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Drell-Yan forward-backward and spin asymmetries for arbitrary vector boson production
at next-to-leading order
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Longitudinally polarized, unpolarized and forward-backward mass differential cross sections for Drell-Yan
lepton-pair production by arbitrary vector bosons are calculated in next-to-leading order~NLO! QCD. Ana-
lytical results are presented in a form valid for all consistentn-dimensional regularization schemes, with the
mass factorization scheme kept general. NLO predictions for all Drell-Yan type processes~W6, Z andg* ! at
BNL’s Relativistic Heavy Ion Collider~RHIC! are made using polarized parton distributions which fit the
recent deep-inelastic scattering data. These are examined as tools in the determination of the polarized parton

distributions and the unpolarizedū/d̄ ratio. NLO predictions for the forward-backward lepton asymmetry at
Fermilab are made and the precision determination of sin2 uW from future runs is studied. In all the above, the
QCD corrections are found to be significant. An introductory discussion is given of various theoretical issues,
such as allowable factorization and regularization schemes, and scale dependences.@S0556-2821~98!03511-5#

PACS number~s!: 12.38.Bx, 13.75.Cs, 13.85.Qk, 13.88.1e
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I. INTRODUCTION

Two major areas of interest within the standard model
the determination of the polarized parton distributions of
proton and higher precision determinations of the el
troweak mixing angle, sin2 uW, as a constraint on the Higg
boson mass and new physics. One process useful in ex
ing both areas is Drell-Yan lepton-pair production. We sh
present a clear picture of the Drell-Yan process at one-l
in QCD within a general framework which should be bo
instructive and useful. We will do so by considering the ge
eral interference between two vector bosons with arbitr
mass, width and couplings, which decay into a gene
lepton-antilepton pair~including neutrinos! and are produced
via quark-antiquark fusion@one of the~anti!quarks may of
course arise from an initial state gluon#. In this way, we may
consider possible new physics contributions, such asZ8
bosons and four-fermion interactions, by appropriate cho
of couplings, etc.

The emphasis here will be on presenting complete ana
cal results in a form valid for all consistentn-dimensional
regularization schemes and within a general mass facto
tion framework. In addition, we will consider all possib
longitudinal polarization states of the initial hadrons. Ma
differential cross sections and asymmetries will be presen
and the effect of the next-to-leading order~NLO! subpro-
cesses will be highlighted and explained pedagogically.
will also discuss various constraints on allowed regulari
tion and factorization schemes and describe the origin of
scale dependence of the one-loop corrected predictions
general fashion.

The one-loop QCD corrections to the longitudinally p
larized Drell-Yan process have been studied in several
pers@1–5# using various regularization prescriptions~for the
g5! and factorization schemes while considering product
by specific bosons. Here, we keep the formalism comple
general. Results are kept in a simple form by consider
explicitly only mass differential cross sections. As an app
570556-2821/98/57~11!/6663~29!/$15.00
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cation, we will study how lepton-pair production byg* , Z
and W6 bosons can be used to extract the polarized pa
distributions from forthcoming planned polarizedpp colli-
sion experiments at BNL’s Relativistic Heavy Ion Collide
~RHIC!, which is scheduled to start running in 1999. Long
tudinally polarizedpp collisions with both beams polarize
are expected to begin in 2000@6# with sufficient muon cov-
erage to perform precision spin studies, in particular us
W6’s.

The QCD corrections are necessary in order to reduce
process dependence of the parton distributions. This all
comparison with and use of those distributions obtained
polarized deep-inelastic scattering~DIS!. This form of global
analysis will prove invaluable since, with the Drell-Yan pr
cess, we are sensitive to sea-quark distributions, which
currently almost totally unconstrained from DIS. We c
make use of the DIS determinations of the polarized vale
distributions, however, since we work consistently at NLO
QCD. Eventually RHIC will be able to improve those va
lence determinations due to the increased flavor separatio
W6 production.

Another use of the Drell-Yan process at RHIC is a pre
sion determination of the unpolarizedū/d̄ ratio at fairly large
x and at very high energy scales where other experiments
short. This can provide information on the limitx→1 at
lower energy scales, via perturbative evolution. Similar sta
ments apply to the polarized parton distributions with reg
to the large-x sensitivity. All predictions will lie within the
energy range 100 GeV<Aspp<700 GeV, although RHIC,
as currently envisioned, may not be able to run much ab
500 GeV.

The Drell-Yan process also provides a useful way of o
taining sin2 uW. One may ask why we would try to measu
sin2 uW in hadron-hadron collisions when good measu
ments exist inZ production frome1e2 annihilation at the
CERN e1e2 collider LEP and SLAC. The main reason
that these measurements are nearly complete. Future S
measurements will improve the earlier SLAC value, bu
6663 © 1998 The American Physical Society
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6664 57B. KAMAL
large discrepancy with the LEP measurement presently e
and should not be expected to vanish. Thus, what is nee
is an independent high precision measure of sin2 uW. With
various high luminosity scenarios planned for Fermila
Run II @7#, such a high precision measurement is inde
possible. This is because the forward-backward lepton as
metry ~in the lepton-pair rest frame! is sensitive to sin2 uW.
In a best case scenario, one could surpass the present~and
future! average from LEP and SLAC combined. In a wo
case scenario, a measurement at the same level of prec
as the present SLAC measurement should be attaina
Various studies@8,7# have been done to show how such
high precision determination would significantly constra
the allowed mass region for the standard model Higgs bo
and provide a probe of new physics.

QCD corrections to the charge asymmetry of lepton pa
produced inpp̄ collisions have previously been investigat
@9#. Unfortunately, the physical observables considered
not the ones used in determining sin2 uW and there does no
appear to be any way to straightforwardly convert them i
a useful form. Very recently, a paper appeared@10# perform-
ing detailed numerical studies of the QED and QCD corr
tions to the forward-backward Drell-Yan asymmetry inpp̄
and pp collisions. There, Monte Carlo methods were us
and similar results were obtained, even though a differ
definition of the forward-backward asymmetry beyond lea
ing order was used, apparently in order to minimize the Q
corrections. As well, recently, soft gluon resummation
fects on the lepton angular distribution from the decay ofZ’s
produced at the Fermilab Tevatron were briefly considere
@11#. Here, complete analytical results are presented for
mass differential cross sections and these do not appear
where to our best knowledge. Also, hadron polarization
fects as well as regularization and factorization scheme
pendences are presented explicitly, which is not do
elsewhere. One also sees quite clearly the structure of
QCD corrections and the origin of that structure.

The paper is organized as follows. In Sec. II we pres
our general formalism and describe the observables b
considered. In Sec. III we discuss various features of dim
sional regularization and dimensional reduction. In Se
IV–VI we compute the~singular! subprocess cross section
In Sec. VII we perform the factorization of the mass sing
larities and discuss constraints on allowable regulariza
and factorization schemes. We also discuss how to con
subprocess cross sections and parton distributions from
scheme to another. In Sec. VIII we present the final anal
cal results and discuss the scale dependence issue in a
eral fashion. In Secs. IX–XI we present numerical resu
relevant to RHIC and examine the sensitivity to the polariz
parton distributions as well as the unpolarizedū/d̄ ratio. In
Sec. XII we present the forward-backward Drell-Yan asy
metry relevant for the Fermilab Tevatron and discuss
extraction of sin2 uW from its measurement. Finally, in Se
XIII we present our conclusions and summarize the wo
Throughout, we have tried to avoid givingstandarddiscus-
sions of general issues in order to present new and m
general perspectives which should be useful to non-expe

II. GENERAL PROCESS AND FORMALISM

The Drell-Yan process with initial hadronsA, B of defi-
nite chirality is
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A~P1 ,lA!1B~P2 ,lB!→ l ~p3!1 l̄ ~p4!1X, ~1!

wherelA , lB denote chiralities,l l̄ represents a lepton pa
and X is an arbitrary hadronic final state. We have the f
lowing invariant observables:

S[~P11P2!2, M2[q2, t[M2/S, ~2!

where

q5p31p4 . ~3!

Denoting they-axis as the direction of motion of hadronA,
we may also define, in the c.m. ofA andB, the observable

xF[
2qy

AS
. ~4!

The general 2→2 @2→3# parton subprocess contributin
to Eq. ~1! may be written as

a~p1 ,l1!1b~p2 ,l2!→Bi* ~q!1@c~k!#

→ l ~p3!1 l̄ ~p4!1@c~k!#, ~5!

whereBi5g,Z,W6 and l 5 l 2,n l ; l̄ 5 l 1,n̄ l ~in the standard
model!. We must consider the casesa5q, b5q̄, c5g;
a5q̄, b5q, c5g; a5qh, b5g, c5qh; a5g, b5qh, c5qh.

Using the parton model relations

p15xaP1 , p25xbP2 , ~6!

we may define the subprocess invariants

s[~p11p2!25xaxbS, w[
M2

s
5

M2

Sxaxb
5

t

xaxb
, ~7!

where we took all external momenta to be massless, as u
The parton momentum distributions are given by

Fk
i /I~xi ,m2!5xi f k

i /I~xi ,m2!, k5u,l , ~8!

where

f u
i /I~xi ,m2!5 f 1/1

i /I ~xi ,m2!1 f 2/1
i /I ~xi ,m2! ~9!

and

f l
i /I~xi ,m2!5 f 1/1

i /I ~xi ,m2!2 f 2/1
i /I ~xi ,m2!. ~10!

Here f l i /l I

i /I (xi ,m2) is the probability of finding partoni with

chirality l i and momentum fractionxi in hadron I having
chirality l I , evaluated at renormalization scalem2.

Introduce

z[cosu* , ~11!

whereu* is the angle betweenp3 and P1 ~or, equivalently,
p1! in the l l̄ rest frame. Then we may define

sF6B[E
0

1

dz
ds

dz
6E

21

0

dz
ds

dz
. ~12!
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HencesF1B has the interpretation as the usual leptonic
tegrated cross section. We callsF2B the forward-backward
cross section.

Let sab(la ,lb) denote the cross section for colliding pa
tons~or hadrons with some degree of polarization! a, b hav-
ing chiralities ~or beam polarization directions! la , lb .
Then there are only 4 combinations ofla , lb leading to
well-factorized parton model expressions, as may
straightforwardly verified. All other observables may be e
pressed in terms of these. They are

suu
ab[

1

4
@sab~1,1 !1sab~1,2 !

1sab~2,1 !1sab~2,2 !#, ~13!

s lu
ab[

1

4
@sab~1,1 !1sab~1,2 !

2sab~2,1 !2sab~2,2 !#, ~14!
.

d
q

po
r

l r
e
. I
w
u
in

y

-

e
-

sul
ab[

1

4
@sab~1,1 !2sab~1,2 !

1sab~2,1 !2sab~2,2 !#, ~15!

s l l
ab[

1

4
@sab~1,1 !2sab~1,2 !

2sab~2,1 !1sab~2,2 !#. ~16!

The notation is straightforward:smn
ab denotes the cross sec

tion whena has polarizationm andb has polarizationn. In
shorthand,

u5~l51 !1~l52 !, l 5~l51 !2~l52 !, ~17!

so thatu denotes unpolarized andl denotes longitudinally
polarized. The factor 1/4 is required so thatsuu has the in-
terpretation as the spin averaged cross section.

The parton model expression for the mass differen
Drell-Yan cross section, for general beam polarization, is
dsmn
AB,F6B

dM
5Sm

ASn
B(

ab
E

t

1

dxaE
t/xa

1

dxbf m
a/A~xa ,m2! f n

b/B~xb ,m2!
dŝmn

ab,F6B

dM

5Sm
ASn

B(
ab

E
t

1 dxa

xa
E

t/xa

1 dw

w
Fm

a/A~xa ,m2!Fn
b/B~xb ,m2!

dŝmn
ab,F6B

dM

5Sm
ASn

B(
ab

E
2~12t!

12t

dxF0E
w1

1 dw

w

1

xa1xb
Fm

a/A~xa ,m2!Fn
b/B~xb ,m2!

dŝmn
ab,F6B

dM
, ~18!
o
sm
-
by
s.

e
wa
where

xF0[xa2xb , w15
t

12uxF0u
, xa,b5

AxF0
2 14t/w6xF0

2
.

~19!

ŝab is the subprocess cross section corresponding to Eq~5!
and

S u
I 51, S l

I5P I , ~20!

whereP I is the degree of polarization of the beam of ha
rons I . The only assumption made in the derivation of E
~18! is that the degree of beam polarization is the same
both polarization directions. The same factors of beam
larization will always enter, regardless of the specific diffe
ential cross section being considered. The experimenta
sults~for thesmn! will have to be divided by the appropriat
factors of beam polarization in constructing asymmetries
general, this is unavoidable since the beam polarization
vary as a function of time for any given experiment. In n
merical calculations taking evenly spaced integration po
~i.e. Simpson’s rule! the third form of Eq.~18! is most con-
venient becausexa andxb are integrated over symmetricall
while the inner integral is overw anddŝ/dM contains func-
tions singular in 12w @i.e. d(12w), 1/(12w)1 ,...#.
-
.
in
-

-
e-

n
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-
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We will consider lepton-pair production byN arbitrary
vector bosons,Bi , having massesMi , widths G i and cou-
plings to fermions given by

ic f
i ga~gv f

i 2ga f
i g5!. ~21!

Hence we may write

dŝmn
ab,F6B

dM
5(

i> j

dŝmn,BiBj

ab,F6B

dM
, ~22!

whereŝmn,BiBj

ab,F6B is the total interference contribution fromBi ,

Bj ~i.e. for iÞ j it is the sum over thei , j and j ,i contribu-
tions!. For M ,G,gA→0 we obtain the photon contribution s
that the argumentation is completely general. This formali
applies toZ andW6 production and the Drell-Yan produc
tion of any bosons whose coupling to fermions is given
Eq. ~21!, provided there are no new contributing diagram
This includes non-standard modelZ8 andW68 contributions.
As well, we can include four-fermion interactions. ForW6

production, thecf
i will depend on both quark flavors at th

vertex via the appropriate Cabbibo-Kobayashi-Maska
~CKM! matrix element.
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The normalization convention of our squared amplitud
is easily inferred from the standard leading order par
model cross section expression:

dsmn
AB

dMdxFdz
5

1

pM3

Sm
ASn

B

xa1xb
(
ab

Fm
a/A~xa ,m2!Fn

b/B~xb ,m2!

3(
i> j

uM umn,BiBj

2 ab , ~23!

where

ab5qq̄,q̄q, xF5xF0 ~24!

and uM umn,BiBj

2 ab denotes the net interference between the a

plitude involvingBi and that involvingBj . This corresponds
to the convention(lu(p,l)ū(p,l)5p” /2 for p250, which
we maintain for consistency with@4#.

As far as QCD corrections are concerned, we will on
considerds/dM. In imposing exerimental cuts, one restric
the phase space of the outgoing leptons. Since the QCD
rections effect the hadronic sector, the features of the cor
tions should not be greatly influenced by the leptonic cuts
the limit of small cuts~i.e. good leptonic coverage! the ex-
pressions in this paper become exact. We will not addr
further the issue of leptonic cuts in what follows.

