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Longitudinally polarized, unpolarized and forward-backward mass differential cross sections for Drell-Yan
lepton-pair production by arbitrary vector bosons are calculated in next-to-leading (biid®) QCD. Ana-
Iytical results are presented in a form valid for all consistemtimensional regularization schemes, with the
mass factorization scheme kept general. NLO predictions for all Drell-Yan type pro¢¥ése& and y*) at
BNL'’s Relativistic Heavy lon CollidefRHIC) are made using polarized parton distributions which fit the
recent deep-inelastic scattering data. These are examined as tools in the determination of the polarized parton
distributions and the unpolarizeT!d_ratio. NLO predictions for the forward-backward lepton asymmetry at
Fermilab are made and the precision determination f&jrfrom future runs is studied. In all the above, the
QCD corrections are found to be significant. An introductory discussion is given of various theoretical issues,
such as allowable factorization and regularization schemes, and scale depen&0%8-282(98)03511-5

PACS numbgs): 12.38.Bx, 13.75.Cs, 13.85.Qk, 13.8&

[. INTRODUCTION cation, we will study how lepton-pair production by, Z
and W= bosons can be used to extract the polarized parton
Two major areas of interest within the standard model arelistributions from forthcoming planned polarizgxp colli-
the determination of the polarized parton distributions of thesion experiments at BNL's Relativistic Heavy lon Collider
proton and higher precision determinations of the elec{RHIC), which is scheduled to start running in 1999. Longi-
troweak mixing angle, sif, as a constraint on the Higgs tudinally polarizedpp collisions with both beams polarized
boson mass and new physics. One process useful in explagire expected to begin in 2006] with sufficient muon cov-
ing both areas is Drell-Yan lepton-pair production. We shallerage to perform precision spin studies, in particular using
present a clear picture of the Drell-Yan process at one-loofV='s.
in QCD within a general framework which should be both  The QCD corrections are necessary in order to reduce the
instructive and useful. We will do so by considering the gen-process dependence of the parton distributions. This allows
eral interference between two vector bosons with arbitrarcomparison with and use of those distributions obtained in
mass, width and couplings, which decay into a generapolarized deep-inelastic scatterifiglS). This form of global
lepton-antilepton paifincluding neutrinosand are produced analysis will prove invaluable since, with the Drell-Yan pro-
via quark-antiquark fusiofione of the(antjquarks may of Cess, we are sensitive to sea-quark distributions, which are
course arise from an initial state glupin this way, we may currently almost totally unconstrained from DIS. We can
consider possible new physics contributions, suchZas make use of the DIS determinations of the polarized valence

bosons and four-fermion interactions, by appropriate choicdistributions, however, since we work consistently at NLO in
of couplings, etc. QCD. Eventually RHIC will be able to improve those va-

The emphasis here will be on presenting complete analytil-ence determinations due to the increased flavor separation in

cal results in a form valid for all consistentdimensional VW_Production. . .
regularization schemes and within a general mass factoriza- ~Nother use of the Drell-Yan process at RHIC is a preci-
tion framework. In addition, we will consider all possible sion determination of the unpolarizedd ratio at fairly large
longitudinal polarization states of the initial hadrons. Massx and at very high energy scales where other experiments fall
differential cross sections and asymmetries will be presenteghort. This can provide information on the limit—1 at
and the effect of the next-to-leading ordéiLO) subpro- lower energy scales, via perturbative evolution. Similar state-
cesses will be highlighted and explained pedagogically. Wénents apply to the polarized parton distributions with regard
will also discuss various constraints on allowed regularizato the largex sensitivity. All predictions will lie within the
tion and factorization schemes and describe the origin of thenergy range 100 Ge¥\/s,, <700 GeV, although RHIC,
scale dependence of the one-loop corrected predictions in&s currently envisioned, may not be able to run much above
general fashion. 500 GeV.

The one-loop QCD corrections to the longitudinally po- The Drell-Yan process also provides a useful way of ob-
larized Drell-Yan process have been studied in several paaining sirf 4. One may ask why we would try to measure
pers[1-5] using various regularization prescriptioffier the ~ sir? 6, in hadron-hadron collisions when good measure-
vs) and factorization schemes while considering productiorments exist inZ production frome*e™ annihilation at the
by specific bosons. Here, we keep the formalism completeNCERN e*e™ collider LEP and SLAC. The main reason is
general. Results are kept in a simple form by consideringhat these measurements are nearly complete. Future SLAC
explicitly only mass differential cross sections. As an appli-measurements will improve the earlier SLAC value, but a
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large discrepancy with the LEP measurement presently exists W
and should not be expected to vanish. Thus, what is needed APL A TB(P2 he)=1(Ps) T 1(Pa) X, @
is an independent high precision measure of gjp. With . WhereX,, \g denote chiralities|| represents a lepton pair
various high luminosity scenarios planned for Fermilab’s nd X is an arbitrary hadronic final state. We have the fol-
Run 1l [7], such a high precision measurement is indeeria o . y ) :
possible. This is because the forward-backward Iep%on asy owing invariant observables:
metry (in the lepton-pair rest framas sensitive to sifi4. _ 2 2 2 — M2
In a best case scenario, one could surpass the préseaht S=(PitP2)% MT=q%  7=MYS, @
future) average from LEP and SLAC combined. In a worsthere
case scenario, a measurement at the same level of precision
as the present SLAC measurement should be attainable. q=pz+Pa. (3)
Various studieg8,7] have been done to show how such a
high precision determination would significantly constrain Denoting they-axis as the direction of motion of hadray
the allowed mass region for the standard model Higgs bosofye may also define, in the c.m. 8f andB, the observable
and provide a probe of new physics.

QCD corrections to the charge asymmetry of lepton pairs 24,

produced inpp collisions have previously been investigated Xp= \/§ (4)
[9]. Unfortunately, the physical observables considered are

not the ones used in determining %, and there does not
appear to be any way to straightforwardly convert them intot
a useful form. Very recently, a paper appedred| perform-

The general 2-2 [2— 3] parton subprocess contributing
o Eq. (1) may be written as

ing detailed numerical studies of the QED and QCD correc- a(py. 1) +b(Pyhp)—B* (q)+[c(K)]

tions to the forward-backward Drell-Yan asymmetry pip ' '

and pp collisions. There, Monte Carlo methods were used —>I(p3)+l_(p4)+[c(k)], (5)
and similar results were obtained, even though a different

definition of the forward-backward asymmetry beyond leadyyhereB, = y,z,W* andl=1",»,; I =I*,7, (in the standard

ing order was used, apparently in order to minimize the QCD . B o
corrections. As well, recently, soft gluon resummation ef-mode). We must cop_?|der the C&S‘*Fq’ b_(ﬂ’ 07_9’
fects on the lepton angular distribution from the decag'sf a=4d, b=0q, c=g; a=q, b=g, c=q; a=g, b=q, c=d.

produced at the Fermilab Tevatron were briefly considered in  Using the parton model relations

[11]. Here, complete analytical results are presented for the

mass differential cross sections and these do not appear else- P1=XaP1, P2=X,P2, (6
where to our best knowledge. Also, hadron polarization ef-

fects as well as regularization and factorization scheme de¥
pendences are presented explicitly, which is not done M2 M2 -
elsewhere. One also sees quite clearly the structure of the s=(p, +p,)2=x.x,S, w=—= = ,
QCD caorrections and the origin of that structure. S SXXp XaXp

The paper is organized as follows. In Sec. Il we present
our general formalism and describe the observables beinghere we took all external momenta to be massless, as usual.

considered. In Sec. Ill we discuss various features of dimenfhe parton momentum distributions are given by
sional regularization and dimensional reduction. In Secs. in ) i )

IV—VI we compute the(singula) subprocess cross sections. Fio (X, 19 =xf(x,u%), k=ul, (8)
In Sec. VIl we perform the factorization of the mass singu-
larities and discuss constraints on allowable regularizatioN'Nere
and factorization schemes. We also discuss how to convert
subprocess cross sections and parton distributions from one
scheme to another. In Sec. VIl we present the final analyti-
cal results and discuss the scale dependence issue in a gen-
eral fashion. In Secs. IX—XI we present numerical results iy 2y=fill g2y —fil e

relevant to RHIC and examine the sensitivity to the polarized RO =1 7)1 5 (6. (10
parton distributions as well as the unpolariag/d ratio. In  Heref lk/iI/M(Xi ,1?) is the probability of finding partonwith
Sec. Xl we present the forward-backward Drell-Yan asym-chjrality \; and momentum fractiox; in hadron! having
metry _relevant. for the F_erm|lab Tevatron a_nd dlspuss th"chirality \,, evaluated at renormalization scalg.
extraction of sif 6, from its measurement. Finally, in Sec. Introduce

Xl we present our conclusions and summarize the work.

