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One-loop matching of lattice and continuum heavy-light axial vector currents using NRQCD
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The temporal component of the heavy-light axial vector current is constructed to one-loop order in
perturbation theory and to orderM/ whereM is the heavy quark mass, in terms of operators suitable for use
in lattice simulations oB and D mesons. Thé(a)-improved clover action is used for the massless light
quark, wherea is the lattice spacing, and propagation of the heavy quark is described by a nonrelativistic
lattice action[S0556-282(98)06011-]

PACS numbgs): 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd

. INTRODUCTION (O|A,IPS(P))oco=ifpsPy D)

Studies ofB and D meson decays shed light on many . . .
important aspects of particle physics, such as the extractioWhereAM is the heavy-light axial vector current atﬂs(p))
iIs a pseudoscalar meson state of momenfpunfs will be

of the Cabibbo-Kobayashi-MaskaweCKM) matrix ele- seen, the axial vector current operator can be written as a

ments,CP violation, rare decays, and hints of physics be_sum of operators]ﬂ?|at in the lattice-regulated theory. For

yond the standard model. Such decays involve not only theé : .
electroweak currents, but also strong interaction dynamics ihnstance, one finds that the tempqral compqnﬁm,o, IS a
' sum of three operators which contribute through

the fprm of hadr.onic matrix ellements.' (?alculation of theseO(as,llM,a), wherea, is the QCD coupling:
matrix elements is crucial for high precision tests of the stan-
dard model.

A very promising approach to determining hadronic ma-
trix elements from first principles in QCD is provided by
numerical simulations of hadrons using lattice gauge theory. 2

Studies of leptonic and semi-leptonic decays using lattice
simulations have already been dong using various techniqu%since the role of the dimensionless coefficie@tsis to com-
to handle heavy quarks on the lattice, such as the static apensate for low-energy effects in the current operator from
proach[1], nonrelativistic QCDINRQCD) [2,3], and a refor-  he |oss of short-wavelength QCD modes in the lattice
mulation of conventional Wilson and clover lattice fermionstheory’ one expects that, due to asymptotic freedom, they
[4]. In each approach, the electroweak currents must be cofnay be computed to a good approximation in perturbation
structed in terms of appropriate operators comprised frontheory. They are fixed by requiring that scattering amplitudes
the gluon and quark fields of the lattice theory by calculatinginvolving these current operators agree in continuum and
the renormalization factors which relate the hadronic matrixattice QCD to a given order ing, @, and 1M. In a pertur-
elements in the lattice-regulated theory to those in the modibative determination, a process involving quarks and gluons
fied minimal subtraction NIS) scheme. These factors are as asymptotic states may be used for this matching; one need
crucial for both decay constant and semi-leptonic form factonot consider hadron scatterings which are much more com-
calculations. In this paper, we construct the time componenplicated to evaluate. Note, however, that Becoefficients
of the heavy-light axial vector current in terms of operatorsare independent of the process chosen. A one-loop evalua-
suitable for simulationg5,6] in which the heavy quark is tion of theC; coefficients then involves the following steps:
treated using lattice NRQCD and the light quark propagatesl) select a quark-gluon scattering process induced by the
according to thed(a)-improved clover actiorf7], wherea  heavy-light current and calculate the one-loop amplitude for
is the lattice spacing. The standard Wilson action is used fothis process in continuum QC2) expand the amplitude in
the gluons. This construction is carried out to one-loop ordepowers of 1M; (3) identify operators in the lattice theory
in perturbation theory and to orderM/ whereM is the that reproduce the terms in this expansi¢#); calculate the
mass of the heavy quark. one-loop mixing matrix of these operators in the lattice
The expansion of the heavy-light axial vector current intheory;(5) adjust theC; coefficients to produce a linear com-
terms of appropriate lattice operators is achieved by matchbination of lattice current operators whose one-loop scatter-
ing relevant scattering amplitudes in perturbation theorying amplitude agrees with that from tHdS current to a
Consider the heavy-light pseudoscalar meson decay constagitzen order in 1 anda. Note that the lattice currents are
fps defined in some continuum renormalization schemematched directly to the continuum QCD currents; we do not
such asviS, by, need to use a two-step matching procedure in which the lat-

Ao= X, Cj(as,aM)I¥)+0(a?,a2,1M2 aa/M).
i=0,1,2 '
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tice currents are first matched to those in a continuum heavy- We must also know the relationship between the expan-
guark effective theor{8—11], which are then matched to the sion parameters used in the continuum and lattice perturba-
full QCD currents[12]. tive expressions in order to carry out the operator matching.
This paper is organized as follows. First, in Sec. Il, weFor example, we could usegs in the continuum calcula-
discuss various issues relevant to our matching procedurépns and a couplingy, defined in terms of the momentum-
such as the choice of expansion parameter in the perturbati®pace static quark potentid(q) in the lattice computations.
series, the definition of the heavy quark mass, the regularizaFhe two couplings are related by, = aps+O(a?). Our
tion of infrared divergences, and the selection of a renormalpne loop calculations do not make use of meag) correc-
ization scheme. Next, a scattering process appropriate fqon in the relation between the lattice and continuum expan-
constructing the heavy-light axial vector current in the latticesjon parameters; hence, as long as we use couplings which
tinuum QCD calculations, and the necessary current operahe |attice and continuum couplings. Of course, when nu-
tors in the lattice regularization scheme are identified. Secmerical values for the coefficients;(«s,aM) are needed,
tion 1l describes the mixing matrix calculation in the lattice \we must specify a renormalization scheme dar.
theory. The scattering amplitudes in the continuum and lat- The coefficientsC;(as,aM) depend on the ultraviolet
tice schemes are matched in Sec. IV, and our main resultgegylator but contain no infrared divergences. However, our
the values of the coefficient§; for various heavy quark choice of on-shell mass and wave function renormalization
mass values, are presented. Renormalon ambiguities are dii| lead to infrared divergences at intermediate stages in our
cussed, and subtleties with infrared divergences for Wilsofnatrix element calculations. In order to demonstrate the can-

light quarks are pointed out. cellation of these divergences in t@g coefficients, the same
infrared regulator must be used in the evaluation of both the
Il. CONTINUUM CALCULATION AND contmuulm and Iatt||ce.matr|x elfements. Since trclj(_e triple gluon
OPERATOR IDENTIFICATION vertex plays no role in any of our Feynman diagrams, we

introduce a gluon mass for this purpose.

