PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Perturbation evolution in cosmologies with a decaying cosmological constant
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Structure formation models with a cosmological constant are successful in explaining large-scale structure
data, but are threatened by the magnitude-redshift relation for type la supernovae. This has led to discussion of
models where the cosmological “constant” decays with time, which might anyway be better motivated in a
particle physics context. The simplest such models are based on scalar fields, and general covariance demands
that a time-evolving scalar field also supports spatial perturbations. We consider the effect of such perturba-
tions on the growth of adiabatic energy density perturbations in a cold dark matter component. We study two
types of model, one based on an exponential potential for the scalar field and the other on a pseudo Nambu
Goldstone boson. For each potential, we study two different scenarios, one where the scalar field presently
behaves as a decaying cosmological constant and one where it behaves as dust. The initial scalar field pertur-
bations are fixed by the adiabatic condition, as expected from the inflationary cosmology, though in fact we
show that the choice of initial condition is of little importance. Calculations are carried out in both the
zero-sheaKconformal Newtonianand uniform-curvature gauges. We find that both potentials allow models
which can provide a successful alternative to cosmological constant mgg@e&56-282(198)01002-9

PACS numbe(s): 98.65.Dx, 04.40.Nr

I. INTRODUCTION least 0.6(in the usual units of 100 km'$ Mpc™1) [8] and
perhaps even largd®], in a flat Universe we would then
Ever since the demise of the standard cold dark matteneed(2,>0.3(0.55 if t,> 14 Gyn.
model, which proved unable to simultaneously match the Unfortunately, these models have been dealt a serious
Cosmic Background ExplordlCOBE) observations of cos- blow by the preliminary results from the Supernova Cosmol-
mic microwave background anisotropies, the abundance adgy Project [10], which attempts to determine the
rich galaxy clusters and the shape of the galaxy correlatiomagnitude-redshift diagram of type la supernovae. They
function, it has been fashionable to study variations on thigplace a 95 percent confidence upper limitb{<0.5 for flat
basic theme. A popular alternative is to lower the mattertUniverses. This is significantly stronger than earlier limits
density, thus shifting the epoch of matter-radiation equalityfrom the galaxy velocity distributiofi11], galaxy outflows
in a desirable direction. To keep the possibility that standardrom voids[12] and the statistical analysis of the frequency
models of inflation, generating a spatially flat Universe,of gravitational lensing of high-redshift quasd&3], all
might be responsible for the seed perturbations, the mosfoming in around , <0.7. While the cold dark matter with
popular version of this model is to introduce a cosmologicala cosmological constaih CDM) model remains viable with
constantA to maintain the spatial flatness. This has proven ahese smallef), values, this is seen as much less attractive
compelling framework within which it is possible to under- because, as in the critical-density case, the required matter
stand the formation and evolution of large-scale structure inlensity is well above that given by direct observation.
the Universd1,2]. A way out of this dilemma is to move to cosmological
The favored models, until recently, had the energy densitynodels where the cosmological constant is substituted by a
Q, in the cosmological constant lying in the range 0.5 todynamical quantity which decays with tini&4—23. Within
0.7. As well as giving a good fit to large-scale structure obthese models it is possible to relax the constraints resulting
servations, these models have support from two furtheboth from the frequency of gravitational lensing of high-
sources. If one assumes the baryon density in the Universe iedshift quasars and from type la supernoj2418,25,2].
that predicted by standard big bang nucleosyntHégisand ~ While in some ways this is clearly a regressive step, intro-
that large galaxy clusters provide a representative sample efucing more freedom into the model, it can also be argued
the universal ratio between baryons and the total amount ahat such a situation may be more natural on particle physics
matter in the Universg4], then the matter density must be grounds. For example, there is the well-known difficulty
significantly below one. Further, the need to have the age ofithin quantum field theory to understand the very small
the Universet,, exceeding the age of the globular clustersvacuum energy densitys,,=(0.003 e*Q), , required by a
in our galaxy suggests th&t, should be as large as pos- cosmological constant. If not strictly zero, due to some yet
sible. Until recently the required value fdg was usually unknown cancellation mechanism, one would expegt. to
around 14 Gy(5], but a revised Cepheid distance scale duebe between 50 and 120 orders of magnitude lafgét. A
to new distance estimates by the satellite Hipparcos hagdecaying cosmological constant term would be a simple way
brought this down to something more like 12 Gj\8,7]. of reconciling a very large vacuum energy density early on
Given that most measuremenfsven taking into account in the Universe with an extremely small one at present.
Hipparcos's revision of the Cepheid distance scakem to Some authors have simply assumed more or éeks8oc
suggest that the present value of the Hubble pararhegeat  decay laws for the cosmological constant tédm]. By com-
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paring predictions of the models with observations it wasby Hwang[29—33. As always, the equations describing the
then hoped that the correct decay law could be recovereayvolution of the perturbations are very complicated and we
which would then shed some light on the possible physicahave relegated their discussion to our two Appendices. A
process behind the decaying cosmological constant terntrucial question when studying perturbations is the choice of
However, a credible mechanism for obtaining such a terngauge. We shall consider two choices. Mainly we shall use
already exists, which is to assume the existence of a scaléine zero-shear gaudgSG) [also known as conformal New-
field presently relaxing towards the minimum of its potentialtonian or longitudingl but we shall also solve the equations
(see e.g[15-23). Scalar fields are not only predicted to in the uniform-curvature gaugdJCG) as a check on the
exist by some particle physics theories that go beyond thaccuracy of the numerical calculations.
standard model, but are also the most plausible engine be- The perturbation equations, described in the Appendices,
hind a possible inflationary period in the very early Universerelate the perturbed part of the metric variablegperturbed
[27]. The overall dynamics of the Universe in the presence opart of the lapse function ¢ (perturbed part of the spatial
a relaxing scalar field, and its consequences for several clasurvature, y (perturbed part of the sheaand « (perturbed
sical cosmological tests, has been studied in detail by variougart of the expansion scajarto the perturbed part of the
authors[24,28. matter variablese=e€,+ €, (perturbed part of the total en-
Our aim in this paper is to study the effect of spatialergy density, == ,+w, (perturbed part of the total pres-
perturbations in the cosmological “constant” term given by surg and ¥ =¥ +W¥ , (perturbed part of the total energy
such a field, in particular on the growth of the matter pertur-density flux, or total fluid four-velocity, depending on the
bations. When one has the standard constatrgrm, there is  frame chosen In the ZSGy is chosen to vanish, while in the
no possibility of any perturbations in it. However, as soon adUCG ¢ vanishes. In all, we will need to numerically inte-
one permits any form of time variation, general covariancegrate a system of seven simultaneous first-order ordinary dif-
immediately implies that it must be able to support spatiafferential equations, formed by the background equations,
perturbations. Despite this, presumably because of the devekgs. (B1) to (B3), where Eq.(B4) gives u,,, and the four
opment of this line of research from the original constantperturbation equations resulting from either E(®818) and
case, with few exceptiongl9-23 most authors have not (B19) (in the ZSG, or Egs.(B20) and(B21) (in the UCG.
looked at the possible effect of spatial perturbations in the We must now specify the initial conditions required in
background value of the scalar field on the growth of pertur-order to solve this system. We shall do that by providing the

