5u6126̄34&x3.

If the total spin isS52, there is only one spin function
which we denote byxs, see Appendix C. The two color-spi
states are

uf2
2&5u3̄12334&x

S, uf2
2&5u6126̄34&x

S. ~3.21!

C. Flavor part

Here, we restrict the discussion to light quarks of typeu
andd. The heavy quarks,c or b, have zero isospin, so the
do not contribute to the total isospin. Therefore, the to
isospin ofqqQ̄Q̄ can beI 50 or 1. The Pauli principle mus
be satisfied in each subsystem of identical quarks~anti-
quarks!. Then, only states of internal angular momental 12
and l 34 of adequate parity are allowed. The possible com
nations for the lowest tetraquark states (l 50 or 1! with total
spin S50, 1, and 2 are exhibited in Tables I, II, and II
respectively. In cases where the total orbital angular mom
tum isLÞ0, the wave functions~3.9! need to be generalized
t
ese

c

l

i-

n-

IV. LOWEST STATES

Here, we restrict the color space to the 33̄ component
only. The mixing with 66̄is neglected because one expects
to play a negligible role in deeply bound heavy systems@4#,
which is the case under consideration here. The approp
Jacobi coordinate system in such a case is Eq.~3.4! and the
spatial part of the wave functionRs should be written in the
third version of Eq.~3.9!.

By removing the center-of-mass motion the kinetic e
ergy takes the form~B4! and~B5! which we denote below by
Tcm. Then, by integration in the color space, the Ham
tonian ~2.1! takes the form

^H&c5( mi1Tcm2
3

4H 2
2

3
~V121V34!

2
1

3
~V131V241V141V23!J , ~4.1!

where

Vi j 5Vi j
C1Vi j

SS ~4.2!

with Vi j
C andVi j

SS defined by Eqs.~2.2! and ~2.3!. Next, it is
useful to integrate in the spin space. The lowestL50 states
can be read off Tables I–III. Note that the orbital wave fun
tions have to be symmetric in boths and s8. Using the
spin-spin matrix elements of Appendix C, one finds an e
pectation value

^H&cs5( mi1Tcm1VC1VSS, ~4.3!

where

VC5
1

2
~V12

C 1V34
C !1

1

4
~V13

C 1V24
C 1V14

C 1V23
C ! ~4.4!

and
VSS55
2

3

8
V12

SS1
1

8
V34

SS; S51, I 50

1

8
~V12

SS1V34
SS!2

1

8
~V13

SS1V24
SS1V14

SS1V23
SS!; S50, I 51

1

8
~V12

SS1V34
SS!2

1

16
~V13

SS1V24
SS1V14

SS1V23
SS!; S51, I 51

1

8
~V12

SS1V34
SS!1

1

16
~V13

SS1V24
SS1V14

SS1V23
SS!; S52, I 51,

~4.5!
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57 6783TETRAQUARKS WITH HEAVY FLAVORS
whereVi j
SS is now given by Eq.~2.3! with si•sj removed.

Before performing practical calculations, it is interesting
consider the limitmQ large, in the spirit of the introductory
chapter. Because of the mass dependence exhibited by
~2.3!, one expects

V12
SS@V13

SS5V24
SS5V14

SS5V23
SS@V34

SS. ~4.6!

Hence, in this limit, one has

^H&cs;^H0&1H 2
3

8
V12

SS, I 50

1

8
V12

SS, I 51,

whereH0 stands for all parts ofH, except for the spin-spin
part. Thus, the level withS51, I 50 is expected to be the
lowest and the ordering ofI 51 levels can be found from Eq
~4.5! asS50, the lowest, followed byS51 andS52 on the
top. This is indeed the sequence of levels obtained in
studies@5,6# of Silvestre-Brac and Semay whenQ5c or b
quark. These kinds of remarks can be considered as a g
in practical calculations as presented in the following sect
or in more elaborate programs, as, for example, that base
stochastic variational methods@21,22#.

V. NUMERICAL RESULTS

In the following, we wish to test the efficiency of ou
variational approach applied to theqqb̄b̄ with simple trial
wave functions. We focus on the lowestL50 states dis-
cussed in Sec. IV. In the first step we take a single Gaus
orbital wave function of the form~3.9!. For the 3̄3 channel,
it has to be symmetric in boths and s8. Hence,C125C13
5C2350. We takeC11, C22, C33 as variational parameter
and minimize the energy of theS51, I 50 state. The mini-
mum occurs forC11

0 5C33
0 52.9 fm22 and C22

0 518.5 fm22.

The corresponding energiesE(qqb̄b̄) of the multiplet~4.5!
are shown in the second column of Table IV.

