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Lattice investigation of the Das-Mathur-Okubo sum rule
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An evaluation of charged pion polarizability using correlation functions measured oh<e248attice in the
context of the Das-Mathur-Okubo sum rule is carried out. The calculation is limited to the so-called intrinsic
part of the polarizability. This contribution, equivalent to a Euclidean time integral over vector and axial vector
momentum-differentiated propagators, is evaluated in both a continuous and discrete sense. In the continuous
case, the time behavior of the correlation functions is fit to the continuum quark model; the discrete case is
handled by a straightforward application of Simpson’s rule for integration after subtracting the pion contribu-
tions. A comparison of the implied vector meson and pion decay constants with phenomenological values is
carried out. Results for the intrinsic polarizability are extrapolated across four quark mass values to the chiral
limit. An extensive discussion of the lattice systematics in this calculation is gi#g8%56-282098)03611-X

PACS numbgs): 12.38.Gc, 11.15.Ha, 11.55.Hx

[. INTRODUCTION numerical approach based on Simpson’s rule. We will also
check the consistency of our data with low energy phenom-
Charged pion polarizability is a fascinating laboratory for enology by extracting the pion and rho meson decay con-
strong interaction physics. It sits at the crossroads of experistantsf, andf,, from the axial and vector correlation func-
ment, dispersion relations, sum rules and chiral model retions. Various other sources of systematic error will be
sults. It also can be evaluated on the lattice and turns out tgstimated and suggestions for further improvements in future
be a sensitive barometer of such inputs as lattice scaldattice evaluations of charged pion polarizability will be
ground state mass values, and models for fitting propagatdpade.
data. It is therefore both an excellent testbed for investigating

gauge lattice systematics as well as an extremely interesting Il. BACKGROUND
and fundamental dynamical quantity in itself. _
Some previous experimental and theoretical results on A. Review
charged pion polarizability¢,=) are presented in Table I.  The DMO sum rule for the charged pion polarizability,

Both experimental and theoretical disagreements are eviderderived from current algebra in the chiral limit, is

It is thus an opportune time to initiate lattice studies which

attempt to calculate this quantity from first principl€s10]. (r2) a w 5 )

Excellent reviews of the experimental and theoretical situa- ==~ ¥3~ = 52 f(m tep2 = [Pv(ST) = pa(sT)].

tions are availabl¢11]. i mm e 2
External field methods have been used previously to mea-

sure neutral particle polarizabilities in the context of lattice

QCD[12]. Of course these methods would be very difficult

or impossible to use in the case of charged hadrons becau

charged particles accelerate in an electric field. The evalue}iaﬂon for the spectral functions, » is being used here; see
tion of charged particle polarizabilities can be done directlyEq (3) below ' '

on the lattice by measuring a Compton scattering coefficient There are several advantages to using @yjinstead of

[1?]' :gwever, tt;ethdlrect e;_aluatlon ;sda(;:_tually quite Im- ttempting direct evaluations of pion polarizability. Equation
volved because ot the many diSconnected diagrams involve 1) employs only mesonic two-point functions, which are

There is a way around this difficulty if one is willing to work
in the exact chiral limit by use of the Das-Mathur-Okubo
(DMO) sum rule[13]. Although this results in a simpler
lattice calculation, a well-known problem in this approach is

The pion pole is absent from the axial vector spectral inte-
ral; this is symbolized by the lower limitn{,+ €)?, € be-
g?g a small positive quantity. A conventional lattice normal-

TABLE I. Previous experimental and theoretical results on
charged pion polarizability.

that the spectral integral involves a rather precise canceIIa&#i (104 fm?) Type Reference
tion of large numbers and so may be difficult to evaluate
numerically. This paper attempts to understand to what ex6.8+1.4+1.2 Expt. Ref[1]
tent this difficulty holds in lattice evaluations and to begin to20+12+1.2 Expt. Ref[2]
explore the internal systematics of such calculations. 2.2+1.6+1.2 Expt. Ref[3, 4]
An explanation of the methods used to estimate the DM(.64+ .36 Theor./Expt. Refl5]
spectral integral will be given in the next section. Successful-3.6 Theor. Ref[6]
use of the quark continuum model will be made; this sheds 4+0.5 Theor. Ref[7]
additional light on its use and range of validity. The consis-5 g+0.5 Theor. Ref[8]

tency of the results will be probed using an alternate purely
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easily calculable on the lattice. In addition, the necessary o ds? ) )
propagators can be precisely measured using a combination J( ro? ?[PV(S )= pa(s9)]

m,+e

of numerical techniques which will be explained in Sec.
"A.