bations in the matter distribution. initial values for the quantitieg,, V,, é¢ and é¢’. The
first two give the initial values fop and¢’ (ZSG) (y andy’
Il. EQUATIONS AND INITIAL CONDITIONS in the UCQG by means of Eq¢B8) and(B9) [Egs.(B14) and

_ _ ~(B15) in the UCG.

We will assume that the background space-time contains e make two requirements on the initial conditions. The
an ideal fluid and a scalar field. The equation of state of thej st is to choose the initial value 0P, so that only the
ideal fluid, relating its background pressups,, to its back-  growing mode of the solution for the evolution of an ideal
ground energy densityy.,, is p,=(y—1)u,, whereyisa  flyid in an Einstein—de Sitter Universe is presésee the
constant. The background energy density and pressure assgact analytical solutions in Table 1 of REBO]), as this is
ciated with a minimally coupled real scalar field with poten-the situation we would expect in the later phase of the evo-

tial V(¢) are given by lution of the Universe if the density perturbations in the ideal
1 1 fluid were produced in the very early Universe.
no=5 B2+V( ) Ps=75 $2—V(). (1) Secondly, we will assume that the energy density pertur-

bations in the ideal fluid and the scalar field are related by
o ) ~ the adiabatic conditiori34]. Standard models of inflation
The overdots represent derivatives with respect to coordinatgss] always give this type of perturbation, as there is only

time t. _ o _one dynamical degree of freedom during inflation, and so it
The evolution of these background quantities is describegs py far the most natural choice to make. The entropy per-
by the Friedmann equation turbation should therefore vanish,
87G 1. € €
H2=—— |k, + 5 ¢*+V(9)|, 2 Sy=—2———2 =0 5
3 Y 2 v M7+ py ,(L¢+ p¢ ] ( )
together with the two energy conservation equations together with its first time derivative,
f,=—3Hyu,, ) . _K _
S,6= ?\If7¢—3Hey¢—O, (6)
d+3HP+V,,=0, (4)
where
for the ideal fluid and the scalar field respectively. Here
=al/a is the Hubble parameteg the cosmic scale factor, v = v, v,
Yo (7)

and ,, represents a derivative with respectdo
We shall carry out a fully relativistic treatment of the
perturbations, using a formalism based on a series of papesnd
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e, e, _In_both cases we have two degrees of freedom, and in
LD - Bt Py (8) principle one should explore the full 2-dimensional param-
vory ¢ T eter space defined by them. However, our main objective in
The quantities this paper is to draw attention to the importance of taking
into account the possibility of spatial perturbations in a cos-
. 0 mo!ogical scalar field when one is assume(_j to exist, d_ue to
A R A their influence on the growth of matter density perturbations.
Therefore, in this paper we will only consider two sets of
represent the internal entropy of each component. In the casglues for the constants associated with each of the two po-
of the ideal fluid we have,=0. From the adiabatic condi- tentials.
tions we obtain the initial values a¥¢ and 6¢": In two of the models thus obtained, one for each potential,
) ot 112 the scalar field presently behaves like a slowly-decaying cos-
Sh= —2ad'V.4e, K HW, (10) mological constant. In these models, we will choose the ini-
(Byu,)[2V,4— k’¢'/(3a)]’ tial values of the background variables ¢ and¢’, and the
constants associated with the potentials, so that we end up
L€ 0PV, with h=0.6, Q2=0.4, and an age for the Universe gf
dp'=¢ m_ a’H2¢’ tola. 1) 14 Gyr. In the other two models, again one for each po-
tential, the scalar field starts behaving like nonrelativistic
We also need to specify the initial values of the back-matter, scaling aa 3, at a redshift close to 100. Therefore,
ground variableH, ¢ and ¢’ which determine the cosmo- the age of the Universe in these models is pretty much the
logical model. The initial value ofw, is obtained by the same as if the Universe was always matter dominated. In
requirement that the Universe has critical density. The otheorder to obtain an acceptable age we loweslightly to h
three degrees of freedom for the initial background condi=0.55 to givet,=12 Gyr.
tions are fixed by requiring specific present values of the Our numerical integration of the perturbation equations
cosmological quantities, t, and Q‘;. Note that for some will begin at a redshift ofz=1100, roughly at electron-
V(¢), and given the required values fbrand Qg” it may photon decoupling, and end at the present time. One reason
not be possible to obtain the desired Va|uetf5)r|n general, for this choice is that through the COBE satellite measure-