As a second step we take a more general wave func
which is a linear combination of the form~3.11! where all
the Gaussians haveC125C235C3150. Moreover, we
chooseC115C33 because the minimum for the single Gaus
ian occurred in this situation. Also, for a single Gaussian,
energy was not very sensitive toC22 so we keep this fixed a
C22518.5 fm22. In the spirit of Kamimura’s approach w
chooseC11

n 5anC11
0 andC22

n 5anC22
0 wherea is a parameter.

For the results presented in Table IV we takea52. Table IV
gives energies calculated with 5 Gaussians (n522,
21,0,1,2). There is a substantial reduction in the grou
state energy (DE;21 MeV! going from 1 Gaussian to 5
Gaussians. We expect no further significant change in go
to more than 5 Gaussians. Values calculated by Silves
Brac and Semay with a more elaborate variational appro
based on a large basis of oscillator wave functions are g
in column 4 of Table IV.

In order to discuss the stability of theqqb̄b̄ system
against strong decays, we also have to calculate the ma
of the mesonsM andM 8 into which this system can decay
For this purpose, we used the interaction of Sec. II an
q.

e

ide
n
on

an

n

-
e

-

g
e-
ch
n

ses

a

two-body wave function of the typef(r )5(cne21/2an
2r 2

wherer is the relative coordinate,n is the number of Gaus
sians andan

2 are in a geometric progression as above. W
three Gaussians we foundmB55304 MeV andmB* 55352
MeV, i.e., practically the same values as Silvestre-Brac
Semay. Note that the present experimental values aremB
55279 MeV andmB* 55325 MeV. In column 6 of Table
IV, we indicate the difference between the tetraquark m
E(qqb̄b̄) and the threshold massET5mM1mM8. The only
bound state in our calculation is theS51, I 50 state, in
agreement with Silvestre-Brac and Semay.

Our best variational energy is still about 30 MeV abo
the ground-state energy obtained by Silvestre-Brac and
may with the same Hamiltonian. This raises the quest
about what improvements are still possible within the pres
approach.

~1! We checked that the results are unsensitive to chan
in the value ofa in a range 1.5–2.5. Values outside th
range were not so satisfactory.

~2! We found that introducing components in the wa
function with C11ÞC33 produced no significant improve
ment.

~3! With more Gaussians, one can probably gain anoth
or 2 MeV or binding.

Other possibilities which have not been tried yet are the
lowing:

~4! To include symmetrized components in the orbi
state withC12ÞC23ÞC31Þ0.

~5! To incorporate 66̄ channels or alternatively
asymptotic channels which are linear combinations of3̄
and 66̄channels.

According to Ref.@4#, the mixing with 66̄should be neg-
ligible in deeply bound heavy systems. Hence,~4! seems the
most favorable possibility.

VI. SUMMARY

The results presented in Table IV show that theS51,
I 50 state has a significantly lower energy than theI 51
states. Equation~4.5! used in perturbation theory predicts
splitting of the I 51 states such that the (S50,S51) split-
ting is one half of the (S51,S52) splitting. The variational
results with 5 Gaussians show a remarkable agreement
the perturbation result. The present study predicts that
system is bound in theS51, I50 state and is unbound in th
I 51 states, in agreement with Silvestre-Brac and Semay

The expressions given in Sec. III show that the wa
functions~3.9! in different channels are related in a simp
way through Eqs.~3.2!–~3.4!. An advantage of the presen
approach is that a wave function with a simple angular m
mentum structure in one channel includes many angular
mentum components when transformed to another chan
In the present approach, some basis states can be chos
include correlations for one of the channels and others
another channel. When one uses an oscillator basis,
chooses from the beginning to work in one of the three ba
sets and all the angular momentum components have t
included explicitly.

Our calculations illustrate the merits of the Gauss
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variational approach in that a substantial lowering of
variational energy was obtained with a relatively simp
wave function. On the other hand, our variational energy
the S51, I50 state is still 33 MeV too high in compariso
with the results of Silvestre-Brac and Semay. It remains to
seen if the necessary additional lowering of the energy is
to many small components or if there are one or two imp
tant configurations which have not been included so far
stochastic search of the type advocated by Varga and Su
@15# could be useful in locating important regions of th
variational space.

APPENDIX A

In this Appendix, we write explicitly the transformation
between the matricesAs, Bs, andCs introduced in Eq.~3.9!.
For starting, it is useful to write the coordinates~3.2!–~3.4!
in a matrix form as

X5S r

r8

x
D ; Y5S a

a8

y
D ; L5S s

s8

l
D . ~A1!

Then, the exponent of Eq.~3.9!, denoted here byEs, be-
comes

Es5XTAsX5YTBsY5LTCsL, ~A2!

whereAs, Bs, andCs are the symmetric matrices introduce
in Eq. ~3.9!, and XT, YT, and LT are the transposes of th
matrices~A1!.