Our goal here is the expansion of the temporal component Errors in our operator matching are measured in terms of
of the (renormalized axial vector current in terms dbare  powers of the lattice spacing, the QCD couplingag, and
operators suitable for use in lattice simulationsBoaind D the inverse heavy quark massvil/ However, NRQCD is a
mesons. Note that because the axial vector current is partialiyon-renormalizable effective field theory in which the lattice
conserved in QCD, its operator does not actually requirespacing cannot be taken to zero; ratteet,O(1/M) must be
renormalization. This expansion is determined by matchingmposed. Hence, our error determinations must take into ac-
suitable matrix elements evaluated both in continuum QCLtount the fact thagM is of order unity. Since we wish to
and in the lattice theory. Since this expansion is an operatatonstruct a current operator which is correct through
relation, the expansion coefficients are independent of th@(1/M), we must remove alD(a) errors. We also remove
external states of the matrix elements chosen. Of course, thl O(a/M) errors since it is easy and desirable to do so. The
normalizations of the external states used in the continuund(a,1/M,a/M) errors can be eliminated at tree-level in per-
and lattice matrix elements must match in order to exposeurbation theory. The one-loop calculations are then used to
the required operator relation. Since the external states in oyemove theO(aga) and (as/M) errors. The remaining
perturbative calculations are free quark states, this can be(a.a/M) errors are much smaller thad(a) and O(a.a)
done at tree level by matching the normalizations of the conand are expected to be comparablér.a?).
tinuum and lattice Dirac spinor@o the appropriate order in A scattering process which is suitable for our study of the
a). The use ofon-shellwave function renormalization for heavy-light axial vector current is depicted in Fig. 1. In this
both the heavy and light quark fields is then the simplest wayyrocess, an incoming heavy quai(p)) with momentump
to ensure this matching beyond tree level. scatters off a heavy-light curredt, into an outgoing light

I In matchirrl]g the M eXpaTjSIionS ofhheavy-light matrix quark|q(p’)) with momentump’. The axial-vector current
elements in the continuum and lattice theories, it is importan e A i\ ;
to establish the relations between the quark mass .parametq? etrzztggrllf gé\fgg(?f’é(nxg th(é(ﬁ)e}:vz/ﬂzs;)rllnfi;eltrj?xs) _Oz-thh:
(both heavy and lightin each. Equality of the lattice and 5 step in our study is the calculation of the amplitude for
continuum mass parameters can be ensured in perturbatiggg continuum-QCD process to one-loop order in perturba-
theory _using the pole mass definition. The pole mass I%ion theory. Using the on-shell mass and wave function
gauge-invariant and, within the context of perturbation,qn,rmajization scheme in Feynman gauge and expanding in

theory, is a physical observable. Hence, in our calculationsl/M (except for the Dirac spinor of the heavy quarkne
we use the pole mass fof and also for the light quark mass & 4o

m=0. In using the pole mass definition for our quarks, we
compute the continuum and lattice matrix elements using
on-shellguark mass renormalization. Note that since the pole <Q(p’)|Ao|h(p)>Qco=al[u_q(p')afsafouh(p)]
mass is not defined outside of perturbation theory, it is not a
useful quantity for lattice simulations; the bare masg ap-
pearing in the lattice action is much more suitable. Thus,
once we determine the coefficier®(as,aM) in terms of

M, we re-express our results in terms @M, using the
perturbative relation betweedd andM,.

+a,

%u_q(p’)%suh(p)}

+ag

p-p —
mZ YalP )7’570uh(p)}
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three diagrams which contribute to this amplitude at one-
loop order are shown in Fig. 1.

In lattice NRQCD, the heavy quark is described in terms
of a two-componentin spin spacgfield #(x). The Dirac

(a) fie[d h(x) is related toy (and the antiquark fields) by a
unitary Foldy-Wouthuysen transformati¢h3],
#(X)
-1z
h(x)=Uqy w(x)). 5
(b) This transformation decouples the upper and lower compo-

nents of the Dirac field, thereby separating the quark field
from the antiquark field. To facilitate the identification of
lattice NRQCD operators capable of matching E8), we
similarly transform the external state spingy(p) (with nor-
malizationuu,=1) into a nonrelativistic Pauli spinor:

(c)

Ug(p) +O(1M?), (6)

1 .
uh(p>=[1—mw~p>

FIG. 1. Feynman diagrams in continuum and lattice perturbation
theory which contribute at one-loop order to the annihilation by thewhere
axial current(cross inside a circleof an incoming heavy quark

(double solid ling and the creation of an outgoing light quark Ug(p) = Ug @
(single solid ling. The exchange of a gluon is denoted by a curly QlP)= o)
line.

andUg is a two-component external state spinor depending

!

