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In the framework of a simple nonrelativistic potential model, we have previously studied the stability of a
system of two quarks and two antiquarks of identical light flavor. Here, we extend our analysis to quarks
(antiquark$ of different masses and discuss the role of heavy flavors on the stability of the system. This
analysis is performed by using a simple variational method which proved powerful in the treatment of other
few-body systems. We compare our results with other results from the literature and single out a few charac-
teristics of the spectrum of the tetraquark30556-282(98)05811-]

PACS numbds): 12.39.Pn, 12.39.Jh

. INTRODUCTION than qqQQ and a variational solution, which provides an

) ] upper bound, is more conclusive about its stability than for
The existence of exotic hadrons of the two-quark—two-

antiquarks pair type, called tetraquarks or diquonia, is éhe 9QQ system. As an example, detailed arguments in

problem which was already raised about 20 years ago b{pvor of the stability of theccud system as compared to
Jaffe[1] and has been studied within the MIT bag modg| ccdu system are given if9]. Another important difference

potential model$2-6], and flux tube modelg7]. The MIT  petweenqQQ andqqQQ systems is that in the latter, there
bag model indicates the presence of a large number of bourngle meson-antimeson annihilation channels, which should

states, the potential models of a few bound states and flux;iso pe taken into accoufit2]. Thus, it is simpler to study
tube models suggest instability. So far the experimental data ——

have not been conclusive regarding the identification of sucl‘iwIQQ thanqaQQ.

states in the light sector, because exotic me o have The present work is closely related to that of Zouzou
. A Sy hav et al.[4] and of Silvestre-Brac and Semgy,6]. Its purpose
pgved difficult to distinguish from the many conventional [4] 5,6] purp

qq states. But the most recent experiment in this fiélzan is to studyqqQQ systems with a simple variational method.

revitalize the search. In Reffg], it has been shown that the Our frgmework Is a constit_uent quark m(_)del based on the
data obtained from the reactian p— 77 p at 18 GeVé potential of[13]. This potential generally gives good results
can be fitted to an exotic meson wiic=1-+ and mass P°th in the meson and the baryon sectors. Moreover, based

M =1370* 16 MeV. On the other hand, experiments are beON the same potential, Silvestre-Brac and Semay made an

ing planned to search for double-charmed tetraquarks at FefXtensive study of the tetraquarks in a variational calculation
milab and CERN9]. with a large oscillator basis for various values of the spin,

From now on, a light quarkw(, d, or s) will be denoted by ~ 1S0Spin, and angular momentum. Even in the first step, with 3
g and a heavy onec(or b) by Q. It has already been pointed ©F 4 oscillator quanta, these calculations required a basis
out in the literature that the mass of the quarks play an imvarying from 10 vectors for a light system to 252 for a heavy
portant role in the stability of a tetraquark systém-6].  one[6].
Chiral perturbation theory studies also indicate stability of a In the present paper, we explore a different approach
tetraquark system with two heavy quarksJfis theb quark  based on Gaussian variational wave functions of the type
or heavier[10]. advocated by Kamimura in his studies of nuclear few-body

In the present work, we focus on tlggQQ or, equiva-  Systemd14]. A similar method is widely used in molecular
lently, theﬁQQ system, the arguments being given beIow.phySiCS' Varga and SuzuKl5] have a recent publication in

Anather four-quark system with unequal masse§ 90 this area which contains many useful references. A reason
) d yste 4 S ' for choosing the same potential as Silvestre-Brac and Semay
which can have two distinct meson-meson threshaoigs,

; == is that we can compare our variational energies with theirs.
+Mgq andmgg+ Mo . The latter is the same as fanQQ, | the calculations presented below, we show that a varia-
becausengg=mMqq- It can be shown thg1] tional basis with five simple orbital wave functions is enough
to reach convergence for the low-spin and isosopin levels of

the nnbb system, but to values above those given in Refs.
_ - [5] and[6]. Thus, some important components are still miss-
which means thaQQ+qq is the lower threshold. Then, ihq trom our wave function. The present paper presents the
assuming that the mass oigQQ is equal to the mass of theoretical framework and some test calculations. It also al-
gqQQ, the systengqQQ has more of a chance to be bound lows us to draw some conclusions about the spin-isospin

Mog+ Mg < 2Mgyg, (1.
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structure of the spectrum. More work needs to be done til
identify the important regions of the variational space. 1 1

Zouzouet al. have shown that thqq@system becomes Py
stable if the mass ratimg /mj is large enough. They found 3

that, for values ofng /my=20, only the 3 color component
of the wave function is important. However, in their paper:2
they give only a schematic discussion of the effect of the (, ®) ©
spin-spin interaction, while here we consider it explicitly.

