
PHYSICAL REVIEW D 1 JUNE 1998VOLUME 57, NUMBER 11
One-loop matching of lattice and continuum heavy-light axial vector currents using NRQCD
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The temporal component of the heavy-light axial vector current is constructed to one-loop order in
perturbation theory and to order 1/M , whereM is the heavy quark mass, in terms of operators suitable for use
in lattice simulations ofB and D mesons. TheO(a)-improved clover action is used for the massless light
quark, wherea is the lattice spacing, and propagation of the heavy quark is described by a nonrelativistic
lattice action.@S0556-2821~98!06011-1#

PACS number~s!: 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd
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I. INTRODUCTION

Studies ofB and D meson decays shed light on man
important aspects of particle physics, such as the extrac
of the Cabibbo-Kobayashi-Maskawa~CKM! matrix ele-
ments,CP violation, rare decays, and hints of physics b
yond the standard model. Such decays involve not only
electroweak currents, but also strong interaction dynamic
the form of hadronic matrix elements. Calculation of the
matrix elements is crucial for high precision tests of the st
dard model.

A very promising approach to determining hadronic m
trix elements from first principles in QCD is provided b
numerical simulations of hadrons using lattice gauge the
Studies of leptonic and semi-leptonic decays using lat
simulations have already been done using various techni
to handle heavy quarks on the lattice, such as the static
proach@1#, nonrelativistic QCD~NRQCD! @2,3#, and a refor-
mulation of conventional Wilson and clover lattice fermio
@4#. In each approach, the electroweak currents must be
structed in terms of appropriate operators comprised fr
the gluon and quark fields of the lattice theory by calculat
the renormalization factors which relate the hadronic ma
elements in the lattice-regulated theory to those in the m
fied minimal subtraction (MS) scheme. These factors a
crucial for both decay constant and semi-leptonic form fac
calculations. In this paper, we construct the time compon
of the heavy-light axial vector current in terms of operato
suitable for simulations@5,6# in which the heavy quark is
treated using lattice NRQCD and the light quark propaga
according to theO(a)-improved clover action@7#, wherea
is the lattice spacing. The standard Wilson action is used
the gluons. This construction is carried out to one-loop or
in perturbation theory and to order 1/M , where M is the
mass of the heavy quark.

The expansion of the heavy-light axial vector current
terms of appropriate lattice operators is achieved by ma
ing relevant scattering amplitudes in perturbation theo
Consider the heavy-light pseudoscalar meson decay con
f PS defined in some continuum renormalization schem
such asMS, by,
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^0uAmuPS~p!&QCD5 i f PSpm , ~1!

whereAm is the heavy-light axial vector current anduPS(p)&
is a pseudoscalar meson state of momentump. As will be
seen, the axial vector current operator can be written a
sum of operatorsJA, lat

( i ) in the lattice-regulated theory. Fo
instance, one finds that the temporal component,m50, is a
sum of three operators which contribute throu
O(as,1/M ,a), whereas is the QCD coupling:

A05 (
j 50,1,2

Cj~as ,aM!JA, lat
~ j ! 1O~as

2 ,a2,1/M2,asa/M !.

~2!

Since the role of the dimensionless coefficientsCj is to com-
pensate for low-energy effects in the current operator fr
the loss of short-wavelength QCD modes in the latt
theory, one expects that, due to asymptotic freedom, t
may be computed to a good approximation in perturbat
theory. They are fixed by requiring that scattering amplitud
involving these current operators agree in continuum a
lattice QCD to a given order inas , a, and 1/M . In a pertur-
bative determination, a process involving quarks and glu
as asymptotic states may be used for this matching; one n
not consider hadron scatterings which are much more c
plicated to evaluate. Note, however, that theCj coefficients
are independent of the process chosen. A one-loop eva
tion of theCj coefficients then involves the following step
~1! select a quark-gluon scattering process induced by
heavy-light current and calculate the one-loop amplitude
this process in continuum QCD;~2! expand the amplitude in
powers of 1/M ; ~3! identify operators in the lattice theor
that reproduce the terms in this expansion;~4! calculate the
one-loop mixing matrix of these operators in the latti
theory;~5! adjust theCj coefficients to produce a linear com
bination of lattice current operators whose one-loop scat
ing amplitude agrees with that from theMS current to a
given order in 1/M anda. Note that the lattice currents ar
matched directly to the continuum QCD currents; we do
need to use a two-step matching procedure in which the
6741 © 1998 The American Physical Society
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6742 57COLIN J. MORNINGSTAR AND J. SHIGEMITSU
tice currents are first matched to those in a continuum hea
quark effective theory@8–11#, which are then matched to th
full QCD currents@12#.

This paper is organized as follows. First, in Sec. II, w
discuss various issues relevant to our matching proced
such as the choice of expansion parameter in the perturba
series, the definition of the heavy quark mass, the regular
tion of infrared divergences, and the selection of a renorm
ization scheme. Next, a scattering process appropriate
constructing the heavy-light axial vector current in the latt
NRQCD-clover theory is chosen. We then discuss the c
tinuum QCD calculations, and the necessary current op
tors in the lattice regularization scheme are identified. S
tion III describes the mixing matrix calculation in the lattic
theory. The scattering amplitudes in the continuum and
tice schemes are matched in Sec. IV, and our main res
the values of the coefficientsCj for various heavy quark
mass values, are presented. Renormalon ambiguities are
cussed, and subtleties with infrared divergences for Wil
light quarks are pointed out.

II. CONTINUUM CALCULATION AND
OPERATOR IDENTIFICATION

Our goal here is the expansion of the temporal compon
of the ~renormalized! axial vector current in terms of~bare!
operators suitable for use in lattice simulations ofB and D
mesons. Note that because the axial vector current is part
conserved in QCD, its operator does not actually requ
renormalization. This expansion is determined by match
suitable matrix elements evaluated both in continuum Q
and in the lattice theory. Since this expansion is an oper
relation, the expansion coefficients are independent of
external states of the matrix elements chosen. Of course
normalizations of the external states used in the continu
and lattice matrix elements must match in order to exp
the required operator relation. Since the external states in
perturbative calculations are free quark states, this can
done at tree level by matching the normalizations of the c
tinuum and lattice Dirac spinors~to the appropriate order in
a!. The use ofon-shell wave function renormalization fo
both the heavy and light quark fields is then the simplest w
to ensure this matching beyond tree level.