Throughout, we have tried to avoid givirmjandarddiscus- z=cos §*, (12)
sions of general issues in order to present new and more

general perspectives which should be useful to non-expertsvhere 6* is the angle betweep; and P, (or, equivalently,

p,) in the Il rest frame. Then we may define

e may define the subprocess invariants

)

B u®) =t o pd) D 6 u®) (9)

IIl. GENERAL PROCESS AND FORMALISM

The Drell-Yan process with initial hadroms, B of defi- oFB= 1dzd—0i fo dzd—a. (12
nite chirality is dz™ )1 dz
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Henceot "B has the interpretation as the usual leptonic in-

tegrated cross section. We calf B the forward-backward oir= —[Uab(+ +)—o?(+,-)
cross section.
Let 0°(\,,\p) denote the cross section for colliding par- + 02—, +)—a?%(—,—)], (15)
tons(or hadrons with some degree of polarizajian b hav- 1
ing chiralities (or beam polarization directions\,, \,. ab_ ~r abiy 4 y_ gabiyp _
Then there are only 4 combinations ®f, A, leading to oii = glo(+,H) =+, 7)

well-factorized parton model expressions, as may be  ab ab,
straightforwardly verified. All other observables may be ex- o= )+ o= 2] (16)
pressed in terms of these. They are The notation is straightforwardr2® denotes the cross sec-
tion whena has polarizatioom andb has polarizatiom. In
o_ab_ [O_ab(+ +)+0.ab(+ -) shorthand,
u=(A=+)+(\=-), I=A=+)-(A=-), (17
+0%(—,+)+0%(—,-)], (13

so thatu denotes unpolarized arlddenotes longitudinally
polarized. The factor 1/4 is required so thaf, has the in-

b_
o= [Uab(+’+)+(’ab(+'_) terpretation as the spin averaged cross section.
The parton model expression for the mass differential
(=, +)—a?(—, )], (14)  Drell-Yan cross section, for general beam polarization, is
|
dO_AB,FiB ~ ab,F+B
mn mn
—av = ShSh f dx, f dof 20k TR0, %) —qpi—
dx dw (‘Tab,FiB
= 5mSh 2 f o | PO F B u?) — g —
7'/Xa dM
1 dW 1 a_ab,FtB
_ B W alA 2\ b/B 2 mn
(SAS % _a- T)dXFOJWl W Xa+X F (Xal )Fn (XblM ) dM ’ (18)
|
where We will consider lepton-pair production by arbitrary
vector bosonsB;, having masseM;, widthsT'; and cou-
B T VXEo+47IWE Xeg plings to fermions given by
Xpo=Xa=™Xp, Wi=777 710 Xab™ 2 .
|Xeol ' . '
(19 iC}Y*(gyr— Gar¥s). (21)
ab js the subprocess cross section corresponding tq%q. )
and Hence we may write
S\=1, sl=P', 20 ~ *
! l 0 dganF=B > d ﬁwbnfa BB
whereP' is the degree of polarization of the beam of had- aM & dMm 22

ronsl. The only assumption made in the derivation of Eq.

(18) is that the degree of beam polarization is the same in .

both polarization directions. The same factors of beam poWhereais Bl? is the total interference contribution froB,
larization will always enter, regardless of the specific differ- B; (i.e. fori#]j it is the sum over the,j andj,i contribu-
ential cross section being considered. The experimental rQrons) ForM,I",ga— 0 we obtain the photon contribution so
sults(for the oy,)) will have to be divided by the appropriate that the argumentation is completely general. This formalism
factors of beam polarization in constructing asymmetries. Irapplies toZ and W= production and the Drell-Yan produc-
general, this is unavoidable since the beam polarization wiltion of any bosons whose coupling to fermions is given by
vary as a function of time for any given experiment. In nu-Eq. (21), provided there are no new contributing diagrams.
merical calculations taking evenly spaced integration pointShis includes non-standard mod&l andW=*' contributions.
(i.e. Simpson’s rulgthe third form of Eq.(18) is most con-  As well, we can include four-fermion interactions. Faf
venient becausg, andx, are integrated over symmetrically production, thec| will depend on both quark flavors at the
while the inner integral is over andda/dM contains func-  vertex via the appropriate Cabbibo-Kobayashi-Maskawa
tions singular in =w [i.e. 8(1—w), 1/(1-w),,...]. (CKM) matrix element.
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The normalization convention of our squared amplitudeghough, there is no physical motivation for using an anticom-
is easily inferred from the standard leading order partormuting ys in DREG, other than that it simplifies calcula-

model cross section expression: tions. More study is required in this area since recently two-
AB 5 loop transversity splitting functions have been calculated by
domn _ 1 S’,;Sn 2 Fa¥Ax_ n?)FB(x, , u?) three group$18-2( using an anticommutings. The trans-
dMdxedz M3 xtx, 45 M kT Ao verse case is somewhat more subtle than the longitudinal
case, however, due to the additional axis which enters. We
X .2>, M |§1ﬁ’?3i31 ’ (23)  do not consider transversity further in this work.

So, in general, the anticommuting: schem¢g 16] should
h only be used in situations where it is physically motivated.
where And in those situations, it should always be shown that the
ab=00.00. X=X (24) same results can be obtained using the HVBM scheme via
99.99.  Xe=Xro finite renormalizations of the parton distributions or by the
andlMI%ﬁ%_B, denotes the net interference between the amaddition of UV counterterms. The. a_bove re_normallzatlons
litude | ’ II ] B. and that involvi Thi d and UV counterterms should be uniqiie any given gauge
plitude invo vmg i and that involvings,; . |szcorresp9n S for some class of subprocesses. This is the approach we will
to the conventior,u(p,A)u(p,\)=p/2 for p=0, which  {q)16\y in this paper. All results are understood to refer to
we maintain for consistency witf]. . consistent schemes: those schemes which can be related to
As far as QCD corrections are concerned, we will Onlythe HVBM scheme as described above. Hence, we will al-

considerda/dM. In imposing (_exerlmental cuts, one restricts ways refer to the HVBM result as being the DREG result.
the phase space of the outgoing leptons. Since the QCD cor- More recently, ays scheme was introduce@1] which
rections effect the hadronic sector, the features of the correc- Y. ars

; - - duces many of the desirable features of the HVBM
tions should not be greatly influenced by the leptonic cuts. I{EPro
the limit of small cuts(i.e. good leptonic coveragehe ex- scheme, such as the correct Adler-Bell-JackiwBJ)

pressions in this paper become exact. We will not addres n_omaly, _a_nd claims ma_themati_cal consistency With(.)Ut vio-
further the issue of leptonic cuts in what follows. ating helicity conservation. This scheme usegeading

point (a specific leftmost-matrix in the tracgand maintains

an anticommutingys, which requires non-cyclicity of the

ll. n-DIMENSIONAL REGULARIZATION SCHEME traces. What remains, therefore, is to show that this scheme
PECULIARITIES leads to process-independamtdimensional splitting func-

Since we will need to present the leading ortlad) cross  tions. This will be discussed below.
sections im (=4-2¢) dimensions in the next section, itis  Because of the tedious nature of the HVBM scheme, and

tion schemes at this point. We will consider regularization byward to first use DRED to calculate subprocess cross sec-

dimensional regularizatiotDREG) [12,13 and by dimen- ~tions and then present them in a form valid for all consistent
sional reductiofDRED) [14]. n-dimensional regularization schemes using the technique of

In [4], the details concerning DREG and DRED were [4]. The only drawback i+s that one has to qdd a UV counter-
summarized and will not be repeated here. The importanf€'m to the quarky(Z,W~) vertex when using DRED. For-
points will be discussed, however. Within DREG, there aretunately, this counterterm is well established and unambigu-

two commonly used schemes for dealing with thematrix ~ OUS. ) o
(ands~"*7 tensoj which arises in polarized processes. Inthe  The DRED result for a physical cross sectiorifarmally

't Hooft—Veltman—Breitenlohner—MaisofHVBM) scheme SPeaking defined as the result_obtaiped by contracting all
[12,15, all quantities are mathematically well-defined, butt€nsors, taking all traces in 4 dimensions and then perform-
the non-anticommutings leads to physical problems. These ing all phase space integralsrirdimensiongand adding any
necessitate finite renormalizations of the polarized partofi€cessary UV counterterpsWhen considering QCD and
distributions and UV counterternior non-QCD/QED ver- QED corrections, one need not actyally take the traces flrst.
tice as will be discussed throughout this paper. In theOne may work directly at the amplitude level for loop dia-
anticommutingys scheme[16], massless quark helicity is 9rams. For other theories, hpwever, like supersymmetry, the
conserved, but only at the expense of mathematical considl-definedness ofjf” for nonintegem<4 leads to an ambi-
tency when an odd number g£'s arise in the traces. Also, 9uity such that the results may depend on the order of op-
one needs to devise prescriptioii¥] for dealing with the  erations[22]. In the HVBM scheme 1§>4), g;” is defined
gvP tensor(arising from polarized gluonssince nothing  since there are an infinite number of integer dimensions with
other than the HVBM definition has been proven to be mathn>4. Hence we may continug,” to n>4 by simply using
ematically consistent in DREG. relations valid in integer dimensions, but take the continuous
Even when performing calculations where only an evenimit n—4 on the real axigor complex plangat the end of
number ofys's occur in the traces, one may wonder if the the calculation(i.e. after all divergences have been can-
result is meaningful in general, using an anticommutigg  celled, as if one compressed the infinite number of dimen-
For the case of longitudinal polarization, tlye is connected sions into a continuum fon>4. In practice, of course, one
with helicity, and we understand the need for helicity con-continues to non-integer from the beginning rather than at
servation on physical grounds. For processes such as tlike end. As there are a finite number of dimensions with
transverse Drell-Yan process, thgs also arises. Here, n<4, we cannot continug4” into the regionn<4. Hence,
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strictly speaking, we must first perform all contractions and PH(Z,S)EPﬁ(Z)—‘r—gPﬁ(Z), (25)
traces in 4 dimensions and then gortalimensions to per-

form the phase space integrals, since only scalar products ofherePi“j(z) is the usual 4-dimensional splitting function. In
vectors will remain, which are manifestly continuablerto DRED,

dimensions. In that wayg},” will never be contracted into o DRED. 4

traces containingys or with ¢#**?, which is where the am- P (z,6)=Pj(2). (26)
biguity could arise.