for fixed h and? there will be a maximum valug that can ~ ment of the amplitude of cosmic microwave background

be reached for a givew(). anisotropies we have good knowledge of the amplitude of
energy density perturbations existing at the horizon scale at
this redshift{39]. The main reason though is that for reason-
able parameter values we are well into matter domination
Before we go on to perform the numerical integration ofand the effects of radiation on the matter power spectrum of
the perturbation equations in both the ZSG and the UCG, wdensity perturbations have already run their course. At this
need to specify what type of ideal fluid we will consider andredshift, the power spectrum is well described by the cold
the shape of the scalar field potential. We are mainly interdark matter transfer function, for example as parametrized by
ested in the growth of matter density perturbations during théardeenet al. [40,41. We are thus able to analyze the ef-
matter dominated era, and there are good reasons to beliefects of the scalar field on the matter power spectrum, with-
that most matter in the Universe has negligible intrinsic ve-out them being concealed within the full Boltzmann code
locity, i.e. it is cold. In this paper we will assume that the machinery. We cannot however make predictions for the full
ideal fluid has no pressure, thatys=1. microwave anisotropy power spectrum.
With relation to the type of scalar field we should con-
sider the issue is not as clear. Many different scalar fields . .
have been proposed, most of them with the specific aim of A. The exponential potential
producing an inflationary expansion phase in the very early For the exponential potential there is a particularly inter-
Universe, though some also originate from attempts at eXesting situation, which we will call EXP1, where the relative

€y¢

Ill. THE CHOICE OF SCALAR FIELD POTENTIAL

tending the standard model of particle physics. energy densities of the scalar field and the ideal fluid remain
We will consider two different scalar field potentials, an constant with time, thus implying,=(y—1)u,, after a
exponential potential of the form transitional period. The energy density associated with the
. - . . 2
V($)=V, expl— Be), (12 scalar field is then a fixed fraction, 24 y/ 3%, of the total

energy density in the Univerg&6,42,23. This scaling solu-
and the potential associated with a pseudo Nambution of the cosmological background equations is one of two

Goldstone-bosofPNGB) field [36], attractor points for the system, the other being the well-
known power-law inflation solution. The former is the one
V(¢p)=M*cog ¢/f )+1]. (13)  which is attained if the potential is steep enough. As homo-

geneous perturbations around the scaling solution typically
Both these potentials have been extensively studied, withihave complex eigenvalues, the system usually approaches
the context of power-law inflatiof37] and natural inflation the attractor point through oscillations in the relative energy
[38] respectively. The PNGB field has also been proposedensities of the scalar field and the ideal fluid. It has recently
explicitly as the most natural candidate for a presently-been studied by Ferreira and Joy@€], though for different
existing minimally-coupled scalar field8,21]. parameters than the model we will look at.
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5 T - - In model PNGB2, whereM=0.003h¥?eV and f
=1/\/87G=2.4x 10" GeV, the scalar field begins moving
down its potential at around=1, and has not yet reached

g 1 the bottom of the potential by the present time. The values of
o M andf in this model coincide with those chosen for a more
E* detailed analysis by Friemaet al.[18] in their paper dealing

o 05 with PNGB motivated dynamical cosmological constant

models! Imposing the boundary conditidﬂ%=0.4 leads to

$(z=1100)=1.75 and ¢(z=1100)=0, while h=0.6 and
%0 T T oot o1 " to=14 Gyr are obtained by simply choosing the correct
k (h Mpc™") value forH at z=1100.

FIG. 1. This shows the present amplitude of fractional perturba-
tions in the energy density of the ideal fluid in the ZSG for our four IV. RESULTS
different models, relative to the one obtained in the case where no

scalar field is present and the Universe is flat with=0.4. The . . : . .
full and dashed lines represent respectively the two exponential We will work in the ZSG, and display the fluid density

vl x o o

potential and the two PNGB models. The arrow indicates the inperturba.uon&y— E“//'LLV' We arbitrarily ta_ke its |n|t|_al value

verse Hubble radiuk=aH, at present. at redshift 1100 to be 1I¥; as the equations are linear, and
our main results only show power spectra relative to one

another, the initial magnitude of the density perturbation is

. t:]'rgt t_hg Zleverse devtﬁntu:’:lllitr)iaech\e/\? thﬁ Scal'?r? SOIunori]'relevant. Note that the density perturbations given in differ-
Wi m=0.4 demands tha# = - VW€ CNOOSE € SCa- oy yauges coincide on scales well within the horizon, but

lar field energy density at the start of the simulation to be . , ' .
much smaller than that of the scaling solution; this is notoj[heanse’ though uniquely defined as long as the gauge is

necessary, though it does have to be true much earlier %[lven, do not coincide. Care must therefore be taken in in-

nucleosynthesig42,22. This restricts the possible combina- erpreting any Iong-vyavelength _behavior. Most of the litera-
tions for the values ofp at z—1100 andV,. The valued ture uses the comoving gauge if the large-scale power spec-