There is no unique way of evaluating Ed) on the lat-
tice. The strong interaction parameters, pion mass)(
pion decay constantf() and the charged pion squared
charge radius ((rf,)) also enter this expression. All these
guantities can and should have separate lattice evaluations.
In the limited point of view adopted here, evaluation of the
spectral integral in Eq1), the so-called intrinsic part,

) d [ o .,
R f_ dif Agg(k? ) — Agg(k% D)][R2-0, (5)
where

ARt = J d®xe * (0| T[wad(x,)v8%(0)]]0), (6)

=y f . i—jz[pws%—m(sz)], @ Aéo('zz't)ff dxe” (O Tag’(x a5 " (0)]|0). @)
. m (m,+e)2

T

Last of all, a switch is made to imaginary time,
will be concentrated on. We will also compare the implied
values for the pion decay constafnt and vector meson de-
cay constant, against experimental results. Normally since 'f
polarizability scales likea®, one expects it to be very sensi-

tive to the lattice scale. However, because experimental val-

ues ofm, and f . will be used in the DMO expression for whe_rg we have the standard ud-flavor propagapwal and
int . LT rposltlve fortg#0)

a_- there will actually be no scale uncertainty in the answe

obtained here. The only quantity for which we will need the

dtA (k3 t) = f dteA 14(K2 te), 8

lattice scale will be in the later lattice calculation fof .

B. Derivation

A4V4(|22,tE)zf d3xe ™ X(0| T[v49(x, — itg)v497(0)]]0),
9

The Minkowski space DMO sum rule spectral densities AA(thE)zf d3xe_i|2.)2(o|-|-[aud(x _itE)audT(O)]|0)
448 HLE) = 4 (A 4 .

pv(s?) andpa(s?) arise from[14]

i f d*xe™X(0[ w2 (x)v2(0) — % (x)a3'(0)1]0)

1 f i [pu(s2)— ()]
2 J(my+e)? k2+ s2

kk,| f2k.k,
X(_g,uv+ 2 )_ﬁa (3)
S Ko+ u

whereko=\/s?+Kk? or ko= u2+k? (w=pion massin the

pion term. Also in Eq.(3) the metric isg,,=(+,—,—,—),
a a

vR(X)=(X) 5 . (x), and ag(x)=y(x) 5 vs v ¥(X).-
The u,»=0 amplitude can also be expressed as

i f d*xe % X(0| T[v3(x)v21(0) - ad(x)a3'(0)]|0)

~ 5 [ @Iy 008 0) -t al 0)1j0)

(4)

in the exactSU(2)-flavor limit because of either canceling
or vanishing self-contractions of the currents. The current

being used in Eq(4) are vi%x,t)=d(x,t)you(x,t) and
ald(x,t)=d(x,t) ysyou(x,t). It is noticed thaf{15]

(10

(One may takeyy,= v, here) Thus, putting Egs(2)—(10)
together, we have

o d

int _ o
2m,f2 gi2

+
o

X J dte[ A (K% te) — M%K% te) llke=0.  (1D)

On the lattice, the right-hand side of Ed.1) will be formed

by taking a numerical momentum derivative of the lattice
propagator data. Although the derivative in Ef) removes
the pion contribution in Eq(3), one has only finite momenta
on the lattice and the pion contribution must be explicitly
subtracted from the axial vector propagators in the lattice
version of Eq.(12).

C. Continuum model

The time integral in Eq(11) will be performed in both a
discrete and continuous sense using the lattice data; the dif-
ference will be taken as a reasonable estimate of the system-
atic error of the integral. In the discrete case, one can simply
apply Simpson’s integration rule to the Euclidean time

ropagator data after subtracting out the pion contributions.

his will be described in detall later. The continuous case
demands some way of interpolating between the propagator
time values. For this purpose, let us consider the standard
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lattice Euclidean ud-flavor point-to-point charge density cor- % < du . '
relator (@=Ka): AGa(t,d,10,S0) = Lodsfoc 5 €UAG(t]+iu,q.ro).

(16)

—ig-x ud udt
2);‘ € (0ITTva" ()07 (0)]0). A third parameter{, will be introduced as a multiplicative

factor normalizing this function. Originally, this parameter
One may show that this reduces(teplacing the sunt; by  was introduced to account for lattice anisotrophy at small
the integralf dx) lattice time separationsee Ref[16]). However, for an in-
teresting alternate interpretation of this parameter, see Ref.
3y g " [17]. One can analytically perform the two integrations in
f d°xe " Tr[S(X,0) ¥4¥5S'(X,0) ¥4 ¥5], Eq. (16); the remaining oscillating radial integration is done
numerically. This numerical evaluation makes the fitting of
where S(x,y) is the quark propagator and the trace is overparameters for this model rather slow and renders a third-
color and Dirac spaces. Using the free quark propagatwr order jackknife analysis of the data impractical. For a more

ordinate gauge, diagonal to this order in color space explicit representation of the function defined in Etf), see
the Appendix.
Y- X 1 my In attempting to fit thdmomentum differentiatedoropa-
SO = STt amr e T (120 gator time data, pole mass terms of the form
(AD2e Bt (\])%e BV (17)

the following definition ¢=|q|) is now made:

y o will be added in the vector case and the three terms
—r

_ 3y a—ig-X _ _ _
G44(t,C|)=f d°xe™'d X(—rz_’_—tzv. (13) ()\?T)Ze Eﬂt_()\(q)_r)2e m,Tt_{_()\g\)Ze Eat (18)
will be added in the axial case. Tl&g, term[in Eq.(17)] and