In order to presentdo2>F*B/dM in a form valid for all
consistentn-dimensional schemes, we must first give the P{}(z,s)EP{}'<(z,s)+5(1—z)Pi”J-'5(s), (27
general form of then-dimensional Altarelli-Parisj23] split- _
ting functions,Pjj(z), related to the probability of partopn and define
splitting into a collinear parton having momentum fraction _ _ _

z, plus an arbitrary final state carrying the rest of the mo- AuP=Pij e Py v AP =P =Py '(28)
mentum. The reason is that the regularization scheme depen-

dences arising from mass singularities are entirely containedhhere the+,— denote the respective chiralities.

in these functions, as was shown [#] (and references In DREG, the unpolarized one-loop splitting functions are
therein. Hence, we discuss them here. We may write given by[24]

We will also use the notation

3 1
Aupgq(Z)ZCF[ +—l—z+—5(1—z) » AuPgq(2)=Ce _(1_Z)+§6(1_Z) '

2
(1-2) 2
AP (D)= S(1-22427), AP (2)=2—
u qg(z)_z( z Z): u qg(Z)—Z Z,

2
Aupgq(z)ch[z—zn

-+ B, AR (=Y a1-2) (29
(1-2), z 2 ToTu g9 6 '

A Pgy(2)=2Nc

where 8,=%Nc— 5N and the usual convention of-2¢ (=n—2) gluon polarization states was used. In fact, the latter is
somewhat more than a convention, since it is justified on physical grounds.

Within DREG, we need only consider longitudinally polarized splitting functions determined in the HVYBM scheme since,
at present, it is the only established mathematically consistent scheme therein, which also leads to process-independent
n-dimensional splitting functions. At one-loop they are given by

1
4 _ 4 & —
APgy(2)=AuPeq(2), APgq(2)=Cg|3(1-2)+ 56(1—2) ,

APL(2)=2-112, APi(2)=—(1-2),

AP§(2)=Cr(2—2), AP:(2)=2Ce(1-2),

Bo Ne
4 _ & —
A|ng(2)—2Nc m—22+1 + ?5(1—2), A|ng(Z)—4Nc(l—Z)+ ?5(1—2),
(30)
|
as can be inferred fronf25]. regularization scheme in question, in the above case, HVBM.

Thesen-dimensional splitting functions were determined We investigated what happens in the schemg2af for the

by investigating the factorization properties of the NLO qg subprocess of the longitudinally polarized Drell-Yan pro-
squared amplitudes in various collinear limits for variouscess. For simplicity, we chose the coming from the po-
subprocesses. I[25] it was found that one always obtains a larized incoming quark as the reading point. We found that
Born term multiplied by the appropriatedimensional split- the wrong Born term arose, in the collinear limit where the
ting function in the limit where two partons are collinear, outgoing quark is collinear with the initial state gluon,
leading to a pole in a propagator. It is important that the Bormamely, that of HVBM rather than that ¢21]. The basic
term be exactly then-dimensional one appropriate to the reason is that the squared amplitude fordfgesubprocess in



6668 B. KAMAL 57

the scheme of21] is equivalent to the HVBM result, with M2

our choice of reading point. Hence, in the collinear limit, the Tif=4( p3ps+psp5— 79“ﬁ )

Born term @5 and n-dimensional splitting function

(A,ng) which arise correspond to the HVBM ones. Unfor- T§|B=4is“ﬁ’”p3ﬂp4y, (32

tunately, the Born term for thqasubprocess in the scheme
of [21] demands an anticommuting;: hence the result is

simply minus the unpolarized one. This is not true in . . .
HVBM, due to the non-anticommutings. Hence the Born physmal pre(j|ct|ons should _no't depenq on 't'. order by order
! S p as. We will show how this is explicitly satisfied at one-

terms are different in the two schemes and the behavior d .
: : : S ; oop in Sec. VIII.
the qg squared amplitude in the collinear limit is unphysical. ! . .
. . : : . .. Now define the integrated leptonic tensor as
This physical inconsistency is clearly unacceptable and it
will lead to process-dependentdimensional splitting func-

where the arbitrary mass scalg?® arises from the
n-dimensional coupling®— e?u?. Sinceu is arbitrary, the

tions. A different choice of reading point might rectify the EfF+BD”3

situation, but such an ambiguity is also unacceptable. Unfor- 1 5[( — )2]

tunately, the prescription ¢21] gives no unambiguous defi- L‘%ﬁ B = / p3 I o8
nition of what the reading point should be in all cases. There- + (2m)"=12p3 0 q?

fore some extension is in order before it can be applied in (33

practical QCD corrections to polarized processes. We will
not discuss the scheme [#1] in further detail.

The only subtlety associated with calculating m,ePi”j in
the HVBM scheme is that one must additionally perform an

integration over th& momenta(i.e. the components between LETg=k
4 andn dimensiong rather than simply taking a collinear

limit [4] as is done in anticommutings schemes and in the wherex now generalizes to
unpolarized case. One still obtains process independent split-

Here we omitted thd8B’ indices, and will often do so for
compactness. One fingi4]
a ap aB
9“q” gn g
(1—¢) e +—2 —(3—28)—2 , (39

ting functions since the collinear phase space structure is ~, wp® (9°)7° I'(1—&) (9,9, +Jada)
process independent. Even in some anticommujing- K=CC 3=z — 7= I'(1-2¢) (3—2¢)(1—2¢)°
schemeg17] one must resort to Sudakov kinematics in the (35)

collinear limit, making the process nontrivial. In that case, ) _
one must drop certain potentially finite terms®fs) which It is interesting to note that the corresponding DREG tensor,
only vanish after integration. in an anticommutingys scheme, is obtained by replacing
In what follows, we shall present tensors and squared an8“?—g;” . This gives
plitudes calculated using DRED. Then, using the method of anf
[4], we present the necessary one-loop subprocess cross sec- 2
tions in a form valid for all consistem-dimensional regu- q
larization schemes. By n-dimensional regularization . ) _ .
schemes,” we mean schemes in which all divergences ar8' course,T5f” is not defined in such a schemg, but it does
regularized by dimensional continuation. This excludes alf*Ot contribute here. In all schemes, the pag®q” does not
forms of off-shell and cutoff regularization schemes Whichcontnbu%a to the cross section, as follows from gauge invari-
wB .
also involve dimensional continuation to regularize some offNce.L¢% g is thus effectively a constant tensor. We none-

the divergences. The mass factorization scheme will be kepf€less keep all the terms for completeness. .
general. We may define the forward-backward integrated leptonic

tensor with respect to an arbitrary massless vegorn a
covariant fashion using

—gaf|. (36)

£g€rB,DREG= k(l—eg)

IV. LEADING ORDER CROSS SECTIONS

LEP zf Dps[ O(p-q/l2—p-
Unless otherwise stated, the expressions presented here FoBP™ Jryp Pl 6(p-al2=p-Ps)

are calculated using DRED. The unintegrated leptonic tensor

. ) * . —0(p-ps—p-q/2)]L*" 3
Lg? is defined as the product &ff andLf, , whereL§ is (P-Ps=p-a/2)] 37
the leading order amplitude consisting of a lepton pair at-
tached to bosoB at a vertex having index. It is given by = fFB(p)DpsL“ﬁ (39
Y : :_E‘?aﬂwgﬂqy’ 39
LBBr:TC|C|[(QU|9U|+ga|9a|)TfF P

where @ is the step function and
2 2\ —
— ., r” (@) ° I'(l-g) , ,
K:C|CI 25*28 77273 F(1_28) F(S)(galgyl+gvlgal)1
with (40

— (990 + 9,194) TSP, (31
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with
r(i-2e) (2,
F(e)= 4m dyly *(1-y)
—yl(1-y) f]=1+0(e). (41)

The most general tensor structure2ff® B(p) May be ob-
tained by noting that only the annsymmetnc part lof?
contributes. Henciﬁ,B(p) must be antisymmetric i,
and can only depend on the momemtaand g. Then one

It is easy to check that E¢37) leads to the usual defini-
tion of the forward-backward asymmetry, EG2), by work-
ing in the rest frame ofj. Choices of reference axes other
thanp, are of course possible, but usipg allows a straight-
forward, covariant treatment. Having performed the forward-
backward leptonic integration analytically greatly simplifies
the next-to-leading order calculation.

We may next define the subprocess hadronic tensor
Wab g through the subprocess squared Feynman amplitude
contribution fromB,B’ interference,

uses the usual projection methods, as was done to obtain Eq.

(34). We will use the notation
Bo=tiagy. | Po=[  Dpy w2
F-B —B(py)

Dfl —

2 ~1
|M|ab,BB’EDBB’LBB ab BB’(Z 98B'), (43

where

(M2=M3)(M?2—=M32,)+MgMg Tl

BB [(M2=M3)(M2—M3,)+MgMg Tglg 12+ [Mglg(M2—M35,)— Mg Tg (M?—M3)]?’