) L g trum is shown.
takes atz=1100 is a matter of definition and we set it to We integrated the background and perturbation equations

zero. We will assumep to be extremely small @=1100,  poth in the ZSG and the UCG using the NAG Fortran Li-

thus implying thatvo=(0.025 eV} With this choice of pa- brary Routinepo2cJg which is based on a variable-order,

rameters the scalar field begins to contribute significantly tQ/ariabIe-step Adams method, for valueskoin the range of

the total energy density in the Universe by a redshift of abogos to 1h Mpc . We did th}s not only for the four scalar
i

70. In accordance with the discussion above, this mod eld models chosen in the previous section, but also for two
therefore gives the same age as the Einstein—de Sitter casg, nep ' X .
and to make it large enough we chodse 0.55. cdses where no scalar field was assumed present, which will

The second situation we consider, denoted EXP2, jServe as comparison. In one the L_Jniverse_has critical density,
where the system is presently entering a period of power-lafl€ in the other the Universe is flat witf},=0.4, thus
inflationary expansion, analogous to the exponential exparfMPlying the presence of a cosmological constant.
sion which would arise if a cosmological constant is present [N Fig. 1 we plot the present amplitude obtained &jk)
in the Universe. To obtain our desired valustated above (for simplicity henceforth omitting the superscript and al-
for Qﬁw h andt, implies roughly that3= J287G. On the Wways meaning this gaugdor our four models, relative to
other hand, these constraints only very weakly define théhat found in the case of a flat Universe withy= 0.4 (with
initial splitting of the energy density associated with the sca- in this comparison model adjusted to match that of each of
lar field atz=1100 into its potential and kinetic parts. We the four scalar field models we consifiefhe main integra-
will again arbitrarily assume thap(z=1100)=0, thus im- tion runs were done in the ZSG, but when the same runs

plying Vo= (0.0025 eVf. were performed in the UCG, With$(2=1100) calculated
from €X(z=1100) using Eq(B28) and thene’(z=0) from
B. The PNGB potential €5(z=0) using Eq(B31), the difference in the present value

In the case of the PNGB potential we will also examine
two distinct possible evolution histories for the Universe. In
the model we will call PNGB1, wherls1 =0.04h'? eV and

1 . .
f=1.25¢ 10'8 GeV, the scalar field starts to roll down its !N @ more recent paper, Cobé al. [21] considered a slightly

. - paper ° "
potential at a redshift of about 100, and is presently coherdifferent model with M=0.005 eV and f=1.885<10'° GeV,

ently oscillating at the bottom of the potential, behaving dy_where the scalar field starts moving down the PNGB potential at

. . . . z=10 and is presently already oscillating around its minimum.
namically as cold matter. This model, like EXP1, gives theThese values were chosen so that the model yifils-0.4 and

Sakm?] ageb a%a Unlye_rse Contalnflng r(:nly ”."atter' S? azgfén W& 0.7. This implies an age for the Universe only slightly above 10
takeh to be _.55,Og|V|ng _an qge or the Universe of 1 yl"Gyr. We prefer the PNGB2 model over theirs. If one chose to
The constraint();,=0.4 implies that¢$(z=1100)=f and  gpainh=0.55, and thus an age close to 12 Gyr, one would end up

¢(z=1100)=0. with Q°=0.5.
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well inside the Hubble radius at the beginning of the integra-
tions, so we need not worry about specifying the gauge. In
fact, comparing the present amplitude &f obtained in the
ZSG and in the UCG for the various models under consid-
eration, we find that the density perturbations in the two
gauges coincide for values ok down to about
103 h Mpc™!, and can therefore be regarded as gauge-
independent. For smallérvalues one needs to be careful to
specify the gauge used.
10 X! 1 As mentioned in Sec. lll, Fig. 1 represents the distortion
a in the square root of the matter power spectrum suffered

FIG. 2. The evolution in the ZSG of the perturbations with a Since redshift 1100P(k)°‘5i: relative to a flat Universe
comoving wave number df=0.5h Mpc™™. The dash-dotted and With (14=0.4 and no scalar field. Since the full spectrum in
dotted lines represent the cases where respectively the Universe hidsat model, including all known effects of radiation and neu-
critical density and the Universe is flat withy= 0.4, with no scalar  trinos, is well known, we can therefore use it to obtain the
field present. Solid lines show the EXP models and dashed ones tl@(pected present shapeRfk) for our four scalar field mod-
PNGB models. els.