Doing the angular integrations yields theE,, m, terms[in (18)] represent the lowest pole contri-

12 (= 212 1 butions to the spectral integral in the vector and axial vector
Gu(t,q)= —5- J drr sin(qr){ 2 12\8 T 21123 (- channels(There is no term proportional ® ™! in the vec-
™q Jo (rf+19% (r'+1) tor case because of charge conservalidhe additional pole

(14 terms in these expressions, tAe term in Eq.(17) and the

o ) L E, term in EqQ.(18), were found to be necessary in achieving
Actually, what one wants in this case is a derivative of the, ea5onable fit to the lattice data; see the comments in Sec.
above with respect to squared spatial momenfsee Eq.

b | d X v fini [l B. The mass valuesn, andm, will be fixed from inde-
(11) above evaluated at zero momentum. Since only 'n'tependent lattice measurements, and the continuum relation-

momenta are available in the lattice simulation, this con-.;.:

. ) shi
tinuum procedure cannot be reproduced on the lattice. Thus P

in order to compare with the lattice data consider, instead, E.a= /ﬁz+(mﬂa)2 (19
AG(tq)= Gas(t,q) — Guy(t,0) (15 will be assumed. Phenomenologically, tEg pole in the
4 LA)= q° ' vector case has quantum numbers of radially excited states of

the rho meson and th&, pole has the quantum numbers of
whereq represents the lowest lattice momentum value. Fitthe a; meson. All told, there are 6 parameters in the vector
ting the lattice data with E¢(15) has the advantage of using fits  (&,,Sgy ,roy\,,)\g AYV,Ey) and 7  parameters
the same type of “derivative” as in the lattice data, but has(¢, ,SoA-Fo,AJ\E,,X?T,Kq ,E,) in the axial fits. (However,

the disadvantage of including a small momentum depensee later comments about the continuum relation betwéen
dence in the phenomenological model. To this order theynq)d in Sec. 111 C) Of course, once the axial data are fit,
same functional form holds for the axial vector propagator agne muyst eliminate the pole terms involving the pion before
well. The next nonvanishing term in the lattice propagatordoing the DMO integral.
from Eq.(12) is proportional to the square of the quark mass, |4the context of the continuum plus pole model, the Eu-
but this term gives negligible contribution to the fits and is qjijean lattice data are now fit to the forms
not considered further.

A number of modifications are necessary to this function  AY (g2 t)— AY,(01)=0q2,AG(t,0.19,S0)
before one compares to the lattice data. First, it is clear that
the above expressions have an ultraviolet infinity associated +(ADZe B+ (A)Ze B, (20)
with ther =0 lower limit for t=0. This infinity can be con-
trolled, as the lattice itself controls it, by putting in a short A% (g2 t)— A%(04)=02EaAG (10,1 ,S) + (A 9)2e~Eat
distance cutoff. So replace the lower limit above ry-0,
which becomes a parameter in the fits. Call this modified —(\2)Ze M+ (AD)%e EAL (21)
function AG44(t,q,rg). Second, put in a continuum thresh- _
old, sy, to control the onset of excited states in the spectral et KL(ﬁz,t) and A4A4(ﬁ2,t) represent the actual correlation
density. One can show that the resulting function is given byunctions measured on the lattice. It is assumed that these are
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related to the continuum functions needed in Etl) by 1.2 >
scale, tadpole and renormalization factors as follows: i1 -
&
" N[ (1-0.82x)]%—, - 1.0 LI
asAL(kzyt):N_T[% ZL(qz,t), (22 0.9 e
s s * ® % @ @ e @ |
0.8 i R ¥ e
. N[(1-0.31ay)]%—, - SN S S S S
a®AR (K2 t)= — (170.31ay) AV(RYD), (23 @ o A
NS 4 - [E3) ] 3 i 3
+ 0.6 £ @,,,,M
whereay, is the strong interaction coupling constant defined §5 5
in Ref.[18], N4 is the number of spatial sites smeared overin M
the source interpolation fieldd6? in this casg, and 0.4
3k 2 0.3
NT=16(1— 4Kcr> . (24 0.2
0.1
We will use ay(7/a)=0.1557 (3=6.0) for the local cur- 0.0
rents in this study. In the following tables and figures, the S8 1o 12 14 16 18 20
results for the intrinsic part of the charged pion polarizability t

will presented in natural dimensionless forfi, », where att. | 1 _
' FIG. 1. LocalE;"(t+3) measurements for the lattice vector

intr o charge densityA_V((iz,t), versus lattice time locationt, compared
at = m._f2 (Za—1v), (25 with continuum dispersioghorizontal line$ for |ﬁ| = /8. Squares
o are for k=0.154, triangles ar&=0.150, stars are fok=0.148,
1 (= d<? and circles arec=0.148 results.
Tya=7 J' _4Pv,A(52)- (26)
2 (m,+ e)2 S 4K(:r
ma=In - 3) . (28
3k
lll. RESULTS