Fora=q, b=a the leading order hadronic tensor is

2e

af M ’ ’ ’ @ @
Wiq —mcch{(gquuq+ Jaqag) [ TIR (1= NiNo) +T5P(N,—

(44)

N2)1= (Gaq@iq T 9uqOa) [TTH (N1 = N2) + T3H(1—N1N2) 1},

(45)
where
M2
Tih=4| pips+pspl— 59|, Toi=—4ie®"py,p,,. (46)
Using Eqgs.(31) and(45) in Eq. (43) gives the LO result foa=q, bza
4epnpnd
2 1 M M 2
|M|anB/(Z):(2_5BB’)DBBf 24N CICI Cq q{(l )\l)\Z)[(gulgvl+galgal)(quguq+gaqgaq)(1+z )
+2(9a19;1* 90194 (9aqloq+ 9oa9ag) 21+ (N 2= N[ (9,191 + Fai9a) (Jaghg+ 9oqTag) (1+2°)

+2(galgzl;l+gvlgél)(qug;q"_gaqg;q)z]}- (47)

This reproduces the result (6] which includes the effect &’ bosons in the Drell-Yan process. We may express the above

in a covariant fashion using

z=(U?—1t3)/M?, 1+Z2%2=2(t>+u?)/M?,

t

(P1—P3)?=(p2—pa)?,

u=(p2—p3)?=(p1— P4 (48)

Defining

MEEB BB’ F+BypaB
Map e = f ngL abBB’ =L, Wab.es'

(49

we have, fora=q, b=q_and in leading order,

2
ngiB MgS,L\A CqCqk(2—&)[(9yqOuqt Jaqag) (1~ N1h2)
*+(9ag@uqt Gvadag) N2~ A1) (50)
and
F_B M 2

M 2 N C ¢ K[(gaqqu+qugaq)(1 )\1)\2)

+(gqu;q"_gaqgéq)()\z_)\l)]- (51)

where we used Eq$34) and(39), respectively, in Eq(49).
The correctness of this approa¢he. integrating over the
leptonic tensor first and then contracting the leptonic and
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hadronic tensojswas verified by contracting first and then larly, the Born term may be computed analogously in any
performing the leptonic integration. One obtains exactly thevalid n-dimensional regularization scheme. However, the

same result, im dimensions.

Born term always factors out of the singular parts, which

This is straightforwardly checked by noting that, in the cancel(after mass factorizatignHence, the scheme depen-

rest frame ofg,

po . L (@1 T(s f ,
p3 25—25 77_3—9 1"(1_28) w3,
(52)

F+B

where
f d2w3=f d6’1 Sin1728 glf d02 Sin728 02 (53)
0 0

and the#; represent the first two of the—2 angles ofp; in
n dimensiong27] and g, is taken to be the angle betweps
andp; (i.e. *). Since|M|? does not depend o6,

" P-2e) (1, 1tz
j wsHZWmf yy *(1-y)~%, y=——-

(54)

0

We simply make the substitutions
z=y—(1-y), 1+Z%=2-4y(1-y), (55)

in Eq. (47) and then integrate over.
The 2—2 phase space is

da_ab,FtB 3.
,BB’ 2ab
(;;—“M LO:W‘S(l‘w)JHBDm'M'miBB' (56)
327 _ .
=~ Des Mmngs: (2~ Jae) 5(1-w)
=X e(e)8(1-w). (57)

x has the form

M C4CLCIC/
abFxB, \_ o a~q~it
an,BB’(S) (2 5BB,)27TNC DBBV
XKog “Frne: (59

+- + . .
Here theK'BEl, P8 are leptonic factors given by

. 1
KlBBI’ B §(gu|9;|+ga|gél)

3 u% 7 T(l-e) 2—¢
X227 g% T(1-2e) (3—26)(1—26))'
(59

4g &

1*1-F-g_ L ) | w™ o m® T(l-e)
KBB’ - 4(ga|gv|+gvlga|)[2—28 EE 1"(1_28) F(S) .
(60)

The factors in the square brackets are equaltda?(¢) and

dence of the Born term cancels in the limit>0. This will
be demonstrated explicitly in the following sections.
The F2 are hadronic factors whose expressions are

FqEHB_ _FqEF+B:Fq_q,F+B_ _ Fq_q,F+B

uu,BB’ I,BB’ uu,BB’ I1,BB’
— ! !
_quguq+gaqgaq! (61)
qq.F+B_ _ ~qqF+B_ —qqF+B_ _ ~qq,F+B
FuI,BB’ - I:Iu,BB’ _FIU,BB' - I:uI,BB’
— ’ !
_gaqqu+qugaq (62)
and
qF-B_ _~qqF-B_ _ ~qq,F-B_ ~qq,F-B
Fuu,BB' - FII,BB’ - I:uu,BB’ _FII,BB’
— ! !
_gaqqu+qugaq! (63)

qF-B_ _~qqF-B_ _~qq,F-B_ ~qq,F-B
FuI,BB’ - I:Iu,BB’ - I:Iu,BB' _FuI,BB'

=0uq9sq+ Jaqaq- (64)

V. VIRTUAL CORRECTIONS

The string of gamma matrices,

Yy Y (9pq—Gaq¥s) Y Yu (65

arises in the calculation of the vertex grafthe massless
self-energies vanish im dimensiong In order to get the
correct form for the virtual corrections, we must satisfy the
relation

YV Y (Qoq=aq¥s) Y V=YY’ ¥ ¥ ¥u(Quq— gaqy%,e)

which holds for an anticommutings. The relation(66) is
necessitated by the fact that the QED Ward idenf2g]
between vertex and self-energy graphs holds for the vector
part. Therefore, we must be able to anticommute theut
of the vertex correction so that the axial-vector part factors
correctly and the identity is trivially satisfied. In non-
anticommutingys schemes, this relation would be violated
by terms of O(e) (giving rise to a finite piece when multi-
plied by the 1¢ UV singularity) which would have to be
removed by UV a counterterm analogous to that of DRED
which corrects they-q vertex. Then, the result would be
equivalent to that obtained using an anticommutirgin n
dimensions, except that, in general, there could be additional
terms of soft origin which must cancel when the bremsstrah-
lung contributions are added. If they did not cancel, the
scheme would not be physically consistent since soft diver-
gences cannot give rise to scheme dependences in physical
cross sections.

It should be noted that we are assuming a vertex having
the form(21). It was shown irf29] that using a symmetrized

hence may be taken as 1 for calculational purposes, as thegrtex makes it possible to avoid the spurious UV terms, in
will always factorize exactly in next-to-leading order. Simi- the HVBM scheme, for the vertek—s+H. We investi-
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gated whether such a procedure would work here. Unfortu- VI. BREMSSTRAHLUNG CORRECTIONS

nately, the situation is somewhat different than in
b—s+H. Considering, for simplicity, the case ¥¥* pro-
duction, we find that the symmetrization procedure 28|
simply amounts to replacing the-dimensionaly® by the . 2magu?) . .
four-dimensional one. This clearly does not help remove the MENEE8= CF](T)M?&;?F%&L%’ (73
spurious UV terms; a counterterm will still be necessary. Of

course, the ambiguity about whether to put the on the
right- or left-hand side of the/* is no longer present.

The leptonic integrated-2 3 particle squared amplitudes
have the form

where the factoc is present only foab=qq,qq. The M

The string of gamma matricé85) gets contracted with a are given by
tensorl ,, arising from the vertex loop integral. This is a = qq.FrB_ T4q0.F+B_ T50qF*B_ , (qq,F+B
po , — y — s — )

good example to illustrate how the unphysical term arises in Mmnz—2= Mmnz—2= Minnz—2= Mmnz—2 -~ (74)

DRED. We will keep the argumentation general so that it isyg

valid for both massless and massive quarks. First, we have, B B B

In DRED, MRS = MIRE=5= M= 5= MW5=8. (79

YV YTy, = =2y v P (67 For the qg subprocess iftW* production, the right-hand

sides of Eqs.(74), (75 implicitly contain a sum over the

I, has the form various quark flavors into which the gluon may split to form
the W=,

IpO': gz(rC24+ Tpo’ ' (68)

For theqasubprocess, we have

where T, is a tensor which depends on the external mo- _ -~ $2(1+w2)
menta andC,, is a scalar coefficient. Performing the contrac- FA9F+B_paqF+B_~ = ~ ~_g 76
. . mn mn k k 1 ( )
tion gives P1-KP2-
_ _ 2 2
ooy Y= er?’anggngﬁ- Y YYT o FﬁﬂqﬁFfB:anqﬁFfB:S (1+w )_ S(1+w) 77
P1-kpy-k P1-0
=—2C,[(1—¢&)y*+ ¥+ v v*y"T,,,
2d (1=e)y" 7 1YY Y Moo For theqg subprocess, we have
(69)
) ) . 4
where we used the relation, valid forx 4, FOY90.F+B_ol oy 1 o P21 K +SAn/:quk(W)} (79
2/1°
Yy YPOp,=—2(1— &)y =27 . (70 .
CF— haa(w) pork  ALPE (W)
Itis precisely the term-y® which is removed by the DRED ~ Faa© B=2{5 inq t2W+2——+S npzq.gk ,

counterterm. The remaining terms give the correct result, i.e. (79)
that required to satisfy the QED Ward identity between ver-
tex and self-energy graphs. That identity is most straightforwhere
wardly checked by retaining the quark mass, in order to o o
avoid mass singularities. Having satisfied E66), the vir- hdd.,=—1+w, hif=1-w (80)
tual corrections are analogous to those of thg vertex,
since the Born term simply factors out. and
Using the Born term of the specific scheme, the net virtual ©

contribution in a form valid for all consistem-dimensional F99F-B_ o Sh?nﬂ(W) PPy S k +SAmP39(W)}

regularization schemes isb=qq,qq) mn P1-9 S pi-k [
(81)

da_ab,FtB «
,BB’ F+ .
(%) = Ximss: (£)8(1=W)Ce 5> C(e) with
v “ “
2 o pns hidu=2w?  hifjl,=2w. (82
2 2m? 2 Poy
o I e Cr |’ 7D Various checks on the above results are possible at this

point. From crossing symmetry, it follows that
plus possible extra soft terms which would cancel with op- 1
posite ones in the soft bremsstrahlung, as discussed above. Mgg,FtB: _ Mgﬂ,FiB(sz_k),