Introducing the orthogonal matrices

Ux5S 1

2
2

1

2
A1

2

2
1

2

1

2
A1

2

A1

2
A1

2
0

D ;

~A3!

Uy5S 1

2

1

2
A1

2

2
1

2
2

1

2
A1

2

A1

2
2A1

2
0

D ,

we can write the second transformation of Eqs.~3.6! and
~3.7! as

X5UxL; Y5UyL, ~A4!

and also

Y5UyUx
21X5UyxX. ~A5!

Using Eqs.~A4! or ~A5! in Eq. ~A2!, one obtains

As5UxC
sUx

21 or Cs5Ux
21AsUx , ~A6!
e

r

e
e
-

A
uki

Bs5UyC
sUy

21 or C55Uy
21BsUy , ~A7!

Bs5UyxA
sUyx

21 or As5Uyx
21BsUyx , ~A8!

which are the desired transformations. Note that the trans
mationA→B→C is equivalent toA→C as it should be.

APPENDIX B

Here, we give the explicit compact form of the matr
elements of the coordinate space part of the Hamiltonian.
Rs we understand any of the three alternative forms of E
~3.9! so thatAs is a generalized notation for the matrixAs,
Bs, or Cs. It is easy to prove that the overlap matrix is

^RsuRt&5F p3

det~As1At!
G 3/2

. ~B1!

Let us generally denote byr any of the one-column ma
trices ~A1! and introduce an arbitrary matrixM of the same
dimension asAs, Bs, or Cs (333 in our case!. Then,rTMr
is of the same type as the exponent~A2! of Eq. ~3.9!. There-
fore, Eq.~B1! can be generalized to

^Rsue2rTMruRt&5F p3

det~As1At1M !
G 3/2

5^RsuRt&F 1

det@11~As1At!21M #
G 3/2

.

~B2!

Now, suppose that the matrix elementsMi j are small.
Then, making a Taylor series expansion on both the l
hand side~LHS! and RHS of Eq.~B2! and keeping the linea
terms inMi j , one obtains

^RsurTMruRt&5^RsuRt&
3

2
tr @~As1At!21M # ~B3!

because

@det~11F !#3/2>~11tr F !3/2>11
3

2
tr F.

Expression~B3! can be used in the calculation of the k
netic energy matrix elements. Let us denote byra the ele-
ments of any column matrix~A1! corresponding to one o
the internal coordinate systems~3.2!–~3.4!. Removing the
center-of-mass motion, the kinetic energy part of Eq.~2.1!
can be generally written as

T5Tab¹ra
•¹rb

, Tab52
\2

2mab
dab . ~B4!

For the particular coordinate system~3.4!, the matrixmab is

m115m, m225m8, m335
2mm8

m1m8
,

m125m235m3150. ~B5!
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Integrating by parts and noting that

¹rb
Rs522Abg

s rgRs,

one obtains

^Rsu¹ra
•¹rb

uRt&524^RsuAag
s Abd

t rg•rduRt&

and

^RsuTuRt&524^Rsu~AsTAt!gdrg•rduRt&

524^RsurTAsTAtruRt&.

Taking

M5AsTAt

in Eq. ~B3! leads to

^RsuTuRt&526^RsuRt& tr@~As1At!21AsTAt#, ~B6!

which is precisely the expression to be used in the calc
tion of the kinetic energy.

Now, we give some details about the calculation of t
potential matrix elements. Letf (r1) be the orbital part of
Eqs.~2.2! or ~2.3! wherer15r i2r j for a pair i j of quarks.
Choosing the appropriate coordinate systemra among Eqs.
~3.2!–~3.4!, any orbital matrix element can be written in th
form

^Rsu f uRt&5E d3r1d3r2d3r3f ~r1!exp~2rTAstr!,

~B7!

where

Ast5As1At. ~B8!

In evaluating the integral, the first step is to make a tra
formationr1 ,r2 ,r3→r1 ,r28 ,r38 so that

rTAr5~r1 ,r28 ,r38!S A11 X2 X3

X2 Ā22 0

X3 0 Ā33

D S r1

r28

r38
D .

Then, the integrals overr28 andr38 can be calculated to give

^Rsu f uRt&5S p2

Ā22
st Ā33

st D 3/2

3E d3r1exp~2ystr1
2! f ~r1!, ~B9!

where

yst5A11
st2

X2
2

Ā22
st

2
X3

2

Ā33
st

5
detAst

M11
st

and

M11
st5Ā22

st Ā33
st5UA22

st A23
st

st stU.
A23 A33
a-

e

-

By integrating over the angles, this reduces to

^Rsu f uRt&54pS p2

M11
st D 3/2

3E dr1r1
2f ~r1!exp~2ystr1

2!. ~B10!