Py — . only on the spin of the heavy quark. Using E), the rela-
tay o Uq(p')75uh(p)} tion &@Q(p):uqip), and the Dirac equation for the light
) quarkug(p")po=uq(P") ¥-P’ ¥0. EQ.(3) may be written
tag Db PO b 5eu (p)} A ~ A
° MZ2 M 9 > (a(p")|Aolh(p))gcp= 76Q0+ 7701+ 750,
+0(1M?), 3) +0(a?,1M?), (®)
with wherel'=y5y,, and
ag[_ M 11 Qo= (p’
=14+ —S R — 0 p)ug(p), 9
a, 1+3W3In)\ 4}, q
A — 7P
_ ag le_uq(p )FWUQ(p)v (10)
ao 52,
@ M 8rM 1 a,= u_(p’)—a"p,ru (p) (11)
- Sl 2TV 27 T 7V
a3=3_ 6In)\ 3 )\+2}, 4
The coefficients in Eq8) may be written
_ % 2] M ~
M3z "N T2) 7o=(ar+a,)=1+ag,,
M A=(a;—a,)=1+aB;, 12
a5_3a_5_4|nx+5’ 71=(a1—ap) sP1 (12

n5=2(az+a,+as) = asBy,

where u,(p) and uy(p’) are the standard spinors for the
heavy and light quarks, respectively, which satisfy the Diraovhere
equation. The light quark mass is set equal to zero. Our con-

ventions for the Diracy-matrices in Minkowski space are Bo= i 3n M_ ﬂ

given in the Appendix. Ultraviolet divergences are regulated 3 N4

using dimensional regularization and fully anti-commuting

3/5 matrices are used. As previously mentioned, we use a B — 1 3] M _ 19
i i I l_ a n N _ 1

gluon mass\ in order to regulate infrared divergences. The 37 N 4

(13
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_ 1 167 M that these lattice operators are defined in Euclidean space;
2= |t | our Euclidean space conventions are outlined in the Appen-
Bo=3—|12= 3+ Euclid t tlined in the A
dix.
Having obtained the M expansion of the above scatter-

ing amplitude in continuum QCD, the next step is to identify lll. LATTICE CALCULATION

operators in the lattice theory which can reproduce the terms ) . ) L

in this expansion. An inspection of E¢8) suggests imme- In this section, we describe the one-loop calculation in the

diately that matrix elements of the following three lattice atticé theory of the mixing matrix;; defined by
operators should be considered:
— (P)IWad (P = 2 Z3j
Jg??at(X)ZQ(X)FQ(X), (14) (a(p | A,Iat| P))tat : ijR2j
1 +0(a2,1M2,a2 aalM),
(1) -~y .
‘]A,Iat(x)_ 2M0 Q(X)F'}’ VQ(X)! (22)
(15
where (); are the Euclidean-space counterparts of fhje
defined in Eqgs(9)—(11). First, the lattice actions used in
these calculations are specified. The necessary Feynman dia-
(16) grams are then presented, and their evaluation in lattice per-

turbation theory is outlined.

whereq(x) is now the light quark field in the lattice theory,  For the heavy quark, we use the following NRQCD action
My is the bare heavy quark mass, &Qx) is related to the  density[2]:

heavy quark field/(x) in lattice NRQCD by

2 e L e
Ria0)= 337 A0 7-9TQ0),

alyroco= ¥ (X) ()
(¥
Qx)=| " ) 17) asH aHo|"U%(x)
—¢(x+ay| 1~ 2 -~ 2n u

We use the bare quark masé, in the above definitions 0
since it is the natural mass to use in lattice simulations and aHg\" adH
because the pole mabs is not well defined beyond pertur- X ( 1- ﬁ) 1- o P(x), (23
bation theory. The covariant finite difference operatgrs
and ﬁ# are defined as usual in terms of the link variableswhere
U, (x) which are the parallel transport operators from skes
to neighboring sitex+a,, in the gauge field. The definitions A2
of these operators are given below, along with other deriva- Ho=— oM. (29)
tive operators which will be needed later: 0

_ 1 t SH=—Co=o B (25)
aVMO(x)—Z—UO[UM(X)O(x+aM)—Uﬂ(x—aM)O(x—aﬂ)], BOM, .

(18)
The positive integen is introduced to stabilize the highest
- 1 t momentum modes in the heavy quark propagafr the
O(xav, =5 -[0(x+a,)U,(x)-O(x-a,)U,(x=a,)],  condition, n>3/aM,, has proven to be a reliable guide.
0 (19) Note that the above NRQCD action does not include the
heavy quark mass term. The QCD coupling related toeg

3 in the usual mannerys=g?/ (4=), and o; are the standard
a’A?0O(x)= E (ugl[Uk(x)O(er a) Pauli spin matrices. At tree levatg=1; the one-loop con-
k=1 tribution to cg is an O(ag) effect in our mixing matrix cal-
+Ul(x—ak)0(x—ak)]—20(x)), (20) culz_:ltion anq hence can be ignolred here. The chromomag-
netic field is given byB;(x) = — 3 €jimFim(Xx), where the
3 Hermitian and traceless field strength tenggy,(x) is de-
a2v@0o(x) = 20 (ugl[UM(x)O(xﬁLa#) Ilonriq at the sites of the lattice in terms of clover-leaf opera-
n= .
N
+ UM(x—aM)O(x—aM)] —20(x)), 1
(21) F,U,V(X):f;u}(x)_ § Trfp,v(x)v

whereO(x) is an operator defined at lattice skewith ap- i
propriate color structure, angj, is the mean link parameter Fu(X)= 7 (Qw(x)_ﬂlv(x))!

introduced by the tadpole improvement procedus. Note 26)
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%@ N
/Aéi\ %
FIG. 3. Additional external leg correction diagrams which con-
tribute inlattice perturbation theory to the same process as in Fig. 1.

anduy=1- au{’+0(a?), then Fourier transforming into
momentum spaces ,(X) is the lattice gluon field defined at
the midpoints of the links connecting neighboring sites.

We calculate the amplitudes corresponding to the Feyn-
man diagrams of Figs. 1-3 in two very different ways and
verify that the results agree. In the first method, all spin
matrix manipulations and derivatives with respect to external
momenta are done by hand. The resulting integrals are also
simplified by hand, including the subtraction of terms to re-
move infrared divergences. The remaining infrared-finite in-

FIG. 2. Additional vertex correction diagrams which contribute
in lattice perturbation theory to the same process as in Fig. 1.

