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Lattice investigation of the Das-Mathur-Okubo sum rule
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Department of Physics, Baylor University, Waco, Texas 76798-7316
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An evaluation of charged pion polarizability using correlation functions measured on a 163324 lattice in the
context of the Das-Mathur-Okubo sum rule is carried out. The calculation is limited to the so-called intrinsic
part of the polarizability. This contribution, equivalent to a Euclidean time integral over vector and axial vector
momentum-differentiated propagators, is evaluated in both a continuous and discrete sense. In the continuous
case, the time behavior of the correlation functions is fit to the continuum quark model; the discrete case is
handled by a straightforward application of Simpson’s rule for integration after subtracting the pion contribu-
tions. A comparison of the implied vector meson and pion decay constants with phenomenological values is
carried out. Results for the intrinsic polarizability are extrapolated across four quark mass values to the chiral
limit. An extensive discussion of the lattice systematics in this calculation is given.@S0556-2821~98!03611-X#

PACS number~s!: 12.38.Gc, 11.15.Ha, 11.55.Hx
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I. INTRODUCTION

Charged pion polarizability is a fascinating laboratory f
strong interaction physics. It sits at the crossroads of exp
ment, dispersion relations, sum rules and chiral model
sults. It also can be evaluated on the lattice and turns ou
be a sensitive barometer of such inputs as lattice sc
ground state mass values, and models for fitting propag
data. It is therefore both an excellent testbed for investiga
gauge lattice systematics as well as an extremely interes
and fundamental dynamical quantity in itself.

Some previous experimental and theoretical results
charged pion polarizability (ap6) are presented in Table I
Both experimental and theoretical disagreements are evid
It is thus an opportune time to initiate lattice studies wh
attempt to calculate this quantity from first principles@9,10#.
Excellent reviews of the experimental and theoretical sit
tions are available@11#.

External field methods have been used previously to m
sure neutral particle polarizabilities in the context of latti
QCD @12#. Of course these methods would be very diffic
or impossible to use in the case of charged hadrons bec
charged particles accelerate in an electric field. The eva
tion of charged particle polarizabilities can be done direc
on the lattice by measuring a Compton scattering coeffic
@10#. However, the direct evaluation is actually quite i
volved because of the many disconnected diagrams invol
There is a way around this difficulty if one is willing to wor
in the exact chiral limit by use of the Das-Mathur-Okub
~DMO! sum rule @13#. Although this results in a simple
lattice calculation, a well-known problem in this approach
that the spectral integral involves a rather precise cance
tion of large numbers and so may be difficult to evalu
numerically. This paper attempts to understand to what
tent this difficulty holds in lattice evaluations and to begin
explore the internal systematics of such calculations.

An explanation of the methods used to estimate the DM
spectral integral will be given in the next section. Success
use of the quark continuum model will be made; this sh
additional light on its use and range of validity. The cons
tency of the results will be probed using an alternate pur
570556-2821/98/57~11!/6731~10!/$15.00
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numerical approach based on Simpson’s rule. We will a
check the consistency of our data with low energy pheno
enology by extracting the pion and rho meson decay c
stants,f p and f r , from the axial and vector correlation func
tions. Various other sources of systematic error will
estimated and suggestions for further improvements in fu
lattice evaluations of charged pion polarizability will b
made.

II. BACKGROUND

A. Review

The DMO sum rule for the charged pion polarizabilit
derived from current algebra in the chiral limit, is

ap65a
^r p

2 &
3mp

2
a

2mp f p
2 E

~mp1e!2

` ds2

s4 @rV~s2!2rA~s2!#.

~1!

The pion pole is absent from the axial vector spectral in
gral; this is symbolized by the lower limit, (mp1e)2, e be-
ing a small positive quantity. A conventional lattice norma
ization for the spectral functionsrV,A is being used here; se
Eq. ~3! below.

There are several advantages to using Eq.~1! instead of
attempting direct evaluations of pion polarizability. Equati
~1! employs only mesonic two-point functions, which a

TABLE I. Previous experimental and theoretical results
charged pion polarizability.

ap6 (1024 fm3) Type Reference

6.861.461.2 Expt. Ref.@1#

2061261.2 Expt. Ref.@2#

2.261.661.2 Expt. Ref.@3, 4#
2.646.36 Theor./Expt. Ref.@5#

;3.6 Theor. Ref.@6#

2.460.5 Theor. Ref.@7#

5.660.5 Theor. Ref.@8#
6731 © 1998 The American Physical Society
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6732 57WALTER WILCOX
easily calculable on the lattice. In addition, the necess
propagators can be precisely measured using a combin
of numerical techniques which will be explained in Se
III A.

There is no unique way of evaluating Eq.~1! on the lat-
tice. The strong interaction parameters, pion mass (mp),
pion decay constant (f p) and the charged pion square
charge radius (̂r p

2 &) also enter this expression. All thes
quantities can and should have separate lattice evaluat
In the limited point of view adopted here, evaluation of t
spectral integral in Eq.~1!, the so-called intrinsic part,

ap6
int [2

a

2mp f p
2 E

~mp1e!2

` ds2

s4 @rV~s2!2rA~s2!#, ~2!

will be concentrated on. We will also compare the impli
values for the pion decay constantf p and vector meson de
cay constantf r against experimental results. Normally sin
polarizability scales likea3, one expects it to be very sens
tive to the lattice scale. However, because experimental
ues ofmp and f p will be used in the DMO expression fo
ap6

int there will actually be no scale uncertainty in the answ
obtained here. The only quantity for which we will need t
lattice scale will be in the later lattice calculation off p .