In the next section we introduce the Hamiltonian. In Sec. FIG. 1. Three possible ways to define relative coordinates for a
ll, we construct the basis states and describe the variationalq—2q system. Darkened and open circles represent quark and
procedure. In Sec. IV, we discuss the role of heavy flavorantiquarks, respectively.

and, in Sec. V we present numerical results for tfggb

<y
w

4 4

'S
N

system. Our study is summarized in the last section. meson masses, needed below. However, we are constrained
to use the samm, as in Refs[5,6] in order to compare our
Il. HAMILTONIAN variational solution to theirs. Moreover, in the calculated

o o guantityE— E+ (see Table 1Y, m, appears only through Eq.
We choose a nonrelativistic Hamiltonian of the form  (2.3) so that its fine tuning is not necessary for the present
purpose. We chose to study tetraquarks contaibigarks

4 4
H=E m_er_i2 _§ A_F.A_jc(vgijs 2.1) rather thanc quarks because with the parametdisd)
=V 2m) 4 2 2 CRO Silvestre-Brac and Semay found that the ground state of the
nnbb is bound, while the ground state nhcc is not.
wherem; are the quark masses anfl(c=1, ... ,8) are the Other choices of the quark Hamiltonian are possible. Re-
SU(3) Gell-Mann matrices. For the interquark potentisfs  cently, the baryon spectroscopy have also been analyzed
andV;;®°, we choose the following formisL3]: within a chiral constituent quark modgL6] where, instead
of one-gluon exchange, the interaction between quarks is due
VCe — £+ ri—D 2.2 to _one-meson(pse_udoscalar Goldstone bo;oexcha_mge.
ij rij a(z) ' ' This makes the spin part of the quark-quark interaction to be
flavor dependent. It has been shoji7,18 that the hyper-
n2c%k 1 fine splittings and especially the correct order of positive and
VﬁS: ——e "ilg - o, (2.3  Negative parity states of baryons with d, ands quarks is
m;m;C rérij better reproduced with this model than with a conventional

_ _ _ _ one-gluon-exchange model, as the one used in this study.
wherer;; is the distance between the quarksand j of  Actually, there is evidence from lattice QCD that the hyper-

massesm; and m;, respectively. The parameters of EGS. fine gpjittings in light baryons are related mostlyctq exci-
(2.2 and(2.3) have been chosen to be the same as those usggions rather than to forces mediated by gluonic fields in a
by Silvestre-Brac and Semd,6] so that the variational q pair [19]. In the present paper, the aim is to explore the

results given in the present paper can be compared with thg, jational method based on Gaussian orbital wave functions
ones in Refs[5,6]. The parameter values are given[t8]  5hq e choose to use the Hamiltonian of B8] for which
and were determined, for a choice of the charmed quark, c|aborate solutiofs,6] is available.

massm,= 1870 MeV, by fitting the 8, 1P, and 25 states of In the next section, we introduce internal coordinates for

the charmonium. Their values are four-body systems and in Sec. IV, we rewrite the Hamil-
k=102.67 MeVfm, a,=0.0326 (MeV ! fm)2 tonian in the internal coordinate system appropriate for the
' R ’ present study.

D=913.5 MeV, ry=0.4545 fm. (2.4
I1l. WAVE FUNCTION
In [13], the masses,=my=337 MeV were chosen to re-

produce the magnetic moments of the nucleon. The bottom Here, we present the orbital, color-spin, and flavor struc-
quark massm,=5259 MeV was obtained by fitting thg ture_of a tetraquark system wave function. We suppose that
(1S) meson considered to have a mass of 9434 MeV. At th@articles 1 and 2 are quarks and 3 and 4 are antiquarks. We
time Ref.[13] appeared, only th¥ (nS) mesons (=1, 2, Cchoose

3, and 4 were experimentally known and the fit seemed to

be good for all these mesons. Since then, the experimental Mmi=my=mg, Mg=mMy=mMg, MmMe=my (3.
spectrum of bottonium has been enriched and improved so
that the value oim, found in Ref.[13] underestimates the A. Orbital part

presently known experimental ma¥$*(1S)=9460 MeV. . . .