1
Q,,(x)= > U (0Ug(x+a,)

4u0 (@B}, tegrals are then done numerically using Monte Carlo and
g adaptive Gaussian quadrature techniques.
XU_(X+a,tagU_g(x+ap), In the second method, nearly all aspects of the calculation

are automated. First, the propagators and vertex functions are
with {(@,B)},,={(x,v),(v,— ), (=, = v),(— v,u)} for expressed as functions iot++ whose arguments are the
u# . appropriate four momenta |m_plement_ed using a cla:ss_m-
For the light quarks, we use the clover actja, VEC. Spin algebra is accomplished using explicit matrix rep-
resentations; this is done by defining new class structures in
C++, such asrAuLl andDIRAC, and overloading all of the
a ﬁngm:q_Vq—aL q_V(z)q +m0aq necessary arithmetic operators for ease of use. Derivative_:s
2 with respect to external momenta are taken using automatic
differentiation [15]. This is implemented by defining in
—igai > q_%v':uqu (27  Ct+ aclassTcompLEX which carries out the multivariate
Taylor series expansions. A variable of typeOMPLEX is
treated by the end user just as if it were a regular complex
whereV=3,y,V,, m, is the bare light quark mass;,, scalar vari_able sincg all appropriate arithmetic operators and
=1[y..y,], and we set the Wilson parameter 1. The mathemancal funcuons are overloaded. _preverr,ce)M-_
one- Ioﬂop correction to the clover coefficient is &{a?) PLEX variable IS actua_llly an array containing the funcﬂqn
effect in our matching calculation and can be neglect;d value and all qf Its derivatives up to some prder; an indexing
Lattice perturbation theory calculations are much mor memb_er function I used to return a specific term in the_Tay-
laborious than those in continuum perturbation theory. No or series expansion. All derivatives are taken automatically

only do more diagrams contribute to a given process, but thgsmg analytical techniques; the end user never needs to write
complicated functional forms of the propagators and vertefugr?u“nbes fotr talkm?l these dter|vat|\|/es e+ funcii
functions(presented in the Appendixiecessitate the use of € above 1o0ls allow one to easily wr unctions

numerical methods in evaluating the integrals over interna® compute the integrands for all of our one-loop Feynman
iagrams. The integrals corresponding to the graphs in Figs.

loop momenta. For the scattering process considered herg, 43 i luated Monte Carlo tech
there are five additional one-loop Feynman diagrams in th an are easlly evaluate _usmg onte L.ario tec n.|ques
e use the integration routineeGAs [16]. Note that, in

lattice theory: three are vertex corrections, shown in Fig. 2I p ‘urbation th hint [ Ki
and two are extra external leg corrections, shown in Fig. 3. Itcetpzr t'r t?1 |orf1 tegryli eachin erna<ookp Zomel_r: -
The Feynman rules are determined by expanding the totéFS ricted to the first Brillouin zone-7<a T HOwW-
ver, due to infrared divergences, the other integrals cannot

lattice action in terms og using be directly calculated. We evaluate these integrals in a se-
gquence of steps. First, we subtract from the lattice integrand
la(K), wherek is the loop momentum, the analogous inte-
grand from the continuum theory.,(k). The integral of

L

: (28)

Uﬂ(x)zex;{iagGﬂ X+
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this difference over the first Brillouin zone is infrared finite IV. RESULTS
and can be evaluated using the Monte Carlo method. We To complete the aperator matching, we transform @

then multiply the continuum integrand by a factik) to . . .
render the integral insensitive to the shape of the first BriI-from Minkowski to Euclidean space, use E@2) and(29),

louin zone. This factor must also be chosen such that thg.]elr('j p?‘el fof|1|‘ th_e dependencel on the external states. This
integral of[1—f(k)]l (k) is infrared finite. For example, ylelds the following operator relation:
f(k) =exp(—pk?) wherep=7/2 is often a good choice. We
then use the Monte Carlo method to evaluate the integral of A =
[1—1f(k)]lcon(K). The infrared divergence has then been iso-
lated in the integral of (k)| .,(k). Sincef(k) is chosen to
remove any appreciable sensitivity of the integral to the edge ~Too—L10
of the Brillouin zone, we can change to hyperspherical coor-
dinates and integrate over the interior of an infinitely large
sphere to a good approximation. This simplifies the calcula- ~Cn—Zo—n )Jg%fat+ adBo—Too— 12192
tion and allows us to easily identify and analytically manipu-
late the infrared divergent pieces of the integrand. +0(a?,a2,1M2, aga/M). (32)

Using these two methods, we obtain results for the mixing
matrix Z;; in Eq. (22), again using the on-shell renormaliza- aq expected, we find that the infrared divergences from the
tion scheme in Feynman gauge. Note that the nonrelativistiGarioys terms in the expansion coefficients cancel. We now
external-state spinorsg(p) are identical in the lattice and pave the desired expansion coefficie@jeof Eq. (2) in terms
continuum theories. For the clover action, the external light- e pole mas#/. As previously mentioned, the bare mass
quark spinorsiq(p’) differ only atO(a®). At one-loop, the M, is a much more convenient mass parameter. Our results
mixing matrix elements may be written are easily expressed in termsaifl, using Eq.(30), which,

in this case, simply amounts to replacitg by M:

-~ 1
1+as BO_E(CQ+CQ)

© 5_1& €
JA,Iat+ l+as Bl_E(Cq+CQ)

1. —~ ~
Zij=5ij+as _(Cq+CQ)5ij+Cm5i15jl+ glj y (29)

2 1 Tl
AOZ 1+as BO_E(CQ+CQ +CQ)

whereC, and C,, are the contributions from the light- and L
heavy—quark exte_rna_l leg correctloﬁthat is, from wav? — 7 )JﬂatJr 1+adB— z(CqﬂLCg'Jqu)
function renormalization factoysand ¢;; denote the contri-
butions from the vertex corrections. Our use of an on-shell
renormalization scheme with lattice operators defined in —Cp—Ch— 71— 71 | | It ad Bo— 713%)
terms of the bare madd is responsible for the term pro-
portional toC,,, where +0(a?,a%,1M?,aa/M), (33

M=[1+aC]Mo+O( ag)_ (300  whereBy=In(aMg)/m—1/(4m), B1=In(@M)/m—19/(12m),

Bo=4/m, 79="{o0t {100 T1="{0o1t {11, and 1=t {1.