Here we defined 2Ce

4'7T,u2)8 I'l-e¢)

_ 1 _
= ag.F+*B_ _ _— A4qq.FEB o o
C(e) ( M2 [(1-2¢)" (72) Muu 2C: Muu (p2 K) (83

The result(71) follows directly from that given irf4]. and



6672 B. KAMAL 57

1 - — . 2
MEF™P= = 55 MET P (pro k), P =— (1 -w)—

1 AmnPqg (W,8) 8 In(1—w)
2Ck +

& CF 1-w

N . — 4(1+w)In(1—w) + KILF=B(w), (89)
MEITP= = 5 MU P(pre k). .
(84)

qa.F+B ) — _ qa,F =B/ —
The above correspondences were explicitly verified. Equa- kmn (W) 21=w), - kmy” H(w)=2(1+w)ln w

tions (84) hold only for theF + B case, since the —B inte- (90)
gration depends op; and hence destroys the crossing sym-gn(d
metry.
Also, the q«—q interchanges were checked usiGPT AnnPij=AnPij+A,Pj; . (91
invariance. The only difference between tfie-B and _
F+B cases is that in thE —B case, one picks up an extra  For theqg subprocess, we obtain
minus undeiCPT, sinceCPT implies|*—1~ and the lep- 1
tonic integration is antisymmetric. abF=B_ _ ~Aab pn (a4 o n(1—w)AZR P4 (w
The 2— 3 particle bremsstrahlung phase space is given by ™" € gl W) ( ) AnimPag(W)
+ kab,Ft B(W) (92)
~ab,F+B & —2¢ mn ’
(do-im'BB’ :21+2 M1—28W1+8(1_W)1 i )
dM /, wt T(1-¢) with
1 =) =) (1_W)
X fo dyy “(1-y)~* Linpgwﬁnz;B,, kaa ™" E(w) = KRB (W) = ——(1+3w), (93
(85) =) 1—w
kfﬂj”iﬁ’s(w):( 2 )(1+3W)+(1—W)|n w,
where (94)
1+cosé o (1—w)
y=—>%— (86) A9 " B(w)= 7 (1+3w)—(1-w)inw,
(95
and 6 is the angle betweep; andk in thep;, p, c.m. (1-w)
. =) _W
Define 9a.F~B(w)=— 2 (1+3w)—2w? In w,
|ab,F1r|3E (1_W)1728 F(21_28) (96)
mn —
4 I'“(1-e) oo (1-w)
1 ki T S(w)=— 2 (1+3w)—2w In w
—& —erab,F=B
< CayyramyEme. e o7
] and
Then, noting Eqs(73), (57),
AP ‘b=g
ab _ ] 2nFag '
dommes: A ~ap s AnmPag=| 5 p ‘a=g. %8)
( v =Ler] 5 Xnser (2)WC(o)IRETE, o
Br
(89) VIl. FACTORIZATION OF MASS SINGULARITIES

The term~1/e2 in Eq. (89) represents a soft divergence
(and simultaneous mass singularignd is cancelled by an
opposite term in Eq(71). The remaining terms- 1/ in Egs.

where they2>F*B are defined analogously to the(%" =8

[see Egs.(74), (75]. The resulting integrations are rather
S;;agggtforward- Using the approach [ef] we may cast the (79) (gg), (92) represent mass singularities and do not can-
Im,'; ~in a form valid for.all con5|sten11-d.|mens.|onal régu-  cel. Hence, they must be removed by expressing the bare
larization schemes, making use of thedimensional split-  parton distributions(and fragmentation functions in pro-
ting functionsAPjj . As for the virtual graphs, we omit @ cesses with final state mass singularjtiés terms of the
possible extra soft piece which would cancel in the virtualrenormalized onef30]. Thus, our parton model expression
plus bremsstrahlung sum and use the Born term appropriai@8) is understood to be initially written in terms of the un-
to the regularization scheme in question. renormalized parton distributions, whose relation to the
We obtain, for thegq subprocess, renormalized ones is given by
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TABLE I. The A(T;; which define the various factorization |oop polarized splitting functions if81—33, although it was

schemes of interest; heke=u,|. inaccurately referred to d€S there and in many other pa-
— — — pers making use of it. This inaccuracy appears to have been
S MS, MSyc MS, acknowledged if33]. o
AT 0 APS, AP~ AP APE — A Pt In HVBM regularization, theMS scheme leads to helicity
AT 0 AP 0 A pe nonconservation of massless fermions. Hence it is not gen-
Akqu 0 A, . 0 A,ng erally used. The other three schemes are helicity conserving,
Asz: 0 AkPg 0 A,PSE at least in the direct sense. A potential problem inMy,

scheme will be discussed later in this section. ForNt&c
andMS, schemes, one must use thkS scheme as the cor-

f A, w?) = f A (X, 1) responding unpolarized factorization scheme when compar-

ing polarized parton distributions to unpolarized ones. This is

N c(e) > aj dy FLitAGy 42) implicit in the definition of those two schemes, which are

e 5 2wy y.r defined only for polarized parton distributions. This is an
advantage since unpolarized parton distributions determined

X[AGPF(XIY) + AT (x/y)], (99 in the MS scheme are widely available, in contrast to the

MS, scheme. On the other hand, it is not clear what effect

where € X L

these two schemes could have on various positivity con-

c(e) 1 F(l-s) 1 straints which require polarized quantities to be smaller in

4m)*

- = —( W —yetIn 4w+ O(¢e) magnitude than the corresponding unpolarized ones, as will

(100 be discussed briefly at the end of this section. Nonetheless,
presently available NLO polarized parton distributions are

andaj= asg, unlessj (=A)=r, in which casex;=a. After ~ predominantly determined in thdS,,c scheme, and so we
making the above substitution in E(L8), we recover the will use it in making physical predictions.
same form, except that now the subprocess cross section is The MS, scheme is the only one of the three helicity
finite and the parton distributions which enter are the renoreonserving schemes with the following properti¢a) It
malized (finite) ones. This will be demonstrated explicitly treats the polarized and unpolarized parton distributions
later. Note that photons, like hadrons, have internal partonianalogously(b) It gives regularization scheme independent
structure. Hence Eq99) is not restricted to hadronic initial analytical results and parton distributioriequivalent to
states. We do not introduce any additional mass scale hetfose of DREDMS). (c) It satisfies the supersymmetric iden-
associated with the mass singularities as is commonly donegity
In this form, the above definition is consistent with the usual
modified minimal subtractionMS) definition of renormal- - .
ization whenA,T;;=0, as will be discussed shortly. APggt+ AkPgg=AkPGe+ AkPgg,  g=gluino,

The fragmentation function®”!, which represent the (102
probability for quarki to split into a collinear hadroror
photon A, with momentum fractiorg, have the following for the unpolarized 34,35 and polarized 31,32 two-loop

renormalization: spacelike splitting functions as well as the timelj8&] split-
oNi ) Al ) ting functions(both polarized and unpolarizedThis is due
DM (z,pu) =Dy (z,17) to the equivalence with DRED, which in turn implies the
c(e) @ (1dy applic_abil@ty of fqur-dimeqsional calculation_al techni_ques.
+ 2 1 . DL'A”(y,,uz) The timelike splitting functions are those which enter in Eq.
e T 2m)z Yy (101). They only begin to differ from the spacelike ones at

the two-loop level.
Substituting Eq(99) in Eqg. (18) and convoluting with the
All of the freedom in the factorization scheme is aram_n—dimensional Born term of the regularization scheme being

etrized by the subtraction ternTs; (x/y). In theory thgTij used generates sEvefabtorizationcouEtErterms. Those as-

could depend explicitly oxx as well. Although we will dis- ~Sociated with thejq subprocessgb=qq,qq) have the form

cuss constraints on the allowg&g in some detail later in this

section, it is worthwhile to briefly summarize the most com- (d“ab,F+B) 1

ct

X[ Ay P (Zly)+eATj(2ly)]. (101

monly used schemes here. In Table | we list various schemes ~TmnBe’
of interest. For the M$%as opposed tNTS) version of any of dM
these schemes, simply adgg—In 477)AkPi4j to the corre-
spondingATj; .