We show the power spectra in Fig. 3, where we simply
of €X was less than one percent over the whole rangé for  multiplied the expected present shapeRgk) in a flat Uni-
the four models. verse withQ,=0.4, Qz=0.016h"2 and eitherh=0.55 or

Although we believe that Eqg10) and (11) should be h=0.6, with no scalar field present, b@f/éi(QO:OA).
used to obtain the initial values fa¥¢ and §¢’, in accor-  This procedure is correct since up #m=1100 the back-
dance with the adiabatic relations E@S) and (6) one ex-  ground and perturbation evolution of any of the scalar field
pects from inflationary generated perturbations, we alsonodels is equivalent to that of a cosmological constant
looked at what occurs when arbitrary initial values for thesemodel which has the same values f@r and h as each
quantities are assumed. After performing several integratiomdividual scalar field model. We also show in Fig. 3 the
runs for a variety of initial values foild¢ and d¢’', we  expected present shapeRfk) in a critical-density Universe
reached the conclusion that the evolution of the energy derfor the two values oh considered. We obtained the expected
sity perturbations in the ideal fluid is almodb a few per- present shape dP(k) for both the critical density and the
cend independent of the initial values one considers for theseosmological constant cases by assuming a Harrison—
quantities, as long as they are less than of order unity. IiZel'dovich (scale-invariant primordial power spectrum for
particular, this holds truéo better than 1 percenivhen itis  the energy density perturbations and using the cold dark mat-
assumed that there are no initial scalar field perturbationger transfer function initially derived by Bardeen al. [40],
either in the ZSG, i.e.§¢')¥=56¢*=0, orin the UCG, i.e. and later modified by Sugiyanid1] to include the contribu-
(86¢")¢=38¢¢=0. So the initial condition for the scalar field tion of baryons.
perturbations does not seem particularly important. The critical-density and cosmological constant models are

In Fig. 2 we plot the evolution ob,(a) for perturbations  normalized to COBH39]. The amplitude of the other mod-
with a comoving wave number d&f=0.5h Mpc ! between els, which has been computed relative to the latter, is almost
z=100 and the present. All the four scalar field models arecorrect. It includes the two main effects—that the early time
shown, together with the cases of a critical-density Universenatter power spectrum in low-density models is higher by a
and a flat Universe witlf),=0.4. The integration runs were factor 1L}, than in critical-density models is encoded in the
actually started at=1100, but all models behave very much initial conditions through the different initial value &f, and
as the critical-density case upze- 100. We chose the wave- the growth suppression factor from the scale factor dynamics
number shown as it corresponds to a scale which was already computed in the subsequent evolution. As each m@del

0.01

67 10-3

T T T T
w0t P 9 10 e oG, 5
o b ‘ 2 s N
o Qa - - N
= = Pr .
» » P N,
< < oy \\
— — 10° % <3
£ x X .
St ~— A, N
a o %
%Q—
h=0.6 2,
i 102 L :
0.01 0.1 1 0.01 0.1 1
k (h Mpc™) k (h Mpc™h)

FIG. 3. The power spectrum of the energy density perturbations in the matter component for the models, all normalized to COBE as

described in the text. The line styles reprede(k) for the same situations as in the previous two figures. Note that the PNGB2 and EXP2
models give a very similar spectrum to the standard cosmological constant case.
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cept the critical-density onédnas the same redshift of matter- perturbations in the matter component is similar to that in
radiation equality, all that is omitted is the line-of-sight con- model EXP1.
tribution to the Sachs-Wolfe effect, which requires a full The results just described suggest that the presence of
Boltzmann code for accurate computation. The effect of thispatial perturbations in a presently-existing scalar field sub-
term on the COBE normalization is nonexistent for thestantially affects the evolution of energy density perturba-
critical-density case, and known to be negligible in the costions in the matter component only if the scalar field has
mological constant casesee e.g. Refs[43,2]). It may be contributed significantly to the total energy density in the
slightly more significant for the decaying cosmological con-Universe for several Hubble times. If the scalar field is be-
stant casd21] and future observations would probably re- coming dynamically important only now, the presence of
quire an accurate computation, while present ones do not. spatial perturbations does not seem to have much effect.
We On|y show the power Spectra for Va|ues|,ofarger The Slmllarlty between the scalar field models EXP2 and
than 103 h Mpc™L. On smaller scales the amplitude of the PNGB2, and a flat model witfl,=0.4, h=0.6 and no sca-

power Spectrum is gauge_dependent’ though of course We“ar f|e|d, makes the first two models attractive substitutes of
defined in any particular gauge. the latter. Further, given that the above mentioned flat model