Note that although the current operato}%’)m are defineq The factors arising from tadpole improvement counterterms

usingMy, the pole mas#/ must appear if); . The factors are given by
in Eqg. (29 may be further decomposed: T )
Cil=-ul
q 0 >
C4=Cyt ol ax+CJ 3
a=“~aT 3 a’ cll= — @[ 11—
m 0 2naM,)/’
~ 4 (34
CQ:CQ— —1In an,
37 (31) TII:uE)Z).
= _ Tl L )
Cn=Cnt+Cp, For the usual plaquette definitiam=(3 Tr U)¥* in the
Wilson gluonic action, u{?)= /3. For massless clover
Zijzgij‘Fg?}I"’d?, quarks,Cq=1.030. Results fory, 71, 75, Cq andCy, for
various values oM are listed in Table I.
dent of the tadpole improvement factag, andZ;; and —2aMy{4isc asMq becomes large, whe;s. is found nu-

contain the infrared divergences and tadpole improvemerfierically to befgisc=1.0Q1). This fa_lctc;riscc:)an bt?o\)/iewed as
contributions, respectively, from the vertex corrections. Con&fising from a discretization COVrECt'QTi\,lat 10 Jp fat-
tributions toC, andC,, from the tadpole improvement coun- _

q m (disc) _

terterms are denoted ;' andC}, respectively. I =aq(x)y-VIQ(x), (35)



analogous to thed(a) correctionad
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TABLE I. Values of the coefficientsy, 7,, 7., Cq, andC,, appearing in Eq(33) for various values of
the bare heavy-quark maadM, and NRQCD stability parameter. Uncertainties in the determinations of
these parameters due to the use of Monte Carlo integration are included.

aMg n To T T CQ Cn
10.0 1 0.82311) —1.242(4) —14.74(2) 0.271®8) 0.8728)
7.0 1 0.79201) —1.266(1) —8.82(2) 0.1841®) 0.8626)
4.0 1 0.72901) —1.283(2) —3.202(8) —0.0287(6) 0.88®)
4.0 2 0.73971) —1.298(2) —3.476(8) —0.0030(6) 1.08(®)
3.5 2 0.72301) —1.307(2) —2.618(8) —0.0651(6) 1.12(®)
3.0 2 0.70521) —1.315(2) —1.790(8) —0.1463(6) 1.14(®)
2.7 2 0.69281) —1.324(2) —1.314(4) —0.2077(6) 1.17®)
25 2 0.68291) —1.332(2) —1.010(4) —0.2562(6) 1.19%)
2.0 2 0.65761) —1.352(1) —0.304(3) —0.4156(6) 1.238))
1.7 2 0.64221) —-1.371(2) 0.08(13) —0.5503(8) 1.27@)
1.6 2 0.63771) —1.377(1) 0.20R3) —0.6038(8) 1.29%®)
1.2 3 0.63071) —1.424(1) 0.53@) —0.868(1) 1.55%)
1.0 4 0.63681) —1.457(1) 0.68®) —1.074(1) 1.73®)
0.8 5 0.66171) —1.502(1) 0.8181) —1.394(1) 1.93%)

"

P, where P is the

+ag(p— gA)Jfl-\z,?at

pseudoscalar density, to the axial current in light-light quark

systemg17]. We can then define amprovedcurrent opera-

tor

0)imp_ 1(0 di
Jntat = Inatt Cadliiat

where we write

CA: qg

1+

9
2aMg

(36)

37

This decomposition is not unique, and hence, we leayvas

a free parameter. Different choices §f lead to different

O(aﬁ) contributions being included in E¢33). Taking this
into consideration, Eq33) can be written

Ao=(1+ aspo)d

TABLE Il. Values for the coefficientg,, p;, andp, appearing

(0)imp
A, lat

+(1+ aspl)‘],(Al,I)at

in Eq. (38).

aMg n Po P1 P2

10.0 1 —0.2972(4) 0.31®) —3.982(24)
70 1 —0.3368(3) 0.2166) —3.902(16)
40 1 —0.3443(3) —0.032(6) —3.525(8)
40 2 —0.3679(3) —0.038(6) —3.251(8)
35 2 —0.36353) —0.102(6) —3.109(8)
3.0 2 —0.3533(3) —0.161(6) —2.937(8)
2.7 2 —0.3433(3) —0.214(6) —2.813(4)
2.5 2 —0.3341(3) —0.253(6) —2.717(4)
2.0 2 —0.3002(3) —0.343(4) —2.423(3)
1.7 2 —0.2691(4) —0.420(4) —2.208(3)
1.6 2  —0.2571(4) —0.451(6) —2.128(3)
1.2 3 —0.2096(6) —0.572(6) —1.664(2)
1.0 4  —0.1703(7) —0.627(6) —1.410(2)
0.8 5 —0.1069(7) —0.694(6) —1.144(1)

+0(a?,a%,1M?,aalM), (38

so that theC; coefficients of Eq.(2) become Cy=1
+agpg, C1=1+ a1, andC,= a(po— ). This equation
is our final result. Note that d@(as), the {5 dependence in
JQUEMP cancels that inC,J$),,. Numerical results fopy,
p1, andp, are given in Table II.