B. Derivation

The Minkowski space DMO sum rule spectral densit
rV(s2) andrA(s2) arise from@14#

i E d4xe2 ikW•xW~0uT@vm
3 ~x!vn

3†~0!2am
3 ~x!an

3†~0!#u0!

5
1

2
E

~mp1e!2

` ds2

kW21s2
@rV~s2!2rA~s2!#

3S 2gmn1
kmkn

s2 D 2
f p

2 kmkn

kW21m2
, ~3!

wherek0[As21kW2 or k0[Am21kW2 ~m5pion mass! in the
pion term. Also in Eq.~3! the metric isgmn5~1,2,2,2!,

vm
a (x)5c̄(x)

ta

2
gmc(x), and am

a (x)5c̄(x)
ta

2
g5gmc(x).

The m,n50 amplitude can also be expressed as

i E d4xe2 ikW•xW~0uT@v0
3~x!v0

3†~0!2a0
3~x!a0

3†~0!#u0!

5
i

2 E d4x~0uT@v0
ud~x!v0

ud†~0!2a0
ud~x!a0

ud†~0!#u0!

~4!

in the exactSU(2)-flavor limit because of either cancelin
or vanishing self-contractions of the currents. The curre
being used in Eq.~4! are v0

ud(xW ,t)[d̄(xW ,t)g0u(xW ,t) and

a0
ud(xW ,t)[d̄(xW ,t)g5g0u(xW ,t). It is noticed that@15#
ry
ion
.

ns.

l-

r

s

ts

E
~mp1e!2

` ds2

s4 @rV~s2!2rA~s2!#

5 i
d

dkW2 E2`

`

dt@D00
V ~kW2,t !2D00

A ~kW2,t !#ukW250 , ~5!

where

D00
V ~kW2,t ![E d3xe2 ikW•xW~0uT@v0

ud~x,t !v0
ud†~0!#u0!, ~6!

D00
A ~kW2,t ![E d3xe2 ikW•xW~0uT@a0

ud~x,t !a0
ud†~0!#u0!. ~7!

Last of all, a switch is made to imaginary time,

i E
2`

`

dtD00~kW2,t !5E
2`

`

dtED44~kW2,tE!, ~8!

where we have the standard ud-flavor propagators~real and
positive for tEÞ0!

D44
V ~kW2,tE![E d3xe2 ikW•xW~0uT@v4

ud~x,2 i t E!v4
ud†~0!#u0!,

~9!

D44
A ~kW2,tE![E d3xe2 ikW•xW~0uT@a4

ud~x,2 i t E!a4
ud†~0!#u0!.

~10!

~One may takeg05g4 here.! Thus, putting Eqs.~2!–~10!
together, we have

ap6
int

52
a

2mp f p
2

d

dkW2

3E
2`

`

dtE@D44
V ~kW2,tE!2D44

A ~kW2,tE!#ukW250 . ~11!

On the lattice, the right-hand side of Eq.~11! will be formed
by taking a numerical momentum derivative of the latti
propagator data. Although the derivative in Eq.~5! removes
the pion contribution in Eq.~3!, one has only finite momenta
on the lattice and the pion contribution must be explici
subtracted from the axial vector propagators in the latt
version of Eq.~11!.

C. Continuum model

The time integral in Eq.~11! will be performed in both a
discrete and continuous sense using the lattice data; the
ference will be taken as a reasonable estimate of the sys
atic error of the integral. In the discrete case, one can sim
apply Simpson’s integration rule to the Euclidean tim
propagator data after subtracting out the pion contributio
This will be described in detail later. The continuous ca
demands some way of interpolating between the propag
time values. For this purpose, let us consider the stand
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lattice Euclidean ud-flavor point-to-point charge density c
relator (qW 5kWa):

(
xW

e2 iqW •xW^0uT@v4
ud~x!v4

ud†~0!#u0&.

One may show that this reduces to~replacing the sum(xW by
the integral*d3x!

E d3xe2 iqW •xWTr@S~x,0!g4g5S†~x,0!g4g5#,

whereS(x,y) is the quark propagator and the trace is ov
color and Dirac spaces. Using the free quark propagator~co-
ordinate gauge, diagonal to this order in color space!,

S~x,0!5
1

2p2

g•x

x4 1
1

~2p!2

mq

x2 1¯ , ~12!

the following definition (q[uqW u) is now made:

G44~ t,q![E d3xe2 iqW •xW
t22r 2

~r 21t2!4 . ~13!

Doing the angular integrations yields

G44~ t,q!5
12

p3q E
0

`

drr sin~qr !H 2t2

~r 21t2!4 2
1

~r 21t2!3 J .

~14!