The correlated chi-squared per degree of freedgﬁn,on all
of the mass fit§no singular value decompositid®VD) de-

The simulation was done on 32 quenched configurationgomposition; see Sec. llIBwere less than one. The hori-
with Wilson fermions on a 16< 24 lattice at3=6.0. The  zontal lines in Figs. 1 and 2 show the predicted energies
lattices were constructed with the algorithm of REE9],  using continuum dispersion; agreement with the lattice data
thermalized by 11000 sweeps and separated by 1006n time steps 15—20 inclusive is evident. These masses will
sweeps. Four values of the Wilson hopping parameter werpe used as fixed input rather than parameters in the present
consideredx=0.154, 0.152, 0.150 and 0.148. We used thecalculation, which significantly improves the error bars on
“volume method” [20,2]] to calculate the propagators di-

A. Simulation parameters

rectly from the nongaugefixed configurations, smearing over 1.2
a 16x 16 spatial plane at time step 8 of the lattiC€he first 1
time step of the lattice will be defined to ke=1.) This @
sacrifices the Fourier transforms in two spatial directions but Lo =
reinforces the momentum projection in the third. This is the 0.9 & o
main idea of the “Fourier reinforcement” methg@2]. o8 * ® s 5 4 e
The signals obtained for the vector and axial vector I e
- . —~ & ¥ x 3 Tk
charge density operators are excellent. Figures 1 and 2 shong 0.7 T3 ¥ 1
the local lattice energy, + 06 S S T
:-L 0.5 @ % %1 % 3] 1
N (R2 22} ’
E|a'[t t+ E Eln( _szf—q’t)> , (27) 0.4
2 AgQ?t+1) 0.3
for the vector and axial vector cases, respectively. dhed 0.2
7 masses were calculated separately with extremely long o1
time base lines on 20 of these configurations, fixed to the
lattice Coulomb gauge, with quark propagators starting at 0.073 10 12 14 16 18 20
=1 and single exponential fits to time steps 16—19. The t
results are given as the first line in Tables 1l and Ill. Three of
these resultéx=0.154, 0.152, 0.148are taken from Table | FIG. 2. Local E2"(t+3) measurements for the lattice axial

of Ref. [23]; the result atx=0.150 is new. The value of vector charge densityA”(g%t), versus lattice time locatiort,
ker=0.1564 is also taken from Rdf23]. The dimensionless compared with continuum dispersidhorizontal liney when |q|
guark mass in this reference as well as here is taken to be= #/8. Symbols are the same as in Fig. 1.
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TABLE Il. Continuum model vector fit parametergﬁ gives the chi-squared per degree of freedom for

the fit.

Quantity «k=0.154 0.152 0.150 0.148
miPa 0.463.020 0.550.013 0.635.010 0.718.008
&y 4.44.54) 4.16.78) 3.71(.52) 3.57.50)
Sov 0.90.55) 0.568.050 0.644.050 0.724.049
Tov 0.442.029 0.417.040 0.383.029 0.368.029
A7 4.86(.43)x 102 4.36(.41)x10°? 4.65(.28)< 1072 4.79(.18)x 1072
A 4.6(1.7)x10 2 4.6(1.1)x 10 2 5.03(.62)x 10 ? 5.12(.60)x 10?2
Eva 1.17.14 1.33.19 1.46.10) 1.55.07)

p% 0.34 0.30 0.44 0.60

the remaining fit parameters. The systematic effects of varyaxial case, averaged ove) The X§ values in the vector case
ing the inputp and = masses in this calculation will be (~ 3—.6) are quite good; thgﬁ values in the axial case
reported on in Sec. Il C. (~1.0—1.5) were higher, but are still acceptable. The pole
terms involving\y, A 4 in Egs.(20) and(21) were crucial to
obtaining acceptable fits in both the vector and axial vector

The data in the vector and axial vector sectors were fit t$€ctors. The fitting of 13 time sites with acceptajfevalues
Egs.(20) and(21); examples of these fits are shown in Figs. including the time origin is an extremely nontrivial matter
3 and 4, which show the case=0.154. It is the area under and shows the usefulness of theutoff) continuum quark
these curves which is of interest here. The time integrals argodel in fitting lattice propagator data.
very sharply peaked and the fits themselves extend from the As is suggested by the numerical results of Re4], the
source time site at=8 to t=20. The numerical quality of best values of the fit parametdend their error bars from the
the vector time data is seen to be better than the axial vectgackknife) are actually determined by doing uncorrelated fits;
case, but both are quite acceptable. The parameters of thegfe correlategy3 was used only as a selection criterion of fit
fits are given in Tables Il and IIl. time intervals. This is the same procedure as used in Ref.