The relevant cases for the potentials~2.2! and~2.3! lead to
the following integrals:

~a! f 5const; E
0

`

dr r2e2yr2
5

p1/2

4y3/2
,

~b! f 5r 521/2r; E
0

`

dr r2re2yr2
5

1

21/2y2
,

~c! f 5
1

r
5

1

21/2r
; E

0

`

dr r2
1

r
e2yr2

5
1

23/2y2
,

~d! f 5
1

r
e2r /r 0;

E
0

`

dr r2
1

r
e2r /r 02yr2

5
1

2A2y
F12S p

2r 0
2yD 1/2

e1/~2r 0
2y!erfcS 1

2r 0
2yD 1/2G .

Note that formulas of type~B1!, ~B6!, and ~B10! can be
easily obtained for the three-particle case and generalize
n.4 particles, whenever the Hamiltonian contains a pa
wise interaction.

APPENDIX C

In this Appendix, we give the explicit form of the tota
spin S50, 1 or two wave functions for four-fermion state
where each fermion has spins51/2 andsz561/2. The no-
tation for spinors is

S 1

0D 5↑, S 0

1D 5↓. ~C1!

~a! S50 case. The two-basis statesuA12A34& and uS12S34&
of Eq. ~3.17! can be defined through their Young tableaux

~C2!

which exhibit their permutation symmetries

~12!uA12A34&5~34!uA12A34&5uA12A34&,
~C3!

~12!uS12S34&5~34!uS12S34&52uS12S34&.

Their explicit form in terms of the spinors~C1! reads@20#
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x15uA12A34&5A 1

12
~2↑↑↓↓12↓↓↑↑2↑↓↑↓

2↓↑↑↓2↑↓↓↑2↓↑↓↑ !, ~C4!

x25uS12&5
1

2
~↑↓↑↓1↓↑↓↑2↑↓↓↑2↓↑↑↓ !. ~C5!

The orthogonal transformations to the other bases are

uP13P24&5
A3

2
uA12A34&1

1

2
uS12S34&,

~C6!

uV13V24&52
1

2
uA12A34&1

A3

2
uS12S34&,

and

uP14P23&5
A3

2
uA12A34&2

1

2
uS12uS34&,

~C7!

uV14V23&52
1

2
uA12A34&2

A3

2
uS12S34&.

~b! S51, Sz51 case. The three independent basis vecto
are the three Young-Yamanouchi-type states@23#

~C8!

It is useful to transform this basis into

x15uV12P34&5A2

3
x1

S2A1

3
x2

S5
1

A2
~↑↑↑↓2↑↑↓↑ !,

x25uV12V34&152A1

3
x1

S2A2

3
x2

S

5
1

2
~↑↓↑↑1↓↑↑↑2↑↑↑↓2↑↑↓↑ !,

x35uP12V34&5uxA&5
1

A2
~↑↓↑↑2↓↑↑↑ !, ~C9!
where the lower index inu &1 stands forL51. For the per-
mutation properties of Eq.~C8!, it follows

~12!x15x1 , ~12!x25x2 , ~12!x352x3 ,

~34!x152x1 , ~34!x25x2 , ~34!x35x3 .
~C10!

For the direct asymptotic channel, it is convenient to use
basis

uP13V24&52
1

A2
Fx21

1

A2
~x12x3!G5

1

A2
~↑↑↓↑2↓↑↑↑ !,

uV13P24&52
1

A2
Fx22

1

A2
~x12x3!G5

1

A2
~↑↑↑↓2↑↓↑↑ !,

~C11!

uV13V24&152
1

A2
~x11x3!

52
1

2
~↑↑↑↓1↑↓↑↑2↑↑↓↑2↓↑↑↑ !,

and for the exchange channel, the basis

uP14V23&52
1

A2
Fx22

1

A2
~x11x3!G5

1

A2
~↑↑↑↓2↓↑↑↑ !,

uV14P23&52
1

A2
Fx21

1

A2
~x11x3!G5

1

A2
~↑↑↓↑2↑↓↑↑ !,

~C12!

uV14V23&15
1

A2
~x12x3!

5
1

2
~↑↑↑↓1↓↑↑↑2↑↑↓↑2↑↓↑↑ !.

~c! S52, Sz52 case. This is a trivial case, it has a singl
basis state

xS5↑↑↑↑. ~C13!

The required spin-matrix elements are

^x1us1•s2ux1&5^x1us3s4ux1&51,

^x1us1•s3ux1&5^x1us1•s4ux1&

5^x1us2•s3ux1&5^x1us2•s4ux1&522,

^x2us1•s2ux2&5^x2us3•s4ux2&51,

^x2us1•s3ux2&5^x2us1•s4ux2&

5^x2us2•s3ux2&5^x2us2•s4ux2&521,

^xSusi•sj uxS&51 for i , j 51,2, . . . ,4.
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