Actually, what one wants in this case is a derivative of t
above with respect to squared spatial momentum@see Eq.
~11! above# evaluated at zero momentum. Since only fin
momenta are available in the lattice simulation, this co
tinuum procedure cannot be reproduced on the lattice. T
in order to compare with the lattice data consider, instea

DG44~ t,q![
G44~ t,q!2G44~ t,0!

q2 , ~15!

whereq represents the lowest lattice momentum value. F
ting the lattice data with Eq.~15! has the advantage of usin
the same type of ‘‘derivative’’ as in the lattice data, but h
the disadvantage of including a small momentum dep
dence in the phenomenological model. To this order
same functional form holds for the axial vector propagator
well. The next nonvanishing term in the lattice propaga
from Eq.~12! is proportional to the square of the quark ma
but this term gives negligible contribution to the fits and
not considered further.

A number of modifications are necessary to this funct
before one compares to the lattice data. First, it is clear
the above expressions have an ultraviolet infinity associa
with the r 50 lower limit for t50. This infinity can be con-
trolled, as the lattice itself controls it, by putting in a sho
distance cutoff. So replace the lower limit above byr 0.0,
which becomes a parameter in the fits. Call this modifi
function DG44(t,q,r 0). Second, put in a continuum thres
old, s0 , to control the onset of excited states in the spec
density. One can show that the resulting function is given
-

r
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-
us
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s
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e
s
r
,

n
at
ed

d

l
y

DG44~ t,q,r 0 ,s0!5E
s0

`

dsE
2`

` du

2p
eiusDG44~ utu1 iu,q,r 0!.

~16!

A third parameter,j, will be introduced as a multiplicative
factor normalizing this function. Originally, this paramet
was introduced to account for lattice anisotrophy at sm
lattice time separations~see Ref.@16#!. However, for an in-
teresting alternate interpretation of this parameter, see
@17#. One can analytically perform the two integrations
Eq. ~16!; the remaining oscillating radial integration is don
numerically. This numerical evaluation makes the fitting
parameters for this model rather slow and renders a th
order jackknife analysis of the data impractical. For a mo
explicit representation of the function defined in Eq.~16!, see
the Appendix.

In attempting to fit the~momentum differentiated! propa-
gator time data, pole mass terms of the form

~lr
q!2e2Ert1~lV

q !2e2EVt ~17!

will be added in the vector case and the three terms

~lp
q !2e2Ept2~lp

0 !2e2mpt1~lA
q !2e2EAt ~18!

will be added in the axial case. TheEr term@in Eq. ~17!# and
the Ep , mp terms@in ~18!# represent the lowest pole contr
butions to the spectral integral in the vector and axial vec
channels.~There is no term proportional toe2mrt in the vec-
tor case because of charge conservation.! The additional pole
terms in these expressions, theEV term in Eq.~17! and the
EA term in Eq.~18!, were found to be necessary in achievin
a reasonable fit to the lattice data; see the comments in
III B. The mass valuesmp andmr will be fixed from inde-
pendent lattice measurements, and the continuum relat
ship

Epa5AqW 21~mpa!2 ~19!

will be assumed. Phenomenologically, theEV pole in the
vector case has quantum numbers of radially excited state
the rho meson and theEA pole has the quantum numbers
the a1 meson. All told, there are 6 parameters in the vec
fits (jV ,s0,V ,r 0,V ,lr

q ,lV
q ,EV) and 7 parameters

(jA ,s0,A ,r 0,A ,lp
0 ,lp

q ,lA
q ,EA) in the axial fits. ~However,

see later comments about the continuum relation betweenlp
0

andlp
q in Sec. III C.! Of course, once the axial data are fi

one must eliminate the pole terms involving the pion befo
doing the DMO integral.

In the context of the continuum plus pole model, the E
clidean lattice data are now fit to the forms

D44
V ~qW 2,t !2D44

V ~0,t ![q2jVDG44~ t,q,r 0 ,s0!

1~lr
q!2e2Ert1~lV

q !2e2EVt, ~20!

D44
A ~qW 2,t !2D44

A ~0,t ![q2jADG44~ t,q,r 0 ,s0!1~lp
q !2e2Ept

2~lp
0 !2e2mpt1~lA

q !2e2EAt. ~21!

Let D̄44
V (qW 2,t) and D̄44

A (qW 2,t) represent the actual correlatio
functions measured on the lattice. It is assumed that these



ed
in

h
ity

on

0
e

th
i-
ve

bu
h

to
h

on
th
at
h
o

f

be

i-
ies
ata
will
sent
on

r

l

6734 57WALTER WILCOX
related to the continuum functions needed in Eq.~11! by
scale, tadpole and renormalization factors as follows:

a3D44
V ~kW2,t !5

NT

Ns
F ~120.82aV!

4 G2

D̄44
V ~qW 2,t !, ~22!

a3D44
A ~kW2,t !5

NT

Ns
F ~120.31aV!

4 G2

D̄44
V ~qW 2,t !, ~23!

whereaV is the strong interaction coupling constant defin
in Ref. @18#, Ns is the number of spatial sites smeared over
the source interpolation fields~162 in this case!, and

NT516S 12
3k

4kcr
D 2

. ~24!

We will use aV(p/a)50.1557 (b56.0) for the local cur-
rents in this study. In the following tables and figures, t
results for the intrinsic part of the charged pion polarizabil
will presented in natural dimensionless form,IV,A , where

ap6
intr

5
a

mp f p
2 ~IA2IV!, ~25!