In matching the 1/M expansions of heavy-light matri
elements in the continuum and lattice theories, it is import
to establish the relations between the quark mass param
~both heavy and light! in each. Equality of the lattice an
continuum mass parameters can be ensured in perturb
theory using the pole mass definition. The pole mass
gauge-invariant and, within the context of perturbati
theory, is a physical observable. Hence, in our calculatio
we use the pole mass forM and also for the light quark mas
m50. In using the pole mass definition for our quarks,
compute the continuum and lattice matrix elements us
on-shellquark mass renormalization. Note that since the p
mass is not defined outside of perturbation theory, it is no
useful quantity for lattice simulations; the bare massM0 ap-
pearing in the lattice action is much more suitable. Th
once we determine the coefficientsCj (as ,aM) in terms of
M , we re-express our results in terms ofaM0 using the
perturbative relation betweenM andM0 .
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We must also know the relationship between the exp
sion parameters used in the continuum and lattice pertu
tive expressions in order to carry out the operator match
For example, we could useaMS in the continuum calcula-
tions and a couplingaV defined in terms of the momentum
space static quark potentialV(q) in the lattice computations
The two couplings are related byaV5aMS1O(as

2). Our
one loop calculations do not make use of theO(as

2) correc-
tion in the relation between the lattice and continuum exp
sion parameters; hence, as long as we use couplings w
match at leading order, we can simply useas to refer to both
the lattice and continuum couplings. Of course, when
merical values for the coefficientsCj (as ,aM) are needed,
we must specify a renormalization scheme foras .

The coefficientsCj (as ,aM) depend on the ultraviole
regulator but contain no infrared divergences. However,
choice of on-shell mass and wave function renormalizat
will lead to infrared divergences at intermediate stages in
matrix element calculations. In order to demonstrate the c
cellation of these divergences in theCj coefficients, the same
infrared regulator must be used in the evaluation of both
continuum and lattice matrix elements. Since the triple glu
vertex plays no role in any of our Feynman diagrams,
introduce a gluon massl for this purpose.

Errors in our operator matching are measured in terms
powers of the lattice spacinga, the QCD couplingas , and
the inverse heavy quark mass 1/M . However, NRQCD is a
non-renormalizable effective field theory in which the latti
spacing cannot be taken to zero; rather,a5O(1/M ) must be
imposed. Hence, our error determinations must take into
count the fact thataM is of order unity. Since we wish to
construct a current operator which is correct throu
O(1/M ), we must remove allO(a) errors. We also remove
all O(a/M ) errors since it is easy and desirable to do so. T
O(a,1/M ,a/M ) errors can be eliminated at tree-level in pe
turbation theory. The one-loop calculations are then use
remove theO(asa) and (as /M ) errors. The remaining
O(asa/M ) errors are much smaller thanO(a) andO(asa)
and are expected to be comparable toO(asa

2).
A scattering process which is suitable for our study of t

heavy-light axial vector current is depicted in Fig. 1. In th
process, an incoming heavy quarkuh(p)& with momentump
scatters off a heavy-light currentA0 into an outgoing light
quark uq(p8)& with momentump8. The axial-vector current
operator is given byAm(x)5q̄(x)ĝ5ĝmh(x) in terms of the
light quark fieldq(x) and the heavy quark fieldh(x). The
first step in our study is the calculation of the amplitude
this continuum-QCD process to one-loop order in pertur
tion theory. Using the on-shell mass and wave funct
renormalization scheme in Feynman gauge and expandin
1/M ~except for the Dirac spinor of the heavy quark!, one
finds

^q~p8!uA0uh~p!&QCD5a1@ ūq~p8!ĝ5ĝ0uh~p!#

1a2Fp0

M
ūq~p8!ĝ5uh~p!G

1a3Fp•p8

M2 ūq~p8!ĝ5ĝ0uh~p!G
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1a4Fp08

M
ūq~p8!ĝ5uh~p!G

1a5Fp•p8

M2

p0

M
ūq~p8!ĝ5uh~p!G

1O~1/M2!, ~3!

with

a1511
as

3p F3 ln
M

l
2

11

4 G ,
a25

as

3p
2,

a35
as

3p F6 ln
M

l
2

8p

3

M

l
1

1

2G , ~4!

a45
as

3p F22 ln
M

l
1

1

2G ,
a55

as

3p F24 ln
M

l
15G ,

where uh(p) and uq(p8) are the standard spinors for th
heavy and light quarks, respectively, which satisfy the Di
equation. The light quark mass is set equal to zero. Our c
ventions for the Diracĝ-matrices in Minkowski space ar
given in the Appendix. Ultraviolet divergences are regula
using dimensional regularization and fully anti-commuti
ĝ5 matrices are used. As previously mentioned, we us
gluon massl in order to regulate infrared divergences. T

FIG. 1. Feynman diagrams in continuum and lattice perturba
theory which contribute at one-loop order to the annihilation by
axial current~cross inside a circle! of an incoming heavy quark
~double solid line! and the creation of an outgoing light qua
~single solid line!. The exchange of a gluon is denoted by a cu
line.
c
n-

d

a

three diagrams which contribute to this amplitude at o
loop order are shown in Fig. 1.

In lattice NRQCD, the heavy quark is described in term
of a two-component~in spin space! field c(x). The Dirac
field h(x) is related toc ~and the antiquark fieldc̃! by a
unitary Foldy-Wouthuysen transformation@13#,

h~x!5UFW
21 S c~x!

c̃~x!
D . ~5!