A second-order single elimination jackknife was used for[23]. The error bars in the parameters of the time fits were
error analysis at each value; the first order defines error yetermined by the jackknife, while the errors in the fits
bars on the time correlation functions and the second defin€§.ross « values were determined by the Levenberg-

errors on the fit parameters of these functions. The fits réMarquardt method26] using the CURFIT routine of Ref.
ported in Tables Il and Ill are characterized by their corre{27].

lated chi-squared per degree of freedog. These were Tables IV and V give the relative contribution of the vari-
arrived at by the SVD algorithm suggested in R&#4]. It ous continuum model sectors to the final result. One sees that
was found there that the correct correlajgflwas obtained  the (subtractell axial sector is almost saturated by the as-
on small data samples when the number of exact eigenvalugsimed pole, but that only about 30% of the vector result is
retained E, was chosen to be-\/N, whereN is the number given by thep-meson pole, the majority coming from the
of configurations. We will us&=6 (N=232). DefiningD to  continuum. This is very different from chiral model expec-
be the number of fit time sited(=13), Ref.[25] finds that tations and has important consequences for the final answer.
the increase iny3 from the “true” result is given by 1 The fit parameter values in Tables Il and Il are fairly
+(D+1)/N, which in the present case is approximately reasonable. The continuum threshold valsgg, Soa are of
1.44.(Comparing SVD and non-SVD fits, this ratio was ac- order unity, withsy,, tending to cluster just above the
tually found to be 1.57 in the vector case and 1.45 in themeson mass; there is no particular trend in the axial case.

B. Spectral integral evaluation

TABLE lll. Continuum model axial fit parameter;ﬁ gives the chi-squared per degree of freedom for the

fit.

Quantity «k=0.154 0.152 0.150 0.148
minPuty 0.366.010 0.479.008 0.581(.007) 0.676.0062
IA 1.51.7) 1.1(1.2) 0.96.45) 0.61(1.0)
Soa 1.19.24) 1.31(.19) 1.34.17) 0.69.23
ToA 0.50.30) 0.49.24) 0.546.082) 0.60(.54)

A2 3.73(.26)x 102 4.96(.25)x 102 6.18(.26)x 10?2 7.37(.25)x 1072
A 5.05(.37)x 10?2 6.10(.34)x 1072 7.16(.34)< 1072 8.15(.41)x 10?2
A 7.6(1.3)x 102 7.95(.84)x 1072 8.04(.38)x 1072 8.22(.85)x 1072
Ena 1.39.15 1.49.11) 1.58.06) 1.70.07)

X3 1.00 1.53 1.45 1.19
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(Large fluctuations irsy,, occur atk=0.154 in the vector difference of the continuum and Simpson model central val-
case although the jackknife error in the final integral remaingies. The central value and the statistical error are the average
quite small; see Table VIN.TheEy, E, pole energies, mim- of the continuum and Simpson results from Table VII. The
icking the contribution of higher bound states, are seen teentral value in Eq(29) is significantly larger than current
decrease with increasing The values ol ], A and\9 are  experimental or chiral results would imply. For example,
also reasonable and will be examined extensively in SedRef. [5] quotes 27.0(.5% 10 2 and Ref.[8] gives 21.0(.5)
Il C. However, there are also some questionable aspects ts 102 for this same quantity. When combined with the ex-
the parameter values in Tables Il and lIl. In the interpretatiorperimental resul{r2)=0.439(.008) frd from Ref.[28], this
of Ref.[16], the &y o values should be approximately con- implies a negative pion polarizabilitye == —2.0(1.8)
stant acros. In fact, there is an increase in these values as<(1.6)x 10~* fm®. [The result(r2)=0.463(.006) fm from
« increases in these tables, although the axial case is domRef. [29] would imply «,+=—1.2(1.8)(1.6)x 10 * fm®.]
nated by errors(Note that the¢,  values are significantly We will explore the systematics responsible for this outcome
decreased by the inclusion of the) 5 pole terms. In addi- in the next subsection.
tion, the short distance cutoff valueg, andry, are not
particularly constant iic as one might expect. The axial case
roa Values are dominated by errors and no real comparison
between the two sets of values can be made. The pion and rho meson masses listed as the top lines in
As a completely independent means of approaching thesgables Il and Il are themselves measured from the lattice
integrals, the Simpson integration formula for discrete dat@nd have their own Monte Carlo statistical errors. Since
[26] was utilized. In order to do this, it is necessary to ex-these are treated as input rather than fit parameters, one
plicitly remove the pion poles in the zero momentum andshould investigate the systematic errors associated with vary-
nonzero momentum axial vector propagators. These were fifg these inputs. This is done by studying the change in the
with single exponential$using the SVD decompositigrio ~ central value of the chiral-extrapolated result, E28), when
the 18—20 time sites, with acceptable correlgigd/alues in  the rho and pion masses are put at the upper and lower limits
both cases. Table VI reports the results of these evaluation! Table Ill. When this is done with the rho meson, the
The A%, A9 values reported in this table are then used to®entral value changed by approximatety1%. As one
remove the pion tails from the axial vector propagator timeMight expect, the result of E¢29) is more sensitive to the
integrals. There is no unique way of numerically integrating!M"PUt pion mass because this is used to fit and remove the