III. n-DIMENSIONAL REGULARIZATION SCHEME
PECULIARITIES

Since we will need to present the leading order~LO! cross
sections inn ([422«) dimensions in the next section, it i
appropriate to discuss the variousn-dimensional regulariza
tion schemes at this point. We will consider regularization
dimensional regularization~DREG! @12,13# and by dimen-
sional reduction~DRED! @14#.

In @4#, the details concerning DREG and DRED we
summarized and will not be repeated here. The impor
points will be discussed, however. Within DREG, there a
two commonly used schemes for dealing with theg5 matrix
~and«mnrs tensor! which arises in polarized processes. In t
’t Hooft–Veltman–Breitenlohner–Maison~HVBM ! scheme
@12,15#, all quantities are mathematically well-defined, b
the non-anticommutingg5 leads to physical problems. Thes
necessitate finite renormalizations of the polarized par
distributions and UV counterterms~for non-QCD/QED ver-
tices! as will be discussed throughout this paper. In t
anticommuting-g5 scheme@16#, massless quark helicity i
conserved, but only at the expense of mathematical con
tency when an odd number ofg5’s arise in the traces. Also
one needs to devise prescriptions@17# for dealing with the
«mnrs tensor~arising from polarized gluons!, since nothing
other than the HVBM definition has been proven to be ma
ematically consistent in DREG.

Even when performing calculations where only an ev
number ofg5’s occur in the traces, one may wonder if th
result is meaningful in general, using an anticommutingg5 .
For the case of longitudinal polarization, theg5 is connected
with helicity, and we understand the need for helicity co
servation on physical grounds. For processes such as
transverse Drell-Yan process, theg5 also arises. Here
s
n

-

or-
c-
n

ss

y

nt
e

t

n

e

is-

-

n

-
the

though, there is no physical motivation for using an antico
muting g5 in DREG, other than that it simplifies calcula
tions. More study is required in this area since recently tw
loop transversity splitting functions have been calculated
three groups@18–20# using an anticommutingg5 . The trans-
verse case is somewhat more subtle than the longitud
case, however, due to the additional axis which enters.
do not consider transversity further in this work.

So, in general, the anticommuting-g5 scheme@16# should
only be used in situations where it is physically motivate
And in those situations, it should always be shown that
same results can be obtained using the HVBM scheme
finite renormalizations of the parton distributions or by t
addition of UV counterterms. The above renormalizatio
and UV counterterms should be unique~in any given gauge!
for some class of subprocesses. This is the approach we
follow in this paper. All results are understood to refer
consistent schemes: those schemes which can be relat
the HVBM scheme as described above. Hence, we will
ways refer to the HVBM result as being the DREG resul

More recently, ag5 scheme was introduced@21# which
reproduces many of the desirable features of the HVB
scheme, such as the correct Adler-Bell-Jackiw~ABJ!
anomaly, and claims mathematical consistency without v
lating helicity conservation. This scheme uses areading
point ~a specific leftmostg-matrix in the trace! and maintains
an anticommutingg5 , which requires non-cyclicity of the
traces. What remains, therefore, is to show that this sch
leads to process-independentn-dimensional splitting func-
tions. This will be discussed below.

Because of the tedious nature of the HVBM scheme, a
the other problems mentioned earlier, it is more straightf
ward to first use DRED to calculate subprocess cross
tions and then present them in a form valid for all consist
n-dimensional regularization schemes using the techniqu
@4#. The only drawback is that one has to add a UV count
term to the quark-g(Z,W6) vertex when using DRED. For
tunately, this counterterm is well established and unambi
ous.

The DRED result for a physical cross section is~formally
speaking! defined as the result obtained by contracting
tensors, taking all traces in 4 dimensions and then perfo
ing all phase space integrals inn dimensions~and adding any
necessary UV counterterms!. When considering QCD and
QED corrections, one need not actually take the traces fi
One may work directly at the amplitude level for loop di
grams. For other theories, however, like supersymmetry,
ill-definedness ofgn

mn for nonintegern,4 leads to an ambi-
guity such that the results may depend on the order of
erations@22#. In the HVBM scheme (n.4), gn

mn is defined
since there are an infinite number of integer dimensions w
n.4. Hence we may continuegn

mn to n.4 by simply using
relations valid in integer dimensions, but take the continuo
limit n→4 on the real axis~or complex plane! at the end of
the calculation~i.e. after all divergences have been ca
celled!, as if one compressed the infinite number of dime
sions into a continuum forn.4. In practice, of course, one
continues to non-integern from the beginning rather than a
the end. As there are a finite number of dimensions w
n,4, we cannot continuegn

mn into the regionn,4. Hence,
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strictly speaking, we must first perform all contractions a
traces in 4 dimensions and then go ton dimensions to per-
form the phase space integrals, since only scalar produc
vectors will remain, which are manifestly continuable ton
dimensions. In that way,gn

mn will never be contracted into
traces containingg5 or with «mnrs, which is where the am-
biguity could arise.

In order to presentdŝmn
ab,F6B/dM in a form valid for all

consistentn-dimensional schemes, we must first give t
general form of then-dimensional Altarelli-Parisi@23# split-
ting functions,Pi j

n (z), related to the probability of partonj
splitting into a collinear partoni having momentum fraction
z, plus an arbitrary final state carrying the rest of the m
mentum. The reason is that the regularization scheme de
dences arising from mass singularities are entirely conta
in these functions, as was shown in@4# ~and references
therein!. Hence, we discuss them here. We may write
d
O
us
a

r,
or
e

d

of

-
n-
d

Pi j
n ~z,«![Pi j

4 ~z!1«Pi j
« ~z!, ~25!

wherePi j
4 (z) is the usual 4-dimensional splitting function. I

DRED,

Pi j
n,DRED~z,«!5Pi j

4 ~z!. ~26!

We will also use the notation

Pi j
n ~z,«![Pi j

n,,~z,«!1d~12z!Pi j
n,d~«!, ~27!

and define

DuPi j [Pi j ,111Pi j ,21 , D l Pi j [Pi j ,112Pi j ,21 ,
~28!

where the1,2 denote the respective chiralities.
In DREG, the unpolarized one-loop splitting functions a

given by @24#
r is

since,
ependent
DuPqq
4 ~z!5CFF 2

~12z!1
212z1

3

2
d~12z!G , DuPqq

« ~z!5CFF2~12z!1
1

2
d~12z!G ,

DuPqg
4 ~z!5

1

2
~122z12z2!, DuPqg

« ~z!5z22z,

DuPgq
4 ~z!5CFF2

z
221zG , DuPgq

« ~z!52CFz,

DuPgg
4 ~z!52NCF 1

~12z!1
1

1

z
221z~12z!G1

b0

2
d~12z!, DuPgg

« ~z!5
NF

6
d~12z!, ~29!

whereb05 11
3 NC2 2

3 NF and the usual convention of 222« (5n22) gluon polarization states was used. In fact, the latte
somewhat more than a convention, since it is justified on physical grounds.

Within DREG, we need only consider longitudinally polarized splitting functions determined in the HVBM scheme
at present, it is the only established mathematically consistent scheme therein, which also leads to process-ind
n-dimensional splitting functions. At one-loop they are given by

D l Pqq
4 ~z!5DuPqq

4 ~z!, D l Pqq
« ~z!5CFF3~12z!1

1

2
d~12z!G ,

D l Pqg
4 ~z!5z21/2, D l Pqg

« ~z!52~12z!,

D l Pgq
4 ~z!5CF~22z!, D l Pgq

« ~z!52CF~12z!,

D l Pgg
4 ~z!52NCF 1

~12z!1
22z11G1

b0

2
d~12z!, D l Pgg

« ~z!54NC~12z!1
NF

6
d~12z!,

~30!
M.

o-

hat
he
n,
as can be inferred from@25#.
Thesen-dimensional splitting functions were determine

by investigating the factorization properties of the NL
squared amplitudes in various collinear limits for vario
subprocesses. In@25# it was found that one always obtains
Born term multiplied by the appropriaten-dimensional split-
ting function in the limit where two partons are collinea
leading to a pole in a propagator. It is important that the B
term be exactly then-dimensional one appropriate to th
n

regularization scheme in question, in the above case, HVB
We investigated what happens in the scheme of@21# for the
qg subprocess of the longitudinally polarized Drell-Yan pr
cess. For simplicity, we chose theg5 coming from the po-
larized incoming quark as the reading point. We found t
the wrong Born term arose, in the collinear limit where t
outgoing quark is collinear with the initial state gluo
namely, that of HVBM rather than that of@21#. The basic
reason is that the squared amplitude for theqg subprocess in
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the scheme of@21# is equivalent to the HVBM result, with
our choice of reading point. Hence, in the collinear limit, t

Born term (qq̄) and n-dimensional splitting function
(D l Pqg

n ) which arise correspond to the HVBM ones. Unfo

tunately, the Born term for theqq̄ subprocess in the schem
of @21# demands an anticommutingg5 : hence the result is
simply minus the unpolarized one. This is not true
HVBM, due to the non-anticommutingg5 . Hence the Born
terms are different in the two schemes and the behavio
theqg squared amplitude in the collinear limit is unphysic
This physical inconsistency is clearly unacceptable an
will lead to process-dependentn-dimensional splitting func-
tions. A different choice of reading point might rectify th
situation, but such an ambiguity is also unacceptable. Un
tunately, the prescription of@21# gives no unambiguous defi
nition of what the reading point should be in all cases. The
fore some extension is in order before it can be applied
practical QCD corrections to polarized processes. We
not discuss the scheme of@21# in further detail.

The only subtlety associated with calculating theD l Pi j
n in

the HVBM scheme is that one must additionally perform
integration over thek̂ momenta~i.e. the components betwee
4 andn dimensions!, rather than simply taking a collinea
limit @4# as is done in anticommuting-g5 schemes and in the
unpolarized case. One still obtains process independent s
ting functions since the collinear phase space structur
process independent. Even in some anticommutingg5
schemes@17# one must resort to Sudakov kinematics in t
collinear limit, making the process nontrivial. In that cas
one must drop certain potentially finite terms ofO~«! which
only vanish after integration.

In what follows, we shall present tensors and squared
plitudes calculated using DRED. Then, using the method
@4#, we present the necessary one-loop subprocess cross
tions in a form valid for all consistentn-dimensional regu-
larization schemes. By ‘‘n-dimensional regularization
schemes,’’ we mean schemes in which all divergences
regularized by dimensional continuation. This excludes
forms of off-shell and cutoff regularization schemes whi
also involve dimensional continuation to regularize some
the divergences. The mass factorization scheme will be k
general.

IV. LEADING ORDER CROSS SECTIONS

Unless otherwise stated, the expressions presented
are calculated using DRED. The unintegrated leptonic ten

LBB8
ab is defined as the product ofLB

a andLB8
b* , whereLB

a is
the leading order amplitude consisting of a lepton pair
tached to bosonB at a vertex having indexa. It is given by

LBB8
ab

5
m2«

4
clcl8@~gv lgv l8 1galgal8 !T1l

ab

2~galgv l8 1gv lgal8 !T2l
ab#, ~31!

with
of
.
it

r-

-
n
ll

lit-
is

,

-
f
ec-

re
ll

f
pt

ere
or

t-

T1l
ab54S p3

ap4
b1p4

ap3
b2

M2

2
gabD ,

T2l
ab54i«abmnp3mp4n , ~32!

where the arbitrary mass scalem2« arises from the
n-dimensional couplinge2→e2m2«. Sincem is arbitrary, the
physical predictions should not depend on it, order by or
in as . We will show how this is explicitly satisfied at one
loop in Sec. VIII.

Now define the integrated leptonic tensor as

~33!

Here we omitted theBB8 indices, and will often do so for
compactness. One finds@4#

LF1B
ab 5kF ~12«!

qaqb

q2 1
gn

ab

2
2~322«!

gab

2 G , ~34!

wherek now generalizes to

k5clcl8
m2«

2422«

~q2!2«

p22«

G~12«!

G~122«!

~gv lgv l8 1galgal8 !

~322«!~122«!
.

~35!

It is interesting to note that the corresponding DREG tens
in an anticommuting-g5 scheme, is obtained by replacin
gab→gn

ab . This gives

LF1B,DREG
ab 5k~12«!Fqaqb

q2 2gn
abG . ~36!

Of course,T2l
ab is not defined in such a scheme, but it do

not contribute here. In all schemes, the part;qaqb does not
contribute to the cross section, as follows from gauge inv
ance.LF1B

ab is thus effectively a constant tensor. We non
theless keep all the terms for completeness.

We may define the forward-backward integrated lepto
tensor with respect to an arbitrary massless vector,p, in a
covariant fashion using

LF2B~p!
ab [E

F1B
Dp3@u~p•q/22p•p3!

2u~p•p32p•q/2!#Lab ~37!

[E
F2B~p!

Dp3Lab ~38!

52k̄ i«abmn
pmqn

2p•q
, ~39!

whereu is the step function and

k̄5clcl8
m2«

2522«

~q2!2«

p22«

G~12«!

G~122«!
F~«!~galgv l8 1gv lgal8 !,

~40!
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with

F~«![4
G~122«!

G2~12«!
E

0

1/2

dy@y2«~12y!12«

2y12«~12y!2«#511O~«!. ~41!

The most general tensor structure ofLF2B(p)
ab may be ob-

tained by noting that only the antisymmetric part ofLab

contributes. HenceLF2B(p)
ab must be antisymmetric ina,b

and can only depend on the momentap and q. Then one
uses the usual projection methods, as was done to obtain
~34!. We will use the notation

LF2B
ab [LF2B~p1!

ab , E
F2B
Dp3[E

F2B~p1!
Dp3 . ~42!
q.

It is easy to check that Eq.~37! leads to the usual defini
tion of the forward-backward asymmetry, Eq.~12!, by work-
ing in the rest frame ofq. Choices of reference axes oth
thanp1 are of course possible, but usingp1 allows a straight-
forward, covariant treatment. Having performed the forwa
backward leptonic integration analytically greatly simplifi
the next-to-leading order calculation.

We may next define the subprocess hadronic ten
Wab,BB8

ab through the subprocess squared Feynman amplit
contribution fromB,B8 interference,

uM uab,BB8
2 [DBB8

21 Lab
BB8Wab,BB8

ab
~22dBB8!, ~43!

where
ove
DBB8
21 [

~M22MB
2 !~M22MB8

2
!1MBMB8GBGB8

@~M22MB
2 !~M22MB8

2
!1MBMB8GBGB8#

21@MBGB~M22MB8
2

!2MB8GB8~M22MB
2 !#2 . ~44!

For a5q, b5q̄, the leading order hadronic tensor is

Wqq̄
ab

5
m2«

24NC
cqcq8$~gvqgvq8 1gaqgaq8 !@T1h

ab~12l1l2!1T2h
ab~l12l2!#2~gaqgvq8 1gvqgaq8 !@T1h

ab~l12l2!1T2h
ab~12l1l2!#%,

~45!

where

T1h
ab54S p1

ap2
b1p2

ap1
b2

M2

2
gabD , T2h

ab524i«abmnp1mp2n . ~46!

Using Eqs.~31! and ~45! in Eq. ~43! gives the LO result fora5q, b5q̄,

uM uqq̄,BB8
2

~z!5~22dBB8!DBB8
21 m4«M4

24NC
clcl8cqcq8$~12l1l2!@~gv lgv l8 1galgal8 !~gvqgvq8 1gaqgaq8 !~11z2!