This transformation decouples the upper and lower com
nents of the Dirac field, thereby separating the quark fi
from the antiquark field. To facilitate the identification o
lattice NRQCD operators capable of matching Eq.~3!, we
similarly transform the external state spinoruh(p) ~with nor-
malizationuh

†uh51! into a nonrelativistic Pauli spinor:

uh~p!5F12
1

2M
~ ĝ•p!GuQ~p!1O~1/M2!, ~6!

where

uQ~p!5S UQ

0 D , ~7!

andUQ is a two-component external state spinor depend
only on the spin of the heavy quark. Using Eq.~6!, the rela-
tion ĝ0uQ(p)5uQ(p), and the Dirac equation for the ligh
quark ūq(p8)p085ūq(p8)ĝ•p8ĝ0 , Eq. ~3! may be written

^q~p8!uA0uh~p!&QCD5h0
AV̂01h1

AV̂11h2
AV̂2

1O~as
2,1/M2!, ~8!

whereG5ĝ5ĝ0 , and

V̂05ūq~p8!GuQ~p!, ~9!

V̂152ūq~p8!G
ĝ•p

2M
uQ~p!, ~10!

V̂252ūq~p8!
ĝ•p8

2M
GuQ~p!. ~11!

The coefficients in Eq.~8! may be written

h0
A5~a11a2!511asB̃0 ,

h1
A5~a12a2!511asB̃1 , ~12!

h2
A52~a31a41a5!5asB̃2 ,

where

B̃05
1

3p F3 ln
M

l
2

3

4G ,
B̃15

1

3p F3 ln
M

l
2

19

4 G , ~13!

n
e
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B̃25
1

3p F122
16p

3

M

l G .
Having obtained the 1/M expansion of the above scatte

ing amplitude in continuum QCD, the next step is to ident
operators in the lattice theory which can reproduce the te
in this expansion. An inspection of Eq.~8! suggests imme-
diately that matrix elements of the following three latti
operators should be considered:

JA, lat
~0! ~x!5q̄~x!GQ~x!, ~14!

JA, lat
~1! ~x!5

21

2M0
q̄~x!Gg–“Q~x!,

~15!

JA, lat
~2! ~x!5

1

2M0
q̄~x!g–“Q GQ~x!,

~16!

whereq(x) is now the light quark field in the lattice theory
M0 is the bare heavy quark mass, andQ(x) is related to the
heavy quark fieldc(x) in lattice NRQCD by

Q~x!5S c~x!

0 D . ~17!

We use the bare quark massM0 in the above definitions
since it is the natural mass to use in lattice simulations
because the pole massM is not well defined beyond pertur
bation theory. The covariant finite difference operators¹m

and ¹Q m are defined as usual in terms of the link variab
Um(x) which are the parallel transport operators from sitex
to neighboring sitesx1am in the gauge field. The definition
of these operators are given below, along with other der
tive operators which will be needed later:

a¹mO~x!5
1

2u0
[Um~x!O~x1am!2Um

† ~x2am!O~x2am!],

~18!

O~x!a¹Q m5
1

2u0
[O~x1am!Um

† ~x!2O~x2am!Um~x2am!],

~19!

2D~2!O~x!5 (
k51

3

~u0
21[Uk~x!O~x1ak!

1Uk
†~x2ak!O~x2ak!] 22O~x!!, ~20!

2¹~2!O~x!5 (
m50

3

~u0
21[Um~x!O~x1am!

1Um
† ~x2am!O~x2am!] 22O~x!!,

~21!

whereO(x) is an operator defined at lattice sitex with ap-
propriate color structure, andu0 is the mean link paramete
introduced by the tadpole improvement procedure@14#. Note
s

d

s

-

that these lattice operators are defined in Euclidean sp
our Euclidean space conventions are outlined in the App
dix.

III. LATTICE CALCULATION

In this section, we describe the one-loop calculation in
lattice theory of the mixing matrixZi j defined by

^q~p8!uJA, lat
~ i ! uh~p!& lat5(

j
Zi j V j

1O~as
2,1/M2,a2,asa/M !,

~22!

where V j are the Euclidean-space counterparts of theV̂ j
defined in Eqs.~9!–~11!. First, the lattice actions used i
these calculations are specified. The necessary Feynman
grams are then presented, and their evaluation in lattice
turbation theory is outlined.

For the heavy quark, we use the following NRQCD acti
density@2#:

aLNRQCD5c†~x!c~x!

2c†~x1at!S 12
adH

2 D S 12
aH0

2n D n U4
†~x!

u0

3S 12
aH0

2n D nS 12
adH

2 Dc~x!, ~23!

where

H052
D~2!

2M0
, ~24!

dH52cB

g

2M0
s•B. ~25!

The positive integern is introduced to stabilize the highes
momentum modes in the heavy quark propagator@2#; the
condition, n.3/aM0 , has proven to be a reliable guid
Note that the above NRQCD action does not include
heavy quark mass term. The QCD couplingg is related toas
in the usual manner,as5g2/(4p), ands j are the standard
Pauli spin matrices. At tree level,cB51; the one-loop con-
tribution to cB is anO(as

2) effect in our mixing matrix cal-
culation and hence can be ignored here. The chromom
netic field is given byBj (x)52 1

2 e j lmFlm(x), where the
Hermitian and traceless field strength tensorFmn(x) is de-
fined at the sites of the lattice in terms of clover-leaf ope
tors:

Fmn~x!5Fmn~x!2
1

3
TrFmn~x!,

Fmn~x!5
2 i

2a2g
~Vmn~x!2Vmn

† ~x!!,
~26!
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Vmn~x!5
1

4u0
4 (

$~a,b!%mn

Ua~x!Ub~x1aa!

3U2a~x1aa1ab!U2b~x1ab!,

with $(a,b)%mn5$(m,n),(n,2m),(2m,2n),(2n,m)% for
mÞn.

For the light quarks, we use the clover action@7#,

aLl ight5q̄¹” q2a
r

2
q̄¹~2!q1m0q̄q

2 iga
r

4 (
m,n

q̄smnFmnq, ~27!

where¹” 5(mgm¹m , m0 is the bare light quark mass,smn

5 1
2 @gm ,gn#, and we set the Wilson parameterr 51. The

one-loop correction to the clover coefficient is anO(as
2)

effect in our matching calculation and can be neglected.
Lattice perturbation theory calculations are much m

laborious than those in continuum perturbation theory. N
only do more diagrams contribute to a given process, but
complicated functional forms of the propagators and ver
functions~presented in the Appendix! necessitate the use o
numerical methods in evaluating the integrals over inter
loop momenta. For the scattering process considered h
there are five additional one-loop Feynman diagrams in
lattice theory: three are vertex corrections, shown in Fig
and two are extra external leg corrections, shown in Fig
The Feynman rules are determined by expanding the t
lattice action in terms ofg using

Um~x![expF iagGmS x1
am

2 D G , ~28!

FIG. 2. Additional vertex correction diagrams which contribu
in lattice perturbation theory to the same process as in Fig. 1.
e
t
e
x

l
re,
e
,
.
al

and u0512asu0
(2)1O(as

2), then Fourier transforming into
momentum space.Gm(x) is the lattice gluon field defined a
the midpoints of the links connecting neighboring sites.

