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Perturbation evolution in cosmologies with a decaying cosmological constant

Pedro T. P. Viana and Andrew R. Liddle
Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

~Received 27 August 1997; published 18 December 1997!

Structure formation models with a cosmological constant are successful in explaining large-scale structure
data, but are threatened by the magnitude-redshift relation for type Ia supernovae. This has led to discussion of
models where the cosmological ‘‘constant’’ decays with time, which might anyway be better motivated in a
particle physics context. The simplest such models are based on scalar fields, and general covariance demands
that a time-evolving scalar field also supports spatial perturbations. We consider the effect of such perturba-
tions on the growth of adiabatic energy density perturbations in a cold dark matter component. We study two
types of model, one based on an exponential potential for the scalar field and the other on a pseudo Nambu
Goldstone boson. For each potential, we study two different scenarios, one where the scalar field presently
behaves as a decaying cosmological constant and one where it behaves as dust. The initial scalar field pertur-
bations are fixed by the adiabatic condition, as expected from the inflationary cosmology, though in fact we
show that the choice of initial condition is of little importance. Calculations are carried out in both the
zero-shear~conformal Newtonian! and uniform-curvature gauges. We find that both potentials allow models
which can provide a successful alternative to cosmological constant models.@S0556-2821~98!01002-9#

PACS number~s!: 98.65.Dx, 04.40.Nr
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I. INTRODUCTION

Ever since the demise of the standard cold dark ma
model, which proved unable to simultaneously match
Cosmic Background Explorer~COBE! observations of cos
mic microwave background anisotropies, the abundanc
rich galaxy clusters and the shape of the galaxy correla
function, it has been fashionable to study variations on
basic theme. A popular alternative is to lower the mat
density, thus shifting the epoch of matter-radiation equa
in a desirable direction. To keep the possibility that stand
models of inflation, generating a spatially flat Univers
might be responsible for the seed perturbations, the m
popular version of this model is to introduce a cosmologi
constantL to maintain the spatial flatness. This has prove
compelling framework within which it is possible to unde
stand the formation and evolution of large-scale structure
the Universe@1,2#.

The favored models, until recently, had the energy den
VL in the cosmological constant lying in the range 0.5
0.7. As well as giving a good fit to large-scale structure o
servations, these models have support from two furt
sources. If one assumes the baryon density in the Univer
that predicted by standard big bang nucleosynthesis@3#, and
that large galaxy clusters provide a representative samp
the universal ratio between baryons and the total amoun
matter in the Universe@4#, then the matter density must b
significantly below one. Further, the need to have the ag
the Universe,t0 , exceeding the age of the globular cluste
in our galaxy suggests thatVL should be as large as po
sible. Until recently the required value fort0 was usually
around 14 Gyr@5#, but a revised Cepheid distance scale d
to new distance estimates by the satellite Hipparcos
brought this down to something more like 12 Gyr@6,7#.
Given that most measurements~even taking into accoun
Hipparcos’s revision of the Cepheid distance scale! seem to
suggest that the present value of the Hubble parameterh is at
570556-2821/97/57~2!/674~11!/$15.00
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least 0.6~in the usual units of 100 km s21 Mpc21! @8# and
perhaps even larger@9#, in a flat Universe we would then
needVL.0.3 ~0.55 if t0.14 Gyr!.

Unfortunately, these models have been dealt a ser
blow by the preliminary results from the Supernova Cosm
ogy Project @10#, which attempts to determine th
magnitude-redshift diagram of type Ia supernovae. Th
place a 95 percent confidence upper limit ofVL,0.5 for flat
Universes. This is significantly stronger than earlier lim
from the galaxy velocity distribution@11#, galaxy outflows
from voids @12# and the statistical analysis of the frequen
of gravitational lensing of high-redshift quasars@13#, all
coming in aroundVL,0.7. While the cold dark matter with
a cosmological constant~LCDM! model remains viable with
these smallerVL values, this is seen as much less attract
because, as in the critical-density case, the required m
density is well above that given by direct observation.

A way out of this dilemma is to move to cosmologic
models where the cosmological constant is substituted b
dynamical quantity which decays with time@14–23#. Within
these models it is possible to relax the constraints resul
both from the frequency of gravitational lensing of hig
redshift quasars and from type Ia supernovae@24,18,25,21#.
While in some ways this is clearly a regressive step, int
ducing more freedom into the model, it can also be argu
that such a situation may be more natural on particle phy
grounds. For example, there is the well-known difficu
within quantum field theory to understand the very sm
vacuum energy density,mvac5~0.003 eV!4VL , required by a
cosmological constant. If not strictly zero, due to some
unknown cancellation mechanism, one would expectmvac to
be between 50 and 120 orders of magnitude larger@26#. A
decaying cosmological constant term would be a simple w
of reconciling a very large vacuum energy density early
in the Universe with an extremely small one at present.

Some authors have simply assumed more or lessad hoc
decay laws for the cosmological constant term@14#. By com-
674 © 1997 The American Physical Society
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57 675PERTURBATION EVOLUTION IN COSMOLOGIES WITH . . .
paring predictions of the models with observations it w
then hoped that the correct decay law could be recove
which would then shed some light on the possible phys
process behind the decaying cosmological constant te
However, a credible mechanism for obtaining such a te
already exists, which is to assume the existence of a sc
field presently relaxing towards the minimum of its potent
~see e.g.@15–23#!. Scalar fields are not only predicted
exist by some particle physics theories that go beyond
standard model, but are also the most plausible engine
hind a possible inflationary period in the very early Univer
@27#. The overall dynamics of the Universe in the presence
a relaxing scalar field, and its consequences for several c
sical cosmological tests, has been studied in detail by var
authors@24,28#.