In Ref. [6], B meson decay constants were computed in
simulations in which the heavy quark propagation was de-
scribed by an NRQCD action different from E{3); in
particular, higher order corrections were included. The val-
ues ofpg, p1, andp, for the action used in these simulations
are given in Table lIl.

In order to use Eq(38) in a simulation, a value forg
must be specified. To do this, one must first choose a renor-
malization scheme fogtg; in the case of a running coupling,

a means of setting the scale must then be devised; lastly, the
value of the coupling at some reference scale must be deter-
mined. A couplingay(g*) defined in terms of the short-
distance static potential with a scale-setting prescription
based on the mean value theorem is advocated in[R&.

the value ofay(3.402A) can be obtained from measure-
ments of the average plaquette. Unfortunately, we have not
computed they* scales for thepy, p;, andp, coefficients.
However, based on findings in Ref8] and[18], we expect

TABLE lll. Values for the coefficientp, p;, andp, using the
NRQCD action of Ref[6].

aMg n Po P1 P2

100 1 —0.2772(4) 0.481) —4.70(3)
7.0 1 —0.3174(4) 0.32¢7) —4.38(2)
40 1 —0.3372(3) 0.1400)  —3.643(8)
27 2 —0.3375(4) 0.02@)  —2.859(4)
20 2 -0.3145(4) —0.037(4) —2.339(4)
1.6 2 —0.2844(4) —0.054(4) —1.986(3)
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thatg* ~2/a. An alternative choice for the expansion param-power divergences arise when the limit- 0 is attempted in
eter is a non-running boosted coupling=6/(47Bug); the  a brute-force manner. The role of the power-law terms in the
value of this coupling is typically comparable tg(w/a).  C; coefficients is to cancel unphysical power-divergent con-
For the range oM, values considered here, our resultstributions in the lattice NRQCD current matrix elements,

show no evidence that perturbation theory is failing. Fromthereby ensuring the correct matching to full continuum
Tables Il and lll, one sees that the one-loop correctiorBgto QCD through the relevant order i, and 1M. If the un-

are very small. Values fop, are typically near—0.3 for all ~ Physical terms behaving ag,/(aM)" in the C; coefficients
aM, considered; multiplying byas~0.2 yields one-loop and the current matrix elements become comparable to or
corrections toC, which are approximately 5% of the tree- larger than the physical terms Qf(Aqcp/M), this cancel-
level contribution. For the large range aM, values stud- lation becomes a very delicate issue and the need for non-
ied, p, varies between-0.7 and 0.5; hence, one-loop cor- Perturbative subtraction methods may arise. Such is the case

rections to C, are never larger than about 15%. The in the static-quark expansion; taking the brute-force lienit
magnitudes of the values far, are significantly larger than — 0 obscures the physically relevant contributions by ampli-
those forpy andp;. If we set{,=0, thenC,=as andC, fymg_the_power-dlvergent unph_y3|cal terms. Here, t_hls prob-
= aep, Which, usingas~0.2, varies between 0.2 and 0.9 for lem is circumvented by keeping the lattice spacing large
the range oM values studied here. Sin@ has no tree- €nough that 14M) never becomes large. The success of
level contribution, at least a two-loop result is needed tdow-order perturbation theory in cancelling the unphysical
check the convergence of its perturbative expansion. terms depends, of course, on the relative size of the physical
As in all applications of perturbative QCD, nonperturba- co_ntr|but|ons. Recent numerical S|mu_lat|qh“s2_0] find no
tive contributions toC; are possible. For example, the per- ewdgnce of large power-law contamination in t.he current
turbative expansions of thg; coefficients contain renorma- Matrix elements for the range aiM, appropriate for
lon ambiguities arising from a slight mismatch between theP-quark physics, suggesting that power-divergent nonpertur-
infrared physics of the lattice theory and that of continuumPative and higher-order perturbative contributions to the
QCD. This mismatch is caused by discretization artifacts andhatching coefficients are also not large. This finding applies
the truncation of the M expansion. In our calculation, con- 0 the temporal component of the heavy-light axial vector
tributions coming from momenta small relative to a given current. For other operators, the situation could be different
infrared scaleqy<1/a,M are all suppressed bw2q2 or ~ @nd each case must be examined separately.
g5/M? since the infrared structure of our lattice theory is The results in Table Il are suitable for values ai,
designed to agree with continuum QCD throu@kta, 1/M). approprlate for current simulations of hegvy-llght systems
This infrared suppression is not true diagram—by-diagrarr’rJSIng NRQCD. Hovyevgr, terms proportional to dMo)
(some diagrams are even infrared divergentt the infrared  cauSe th@(es) contributions toC, andC, to become large

conbution s suppressed af or M= when il disgrams. C0he BRI BOR, e B G
are summed. For example, in some analysEd, coeffi- group p p

cients likeC, are separated into the contributiopfrom the one_-lo_op perturbation theory._ Since the Ie_ft-hand side of Eq.
. ) o e ) (2) is independent of the lattice spacing, it follows that, ne-
leading operatothereJ,’j,) and contributionsc, from mix-

. ) : : 1 ) glectingO(a?) terms,
ings with higher-dimension operatogisere J},, and JZ),,).