We noticed that there is a difficulty with the parametrization_ ©ON€ can introduce three alternative coordinate systems.
(2.4) to fit precisely both ther (1S) and theB meson, un-  1hese ardsee Fig. 1

known at the time this parametrization was produced. Actu- 1 1

ally, my=5259 MeV is a bit too small for reproducing the p=—=(r1—T3), p =—=(ro—ry),

correct mass ol (1S) but too large to fit theB and B* 2 J2
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1 1 1
X= E(rl—r2+r3—r4), (3.2 5 -5 5 o
1 - \/I (3.6
a=—(r1—r,), & =——(r,—rsy), | 2 2 2117 | '
\/E( 1 4) \/5( 2 3)
1 \/I 0
1 2 5 A
y= E(rl_rz—r3+r4), 3.3
1 1 1 1
Uzﬁ(rl_rz), o :E(rs_ﬂl), @ 5 0 FANR
1 o [T _ 1 0 \ﬁ y
h: E(rl+r2_r3_r4). (34) 2 2
y o 1 o/ \r
In all cases, the fourth coordinate &= (1/M)=m;r; where
M=3m;. The coordinate$3.2) or (3.3 are convenient in 1 1 \ﬁ
describing the direct and exchange meson-meson channels, 2 2 2 o
while coordinateg3.4) are handy for incorporating strongly 1 1 1
correlated subsystems of identical quarks or antiquarks. A = —-Z - \ﬁ o |, 37
permutation {j) of two particlesi and j applied on the 2 2 2
above coordinates gives \/I 1
— —x/= O A
(12p=a/, (12p'=a, (34p=a, (34p' =, 2 2
(12x=—-y, (34x=y, (23x=N\, (14Hx=—A\,
(3.5 o \ﬁ \F 0 X
(12A=\, (34A=N, (3)y=y, (14y=y. 22
Note that one can also use a coordinate system formed of the N \/g — \/g 0 y 3.8

vectorsx, y, N as well. Transformations between various
coordinate systems are A 0 0 1 A

Let us denote byr® the orbital part of the wave function.

, The most general form with=0 is a function of six scalar

P17 1o _ \ﬁ \ﬁ y quantities expressed in either of the coordinate systems
2 2 (3.2—(3.4). We choose the following simple form:

X 1 0 0 A

RS=exd — (A p%+ A3,p 2+ A3x%+ 2A%,p- p' + 2A%p- X+ 2A50 - X) |=exd — (B} a%+ B3’ 2+ B3y?+ 2B, &'

+2B3za-y+ 2B’ -y) |=exf — (C3,0%+ C5,0" 2+ C30 2+ 2C5,0- 0’ +2C550- A+ 2C5;0” - M) . 3.9

These forms of the wave function allow for nonzero angularelements, it may sometimes be convenient to expREsis
momentd ;, or | 3, in the subsystems of quarks or antiquarkseither form of Eq.(3.9). This can be easily done by knowing
(see, for example, Tables I, II, or JlI the transformation relations between the matrié&=B®, and

If RS describes an asymptotic channel, it is convenient td&=° (Appendix A). In the shorthand notation introduced in
use the first or second form of E@.9) whereas, for a closed Appendix A, the wave functionR® can be rewritten as
channel, the third form is more adequate. The reason is that,
using the appropriate coordinate system among Ej8—
(3.4), one can have a better initial choice of the variational
parameters contained in the symmetric matrid&<Bs, or C°
of Eq. (3.9. But, in the practical calculations of the matrix

RS=g X'AX_ g~ Y'BY_g-LTCL

(3.10

Our variational solution is a linear combination of the form

> CSR®, (3.19)
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TABLE I. The Iowestqq@ S=0 states. The color-spin CS TABLE Ill. Same as Table I, but fo8=2 and color-spin states
states—column 1—are defined in §§.18. C, S, andl;; stand for ~ defined by Eq(3.21).
color, spin, and orbital angular momenta of the quark or antiquark —
pairs.| denotes the isospin of the light quark pair, @Adlenotes QQ aq
the permutation symmetry.