is able to reproduce all the most reliable observational data
presently available on large-scale structure and cosmic mi-
crowave background temperature anisotrop®swe expect
models EXP2 and PNGB2 to do as well. As they are quite
The results presented in this paper extend previous workimilar to the standard cosmological constant case, a detailed
on the effects of a presently-existing scalar field, with regarcevaluation of the supernova constraint would be interesting;
to the evolution of energy density perturbations in a presfriemanet al.[18] suggest that the constraint will weaken so
sureless fluid. In accordance with general covariance we athey should be viable.
low for the presence of spatial perturbations in the scalar With regard to models EXP1 and PNGB1, their much
field. Contrary to previous authors, we explicitly relate thesmaller growth for the matter perturbations seems very prob-
energy density perturbations in the pressureless fluid to thodematic. We expect the dispersion of the density contrast
in the scalar field through the adiabatic condition, as exsmoothed on spheres oft8 * Mpc, usually represented by
pected if those perturbations arose from a period of inflatiorog, required for both models so that they can reproduce the
in the very early Universe. present abundance of high mass x-ray emitting galaxy clus-
The study of the perturbation evolution was performedters to be the same as for the critical-density case, due to the
both in the zero-shear and uniform-curvature gauges, in thevo models being dynamically equivalent to it since well
latter case for the first time. before redshift 10. This conservatively requireg in the
We considered two possible potentials for the scalar fieldrange 0.45 to 0.8 for both moddk4]. On the other hand, as
an exponential and that associated with a pseudo Nambuhe growth suppression factor of the matter perturbations is
Goldstone-boson field. Each of these potentials has two dexbout 4.5 times larger in the EXP1 and PNGB1 models than
grees of freedom, and we worked with two different sets ofin a flat model withQ);=0.4 andh=0.55, to a first approxi-
parameters for each potential. Those models, EXP2 anrhation this means that the value @f implied by COBE for
PNGB2, which were chosen so that the scalar field becomete two scalar field models would be about 4.5 times smaller
dynamically important only very recently, at-1, and is than for the flat mode[21]. Inclusion of the integrated
presently behaving as a cosmological constant, yield a shagachs-Wolfe effect may lead to a slight further decrease in
for the power spectrum of energy density perturbations in therg [21]. If the primordial power spectrum of energy density
matter component extremely close to that one obtains in gerturbations is assumed scale-invariant, then this would
cosmological constant model whef®,=0.4 andh=0.6, mean thatog<0.18 for both EXP1 and PNGB[2]. One
though the amplitude is a few percent smaller. would need a very “blue” primordial power spectrum, with
The situation is rather different for the other two models,at leastn>1.45, for og to reach the minimum requirement
EXP1 and PNGBI1, chosen so that the scalar field becomasf 0.45. Ferreira and Joy¢22] advocate a much larger value
dynamically important at a much earlier time, around a red-of Q,, which resolves the amplitude problem while giving a
shift of 100. They presently behave as pressureless matter. lnore modest change in the shape of the spectrum.
the case of model EXP1 the shape of the power spectrum of As in both EXP1 and PNGB1 the scalar field goes
energy density perturbations in the matter component ishrough a period at a redshift of about 100 when it behaves
again very close to that one obtains in a cosmological condynamically like a cosmological constant, we expect the full
stant model, this time witli);=0.4 andh=0.55. Its ampli-  angular anisotropy spectrum for the cosmic microwave back-
tude is however only about 5 percent of that for the cosmoground radiation in these models to display a distinctive sig-
logical constant model. Model PNGB1 has the furthernature. This clearly merits detailed investigation.
interesting feature that the shapeRi{k) is altered for values Note.As we were completing this paper, a report by Cald-
of k below 0.01h Mpc™t. Unfortunately this corresponds to well et al. [23] appeared which covers similar issues. They
scales above around 100! Mpc, at the limit of what use an enhanced Boltzmann code to generate microwave an-
present cluster and galaxy surveys can probe. The feature isotropy power spectra. Their matter power spectra appear in
the shape oP(k) for model PNGB1 is due to oscillations in good agreement with ours. They did not use adiabatic initial
the rate of decrease of the Hubble parameter when the scaleonditions for the scalar field perturbations, but we have
field becomes dynamically important 2&100. On smaller  shown that this is unlikely to have significant effects. In an-
scales the suppression of the growth of the energy densityther paper, Frieman and Waf#b6] use the recent observa-

V. DISCUSSION
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tions of high-redshift type la supernova#0] to constrain  worry about the temporal gauge transformation.
models of the type we consider. All our models are found to
be viable. 2. Notation and general equations

We will now introduce the gauge nonspecific perturbation
ACKNOWLEDGMENTS equations obtained by Hwang. They relate the perturbed part
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APPENDIX A: THE EVOLUTION EQUATIONS have

1. Gauge considerations w,=(y—1)e (A1)
Y v

A cosmological perturbation is defined by means of a cor-
respondence between an arbitrary background spacetime aadd one can derive th§B2]
the real physical Universe. Ajauge transformationis a

change in this correspondence, keeping the background €4= pSp— Ppa+V, 00, (A2)
spacetime fixed. Therefore, in general the value of the per-
turbed part of some physical quantity will not be invariant wy= bSh— ¢2a—V,¢5¢. (A3)

under a gauge transformation. Further, the degrees of free-
dom due to gauge transformations give rise to spurious un- .
physical modes in the solutions to the evolution of the per- V== ¢od, (Ad)
turbed part of gauge-dependent quantities, which can always ] i )
be removed by a convenient gauge transformation. In ordeithereé¢ is the perturbed part of the scalar field. We will be
to avoid these spurious modes one either evolves gaug@artlcylarly interested in the evqlutlon of thg frac'uon_al per-
invariant quantities related to the gauge-dependent quantitiddrbation in the energy density of the ideal fluid,
one is actually interested in, obtaining the latter from the= €,/ )
former at any one time, or one has to provide a gauge-fixing We Wwill express the perturbed parts of both the metric and
condition which completely specifies the way through whichmatter variables by means of Fourier expansions. For ex-
spacetime is to be split into background and perturbed com@mple,
ponents.