We calculate the amplitudes corresponding to the Fe
man diagrams of Figs. 1–3 in two very different ways a
verify that the results agree. In the first method, all sp
matrix manipulations and derivatives with respect to exter
momenta are done by hand. The resulting integrals are
simplified by hand, including the subtraction of terms to r
move infrared divergences. The remaining infrared-finite
tegrals are then done numerically using Monte Carlo a
adaptive Gaussian quadrature techniques.

In the second method, nearly all aspects of the calcula
are automated. First, the propagators and vertex functions
expressed as functions inC11 whose arguments are th
appropriate four momenta implemented using a classFOUR-

VEC. Spin algebra is accomplished using explicit matrix re
resentations; this is done by defining new class structure
C11, such asPAULI and DIRAC, and overloading all of the
necessary arithmetic operators for ease of use. Derivat
with respect to external momenta are taken using autom
differentiation @15#. This is implemented by defining in
C11 a classTCOMPLEX which carries out the multivariate
Taylor series expansions. A variable of typeTCOMPLEX is
treated by the end user just as if it were a regular comp
scalar variable since all appropriate arithmetic operators
mathematical functions are overloaded. However, aTCOM-

PLEX variable is actually an array containing the functio
value and all of its derivatives up to some order; an index
member function is used to return a specific term in the T
lor series expansion. All derivatives are taken automatica
using analytical techniques; the end user never needs to w
subroutines for taking these derivatives.

The above tools allow one to easily writeC11 functions
to compute the integrands for all of our one-loop Feynm
diagrams. The integrals corresponding to the graphs in F
2 and 3 are easily evaluated using Monte Carlo techniqu
We use the integration routineVEGAS @16#. Note that, in
lattice perturbation theory, each internal loop momentumk is
restricted to the first Brillouin zone2p,akm<p. How-
ever, due to infrared divergences, the other integrals can
be directly calculated. We evaluate these integrals in a
quence of steps. First, we subtract from the lattice integr
I lat(k), wherek is the loop momentum, the analogous int
grand from the continuum theory,I con(k). The integral of

FIG. 3. Additional external leg correction diagrams which co
tribute in latticeperturbation theory to the same process as in Fig
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6746 57COLIN J. MORNINGSTAR AND J. SHIGEMITSU
this difference over the first Brillouin zone is infrared fini
and can be evaluated using the Monte Carlo method.
then multiply the continuum integrand by a factorf (k) to
render the integral insensitive to the shape of the first B
louin zone. This factor must also be chosen such that
integral of @12 f (k)#I con(k) is infrared finite. For example
f (k)5exp(2rk2) wherer5p/2 is often a good choice. We
then use the Monte Carlo method to evaluate the integra
@12 f (k)#I con(k). The infrared divergence has then been is
lated in the integral off (k)I con(k). Since f (k) is chosen to
remove any appreciable sensitivity of the integral to the e
of the Brillouin zone, we can change to hyperspherical co
dinates and integrate over the interior of an infinitely lar
sphere to a good approximation. This simplifies the calcu
tion and allows us to easily identify and analytically manip
late the infrared divergent pieces of the integrand.

Using these two methods, we obtain results for the mix
matrix Zi j in Eq. ~22!, again using the on-shell renormaliz
tion scheme in Feynman gauge. Note that the nonrelativ
external-state spinorsuQ(p) are identical in the lattice and
continuum theories. For the clover action, the external lig
quark spinorsuq(p8) differ only at O(a2). At one-loop, the
mixing matrix elements may be written

Zi j 5d i j 1asF1

2
~C̃q1C̃Q!d i j 1C̃md i1d j 11 z̃ i j G , ~29!

whereC̃q and C̃Q are the contributions from the light- an
heavy-quark external leg corrections~that is, from wave
function renormalization factors!, and z̃ i j denote the contri-
butions from the vertex corrections. Our use of an on-sh
renormalization scheme with lattice operators defined
terms of the bare massM0 is responsible for the term pro
portional toC̃m , where

M5@11asC̃m#M01O~as
2!. ~30!

Note that although the current operatorsJA, lat
( i ) are defined

usingM0 , the pole massM must appear inV j . The factors
in Eq. ~29! may be further decomposed:

C̃q5Cq1
2

3p
ln al1Cq

TI ,

C̃Q5CQ2
4

3p
ln al,

~31!

C̃m5Cm1Cm
TI ,

z̃ i j 5z i j 1z i j
TI1z i j

IR ,

whereCq , CQ , Cm , andz i j are infrared finite and indepen
dent of the tadpole improvement factoru0 , andz i j

IR andz i j
TI

contain the infrared divergences and tadpole improvem
contributions, respectively, from the vertex corrections. C
tributions toC̃q andC̃m from the tadpole improvement coun
terterms are denoted byCq

TI andCm
TI , respectively.
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IV. RESULTS

To complete the operator matching, we transform Eq.~8!
from Minkowski to Euclidean space, use Eqs.~22! and~29!,
then peel off the dependence on the external states.
yields the following operator relation:

A05S 11asF B̃02
1

2
~C̃q1C̃Q!

2 z̃ 002 z̃ 10G D JA, lat
~0! 1S 11asF B̃12

1

2
~C̃q1C̃Q!

2C̃m2 z̃ 012 z̃ 11G D JA, lat
~1! 1as@B̃22 z̃ 022 z̃ 12#JA, lat

~2!

1O~as
2 ,a2,1/M2,asa/M !. ~32!