12~galgv l8 1gv lgal8 !~gaqgvq8 1gvqgaq8 !z#1~l22l1!@~gv lgv l8 1galgal8 !~gaqgvq8 1gvqgaq8 !~11z2!

12~galgv l8 1gv lgal8 !~gvqgvq8 1gaqgaq8 !z#%. ~47!

This reproduces the result of@26# which includes the effect ofZ8 bosons in the Drell-Yan process. We may express the ab
in a covariant fashion using
nd
z5~u22t2!/M2, 11z252~ t21u2!/M2,

t[~p12p3!25~p22p4!2,

u[~p22p3!25~p12p4!2. ~48!

Defining

Mab,BB8
F6B [E

F6B
Dp3Lab

BB8Wab,BB8
ab

5Lab
BB8,F6BWab,BB8

ab ,

~49!

we have, fora5q, b5q̄ and in leading order,
Mqq̄
F1B

5
m2«M2

23NC
cqcq8k~22«!@~gvqgvq8 1gaqgaq8 !~12l1l2!

1~gaqgvq8 1gvqgaq8 !~l22l1!# ~50!

and

Mqq̄
F2B

5
m2«M2

23NC
cqcq8k̄@~gaqgvq8 1gvqgaq8 !~12l1l2!

1~gvqgvq8 1gaqgaq8 !~l22l1!#, ~51!

where we used Eqs.~34! and~39!, respectively, in Eq.~49!.
The correctness of this approach~i.e. integrating over the
leptonic tensor first and then contracting the leptonic a
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hadronic tensors! was verified by contracting first and the
performing the leptonic integration. One obtains exactly
same result, inn dimensions.

This is straightforwardly checked by noting that, in th
rest frame ofq,

E
F1B
Dp3→

1

2522«

~q2!212«

p32«

G~12«!

G~122«!
E d2v3 ,

~52!

where

E d2v35E
0

p

du1 sin122« u1E
0

p

du2 sin22« u2 ~53!

and theu i represent the first two of then22 angles ofp3 in
n dimensions@27# andu1 is taken to be the angle betweenp3
andp1 ~i.e. u* !. SinceuM u2 does not depend onu2 ,

E d2v3→2p
G~122«!

G2~12«!
E

0

1

dyy2«~12y!2«, y[
11z

2
.

~54!

We simply make the substitutions

z5y2~12y!, 11z25224y~12y!, ~55!

in Eq. ~47! and then integrate overy.
The 2→2 phase space is

S dŝmn,BB8
ab,F6B

dM
D

LO

5
32p

M
d~12w!E

F6B
Dp3uM umn,BB8

2 ab ~56!

5
32p

M
DBB8

21Mmn,BB8
ab,F6B

~22dBB8!d~12w!

[xmn,BB8
ab,F6B

~«!d~12w!. ~57!

x has the form

xmn,BB8
ab,F6B

~«!5~22dBB8!
M

2pNC

cqcq8clcl8

DBB8

3KBB8
l 1 l 2,F6BFmn,BB8

ab,F6B . ~58!

Here theKBB8
l 1 l 2,F6B are leptonic factors given by

KBB8
l 1 l 2,F1B

5
1

3
~gv lgv l8 1galgal8 !

3F3

2

m4«

222«

p«

q2«

G~12«!

G~122«!

22«

~322«!~122«!G ,
~59!

KBB8
l 1 l 2,F2B

5
1

4
~galgv l8 1gv lgal8 !F m4«

222«

p«

q2«

G~12«!

G~122«!
F~«!G .

~60!

The factors in the square brackets are equal to 11O(«) and
hence may be taken as 1 for calculational purposes, as
will always factorize exactly in next-to-leading order. Sim
e

ey

larly, the Born term may be computed analogously in a
valid n-dimensional regularization scheme. However, t
Born term always factors out of the singular parts, whi
cancel~after mass factorization!. Hence, the scheme depe
dence of the Born term cancels in the limit«→0. This will
be demonstrated explicitly in the following sections.

The Fab are hadronic factors whose expressions are

Fuu,BB8
qq̄,F1B

52Fll ,BB8
qq̄,F1B

5Fuu,BB8
q̄q,F1B

52Fll ,BB8
q̄q,F1B

5gvqgvq8 1gaqgaq8 , ~61!

Ful,BB8
qq̄,F1B

52Flu,BB8
qq̄,F1B

5Flu,BB8
q̄q,F1B

52Ful,BB8
q̄q,F1B

5gaqgvq8 1gvqgaq8 ~62!

and

Fuu,BB8
qq̄,F2B

52Fll ,BB8
qq̄,F2B

52Fuu,BB8
q̄q,F2B

5Fll ,BB8
q̄q,F2B

5gaqgvq8 1gvqgaq8 , ~63!

Ful,BB8
qq̄,F2B

52Flu,BB8
qq̄,F2B

52Flu,BB8
q̄q,F2B

5Ful,BB8
q̄q,F2B

5gvqgvq8 1gaqgaq8 . ~64!

V. VIRTUAL CORRECTIONS

The string of gamma matrices,

gmgrga~gvq2gaqg5!gsgm , ~65!

arises in the calculation of the vertex graph~the massless
self-energies vanish inn dimensions!. In order to get the
correct form for the virtual corrections, we must satisfy t
relation

gmgrga~gvq2gaqg5!gsgm5gmgrgagsgm~gvq2gaqg5!,
~66!

which holds for an anticommutingg5 . The relation~66! is
necessitated by the fact that the QED Ward identity@28#
between vertex and self-energy graphs holds for the ve
part. Therefore, we must be able to anticommute theg5 out
of the vertex correction so that the axial-vector part fact
correctly and the identity is trivially satisfied. In non
anticommuting-g5 schemes, this relation would be violate
by terms ofO~«! ~giving rise to a finite piece when multi
plied by the 1/« UV singularity! which would have to be
removed by UV a counterterm analogous to that of DRE
which corrects theg-q vertex. Then, the result would b
equivalent to that obtained using an anticommutingg5 in n
dimensions, except that, in general, there could be additio
terms of soft origin which must cancel when the bremsstr
lung contributions are added. If they did not cancel, t
scheme would not be physically consistent since soft div
gences cannot give rise to scheme dependences in phy
cross sections.

It should be noted that we are assuming a vertex hav
the form~21!. It was shown in@29# that using a symmetrized
vertex makes it possible to avoid the spurious UV terms
the HVBM scheme, for the vertexb→s1H. We investi-
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gated whether such a procedure would work here. Unfo
nately, the situation is somewhat different than
b→s1H. Considering, for simplicity, the case ofW6 pro-
duction, we find that the symmetrization procedure of@29#
simply amounts to replacing then-dimensionalga by the
four-dimensional one. This clearly does not help remove
spurious UV terms; a counterterm will still be necessary.
course, the ambiguity about whether to put theg5 on the
right- or left-hand side of thega is no longer present.

The string of gamma matrices~65! gets contracted with a
tensor I rs arising from the vertex loop integral. This is
good example to illustrate how the unphysical term arise
DRED. We will keep the argumentation general so that i
valid for both massless and massive quarks. First, we h
in DRED,

gmgrgagsgm522gsgagr. ~67!

I rs has the form

I rs5grs
n C241Trs , ~68!

where Trs is a tensor which depends on the external m
menta andC24 is a scalar coefficient. Performing the contra
tion gives

I rsgsgagr5gsgagrgrs
n C241gsgagrTrs

522C24@~12«!ga1g«
a#1gsgagrTrs ,

~69!

where we used the relation, valid forn,4,

gsgagrgrs
n 522~12«!ga22g«

a . ~70!

It is precisely the term;g«
a which is removed by the DRED

counterterm. The remaining terms give the correct result,
that required to satisfy the QED Ward identity between v
tex and self-energy graphs. That identity is most straight
wardly checked by retaining the quark mass, in order
avoid mass singularities. Having satisfied Eq.~66!, the vir-
tual corrections are analogous to those of theg-q vertex,
since the Born term simply factors out.

Using the Born term of the specific scheme, the net virt
contribution in a form valid for all consistentn-dimensional
regularization schemes is (ab5qq̄,q̄q)

S dŝmn,BB8
ab,F6B

dM
D

V

5xmn,BB8
ab,F6B

~«!d~12w!CF

as

2p
C~«!

3F2
2

«2 271
2p2

3
2

2

«

Pqq
n,d

CF
G , ~71!

plus possible extra soft terms which would cancel with o
posite ones in the soft bremsstrahlung, as discussed ab
Here we defined

C~«![S 4pm2

M2 D « G~12«!

G~122«!
. ~72!

The result~71! follows directly from that given in@4#.
-

e
f
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-
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-
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-
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VI. BREMSSTRAHLUNG CORRECTIONS

The leptonic integrated 2→3 particle squared amplitude
have the form

Mmn,2→3
ab,F6B5@cF#S 2pasm

2«

M2 DM̃mn,2→2
ab,F6BFmn,2→3

ab,F6B , ~73!

where the factorcF is present only forab5qq̄,q̄q. TheM̃
are given by

M̃mn,2→2
qq̄,F6B5M̃mn,2→2

qg,F6B5M̃mn,2→2
gq̄,F6B5Mmn,2→2

qq̄,F6B ~74!

and

M̃mn,2→2
q̄q,F6B5M̃mn,2→2

q̄g,F6B5M̃mn,2→2
gq,F6B5Mmn,2→2

q̄q,F6B . ~75!

For the qg subprocess inW6 production, the right-hand
sides of Eqs.~74!, ~75! implicitly contain a sum over the
various quark flavors into which the gluon may split to for
the W6.

For theqq̄ subprocess, we have

Fmn
qq̄,F1B5Fmn

q̄q,F1B5
s2~11w2!

p1•kp2•k
28, ~76!

Fmn
qq̄,F2B5Fmn

q̄q,F2B5
s2~11w2!

p1•kp2•k
24

s~11w!

p1•q
. ~77!

For theqg subprocess, we have

Fmn
qhg/g qh,F1B52F2w12

p2/1•k

s
1s

Dn/mPqg
4 ~w!

p2/1•k G , ~78!

Fmn
qhg,F2B52Fs

hmn
qhg~w!

p1•q
12w12

p2•k

s
1s

DnPqg
4 ~w!

p2•k
G ,

~79!

where

huu/ lu
qhg 5211w, hll /ul

qhg 512w ~80!

and

Fmn
g qh,F2B52Fs

hmn
g qh~w!

p1•q
22w22

p1•k

s
1s

DmPqg
4 ~w!

p1•k
G ,

~81!

with

huu/ul
g qh 52w2, hll / lu

g qh 52w. ~82!

Various checks on the above results are possible at
point. From crossing symmetry, it follows that

Muu
qg,F6B52

1

2CF
Muu

qq̄,F6B~p2↔2k!,

Muu
q̄g,F6B52

1

2CF
Muu

q̄q,F6B~p2↔2k! ~83!

and
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Muu
gq,F1B52

1

2CF
Muu

q̄q,F1B~p1↔2k!,

Muu
gq̄,F1B52

1

2CF
Muu

qq̄,F1B~p1↔2k!.

~84!

The above correspondences were explicitly verified. Eq
tions ~84! hold only for theF1B case, since theF2B inte-
gration depends onp1 and hence destroys the crossing sy
metry.

Also, the q↔q̄ interchanges were checked usingCPT
invariance. The only difference between theF2B and
F1B cases is that in theF2B case, one picks up an extr
minus underCPT, sinceCPT implies l 1↔ l 2 and the lep-
tonic integration is antisymmetric.

The 2→3 particle bremsstrahlung phase space is given

S dŝmn,BB8
ab,F6B

dM
D

Br

5
2112«

p12« M122«w11«
~12w!122«

G~12«!

3E
0

1

dyy2«~12y!2«E
F6B
Dp3uM umn,BB8

2 ab ,

~85!

where

y5
11cosu

2
~86!

andu is the angle betweenp1 andk in the p1 , p2 c.m.
Define

I mn
ab,F6B[

~12w!122«

4

G~122«!

G2~12«!

3E
0

1

dyy2«~12y!2«Fmn
ab,F6B . ~87!

Then, noting Eqs.~73!, ~57!,

S dŝmn,BB8
ab,F6B

dM
D

Br

5@cF#
as

2p
x̃mn,BB8

ab,F6B
~«!w11«C~«!I mn

ab,F6B ,

~88!

where thex̃mn
ab,F6B are defined analogously to theM̃mn

ab,F6B

@see Eqs.~74!, ~75!#. The resulting integrations are rath
straightforward. Using the approach of@4# we may cast the
I mn

ab,F6B in a form valid for all consistentn-dimensional regu-
larization schemes, making use of then-dimensional split-
ting functionsDkPi j

n . As for the virtual graphs, we omit a
possible extra soft piece which would cancel in the virtu
plus bremsstrahlung sum and use the Born term approp
to the regularization scheme in question.

We obtain, for theqq̄ subprocess,
a-

-

y

l
te

I mn
qq̄,F6B5

2

«2 d~12w!2
1

«

DmnPqq
n,,~w,«!

CF
18S ln~12w!

12w D
1

24~11w!ln~12w!1kmn
qq̄,F6B~w!, ~89!

with

kmn
qq̄,F1B~w!522~12w!, kmn

qq̄,F2B~w!52~11w!ln w
~90!

and

DmnPi j [DmPi j 1DnPi j . ~91!

For theqg subprocess, we obtain

I mn
ab,F6B52

1

«
Dn/m

ab Pqg
n ~w!12 ln~12w!Dn/m

ab Pqg
4 ~w!

1kmn
ab,F6B~w!, ~92!

with

kmn
qhg,F1B~w!5kmn

g qh,F1B~w!5
~12w!

4
~113w!, ~93!

kuu,lu
qhg,F2B~w!5

~12w!

4
~113w!1~12w!ln w,

~94!

kll ,ul
qhg,F2B~w!5

~12w!

4
~113w!2~12w!ln w,

~95!

kuu,ul
g qh,F2B~w!52

~12w!

4
~113w!22w2 ln w,

~96!

kll ,lu
g qh,F2B~w!52

~12w!

4
~113w!22w ln w

~97!

and

Dn/m
ab Pqg[H DnPqg :b5g,

DmPqg :a5g.
~98!

VII. FACTORIZATION OF MASS SINGULARITIES

The term;1/«2 in Eq. ~89! represents a soft divergenc
~and simultaneous mass singularity! and is cancelled by an
opposite term in Eq.~71!. The remaining terms;1/« in Eqs.
~71!, ~89!, ~92! represent mass singularities and do not c
cel. Hence, they must be removed by expressing the b
parton distributions~and fragmentation functions in pro
cesses with final state mass singularities! in terms of the
renormalized ones@30#. Thus, our parton model expressio
~18! is understood to be initially written in terms of the un
renormalized parton distributions, whose relation to t
renormalized ones is given by
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f k
0,i /A~x,m2!5 f k

r ,i /A~x,m2!

1
c~«!

« (
j

a j

2p E
x

1 dy

y
f k

r , j /A~y,m2!

3@DkPi j
4 ~x/y!1«DkTi j ~x/y!#, ~99!

where

c~«!

«
[

1

«
~4p!«

G~12«!

G~122«!
5

1

«
2gE1 ln 4p1O~«!