the subtracted data. Since the lattice data are so strong jon spectral contribution. It is found that the results from
peaked in time, different integration rules can give signifi-1€ continuum quark model are considerably more sensitive

cantly different results. The Simpson rule was chosen bet® the input pion mass than the Simpson results. By varying
cause it was simple and well known, but other rules couldhe pion mass within the I|m|ts in Table Il one finds that the
have served as well. The choice of an odd number of tim&entral value of the result in Eq29) changes bysymme-
sites to fit(13) means that the discontinuities in the fit poly- trizing the upper and lower changesy about+2.3%. This
nomials will occur at odd time sites, including the origin. 1S Small compared to the estimated systematic uncertainty
This allows for the strong peaking near the time origin seerflu€ to the integral modefcontinuum or Simpsgndepen-
in Figs. 3 and 4 and gives much better agreement with th§€nce. _ _ - _ _
continuum model integral results than an integral rule which N order to estimate the size of the finite lattice spacing
requires continuity at the origin. errors in this smulatlon, we .replac.ed the c_ontmuum relation

Figure 5 shows the final chiral extrapolationsanwith (19 with the lattice spin 0 dispersion relati¢80]
numerical results reported in Table VII. This table shows Ea ma
that the Simpson and continuum results fy are rather sinhz(—) :sian(—) +E sir?
close, wherea$%, is the major source of the systematic error 2 2 i
in the time integral. The statistical errors 1R are also sig-
nificantly larger than those A, . The continuum model val- and made the substitutid@1]
ues are shown as squares, the Simpson evaluations as circles,
with the solid symbols representing the extrapolated values.

q—2 sir( 5)

C. Systematics

p;a
7) (31

The Simpson values are larger but extrapolate to a smaller
result because of the positive slope. On the other hand the
continuum model results have a more sedate, negative slope.
Combining these results, the dimensionless inte@eal,  everywhere for the momentum factor. When these changes

(32

— T, is now given as were made, the central value in EQ9) was increased by
approximately 2.5%.
7=36.33.9)(3.5x10°3, (29 As a consistency check of the correlation functions used
in this study with low energy phenomenology, the values of
implying (usingm,=139.6 MeV, f . =92.4 MeV) the vector meson and pion decay constants have been mea-
- - sured and compared to experiment. The vector meson case
als=—17.1(1.8)(1.6)x10 * fm?, (300 will be especially revealing since this is a dimensionless

quantity independent of the lattice scale.
where the first number in parentheses is the statistical error The continuum matrix element for rho meson decay is
and the second is the systematic error, taken to be half of thgiven by
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T TABLE IV. Continuum model vector integral strengths.
Contribution  «=0.154 0.152 0.150 0.148
)
H Continuum 051189 0.61.09 0.56.06  0.55.09

Lowest pole 0.3406) 0.25.05) 0.27.03 0.28.02
Excited pole 0.1613) 0.14.05) 0.16.03 0.17.04)

whereq= /8. The results for the vector meson decay con-
_d stant,f,, are given in Table VIIl and are shown in Fig. 6.
When all 4« values are extrapolated ta,,, we obtainf,
T =3.11(.39) (>(§= .59), lower than the experimental value of
B 3.56.14). However, it is well known in lattice studies on
B similar sized lattices that the to nucleon mass ratio,
m,/my, is underestimated when extrapolated to the chiral
limit. Using the nucleon mass to set the lattice scale, if one
5 9 10 11 12 13 11 15 16 17 18 19 =0 instead extrapolates, to the p-mesonphysicalmass, about
t 770 MeV (occurring at aboutk=0.1545, one obtains a
much better result, ,= 3.48(.28). We will check that the,
FIG. 3. The base 10 logarithm of the difference in nonzero andvalues from the axial vector propagator given by this choice
zero momentum lattice vector charge densities,;Jag’(q?t) of scale is consistent with experimental results.

—AY(0t)], at k=0.154 as a function of lattice time location. The ~ The large time limit of the axial vector propagators imply

log ( Kv((i Zt) -A V(O,t))

continuum model fit is shown. values of the pion decay constaft,. One has that
(004 %(0)] “(5>>=1§ €u(PN) (33 (0]a%(0) () =i Pz (35
M p f, 2E, HAR RS 1z \/E_w,

wheref , is the decay constant, the polarization state is speciwhere againu=0. One can relate the paramete} to the
fied by A and w=0 for the charge density operator. One canpion decay constant as follows:
show that in terms of thhg parameter in the continuum fits,

the implied vector meson decay constant is given by ; >\97 36

‘o q(m,a) ) " aym,a
’ AV2(E,a)