-~ ” CSstate c? s* 1§, cP & 1, 1P

¢ I - R N (A

CSstate Cc” s° I§, ch s° L 1P :1 o

¢ 3 17 0 EE A Z 6 11 1 8 1" (o' o

#3 3= 0 1 3= 0 0" o0 1= 1+
4 & 1 1 & 1 0 0
3 & 0 0F 6 0 0" 1

|113120),  [813824), (3.12

where the coefficient€; are determined by diagonalizing

the Hamiltonian (2.1) integrated in the spin-flavor-color 1114159, (814829, (3.13
space. We are, of course, interested in the lowest state, which

corresponds ta= 0. In the spirit of Refs[14] and[20], it is _ _

important to incorporate in the su.11) all the channels 1312334),  [612634). (3.14
which accelerate the convergence process. This problem will

be discussed in Sec. V. Even if iR belonging to distinct The first two bases are convenient to asymptotic channels,
channels are no longer orthogonal, this does not create amwhile Eq.(3.14) is more adequate for closed channels. The 3
problem in the diagonalization procedure. An important ad-and 3 states are antisymmetric and 6 anca@ symmetric
vantage of the functiong3.9) is that one can easily perform ynder transpositioi12) or (34).

analytic calculations for a fixed coordinate system, or by QOne can use three different couplings in the spin space as
choosing a coordinate system in the bra and another in thge||. By coupling four fermions of spin 1/2, the total spin is
ket. Our procedure of CaICUIating the OVerleBS| Rt>, the S:O, 1, or 2. ForS:O, in each Coup"ng, there are two
kinetic energy matrix element®R° T|R"), and the potential  independent basis vectors, as in the color space. The corre-

energy matrix elements is given in Appendix B. sponding bases are
B. Spin-color part [P13Pos),  [V13Vas), (3.19
In the color space, one can construct a color singlet
qqQQ state by using three different couplings, conveniently |P1P23),  [V1aVa), (3.16
associated with the three coordinate syst€Bn®—(3.4). The
three resulting bases af#] X+=|A1A3),  X-=|S1:S39), (3.1

TABLE Il. Same as Table I, but foB=1 and color-spin states

defined by Eq(3.20. whereA, S, P, andV stand for axial, scalar, pseudoscalar,

and vector mesons subsystefi®d. The definition of each
— qq basis vector and the transformations from one basis to an-
CS State cP %S P P < o other are given explicitly in Appendix A of Re[f20]._There-
34 12 fore, for S=0, one can introduce the following four-
dimensional orthogonal color-spin bas&0:

o1 3 0- 1- 3~ 1+

= O
| +

o P
| +

TABLE IV. The heavy flavor tetraquark ma&{qqbb) calcu-
lated with Gaussian variational wave functions. Column 1: &in
isospinl; column 2: one Gaussian basis; column 3: five Gaussians

¢3 37 1t ot 3 1f

o
T+
=
+

[1 0
o 3 1+ 0+ 3 0- ot o basis; column 4: results of Ref®,6]; column 6: the lowest meson-
3 mesonM+ M’ threshold; column 6: the quantitE —E; where
1~ 1t Er=my+My.
bi 68 0 0" 6" 1' (0" o —
[1 1+ E(qgbb) (MeV)
b3 6" 17 1 6" 1" [O+ 0" S| 1 Gaussian 5 Gaussians Brac-Semayreshold E—E;
- +
. _ L X ) 1+ 1+ 10 105777 105581 10525 B+B* —98.9
bs 6 1 6 0 0" 1 01 10802.4  10766.2 B+B  156.2
1~ 0 11 10812.1 10774.1 10712 B+ B* 117.1

21 108315 10789.8 10735 B*+B* 85.8
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5 5 IV. LOWEST STATES
|¢(1)>: |312334>X+ ) |¢(2)>: |312334>X— )

Here, we restrict the color space to th8 8omponent
|69 =16162x+, |6=616s0x-. (3.18  only. The mixing with 66is neglected because one expects it
to play a negligible role in deeply bound heavy systéfis
In the S=1 sector, group-theoretical arguments indicate thatvhich is the case under consideration here. The appropriate
there are three spin independent states. We denote theggcobi coordinate system in such a case is(Bd) and the
states by spatial part of the wave functioR® should be written in the
third version of Eq(3.9).
By removing the center-of-mass motion the kinetic en-
X1=[ViPas),  x2=|ViVag),  x3=|P12Va9). ergy takes the forniB4) and(B5) which we denote below by
3.1 T.m- Then, by integration in the color space, the Hamil-