Our aim in this paper is to study the effect of spat
perturbations in the cosmological ‘‘constant’’ term given
such a field, in particular on the growth of the matter pert
bations. When one has the standard constantL term, there is
no possibility of any perturbations in it. However, as soon
one permits any form of time variation, general covarian
immediately implies that it must be able to support spa
perturbations. Despite this, presumably because of the de
opment of this line of research from the original consta
case, with few exceptions@19–23# most authors have no
looked at the possible effect of spatial perturbations in
background value of the scalar field on the growth of pert
bations in the matter distribution.

II. EQUATIONS AND INITIAL CONDITIONS

We will assume that the background space-time conta
an ideal fluid and a scalar field. The equation of state of
ideal fluid, relating its background pressure,pg , to its back-
ground energy density,mg , is pg5(g21)mg , whereg is a
constant. The background energy density and pressure a
ciated with a minimally coupled real scalar field with pote
tial V(f) are given by

mf5
1

2
ḟ21V~f!; pf5

1

2
ḟ22V~f!. ~1!

The overdots represent derivatives with respect to coordi
time t.

The evolution of these background quantities is descri
by the Friedmann equation

H25
8pG

3 Fmg1
1

2
ḟ21V~f!G , ~2!

together with the two energy conservation equations

ṁg523Hgmg , ~3!

f̈13Hḟ1V,f50, ~4!

for the ideal fluid and the scalar field respectively. HereH

[ȧ/a is the Hubble parameter,a the cosmic scale factor
and ,f represents a derivative with respect tof.

We shall carry out a fully relativistic treatment of th
perturbations, using a formalism based on a series of pa
s
d,
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by Hwang@29–33#. As always, the equations describing th
evolution of the perturbations are very complicated and
have relegated their discussion to our two Appendices
crucial question when studying perturbations is the choice
gauge. We shall consider two choices. Mainly we shall u
the zero-shear gauge~ZSG! @also known as conformal New
tonian or longitudinal#, but we shall also solve the equation
in the uniform-curvature gauge~UCG! as a check on the
accuracy of the numerical calculations.

The perturbation equations, described in the Appendic
relate the perturbed part of the metric variables,a ~perturbed
part of the lapse function!, w ~perturbed part of the spatia
curvature!, x ~perturbed part of the shear! and k ~perturbed
part of the expansion scalar!, to the perturbed part of the
matter variables,e5eg1ef ~perturbed part of the total en
ergy density!, Ã5Ãg1Ãf ~perturbed part of the total pres
sure! and C5Cg1Cf ~perturbed part of the total energ
density flux, or total fluid four-velocity, depending on th
frame chosen!. In the ZSGx is chosen to vanish, while in the
UCG w vanishes. In all, we will need to numerically inte
grate a system of seven simultaneous first-order ordinary
ferential equations, formed by the background equatio
Eqs. ~B1! to ~B3!, where Eq.~B4! gives mg , and the four
perturbation equations resulting from either Eqs.~B18! and
~B19! ~in the ZSG!, or Eqs.~B20! and ~B21! ~in the UCG!.

We must now specify the initial conditions required
order to solve this system. We shall do that by providing
initial values for the quantitieseg , Cg , df and df8. The
first two give the initial values forw andw8 ~ZSG! ~x andx8
in the UCG! by means of Eqs.~B8! and~B9! @Eqs.~B14! and
~B15! in the UCG#.

We make two requirements on the initial conditions. T
first is to choose the initial value ofCg so that only the
growing mode of the solution for the evolution of an ide
fluid in an Einstein–de Sitter Universe is present~see the
exact analytical solutions in Table 1 of Ref.@30#!, as this is
the situation we would expect in the later phase of the e
lution of the Universe if the density perturbations in the ide
fluid were produced in the very early Universe.

Secondly, we will assume that the energy density per
bations in the ideal fluid and the scalar field are related
the adiabatic condition@34#. Standard models of inflation
@35# always give this type of perturbation, as there is on
one dynamical degree of freedom during inflation, and s
is by far the most natural choice to make. The entropy p
turbation should therefore vanish,

Sgf[
eg

mg1pg
2

ef

mf1pf
50, ~5!

together with its first time derivative,

Ṡgf[
k2

a2 Cgf23Hegf50, ~6!

where

Cgf[
Cg

mg1pg
2

Cf

mf1pf
, ~7!

and
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676 57PEDRO T. P. VIANA AND ANDREW R. LIDDLE
egf[
eg

mg1pg
2

ef

mf1pf
. ~8!

The quantities

eg[Ãg2
ṗg

ṁg
eg ; ef[Ãf2

ṗf

ṁf
ef , ~9!

represent the internal entropy of each component. In the
of the ideal fluid we haveeg50. From the adiabatic condi
tions we obtain the initial values ofdf anddf8:

df5
22af8V,feg1k2Hf82Cg

~3gmg!@2V,f2k2f8/~3a!#
, ~10!

df85f8
eg

gmg
2

dfV,f

a2H2f8
1f8a. ~11!

We also need to specify the initial values of the bac
ground variablesH, f andf8 which determine the cosmo
logical model. The initial value ofmg is obtained by the
requirement that the Universe has critical density. The ot
three degrees of freedom for the initial background con
tions are fixed by requiring specific present values of
cosmological quantitiesh, t0 and Vg

0 . Note that for some
V(f), and given the required values forh andVg

0 , it may
not be possible to obtain the desired value fort0 . In general,
for fixed h andVg

0 there will be a maximum valuet0 that can
be reached for a givenV(f).