The results of this calculation are shown in Fig. & ¢
=1.74 GeV, Ref.[32]). The extrapolation to the chiral
limit is extremely straight and one obtains 8R4 MeV,
g consistent with the experimental result of 92.4 MeV.
As a check on thé . calculation, we consider the ratio of
IR | the axial pole parameters for the pion, which by the con-
tinuum relation(35) is given by

R NN =\E. /m,. (37)

This comparison is carried out in Table IX for the continuum
/@“'"@""@’“*@x and Simpson fits. There appears to be a small violation of
4 TBg this continuum relation at perhaps the 5-10% level in the
i lattice data. However, note that a systematic error in this
‘ quantity does not necessarily affect the calculation since the
-2 pion contributions are excluded from the DMO axial inte-
gral. Also note that the two data treatmeftsntinuum and
@ Simpson are quite consistent with one another for this ratio.
We have seen above théf, extrapolated to the chiral

89 10 11 12 13 14 15 16 17 18 19 20 limit, gives a result which is small compared to experiment
t

logo | A2 H-A%01

FIG. 4. The base 10 logarithm of the absolute value of the TABLE V. Continuum model axial integral strengths.

difference between nonzero and zero momentum lattice axial vectocE Lo

- — - ontribution
charge densities, lgg A*(g%t)—AA(0})], at k=0.154 as a func-
tion of lattice time location. The continuum model fit is shown. Continuum 0.2825 0.20.17) 0.18.08) 0.16.25)
Notice the change in sign of the correlation function slightly after pole 0.72.25 0.80.17) 0.82.08 0.84.25
time location 12.

xk=0.154 0.152 0.150 0.148
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TABLE VI. Simpson model parameterg? gives the chi-squared per degree of freedom for each fit.

Quantity «k=0.154 0.152 0.150 0.148
\o 3.70(.24)< 1072 4.94(.22)x 1072 6.23(.23)x 1072 7.53(.24)x 1072
X3 0.57 0.83 0.82 0.80
A 4.73(.31)x10°2 5.95(.27)x 102 7.27(.27)x10°? 8.63(.28)x 10?2
X5 0.19 0.15 0.13 0.09

but that thef . value extracted using the axial propagator andsystematic effects from altered input mass values, finite lat-
the nucleon mass scale is consistent with phenomenologyice spacing and renormalization constants were also consid-
This suggests that it may be the behavior of the vector propaered.
gator in the chiral limit which is responsible for the large  Excellent fits were obtained to thgmomentum-
value ofZ in this calculation. To test this, one may instead differentiated lattice data across 13 time slices, including the
extract the value Of the vector Contributiﬁo at the physical propagator Originsy using the continuum quark model. The
p-meson mass, similar to what was done aboveffarwe time fitting of these quantities with reasonalyg values
now obtainZ=33.2(4.0)(2.9), a better result but one which 4|4 not have been possible withd@) introduction of the
is still too Iarge_. The remalmng_dlfference is clearly due to|4ice cutoff, ro; (2) addition of additional pole terms in
the large “continuum” contribution to the vector correlator |, . 1o vector and axial vector caséd) the SVD modifi-
remarked on earlier; see Sec. Ill B and Table [V. cation, following Ref[25], of the time propagator eigenval-
Finally, note that the intrinsic polarizability, through the } .
renormalization factors in Eq§22) and(23), is fairly insen- ues. We have glso seen that the a?<|a}l vector propggator IS
sitive to the value ofay, used since the vector and axial largely rgsponsmle for both the statistical and time-integral
vector integrals contribute with opposite signs. RougthSyStemat'C_ errors. ) i )
speaking, it is found that a% percentage change in the The lattice systematics have been exammed exte_nswely
value of ay induces a change in EGR9) of about—x/2%. ar_1d it ha_s been argugd aboye tkBt systematics associated
with the incorrect lattice ration,/my and (2) the fact that
the vector propagator is far from being dominated by the
p-meson are responsible for the large central value of our
The sum rule method of extracting charged pion polarizfinal result in Eq.(26). It is precisely because pion polariz-
ability from lattice data has been examined. In the limitedability is so sensitive to and revealing of lattice systematics
point of view adopted here, the spectral integral in the DMOthat it represents a significant test of the ability of the lattice
sum rule has been considered separately. It has been evatg-produce phenomenologically interesting predictions. Fur-
ated with lattice data and the result, large compared to pheher studies with larger lattices and better actions should be
nomenology and chiral models, is given by E29). Smaller  even more revealing of these systematics.
It is clear that in order to obtain phenomenologically in-
006 teresting values of'": from the lattice, both the statistical
and systematic errors here will have to be reduced. The sys-
0.05] tematic uncertainty in the time integrals can be reduced by
using a time-asymmetric lattice with a fine mesh of lattice
points in the time direction. This will allow sampling at

IV. CONCLUSIONS AND REMARKS

0.04]m S smaller time intervals(but not too small to get into the
E]% """" ”% ~~~~~~~ IR asymptotic time regimein evaluating the strongly peaked
T integrals. However, in order to understand thgnamics
~ 003 leading to pion polarizability, it will be necessary to go be-
yond the DMO sum rule to direct measurements. These ad-
0.02-
TABLE VII. Results for the dimensionless integtgla factor of
102 multiplies all the entries. Th€ superscript indicates the con-
0.014 tinuum model values and the superscritndicates values from

Simpson fits.