In our analysis, such a separation is artificial and would be a

mistake since it induce®(a,1/M) ambiguities in the sepa- a da

rate piecex, and c,. These ambiguities cancel when the

pieces are 2rezcombiznedé leaving contributions Gg SUp-  Using Eq.(22) and dQ;/da=0, a renormalization group
pressed bya"qp or q/M*®. Thus, any renormalon ambigu- eguation for theC; coefficients, collected into a vect@,

ities are suppressed by the Same factors_s and are at_ WOISin be obtained which describes the change&jnas the
comparable to the other truncation errors in the analysis. lattice spacing is varied:

Our calculation differs from conventional lattice calcula-
tions in that thea® truncation errors, perturbative and non-
perturbative, cannot be made arbitrarily small by reducing
the lattice spacing?2]. This is because NRQCD has non-
renormalizable interactions whose couplings do not vanish as i i .
a—0. The perturbative expansions f@; have power-law where the anomalous dimension matrix is given by
terms of the formag/(aM)" which ruin the convergence of
perturbat_|on th_eory ifa is ta_ken to zero. In practice, this 'Yij(a:yaMO):E
problem is avoided by ensuring that 4N1) is not large. Our K
inability to takea—0 in NRQCD fundamentally limits the
precision of ourO(a,1/M) accurate formalism. If improved In the limit of large aM,, we find y=diag(—as/m,
precision is needed, we must reduce the truncation errors by as/7,— as/7) and Eq.(40) can be easily solved. First,
using more accurate discretizations of the lattice currents aneixpress theC; coefficients as a function aks(a) andaM
action. In this way truncation errors, renormalon ambiguitiesjnstead ofag(a) andaMg(a) sinceM is fixed and does not
etc. are pushed off t®(a®,1/M?) or higher. run witha. If the lattice theory is renormalized in such a way

This approach differs dramatically from that used in thethat the renormalization group g-function Brg=
static-quark expansion; in the latter approach, problems with- adag(a™*)/da is independent oM, andm,, then

=0. (39)

% Ci( @s,aMo) (I

_ | —
ag-+7"|C=0, (40)

d -1
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Brol s) = —2Boas—2B1a3+0(ad), (42) Ag=Cod P+ C 1t oIl

where Bo=(11-2N,)/(4w) and B,=(102—2N;)/ +0(a3,a%1M? asalM), (47)
(1672), for N light quark flavors. For large, fixe, Eq.
(40) then tells us that the change@y andC; in going from
an initial lattice spacing, to a smaller lattice spacina, is
given, in leading logarithmic approximation, by

where the lattice operators are defined in Edsl), (15),
(16), and (36), and Cy=1+aspy, Ci=1l+asyppi, C,
=ag(pr—¢p) andCpa= a1+ {a/(2aMg)]. Values forpg,
p1, andp, are listed in Table Il for various bare heavy quark
1(2Bgm) masses{, remains as a free parameter; different choices for
, (43)  the value of¢, lead to differentO(a?) contributions being
included in Eq(47). The one-loop corrections f@, andC;
were shown to be small relative to the tree-level contribu-
tions for the range o&M, studied; no evidence of a break-
down in perturbation theory was found. Sin€s has no
B -1 tree-level contribution, at least a two-loop calculation would
Bo In(u?IA?)+ Lin In(,uzlAz)} . (44  be needed to check the behavior of its perturbative expan-
Bo sion. Renormalon ambiguities were argued to be at worst of
, the same order as our other systematic errors.
Let a,M =aM, anda;M =aMy,, then Our results have already been usedBirmeson simula-
tions[5] measuringfg. More recentlyB meson decay con-
+0(a?) stants were computeld] in simulations using an NRQCD
s action with higher-order interactions not included in Eq.
(23); the values opg, p1, andp, for the action used in these
+0(a?) simulations are given in Table IIl. In the future, we plan to
s apply the methods described in this paper to the expansion of
other currents, such as the vector current, in terms of appro-
_ as(Mo) +0(a?) (45) priate lattice operators.
as(Mg) o

as(1/ay)
as( 1/a.l)

Ci(a;M)
Ci(aiM)

for i=0,1, whereagy(u) is the familiar QCD running cou-
pling; its two-loop form is

ag(p)=

ay(1/a,) :

as( 1/a1)

1
=1- In| =
asfo ag

2

=1-a,ByIn —20
siP0 M(l)
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dence ofy;; onaM, cannot be neglected and E¢6) must
be suitably modified. APPENDIX: FEYNMAN RULES
As an aside, we mention the following fact. If one wishes . ) , )
to use the Wilson action instead of the clover action for the "€ NRQCD and light quark actions are given in Egs.

light quark, one cannot include the discretization correctiod 23 @nd(27) in Sec. Ill. The Feynman rules of perturbation
(disc) (disc) theory can be derived from these actions using, for instance,

termJy |5 - If one includesl, 5 while using Wilson light
guarks, one finds an uncancelled logarithmic infrared diver:[he met_hods of Rgi[Zl]: Most of the rules_rele\_/ant for th?
alculations of this article are collected in this Appendix.

gence upon attempting to match the continuum and latticg,” = . . ;
Various conventions used in our computations are also out-

scattering amplitudes. This divergence is removed by inC|UdIined To simplify notation, we set the lattice spachg 1 in
ing contributions from theO(a)-correction term in the clo- this Appendb[() ’ pacerg

ver action. Minkowski-space quantities are indicated either by a

caret, such as, or by a subscript or superscriptl(), such

asx]('\") . The metric tensor in Minkowski space is taken to be
In this paper, the temporal component of the heavy-lighig,,=diag(1-1,—1,—1) and the Dirac matrices satisfy

axial vector currentA,, was expanded in terms of lattice {3’#'&»}:29#»- We use the Dirac-Pauli representation:

operators suitable for use in simulationsBandD mesons.

The expansion was carried out @(1/M) by matching rel- ~o_~ I 0

evant scattering amplitudes to one-loop order in perturbation Y =0~ 1)’

theory. The(masslesslight quark was described in the lat-

tice theory using theD(a)-improved clover action of Eq. n - 0 o

(27), and the NRQCD action of E¢23) was used to treat the Y=-v= —o. 0/

heavy quark. The standard Wilson action was used for the J

lattice gluons. The expansion of the heavy-light current wasvhereo; are the standard Pauli spin matrices. Also, we de-

found to be fine y5=iy°y'*%°.