III. THE CHOICE OF SCALAR FIELD POTENTIAL

Before we go on to perform the numerical integration
the perturbation equations in both the ZSG and the UCG,
need to specify what type of ideal fluid we will consider a
the shape of the scalar field potential. We are mainly in
ested in the growth of matter density perturbations during
matter dominated era, and there are good reasons to be
that most matter in the Universe has negligible intrinsic
locity, i.e. it is cold. In this paper we will assume that th
ideal fluid has no pressure, that isg51.

With relation to the type of scalar field we should co
sider the issue is not as clear. Many different scalar fie
have been proposed, most of them with the specific aim
producing an inflationary expansion phase in the very e
Universe, though some also originate from attempts at
tending the standard model of particle physics.

We will consider two different scalar field potentials, a
exponential potential of the form

V~f!5V0 exp~2bf!, ~12!

and the potential associated with a pseudo Nam
Goldstone-boson~PNGB! field @36#,

V~f!5M4@cos~f/ f !11#. ~13!

Both these potentials have been extensively studied, wi
the context of power-law inflation@37# and natural inflation
@38# respectively. The PNGB field has also been propo
explicitly as the most natural candidate for a presen
existing minimally-coupled scalar field@18,21#.
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In both cases we have two degrees of freedom, and
principle one should explore the full 2-dimensional para
eter space defined by them. However, our main objective
this paper is to draw attention to the importance of tak
into account the possibility of spatial perturbations in a c
mological scalar field when one is assumed to exist, due
their influence on the growth of matter density perturbatio
Therefore, in this paper we will only consider two sets
values for the constants associated with each of the two
tentials.

In two of the models thus obtained, one for each potent
the scalar field presently behaves like a slowly-decaying c
mological constant. In these models, we will choose the
tial values of the background variablesH, f andf8, and the
constants associated with the potentials, so that we end
with h50.6, Vm

0 50.4, and an age for the Universe oft0

514 Gyr. In the other two models, again one for each p
tential, the scalar field starts behaving like nonrelativis
matter, scaling asa23, at a redshift close to 100. Therefor
the age of the Universe in these models is pretty much
same as if the Universe was always matter dominated
order to obtain an acceptable age we lowerh slightly to h
50.55 to givet0.12 Gyr.

Our numerical integration of the perturbation equatio
will begin at a redshift ofz51100, roughly at electron-
photon decoupling, and end at the present time. One rea
for this choice is that through the COBE satellite measu
ment of the amplitude of cosmic microwave backgrou
anisotropies we have good knowledge of the amplitude
energy density perturbations existing at the horizon scal
this redshift@39#. The main reason though is that for reaso
able parameter values we are well into matter dominat
and the effects of radiation on the matter power spectrum
density perturbations have already run their course. At
redshift, the power spectrum is well described by the c
dark matter transfer function, for example as parametrized
Bardeenet al. @40,41#. We are thus able to analyze the e
fects of the scalar field on the matter power spectrum, w
out them being concealed within the full Boltzmann co
machinery. We cannot however make predictions for the
microwave anisotropy power spectrum.

A. The exponential potential

For the exponential potential there is a particularly int
esting situation, which we will call EXP1, where the relativ
energy densities of the scalar field and the ideal fluid rem
constant with time, thus implyingpf5(g21)mf , after a
transitional period. The energy density associated with
scalar field is then a fixed fraction, 24pGg/b2, of the total
energy density in the Universe@16,42,22#. This scaling solu-
tion of the cosmological background equations is one of t
attractor points for the system, the other being the w
known power-law inflation solution. The former is the on
which is attained if the potential is steep enough. As hom
geneous perturbations around the scaling solution typic
have complex eigenvalues, the system usually approa
the attractor point through oscillations in the relative ene
densities of the scalar field and the ideal fluid. It has recen
been studied by Ferreira and Joyce@22#, though for different
parameters than the model we will look at.
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57 677PERTURBATION EVOLUTION IN COSMOLOGIES WITH . . .
That the Universe eventually reaches the scaling solu
with Vm50.4 demands thatb5A40pG. We choose the sca
lar field energy density at the start of the simulation to
much smaller than that of the scaling solution; this is n
necessary, though it does have to be true much earlie
nucleosynthesis@42,22#. This restricts the possible combina
tions for the values ofḟ at z51100 andV0 . The valuef
takes atz51100 is a matter of definition and we set it
zero. We will assumeḟ to be extremely small atz51100,
thus implying thatV05(0.025 eV)4. With this choice of pa-
rameters the scalar field begins to contribute significantly
the total energy density in the Universe by a redshift of ab
70. In accordance with the discussion above, this mo
therefore gives the same age as the Einstein–de Sitter
and to make it large enough we chooseh50.55.

The second situation we consider, denoted EXP2
where the system is presently entering a period of power-
inflationary expansion, analogous to the exponential exp
sion which would arise if a cosmological constant is pres
in the Universe. To obtain our desired values~stated above!
for Vm

0 , h and t0 implies roughly thatb5A28pG. On the
other hand, these constraints only very weakly define
initial splitting of the energy density associated with the s
lar field at z51100 into its potential and kinetic parts. W
will again arbitrarily assume thatḟ(z51100).0, thus im-
plying V05(0.0025 eV)4.