As expected, we find that the infrared divergences from
various terms in the expansion coefficients cancel. We n
have the desired expansion coefficientsCj of Eq. ~2! in terms
of the pole massM . As previously mentioned, the bare ma
M0 is a much more convenient mass parameter. Our res
are easily expressed in terms ofaM0 using Eq.~30!, which,
in this case, simply amounts to replacingM by M0 :

A05S 11asFB02
1

2
~Cq1Cq

TI1CQ!

2t0G D JA, lat
~0! 1S 11asFB12

1

2
~Cq1Cq

TI1CQ!

2Cm2Cm
TI2t12t1

TIG D JA, lat
~1! 1as@B22t2#JA, lat

~2!

1O~as
2 ,a2,1/M2,asa/M !, ~33!

whereB05 ln(aM0)/p21/(4p), B15 ln(aM0)/p219/(12p),
B254/p, t05z001z10, t15z011z11, and t25z021z12.
The factors arising from tadpole improvement counterter
are given by

Cq
TI52u0

~2! ,

Cm
TI52u0

~2!S 12
3

2naM0
D ,

~34!

t1
TI5u0

~2! .

For the usual plaquette definitionu05^ 1
3 Tr Uh&1/4 in the

Wilson gluonic action, u0
(2)5p/3. For massless clove

quarks,Cq51.030. Results fort0 , t1 , t2 , CQ andCm for
various values ofaM0 are listed in Table I.

Explicit calculation reveals that t2 behaves as
22aM0zdisc asM0 becomes large, wherezdisc is found nu-
merically to bezdisc51.00(1). This factor can be viewed a
arising from a discretization correctionJA, lat

(disc) to JA, lat
(0) ,

JA, lat
~disc!5aq̄~x!g–“Q GQ~x!, ~35!
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TABLE I. Values of the coefficientst0 , t1 , t2 , CQ , andCm appearing in Eq.~33! for various values of
the bare heavy-quark massaM0 and NRQCD stability parametern. Uncertainties in the determinations o
these parameters due to the use of Monte Carlo integration are included.

aM0 n t0 t1 t2 CQ Cm

10.0 1 0.8232~1! 21.242(4) 214.74(2) 0.2719~8! 0.872~8!

7.0 1 0.7929~1! 21.266(1) 28.82(2) 0.1847~6! 0.862~6!

4.0 1 0.7290~1! 21.283(2) 23.202(8) 20.0287(6) 0.883~6!

4.0 2 0.7397~1! 21.298(2) 23.476(8) 20.0030(6) 1.087~6!

3.5 2 0.7239~1! 21.307(2) 22.618(8) 20.0651(6) 1.120~6!

3.0 2 0.7052~1! 21.315(2) 21.790(8) 20.1463(6) 1.142~6!

2.7 2 0.6923~1! 21.324(2) 21.314(4) 20.2077(6) 1.172~6!

2.5 2 0.6829~1! 21.332(2) 21.010(4) 20.2562(6) 1.195~6!

2.0 2 0.6576~1! 21.352(1) 20.304(3) 20.4156(6) 1.235~4!

1.7 2 0.6422~1! 21.371(2) 0.081~3! 20.5503(8) 1.277~4!

1.6 2 0.6377~1! 21.377(1) 0.202~3! 20.6038(8) 1.293~6!

1.2 3 0.6307~1! 21.424(1) 0.538~2! 20.868(1) 1.557~6!

1.0 4 0.6365~1! 21.457(1) 0.683~2! 21.074(1) 1.733~6!

0.8 5 0.6617~1! 21.502(1) 0.818~1! 21.394(1) 1.934~6!
ar
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-
not
analogous to theO(a) correction a]mP, where P is the
pseudoscalar density, to the axial current in light-light qu
systems@17#. We can then define animprovedcurrent opera-
tor

JA, lat
~0!imp5JA, lat

~0! 1CAJA, lat
~disc! , ~36!

where we write

CA5asS 11
zA

2aM0
D . ~37!

This decomposition is not unique, and hence, we leavezA as
a free parameter. Different choices ofzA lead to different
O(as

2) contributions being included in Eq.~33!. Taking this
into consideration, Eq.~33! can be written

A05~11asr0!JA, lat
~0!imp1~11asr1!JA, lat

~1!

TABLE II. Values for the coefficientsr0 , r1 , andr2 appearing
in Eq. ~38!.

aM0 n r0 r1 r2

10.0 1 20.2972(4) 0.315~9! 23.982(24)
7.0 1 20.3368(3) 0.212~6! 23.902(16)
4.0 1 20.3443(3) 20.032(6) 23.525(8)
4.0 2 20.3679(3) 20.038(6) 23.251(8)
3.5 2 20.3635(3) 20.102(6) 23.109(8)
3.0 2 20.3533(3) 20.161(6) 22.937(8)
2.7 2 20.3433(3) 20.214(6) 22.813(4)
2.5 2 20.3341(3) 20.253(6) 22.717(4)
2.0 2 20.3002(3) 20.343(4) 22.423(3)
1.7 2 20.2691(4) 20.420(4) 22.208(3)
1.6 2 20.2571(4) 20.451(6) 22.128(3)
1.2 3 20.2096(6) 20.572(6) 21.664(2)
1.0 4 20.1703(7) 20.627(6) 21.410(2)
0.8 5 20.1069(7) 20.694(6) 21.144(1)
k
1as~r22zA!JA, lat

~2!

1O~as
2 ,a2,1/M2,asa/M !, ~38!

so that the Cj coefficients of Eq. ~2! become C051
1asr0 , C1511asr1 , andC25as(r22zA). This equation
is our final result. Note that atO(as), thezA dependence in
JA, lat

(0)imp cancels that inC2JA, lat
(2) . Numerical results forr0 ,

r1 , andr2 are given in Table II.
In Ref. @6#, B meson decay constants were computed

simulations in which the heavy quark propagation was
scribed by an NRQCD action different from Eq.~23!; in
particular, higher order corrections were included. The v
ues ofr0 , r1 , andr2 for the action used in these simulation
are given in Table III.