IV,A[
1

2 E
~mp1e!2

` ds2

s4 rV,A~s2!. ~26!

III. RESULTS

A. Simulation parameters

The simulation was done on 32 quenched configurati
with Wilson fermions on a 163324 lattice atb56.0. The
lattices were constructed with the algorithm of Ref.@19#,
thermalized by 11 000 sweeps and separated by 1
sweeps. Four values of the Wilson hopping parameter w
considered,k50.154, 0.152, 0.150 and 0.148. We used
‘‘volume method’’ @20,21# to calculate the propagators d
rectly from the nongaugefixed configurations, smearing o
a 16316 spatial plane at time step 8 of the lattice.~The first
time step of the lattice will be defined to bet[1.! This
sacrifices the Fourier transforms in two spatial directions
reinforces the momentum projection in the third. This is t
main idea of the ‘‘Fourier reinforcement’’ method@22#.

The signals obtained for the vector and axial vec
charge density operators are excellent. Figures 1 and 2 s
the local lattice energy,

ElattS t1
1

2
D [ lnS D̄44~qW 2,t !

D̄44~qW 2,t11!
D , ~27!

for the vector and axial vector cases, respectively. Ther and
p masses were calculated separately with extremely l
time base lines on 20 of these configurations, fixed to
lattice Coulomb gauge, with quark propagators startingt
51 and single exponential fits to time steps 16–19. T
results are given as the first line in Tables II and III. Three
these results~k50.154, 0.152, 0.148! are taken from Table I
of Ref. @23#; the result atk50.150 is new. The value o
kcr50.1564 is also taken from Ref.@23#. The dimensionless
quark mass in this reference as well as here is taken to
e

s

00
re
e

r

t
e

r
ow

g
e

e
f

ma[ lnS 4kcr

3k
23D . ~28!

The correlated chi-squared per degree of freedom,xd
2 , on all

of the mass fits@no singular value decomposition~SVD! de-
composition; see Sec. III B#, were less than one. The hor
zontal lines in Figs. 1 and 2 show the predicted energ
using continuum dispersion; agreement with the lattice d
on time steps 15–20 inclusive is evident. These masses
be used as fixed input rather than parameters in the pre
calculation, which significantly improves the error bars

FIG. 1. Local Er
latt(t1 1

2 ) measurements for the lattice vecto

charge density,D̄V(qW 2,t), versus lattice time location,t, compared

with continuum dispersion~horizontal lines! for uqW u5 p/8. Squares
are for k50.154, triangles arek50.150, stars are fork50.148,
and circles arek50.148 results.

FIG. 2. Local Ep
latt(t1 1

2 ) measurements for the lattice axia

vector charge density,D̄A(qW 2,t), versus lattice time location,t,

compared with continuum dispersion~horizontal lines! when uqW u
5 p/8. Symbols are the same as in Fig. 1.
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TABLE II. Continuum model vector fit parameters.xd
2 gives the chi-squared per degree of freedom

the fit.

Quantity k50.154 0.152 0.150 0.148

mr
inputa 0.463~.020! 0.550~.013! 0.635~.010! 0.718~.008!

jV 4.44~.54! 4.16~.78! 3.71~.52! 3.57~.50!
s0,V 0.90~.55! 0.568~.050! 0.644~.050! 0.724~.049!
r 0,V 0.442~.028! 0.417~.040! 0.383~.029! 0.368~.029!
lr

q 4.86(.43)31022 4.36(.41)31022 4.65(.28)31022 4.79(.18)31022

lV
q 4.6(1.7)31022 4.6(1.1)31022 5.03(.62)31022 5.12(.60)31022

EVa 1.17~.14! 1.33~.18! 1.46~.10! 1.55~.07!
xd

2 0.34 0.30 0.44 0.60
r
e

t t
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the remaining fit parameters. The systematic effects of va
ing the input r and p masses in this calculation will b
reported on in Sec. III C.

B. Spectral integral evaluation

The data in the vector and axial vector sectors were fi
Eqs.~20! and~21!; examples of these fits are shown in Fig
3 and 4, which show the casek50.154. It is the area unde
these curves which is of interest here. The time integrals
very sharply peaked and the fits themselves extend from
source time site att58 to t520. The numerical quality of
the vector time data is seen to be better than the axial ve
case, but both are quite acceptable. The parameters of
fits are given in Tables II and III.

A second-order single elimination jackknife was used
error analysis at eachk value; the first order defines erro
bars on the time correlation functions and the second defi
errors on the fit parameters of these functions. The fits
ported in Tables II and III are characterized by their cor
lated chi-squared per degree of freedom,xd

2 . These were
arrived at by the SVD algorithm suggested in Ref.@24#. It
was found there that the correct correlatedxd

2 was obtained
on small data samples when the number of exact eigenva
retained,E, was chosen to be'AN, whereN is the number
of configurations. We will useE56 (N532). DefiningD to
be the number of fit time sites (D513), Ref.@25# finds that
the increase inxd

2 from the ‘‘true’’ result is given by 1
1(D11)/N, which in the present case is approximate
1.44. ~Comparing SVD and non-SVD fits, this ratio was a
tually found to be 1.57 in the vector case and 1.45 in
y-

o
.

re
he

tor
ese

r

es
e-
-

es

e

axial case, averaged overk.! Thexd
2 values in the vector cas

(;.3– .6) are quite good; thexd
2 values in the axial case

(;1.0– 1.5) were higher, but are still acceptable. The p
terms involvinglV , lA in Eqs.~20! and~21! were crucial to
obtaining acceptable fits in both the vector and axial vec
sectors. The fitting of 13 time sites with acceptablexd

2 values
including the time origin is an extremely nontrivial matt
and shows the usefulness of the~cutoff! continuum quark
model in fitting lattice propagator data.