B. The PNGB potential

In the case of the PNGB potential we will also exami
two distinct possible evolution histories for the Universe.
the model we will call PNGB1, whereM50.04h1/2 eV and
f 51.2531018 GeV, the scalar field starts to roll down it
potential at a redshift of about 100, and is presently coh
ently oscillating at the bottom of the potential, behaving d
namically as cold matter. This model, like EXP1, gives t
same age as a Universe containing only matter, so again
takeh to be 0.55, giving an age for the Universe of 12 G
The constraintVm

0 50.4 implies thatf(z51100)5 f and

ḟ(z51100).0.

FIG. 1. This shows the present amplitude of fractional pertur
tions in the energy density of the ideal fluid in the ZSG for our fo
different models, relative to the one obtained in the case where
scalar field is present and the Universe is flat withV050.4. The
full and dashed lines represent respectively the two expone
potential and the two PNGB models. The arrow indicates the
verse Hubble radius,k5aH, at present.
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In model PNGB2, whereM50.003h1/2 eV and f
51/A8pG52.431018 GeV, the scalar field begins movin
down its potential at aroundz51, and has not yet reache
the bottom of the potential by the present time. The values
M and f in this model coincide with those chosen for a mo
detailed analysis by Friemanet al. @18# in their paper dealing
with PNGB motivated dynamical cosmological consta
models.1 Imposing the boundary conditionVm

0 50.4 leads to

f(z51100)51.75f and ḟ(z51100).0, while h50.6 and
t0514 Gyr are obtained by simply choosing the corre
value forH at z51100.

IV. RESULTS

We will work in the ZSG, and display the fluid densit
perturbationdg

x[eg
x/mg . We arbitrarily take its initial value

at redshift 1100 to be 1025; as the equations are linear, an
our main results only show power spectra relative to o
another, the initial magnitude of the density perturbation
irrelevant. Note that the density perturbations given in diff
ent gauges coincide on scales well within the horizon,
otherwise, though uniquely defined as long as the gaug
given, do not coincide. Care must therefore be taken in
terpreting any long-wavelength behavior. Most of the lite
ture uses the comoving gauge if the large-scale power s
trum is shown.

We integrated the background and perturbation equat
both in the ZSG and the UCG using the NAG Fortran L
brary RoutineD02CJF, which is based on a variable-orde
variable-step Adams method, for values ofk in the range of
1025 to 1 h Mpc21. We did this not only for the four scala
field models chosen in the previous section, but also for t
cases where no scalar field was assumed present, which
serve as comparison. In one the Universe has critical den
while in the other the Universe is flat withV050.4, thus
implying the presence of a cosmological constant.

In Fig. 1 we plot the present amplitude obtained fordg
x(k)

~for simplicity henceforth omitting the superscript and a
ways meaning this gauge! for our four models, relative to
that found in the case of a flat Universe withV050.4 ~with
h in this comparison model adjusted to match that of each
the four scalar field models we consider!. The main integra-
tion runs were done in the ZSG, but when the same r
were performed in the UCG, witheg

w(z51100) calculated
from eg

x(z51100) using Eq.~B28! and theneg
x(z50) from

eg
w(z50) using Eq.~B31!, the difference in the present valu

1In a more recent paper, Cobleet al. @21# considered a slightly
different model with M50.005 eV and f 51.88531018 GeV,
where the scalar field starts moving down the PNGB potentia
z.10 and is presently already oscillating around its minimu
These values were chosen so that the model yieldsVm

0 50.4 and
h50.7. This implies an age for the Universe only slightly above
Gyr. We prefer the PNGB2 model over theirs. If one chose
obtainh50.55, and thus an age close to 12 Gyr, one would end
with Vm

0 50.5.
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of eg
x was less than one percent over the whole range fork in

the four models.
Although we believe that Eqs.~10! and ~11! should be

used to obtain the initial values fordf and df8, in accor-
dance with the adiabatic relations Eqs.~5! and ~6! one ex-
pects from inflationary generated perturbations, we a
looked at what occurs when arbitrary initial values for the
quantities are assumed. After performing several integra
runs for a variety of initial values fordf and df8, we
reached the conclusion that the evolution of the energy d
sity perturbations in the ideal fluid is almost~to a few per-
cent! independent of the initial values one considers for th
quantities, as long as they are less than of order unity
particular, this holds true~to better than 1 percent! when it is
assumed that there are no initial scalar field perturbati
either in the ZSG, i.e. (df8)x5dfx50, or in the UCG, i.e.
(df8)w5dfw50. So the initial condition for the scalar fiel
perturbations does not seem particularly important.

In Fig. 2 we plot the evolution ofdg(a) for perturbations
with a comoving wave number ofk50.5 h Mpc21 between
z5100 and the present. All the four scalar field models
shown, together with the cases of a critical-density Unive
and a flat Universe withV050.4. The integration runs wer
actually started atz51100, but all models behave very muc
as the critical-density case up toz5100. We chose the wave
number shown as it corresponds to a scale which was alre

FIG. 2. The evolution in the ZSG of the perturbations with
comoving wave number ofk50.5 h Mpc21. The dash-dotted and
dotted lines represent the cases where respectively the Univers
critical density and the Universe is flat withV050.4, with no scalar
field present. Solid lines show the EXP models and dashed one
PNGB models.
o
e
n

n-

e
In

s

e
e
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well inside the Hubble radius at the beginning of the integ
tions, so we need not worry about specifying the gauge
fact, comparing the present amplitude ofdg obtained in the
ZSG and in the UCG for the various models under cons
eration, we find that the density perturbations in the t
gauges coincide for values ofk down to about
1023 h Mpc21, and can therefore be regarded as gau
independent. For smallerk values one needs to be careful
specify the gauge used.