~100!

anda j5as , unlessj (5A)5g, in which casea j5a. After
making the above substitution in Eq.~18!, we recover the
same form, except that now the subprocess cross secti
finite and the parton distributions which enter are the ren
malized ~finite! ones. This will be demonstrated explicitl
later. Note that photons, like hadrons, have internal parto
structure. Hence Eq.~99! is not restricted to hadronic initia
states. We do not introduce any additional mass scale
associated with the mass singularities as is commonly d
In this form, the above definition is consistent with the us
modified minimal subtraction (MS) definition of renormal-
ization whenDkTi j 50, as will be discussed shortly.

The fragmentation functionsD A/ i , which represent the
probability for quarki to split into a collinear hadron~or
photon! A, with momentum fractionz, have the following
renormalization:

D k
0,A/ i~z,m2!5D k

r ,A/ i~z,m2!

1
c~«!

« (
j

a j

2p E
z

1 dy

y
D k

r ,A/ j~y,m2!

3@DkPji
4 ~z/y!1«DkTji ~z/y!#. ~101!

All of the freedom in the factorization scheme is para
etrized by the subtraction termsTi j (x/y). In theory, theTi j
could depend explicitly onx as well. Although we will dis-
cuss constraints on the allowedTi j in some detail later in this
section, it is worthwhile to briefly summarize the most co
monly used schemes here. In Table I we list various sche
of interest. For the MS~as opposed toMS! version of any of
these schemes, simply add (gE2 ln 4p)DkPi j

4 to the corre-
spondingDkTi j .

The « modified minimal subtraction scheme (MS«) was
introduced in@4#, the ‘‘polarized’’ modified minimal sub-
traction scheme (MSp) was introduced in@25# and the ‘‘he-

licity conserving’’ MS scheme (MSHC), as we shall refer to
it, corresponds to the scheme used in determining the t

TABLE I. The DkTi j which define the various factorizatio
schemes of interest; herek5u,l .

MS MS« MSHC MSp

DkTqq 0 DkPqq
« D l Pqq

« 2DuPqq
« D l Pqq

« 2DuPqq
«

DkTqg 0 DkPqg
« 0 D l Pqg

«

DkTgq 0 DkPgq
« 0 D l Pgq

«

DkTgg 0 DkPgg
« 0 D l Pgg

«,,
is
r-

ic

re
e.
l

-

-
es

o-

loop polarized splitting functions in@31–33#, although it was
inaccurately referred to asMS there and in many other pa
pers making use of it. This inaccuracy appears to have b
acknowledged in@33#.

In HVBM regularization, theMS scheme leads to helicity
nonconservation of massless fermions. Hence it is not g
erally used. The other three schemes are helicity conserv
at least in the direct sense. A potential problem in theMSHC

scheme will be discussed later in this section. For theMSHC

andMSp schemes, one must use theMS scheme as the cor
responding unpolarized factorization scheme when com
ing polarized parton distributions to unpolarized ones. Thi
implicit in the definition of those two schemes, which a
defined only for polarized parton distributions. This is
advantage since unpolarized parton distributions determ
in the MS scheme are widely available, in contrast to t
MS« scheme. On the other hand, it is not clear what eff
these two schemes could have on various positivity c
straints which require polarized quantities to be smaller
magnitude than the corresponding unpolarized ones, as
be discussed briefly at the end of this section. Nonethel
presently available NLO polarized parton distributions a
predominantly determined in theMSHC scheme, and so we
will use it in making physical predictions.

The MS« scheme is the only one of the three helici
conserving schemes with the following properties.~a! It
treats the polarized and unpolarized parton distributio
analogously.~b! It gives regularization scheme independe
analytical results and parton distributions~equivalent to
those of DREDMS!. ~c! It satisfies the supersymmetric iden
tity

DkPg̃ g̃1DkPg g̃5DkPg̃g1DkPgg , g̃5gluino,
~102!

for the unpolarized@34,35# and polarized@31,32# two-loop
spacelike splitting functions as well as the timelike@33# split-
ting functions~both polarized and unpolarized!. This is due
to the equivalence with DRED, which in turn implies th
applicability of four-dimensional calculational technique
The timelike splitting functions are those which enter in E
~101!. They only begin to differ from the spacelike ones
the two-loop level.

Substituting Eq.~99! in Eq. ~18! and convoluting with the
n-dimensional Born term of the regularization scheme be
used generates severalfactorizationcounterterms. Those as
sociated with theqq̄ subprocess (ab5qq̄,q̄q) have the form

S dŝmn,BB8
ab,F6B

dM
D

ct

5
1

«
xmn,BB8

ab,F6B
~«!

as

2p
w11«C~«!

3S s

m2D «

@DmnPqq
4 ~w!1«DmnTqq~w!#.

~103!

The remaining terms are associated with theqg subprocess
(ab5qhg,gqh) and have the form
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S dŝmn,BB8
ab,F6B

dM
D

ct

5
1

«
x̃mn,BB8

ab,F6B
~«!

as

2p
w11«C~«!

3S s

m2D «

@Dn/m
ab Pqg

4 ~w!1«Dn/m
ab Tqg~w!#.

~104!

From @4# we may infer the relation between parton dist
butions of any regularization and factorization scheme,
noted 1, with any other, denoted 2:

f k,1
i /A~x!5 f k,2

i /A~x!1(
j

a j

2p E
x

1 dy

y
f k,2

j /A~y!$@DkP1,i j
« ~x/y!

2DkT1,i j ~x/y!#2@DkP2,i j
« ~x/y!2DkT2,i j ~x/y!#%

1O~a jas!. ~105!

Similarly, for the fragmentation functions,

D k,1
A/ i~z!5D k,2

A/ i~z!1(
j

a j

2p E
z

1 dy

y
D k,2

A/ j~y!$@DkP1,j i
« ~z/y!

2DkT1,j i ~z/y!#2@DkP2,j i
« ~z/y!2DkT2,j i ~z/y!#%

1O~a jas!. ~106!

Going from scheme 1 to scheme 2 simply amounts
expressing the parton distributions and fragmentation fu
tions of scheme 1 in terms of those of scheme 2, as
shown in @4#. Also, we see that working in any consiste
n-dimensional regularization scheme and any factoriza
scheme is equivalent to working in any other consist
n-dimensional regularization scheme with the appropri
factorization scheme. Thus, according to our definition
consistency given in Sec. III, a consistentn-dimensional
regularization scheme must~a! be mathematically consisten
for the class of subprocesses under consideration, and~b!
have a process independent set of splitting functions wi
that class, in order that it may be related to the HVB
scheme as described in Sec. III~assuming DREG and
HVBM themselves do not fail for some process, unlikely
it may seem!. The DRED scheme satisfies both criteria f
one-loop QCD corrections to polarized processes.

From @4# we may also infer that the conversion ter
which must be added to the subprocess cross section c
lated in scheme 1 to obtain the subprocess cross sectio
scheme 2 is obtained via

ŝconv5(
l

ŝct,l$@DkPi j
4 ~wl !1«DkT1,i j ~wl !#

→«@DkT2,i j ~wl !2DkP2,i j
« ~wl !#2«@DkT1,i j ~wl !

2DkP1,i j
« ~wl !#%, ~107!

where wl is the argument of the splitting functions in th
countertermŝct,l . The conversion terms are generated
making the above substitution in all factorization count
terms for both initial and final state mass singularities
general. As well, one must express the couplings of sch
1 in terms of those in scheme 2 for processes where coup
-

o
c-
as

n
t
e
f

in

s

cu-
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y
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e
ng

constant renormalization enters. Then, the above form
valid for all one-loop QCD corrections, not just Drell-Ya
and DIS. Also, it is straightforward to verify that making th
substitutions~105!, ~106! in any one-loop cross section ca
culated in scheme 1, leads to the conversion term~107!.

Parton distributions determined using different process
but the same scheme, will differ byO(as

n11) whenO(as
n)

corrected cross sections are used in the fits. Since a b
assumption of the parton model is that the all-orders par
distributions will be process independent, the process dep
dence of the parton distributions can be seen to arise f
the neglected higher orders. The physical parton distributi
are in fact the all-orders parton distributions since, in real
it is the all-orders subprocess cross section that they are
voluted with. Hence, if the all-orders parton distributio
were not process independent, there would exist no pro
independent parton distributions. By all orders, we mean s
ficently high order inas that higher orders may be neglecte
for all practical purposes. The process dependence is th
fore easy to understand since some processes have
QCD corrections~i.e. Drell-Yan! while others have relatively
small corrections~i.e. DIS!. Hence the extent to which th
O(as

n) andO(as
n11) parton distributions differ, in any par

ticular scheme, will depend on the process from which th
are determined. So, for lown ~i.e. n50!, processes with
significantly different QCD corrections will yield somewha
different parton distributions, but the ones with smaller QC
corrections will lead to parton distributions which are clos
to the all-orders ones. One expects, on the other hand,
the ratio of the polarized to unpolarized parton distributio
will not have a large process dependence since, even
Drell-Yan like processes, spin asymmetries tend to exh
perturbative stability as we shall demonstrate in Secs. I
XI.

Equation~105! is very powerful and restrictive. This is
because it has implications for various conservation rule m
tivated sum rules. According to the parton model, the nu
ber of valence~constituent! quarks,qv , in a hadron,A, is
given by

Nqv /A5E
0

1

dy f u
qv /A

~y!5const. ~108!

More specifically,

Ndv /p5Nd/p2Nd̄/p51,

Nuv /p5Nu/p2Nū/p52. ~109!

The fact that this must hold for all energy scales,m, is an
expression of charge/probability conservation. SinceNq/A is
just the first moment off u

q/A(y) and since thekth moment of
a convolution is the product of thekth moments of the func-
tions being convoluted, it is easy to see what happens to
above conserved quantity as one goes from one schem
another.

First, we note that the gluonic contribution of Eq.~105! to
the relation between quark distributions of different schem
cancels for the valence distributions. Suppose we wish to
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what happens when going from regularization scheme 2
regularization scheme 1. Using Eq.~105!, we get, for valence
quarks,

N1
qv /A

5N2
qv /AH 11

as

2p
@~DuP̄1,qq

« 2DuT̄1,qq!

2~DuP̄2,qq
« 2DuT̄2,qq!#J , ~110!

whereḡ denotes the first moment ofg(y), for some function
g. Suppose scheme 1 is DRED, for whichDuPDRED,qq

« 50,
and scheme 2 is DREG, for which

DuP̄DREG,qq
« 50, ~111!

as can be seen from Eqs.~29!. Assuming the same factoriza
tion scheme, i.e.DuT2,i j 5DuT1,i j , we obtain

NDRED
qv /A

5NDREG
qv /A , ~112!

so that the two regularization schemes are mutually ph
cally consistent regarding charge conservation. The requ
ment

DuP̄qq
n 50 ~113!

follows from the fact that theO(as) corrections to charge
conservation must be zero inn dimensions. By corrections
we mean that one can think of a zeroth order piece
DuPqq(z), DuPgg(z) which is proportional tod(12z) and
denotes the no-interaction scenario. Then, it is clear that
usual leading order splitting functions denoteO(as) correc-
tions to the non-interacting case.

Let us now consider momentum conservation. LetPi /A

denote the total momentum fraction carried by partoni . It is
just the second moment off u

i /A :

Pi /A5E
0

1

dyy f u
i /A~y!. ~114!

Of course, momentum conservation must be applied to
sum over all partons. One can easily verify that if, in so
factorization scheme, the DRED parton distributions sati
the momentum conservation rule

(
i

Pi /A51, ~115!

then the DREG parton distributions, in that same factori
tion scheme, will also satisfy it, and vice versa. The ba
reason is that the requirement, which DREG satisfies, th

E
0

1

dzz@DuPqq
n ~z!1DuPgq

n ~z!#

5E
0

1

dzz@DuPgg
n ~z!12NFDuPqg

n ~z!#50 ~116!

@which follows from the fact that theO(as) corrections to
momentum conservation must be zero, inn dimensions#
leads to cancellations in the sum over partons, so that the
to

i-
e-

o

e

e
e
y

-
c

et

difference in total momentum between schemes is zero. T
is easily verified from Eq.~29!. The individual quark and
gluon momentum fractions will depend on the regularizat
~and factorization! scheme as well as the energy scale,m, to
O(as), but a change in the quark momentum fraction
cancelled by an exactly opposite change in the gluon m
mentum fraction. Thus, the total momentum is the same
both schemes, and is independent ofm, as follows from
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! evolu-
tion @36,23#.

All this discussion tells us that DRED and DREG a
mutually physically consistent in general, in the unpolariz
case. One can convert unpolarized parton densities from
regularization scheme to the other and the conserved qu
ties retain their values. The real problem arises when
converts from one factorization scheme to another. It is s
to go fromMS to MS since, in the MS scheme, all theDkTi j

are proportional toDkPi j
4 (gE2 ln 4p), and hence do no

change the conserved quantities. Also, since DRED
equivalent to theMS« scheme, we see thatMS« andMS are
mutually physically consistent as well, for unpolarized pr
cesses. In general, though, for arbitraryDkTi j , there are no
analogous constraints to Eqs.~113! and ~116!, at least with-
out invoking constraints from higher order evolution. Th
means that the aforementioned conserved quantities will
fer in general byO(as) when going from one arbitrarily
chosen factorization scheme to another. Since it would
quite a formidable task to measure so precisely the pa
distributions that one could definitely verify all conserve
quantities to high accuracy, how do we know which schem
are correcta priori? This is even more pertinent to the ca
of the polarized parton distributions, where the data are d
nitely lacking.

We may gain some insight into this issue by studying
scheme dependence of the polarized~nonsinglet! distribu-
tions. The net spin,Sq/A, carried by quarks of flavorq, in
hadronA, and the corresponding total quark spin,1

2 DSA ,
are given by

Sq/A5
1

2 E
0

1

dy f l
q/A~y!,

1

2
DSA5(

q
Sq/A, ~117!

respectively. The spin carried by the valence quarks is c
served under one-loop evolution due to chirality conser
tion. More formally,D l P̄qq

4 50, substituted in the expressio
for the first moment off l

q/A , evolved using the DGLAP
equations givesSqv /A5const, under one-loop evolution, a
was the case forNqv /A. For a discussion of two-loop valenc
evolution effects, which in general violate the above cons
vation, the reader is referred to@37#. The main point of in-
terest concerning two-loop evolution is that chirality cons
vation is relevant to non-singlet combinations of the fo

f l
q1 f l

q̄2 f l
q82 f l

q̄8 and linear combinations thereof. The tw
interesting onesDA3 , DA8 satisfy

DĀ3,85const, ~118!

where
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DA35 f l
u1 f l

ū2 f l
d2 f l

d̄ ,

DA85 f l
u1 f l

ū1 f l
d1 f l

d̄22~ f l
s1 f l

s̄!. ~119!

Similar argumentation to that used in relatingN1
qv /A to

N2
qv /A leads to

DĀ3,8
1 5DĀ3,8

2 H 11
as

2p
@~D l P̄1,qq

« 2D l T̄1,qq!

2~D l P̄2,qq
« 2D l T̄2,qq!#J . ~120!

From Table I and Eq.~30! we get

DĀ3,8
DRED~MS!5DĀ3,8

HV~MS«!
5DĀ3,8

HV~MSHC!

5DĀ3,8
HV~MSp!

ÞDĀ3,8
HV~MS! . ~121!