As is suggested by the numerical results of Ref.@24#, the
best values of the fit parameters~and their error bars from the
jackknife! are actually determined by doing uncorrelated fi
the correlatedxd

2 was used only as a selection criterion of
time intervals. This is the same procedure as used in R
@23#. The error bars in the parameters of the time fits w
determined by the jackknife, while the errors in the fi
across k values were determined by the Levenber
Marquardt method@26# using theCURFIT routine of Ref.
@27#.

Tables IV and V give the relative contribution of the var
ous continuum model sectors to the final result. One sees
the ~subtracted! axial sector is almost saturated by the a
sumed pole, but that only about 30% of the vector resul
given by ther-meson pole, the majority coming from th
continuum. This is very different from chiral model expe
tations and has important consequences for the final ans

The fit parameter values in Tables II and III are fair
reasonable. The continuum threshold valuess0,V , s0,A are of
order unity, with s0,V tending to cluster just above ther-
meson mass; there is no particular trend in the axial ca
the
TABLE III. Continuum model axial fit parameters.xd
2 gives the chi-squared per degree of freedom for

fit.

Quantity k50.154 0.152 0.150 0.148

mp
inputa 0.366~.010! 0.479~.008! 0.581~.007! 0.676~.0062!

jA 1.5~1.7! 1.1~1.2! 0.96~.45! 0.61~1.0!
s0,A 1.19~.24! 1.31~.18! 1.34~.17! 0.69~.23!
r 0,A 0.50~.30! 0.49~.24! 0.546~.082! 0.60~.54!
lp

0 3.73(.26)31022 4.96(.25)31022 6.18(.26)31022 7.37(.25)31022

lp
q 5.05(.37)31022 6.10(.34)31022 7.16(.34)31022 8.15(.41)31022

lA
q 7.6(1.3)31022 7.95(.84)31022 8.04(.38)31022 8.22(.85)31022

EAa 1.38~.15! 1.49~.11! 1.58~.06! 1.70~.07!
xd

2 1.00 1.53 1.45 1.19
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~Large fluctuations ins0,V occur atk50.154 in the vector
case although the jackknife error in the final integral rema
quite small; see Table VII.! TheEV , EA pole energies, mim-
icking the contribution of higher bound states, are seen
decrease with increasingk. The values oflr

q , lp
0 andlp

q are
also reasonable and will be examined extensively in S
III C. However, there are also some questionable aspec
the parameter values in Tables II and III. In the interpretat
of Ref. @16#, the jV,A values should be approximately co
stant acrossk. In fact, there is an increase in these values
k increases in these tables, although the axial case is d
nated by errors.~Note that thejV,A values are significantly
decreased by the inclusion of thelV,A

q pole terms.! In addi-
tion, the short distance cutoff valuesr 0,V and r 0,A are not
particularly constant ink as one might expect. The axial ca
r 0,A values are dominated by errors and no real compar
between the two sets of values can be made.

As a completely independent means of approaching th
integrals, the Simpson integration formula for discrete d
@26# was utilized. In order to do this, it is necessary to e
plicitly remove the pion poles in the zero momentum a
nonzero momentum axial vector propagators. These wer
with single exponentials~using the SVD decomposition! to
the 18–20 time sites, with acceptable correlatedxd

2 values in
both cases. Table VI reports the results of these evaluati
The lp

0 , lp
q values reported in this table are then used

remove the pion tails from the axial vector propagator ti
integrals. There is no unique way of numerically integrati
the subtracted data. Since the lattice data are so stro
peaked in time, different integration rules can give sign
cantly different results. The Simpson rule was chosen
cause it was simple and well known, but other rules co
have served as well. The choice of an odd number of t
sites to fit~13! means that the discontinuities in the fit pol
nomials will occur at odd time sites, including the origi
This allows for the strong peaking near the time origin se
in Figs. 3 and 4 and gives much better agreement with
continuum model integral results than an integral rule wh
requires continuity at the origin.