In order to use Eq.~38! in a simulation, a value foras
must be specified. To do this, one must first choose a re
malization scheme foras ; in the case of a running coupling
a means of setting the scale must then be devised; lastly
value of the coupling at some reference scale must be de
mined. A couplingaV(q* ) defined in terms of the short
distance static potential with a scale-setting prescript
based on the mean value theorem is advocated in Ref.@14#;
the value ofaV(3.402/a) can be obtained from measure
ments of the average plaquette. Unfortunately, we have
computed theq* scales for ther0 , r1 , andr2 coefficients.
However, based on findings in Refs.@8# and@18#, we expect

TABLE III. Values for the coefficientsr0 , r1 , andr2 using the
NRQCD action of Ref.@6#.

aM0 n r0 r1 r2

10.0 1 20.2772(4) 0.45~1! 24.70(3)
7.0 1 20.3174(4) 0.322~7! 24.38(2)
4.0 1 20.3372(3) 0.140~7! 23.643(8)
2.7 2 20.3375(4) 0.027~4! 22.859(4)
2.0 2 20.3145(4) 20.037(4) 22.339(4)
1.6 2 20.2844(4) 20.054(4) 21.986(3)
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thatq* ;2/a. An alternative choice for the expansion para
eter is a non-running boosted couplingab56/(4pbu0

4); the
value of this coupling is typically comparable toaV(p/a).

For the range ofaM0 values considered here, our resu
show no evidence that perturbation theory is failing. Fro
Tables II and III, one sees that the one-loop corrections toC0
are very small. Values forr0 are typically near20.3 for all
aM0 considered; multiplying byas;0.2 yields one-loop
corrections toC0 which are approximately 5% of the tree
level contribution. For the large range ofaM0 values stud-
ied, r1 varies between20.7 and 0.5; hence, one-loop co
rections to C1 are never larger than about 15%. Th
magnitudes of the values forr2 are significantly larger than
those forr0 and r1 . If we setzA50, thenCA5as and C2
5asr2 which, usingas;0.2, varies between 0.2 and 0.9 f
the range ofaM0 values studied here. SinceC2 has no tree-
level contribution, at least a two-loop result is needed
check the convergence of its perturbative expansion.

As in all applications of perturbative QCD, nonperturb
tive contributions toCj are possible. For example, the pe
turbative expansions of theCj coefficients contain renorma
lon ambiguities arising from a slight mismatch between
infrared physics of the lattice theory and that of continuu
QCD. This mismatch is caused by discretization artifacts
the truncation of the 1/M expansion. In our calculation, con
tributions coming from momenta small relative to a giv
infrared scaleq0!1/a,M are all suppressed bya2q0

2 or
q0

2/M2 since the infrared structure of our lattice theory
designed to agree with continuum QCD throughO(a,1/M ).
This infrared suppression is not true diagram-by-diagr
~some diagrams are even infrared divergent!, but the infrared
contribution is suppressed bya2 or 1/M2 when all diagrams
are summed. For example, in some analyses@19#, coeffi-
cients likeC0 are separated into the contributionc0 from the
leading operator~hereJA, lat

(0) ! and contributionsc̃0 from mix-
ings with higher-dimension operators~hereJA, lat

(1) andJA, lat
(2) !.

In our analysis, such a separation is artificial and would b
mistake since it inducesO(a,1/M ) ambiguities in the sepa
rate piecesc0 and c̃0 . These ambiguities cancel when th
pieces are recombined, leaving contributions toC0 sup-
pressed bya2q0

2 or q0
2/M2. Thus, any renormalon ambigu

ities are suppressed by the same factors and are at w
comparable to the other truncation errors in the analysis

Our calculation differs from conventional lattice calcul
tions in that thea2 truncation errors, perturbative and no
perturbative, cannot be made arbitrarily small by reduc
the lattice spacing@2#. This is because NRQCD has no
renormalizable interactions whose couplings do not vanis
a→0. The perturbative expansions forCj have power-law
terms of the formas /(aM)n which ruin the convergence o
perturbation theory ifa is taken to zero. In practice, thi
problem is avoided by ensuring that 1/(aM) is not large. Our
inability to takea→0 in NRQCD fundamentally limits the
precision of ourO(a,1/M ) accurate formalism. If improved
precision is needed, we must reduce the truncation error
using more accurate discretizations of the lattice currents
action. In this way truncation errors, renormalon ambiguiti
etc. are pushed off toO(a3,1/M2) or higher.

This approach differs dramatically from that used in t
static-quark expansion; in the latter approach, problems w
-

o

-

e

d

a

rst

g

as

by
nd
,

th

power divergences arise when the limita→0 is attempted in
a brute-force manner. The role of the power-law terms in
Cj coefficients is to cancel unphysical power-divergent co
tributions in the lattice NRQCD current matrix elemen
thereby ensuring the correct matching to full continuu
QCD through the relevant order inas and 1/M . If the un-
physical terms behaving asas /(aM)n in the Cj coefficients
and the current matrix elements become comparable to
larger than the physical terms ofO(LQCD /M ), this cancel-
lation becomes a very delicate issue and the need for n
perturbative subtraction methods may arise. Such is the
in the static-quark expansion; taking the brute-force limita
→0 obscures the physically relevant contributions by am
fying the power-divergent unphysical terms. Here, this pro
lem is circumvented by keeping the lattice spacing la
enough that 1/(aM) never becomes large. The success
low-order perturbation theory in cancelling the unphysic
terms depends, of course, on the relative size of the phys
contributions. Recent numerical simulations@6,20# find no
evidence of large power-law contamination in the curre
matrix elements for the range ofaM0 appropriate for
b-quark physics, suggesting that power-divergent nonper
bative and higher-order perturbative contributions to
matching coefficients are also not large. This finding app
to the temporal component of the heavy-light axial vec
current. For other operators, the situation could be differ
and each case must be examined separately.

The results in Table II are suitable for values ofaM0
appropriate for current simulations of heavy-light syste
using NRQCD. However, terms proportional to ln(aM0)
cause theO(as) contributions toC0 andC1 to become large
as aM0 becomes large. In such cases, the renormaliza
group should be used to improve upon the estimates f
one-loop perturbation theory. Since the left-hand side of
~2! is independent of the lattice spacing, it follows that, n
glectingO(a2) terms,

a
d

da F(
k

Ck~as ,aM0!^JA, lat
~k! &G50. ~39!