Thus, theMS scheme of DREG~HVBM ! gives different val-
ues for DĀ3 , DĀ8 than all the ‘‘chirality conserving’’
schemes. This is an explicit example of the factorizat
scheme ambiguity.

The real implication of this seeming non-uniquene
problem is that certain factorization schemes may be ru
out from the beginning since they are manifestly unphysic
One can determine which schemes are unphysical by im
ing the fact that the unrenormalized parton distributions~99!
themselves satisfy the conservation rules~108!, ~115! and
~118! and yield the correct value for the corresponding co
served quantities~except as will be mentioned below!. The
reason for this is that if a particular regularization preser
the necessary symmetries—unitarity, translation invaria
and chiral symmetry—then the unrenormalized parton dis
butions in that regularization will obey the correspondi
conservation rules: conservation of charge/probability, m
mentum, and massless quark chirality. Hence, the connec
between renormalized and unrenormalized parton distr
tions must not destroy those symmetries in the renormal
parton distributions. If, on the other hand, a regularizat
violates a particular symmetry, a finiteDkTi j will have to be
introduced to ensure that the renormalized parton distr
tions obey the corresponding conservation rule, since the
renormalized parton distributions themselves will manifes
violate it.

Thus, using similar rationale to that used in going fro
one regularization scheme to another, we arrive at the ph
cal consistency constraints on allowable factorizat
schemes:

E
0

1

dzDuTqq~z!50, ~122!

E
0

1

dzz@DuTqq~z!1DuTgq~z!#

5E
0

1

dzz@DuTgg~z!12NFDuTqg~z!#50 ~123!

and
n

s
d
l.
s-

-

s
e
i-

-
on
u-
d

n

-
n-
y

si-
n

D lTqq~z!2D l Pqq
« ~z!5DuTqq~z!2DuPqq

« ~z!. ~124!

The reason we had to subtractDkPqq
« in Eq. ~124! is that for

regularization schemes like HVBM which violate chir
symmetry (D l Pqq

« ÞDuPqq
« ), the unrenormalized parton dis

tributions themselves manifestly violate helicity conserv
tion. One must always subtract the helicity nonconserv
part in D l Pqq

« in order to restore this conservation. This
why HVBM~MS! disagrees with the other schemes and
manifestly unphysical. Under two-loop evolution, helici
non-conservation in HVBM~MS! manifests itself via direct
violation of Eq.~118!. This may be seen by taking scheme
to be HVBM~MS! and scheme 2 to be one of the ‘‘chiralit
conserving’’ schemes, and then differentiating Eq.~120!
with respect to lnm2. Comparing with the DGLAP equation
for DĀ3,8

1 one finds precisely the same nonvanishing res

for dDĀ3,8
1 /d ln m2 as follows from the two-loop analysi

@31,32#.
The condition~124! is somewhat stronger than the co

servation rule~118!. It also ensures that

ŝ~helicity flip!50, ~125!

whereŝ(helicity flip) generically denotes any doubly pola
ized ~in the initial state! subprocess cross section where
massless quark flips helicity, with the helicity at both ends
the quark line fixed.

The relation between the total quark spin in scheme 1
that in scheme 2 is obtained by taking the first moment
Eq. ~105! and summing over quarks~including antiquarks!:

1

2
DS15

1

2
DS21

as

4p H(
q

f̄ l
q@~D l P̄1,qq

« 2D l T̄1,qq!

2~D l P̄2,qq
« 2D l T̄2,qq!#12Nf f̄ l

g@~D l P̄1,qg
« 2D l T̄1,qg!

2~D l P̄2,qg
« 2D l T̄2,qg!#J . ~126!

Since DRED preserves chiral symmetry, it is natural to us
as a reference scheme. If we also desire that the total sp
the quarks be the same as in DRED~MS!, thenD l P̄qg

« Þ0 in

HVBM regularization leads to violation of this in theMSHC
scheme. We must impose

E
0

1

dz@D lTqg~z!2D l Pqg
« ~z!#50 ~127!

to restore equivalence. Hence, of the factorization sche
listed in Table I, onlyMS« andMSp give the value of total

quark spin equal to that in DRED~MS!.
One may ask if there is some deeper physical reason

the MSHC scheme gives a different value for the total qua
spin. We notice, using Eqs.~29! and~30!, that, in the HVBM
scheme,

Pqg,11
n ~z!ÞPqg,21

n ~12z!. ~128!

This means that when a polarized gluon splits into a collin
qq̄ pair, theq andq̄ do not necessarily have opposite chira
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ties, as required by quark chirality conservation. The ab
result is possible since, if there is an initial state gluon, E
~125! does not apply.
us

E

if-

tt

n
n
m

e
su

-

st

-
ce
e
.

The MS« and MSp schemes correct Eq.~128!, while
MSHC does not. More precisely, strictly speaking, chirali
conservation imposes the indirect constraint
@DuTqg~z!1D lTqg~z!#2@DuPqg
« ~z!1D l Pqg

« ~z!#5@DuTqg~12z!2D lTqg~12z!#2@DuPqg
« ~12z!2D l Pqg

« ~12z!#

⇒D lTqg~z!2D l Pqg
« ~z!52@D lTqg~12z!2D l Pqg

« ~12z!#, ~129!
n
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which bothMS« andMSp satisfy, butMSHC does not. The
reason, as usual, is that it is the difference,DkPi j

« (z)
2DkTi j (z), which enters in physical cross sections. Th
the subtraction term,DkTi j (z), effectively modifies the split-
ting function,DkPi j

« (z). The unpolarized parts in Eq.~129!
cancelled due to the unpolarized constraint,DuTqg(z)
2DuPqg

« (z)5DuTqg(12z)2DuPqg
« (12z), which is satis-

fied in all the schemes considered here. Satisfaction of
~129! implies satisfaction of Eq.~127!, while the reverse is
not true. An interesting analysis which arrived, from a d
ferent perspective, at a conclusion similar to Eq.~127!, in the
context of DIS, may be found in@38#. How strictly one
wishes to impose chirality conservation is perhaps a ma
of taste, however.

Under one-loop evolution, the total quark spin is co
served. Under two-loop evolution, conservation or no
conservation depends on the choice of factorization sche
Analogously to the non-singlet case, we see that ifDS2 is
conserved andDS1ÞDS2 , thenDS1 will not be conserved
under two-loop evolution. The scale dependence ofDS1
may be obtained by differentiating Eq.~126! directly. The
MS« and MSp schemes lead to conservation ofDS, and
thereforeMSHC does not. Alternatively worded,DS is not
conserved in theMSHC scheme and the difference in th
schemes exactly compensates this non-conservation
that DS is conserved in theMS« and MSp schemes. The
evolution ofDS in the MSHC scheme obtained via differen
tiation of Eq.~126! agrees with the two-loop analysis@31,32#
and can be seen to arise from the non-vanishing ofD l P̄qg

« .
Under two-loop evolution, it is the non-vanishing of the fir
moment ofD l Pqq ~from the pure singlet part! which leads to
the non-conservation ofDS, however. Hence the non
vanishing at two-loops ofD l P̄qq is seen to be a consequen
of the non-vanishing at one-loop ofD l P̄qg

« , while D l P̄qg

remains zero at two loops, in all three schemes.
,

q.

er

-
-
e.

ch

At any rate, we see that satisfaction of Eq.~127! leads to
conservation of total quark spin. The DGLAP evolutio
equations will be elaborated on in the next section in c
nection with scale dependences. It is worth noting that an
gous argumentation can be used to relate the spin carrie
the gluons in different schemes. Since such differences
not enter in the observables considered here, at one loop
will not discuss them. Also, direct differentiation of Eq
~105! gives the correct scheme transformations for all tw
loop splitting functions, generalized to include the regul
ization scheme dependence~i.e. Ti j→Ti j 2Pi j

« !.
So far, we have not discussed the interesting requirem

of positivity of the parton distributions:

f 1/1
i /I ~x,m2!>0, f 2/1

i /I ~x,m2!>0. ~130!

The only guarantee of positivity applies to the physical cro
section itself, as measured by experiment. Individual subp
cess cross sections need not satisfy positivity due to the
terconnection of the subprocesses arising from the renorm
ization of the parton distributions discussed earlier in t
section. To the extent that leading order cross sections do
nate and that the parton distributions are process indepen
at leading order, positivity should not be a problem. On
other hand, for processes with large radiative correctio
some factorization schemes could lead to parton distributi
in violation of Eq.~130!. This issue has not been thorough
studied at this point, but it will become important as mo
experiments involving polarized hadrons are undertaken.

VIII. ANALYTICAL RESULTS TO ONE-LOOP ORDER

We may now present the analytical results f
dŝmn,BB8

ab,F6B/dM in a form valid for all consistent
n-dimensional regularization schemes and for a general
torization scheme, starting with theqq̄ subprocess. Combin
ing Eqs.~57!, ~71!, ~88!, ~89! and ~103!, we obtain the total
result (ab5qq̄,q̄q),
S dŝmn,BB8
ab,F6B

dM
D

NLO

5xmn,BB8
ab,F6B

~0!H d~12w!1CF

as

2p
wF S 2p2

3
27D d~12w!18S ln~12w!

12w D
1

1
DmnPqq

4 ~w!

CF
ln

M2

wm2 24~11w!ln~12w!1
1

CF
@DmnTqq~w!2DmnPqq

« ~w!#1kmn
qq̄,F6B~w!G J ,

~131!
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where thekmn
qq̄,F6B are given in Eqs.~90!.

We now present the result for theqg subprocess. There
is no O(1) term ~in as!. Combining Eqs.~88!, ~92! and
~104!,we obtain the total result (ab5qhg,gqh),

S dŝmn,BB8
ab,F6B

dM
D

NLO

5 x̃mn,BB8
ab,F6B

~0!
as

2p
wH Dn/m

ab Pqg
4 ~w!F ln

M2

wm2

12 ln~12w!G1@Dn/m
ab Tqg~w!

2Dn/m
ab Pqg

« ~w!#1kmn
ab,F6B~w!J , ~132!

where thekmn
ab,F6B(w) are given by Eqs.~93!–~97!.

We see at this point that the results of@4# ~for theuu and
l l , F1B, vector coupling case with masslessB5B8! are
contained within the results presented here. Those, in t
were found to be consistent with various existing results c
culated in certain specific schemes, for both theuu @39,40#
and l l @1,2# cases. Single-spinW6 production in hadron-
hadron collisions has been studied in@3#. Considering the
subprocessab→W6c, wherea is longitudinally polarized
and b is unpolarized, we see that forab5qq̄,q̄q and for
a5g, b5qh, our expressions reproduce those given in A
pendix B of @3#. For a5qh, b5g, it seems at first sight tha
t t
n,
l-

-

there is a discrepancy. In order to reproduce the result of@3#,
one needsDuPqg

« 521/2, in disagreement with Eqs.~29!.
The reason for this disagreement is that@3# averages over 2
rather than 222«, gluon polarization states, as can be i
ferred from their Eq.~10!. That convention does indeed lea
to DuPqg

« 521/2. Unfortunately, all of the presently avai
able unpolarized parton distributions are determined us
the convention of 222« gluon polarization states. Conse
quently, the expressions of@3#, for theqg subprocess, should
be appropriately converted using the technique of@4#, which
amounts to Eq.~107! of this paper, before being used i
numerical studies demanding complete consistency at N

At this point, we may investigate the scale dependence
the cross section. Define

s[
dsmn

AB,F6B

dM
~133!

and lets̃ denote the contribution tos which depends onm2

at O(as) coming from a5q, b5q̄; a5q, b5g; and
a5g, b5q̄ for one quark flavor and for production by on
bosonic interference channel. These subprocesses are
nected via the renormalization of the parton distributions,
are disconnected from the remaining subprocesses in
sense. We have~takingSm

A5S n
B51!
s̃5xmn
qq̄,F6B~0!H E

t

1

dxa,bE
t/xa,b

1

dxb,af m
q ~xa ,m2! f n

q̄~xb ,m2!dS 12
t

xaxb
D

2
as

2p E
t

1

dxb

t

xb
f n

q̄~xb ,m2!E
t/xb

1 dxa

xa
@ f m

q ~xa ,m2!DmPqq
4 ~w!ln m21 f m

g ~xa ,m2!DmPqg
4 ~w!ln m2#

2
as

2p E
t

1

dxa

t

xa
f m

q ~xa ,m2!E
t/xa

1 dxb

xb
@ f n

q̄~xb ,m2!DnPqq
4 ~w!ln m21 f n

g~xb ,m2!DnPqg
4 ~w!ln m2#J , ~134!
ne-
where

f k
j ~xa,b ,m2![ f k

j /A,B~xa,b ,m2!. ~135!

In DIS, one has an analogous expression, except withou

convolution with thef n
q̄ term. The independence ofs onm to

O(as) implies

ds̃

d ln m2 5O~as
2!. ~136!

Here we note

das

d ln m2 52
b0

4p
as

25O~as
2!. ~137!

Taking into account the fact that the evolution off m
q/A is

independent off n
q̄/B and f n

g/B , we may arbitrarily set, for any

fixed m2, f n
g(xb ,m2)50 and f n

q̄(xb ,m2)5d(12xb), after
he

performing the differentiation in Eq.~136!. Of course,f n
g/B

and f n
q̄/B still evolve with m2. We then use Eq.~136! with

m5n, f n
g(xa ,m2)5 f n

g(xb ,m2)50 and f n
q(xa ,m2)5d(1

2xa), f n
q̄(xb ,m2)5d(12xb) to solve for and eliminate

d f n
q̄(xb ,m2)/d ln m2. The result ford f n

q̄(xb ,m2)/d ln m2 is
simply (as/2p) DnPqq

4 (xb).
We thus obtain

d f k
q~x,m2!

d ln m2 5
as~m2!

2p E
x

1 dy

y
@ f k

q~y,m2!DkPqq
4 ~x/y!

1 f k
g~y,m2!DkPqg

4 ~x/y!#1O~as
2!, ~138!

for k5u,l . This is the DGLAP equation@36,23# with one-
loop splitting functions. Therefore, one needs at least o
loop evolution to guaranteem2 independence ofO(as). Glu-
onic evolution only enters at theO(as

2) level.
We may write, using the Taylor expansion for fixedx,
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f k
q~x,m2!5 f k

q~x,m0
2!1

as~m0
2!

2p
lnS m2

m0
2D c1,k

q ~x,m0
2!

1Fas~m0
2!

2p
lnS m2

m0
2D G2

c2,k
q ~x,m0

2!1¯

[ f k
q~x,m0

2!1
as~m0

2!

2p
lnS m2

m0
2D c1,k

q ~x,m0
2!

1Fas~m0
2!

2p
lnS m2

m0
2D G2

f̃ k
q~x,m2,m0

2!, ~139!

where

c1,k
q ~x,m0

2!5E
x

1 dy

y
@ f k

q~y,m0
2!DkPqq

4 ~x/y!

1 f k
g~y,m0

2!DkPqg
4 ~x/y!#. ~140!

One can write an analogous expression forf k
g(x,m2) using

the DGLAP evolution equation forf k
g(x,m2), yielding

c1,k
g ~x,m0

2!5E
x

1 dy

y F(
i 51

2Nf

f k
qi~y,m0

2!DkPgq
4 ~x/y!

1 f k
g~y,m0

2!DkPgg
4 ~x/y!G . ~141!