The ¢ modified minimal subtraction schemé/l(ss) was
introduced in[4], the “polarized” modified minimal sub- (103
traction schemeI\(I_Sp) was introduced i25] and the “he-

licity conserving” MS scheme S,,c), as we shall referto  The remalnlng terms are associated with ¢fgesubprocess
it, corresponds to the scheme used in determining the twa-ab= qg gq§ and have the form

b,F+B .
X;nBB/( ) wl*eC(e)

X\ =2 [Amnpéq(w) + SAmanq(W)]-
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do2PFtB 1 o constant renormalization enters. Then, the above form is
__mnBB" =2 YA B ) SwlteC(e) valid for all one-loop QCD corrections, not just Drell-Yan
dm a & mnes 2 and DIS. Also, it is straightforward to verify that making the
R substitutiong(105), (106) in any one-loop cross section cal-
X iz [A% P4 (W) +eA2R T, (W)]. culated in scheme 1, leads to the conversion ter@y).
a9 nim 49 Parton distributions determined using different processes,

(104  but the same scheme, will differ bP(al*t) when O(al)
corrected cross sections are used in the fits. Since a basic
From[4] we may infer the relation between parton distri- assumption of the parton model is that the all-orders parton
butions of any regularization and factorization scheme, dedlistributions will be process independent, the process depen-

noted 1, with any other, denoted 2: dence of the parton distributions can be seen to arise from
L d the neglected higher orders. The physical parton distributions
[ [ Y Yei & in fact the all-orders parton distributions since, in realit
fI/AX) = /A(x) + —Jf — A AP (X are In fac P . ' Y,
k1) =T k2(X) ; 27 )y y 2V A i (X/Y) it is the all-orders subprocess cross section that they are con-

. voluted with. Hence, if the all-orders parton distributions
= ATy (XIY) ] = [AkP3;(X1y) = AT (xly) I} were not process independent, there would exist no process
. independent parton distributions. By all orders, we mean suf-
+O(ajag). (109 ficently high order inag that higher orders may be neglected
Similarly, for the fragmentation functions, for all practical purposes. T.he process dependence is there-
fore easy to understand since some processes have large
Aivon o Ali aj (1dy . . QCD caorrectiongi.e. Drell-Yan while others have relatively
Dk,:ll(z)_’Dk,zl(Z)_’_; ope L v Did(Y[APL;i(ZIY)  small correctiongi.e. DIS). Hence the extent to which the
O(a?) andO(a2™ 1) parton distributions differ, in any par-
— AT (2y) ] - [AP3i(2y) — ATo5i(2ly) 1} ticular scheme, will depend on the process from which they
are determined. So, for low (i.e. n=0), processes with
+0(ajas). (106) significantly different QCD corrections will yield somewhat
Goina from scheme 1 to scheme 2 simplv amounts todiﬁ‘erent parton distributions, but the ones with smaller QCD
Y Py corrections will lead to parton distributions which are closer

expressing the parton distributions and fragmentation func,E0 the all-orders ones. One expects, on the other hand, that

gﬁgjvr?fins[igerxg Ol weti:argsthoa]:t tCVZSrEinOf ;Cgimecozr;;;ste\g?%e ratio of the polarized to unpolarized parton distributions
: ' 9 y will not have a large process dependence since, even for

n-dimensional regularization scheme and any factorizatio rell-an like processes, spin asymmetries tend to exhibit

sch_eme IS equalent_ to_workmg In-any other consisten erturbative stability as we shall demonstrate in Secs. IX—
n-dimensional regularization scheme with the appropriat

factorization scheme. Thus, according to our definition o

. ) . . . . Equation(105) is very powerful and restrictive. This is
consistency given in Sec. lll, a consistemdimensional d (105 yp

larizat h u6h b h ticall istent because it has implications for various conservation rule mo-
regularization scheme m € mathematically ConsIStent, 4, ated sum rules. According to the parton model, the num-

for the class of subprocesses under consideration,(Bnd ber of valence(constituent quarks,q, , in a hadronA, is
have a process independent set of splitting functions Withirbiven by e '

that class, in order that it may be related to the HVBM
scheme as described in Sec. lassuming DREG and L
HVBM themselves do not fail for some process, unlikely as NG /A:f dyfq“ /A(y)=const. (108)
it may seem The DRED scheme satisfies both criteria for 0 Y
one-loop QCD corrections to polarized processes.

From [4] we may also infer that the conversion term \jore specifically,
which must be added to the subprocess cross section calcu-
lated in scheme 1 to obtain the subprocess cross section in

d, 1p_ nd/ dip_
scheme 2 is obtained via N%/P=N¥P—NP=1,

. . o 1P — NU/P_ NP —
crconu=2| Uct,|{[AkPﬁ(W|)+SAle,ij(Wl)] N P=N"P—N"P=2. (109
AT (W) = AuPE (W= el AT (W The fact that this must hold for all energy scalgs,is an
el ATz (W) = 8P, (W)= oL ATy (wh) expression of charge/probability conservation. SiNGé" is
—AgPTj (W)}, (107)  just the first moment of 3’A(y) and since th&"™ moment of

a convolution is the product of tHé" moments of the func-
wherew; is the argument of the splitting functions in the tions being convoluted, it is easy to see what happens to the
countertermfrm. The conversion terms are generated byabove conserved quantity as one goes from one scheme to
making the above substitution in all factorization counter-another.
terms for both initial and final state mass singularities in  First, we note that the gluonic contribution of E05) to
general. As well, one must express the couplings of schemtie relation between quark distributions of different schemes
1 in terms of those in scheme 2 for processes where couplingancels for the valence distributions. Suppose we wish to see
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what happens when going from regularization scheme 2 tdifference in total momentum between schemes is zero. This

regularization scheme 1. Using E405), we get, for valence is easily verified from Eq(29). The individual quark and

quarks, gluon momentum fractions will depend on the regularization
(and factorizationscheme as well as the energy scaleto

dy /A_ nydy /A s D A T O(ag), but a change in the quark momentum fraction is
Ny =Ny 1 Zw[(A“P“‘q AuT1g0) cancelled by an exactly opposite change in the gluon mo-
mentum fraction. Thus, the total momentum is the same in
_(ADE _AT both schemes, and is independent af as follows from
(A4P2qq A”Tz'qq)]]' (110 Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) evolu-
_ tion [36,23.
whereg denotes the first moment gfy), for some function All this discussion tells us that DRED and DREG are
g. Suppose scheme 1 is DRED, for whidhPRrep qq=0,  mutually physically consistent in general, in the unpolarized
and scheme 2 is DREG, for which case. One can convert unpolarized parton densities from one
_ regularization scheme to the other and the conserved quanti-
AyPbRreGqq=0: (111)  ties retain their values. The real problem arises when one

converts from one factorization scheme to another. It is safe

to go fromMS to MS since, in the MS scheme, all theT;;

are proportional toAkPﬁ(yE—In 41), and hence do not

NG /A — NG /A (112 change the conserved quantities. Also, since DRED is
DRED " "DREG’ equivalent to theMS, scheme, we see thMS, andMS are

so that the two regularization schemes are mutually physimutually physically consistent as well, for unpolarized pro-

cally consistent regarding charge conservation. The requir&zesses. In general, though, for arbitraqyT;; , there are no
ment analogous constraints to Eq4.13) and(116), at least with-

out invoking constraints from higher order evolution. This
Auﬁngo (113 means that the aforementioned conserved quantities will dif-
fer in general byO(as) when going from one arbitrarily
follows from the fact that the)(«ag) corrections to charge chosen factorization scheme to another. Since it would be
conservation must be zero indimensions. By corrections, quite a formidable task to measure so precisely the parton
we mean that one can think of a zeroth order piece tdlistributions that one could definitely verify all conserved
Ay Pqq(2), A Pg4(2) which is proportional to5(1—2z) and  quantities to high accuracy, how do we know which schemes
denotes the no-interaction scenario. Then, it is clear that thare correct priori? This is even more pertinent to the case
usual leading order splitting functions dend®«) correc- of the polarized parton distributions, where the data are defi-

as can be seen from Eq29). Assuming the same factoriza-
tion scheme, i.eA T,;;=A,Ty;;, we obtain

tions to the non-interacting case. . nitely lacking.

Let us now consider momentum conservation. P& We may gain some insight into this issue by studying the
denote the total momentum fraction carried by paitottis ~ scheme dependence of the polarizednsingle} distribu-
just the second moment d’)fu’A: tions. The net spinS¥A, carried by quarks of flavog, in

hadronA, and the corresponding total quark spim2,,
_ 1 , i
P,,A:f dyy F/Ay). (114 are given by
0
_ i 1 A 1
Of course, momentum conservation must be applied to the Sq’Azz f dyf"(y), §A2A=E SYA (117
0 q

sum over all partons. One can easily verify that if, in some
factorization scheme, the DRED parton distributions satisfy

the momentum conservation rule respectively. The spin carried by the valence quarks is con-
served under one-loop evolution due to chirality conserva-
E piA=1, (115  tion. More formally,A|P3q=O, substituted in the expression

: for the first moment off ¥, evolved using the DGLAP

. . v /A: _ .
then the DREG parton distributions, in that same factoriza€auations givesst A const, under one-loop evolution, as
as the case fal% ", For a discussion of two-loop valence

tion scheme, will also satisfy it, and vice versa. The basic”/

reason is that the requirement, which DREG satisfies, that evolution effects, which in general violate the above conser-
' ' vation, the reader is referred {87]. The main point of in-

1 . . terest concerning two-loop evolution is that chirality conser-
fo dz4 A Pgq(2) +AyPgq(2)] vation is relevant to non-singlet combinations of the form

fa+f9—f9 9 and linear combinations thereof. The two

- f 24 AP (2)+ 2NeA PI(2)]=0 (116  METESUNG ONehAs, AA, salisly
0

[which follows from the fact that th€(«s) corrections to AAgg=const, (118

momentum conservation must be zero, rindimension$
leads to cancellations in the sum over partons, so that the nathere
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AAg=fUt+fu—fd_fd,
AAg=fU+fl+fOtfa2(FS+£5). (119