Using Eq. ~22! and dV j /da50, a renormalization group
equation for theCj coefficients, collected into a vectorCW ,
can be obtained which describes the change inCj as the
lattice spacing is varied:

S a
d

da
1g trDCW 50, ~40!

where the anomalous dimension matrix is given by

g i j ~as ,aM0!5(
k

S a
d

da
ZikDZk j

21 . ~41!

In the limit of large aM0 , we find g5diag(2as/p,
2as /p,2as /p) and Eq.~40! can be easily solved. First
express theCj coefficients as a function ofas(a) and aM
instead ofas(a) andaM0(a) sinceM is fixed and does no
run with a. If the lattice theory is renormalized in such a wa
that the renormalization group b-function bRG5
2adas(a

21)/da is independent ofM0 andm0 , then
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bRG~as!522b0as
222b1as

31O~as
4!, ~42!

where b05(112 2
3 Nf)/(4p) and b15(1022 38

3 Nf)/
(16p2), for Nf light quark flavors. For large, fixedM , Eq.
~40! then tells us that the change inC0 andC1 in going from
an initial lattice spacinga1 to a smaller lattice spacinga2 is
given, in leading logarithmic approximation, by

Ci~a2M !

Ci~a1M !
5Fas~1/a2!

as~1/a1!G
1/~2b0p!

, ~43!

for i 50,1, whereas(m) is the familiar QCD running cou-
pling; its two-loop form is

as~m!5Fb0 ln~m2/L2!1
b1

b0
ln ln~m2/L2!G21

. ~44!

Let a2M5aM08 anda1M5aM0 , then

as~1/a2!

as~1/a1!
512asb0 lnS a1

2

a2
2D 1O~as

2!,

512asb0 lnS M0
2

M08
2D 1O~as

2!,

5
as~M0!

as~M08!
1O~as

2!. ~45!

Hence, to the order at which we are working, Eq.~43! is
equivalent to

Ci~aM08!

Ci~aM0!
5Fas~M08!

as~M0!
G21/~2b0p!

, ~46!

for largeaM0 andaM08 . WhenaM0 is not large, the depen
dence ofg i j on aM0 cannot be neglected and Eq.~46! must
be suitably modified.

As an aside, we mention the following fact. If one wish
to use the Wilson action instead of the clover action for
light quark, one cannot include the discretization correct
term JA, lat

(disc) . If one includesJA, lat
(disc) while using Wilson light

quarks, one finds an uncancelled logarithmic infrared div
gence upon attempting to match the continuum and lat
scattering amplitudes. This divergence is removed by incl
ing contributions from theO(a)-correction term in the clo-
ver action.

V. SUMMARY

In this paper, the temporal component of the heavy-li
axial vector currentAm was expanded in terms of lattic
operators suitable for use in simulations ofB andD mesons.
The expansion was carried out toO(1/M ) by matching rel-
evant scattering amplitudes to one-loop order in perturba
theory. The~massless! light quark was described in the la
tice theory using theO(a)-improved clover action of Eq
~27!, and the NRQCD action of Eq.~23! was used to treat the
heavy quark. The standard Wilson action was used for
lattice gluons. The expansion of the heavy-light current w
found to be
e
n

r-
e
-

t

n

e
s

A05C0JA, lat
~0!imp1C1JA, lat

~1! 1C2JA, lat
~2!

1O~as
2 ,a2,1/M2,asa/M !, ~47!

where the lattice operators are defined in Eqs.~14!, ~15!,
~16!, and ~36!, and C0511asr0 , C1511asr1 , C2
5as(r22zA) andCA5as@11zA /(2aM0)#. Values forr0 ,
r1 , andr2 are listed in Table II for various bare heavy qua
masses.zA remains as a free parameter; different choices
the value ofzA lead to differentO(as

2) contributions being
included in Eq.~47!. The one-loop corrections forC0 andC1
were shown to be small relative to the tree-level contrib
tions for the range ofaM0 studied; no evidence of a break
down in perturbation theory was found. SinceC2 has no
tree-level contribution, at least a two-loop calculation wou
be needed to check the behavior of its perturbative exp
sion. Renormalon ambiguities were argued to be at wors
the same order as our other systematic errors.

Our results have already been used inB-meson simula-
tions @5# measuringf B . More recently,B meson decay con
stants were computed@6# in simulations using an NRQCD
action with higher-order interactions not included in E
~23!; the values ofr0 , r1 , andr2 for the action used in thes
simulations are given in Table III. In the future, we plan
apply the methods described in this paper to the expansio
other currents, such as the vector current, in terms of ap
priate lattice operators.
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APPENDIX: FEYNMAN RULES

The NRQCD and light quark actions are given in Eq
~23! and~27! in Sec. III. The Feynman rules of perturbatio
theory can be derived from these actions using, for instan
the methods of Ref.@21#. Most of the rules relevant for the
calculations of this article are collected in this Append
Various conventions used in our computations are also
lined. To simplify notation, we set the lattice spacinga51 in
this Appendix.

Minkowski-space quantities are indicated either by
caret, such asĝ, or by a subscript or superscript (M ), such
asxj

(M ) . The metric tensor in Minkowski space is taken to
gmn5diag(1,21,21,21) and the Dirac matrices satisf

$ĝm ,ĝn%52gmn . We use the Dirac-Pauli representation:

ĝ05ĝ05S I 0

0 2I D ,

ĝ j52ĝ j5S 0 s j

2s j 0 D ,

wheres j are the standard Pauli spin matrices. Also, we
fine ĝ55 i ĝ0ĝ1ĝ2ĝ3.
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Euclidean-space four-vectors are defined in terms
Minkowski-space four-vectors usingx05x05 ix (M )

0 and xj

5xj5x(M )
j 52xj

(M ) , for j 51,2,3. For the derivative opera
tor, ]05]052 i ]0

(M ) and ] j5] j5] j
(M )52] (M )

j . Note that

the gauge fieldG(M )
m 5(f (M ) ,GW (M )) Wick-rotates into Eu-

clidean space as a covariant vector, as does the ga
covariant derivativeD (M )

m . The Euclidean-space Dirac matr
ces satisfy $gm ,gn%52dmn and are related to thei
Minkowski-space counterparts byg05g05ĝ0, g j5g j5

2 i ĝ j5 i ĝ j , and g55g0g1g2g35ĝ5 . Also, snm
[ 1

2 @gn ,gm#. To be consistent with our conventions fo
Euclidean-spaceg matrices, we define Euclidean-spa
quark-bilinear axial and vector currents byA05A0

(M ) , Aj5

2 iA (M )
j , V05V0

(M ) , andVj52 iV (M )
j . The chromoelectric

and chromomagnetic fields are defined in terms of the fi
strength tensor byEj5F0 j52 iF 0 j

(M )5 iE j
(M ) and Bj5

2 1
2 « lm jFlm52 1

2 « lm jFlm
(M )5Bj

(M ) , where« i jk is the fully an-
tisymmetric Levi-Civita tensor and the field strength tens
is given on the lattice by Eq.~26!.