As mentioned in Sec. III, Fig. 1 represents the distorti
in the square root of the matter power spectrum suffe
since redshift 1100,P(k)}dg

2 , relative to a flat Universe
with V050.4 and no scalar field. Since the full spectrum
that model, including all known effects of radiation and ne
trinos, is well known, we can therefore use it to obtain t
expected present shape ofP(k) for our four scalar field mod-
els.

We show the power spectra in Fig. 3, where we sim
multiplied the expected present shape ofP(k) in a flat Uni-
verse withV050.4, VB50.016h22 and eitherh50.55 or
h50.6, with no scalar field present, bydg

2/dg
2(V050.4).

This procedure is correct since up toz51100 the back-
ground and perturbation evolution of any of the scalar fi
models is equivalent to that of a cosmological const
model which has the same values forV0 and h as each
individual scalar field model. We also show in Fig. 3 th
expected present shape ofP(k) in a critical-density Universe
for the two values ofh considered. We obtained the expect
present shape ofP(k) for both the critical density and the
cosmological constant cases by assuming a Harris
Zel’dovich ~scale-invariant! primordial power spectrum for
the energy density perturbations and using the cold dark m
ter transfer function initially derived by Bardeenet al. @40#,
and later modified by Sugiyama@41# to include the contribu-
tion of baryons.

The critical-density and cosmological constant models
normalized to COBE@39#. The amplitude of the other mod
els, which has been computed relative to the latter, is alm
correct. It includes the two main effects—that the early tim
matter power spectrum in low-density models is higher b
factor 1/V0 than in critical-density models is encoded in th
initial conditions through the different initial value ofH, and
the growth suppression factor from the scale factor dynam
is computed in the subsequent evolution. As each model~ex-

has

the
OBE as
XP2
FIG. 3. The power spectrum of the energy density perturbations in the matter component for the models, all normalized to C
described in the text. The line styles representP(k) for the same situations as in the previous two figures. Note that the PNGB2 and E
models give a very similar spectrum to the standard cosmological constant case.
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cept the critical-density one! has the same redshift of matte
radiation equality, all that is omitted is the line-of-sight co
tribution to the Sachs-Wolfe effect, which requires a f
Boltzmann code for accurate computation. The effect of t
term on the COBE normalization is nonexistent for t
critical-density case, and known to be negligible in the c
mological constant case~see e.g. Refs.@43,2#!. It may be
slightly more significant for the decaying cosmological co
stant case@21# and future observations would probably r
quire an accurate computation, while present ones do no

We only show the power spectra for values ofk larger
than 1023 h Mpc21. On smaller scales the amplitude of th
power spectrum is gauge-dependent, though of course w
defined in any particular gauge.

V. DISCUSSION

The results presented in this paper extend previous w
on the effects of a presently-existing scalar field, with reg
to the evolution of energy density perturbations in a pr
sureless fluid. In accordance with general covariance we
low for the presence of spatial perturbations in the sca
field. Contrary to previous authors, we explicitly relate t
energy density perturbations in the pressureless fluid to th
in the scalar field through the adiabatic condition, as
pected if those perturbations arose from a period of inflat
in the very early Universe.

The study of the perturbation evolution was perform
both in the zero-shear and uniform-curvature gauges, in
latter case for the first time.

We considered two possible potentials for the scalar fie
an exponential and that associated with a pseudo Nam
Goldstone-boson field. Each of these potentials has two
grees of freedom, and we worked with two different sets
parameters for each potential. Those models, EXP2
PNGB2, which were chosen so that the scalar field beco
dynamically important only very recently, atz;1, and is
presently behaving as a cosmological constant, yield a sh
for the power spectrum of energy density perturbations in
matter component extremely close to that one obtains
cosmological constant model whereV050.4 and h50.6,
though the amplitude is a few percent smaller.

The situation is rather different for the other two mode
EXP1 and PNGB1, chosen so that the scalar field beco
dynamically important at a much earlier time, around a r
shift of 100. They presently behave as pressureless matte
the case of model EXP1 the shape of the power spectrum
energy density perturbations in the matter componen
again very close to that one obtains in a cosmological c
stant model, this time withV050.4 andh50.55. Its ampli-
tude is however only about 5 percent of that for the cosm
logical constant model. Model PNGB1 has the furth
interesting feature that the shape ofP(k) is altered for values
of k below 0.01h Mpc21. Unfortunately this corresponds t
scales above around 100h21 Mpc, at the limit of what
present cluster and galaxy surveys can probe. The featu
the shape ofP(k) for model PNGB1 is due to oscillations i
the rate of decrease of the Hubble parameter when the s
field becomes dynamically important atz;100. On smaller
scales the suppression of the growth of the energy den
l
is
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perturbations in the matter component is similar to that
model EXP1.

The results just described suggest that the presenc
spatial perturbations in a presently-existing scalar field s
stantially affects the evolution of energy density perturb
tions in the matter component only if the scalar field h
contributed significantly to the total energy density in t
Universe for several Hubble times. If the scalar field is b
coming dynamically important only now, the presence
spatial perturbations does not seem to have much effect

The similarity between the scalar field models EXP2 a
PNGB2, and a flat model withV050.4, h50.6 and no sca-
lar field, makes the first two models attractive substitutes
the latter. Further, given that the above mentioned flat mo
is able to reproduce all the most reliable observational d
presently available on large-scale structure and cosmic
crowave background temperature anisotropies@2#, we expect
models EXP2 and PNGB2 to do as well. As they are qu
similar to the standard cosmological constant case, a deta
evaluation of the supernova constraint would be interest
Friemanet al. @18# suggest that the constraint will weaken
they should be viable.