Figure 5 shows the final chiral extrapolations ink, with
numerical results reported in Table VII. This table sho
that the Simpson and continuum results forIV are rather
close, whereasIA is the major source of the systematic err
in the time integral. The statistical errors inIA are also sig-
nificantly larger than those inIV . The continuum model val-
ues are shown as squares, the Simpson evaluations as c
with the solid symbols representing the extrapolated valu
The Simpson values are larger but extrapolate to a sm
result because of the positive slope. On the other hand
continuum model results have a more sedate, negative s
Combining these results, the dimensionless integralI[IV
2IA is now given as

I536.3~3.9!~3.5!31023, ~29!

implying ~usingmp5139.6 MeV, f p592.4 MeV!

ap6
int

5217.1~1.8!~1.6!31024 fm3, ~30!

where the first number in parentheses is the statistical e
and the second is the systematic error, taken to be half o
s
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difference of the continuum and Simpson model central v
ues. The central value and the statistical error are the ave
of the continuum and Simpson results from Table VII. T
central value in Eq.~29! is significantly larger than curren
experimental or chiral results would imply. For examp
Ref. @5# quotes 27.0(.5)31023 and Ref.@8# gives 21.0(.5)
31023 for this same quantity. When combined with the e
perimental result̂r p

2 &50.439(.008) fm2 from Ref.@28#, this
implies a negative pion polarizability,ap6522.0(1.8)
3(1.6)31024 fm3. @The result̂ r p

2 &50.463(.006) fm2 from
Ref. @29# would imply ap6521.2(1.8)(1.6)31024 fm3.#
We will explore the systematics responsible for this outco
in the next subsection.

C. Systematics

The pion and rho meson masses listed as the top line
Tables II and III are themselves measured from the lat
and have their own Monte Carlo statistical errors. Sin
these are treated as input rather than fit parameters,
should investigate the systematic errors associated with v
ing these inputs. This is done by studying the change in
central value of the chiral-extrapolated result, Eq.~29!, when
the rho and pion masses are put at the upper and lower li
in Table III. When this is done with the rho meson, th
central value changed by approximately61%. As one
might expect, the result of Eq.~29! is more sensitive to the
input pion mass because this is used to fit and remove
pion spectral contribution. It is found that the results fro
the continuum quark model are considerably more sensi
to the input pion mass than the Simpson results. By vary
the pion mass within the limits in Table III one finds that th
central value of the result in Eq.~29! changes by~symme-
trizing the upper and lower changes! by about62.3%. This
is small compared to the estimated systematic uncerta
due to the integral model~continuum or Simpson! depen-
dence.

In order to estimate the size of the finite lattice spac
errors in this simulation, we replaced the continuum relat
~19! with the lattice spin 0 dispersion relation@30#

sinh2S Ea

2 D5sinh2S ma

2 D1(
i

sin2S pia

2 D , ~31!

and made the substitution@31#

q→2 sinS q

2D , ~32!

everywhere for the momentum factor. When these chan
were made, the central value in Eq.~29! was increased by
approximately 2.5%.

As a consistency check of the correlation functions us
in this study with low energy phenomenology, the values
the vector meson and pion decay constants have been
sured and compared to experiment. The vector meson
will be especially revealing since this is a dimensionle
quantity independent of the lattice scale.

The continuum matrix element for rho meson decay
given by
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~0uvm
ud~0!url~pW !!5

mr
2

f r

1

A2Er

em~p,l!, ~33!

wheref r is the decay constant, the polarization state is sp
fied byl andm50 for the charge density operator. One c
show that in terms of thelr

q parameter in the continuum fits
the implied vector meson decay constant is given by

f r5
q~mra!

lr
qA2~Era!

~34!

FIG. 3. The base 10 logarithm of the difference in nonzero a

zero momentum lattice vector charge densities, log10@D̄V(qW 2,t)

2D̄V(0,t)#, at k50.154 as a function of lattice time location. Th
continuum model fit is shown.

FIG. 4. The base 10 logarithm of the absolute value of
difference between nonzero and zero momentum lattice axial ve

charge densities, log10uD̄A(qW 2,t)2D̄A(0,t)u, at k50.154 as a func-
tion of lattice time location. The continuum model fit is show
Notice the change in sign of the correlation function slightly af
time location 12.
i-

whereq5 p/8. The results for the vector meson decay co
stant, f r , are given in Table VIII and are shown in Fig. 6
When all 4k values are extrapolated tokcr , we obtain f r

53.11(.39) (xd
25.59), lower than the experimental value

3.56~.14!. However, it is well known in lattice studies o
similar sized lattices that ther to nucleon mass ratio
mr /mN , is underestimated when extrapolated to the ch
limit. Using the nucleon mass to set the lattice scale, if o
instead extrapolatesf r to ther-mesonphysicalmass, about
770 MeV ~occurring at aboutk50.1545!, one obtains a
much better result,f r53.48(.28). We will check that thef p

values from the axial vector propagator given by this cho
of scale is consistent with experimental results.

The large time limit of the axial vector propagators imp
values of the pion decay constant,f p . One has that

~0uam
ud~0!up~pW !!5 i

pm f p

AEp

, ~35!

where againm50. One can relate the parameterlp
0 to the

pion decay constant as follows:

f p5
lp

0

aAmpa
. ~36!

The results of this calculation are shown in Fig. 7 (a21

51.74 GeV, Ref.@32#). The extrapolation to the chira
limit is extremely straight and one obtains 87.4~9.0! MeV,
consistent with the experimental result of 92.4 MeV.

As a check on thef p calculation, we consider the ratio o
the axial pole parameters for the pion, which by the co
tinuum relation~35! is given by

lp
q /lp

0 5AEp /mp. ~37!