Their definition, properties, and the relation to asymptotictonian(2.1) takes the form
channels are given in Appendix C. Hence, ®+1, one
deals with a six-dimensional color-spin basis formed of

3 2
<H>c: 2 m; +Tcm_ Z{ - §(V12+ V34)
| =131830x1, |b3)=3133)x2, |#3)=131320) X3

1
(32() - §(V13+V24+V14+V23) y (41)
| ¢411> = |6126_34>X1 . ¢%> = |6126_34>X2 . ¢é> = |6126_34>X3- where
If the total spin isS=2, there is only one spin function
which we denote by?®, see Appendix C. The two color-spin Vi :VSJFVSS 4.2

states are
with Vi andV;;® defined by Eqs(2.2) and(2.3). Next, it is
N s A e =\ s useful to integrate in the spin space. The lowest0 states
|#2)=131283 x> [#2)=161639x> (32D ¢an be read off Tables I—IIl. Note that the orbital wave func-
tions have to be symmetric in bottx and o'. Using the
C. Flavor part spin-spin matrix elements of Appendix C, one finds an ex-
' pectation value
Here, we restrict the discussion to light quarks of type
andd. The heavy quarks; or b, have zero isospin, so they
do not contribute to the total isospin. Therefore, the total

isospin ofqgqQQ can bel =0 or 1. The Pauli principle must

be satisfied in each subsystem of identical quafisti- Where

quarks. Then, only states of internal angular momehia

andl 3, of adequate parity are allowed. The possible combi- 1 1

nations for the lowest tetraquark statés-Q or 1) with total C_"\/C 1 \/Cr1i ~\/C L \/C L \/C L \/C

spin S=0, 1, and 2 are exhibited in Tables I, II, and Il VE=S(Vipt Ve + 7 (Vigt Vot Vit V) (44
respectively. In cases where the total orbital angular momen-

tum isL # 0, the wave function§3.9) need to be generalized. and

(H)ee= >, M+ Tgm+ VE+VSS (4.3

3 1
—gVirtgVee S=1, 1=0
1 SS S 1 SS SS SS S
g (VIS+VE) — g(VISHVE+VIF+ V3D, S=0, I=1

Ve 1 (4.5
g (Vi Va) — T(VisHVatVigh Ve, S=1, 1=1
1 SS S 1 SS SS SS SS,.
kg(v12+v34+1—6(v13+v24+v14+v23, S=2, I=1,
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whereV;;®is now given by Eq(2.3) with o;- oj removed.  two-body wave function of the types(r)=Sc e L/2a"
Before performing practical calculations, it is interesting towherer is the relative coordinatay is the number of Gaus-
consider the limitmg, large, in the spirit of the introductory sjans anda? are in a geometric progression as above. With
chapter. Because of the mass dependence exhibited by E@yee Gaussians we foundg=5304 MeV andmgs = 5352
(2.3), one expects MeV, i.e., practically the same values as Silvestre-Brac and
s SS._\/SS_\/SS_ /S ss Semay. Note that the present experimental valuesngye
VIS Vis= Vo= V= V> Vig. (4.6 =5279 MeV andmg« =5325 MeV. In column 6 of Table
IV, we indicate the difference between the tetraquark mass

Hence, in this limit, one has ~
E(qgbb) and the threshold ma$s;=my,+my,,. The only

3. ss bound state in our calculation is tfg=1, 1=0 state, in
- §V12v 1=0 agreement with Silvestre-Brac and Semay.
(HYes~(Hg) + 1 Our best variational energy is still about 30 MeV above
“VSS 1=1 the ground-state energy obtained by Silvestre-Brac and Se-
g 12 ' may with the same Hamiltonian. This raises the question

) _about what improvements are still possible within the present
whereH, stands for all parts ofi, except for the spin-spin approach.
part. Thus, the level witt=1, 1=0 is expected to be the (1) we checked that the results are unsensitive to changes
lowest and the ordering 6f=1 levels can be found from Eq. i the value ofa in a range 1.5-2.5. Values outside this
studies[5,6] of Silvestre-Brac and Semay wh&@w=c or b fynction with C;;# Cy, produced no significant improve-
quark. These kinds of remarks can be considered as a guiggent.
in practical calculations as presented in the following section (3 with more Gaussians, one can probably gain another 1
or in more elaborate programs, as, for example, that based qf 2 MeV or binding.
stochastic variational methodig1,22.