With regard to models EXP1 and PNGB1, their mu
smaller growth for the matter perturbations seems very pr
lematic. We expect the dispersion of the density contr
smoothed on spheres of 8h21 Mpc, usually represented b
s8 , required for both models so that they can reproduce
present abundance of high mass x-ray emitting galaxy c
ters to be the same as for the critical-density case, due to
two models being dynamically equivalent to it since w
before redshift 10. This conservatively requiress8 in the
range 0.45 to 0.8 for both models@44#. On the other hand, a
the growth suppression factor of the matter perturbation
about 4.5 times larger in the EXP1 and PNGB1 models th
in a flat model withV050.4 andh50.55, to a first approxi-
mation this means that the value ofs8 implied by COBE for
the two scalar field models would be about 4.5 times sma
than for the flat model@21#. Inclusion of the integrated
Sachs-Wolfe effect may lead to a slight further decrease
s8 @21#. If the primordial power spectrum of energy densi
perturbations is assumed scale-invariant, then this wo
mean thats8,0.18 for both EXP1 and PNGB1@2#. One
would need a very ‘‘blue’’ primordial power spectrum, wit
at leastn.1.45, for s8 to reach the minimum requiremen
of 0.45. Ferreira and Joyce@22# advocate a much larger valu
of V0 , which resolves the amplitude problem while giving
more modest change in the shape of the spectrum.

As in both EXP1 and PNGB1 the scalar field go
through a period at a redshift of about 100 when it beha
dynamically like a cosmological constant, we expect the f
angular anisotropy spectrum for the cosmic microwave ba
ground radiation in these models to display a distinctive s
nature. This clearly merits detailed investigation.

Note.As we were completing this paper, a report by Ca
well et al. @23# appeared which covers similar issues. Th
use an enhanced Boltzmann code to generate microwave
isotropy power spectra. Their matter power spectra appea
good agreement with ours. They did not use adiabatic ini
conditions for the scalar field perturbations, but we ha
shown that this is unlikely to have significant effects. In a
other paper, Frieman and Waga@45# use the recent observa



t

he
an
g

w
y

or
a

u
e
n
re
u
er
a

rd
ug
tit
h
in

ich
om

in
46
o
ly
ua
isi
nd
m
io
lly

th
o
o

te

lv
n
an
f
a
ld
se
e
a
de
nl

on
part
-

n

tal

e
r-

nd
ex-

er
ced

o-
he
en-

s a
a-

680 57PEDRO T. P. VIANA AND ANDREW R. LIDDLE
tions of high-redshift type Ia supernovae@10# to constrain
models of the type we consider. All our models are found
be viable.
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APPENDIX A: THE EVOLUTION EQUATIONS

1. Gauge considerations

A cosmological perturbation is defined by means of a c
respondence between an arbitrary background spacetime
the real physical Universe. Agauge transformationis a
change in this correspondence, keeping the backgro
spacetime fixed. Therefore, in general the value of the p
turbed part of some physical quantity will not be invaria
under a gauge transformation. Further, the degrees of f
dom due to gauge transformations give rise to spurious
physical modes in the solutions to the evolution of the p
turbed part of gauge-dependent quantities, which can alw
be removed by a convenient gauge transformation. In o
to avoid these spurious modes one either evolves ga
invariant quantities related to the gauge-dependent quan
one is actually interested in, obtaining the latter from t
former at any one time, or one has to provide a gauge-fix
condition which completely specifies the way through wh
spacetime is to be split into background and perturbed c
ponents.

The linear analysis of cosmological perturbations was
tiated by Lifshitz, with a seminal paper published in 19
@46#, who used the so-called synchronous gauge-fixing c
dition. Unfortunately this condition, though considerab
simplifying the perturbation equations, still leaves a resid
gauge degree of freedom. The spurious modes thus ar
are difficult to distinguish from the real physical ones, a
their identification was a source of controversy for so
time. The use of gauge-invariant quantities in the calculat
of the evolution of cosmological perturbations only rea
took off with the paper by Bardeen in 1980@47#. Though it
avoids the problem of obtaining unphysical modes in
solutions to the perturbation equations, it really does not
fer any extra advantage over the gauge-specific meth
which remove any gauge degree of freedom by comple
fixing the background/perturbed splitting.

In this paper we will use gauge-specific methods to so
the perturbation equations. We will adopt the notation a
use the equations laid down in a series of papers by Hw
@29–33#. We will be solely interested in the evolution o
density~scalar! perturbations. The system is composed of
ideal fluid plus a single minimally coupled real scalar fie
f, evolving in a background Einstein–de Sitter univer
Given that the spatial part of the background spacetim
thus homogeneous and isotropic, the perturbations in
physical quantities will necessarily be gauge-invariant un
purely spatial gauge transformations. We will therefore o
o
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worry about the temporal gauge transformation.

2. Notation and general equations

We will now introduce the gauge nonspecific perturbati
equations obtained by Hwang. They relate the perturbed
of the metric variables,a ~perturbed part of the lapse func
tion!, w ~perturbed part of the spatial curvature!, x ~perturbed
part of the shear! and k ~perturbed part of the expansio
scalar!, to the perturbed part of the matter variables,e5eg
1ef ~perturbed part of the total energy density!, Ã5Ãg
1Ãf ~perturbed part of the total pressure!2 and C5Cg
1Cf ~perturbed part of the total energy density flux, or to
fluid four-velocity, depending on the frame chosen!. We
have

Ãg5~g21!eg , ~A1!

and one can derive that@32#

ef5ḟḋf2ḟ2a1V,fdf, ~A2!