Then one could expresss in terms of thef̃ and parametrize
explicitly the O(as

2) m2 dependence with respect to som
fixed scalem0

2. Supposem0
2 is a typical scale of the proces

~i.e. M2!; then there will not be any large logarithms an
s(m0

2) will have reasonableO(as) corrections when
m25m0

2@L2. Having identifiedm0
2 as being a scale which

leads to reasonableO(as) corrections, we now ask wha
happens when we varym2 away fromm0

2? Using Eq.~139!
in the parton model expression, we see that there will bem2

dependent terms will be proportional to

s~m2!2s~m0
2!;F as

2p
ln~m2/m0

2!G2

;F ln~m2/m0
2!

ln~m2/L2!
G2

~142!

times an overall factor having roughly the same magnitu
as the Born term. For typical values ofm and as ,
(as/2p) ln(m2/m0

2) is a small number so that them2 depen-
dence is rather suppressed as long asm2 is not too far from
m0

2. These terms will only cancel when two-loop correctio
to the subprocess cross section are included. There are
terms with lower powers of ln(m2/m0

2) @i.e. from Eq.~137!#
which require two-loop corrections for cancellation as we

The next question is, how much better are we doing th
a Born level calculation? In the Born level result, them2

dependence comes entirely from the evolution of the dis
butions. Hence, from Eqs.~134!, ~139!,

sBorn~m2!2sBorn~m0
2!;

as

2p
ln~m2/m0

2!, ~143!
e

lso

n

i-

again times an overall factor having roughly the same m
nitude as the Born term. We see explicitly that inclusion
one-loop corrections reduces them2 dependence by an extr
factor of (as/2p) ln(m2/m0

2) for reasonable values ofm2. The
above arguments apply to all one loop calculations in h
ronic processes. In general, though, there is also a contr
tion from the evolution of the gluon distribution atO(as),
relative to the Born term. This is because, in general,
gluon distribution may enter in the Born term. Then, impo
ing the analogue of Eq.~136! would determinec1,k

g as given
by Eq. ~141!.

One could also convolute the Born cross sections w
parton distributions having no evolution~i.e. determined at
some fixed scalem̄2!, which would correspond to an ‘‘off-
shell’’ renormalization of the parton distributions in high
order. But then the physical predictions would be wrong
terms ; (as/2p) ln(m0

2/m̄2), since the one loop correction
would contain such terms@analogous to the term
; (as/2p) ln(M2/m2) present in Eqs.~131!, ~132!#. So, even
though there is no renormalization scale dependence, th
ror will be larger for m0@m̄ or m0!m̄. One expects an
analogous trade-off when using one-loop evolution inste
of two-loop evolution in NLO calculations.

Actually, this argumentation is somewhat naive in t
sense that we only considered explicitly th
;@(as/2p) ln(m2/m0

2)#2 behavior. For processes such as t
Drell-Yan process, which receive largep2 corrections, there
will be residual m2-dependent effects arising from th
m2-dependent part of the parton distributions multiplied
the large correction terms in the cross section which will n
cancel at the one-loop level. Thus, there will be an additio
m2 dependence of the cross section proportional to

sp2
~m2!2sp2

~m0
2!;

as

2p
p2F as

2p
ln~m2/m0

2!G ~144!

;
p

2
asF as

2p
ln~m2/m0

2!G ,
~145!

which is still suppressed relative to them2 dependence of the
Born term for typical energy scales. Of course, there may
other sources of large corrections not strictly proportiona
p2 ~see the discussion near the beginning of Sec. XI!, and so
our p2 factor is really a generic representation of large c
rection terms in general. The rule then is that the larger
one-loop corrections, the greater them2 dependence. Inclu-
sion of two-loop corrections~and evolution! will reduce this
factor. We will not discuss two-loop effects in any deta
here. Also, we will not perform detailed numerical studies
scale dependence, as this has been done extensively i
literature. The above discussion was included simply
clarify the origin of the scale dependence and to show ho
is reduced by the inclusion of QCD corrections in genera

IX. DRELL-YAN IN LOW ENERGY RUNNING AT RHIC

Throughout, for unpolarized cross sections, we use s
process cross sections determined in theMS scheme of
DREG. They are convoluted with the unpolarized Marti
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6680 57B. KAMAL
Roberts-Stirling set G~MRSG! set @41# of parton distribu-
tions. Varying the choice of unpolarized parton distributio
produces negligibly small changes in the spin depend
asymmetries in general. Hence, we only consider the ef
of varying the polarized parton distributions even thoug
strictly speaking, one should use specific unpolarized
with the various polarized sets. We use the Gehrma
Stirling set A ~GSA! and GSC@42# as well as the Glu¨ck-
Reya-Stratmann-Vogelsang~GRSV! ~standard NLOMS! set
@43# and compare the corresponding predicted asymmet
Since all these sets are determined in theMSHC scheme,
using HVBM regularization, we use subprocess cross s
tions determined in that scheme for doubly polarized pred
tions. Clearly then, for single-spin cross sections, we use
MSHC(MS) scheme for the renormalization of the~un!polar-
ized parton distributions which enter~i.e. for theTi j !. Con-
sequently, theDkPi j

« are always those of DREG and HVBM
given in Eqs.~29! and ~30!. Throughout, we use a two-loo
evolvedas , with 5 flavors. We also usem5M in all numeri-
cal calculations.

We will always present both the LO and NLO results f
the asymmetries given. We use NLO parton distributio
polarized and unpolarized, in all asymmetries, however. T
reason, as discussed in Sec. VII, is that the LO parton di
butions possess a process dependence of orderas , while the
NLO ones are process dependent only at orderas

2 . There-
fore, it is in general not meaningful to use LO parton dist
butions in making predictions for processes with differe
structure from the one where they were determined, in
polarized case, DIS. In this way, our LO and NLO asymm
tries are closer to the actual first two terms in the ‘‘a
orders’’ expansion of the asymmetry inas and the difference
in the LO and NLO predictions meaningfully measures
effect of the higher order corrections~HOCs!. Finally, if one
uses the LO polarized distributions determined from D
one would also have to use LO unpolarized distributio
determined entirely from DIS as well, for consistency.

In order to understand the qualitative features of the
merical results, inpp collisions, it is instructive to examine
which values ofx are being probed in the parton distrib
tions for a givenM . We will consider the leading orde
contributions for simplicity. From Eq.~18!, we see that
ds/dM involves an integration overxF(5xF0), equivalent
to a single integration overxa ~or xb!, both constrained by
Eqs. ~19! with w51. ds/dMdxF can be obtained from Eq
~23!, though, and involves no integration. Numerically, it
found to generally peak atxF.0. This implies that dominan
contributions come from the regionxa.xb.At. The peak is
not very sharp though, and so this is somewhat of an
proximation. Nonetheless, this feature holds for the ener
considered here and becomes more pronounced with
creasingt. The basic reason is that atxa5xb5At there is an
equal contribution coming from theqq̄ andq̄q subprocesses
As one moves away fromxF50, one of the contributions
becomes smaller since theq̄ distribution is being evaluated a
larger x. This is somewhat compensated by the other te
getting larger, especially at largert. Still, the net effect is a
smaller contribution asxF moves away from 0. As we go th
lower t, the fact that the peak is more pronounced is not
surprising due to the 1/(xa1xb) factor in ds/dMdxF ,
s
nt
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,
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which is not present in the rapidity differential cross sectio
The rapidity differential cross sections generally peak at
near zero rapidity (xa5xb) as well, although the peak ma
be rather broad.xF is more physical though, since it is sim
ply xa2xb at leading order~i.e. it is linear in xa and xb
unlike the rapidity!. Hence, in what follows, including afte
QCD corrections, we will assume that the qualitative featu
of the numerical results can be roughly described by tak
xa.xb.At. Of course, all figures are obtained using t
exact expressions only, since the approximation does
give quantitatively accurate predictions. We will also use
shorthand notation

qi ,g[ f u
qi ,g/p

~x,m2!, Dqi ,Dg[ f l
qi ,g/p

~x,m2!,
~146!

with x.At. Also,

smn[dsmn
pp,F1B/dM, ~147!

wheresmn
F1B was defined in Eq.~12! as being the usual lep

tonic integrated cross section.
Consider the double-spin asymmetry

All [
1

P AP B

s l l

suu
. ~148!

With the above-mentioned assumptions,All is roughly given
by

All .2
~4/9!DuDū1~1/9!DdDd̄1~1/9!DsD s̄

~4/9!uū1~1/9!dd̄1~1/9!s s̄
.

~149!

Because of the extra factor of 4 and the relative largenes
theuv andDuv distributions, the cross section and asymm
try are mostly dominated by the up quarks.

The polarized valence distributions are reasonably w
constrained over a large range ofx from polarized DIS. The
polarized sea quark distributions, however, are only mod
ately constrained at smallerx, where their contribution in
DIS is non-negligible. At moderate and largex, there is no
constraint experimentally on the polarized sea quark dis
butions, as they are vanishingly small compared to the
lence ones.

Most models, however, assume the behavior

uDqvu/qv ——→
x→1

1, uDqvu/qv ——→
x→0

0, ~150!

which appears to be consistent with the DIS data. The re
is that the asymmetries, and the distinction between the v
ous polarized sets, will be largest at larget ~i.e. largex!
where the cross sections are small. Conversely, where
cross sections are large~small t! we expect small asymme
tries if the polarized sea quark distributions are small at l
x, as all the sets assume.

Figure 1~a! gives the~virtual photon dominated! unpolar-
ized Drell-Yan cross section,ds/dM, at AS5100 GeV,
versusM for pp collisions relevant to RHIC. Here, we in
clude only one type of lepton pair~i.e. m1m2!. Throughout,
we present the leading order, next-to-leading order withqq̄
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contributions only, and full next-to-leading order predictio
for all cross sections and asymmetries. This means that
the asymmetries, the numerators and denominators
treated in the same way with regard to which corrections
included. Here and throughout, we note that theqq̄ correc-
tions are positive and large. Theqg subprocess makes
small negative contribution though. This highlights the fa
that one cannot think of theqg subprocess as being phys
cally separate from theqq̄ subprocess. They are both relat
via the renormalization of the quark distributions. We w
now investigate this issue thoroughly.

The negativity of theqg contribution also holds in the
MS« scheme. This will~slightly! simplify the process of un-
derstanding the origin of the negativeqg contribution. The
analytical result for the subprocess cross section is give
Eq. ~132!. Since, when usingMS« factorization, the scheme
dependent part of the subprocess cross section is zero
since kmn

qg,F1B(w).0 and m25M2 here, the only negative
contribution comes from the term;DuPqg

4 (w)ln(12w).
From Eqs.~78!, ~87!, ~88!, ~92! we see that this term aros
from (12w)22«DuPqg

4 (w)/« and is therefore of collinea
origin. This means that such terms could be factorized
the renormalization of the quark distributions, but wou
most likely lead to unphysical distributions violating some
the conservation rules mentioned in Sec. VII. So we see
plicitly that the issue of the negativity of theqg subprocess

FIG. 1. ~a! The cross section,ds/dM, versusM , for l 1l 2

production in pp collisions atAS5100 GeV; ~b! corresponding
double-spin asymmetry,All , for various sets of polarized parto
distributions. Details given in text.
or
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is intimately related to the issue of the renormalization of
quark distribution, which in turn connects theqq̄ and qg
subprocesses.

The fact that the netqg contribution is negative tells us
something about which regions of thew integration are giv-
ing dominant contributions. In order that theqg contribution
be negative, we see from Eq.~132! that we must satisfy

DuPqg
4 ~w!@2 ln~12w!2 ln w#1

~12w!

4
~113w!,0

~151!

~again working in theMS« scheme for simplicity!. This is
satisfied for

w..572022. ~152!

Since thew integration includesw51, we expect large con
tributions from the term; ln(12w) from w near 1. In light of
relation ~152!, we can see clearly why the corrections a
negative.

The expected yearly integrated RHICpp luminosity at
AS5100 GeV isL5160 pb21 ~assuming it is linear inAS
down to this energy!. This means that the statistics will b
quite poor beyondM520 GeV, concerning asymmetry mea
surements, whose error goes like@see Eqs.~20!#

DAmn5A12Amn
2

N

1

Sm
ASn

B .
1

AN

1

Sm
ASn

B , Amn[
smn

suu

1

Sm
ASn

B ,

~153!

where the approximate equality holds forAmn not too large.
HereN is the number of events. Assuming 1 GeV binnin
this means that forM.5 GeV, DAll ..4%/P AP B. Unfortu-
nately, this is a rather low mass scale where the parton m
may not work well. ForM.10 GeV, DAll .1.8%/P AP B.
At low M (&10 GeV), one also has to be careful of res
nance backgrounds. Experimental cuts will make the err
slightly larger. On the other hand, with two independent e
periments~at the PHENIX and STAR detectors!, the com-
bined asymmetry measurements should have roughly the
rors given here. A more detailed error analysis is beyond
scope of this paper.

Figure 1~b! gives the correspondingAll . The behavior is
exactly as expected from the previous arguments. It the
mass region, where the statistics are good,All is of the order
1–2%. There is also little distinction between the vario
sets. This is a result of the common assumptions

uDūu/ū!1, Dū,0 ~at small x!. ~154!

There is certainly more freedom inDq̄ than is manifest
among the various sets. The DIS constraints onDq̄ are rather
weak and it will be interesting and important to see whet
or not the low mass Drell-Yan asymmetry is as small~and
positive! as it is predicted to be.

It is also of interest to study the effect of the QCD co
rections onAll . From Fig. 1~b!, we observe good stability in
theqq̄ contribution in general. This is not unexpected, taki
into account helicity conservation. For the GRSV and GS
sets,Dg is positive and sizable. For the GSC set,Dg is
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6682 57B. KAMAL
positive at smallx, but negative and small at largex. Hence,
the gluonic contribution is small and uninteresting in gene
for the GSC set. Therefore, we study throughout the gluo
contributions~and features in general! only for the GRSV
and GSA sets. We notice that the gluonic contribution toAll
is always positive. The gluonic contributions tos l l andsuu
are dominated by theug subprocess. Since bothDu andDg
are positive, the essential difference between the sign of
gluonic contribution tos l l and suu is that arising from the
sign of the respective subprocess cross sections. The
important difference betweenŝ l l

qg and ŝuu
qg is the difference

in the overall factors@which are proportional to the respe
tive Born terms: see Eqs.~73!–~75!#. There is a relative mi-
nus in the overall factors forŝuu

qg and ŝ l l
qg .

More precisely, for the correction,ŝ l l
qg , to be positive, we

must satisfy relation~151! with DuPqg
4 (w) replaced by

D l Pqg
4 (w). It is satisfied for

w,.208233, w..652396. ~155!

Using the same logic as before, dominant contributions w
come from nearw51, where the corrections are positiv
Hence the corrections tos l l will be positive. Theqg correc-
tions tos l l are relatively larger then those tosuu since, for
typical x andm2,

uDg/Dq̄u.g/q̄, ~156!

in the sets considered. Hence theqg subprocess typically
weighs in more heavily versus theqq̄ subprocess ins l l than
in suu . Thus we can clearly understand the sizable and p
tive qg corrections toAll . This rationale also applies to th
corrections toAll in Z- andW6-boson production.