This comparison is carried out in Table IX for the continuu
and Simpson fits. There appears to be a small violation
this continuum relation at perhaps the 5–10% level in
lattice data. However, note that a systematic error in t
quantity does not necessarily affect the calculation since
pion contributions are excluded from the DMO axial int
gral. Also note that the two data treatments~continuum and
Simpson! are quite consistent with one another for this rat

We have seen above thatf r , extrapolated to the chira
limit, gives a result which is small compared to experime

d

e
or

r

TABLE IV. Continuum model vector integral strengths.

Contribution k50.154 0.152 0.150 0.148

Continuum 0.51~.18! 0.61~.09! 0.56~.06! 0.55~.05!
Lowest pole 0.34~.06! 0.25~.05! 0.27~.03! 0.28~.02!
Excited pole 0.16~.13! 0.14~.05! 0.16~.03! 0.17~.04!

TABLE V. Continuum model axial integral strengths.

Contribution k50.154 0.152 0.150 0.148

Continuum 0.28~.25! 0.20~.17! 0.18~.08! 0.16~.25!
Pole 0.72~.25! 0.80~.17! 0.82~.08! 0.84~.25!



.

6738 57WALTER WILCOX
TABLE VI. Simpson model parameters.xd
2 gives the chi-squared per degree of freedom for each fit

Quantity k50.154 0.152 0.150 0.148

lp
0 3.70(.24)31022 4.94(.22)31022 6.23(.23)31022 7.53(.24)31022

xd
2 0.57 0.83 0.82 0.80

lp
q 4.73(.31)31022 5.95(.27)31022 7.27(.27)31022 8.63(.28)31022

xd
2 0.19 0.15 0.13 0.09
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but that thef p value extracted using the axial propagator a
the nucleon mass scale is consistent with phenomenol
This suggests that it may be the behavior of the vector pro
gator in the chiral limit which is responsible for the larg
value ofI in this calculation. To test this, one may inste
extract the value of the vector contributionIV at the physical
r-meson mass, similar to what was done above forf r ; we
now obtainI533.2(4.0)(2.9), a better result but one whi
is still too large. The remaining difference is clearly due
the large ‘‘continuum’’ contribution to the vector correlato
remarked on earlier; see Sec. III B and Table IV.

Finally, note that the intrinsic polarizability, through th
renormalization factors in Eqs.~22! and~23!, is fairly insen-
sitive to the value ofaV used since the vector and axi
vector integrals contribute with opposite signs. Roug
speaking, it is found that ax% percentage change in th
value ofaV induces a change in Eq.~29! of about2x/2%.

IV. CONCLUSIONS AND REMARKS

The sum rule method of extracting charged pion pola
ability from lattice data has been examined. In the limit
point of view adopted here, the spectral integral in the DM
sum rule has been considered separately. It has been e
ated with lattice data and the result, large compared to p
nomenology and chiral models, is given by Eq.~29!. Smaller

FIG. 5. Chiral extrapolation of the final results for the dime
sionless spectral integral,I, as a function of dimensionless qua
mass,ma. Squares are for the continuum model results and circ
are for Simpson model results from Table VII. The solid symb
represent the chiral-extrapolated results atma50. Note that some
of the circles are offset inma for clarity of presentation.
d
y.
a-

y

-

lu-
e-

systematic effects from altered input mass values, finite
tice spacing and renormalization constants were also con
ered.

Excellent fits were obtained to the~momentum-
differentiated! lattice data across 13 time slices, including t
propagator origins, using the continuum quark model. T
time fitting of these quantities with reasonablexd

2 values
would not have been possible without~1! introduction of the
lattice cutoff, r 0 ; ~2! addition of additional pole terms in
both the vector and axial vector cases;~3! the SVD modifi-
cation, following Ref.@25#, of the time propagator eigenva
ues. We have also seen that the axial vector propagato
largely responsible for both the statistical and time-integ
systematic errors.

The lattice systematics have been examined extensi
and it has been argued above that~1! systematics associate
with the incorrect lattice ratiomr /mN and ~2! the fact that
the vector propagator is far from being dominated by
r-meson are responsible for the large central value of
final result in Eq.~26!. It is precisely because pion polariz
ability is so sensitive to and revealing of lattice systemat
that it represents a significant test of the ability of the latt
to produce phenomenologically interesting predictions. F
ther studies with larger lattices and better actions should
even more revealing of these systematics.

It is clear that in order to obtain phenomenologically i
teresting values ofap6

int from the lattice, both the statistica
and systematic errors here will have to be reduced. The
tematic uncertainty in the time integrals can be reduced
using a time-asymmetric lattice with a fine mesh of latti
points in the time direction. This will allow sampling a
smaller time intervals~but not too small to get into the
asymptotic time regime! in evaluating the strongly peake
integrals. However, in order to understand thedynamics
leading to pion polarizability, it will be necessary to go b
yond the DMO sum rule to direct measurements. These

s

TABLE VII. Results for the dimensionless integralI; a factor of
1023 multiplies all the entries. TheC superscript indicates the con
tinuum model values and the superscriptS indicates values from
Simpson fits.

Quantity kcr50.1564 k50.154 k50.152 k50.150 k50.148

IV
C 79.1~1.9! 74.6~1.5! 72.1~1.3! 68.5~1.3! 65.1~1.2!
IV

S 79.8~1.2! 76.4~.9! 74.8~.9! 72.3~.8! 69.4~.7!