Similar argumentation to that used in relatihg® " to
N3 A leads to

A AA2 @s r oA PE T
AA3g=AA3g 1+ z[(& Plaqg— A1 T1gqg)

—<A|P_;,qq—A.T_z,qq>]]. (120
From Table | and Eq(30) we get
MS) _ A AHV(MS,) _ , AHV(MSyc)
AK:%DEED(MS)_AAs,s =AAzg T
= AARY M2 ARYES (127

Thus, theMS scheme of DREGHVBM ) gives different val-
ues for AA;, AAg than all the “chirality conserving”

schemes. This is an explicit example of the factorization

scheme ambiguity.
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AToq(2) — AP =A,Toq(2)—API(2). (124

The reason we had to subtrab,tqu in Eq. (124 is that for
regularization schemes like HVBM which violate chiral
symmetry Pgq#AyPgg), the unrenormalized parton dis-
tributions themselves manifestly violate helicity conserva-
tion. One must always subtract the helicity nonconserving
part in A;Pg, in order to restore this conservation. This is
why HVBM(MS) disagrees with the other schemes and is
manifestly unphysical. Under two-loop evolution, helicity
non-conservation in HVB¥MS) manifests itself via direct
violation of Eq.(118). This may be seen by taking scheme 1
to be HYBM(MS) and scheme 2 to be one of the “chirality
conserving” schemes, and then differentiating E§20)
with respect to Inu?. Comparing with the DGLAP equation
for AK%B one finds precisely the same nonvanishing result

for dAKis,BId In u? as follows from the two-loop analysis
[31,32.

The condition(124) is somewhat stronger than the con-
servation rulg(118). It also ensures that

o(helicity flip)=0, (125

The real implication of this seeming non-uniquenessvhereo(helicity flip) generically denotes any doubly polar-
problem is that certain factorization schemes may be ruledzed (in the initial stat¢ subprocess cross section where a
out from the beginning since they are manifestly unphysicalmassless quark flips helicity, with the helicity at both ends of
One can determine which schemes are unphysical by impo$b€ quark line fixed.

ing the fact that the unrenormalized parton distributi(@®
themselves satisfy the conservation ru(@88), (115 and

The relation between the total quark spin in scheme 1 and
that in scheme 2 is obtained by taking the first moment of

(118 and yield the correct value for the corresponding con-Ed- (105 and summing over quark@ncluding antiquarks
served quantitiesexcept as will be mentioned belpwThe 1

reason for this is that if a particular regularization Preserves As, = ZAS,+ s
the necessary symmetries—unitarity, translation invarianc& 2 Am
and chiral symmetry—then the unrenormalized parton distri-
butions in that regularization will obey the corresponding
conservation rules: conservation of charge/probability, mo-
mentum, and massless quark chirality. Hence, the connection
between renormalized and unrenormalized parton distribu-

tions must not destroy those symmetries in the renormalizegmce DRED preserves chiral symmetrv. it is natural to use it
parton distributions. If, on the other hand, a regularization P y Y,

violates a particular symmetry, a finifaT;; will have to be as a reference scheme. If w_e also desire that tﬁf total_spln of
introduced to ensure that the renormalized parton distributh€ quarks be the same as in DRELS), thenAPqy#0 in
tions obey the corresponding conservation rule, since the unHVBM regularization leads to violation of this in tHdS,,c
renormalized parton distributions themselves will manifestlyscheme. We must impose

violate it.

Thus, using similar rationale to that used in going from
one regularization scheme to another, we arrive at the physi-
cal consistency constraints on allowable factorization
schemes: to restore equivalence. Hence, of the factorization schemes
listed in Table I, onlyMS, andMS; give the value of total

% 1:_Iq[(AI_‘iqq_ AI?l,qq)
- (Alﬁg,qq_ AI?Z,qq)] + 2fo_|g[(AIEi,qg_ Al?l,qg)

—(AP5qg— A1 T2g9)]} - (126)

1
fodz[A|qu(z)—A|ng(z)]=0 (127

1 -
f dzATe4(2)=0, (1220  quark spin equal to that in DREMS).
0 One may ask if there is some deeper physical reason why
1 the MS,c scheme gives a different value for the total quark
f dzZ A Toq(2)+ A, Tgq(2)] spin. We notice, using Eq&29) and(30), that, in the HYBM
0 scheme,
1 n n
:fodzz{Aung(z)+2NFAuqu(z)]=0 (123 Pag++(2)#Pgg-+(1-2). (128

This means that when a polarized gluon splits into a collinear

and qq pair, theq andq do not necessarily have opposite chirali-
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ties, as required by quark chirality conservation. The above The MS, and MS, schemes correct Eq128), while
result is possible since, if there is an initial state gluon, EqQMS,,. does not. More precisely, strictly speaking, chirality
(125 does not apply. conservation imposes the indirect constraint

[A Tqg(2) + A Tog(2) ] —[AuPLe(2) +A|P(2) ] =[AyTg(1-2) = A Tog(1=2) ] = [A Pg(1-2) —A|Pg4(1-2)]
=ATog(2) —APgy(2) = —[ATgg(1-2) —APg(1-2)], (129

which bothMS, andMS, satisfy, butMS,,c does not. The At any rate, we see that satisfaction of E427) leads to
reason, as usual, is that it is the differenk P (z) conservation of total quark spin. The DGLAP evolution
the subtraction term\, T;; (2), effectively modifies the split- nection with scale dependences. It is worth noting that analo-

: : e : : gous argumentation can be used to relate the spin carried by
ting function, APy (2). The unpollarlzed parts n Eq129 the gluons in different schemes. Since such differences do
cancelled due to the unpolarized constraidt,T,q4(2)

. . . ; not enter in the observables considered here, at one loop, we
—APqg(2) =AyTag(1—2) — A Pqg(1—2), which is satis- \yjjl not discuss them. Also, direct differentiation of Eq.
fied in all the schemes considered here. Satisfaction of Eq105) gives the correct scheme transformations for all two-
(129 implies satisfaction of Eq(127), while the reverse is |oop splitting functions, generalized to include the regular-
not true. An interesting analysis which arrived, from a dif- jzation scheme dependente. Tij—Ti;—Pf).
ferent perspective, at a conclusion similar to E7), in the So far, we have not discussed the interesting requirement
context of DIS, may be found ifi38]. How strictly one  of positivity of the parton distributions:
wishes to impose chirality conservation is perhaps a matter " ) i )
of taste, however. fL(6u9)=0, 12, (x,u%)=0. (130

Under one-loop evolution, the total quark spin is con-po o1y guarantee of positivity applies to the physical cross

served. Under two-loop evolution, conservation or non-secyion jtself, as measured by experiment. Individual subpro-
conservation depends on the choice of factorization schemgass cross sections need not satisfy positivity due to the in-

Analogously to the non-singlet case, we see that¥, is  terconnection of the subprocesses arising from the renormal-
conserved andX;# A%, thenAX; will not be conserved ization of the parton distributions discussed earlier in this

under two-loop evolution. The scale dependenceAd;  section. To the extent that leading order cross sections domi-
may be obtained by differentiating E¢L26) directly. The  nate and that the parton distributions are process independent
MS, and MS, schemes lead to conservation AF, and  at leading order, positivity should not be a problem. On the
thereforeMS,,c does not. Alternatively worded)s, is not ~ other hand, for processes with large radiative corrections,
conserved in theMS,c scheme and the difference in the Some factorization schemes could lead to parton distributions
schemes exactly compensates this non-conservation sudhviolation of Eq.(130). This issue has not been thoroughly
that AS, is conserved in thevS, and M_Sp schemes. The studie_d at thi_s poir_1t, but it _vviII become important as more
evolution of AS in theM_SHC scheme obtained via differen- experiments involving polarized hadrons are undertaken.
tiation of Eq.(126) agrees with the two-loop analygi31,32
and can be seen to arise from the non-vanishing &, . )
Under two-loop evolution, it is the non-vanishing of the first W€ may now present the analytical results for
moment ofA P4 (from the pure singlet partvhich leads to daﬁqbr;":BE?/dM in a form valid for all consistent
the non-conservation ofA%, however. Hence the non- n-dimensional regularization schemes and for a general fac-
vanishing at two-loops ofP is seen to be a consequence torization scheme, starting with tlggy subprocess. Combin-

of the non-vanishing at one-loop af,P;,, while APy,  ing Egs.(57), (71), (88), (89) and (103, we obtain the total
remains zero at two loops, in all three schemes. result @b=qq,qq),

VIIl. ANALYTICAL RESULTS TO ONE-LOOP ORDER

~ab,F+B 2
(damn,BB’) ab,F+B
NLO 3 1-w

= @ (277 ) In(l—w))
dM _an,BB’(O) é\(]—_W)‘*'CFEW ——7|6(1-w)+8 )

AmnPgg(W) M2 1 _
4 manFq Inwﬂ2—4(1+w)ln(1—w)+C—F[Amanq(w)—Amnqu(W)]+k%qﬁF,B(W) ,

(131
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where thekﬂ]aﬁFtB are given in Eqs(90). there is a discrepancy. In order to reproduce the resyof

We now present the result for thgg subprocess. There One needs\ Pg,=—1/2, in disagreement with Eq29).
is no O(1) term (in ag). Combining Eqs.(88), (92) and The reason for this disagreement is tf@taverages over 2,

104).we obtain the total resulao=qg,qd). rather than 2 2g, gluon polarization states, as can be in-
(104 Bb=ag gq)) ferred from their Eq(10). That convention does indeed lead
do2PF:B 2 to A Pg,=—1/2. Unfortunately, all of the presently avail-
é“—“M'BB XzbngB§(o) —W[Aa gg(w) InW able unpolarized parton distributions are determined using
NLO

the convention of 22¢ gluon polarization states. Conse-
guently, the expressions [#], for theqg subprocess, should
+[An/m (W) be appropriately converted using the techniqufdf which
amounts to Eq(107) of this paper, before being used in
numerical studies demanding complete consistency at NLO.
— A3 agW) 1+ kﬁqbﬁ“B(w)} . (132 At this point, we may investigate the scale dependence of
the cross section. Define

+2In(1—w)

where thek32F*B(w) are given by Eqs(93—(97).