Figures 2~a! and 2~b! show the corresponding cross se
tions and asymmetries atAS5200 GeV. All the features are
the same. The luminosity is doubled and the unpolari
cross sections are larger for the sameM ~due to the smaller
x, where the sea quark distributions are large!. The asymme-
tries are somewhat smaller though. Hence the statistical
nificance (DAll /All ) is comparable. The main difference
that we probe lowerx than atAS5100 GeV. Running at
more than one energy is definitely an advantage in that
covers a larger range ofx andm2, compared with only run-
ning at one energy. This also allows some degree of cr
checking via perturbative evolution and thus allows detect
of various types of systematic errors. The net result is low
overall errors on the polarized parton distributions so de
mined.

X. Z-BOSON PRODUCTION AT RHIC

Z-boson production at RHIC is quite useful since it allow
us to measure the polarized parton distributions at relativ
large x. Also, the parton distributions enter as a differe
linear combination in theZ double-spin asymmetries than fo
production by virtual photons. This is helpful for disenta
gling the various contributions. One can also make use
parity violation to consider additional asymmetries whi
vanish for virtual photon production. The major limitation
the event rate. Certain asymmetries will be able to somew
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overcome this limitation, however.
Figure 3~a! shows the unpolarized cross section,ds/dM

for 5<M<125 GeV atAS5500 GeV. Again, we conside
production of only one type of lepton pair~i.e. m1m2!. The
QCD corrections behave analogously to the virtual pho
case. Using the expected yearly integrated luminosity
800 pb21 and integrating the cross section between 80<M
<100 GeV gives approximately 8000m1m2 pairs. Hence
we can measure asymmetries with an uncertainty@see Eqs.
~20!, ~153!#

DAmn.
1 – 1.5%

Sm
ASn

B , ~157!

depending on the experimental cuts. Higher energy runn
would increase theZ event rate, but somewhat lower th
asymmetries, as will become clear.

The double-spin asymmetry in theZ-pole region goes
roughly like

All .2
(q~gaq

2 1gvq
2 !DqDq̄

(q~gaq
2 1gvq

2 !qq̄
, ~158!

evaluated nearx.At5.18. Putting in the appropriate cou
plings gives

All .2
.29DuDū1.37~DdDd̄1DsD s̄!

.29uū1.37~dd̄1s s̄!
. ~159!

FIG. 2. As in Fig. 1, except atAS5200 GeV.
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In general, forZ production, the GSA and GRSV se
correspond to two extreme solutions, with the GSC set ly
somewhere in between. So, as in the last section, we wil
to understand qualitatively only the GSA and GRSV pred
tions, since one can make a clear prediction for those se

FIG. 3. ~a! The cross section,ds/dM, versusM , for l 1l 2

production in pp collisions atAS5500 GeV; ~b! corresponding
double-spin asymmetry,All , for various sets of polarized parto
distributions. Lines as in Fig. 1.
r

g
ry
-
.

All sets assume an SU~3! symmetric polarized sea an
take a negative down valence and a positive up valence
tribution. For the GRSV set, the sea quark distributions
negative everywhere, while for the GSA set they are posit
at intermediate and largex and become negative only a
small x. Thus, for the GSA set,Dq̄.0 in the x range of
interest,x..18.

There will be some cancellation between the up- a
down-quark contributions, but since

Duv~ .18!

2Ddv~ .18!
.2.5– 4, ~160!

the u contribution will still be bigger. As a result of the
smallness of the polarized sea quark distributio
Dq.Dqv . Hence, we expect

All .0: GRSV, All ,0: GSA ~161!

in the Z-pole region.
Figure 3~b! presentsAll for 5<M<125 GeV. The HOCs

have the same behavior as for virtual photon production,
exactly the same reasons. As well, the sign ofAll predicted
in relations~161! is verified. There is roughly a 4% variatio
in All between the two extreme cases. This means that
can rule out one case or the other, but not much more. He
we must examine other asymmetries in order to do bette
would also be interesting to look atAll in the low mass
region, where the virtual photons dominate, due to the la
event rate. As mentioned in the previous section,All may
turn out to be larger than expected in that region.

Define the single-spin asymmetry as

Al[Aul5
1

P B

sul

suu
5Alu5

1

P A

s lu

suu
. ~162!

There is an overall minus relative to the definition often us
@44#, owing to Eqs.~14!, ~15!. This asymmetry is nonzero
due to the parity violatingZ vertices. It is approximately
given by
Al.
(q@2gaqgvq~qDq̄2q̄Dq!#

(q@~gaq
2 1gvq

2 !~2qq̄!#
5

gaugvuuvDū1gadgvddvDd̄

~gau
2 1gvu

2 !uū1~gad
2 1gvd

2 !~dd̄1s s̄!

2
gaugvuūDuv1gadgvdd̄Ddv

~gau
2 1gvu

2 !uū1~gad
2 1gvd

2 !~dd̄1s s̄!
.

.1uvDū1.17dvDd̄

.29uū1.37~dd̄1s s̄!
2

.1ūDuv1.17d̄Ddv

.29uū1.37~dd̄1s s̄!
, ~163!
t
ence

o-
ed

n-

set.
where we took (D)qsea(x)5(D)q̄(x) as is done in all the
sets considered. Noting that

d̄~ .18!

ū~ .18!
.2 ~164!

and taking into account relation~160!, we observe a rathe
large cancellation between theūDuv andd̄Ddv contributions
in the second term of Eq.~163!. The net effect is that the firs
and second terms become comparable in magnitude. H

Al is directly sensitive toDū andDd̄. Also, theDū andDd̄
contributions are comparable, unlike in virtual photon pr
duction. The second term is reasonably well constrain
from DIS, while the first term is almost completely unco
strained~except in maximum magnitude!. From the respec-
tive signs of the sea quark distributions, we expectAl to be
most positive for the GSA set and least so for the GRSV
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6684 57B. KAMAL
Figure 4~a! showsAl for 5<M<125 GeV. We observe
the predicted behavior. At smallM , Al vanishes as expecte
since the parity violatingZ contribution also vanishes. Th
peak is just above theZ-pole and there is a well measurab
separation between the various sets. So the sensitivity to
sea quark distributions has improved as compared toAll .

One can take advantage of having two polarized beam
improve the statistical significance of the parity violatin
asymmetry. Define the two-spin parity violating asymme
as

All
PV[

s~1,1 !2s~2,2 !

s~1,1 !1s~2,2 !
U
P A,B51

5
2~sul /P B1s lu /P A!

2~suu1s l l /P AP B!

~165!

.
2

P
sul

suu
for P A.P B[P, ~166!

where the last approximate equality holds sinces l l !suu as
s l l involves two polarized parton distributions and is th
relatively rather suppressed. We see explicitly thatAll

PV is
proportional to 1/P ~relative to experiment!, not 1/P2 as is
often assumed. In order to get an idea of the statistical e
on All

PV , we will make the simplifying assumption that, e
perimentally,P A5P B51. Then, the total number of even
is given by

FIG. 4. ~a! The single-spin asymmetry,Al , versusM , for l 1l 2

production in pp collisions atAS5500 GeV; ~b! corresponding
two-spin parity violating asymmetry,All

PV . Lines as in Fig. 1.
he

to

or

N05L
s~1,1 !1s~2,2 !

4
5L

suu1s l l

2
.L

suu

2
,

~167!

assuming equal running in all four polarization mode
Hence, the number of events is cut in half, but the asymm
try is doubled. So

DAll
PV

All
PV .

1

&

DAl

Al
. ~168!

This means that we gain roughly a factor of& in preci-
sion by looking atAll

PV . One could argue, of course, tha
there are twoAl : Aul and Alu . Then, one could combine
them to improve the errors. Theoretically, the two asymm
tries are equal, but experimentally they only approach e
other in the limit of infinite events. The problem is that the
are not independent measurements. Hence, one cannot
ply add theDAl in quadrature. If we defineĀl as being the
experimental average of the twoAl , a proper treatment o
the errors yields

DĀl

Āl

5
1

AN0
F12All

PV 2

All
PV 2 1

All
PV2Āl

All
PV G1/2

.
1

AN0
F12All

PV 2

All
PV 2 1

1

2G1/2

. ~169!

In the limit of smallAll
PV , DĀl /Āl→DAll

PV/All
PV , but in gen-

eral DĀl /Āl.DAll
PV/All

PV . Statistically, one therefore doe
best withAll

PV when two polarized beams are available,

thoughĀl is not much worse for typical experiments,Z pro-
duction in particular, where the fractional errors should
virtually identical in Āl and in All

PV . Of course, the above
analysis is only strictly valid in the limit of full beam polar
ization. Inclusion of partial beam polarization will no
change our conclusions, however, since we can always ‘‘p
tend’’ that the beams are fully polarized. Then we are m
suring the polarized parton distributions multiplied by t
corresponding beam polarizations, rather than just the di
butions themselves. When consideringxF ~or rapidity! dif-
ferential cross sections,Al is the quantity of interest@44#
since it is more directly related to the ratio of the polarized
unpolarized parton distributions.

Figure 4~b! gives All
PV for 5<M<125 GeV. It has ex-

actly the expected behavior. SinceDAll
PV.(1.5;2%)/P, we

can clearly distinguish between the possible solutions,
hence they are quite sensitive to bothDū and Dd̄ in the
regionx..18.

XI. W6-BOSON PRODUCTION AT RHIC

It is important to determine the intermediate- and largex
behavior of the antiquark distributions at highm2 since this
~along with the large-x gluonic behavior! influences the be-
havior of the antiquark distributions in the limitx→1 at
lower m2, relevant to deep-inelastic scattering. This is b
cause when one evolves from a low energy scale to a h
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energy scale, the large-x behavior influences the evolution a
lower x, and vice versa. UsingW6 production at RHIC, we
can gain insight into thex→1 behavior of the antiquark
distributions, where other experiments~such as deep
inelastic scattering! will have little or no sensitivity. This
statement applies equally to the polarized and unpolar
antiquark distributions in the proton.

W6 production at RHIC is ideally suited for this purpos
because of the high event rate, resulting from RHIC’s h
luminosity, and because of the flavor specificity of the cro
sections. In Figs. 5~a! and 5~b!, respectively, we plot the
W1→ l 1n l and W2→ l 2n̄ l production cross sections fo
200<AS<700 GeV and for decay into one type of lepto
~i.e. muons!. Since one cannot measureM on an event by
event basis, we have integrated over it. The HOCs have
same structure as forg* and Z production. At this point
though, it is instructive to look at the variation of the QC
corrections withAS. We understand the origin of the neg
tive qg contribution, from the discussion in Sec. IX. The fa
that the relative magnitude of theqg contribution increases
with AS is understood to be a consequence of the increa
phase space in the initial state, reflected in a larger inte
tion region overxa and xb ~or w!. What we are really ob-
serving is the effect of varyingt, sinceM.MW for all AS.

One normally thinks of the large QCD corrections as a
ing mostly from the term;p2 in the qq̄ subprocess, which
comes from the virtual corrections. The rationale is that

FIG. 5. ~a! The total cross section forW1(→ l 1n l) production,
versusAS, in pp collisions; ~b! corresponding cross section fo

W2(→ l 2n̄ l) production. Lines as in Fig. 1.
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the other terms are of order one and will tend to larg
cancel among themselves. Clearly, things are somew
more subtle than that though, since the term;27 in Eq.
~71! makes the finite virtual corrections small and negati
Also, the corrections to theqq̄ subprocess clearly increas
with decreasingAS ~i.e. increasingt!. In order for the net
correction to be positive, there must be a large, positive c
tribution arising from theqq̄ bremsstrahlung. Such a larg
term is indeed present in Eq.~131!, namely, the term
;24(11w)ln(12w) which gives a large, positive contribu
tion from the integration region nearw51. There is also a
smaller term;4 ln2(12w1)d(12w) arising from the ‘‘1’’-
distribution term. Ast increases, these terms make a larg
contribution relative to the other, potentially negativ
bremsstrahlung contributions. The other term arising fr
the ‘‘1’’-distribution could give rise to sizable positive cor
rections as well, but its exact relative magnitude depends
the details of the parton distributions. In the above pictu
the behavior of the corrections is well understood.

Considering the decay channel

W6→m6nhm , ~170!

for AS5500 GeV, one predicts roughly 105 000W1(m1)
and 27 000W2(m2) events. Not taking into account the de
tails of the cuts, this corresponds roughly to an error
~double- and single-spin! asymmetries of

DAmn
W1

.
.3%

Sm
ASn

B , DAmn
W2

.
.6%

Sm
ASn

B . ~171!

With such large rates atAS5500 GeV, it is not unreason
able to consider going to lowerAS as a way of probing
largerx. In fact, the whole energy region

250<AS<700 GeV, ~172!

is interesting. Experimentally, the higher energies may
difficult to access. For the case of greatest experimental
evance~500 GeV!, we are most sensitive tox..16.

The double-spin asymmetries adopt a simple form

All
W1

.2
DuDd̄

ud̄
, All

W2
.2

DūDd

ūd
, ~173!

so thatAll
W1

is sensitive toDd̄ andAll
W2

is sensitive toDū.
From the signs of the polarized antiquark distributions
the respective sets, we expect

GSA: All
W1

,0, All
W2

.0,

GRSV: All
W1

.0, All
W2

,0. ~174!

All
W1

and All
W2

are shown in Figs. 6~a! and 6~b!, respec-
tively. The signs are as expected. We also see thatuAll u in-
creases asAS decreases~i.e. x increases!, which is a conse-
quence of relations~150!. This is a general trend which
makes low energy measurements feasible. With high pr
sionAll measurements possible atAS5500 GeV, there is no
problem in disentanglingDū andDd̄ nearx5.16.
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6686 57B. KAMAL
For All
W1

, the HOCs have the same structure asAll
g* ,Z ,

for the same reasons. ForAll
W2

, the qg corrections have
opposite sign since it is now thedg subprocess which enters
Another interesting feature of this and other asymmetrie
W6 production is that the effect of the HOCs is compara
to the expected uncertainty in their measurement. Henc
complete analysis must make use of the QCD correction
order not to waste the good statistics.

The W1 single-spin asymmetry is roughly

Al
W1

.
uDd̄

2ud̄
2

d̄Du

2ud̄
5

Dd̄

2d̄
2

Du

2u
,0. ~175!

The second term is dominant over the first, but the first te
does allow a distinction between sets. We expect, base
the signs of the variousDd̄,

uAl
W1

~GRSV!u.uAl
W1

~GSA!u. ~176!

The W2 single spin asymmetry is approximately

Al
W2

.
dDū

2dū
2

ūDd

2dū
5

Dū

2ū
2

Dd

2d
.0. ~177!

FIG. 6. ~a! The double-spin asymmetry,All , for W1(→ l 1n l)
production inpp collisions, versusAS; ~b! corresponding asymme

try for W2(→ l 2n̄ l) production. Lines as in Fig. 1.
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e
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Now the two terms are more comparable in magnitude, si
ū,d̄ at largex and all the sets assumeDū5Dd̄. Thus, the
magnitudes ofDū andDd are important as is the sign ofDū.
In this case, we expect

Al
W2

~GSA!.Al
W2

~GRSV!, ~178!

since there is a cancellation in the GRSV case. In the G
case, there is an enhancement rather than a cancellation
we expect large asymmetries at smallAS, wherex is large.