Ãf5ḟḋf2ḟ2a2V,fdf, ~A3!

Cf52ḟdf, ~A4!

wheredf is the perturbed part of the scalar field. We will b
particularly interested in the evolution of the fractional pe
turbation in the energy density of the ideal fluid,dg
[eg /mg .

We will express the perturbed parts of both the metric a
matter variables by means of Fourier expansions. For
ample,

df~x,t !5(
k

dfk~ t !eik–x, ~A5!

where

dfk~ t !5
1

V E df~x,t !e2 ik–xdx, ~A6!

being k[uku a fixed comoving wave number. The Fouri
expansions are made in a large enough box that the indu
periodicity is irrelevant.

As in this paper we are only interested in the linear ev
lution of cosmological perturbations, we will assume that t
different Fourier modes for each variable behave indep
dently of each other. We will drop the sufficesk identifying
each Fourier mode in order to lighten the notation.

In the case of our system, formed by an ideal fluid plu
minimally coupled real scalar field, the perturbation equ
tions take the form@29,30,32#

3ẇ53Ha2k1
k2

a2 x, ~A7!

2Here we changed the notation fromp to Ã to avoid confusion
with the numberp.
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2
k2

a2 w1Hk524pG~eg1ḟḋf2ḟ2a1V,fdf!,

~A8!

k2
k2

a2 x5212pG~Cg2ḟdf!, ~A9!

ẋ1Hx5a1w, ~A10!

k̇12Hk5S k2

a2 23Ḣ Da14pG@~3g22!eg14ḟḋf24ḟ2a

22V,fdf#, ~A11!

ėg13Hgeg5gmg~k23Ha!1
k2

a2 Cg , ~A12!

Ċg13HCg52gmga2~g21!eg , ~A13!

d̈f13H ḋf1S k2

a2 1V,ffD df

5ḟ~k1ȧ !2~3Hḟ12V,f!a. ~A14!

It should again be stressed that these equations were obt
without reference to any gauge-fixing condition. No anis
tropic pressure term appears as in both the case of an
fluid and a minimally coupled real scalar field the anisotro
pressure is zero. The last three equations are, in order
energy and momentum conservation equations for the pe
bations in the ideal fluid, and the energy conservation eq
tion for the perturbations in the scalar field. The moment
conservation equation for the perturbations in the scalar fi
is identically satisfied.

The most obvious and fundamental gauge-fixing con
tions follow from requiring that the perturbed part of one
the metric or matter variables is zero. We thus have:
synchronous gauge,a[0; the uniform-curvature gauge,w
[0; the zero-shear gauge,x[0; the uniform-expansion
gauge,k[0; the uniform-density gauge,e[0; the uniform-
pressure gauge,Ã[0; and the comoving gauge,C[0. Ex-
cept for the synchronous gauge, all the other gauge-fix
conditions completely remove the gauge modes from the
lutions to the perturbation equations. We will use two
these gauge-fixing conditions to derive two different sets
perturbation equations from the system given above. W
the aid of expressions relating quantities in the two gau
we will thus be able to estimate the numerical errors aris
from the numerical integration of both sets of perturbat
equations. We will consider the zero-shear gauge~ZSG, also
known as the longitudinal or conformal Newtonian gau
@48#!, and the uniform-curvature gauge~UCG!. These
choices are the ones which lead to the two simplest set
perturbation equations, thus decreasing the probability of
merical errors creeping into the solutions. The two sets
be obtained by simply getting rid ofx and ẋ in the case of
the ZSG, andw and ẇ for the UCG, in Eqs.~A7! to ~A14!.
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APPENDIX B: NUMERICAL SOLUTIONS

1. Background and perturbation equations

The evolution of the background variablesH and f is
obtained by numerically solving the system of first-order d
ferential equations formed by Eq.~2! and the two first-order
differential equations that can be obtained from Eq.~4!,

df

da
5 f , ~B1!

d f

da
524

f

a
14pGS gmg f

aH2 1a f3D2
V,f

a2H2 , ~B2!

dH

da
524pGS aH f21

g

aH
mgD , ~B3!

wheremg is given by analytically solving Eq.~3!,

mg5mg
0S a

a0
D 23g

. ~B4!

The suffix ‘‘0’’ indicates present-day values as usual. No
that the independent variable has been changed from co
nate time,t, to the scale factor,a. They are related by the
first-order differential equation

dt

da
5a21H21, ~B5!

the integration of which gives the time elapsed in the U
verse between two given values of the scale factor. Der
tives with respect to the scale factor will be represented b
prime. We choose the independent variable to be the s
factor as it is easier to work with numerically and is mo
meaningful from the point of view of structure formation.

We have 8 perturbation equations for 11 dependent p
turbation variables in both the ZSG and the UCG:eg , eg8 ,
Cg , Cg8 , df, df8, df9, a andk in either, along withw and
w8 in the ZSG, orx andx8 in the UCG. Eqs.~A7! to ~A10!,
~A12! and~A13! will be used to describe the evolution ofa,
k and the quantities associated with the ideal fluid,eg , eg8 ,
Cg andCg8 , in terms ofdf, df8, w andw8 ~ZSG! ~the last
two variables are replaced byx andx8 in the UCG!, and the
background variables. We thus have in the ZSG,

a52w, ~B6!

k523Hw23aHw8, ~B7!

eg5
w

4pG

k2

a2 1
3H2w13aH2w8

4pG
2a2H2f8df8

2a2H2f82w2V,fdf, ~B8!