The linear analysis of cosmological perturbations was ini- _ iKk-x
tiated by Lifshitz, with a seminal paper published in 1946 op(x.1) ; UL (AS5)
[46], who used the so-called synchronous gauge-fixing con-
dition. Unfortunately this condition, though considerably where
simplifying the perturbation equations, still leaves a residual
gauge degree of freedom. The spurious modes thus arising 1 ik
are difficult to distinguish from the real physical ones, and St =y f dp(x,t)e” " Xdx, (AB)
their identification was a source of controversy for some
time. The use of gauge-invariant quantities in the calculatiorbeing k=|k| a fixed comoving wave number. The Fourier
of the evolution of cosmological perturbations only really expansions are made in a large enough box that the induced
took off with the paper by Bardeen in 19887]. Though it periodicity is irrelevant.
avoids the problem of obtaining unphysical modes in the A i this paper we are only interested in the linear evo-
solutions to the perturbation equations, it really does not ofy s of cosmological perturbations, we will assume that the
fer any extra advantage over the gauge-specific methoGsiterent Fourier modes for each variable behave indepen-
which remove any gauge degree of freedom by completelyjgny of each other. We will drop the sufficksidentifying
fixing the background_/perturbed spllttlng.. each Fourier mode in order to lighten the notation.

In this paper we will use gauge-specific methods to solve | 1he case of our system, formed by an ideal fluid plus a

the perturbation equations. We will adopt the notation andyinimally coupled real scalar field, the perturbation equa-
use the equations laid down in a series of papers by Hwang, s take the fornj29,30,32

[29-33. We will be solely interested in the evolution of

density(scalay perturbations. The system is composed of an _ K2

ideal fluid plus a single minimally coupled real scalar field, 3¢=3Ha—k+ =y, (A7)
¢, evolving in a background Einstein—de Sitter universe. a

Given that the spatial part of the background spacetime is

thus homogeneous and isotropic, the perturbations in any

physical quantities will necessarily be gauge-invariant under 2Here we changed the notation fromto w to avoid confusion
purely spatial gauge transformations. We will therefore onlywith the numbersr.
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k2 o - APPENDIX B: NUMERICAL SOLUTIONS
- tHxk=—47G(e,+ pSp— +V,,00), . .
az® “ mGleyt dob—¢a 49) 1. Background and perturbation equations

(A8) The evolution of the background variableks and ¢ is
2 obtained by numerically solving the system of first-order dif-
ko - ferential equations formed by E¢R) and the two first-order
a2X =~ 12mG(V, = $54), (A9) Gifferential equations that can be obtained from &,
. d¢
x+tHx=a+o, (A10) Ezf, (B1)
K+2H K= k—2—3H a+4mG[(3y=2)e,+4do)—4d’a LB RRYRN 1A V) BT (B2)
a® 4 da a aH? a’H?’
-2V, 48], (A11) dH wo| anires o
da_ AmGlaHt™+ —mu, |, (B3)

2

: k
€t 3Hye, = yuy(k—3Ha)+ 5V, (Al2) where ., is given by analytically solving Eq3),

-3y
. a
W +3HW = —yu,a—(y—1)e,, (A13) By= o (B4)
. . k2 The suffix “0” indicates present-day values as usual. Note
o¢+3H 5¢>+(52+V,¢¢ o¢p that the independent variable has been changed from coordi-
nate time,t, to the scale factora. They are related by the
=p(k+a)—(3HP+2V, ) a. (A14) first-order differential equation
dt
It should again be stressed that these equations were obtained —=a H 1, (B5)

without reference to any gauge-fixing condition. No aniso- da

tropic pressure term appears as in both the case of an ide,

fluid and a minimally coupled real scalar field the anisotropict%e integration of which gives the time elapsed in the Uni-

pressure is zero. The last three equations are, in order, the ' >¢ between two given values of the scale factor. Deriva-

energy and momentum conservation equations for the pertu \ves with respect to the scale factor will be represented by a

bations in the ideal fluid, and the energy conservation equ hr(l:r'::)er. z;/s\/?t ?Q%%Sseietrht?) '&%?E?’Ci?ﬁ r:]tu\r/ggﬁf;ﬁ toar?g igh;z?3|e
tion for the perturbations in the scalar field. The momentum y

conservation equation for the perturbations in the scalar fiel&ne\?\L/rgnﬁ;ﬂg'gmet:jrg:t'irgnog V:Jeg;'ioorfssyourcilir%;oré?\?jté?]?' or-
is identically satisfied. P q p p

The most obvious and fundamental gauge-fixing condifuration variables in both the ZSG and the UGG; e,

tions follow from requiring that the perturbed part of one of ¥ W3, 06, 3¢', 3¢", a andx in either, along withp and
the metric or matter variables is zero. We thus have: the?’ in the ZSG, ory andy’ in the UCG. Eqs(A7) to (A10),
synchronous gaugey=0; the uniform-curvature gauge; (A12) and(A13) y\{|ll be useq to despnbe the evolqﬂon of
=0; the zero-shear gauge=0; the uniform-expansion K and the quantities associated with the ideal fluigl, e;,
gauge«=0: the uniform-density gauge=0; the uniform- ¥, andV’, in terms ofé¢p, 5¢', ¢ ande’ (ZSG) (the last
pressure gaugey=0; and the comoving gaugd,=0. Ex-  two variables are replaced kyandx’ in the UCG, and the
cept for the synchronous gauge, all the other gauge-fixinackground variables. We thus have in the ZSG,
conditions completely remove the gauge modes from the so-

lutions to the perturbation equations. We will use two of a=-o, (B6)
these gauge-fixing conditions to derive two different sets of

perturbation equations from the system given above. With k=—3He—3aHe’, (B7)
the aid of expressions relating quantities in the two gauges

we will thus be able to estimate the numerical errors arising ¢ K 3H%e+3aH%’

from the numerical integration of both sets of perturbation " 4nG ?Jr 477G —a'H ¢ 09
equations. We will consider the zero-shear ga(tfeG, also 012412

known as the longitudinal or conformal Newtonian gauge —aH%® o=V, ,69, (B8)
[48]), and the uniform-curvature gaugéUCG). These

choices are the ones which lead to the two simplest sets of W :HGD+ aHo' LaHe! 5 (B9)
perturbation equations, thus decreasing the probability of nu- Y 477G ’

merical errors creeping into the solutions. The two sets can
be obtained by simply getting rid of and x in the case of
the ZSG, andp and ¢ for the UCG, in Eqs(A7) to (A14).