Other possibilities which have not been tried yet are the fol-

V. NUMERICAL RESULTS lowing:
. _ - (4) To include symmetrized components in the orbital
In the following, we wish to test the efficiency of our giate WithCp# Cpa# Ca1#0.

variational approach applied to tlgggbb with simple trial (5) To incorporate 66 channels or alternatively
wave functions. We focus on the lowelst=0 states dis- . . . L =
asymptotic channels which are linear combinations 8f 3

cussed in Sec. IV. In the first step we take a single Gaussian™” =
orbital wave function of the forng3.9). For the 3 channel, and 66ch§nnels. o o

it has to be symmetric in botr and o . Hence,Cy,=Cys . .Acc'ordmg to Ref[4], the mixing with 66should be neg-
—C,3=0. We takeCy;, Cpy, Cas as variational parameters ligible in deeply bour_1d_ heavy systems. Hen@b,seems the
and minimize the energy of th8=1, | =0 state. The mini- MOst favorable possibility.

mum occurs forC9,=C3%,=2.9 fm2 and C9,=18.5 fim 2.

The corresponding energi&(qqbb) of the multiplet(4.5) VI. SUMMARY

are shown in the second column of Table IV. _ The results presented in Table IV show that ®e1l,

As a second step we take a more general wave functiop_ g sate has a significantly lower energy than thel
which is a linear combination of the fort8.1) where all  giate5 Equationd.5) used in perturbation theory predicts a
the Gaussians haveCy,;=C,3=Cs3y=0. Moreover, we gpjitting of thel =1 states such that th&s€0,5=1) split-
chooseC ;= C33 because the minimum for the single Gauss-jnq is one half of the $=1,5=2) splitting. The variational
lan occurred in this situation. Also, for a single Gaussian, theegits with 5 Gaussians show a remarkable agreement with
energy was not very sensitive @, so we keep this fixed at e perturbation result. The present study predicts that the
Coo= 18';? fm =, (!” the spirit of (I)(am|mura's approach we gystem is bound in thé=1, 1=0 state and is unbound in the
chooseCy; = a"Cy; andCs,= "Cy, Wherea is a parameter. | =1 gtates, in agreement with Silvestre-Brac and Semay.
For the results presented in Table IV we take 2. Table IV The expressions given in Sec. Ill show that the wave
gives energies calculated with 5 Gaussians=¢2,  functions(3.9) in different channels are related in a simple
—1,0,1,2). There is a substantial reduction in the groundway through Eqs(3.2—(3.4). An advantage of the present
state energy AE~21 MeV) going from 1 Gaussian to 5 approach is that a wave function with a simple angular mo-
Gaussians. We expect no further significant change in goingnentum structure in one channel includes many angular mo-
to more than 5 Gaussians. Values calculated by Silvestreanentum components when transformed to another channel.
Brac and Semay with a more elaborate variational approacfh the present approach, some basis states can be chosen to
based on a large basis of oscillator wave functions are givefclude correlations for one of the channels and others for
in column 4 of Table IV. L another channel. When one uses an oscillator basis, one

In order to discuss the stability of thggbb system chooses from the beginning to work in one of the three basis
against strong decays, we also have to calculate the massests and all the angular momentum components have to be
of the mesondM andM’ into which this system can decay. included explicitly.

For this purpose, we used the interaction of Sec. Il and a Our calculations illustrate the merits of the Gaussian
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variational approach in that a substantial lowering of the BS=UyCSUy‘1 or CSZUglgsz, (A7)
variational energy was obtained with a relatively simple

wave function. On the other hand, our variational energy for BS= UyXASU;1 or AS= U;)(lBszx, (A8)
the S=1, 1=0 state is still 33 MeV too high in comparison

with the results of Silvestre-Brac and Semay. It remains to bvhich are the desired transformations. Note that the transfor-
seen if the necessary additional lowering of the energy is dugmation A—B— C is equivalent tcA— C as it should be.
to many small components or if there are one or two impor-
tant configurations which have not been included so far. A
stochastic search of the type advocated by Varga and Suzuki
[15] could be useful in locating important regions of the Here, we give the explicit compact form of the matrix
variational space. elements of the coordinate space part of the Hamiltonian. By
R® we understand any of the three alternative forms of Eq.
APPENDIX A (3.9 so thatA® is a generalized notation for the matu¥,

_ _ . o . B®, or C®. It is easy to prove that the overlap matrix is
In this Appendix, we write explicitly the transformations