The heavy quark propagator is diagonal in both spin a
color, and is given in momentum space by

G̃Q~k!5„12e2 ik0F2n~k!…21,

F~k!512
1

nM (
j 51

3

sin2~ 1
2 kj !.

The light quark propagator is diagonal in color:

G̃q~k!5S i(
m

gm sin km12r(
m

sin2~ 1
2 km!1mD 21

.

In this paper, we work only with them50 andr 51 case.
The gluon propagator is diagonal both in color and the L
entz indices, and is given in Feynman gauge by

G̃G~k!5S 4(
m

sin2~ 1
2 km!1l2D 21

.

We now list the vertex factors associated with the int
action of a single gluon with a heavy-quark line. Letk8 be
the outgoing heavy-quark momentum,k be the incoming
quark momentum, andm be the polarization index of the
emitted gluon. These vertex factors all have a color facto
Tbc

a , wherea is the color index of the gluon, andb andc are
the color indices of the outgoing and incoming quarks,
spectively. Form50, the vertex factor is

2 ige2 i ~k81k!0/2Fn~k!Fn~k8!.

For m5 j 51,2,3, the vertex factor from thep2/2M term is

2g
1

2nM
sin@ 1

2 ~k81k! j #[e
2 ik08Fn~k8!

1e2 ik0Fn~k!]Sn~k8,k!,

Sn~k8,k!5 (
l 50

n21

Fl~k8!Fn2 l 21~k!.
f

ge-

ld

r

d

-

-

f

-

For m5 j from thes•B term, the vertex factor is given by

g(
r ,s

1

4M
~g5g0g r !e rs j sin~k82k!s cos@ 1

2 ~k82k! j #

3@e2 ik08F2n~k8!1e2 ik0F2n~k!#.

The single-gluon vertex factor for the light quark~clover
action! is

2gH igm cos@ 1
2 ~k81k!m#1r sin@ 1

2 ~k81k!m#

1
r

2 (
n

snm sin~k82k!n cos@ 1
2 ~k82k!m#J ,

for all gluon polarizationsm, wherek8(k) is the outgoing
~incoming! momentum of the light quark.

Next, the vertex factors associated with the interaction
two gluons with a heavy-quark line are given. Letk8 be the
outgoing heavy-quark momentum,k be the incoming quark
momentum, andq1 ,q2 be the outgoing momenta of the emi
ted gluons having polarization indicesm1 ,m2 , respectively.
Only the factors form15m2 ~and q11q250! are given,
which is all that is required for the one-loop tadpole grap
The color factor for these cases is (TaTa8)bc , wherea,a8 are
the color indices of the gluons, andb and c are the color
indices of the outgoing and incoming quarks, respective
For m15m250, the vertex factor is

2
g2

2
e2 i ~k81k!0/2Fn~k8!Fn~k!.

For m15m25 j , the vertex factor from thep2/2M term in the
NRQCD action is

g2[e2 ik08Fn(k8)1e2 ik0Fn~k!]

3S 21

4nM
cos[1

2 ~k81k! j ]Sn~k8,k!

1
1

~2nM!2 sin[ 1
2 ~k81k2q2! j ]

3sin@ 1
2 ~k81k1q1! j #Sg,n~k8,k81q1 ,k! D

1g2
1

~2nM!2 sin@ 1
2 ~k81k2q2! j #sin@ 1

2 ~k81k1q1! j #

3Sn~k8,k2q2!Sn~k81q1 ,k!e2 i ~k81q1!0,

where

Sg,n~k8,k81q1 ,k!5 (
l>0

n22

Fl~k8!Sn2 l 21~k81q1 ,k!.

The vertex factor form15m25 j from thes•B term is



e
a-

ur
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g2
1

~4M !2 (
r ,s,r 8,s8

e2 i ~k81q1!0F2n~k81q1!

3~g5g0g r !~g5g0g r 8!e rs je r 8s8 j

3sin~k82k1q2!s sin~k82k1q1!s8

3cos@ 1
2 ~k82k1q2! j #cos@ 1

2 ~k82k1q1! j #

1terms that vanish forq11q250.

The heavy-light currents,JA, lat
( i ) , are not part of the action

and we list their Feynman rules separately. Again, letk8 and
k be the outgoing and incoming quark momenta, resp
tively, and letqi and m i denote the momenta and polariz
tions, respectively, of the emitted gluons. Also, letqext be
the momentum carried off by the external heavy-light c
rent, wherek5k81( iqi1qext . We use the notation@O# (n)

to indicate the vertex factor forn-gluon emission from op-
eratorO. At tree level,
s.
c-

-

@JA, lat
~1! #~0!52

i

2M (
j

sin@ 1
2 ~k81k1qext! j #~Gg j !,

@JA, lat
~2! #~0!52

i

2M (
j

sin@ 1
2 ~k81k2qext! j #~g jG!.

For one gluon emission~m5 j , color factor5Tbc
a !:

@JA, lat
~1! #~1!52g

i

2M
cos@ 1

2 ~k81k1qext! j #~Gg j !,

@JA, lat
~2! #~1!52g

i

2M
cos@ 1

2 ~k81k2qext! j #~g jG!.

For two gluon emission ~m15m25 j , color factor
5(TaTa8)bc!:

@JA, lat
~1! #~2!5g2

i

4M
sin@ 1

2 ~k81k1qext! j #~Gg j !,

@JA, lat
~2! #~2!5g2

i

4M
sin@ 1

2 ~k81k2qext! j #~g jG!.
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