2

=3y -3 2y B10
=73y, T3V T aoh (B10)
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v,
‘1’;=—3— wyaH (7—) (B1)
and for the UCG,
a=Hy+aHy’', (B12
k2
=<3H2+52 x+3aH?y’, (B13)
k2 Hx 3aH3y’
2 _ _ 2
SH™ 2) 226~ "2nG H*" 59"
+a2H2¢’2(aHX’+HX)—V,¢5¢, (B14)
v = Hocraiy’ Ho's B15
T agg afdied (B1Y
, €, k> x k2
6y=—37 tvyzan aH (B16)
v, X+a)( €
V=-3_-n, —(y-1 5. (B17)

Using these expressions we can now convert E§t1) and

(A14) into the following second-order differential equations

HI 2
0p'=—|\-+—|60'— ( 2+V,¢¢) —4¢'¢’
V!
+2508, (B18)
__|By+2) HY ) [3y 2H" k?
TlTa twe Tt an T Ve
—47TG(7—2)¢'2}¢
5¢v,¢
+47G|(y—2)¢' 8¢' + y—5r P (B19)
in the ZSG and
" 4 H, 12 ’ ?
8¢"=—|-+ g T47G(y=2)a¢'?|5¢" ~| 5+ V.4
K
+4nGyad'V,, 212 —|3yH@' +2aH' ¢’
2V, 2 '3
+ﬁ—4776(7—2)a H¢ }X
., 3yH¢' 2v,¢ k? ¢’
_[2H ¢+ 3 2n T2z aR
—47TG('y—2)aH¢’3})(, (B20)

o [Bvr2 W] [3H 3y
X'=- T ATC(ry=2ad X |y T 2
k2
+(y_1)a4_H2_47TG(7_2)¢/2}X
PP OPV,y
—47TG[(’}/—2) H +y 203 | (B21)

in the UCG. Each of these equations can be split into two
first-order differential equations, in the same way as we did
for Eq. (4), which we will then numerically integrate in order
to determine the evolution afp, 5¢’, ¢ ande’' (ZSG) (x
andy’ in the UCG.

In all we will need to simultaneously numerically inte-
grate a system of seven first-order ordinary differential equa-
tions, formed by the background Eq81) to (B3), where
expression(B4) gives u,,, and the four perturbation equa-
tions resulting from eithe(B18) and(B19) (in the ZSQ, or
(B20) and (B21) (in the UCQ. The question of initial con-
ditions for this procedure is addressed in the main text of this

paper.

2. Relations between quantities in different gauges

Once we have calculated the evolution of the perturbation
variables in some particular gauge, we can use gauge-
invariant variables and the gauge nonspecific set of perturba-
tion Egs.(A7) to (Al4) to obtain the evolution of such vari-
ables in any other gauge.

We will use this possibility to control the errors arising
from the numerical integration of the perturbation equations.
We will express both our initial conditions and the final re-
sults for the perturbation variables in the ZSG, and use the
UCG simply as an estimator of the numerical integration
errors. As an example, we will derive the relations between
the perturbations in the energy density of the ideal fluid in
the ZSG and the UCG. The change from the ZSG to the
UCG, and vice-versa, for the other perturbation variables can
be obtained in a similar way.

The quantities

e§567+3H(My+py)X, (B22)
WI=W +(ny+Py)X, (B23)
and
=€, +3(uytp,e, (B24)
I S e (B25)
y= Xy Ty TP,y H'

are invariant under temporal gauge transformations, as can
be seen by using the relations provided by HwgB@. The

first two variables simply take the values ef and ¥,
respectively, when these quantities are calculated in the
ZSG, while the same occurs for the last two variables with
relation to the UCG. We thus want to express in the UEG

as a function ofe¥ and ‘lf’;, in order to obtain the initial
value of €, to be used in the UCG calculations from that
originally given in the ZSG. Also, we want to know how to
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obtaine from €7 andW¥?, so that we can compare the final ~ On the other hand, in the ZSG we have
value ofe, obtained in the two gauges.

In the UCG we have eX=€7=3(u,tp,e, (B29)

ef=€eX—3H + , B26
v (hytPX (B26 and, by using the same equations as previously,
and, by using Eq9A8) and(A9),
k2
k? — —@—127GH(V_+V )= —47G(e+€,).
ZHX—127GH(W + W ) = —47G(e,+ ). a’? (¥y*¥y) (eyteg)
(B27)

Through some algebraic manipulation of the above relationsience, we get
we then obtain

(B30)

2

2 X— P __ a ¢ Py [ ¢
€f=€X— 127G (p,+p,) %[3H(\I”§+ W)= (eX+eb)], €= € 12mG(uy TPy jal(€ eg) mSHIT+T9)]

(B29) (B31)
wheree) andW are defined in an analogous fashion to thewhere agaire; and'V$ are defined in the same way as the
ideal fluid gauge-invariant variables. ideal fluid gauge-invariant variables.
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