V. SUMMARY
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Euclidean-space four-vectors are defined in terms ofor u=j from the o B term, the vertex factor is given by

Minkowski-space four-vectors usingozx":ix?M) and x;

=xI=xly,=—x), for j=1,2,3. For the derivative opera- 1 o .

tor, do=3d°=—id§" and 9;=d'= g™ =—4gl, . Note that 9% am (YsYov) €sj sin(k’ —k)s cog 7 (k' —k);]

the gauge fieIon‘M)=(¢(M)_,é(M)) Wick-rotates into Eu- s -

clidean space as a covariant vector, as does the gauge- <[& "oF<"(k’)+e "oF="(k)].

covariant derivativé(y, . The Euclidean-space Dirac matri-

ces satisfy {VM,YV}=25,W and are related to their '_I'he_single-gluon vertex factor for the light quaidover

Minkowski-space counterparts by,=1y°=+°, ;== action is

—iy=iy, and ys=y%17:73=7. Also, o,
E%[yy,yﬂ]. To be consistent with our conventions for —g| iy, cO§i(K' +K),J+r siMi(k'+k),]
Euclidean-spacey matrices, we define Euclidean-space a a a

quark-bilinear axial and vector currents By=A{", Al= .

—iAly . Vo=V§", andV/=—iV{y, . The chromoelectric +3 > o, sink’ —k), cog 3k’ —k) ]},
and chromomagnetic fields are defined in terms of the field v

strength tensor byE;=Fq;=—iF{"=iE™ and B;=

—%8|ij|m: —%8|ij|(¥):BJ(M), whereg;, is the fully an- fpr all gluon polarizationsu, wherek’(k) is the outgoing
tisymmetric Levi-Civita tensor and the field strength tensor(incoming momentum of the light quark. _ _
is given on the lattice by Eq26). Next, the vertex factors associated with the interaction of
The heavy quark propagator is diagonal in both spin andWo gluons with a heavy-quark line are given. lkétbe the
color, and is given in momentum space by outgoing heavy-quark momenturk,be the incoming quark
momentum, andj;,q, be the outgoing momenta of the emit-
GQ(k):(l_e*ikoFZrl(k))fl, ted gluons having polarization indices, ,u,, respectively.

Only the factors foru,=pu, (and q,+qg,=0) are given,

1 3 which is all that is required for the one-loop tadpole graphs.
Flk=1-—4 Zl sir(zkj). The color factor for these cases B[ ),., Wherea,a’ are
= the color indices of the gluons, ard and c are the color

indices of the outgoing and incoming quarks, respectively.

The light quark propagator is diagonal in color:
gnt g propag g For u;=u,=0, the vertex factor is

-1

2
_ % efi(k’+k)0/2|:n(kr)|:n(k)_

'éq(k)=(i2 y, sink,+2r>, sirf(3k,)+m
® ®

In this paper, we work only with then=0 andr=1 case.

The gluon propagator is diagonal both in color and the Loror 4, = u,=j, the vertex factor from thp%2M term in the
entz indices, and is given in Feynman gauge by NRQCD action is

-1

ae(k):(4% Sir(3k,,) +)2 g?[e " oF" (k') +e RN (k)]

We now list the vertex factors associated with the inter- X ﬁ cos[3(k’ + K)j1Sn(k’,K)
action of a single gluon with a heavy-quark line. Llétbe
the outgoing heavy-quark momentur, be the incoming 1
quark momentum, ang. be the polarization index of the + (2nM)2 sin[3(k’ +k—qy);]
emitted gluon. These vertex factors all have a color factor of
Ti., Wherea is the color index of the gluon, arilandc are -
the color indices of the outgoing and incoming quarks, re- Xsin[ z (K" +k+0q1);1Sg,n(k" k" +0y,k)
spectively. Foru =0, the vertex factor is

1 L
—ige 1K' +kol2En | EN(K'). +92W sin(z(k" +k—az)j]siM 3 (k' +k+qy);]
For u=j=1,2,3, the vertex factor from the?/2M term is X Sy(K’ ,k—0,)Sn(k’ +qy,k)e ™K *avo,
—gL sin 3 (k' +k);1[e”*oF"(k’) where
2nM 2 J

n—-2

~ikoEN(k k', k),
+e "OF(k)] Sy(k' k) ngn("""*ql"‘):';o F'(k")S,__1(k' +qq,k).

n—-1

sn(k',k>=|20 Fl(k")F"'~1(k).

The vertex factor fofw,= u,=j from the o- B termis
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1 . i .
o* Gz 2, € TR (K ) Il O == 537 2 Si3(K +k+exdf 1Ty,
rs,r’,s’ J

X(¥sYoY ) (¥Y5Y0Yr') €rsj€rrsri
X sin(k’ —k+0,)s ik’ —k+0;)

X cog 7 (k' —k+dz);lcog 3 (k' —k+ay);]

+terms that vanish forgq;+q,=0

i .
[l ™=~ 535 2 SiZ(K k= dexd; J(%T).
For one gluon emissiof.=j, color factorT§,):

J(l at](l)__gz_ Coﬁ: k,+k+qext) ] I‘I’yl

[
IV =—g=— cod 3(K' +K— eyl ().
The heavy-light currents;lA lat» are not part of the action [IAtal 92m 12l Gexil(7iT)

and we list their Feynman rules separately. Againkleand For two gluon
k be the outgoing and incoming quark momenta, respec_( aTa) ):
tively, and letq; and u; denote the momenta and polariza- bel:
tions, respectively, of the emitted gluons. Also, tgt; be
the momentum carried off by the external heavy-light cur-
rent, wherek=k’ +3,g; + Qey;. We use the notatiopO]™

to indicate the vertex factor fan-gluon emission from op-
eratorO. At tree level,

emission (u;=u,=]j, color factor

[I5a @ =02 —sm[ (K" + K+ Gy 1(T,),

[IRd ® =07 gy7 SN 3 (K’ k= Gexd (¥, T).
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