APPENDIX B

between the matrices®, BS, andC? introduced in Eq(3.9). 3 312
For starting, it is useful to write the coordinatés2)—(3.4) (RIRY) = Jel AT AD (BY)
in a matrix form as e(A+A)
p « o _ Let us gener_ally denote hy any of the one-column ma-
, , , trices(Al) and introduce an arbitrary matrid of the same
X=\p |; Y={a |, L=l o . (Al) dimension a®\s, BS, or C* (3x 3 in our casg Then,p™Mp
X y A is of the same type as the exponéi®) of Eq.(3.9). There-
fore, Eq.(B1) can be generalized to
Then, the exponent of Eq3.9), denoted here b¥S, be-
comes . 3 312
(Rele ™" MP|RY = ———————
ES=XTASX=YTBSY=LTCSL, (A2) def{A>+A'+ M)
3/2
whereA?®, B®, andC® are the symmetric matrices introduced —(RYR!
in Eq. (3.9, and X", YT, andL" are the transposes of the = ) def1+(AS+AY)~IM]
matrices(Al).
Introducing the orthogonal matrices (B2)
1 1 1 Now, suppose that the matrix elemerMsj are small.
> 3 > Then, making a Taylor series expansion on both the left-
hand sidgLHS) and RHS of Eq(B2) and keeping the linear
1 1 \[1 _ terms inM;; , one obtains
Sl Tzoz Nz ,
\F \[ (Rp™Mp|R)=(RIR) S tr [(A+A) 'M]  (BI)
2
(A3) because
1 1 \ﬁ 2
2 2 2 [de(1+F)]3’2%(1+trF)3’221+ztrF.
1 1 \F
Uy=| — 2 2 PR ExpressionB3) can be used in the calculation of the ki-
netic energy matrix elements. Let us denotedyythe ele-
0 ments of any column matrikAl) corresponding to one of

1 \F
\[5 - V2 the internal coordinate systen(8.2—(3.4). Removing the
center-of-mass motion, the kinetic energy part of Ej1)

we can write the second transformation of E¢S.6) and  can be generally written as

(3.7) as
hZ
X=U,L; Y=U(L, (A4) T=TuV, -V, ., Tup=— Bap - (B4)
a B 2maﬁ
and also . . . .
For the particular coordinate systg@14), the matrixm,z is
Y=U,U, ’X=U,,X. A5
y=x yx (AS) - . _2mm

Using Egs.(A4) or (A5) in Eq. (A2), one obtains Mu=M - M= Mas= i

AS=U,C%U, ' or C3=U, 'ASU,, (AB) M= My3=M3;=0. (B5)
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Integrating by parts and noting that By integrating over the angles, this reduces to

VpﬁRsz N ZA?WPyRS’

2\ 32
(RY|f|RY =4 —
M

st

one obtains 1
RV, -V, |[RY=—4(RAS_ALsp, - psR
(R, VIR == 4RI Ay pulR) X f dp1pif(pr)exn—y*ipd). (B10)
and
The relevant cases for the potentie?s?) and(2.3) lead to
(REITIR) = —4(RY(A°TAY) ,5p,- ps|R") the following integrals:
=—4(R%|p"ASTA'p|RY). » , 7R
. a) f=const; f dp p?e VP =——,
Taking @ o PP 4y
M=ASTA!
(b)y f=r=2Y2; fwd 2rg =y’ = !
in Eq. (B3) leads to N 2122’
(R T|RY = —6(RS|R") tr[ (AS+AYH"1ASTAY], (B6) 1
_ T _ . ” 2- A —yp? _
which is precisely the expression to be used in the calcula- (c) f= ro 21/2p’ fo dp p re = 23/2y2’

tion of the kinetic energy.

Now, we give some details about the calculation of the 1
potential matrix elements. Let(p,) be the orbital part of (d) f=—e"ro;
Egs.(2.2) or (2.3) wherep,=r;—r; for a pairij of quarks. r
Choosing the appropriate coordinate systemamong Egs.