Figures 7~a! and 7~b! presentAl
W1

andAl
W2

, respectively.
We see that the behavior is exactly as expected. In all ca
the distinction between the various sets is straightforwa

more so forAl
W2

, however. ForAl
W1

, knowledge of the
HOCs is particularly important for this separation, especia

at lowerAS. ForAl
W2

, we probeDū in a very direct fashion.
The asymmetries are large throughout. They are roug
constant for the GRSV set, but increase in magnitude in
GS case as we go to lower energies, allowing a precise
termination ofDū over a wide range ofx. Of course, no
single measurement should be expected to determine
specific parton distribution exactly. One must fit all the da
including the DIS data.

Figures 8~a! and 8~b! give All
PV for W1 andW2 produc-

tion, respectively. We notice again roughly a factor of 2 e
hancement overAl , except nearAll

PV51, where we are of
course constrained byAll

PV<1. Already, precisionAl mea-

FIG. 7. As in Fig. 6, except here the single-spin asymmetry,Al ,
is plotted.
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surements were possible, and soAll
PV , with the extra& in

precision, can pin down rather tightly the allowed sets
parton distributions.

Z and W6 production at RHIC has been previously e
amined in LO as a tool for pinning down the polarized part
distributions in@44,45#. In those studies~Z andW6! rapidity
differential asymmetries were considered, which are qu
useful in pinning down thex-dependence of the parton di
tributions. The general conclusions are the same. Also, tr
verse momentum distributions forZ and W6 production at
RHIC were studied using Monte Carlo methods which s
up certain bremsstrahlung graphs in@46#. This observable is
known to be sensitive to the polarized gluon distribution.

Another interesting issue is the ratioū/d̄ at largex and
m2, which is unrelated to spin physics. Knowledge of t
ū/d̄ ratio at largex andm2 gives information on that ratio a
even largerx at lowerm2, where there is very little experi
mental information. This was discussed at the beginning
this section. DIS is insensitive to the sea quarks at largex,
since they are masked by the valence quark distributions

From the experimentally measured violation@47# of the
Gottfried sum rule@48#, we can conclude thatū(x)Þd̄(x)
for all x. Maximal violation of SU~2! flavor symmetry is
usually taken to occur at largerx, where RHIC is sensitive
A typical assumption forx ~and m2! accessible to RHIC in
W6 production isū/d̄..5 @41#. This is based on the Pau
exclusion principle and explaining the Gottfried sum ru
violation. The idea is that since the relative number of v

FIG. 8. As in Fig. 6, except here the two-spin parity violatin
asymmetry,All

PV , is plotted.
f

e

s-

f

-

lence to sea quarks is increasing withx, the Pauli suppres-
sion effect will increase withx such that theū/d̄ ratio de-
creases as there are more up valence quarks than d
valence quarks, leading to greater suppression of the up
More recently, low energy fixed target Drell-Yan expe
ments at Fermilab have helped to disentangled̄ and ū at
lower m2.

The quantity of experimental interest~again considering
the muonic decay channel! is

RW[
s~W2!

s~W1!
.

dū

ud̄
, ~179!

in a crude approximation. Since thed andu contributions are
quite well known, we directly probeū/d̄. With .130 000
events, we can measureRW to high accuracy. At this level
we are again sensitive to the effect of the HOCs.

Figure 9 showsRW for 200<AS<700 GeV. Two sets are
considered. First, the MRSG set and second, the MRSG
with d̄ set equal toū. We see a clear separation between
two possibilities for allAS. This will therefore be a crucia
experiment for understanding theū/d̄ ratio. This probe, at
RHIC, has previously been studied in leading order and
same conclusions were drawn~see, for instance,@44,49#!.

XII. FORWARD-BACKWARD DRELL-YAN ASYMMETRY

As discussed in the Introduction, the principal purpose
performing a high precision measurement of the forwa
backward Drell-Yan asymmetry at Fermilab is to precise
determine sin2 uW. In order to accomplish this, it is necessa
to take into account the QCD corrections. We have seen
in the case of the spin dependent asymmetries inpp colli-
sions, theqg subprocess often destabilizes the asymme

FIG. 9. The ratio of theW2(→ l 2n̄ l) to W1(→ l 1n l) cross
sections,RW , versusAS, in pp collisions. Predictions are mad

using both the MRSG set and the MRSG set with thed̄ distribution

set equal to theū distribution. Lines as in Fig. 1.
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6688 57B. KAMAL
As we will see, for the forward-backward asymmetry, t
corrections arise predominantly from theqq̄ subprocess. The
explanation for this feature will be given in detail.

In Fig. 10~a!, we presentds/dM for l 1l 2 production in
pp̄ collisions atAS51.8 TeV. As usual, we include only
one type of lepton-pair~i.e. m1m2 or e1e2!. Also, as in the
previous numerical calculations, we use the MRSG@41# un-
polarized parton distributions in calculating physical cro
sections. The peak in the cross section is quite a bit la
than at RHIC due to the higher energy~i.e. smallerx! and the
valence-valence contributions. Here, and throughout, we
m5M . The effect of varyingm will be discussed later in this
section.

Let us define the forward-backward~lepton! asymmetry
as

AFB5
dsuu

pp̄,F2B/dM

dsuu
pp̄,F1B/dM

, ~180!

wheresF6B were defined in Eq.~12!. We expect largeAFB

in pp̄ collisions in mass regions whereZ2g interference
dominates since the asymmetry arises, at the subpro
level, from axial-vector interference so that theZ contribu-
tion is pure axial and the asymmetry is unsuppressed. At
Z-pole, on the other hand, theZ vector couplings enter an
lead to a suppression, and so the asymmetry will be so

FIG. 10. ~a! The cross section,ds/dM, versusM , for l 1l 2

production in pp̄ collisions at AS51.8 TeV; ~b! correspond-
ing forward-backward lepton asymmetry,AFB , obtained using
sin2 uW5.2315. Lines as in Fig. 1.
s
er

se

ss

e

e-

what smaller there. We can see this explicitly by noting th
the leading order subprocess level asymmetry is proportio
to

AFB
qq̄ ;

galgaqgv lgvq

~gal
2 1gv l

2 !~gaq
2 1gvq

2 !
~181!

at theZ-pole. Hence there is an overall small factor

gv l52
1

2
~124 sin2 uW!, ~182!

which is sensitive to sin2 uW since sin2 uW..23, so that a
small fractional change in sin2 uW leads to a large fractiona
change inAFB .

Figure 10~b! shows the effect of the QCD corrections o
AFB . We see that, unlike the spin asymmetries~double-spin
in particular!, it is theqq̄ subprocess which accounts for th
dominant corrections. We understand this in the followi
way. From Fig. 10~a!, we see that the magnitude of theqg

correction tosF1B is rather small compared to that of theqq̄
subprocess. Thus, in order for theqg subprocess to make a
appreciable contribution toAFB , the corrections tosF2B

would have to be quite different from those tosF1B. Since
one has the same parton distributions in both cases, all
difference arises from the differences in the subprocess c
sections. As we have explained before, the dominant cor
tions come from the term; ln(12w) in Eq. ~132! which has
the same form in bothsF1B and sF2B. Consequently, the
qg corrections tosF6B amount to a multiplicative factor
which basically cancels in the ratio, in the mass region
interest. We also expect small corrections toAFB arising
from theqq̄ subprocess, for the same reasons. The ques
then is, why are theqq̄ corrections toAFB observable while
the qg corrections are not? The correction basically aris
from the differences in the hard bremsstrahlung contributi

to sF6B, kuu
qq̄,F6B , given in Eqs.~90!. We note that the dif-

ference vanishes in the limitw→1, relevant for the largeM
limit and for the dominant corrections tosF6B at lowerM .
This explains the vanishing of the corrections asM in-
creases. At intermediate and lowM , however, there will be
some contribution toAFB arising from smallerw, in which

case the term,kuu
qq̄,F2B52(11w)ln w, contributes negatively

~oppositely to the Born term! in a significant fashion, thus
accounting for the reduction in the magnitude ofAFB . Now,
for theqg subprocess, the differences in thekuu

qg,F6B all van-
ish in the limit w→1 and are small at smallerw, thereby
accounting for the relative smallness of theqg corrections to
AFB .

In the end, the corrections toAFB almost exactly amoun
to a multiplicative factor~less than 1! which is given in Fig.
11. We see that it increases with increasing mass, appro
ing unity. In theZ-pole region, it is;.975. This result is in
good agreement with the finding of@10#, considering that
they use a different definition ofAFB beyond LO and a more
involved approach, taking into account experimental cu
Also, in their approach, one could not understand prope
the structure of the QCD corrections, since the hard bre
strahlung is handled via Monte Carlo integration. The spik
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at M.89.3– 89.5 GeV simply reflect the fact thatAFB
NLO and

AFB
LO vanish at slightly different points and intersect jus

above the zero.
Figures 12~a! and 12~b! showAFB in theZ-pole region for

sin2 uW5.2315. The effect of the QCD corrections is show
as is the effect of changing sin2 uW by an amount of6.0005.
The magnitudes of the effects are comparable, but the c
acter is distinctly different. Changing sin2 uW amounts to a
shift in AFB rather than a multiplicative factor. As a resu
changing sin2 uW shifts somewhat the zero ofAFB . Since the
QCD corrections do not shift the zero appreciably, one s
that measuring precisely the zero inAFB may allow one to
get a good handle on sin2 uW without worrying about ne-
glected higher order QCD effects~and possibly other uncer
tainties such as choice of parton distributions!. How pre-
cisely this may be measured is left for a separate stu
Using the GRV NLO (MS) set@50# produced no appreciabl
change in the predictions. The CTEQ3M set@51#, on the
other hand, gave slightly different predictions for th
forward-backward asymmetry. Hence, closer agreement
tween the various sets is required before precision dete
nations of sin2 uW are possible.

The fact that the zero ofAFB does not change appreciab
under HOCs is understandable since the zero essen
arises from the zero in the subprocess cross section, whic
turn depends onM in a way independent of parton distribu
tion effects. Each subprocess, at NLO, is proportional t
Born term with a well-defined zero. So any shift in the ze
must arise predominantly from the fact that each quark fla
passes through zero at slightly different values ofM . The
NLO corrections, however, do not appreciably affect t
weighting of the various quark flavors relative to the L
weightings, since the same parton distributions enter. He
there is very little shift in the position of the zero.

We studied the effect of varyingm on AFB and it was
found to be negligible. This is not unexpected since them-
dependent part of the corrections has the same form insF2B

and sF1B. Hence, the major uncertainties are in the par
distributions, the neglected nonleading corrections, the Q
corrections and possible intrinsic transverse momentum

FIG. 11. The ratio,AFB
NLO/AFB

LO , using theAFB
(N)LO of Fig. 10~b!.
r-
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D
f-

fects. Normally, one would not consider the latter effects
such highm2, but as we are dealing with a very high prec
sion measurement, they should not be taken for grante
being negligible. There is also a pure QED contribution
AFB at ordera3, which was originally studied in connectio
with e1e2→m1m2 @52#.

With L5110 pb21, AFB for e1e2 pairs in theZ-pole
region was measured with a statistical error of roug
620% @53#. The maximum possibleL for Run II after sev-
eral years running is 100 fb21 @7#. We will take
Lmax570 fb21 as being a more realistic~if not optimistic!
value in determining the best possible measurement ofAFB .
Then, statistically, we expect to be able to measureAFB to
~at best! 6.8%. Hence, our statistical error goes down by
factor of roughly 25. The same statement applies to sin2 uW.
The statistical error on sin2 uW of 6.003 which is obtained
from 110 pb21 is reduced to6.00012 with 70 fb21. If one
takes into account two detectors and both muons and e
trons, in a best case scenario, we could multiply our num
of events by a factor of 4 and get6.00006 as an error on
sin2 uW. For a more realistic 30 fb21, we get an error of
6.00009.6.0001. If we do not combine the data from bo
detectors, muons and electrons, this goes up to6.0002. Ei-
ther way, the error is very small.

Of course, this error analysis is very naive and all t
systematic errors must be put under tight control for a re
istic ultrahigh precision measurement as discussed abov

FIG. 12. ~a! The AFB of Fig. 10~b!, but in the mass region, 80
<M<100 GeV. The effect of varying sin2 uW by 6.0005, on
AFB

NLO , is shown.~b! Same as~a!, but in the mass region, 88<M
<92 GeV.
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more detailed analysis is beyond the scope of this pa
Nonetheless, if any of the above scenarios could be reali
this would be the best sin2 uW determination available. In
fact, it would be better than the world average. Even w
lower luminosity running such as 10 fb21 and not combining
muons and electrons, the measurement is of the same p
sion as the SLAC measurement and hence could hel
resolve the SLAC-LEP discrepancy.

XIII. CONCLUSIONS

Complete analytical results for mass differential Dre
Yan type cross sections relevant to all possible initial lon
tudinal polarization states were calculated at the one-l
level in QCD. Interference between bosons of arbitrary ma
width and couplings was considered. For all observab
considered, the corresponding forward-backward cross
tions were determined. The results were presented in a f
valid for all consistent n-dimensional regularization
schemes. A survey of constraints on allowable factorizat
and regularization schemes was given. The mechanism
hind scale dependences was discussed in some detail a
a general fashion.

NLO predictions for all longitudinal Drell-Yan type pro
cesses at RHIC~W6, Z andg* ! were made using polarize
parton distributions which fit the recent DIS data. The HO
increased the cross sections substantially and had a m
impact on the asymmetries, while preserving the feature
the LO asymmetries. The exact sign and magnitude of
HOCs depended on the details of the polarized parton di
butions used, especially the sea and gluon distributio
Faced with either low rates or small asymmetries,g* pro-
duction did not appear very interesting at face value,
longitudinal polarization. On the other hand, if the agreem
between the various parton distributions at smallx is acci-
dental, rather than constrained,g* production at RHIC could
demonstrate that possibility by yielding an unpredict
asymmetry. TheZ-asymmetries were all quite sensitive
the sea quarks, the parity violating ones being the larg
with unexpected sensitivity due to a coincidental cancellat
o-

ys
-

r.
d,

h

ci-
to

-
p
s,
s
c-
m

n
e-
in

s
jor
of
e

ri-
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r
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st,
n

betweenu andd valence contributions. With large rates an
asymmetries,W6 production can directly measure the pola
ized sea and valence distributions as well as the unpolar
ū/d̄ ratio. Lower energy running could directly measureū

and d̄ at rather largex ~both polarized and unpolarized!.
NLO QCD predictions for the forward-backward lepto

asymmetry at Fermilab were made. The QCD correctio
amounted almost exactly to a multiplicative factor on t
asymmetry which was a function of the mass of the lep
pair produced. This function was found to be less than un
throughout and approached 1 with increasing invariant m
In theZ-pole region, the factor was roughly .975. It was th
observed that the zero in the asymmetry was quite sta
under QCD corrections. The zero was rather sensitive
sin2 uW, however. This suggested an alternate method
determining sin2 uW ~i.e. measuring precisely the zero!. The
details were left for a separate study, however. Based
expected luminosities for Fermilab’s Run II and previo
Fermilab determinations which used a standard algorithm
extracting sin2 uW from AFB , high precision sin2 uW mea-
surements were found to be possible at a level much be
than ~statistically!, or at worst competitive with, the bes
measurements presently available and should be able to
solve the SLAC-LEP discrepancy.
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