Cg5
Hw1aHw8

4pG
1aHf8df, ~B9!

eg8523g
eg

a
23gmgw81

k2

a2

Cg

aH
, ~B10!
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Cg8523
Cg

a
1gmg

w

aH
2~g21!

eg

aH
, ~B11!

and for the UCG,

a5Hx1aHx8, ~B12!

k5S 3H21
k2

a2Dx13aH2x8, ~B13!

eg52S 3H21
k2

a2D Hx

4pG
2

3aH3x8

4pG
2a2H2f8df8

1a2H2f82~aHx81Hx!2V,fdf, ~B14!

Cg52
H2x1aH2x8

4pG
1aHf8df, ~B15!

eg8523g
eg

a
1gmg

k2

a2

x

aH
1

k2

a2

Cg

aH
, ~B16!

Cg8523
Cg

a
2gmg

x1ax8

a
2~g21!

eg

aH
. ~B17!

Using these expressions we can now convert Eqs.~A11! and
~A14! into the following second-order differential equation

df952S 4

a
1

H8

H D df82S k2

a2 1V,ffD df

a2H2 24f8w8

12
wV,f

a2H2 , ~B18!

w952F ~3g12!

a
1

H8

H Gw82F3g

a2 1
2H8

aH
1~g21!

k2

a4H2

24pG~g22!f82Gw
14pGF ~g22!f8df81g

dfV,f

a2H2 G , ~B19!

in the ZSG and

df952F4

a
1

H8

H
14pG~g22!af82Gdf82S k2

a2 1V,ff

14pGgaf8V,fD df

a2H2 2F3gHf812aH8f8

1
2V,f

aH
24pG~g22!a2Hf83Gx8

2F2H8f81
3gHf8

a
1

2V,f

a2H
1~g22!

k2

a2

f8

aH

24pG~g22!aHf83Gx, ~B20!
x952F3g12

a
13

H8

H
24pG~g22!af82Gx82F3H8

aH
1

3g

a2

1~g21!
k2

a4H2 24pG~g22!f82Gx
24pGF ~g22!

f8df8

H
1g

dfV,f

a2H3 G , ~B21!

in the UCG. Each of these equations can be split into t
first-order differential equations, in the same way as we
for Eq. ~4!, which we will then numerically integrate in orde
to determine the evolution ofdf, df8, w andw8 ~ZSG! ~x
andx8 in the UCG!.

In all we will need to simultaneously numerically inte
grate a system of seven first-order ordinary differential eq
tions, formed by the background Eqs.~B1! to ~B3!, where
expression~B4! gives mg , and the four perturbation equa
tions resulting from either~B18! and~B19! ~in the ZSG!, or
~B20! and ~B21! ~in the UCG!. The question of initial con-
ditions for this procedure is addressed in the main text of
paper.

2. Relations between quantities in different gauges

Once we have calculated the evolution of the perturbat
variables in some particular gauge, we can use gau
invariant variables and the gauge nonspecific set of pertu
tion Eqs.~A7! to ~A14! to obtain the evolution of such vari
ables in any other gauge.

We will use this possibility to control the errors arisin
from the numerical integration of the perturbation equatio
We will express both our initial conditions and the final r
sults for the perturbation variables in the ZSG, and use
UCG simply as an estimator of the numerical integrati
errors. As an example, we will derive the relations betwe
the perturbations in the energy density of the ideal fluid
the ZSG and the UCG. The change from the ZSG to
UCG, and vice-versa, for the other perturbation variables
be obtained in a similar way.

The quantities

eg
x[eg13H~mg1pg!x, ~B22!

Cg
x[Cg1~mg1pg!x, ~B23!

and

eg
w[eg13~mg1pg!w, ~B24!

Cg
w[Cg1~mg1pg!

w

H
, ~B25!

are invariant under temporal gauge transformations, as
be seen by using the relations provided by Hwang@30#. The
first two variables simply take the values ofeg and Cg ,
respectively, when these quantities are calculated in
ZSG, while the same occurs for the last two variables w
relation to the UCG. We thus want to express in the UCGeg

w

as a function ofeg
x and Cg

x , in order to obtain the initial
value of eg to be used in the UCG calculations from th
originally given in the ZSG. Also, we want to know how t
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obtaineg
x from eg

w andCg
w , so that we can compare the fin

value ofeg obtained in the two gauges.
In the UCG we have

eg
w5eg

x23H~mg1pg!x, ~B26!

and, by using Eqs.~A8! and ~A9!,

k2

a2 Hx212pGH~Cg1Cf!524pG~eg1ef!.

~B27!

Through some algebraic manipulation of the above relati
we then obtain

eg
w5eg

x212pG~mg1pg!
a2

k2 @3H~Cg
x1Cf

x !2~eg
x1ef

x !#,

~B28!

whereef
x andCf

x are defined in an analogous fashion to t
ideal fluid gauge-invariant variables.
.

k

s
J.
n.
. J
J.

-

c
in
po

. E

. J
n,
s

On the other hand, in the ZSG we have

eg
x5eg

w23~mg1pg!w, ~B29!

and, by using the same equations as previously,

2
k2

a2 w212pGH~Cg1Cf!524pG~eg1ef!.

~B30!

Hence, we get

eg
x5eg

w212pG~mg1pg!
a2

k2 @~eg
w1ef

w !23H~Cg
w1Cf

w !#,

~B31!

where againef
w andCf

w are defined in the same way as th
ideal fluid gauge-invariant variables.
-
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