000 0 ols 030 o0& Quantity x,=0.1564 x=0.154 k=0.152 k=0.150 x=0.148

ma IS 79.11.9 74.61.5 72.11.3 68.51.3) 65.11.2

FIG. 5. Chiral extrapolation of the final results for the dimen- Z\S/ 798129 764.9 7489 723.8 69.4.7)
sionless spectral integral, as a function of dimensionless quark Za 39.64.8 37.1(4.0 34.62.6 32.41.5 30.713.9
mass,ma. Squares are for the continuum model results and circlegs 47.02.9 40.712.5 36.91.9 32118 27.11.7)
are for Simpson model results from Table VII. The solid symbolsZ® 39.84.6) 37.53.9 37.62.5 36.11.6) 34.33.5
represent the chiral-extrapolated resultsreg=0. Note that some 75 32.83.1) 35.62.7 37.92.0 40.11.9 42.31.8

of the circles are offset ima for clarity of presentation.
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TABLE VIIl. Vector and pion decay constantsﬁﬁ indicates

values inferred from continuum model fits ahtl values from the
Simpson fits.
Quantity xk=0.154 0.152 0.150 0.148
f, 3.40(.30) 4.26.40 4.39.26) 4.60.17)
S (Mev) 107(7) 125(6) 141(6) 156(5)
S (MeV) 106(7) 124(6) 142(5) 1595)
:‘_‘K
ditional considerations will be taken up in future publica- 60/
tions.
40
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In this brief appendix, a more explicit form of the con- _ » sin(qr)
tinuum model expression fakG,,(t,q,ro,S) Will be given. AG4(t.q,ro)= 392 J drr -f

44 010 ro

In introducing the ultraviolet cutoff, one can make use of
the procedure in Ref16], which gives an upper limitj, in 212
energy. The resulting expressions are rather complicated and X\ =~ 773
are only defined in the limit—0. Alternatively, one can (P (1t

defir;\e a short Qistanc? C_Llj_thqﬁ §in;1p|y by pl(thtingfa”Iowe(; Iri]mit The continuum threshold that is introduced in Rgf6] is
on ther-space Integrals. This Is the procedure followed hereq, iy ajent to doing an an incomplete Laplace transform of

Then combining Eqsi14) and(15) of the text, we have the spectral density, which is itself obtained with an inverse
Laplace transform of the propagator. A similar procedure is
6 followed here with the vector and axial vector continuum
spectral densities. The basic assumption of the continuum
model is that we are at low enough lattice momentum that

APPENDIX

. (A

N
AGMUAJ@-——¥>O ZS—3efs\t\p(s2) (A2)

----------- is a reasonable identification. In this limit this means that
i T oo AGy,(t,q,ro) has the time integral
- @®=0 e dg?
f dtAGu4t,q,rg) —— ?P(Sz), (A3)
o] o0 0
consistent with Eq(3). Now putting Eq.(Al) into Eqg. (16)
results in the explicit expressidifior t>0),
'0.00 0.05 0.10 0.15 0.20 0.25 TABLE IX. Comparison of the continuum ratio?/\2 for con-
ma tinuum and Simpson model axial fits.
FIG. 6. The vector meson decay constet, as a function of  Quantity k=0.154 0.152 0.150 0.148
dimensionless quark massia. The boxes indicate measured val-
ues atk=0.154, 0.152, 0.150 and 0.148. The solid circles indicateContinuum theory 121 1.14 1.10 1.08
the extrapolated result ata=0 as well as the extrapolated result at Continuum model  1.3510 1.23.06) 1.16.05 1.11.04)
the physicap meson mass. The dotted line shows the experimentagSimpson model 1.2809 1.20.06) 1.17.04 1.15.04

upper and lower limits orf, .
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2 = [sin(qr) © (o e'US(t+iu)? = [sin(qr)
Ag44(t,q,r0.50):W(erodrr( q —r)fsodede[—rszg—frod”( q —r)

o o eius
XJSOdSdeUm}. (A4)

The poles in thai-integral are identified and the integration done. The remaisiimgegral is then done explicitly. The final
result can be presented as follows:

6o 3s3 s
t—in? T =i T aminz T asin

sin(qqr) —r)eso(‘”"’

3 1 Sy 3i 3 « dr[sin(qr)
iz (t—ir)2+(t—ir))+r3(t—ir) T o™ fr 7l g _r)

0

1 » dr
Ag44(t,qaro150):—mzR Jr s
0

Xeso(—t+ir)

2 250 s 3i( 1 so) 3
G—id =in? =i Tl T amin ) e |0 AY

The explicit real and imaginary parts are then separated out from this expression and the remaiteggation is done
numerically in the continuum fits of the vector and axial vector data.
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