(3.2—(3.4), any orbital matrix element can be written in the fxdp pZEe—r/rO—ypz

form 0 r
1/2 1/2
(ReF|RY = f op1d%0,0%p5f (py)exp(— pTAp), _ 2 1_( " ) eu(zfgwerfo( L ) }
(B7) 22yl \2roy 2rgy
where Note that formulas of typ€B1), (B6), and(B10) can be
easily obtained for the three-particle case and generalized to
AS'=AS+AL (B8)  n>4 particles, whenever the Hamiltonian contains a pair-

. . , . wise interaction.
In evaluating the integral, the first step is to make a trans-

formation p,p,,p3— p1.p5.p3 SO that APPENDIX C
A X2 X3\ [ py In this Appendix, we give the explicit form of the total
spin S=0, 1 or two wave functions for four-fermion states,

T — ' ' X K 0 !
pAP=(PLp2.p3)| T2 Raz P2 where each fermion has spin=1/2 ands,= +1/2. The no-

X3 0 Agl \ps tation for spinors is
Then, the integrals oves, and p; can be calculated to give 1 0
=1, =1. (CY
o\ 32 0 1
(RIfIRY=| == .
ASIASE (@) S=0 case The two-basis statd#\1,A3,) and|S;,S;4)
of Eq. (3.17) can be defined through their Young tableaux
X f dgplexq_yStpi)f(pl)y (B9) 1] 2 113
Xe=1Ap Ay = 32l X.= 1813530 = 712
where
(C2
wast X2 X5 dent which exhibit their permutation symmetries
Y T s TRt st
2z " (12)[A1A34) = (34 [A1 Az =| A1 Azs), (3
and

(12)[S12S34) = (34)[S15S39) = — [S12534)-

A% A% N . .
Their explicit form in terms of the spinor&1) reads[20]

st__ pAStast__
M 1~ A2 337 Ast Ast '
23 33
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1 where the lower index i ), stands forL=1. For the per-
X+=|A1Azp) = 1—2(2TTll+2llTT—TlTl mutation properties of EqC8), it follows

(12x1=x1, (1x2=x2, (12x3=—Xx3»

Bhx1=—x1, BhDx2=x2, (3Hx3=x3-
C10

For the direct asymptotic channel, it is convenient to use the
basis

—ITTL=THT =T, (C4

1
X-=[812)=5(TLTL+LTIT=TLIT=11T]). (CH

The orthogonal transformations to the other bases are

1
—T(THT—HTT),

1
+_ —
X2 ,—2(X1 X3) >

1
P1aVog=— —=
| 13 24> \/E
V3

1
|P13P2s) = 7| AAz) + §| S12S:34), 1

Xz_ﬁ(Xl_Xs) >

1 1
VisPon) = — — = = ,
(Co) [V13P2a) 2 \/—(TTTl TLTT)

1 3 C11
|V1aVas) = — §|A12A34> +7| S12534), (1
1
and [ViaVog1=— E(X1+X3)
PP = Aod  HSuS) 1
R TR R @ == SO =111 =111,
1 V3 .
IV1aVoz) = — =] A1oAz0) — | S15S34) and for the exchange channel, the basis
2 2 '
1 1
IPiVog=——= x2— =(x1tx3) |==(1111=1111),
(b) S=1, S,=1 case The three independent basis vectors V2 V2 V2

are the three Young-Yamanouchi-type stdi23]

1
—E(TNT—TLTT).
(C12

1 1
IV1aPog)=— —= x2+ —=(x11 x3)
V2 V2
oy = 1 2] 3] =%(3TTN-NTT-TTLT-¢TTT)

1
ViV = )
| 14 23>1 \/f (X1~ X3

b = L;_ 2]4] - L (2101t 411)
€8 =%(TTTl+lTTT—TTlT—TlTT)-
|XA) = L;_ > l 4I —\(1: (NTT “TT) (c) S=2, S,=2 case This is a trivial case, it has a single
basis state
It is useful to transform this basis into X=1111. (C13
The required spin-matrix elements are
X1=|ViPsg)= \[Xl \[XZ ATTL=1111), (xsloroofx ) =(x+loz0ulx ) =1,
(X+lor o3 x ) =(x+| o1 aalx+)
o= [ViVad 1= — \/gxf— \Exg =(X+|02- 03| x 1) = (x| 02 0ufx )= —2
(Xol@1- 02l x2) = (X2l O3 04| x2) =1,
=%(TlTT+lTTT—TTTl—TTlT)7 (X2l 01 03] x2) = {(x2| 1 T4l x2)

:<X2|0'2' 0'3|X2>:<X2|0'2' 0'4|X2>: -

X3:|P12V34>:|XA>:%(TUT_HTT), (9 (o alx =1 fori<i=12,...4
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