IA
C 39.6~4.8! 37.1~4.0! 34.6~2.6! 32.4~1.5! 30.7~3.6!
IA

S 47.0~2.9! 40.7~2.5! 36.8~1.9! 32.1~1.8! 27.1~1.7!
IC 39.8~4.6! 37.5~3.9! 37.6~2.5! 36.1~1.6! 34.3~3.5!
IS 32.8~3.1! 35.6~2.7! 37.9~2.0! 40.1~1.9! 42.3~1.8!
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ditional considerations will be taken up in future public
tions.
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APPENDIX

In this brief appendix, a more explicit form of the con
tinuum model expression forDG44(t,q,r 0 ,s0) will be given.

In introducing the ultraviolet cutoff, one can make use
the procedure in Ref.@16#, which gives an upper limit,L, in
energy. The resulting expressions are rather complicated
are only defined in the limitt→0. Alternatively, one can
define a short distance cutoff simply by putting a lower lim
on ther -space integrals. This is the procedure followed he
Then combining Eqs.~14! and ~15! of the text, we have

FIG. 6. The vector meson decay constant,f r , as a function of
dimensionless quark mass,ma. The boxes indicate measured va
ues atk50.154, 0.152, 0.150 and 0.148. The solid circles indic
the extrapolated result atma50 as well as the extrapolated result
the physicalr meson mass. The dotted line shows the experime
upper and lower limits onf r .

TABLE VIII. Vector and pion decay constants.f p
C indicates

values inferred from continuum model fits andf p
S values from the

Simpson fits.

Quantity k50.154 0.152 0.150 0.148

f r 3.40~.30! 4.26~.40! 4.39~.26! 4.60~.17!
f p

C ~MeV! 107~7! 125~6! 141~6! 156~5!

f p
S ~MeV! 106~7! 124~6! 142~5! 159~5!
s
or

f

nd

.

DG44~ t,q,r 0!5
12

p3q2 E
r 0

`

drr S sin~qr !

q
2r D

3H 2t2

~r 21t2!4 2
1

~r 21t2!3 J . ~A1!

The continuum threshold that is introduced in Ref.@16# is
equivalent to doing an an incomplete Laplace transform
the spectral density, which is itself obtained with an inve
Laplace transform of the propagator. A similar procedure
followed here with the vector and axial vector continuu
spectral densities. The basic assumption of the continu
model is that we are at low enough lattice momentum th

DG44~ t,q,r 0! ——→
q2→0 E

0

` ds2

2s3 e2sutur~s2! ~A2!

is a reasonable identification. In this limit this means th
DG44(t,q,r 0) has the time integral

E
2`

`

dtDG44~ t,q,r 0! ——→
q2→0 E

0

` ds2

s4 r~s2!, ~A3!

consistent with Eq.~3!. Now putting Eq.~A1! into Eq. ~16!
results in the explicit expression~for t.0!,

e

al

TABLE IX. Comparison of the continuum ratiolp
q /lp

0 for con-
tinuum and Simpson model axial fits.

Quantity k50.154 0.152 0.150 0.148

Continuum theory 1.21 1.14 1.10 1.08
Continuum model 1.35~.10! 1.23~.06! 1.16~.05! 1.11~.04!
Simpson model 1.28~.09! 1.20~.06! 1.17~.04! 1.15~.04!

FIG. 7. The pion decay constant,f p
C , as a function of dimen-

sionless quark mass,ma, in MeV. The boxes indicate measure
values atk50.154, 0.152, 0.150 and 0.148. The solid circle ind
cates the extrapolated result atma50 and the dotted line is the
experimental result,f p592.4 MeV.
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DG44~ t,q,r 0 ,s0!5
12

p3q2 H 2E
r 0

`

drr S sin~qr !

q
2r D E

s0

`

dsE
2`

`

du
eius~ t1 iu !2

@r 21~ t1 iu !2#3 2E
r 0

`

drr S sin~qr !

q
2r D

3E
s0

`

dsE
2`

`

du
eius

@r 21~ t1 iu !2#2 J . ~A4!

The poles in theu-integral are identified and the integration done. The remainings-integral is then done explicitly. The fina
result can be presented as follows:

DG44~ t,q,r 0 ,s0!52
1

2p3q2 ReH E
r 0

` dr

r S sin~qr !

q
2r Des0~2t1 ir !F 6

~ t2 ir !4 1
6s0

~ t2 ir !3 1
3s0

2

~ t2 ir !2 1
s0

3

~ t2 ir !

1
3

r 2 S 1

~ t2 ir !2 1
s0

~ t2 ir ! D1
3i

r 3~ t2 ir !
G J 2

3

2p3q2 ImH E
r 0

` dr

r 2 S sin~qr !

q
2r D

3es0~2t1 ir !F2
2

~ t2 ir !3 2
2s0

~ t2 ir !2 2
s0

2

~ t2 ir !
2

3i

r S 1

~ t2 ir !2 1
s0

~ t2 ir ! D1
3

r 2~ t2 ir !
G J . ~A5!

The explicit real and imaginary parts are then separated out from this expression and the remainingr -integration is done
numerically in the continuum fits of the vector and axial vector data.
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