We see at this point that the results[4f (for theuu and ~d o °
Il, F+B, vector coupling case with massleBs=B’) are T= "M (133

contained within the results presented here. Those, in turn,

were found to be consistent with various existing results cal-

culated in certain specific schemes, for both the[39,40  and leto denote the contribution to which depends op

and Il [1,2] cases. Single-spiW™ production in hadron- at O(as) _coming from a=q, b= q; a=q, b=g; and
hadron collisions has been studied[B]. Considering the a=g, b=q for one quark flavor and for production by one
subproces@b—W=c, wherea is longitudinally polarized bosonic interference channel. These subprocesses are con-
and b is unpolarized, we see that fartb=qq,qq and for  nected via the renormalization of the parton distributions, but
a=g, b (q>, our expressmns reproduce those given in Ap-are disconnected from the remaining subprocesses in that
pendix B of[3]. Fora= q b=g, it seems at first sight that sense. We havéiaking S5=SE=1)

. 1 1 _ r
UL I I PR T EE L Eeen
T Tl a,b

XaXp
e a0 [ SR AP W T8 D8P0l 7]
52 [y 3009 Exadx—xbb[f:kxb,uz)AnP;‘q<w>ln W2 190 2B P WINn 42]), (139
|
where performing the differentiation in E¢136). Of course,f g/8

) . a/B ot ; 2 .
L O 0 el ol i
In DIS, one has an analogous expression, except without the X,), fa(xp u?)=8(1—xp) to solve for and eliminate
convolution with thef § term. The independence afonuto  dfd(x,,x?)/d In w2 The result fordf 3(x,,u?)/d In u? is
O(as) implies simply (as/27) ApPgo(Xp)-

We thus obtain

g
_ 2
d In Mz —(’)(as) (136) de(X;MZ) aS(MZ) ) 4
dIn 1“’2 - [f (y,M )Akpqq(xly)
Here we note

2 4 2

darg 8o +TR(Y, 1) APog(Xly)]+ O(ag), (139
= —a« —O(as) (137)

dinp? 4 for k=u,l. This is the DGLAP equatiof36,23 with one-

N . . loop splitting functions. Therefore, one needs at least one-
Taking into account the fact that the evolution Bf* is Ioog e\F/)qutign to guarantee? independence aP(ay). Glu-
independent of '® andf %, we may arbitrarily set, forany onic evolution only enters at the(a?) level.

fixed u?, f9(xy,,u?)=0 andfI(x,,u?)=58(1—x,), after We may write, using the Taylor expansion for fixed
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again times an overall factor having roughly the same mag-

2 N 2
fAOx, ) =1 J(x, mg) + 5 In(—z cf (X, ;) nitude as the Born term. We see explicitly that inclusion of
& 0 one-loop corrections reduces tpé dependence by an extra
as(md) [ u?\]? , factor of (ag/27) In(u?/u2) for reasonable values @f?. The
5 In| — cgyk(x,,uo)Jr“- above arguments apply to all one loop calculations in had-
Ko ronic processes. In general, though, there is also a contribu-
5 ) tion _from the evolution of the_gll_Jon distributi_on (),
= 9(x, u2) + as(4o) In it (%, 1) relatlve_to_the_ Born term. T_h|s is because, in gene_ral, the
k%o 27 pl) Lo gluon distribution may enter in the Born term. Then, impos-

ing the analogue of Eq136) would determinee{, as given
by Eqg.(142).

One could also convolute the Born cross sections with
parton distributiois having no evolutigine. determined at
where some fixed scale.?), which would correspond to an “off-

L d shell” renormalization of the parton distributions in higher
CTK(X,M(%):J ey 2y, w5 AkPgy(X1y) order. But then the p;hlsmal' predictions would be wrong by
: x Y terms ~ (a¢/27) In(ug/u?), since the one loop corrections
g 2 4 would contain such terms[analogous to the terms
+ (Y, o) AkPgg(XTy) . (140 (4 /2m) In(MZ/?) present in Eqs(13D), (132)]. So, even
though there is no renormalization scale dependence, the er-
ror will be larger for wo>u or ug<<u. One expects an
analogous trade-off when using one-loop evolution instead

2
a2 ), (139

+

as(/’«é)l ,Uv_2
2 n

One can write an analogous expression fiéx,u?) using
the DGLAP evolution equation foir§(x,u?), yielding

1 dy 2N; of two-loop evolution in NLO calculations.
9, (X, u2 :J' el £y u2)A P4 (x/ Actually, this argumentation is somewhat naive in the
1K) x Y ;1 (Y 140) BicPgq(X1Y) sense that we only considered explicity the

~[(as/27) In(u?u3)]? behavior. For processes such as the
_ (141) D_reII-Yan process, which receive larget cor(eptions, there
will be residual u?-dependent effects arising from the
w?-dependent part of the parton distributions multiplied by
Then one could expressin terms of thef and parametrize the large correction terms in the cross section which will not
explicitly the O(a?) u? dependence with respect to some cancel at the one-loop level. Thus, there will be an additional
fixed scalen?. Supposeu? is a typical scale of the process A~ dependence of the cross section proportional to
(i.e. M?); then there will not be any large logarithms and

+ 12y, ud) AP (XIY)

(r(,uS) will have reasonableO(ag) corrections when U”Z(MZ)—UWZ(M§)~ ﬁwz ﬁm(ﬂzlﬂg) (144)

w?=ud>A2. Having identifiedu3 as being a scale which 2m - |2m

leads to reasonabl®(«) corrections, we now ask what

happens when we vany? away fromu2? Using Eq.(139) T, ﬁm(ﬂzmz)}

in the parton model expression, we see that there wil.be 2 92w o)

dependent terms will be proportional to (149
o 2 |n(M2/M§) 2 which is still supp_ressed relative to the dependence of the

U(M2)_g(ﬂg)~[_s|n(ﬂ2/ug) ~ —2—2—} Born term for typical energy scales. Of course, there may be

2m In(/ A7) (142 other sources of large corrections not strictly proportional to

w2 (see the discussion near the beginning of Seg, afid so
our 72 factor is really a generic representation of large cor-
Section terms in general. The rule then is that the larger the

PN 5 ) one-loop corrections, the greater thé dependence. Inclu-
(ag/2m) (o) is a small number so that the” depen- g, of tywo-loop correctiongand evolution will reduce this

deznce is rather suppressed as long.&ss not too far from  tactor. We will not discuss two-loop effects in any detail
wo- These terms will only cancel when two-loop correctionspere Also, we will not perform detailed numerical studies of
to the subprocess cross section are included. There are alggy|e dependence, as this has been done extensively in the
terms with lower powers of In¢/u) [i.e. from Eq.(137] |iterature. The above discussion was included simply to
which require two-loop corrections for cancellation as well. cjarify the origin of the scale dependence and to show how it

The next question is, how much better are we doing thafs reduced by the inclusion of QCD corrections in general.
a Born level calculation? In the Born level result, tphd

dependence comes entirely from the evolution of the distri-
butions. Hence, from Eq$134), (139,

times an overall factor having roughly the same magnitud
as the Born term. For typical values qgf and «ag,

IX. DRELL-YAN IN LOW ENERGY RUNNING AT RHIC

Throughout, for unpolarized cross sections, we use sub-
o

2 2, %s 2, 2 process cross sections determined in M8 scheme of
Tgom( 47) ~ 0ol 40) ~ 5 IN(17 1), (1439 pReG. They are convoluted with the unpolarized Martin-
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Roberts-Stirling set GMRSG) set[41] of parton distribu-  which is not present in the rapidity differential cross section.
tions. Varying the choice of unpolarized parton distributionsThe rapidity differential cross sections generally peak at or
produces negligibly small changes in the spin dependermear zero rapidity X;=Xx,) as well, although the peak may
asymmetries in general. Hence, we only consider the effedie rather broadxr is more physical though, since it is sim-
of varying the polarized parton distributions even thoughply X,—X, at leading orderi.e. it is linear inx, and xy
strictly speaking, one should use specific unpolarized setgnlike the rapidity. Hence, in what follows, including after
with the various polarized sets. We use the GehrmannQCD corrections, we will assume that the qualitative features
Stirling set A (GSA) and GSC[42] as well as the Glek-  of the numerical results can be roughly described by taking
Reya-Stratmann-VogelsaiiGRSV) (standard NLOMS) set ~ Xa=Xp= 7. Of course, all figures are obtained using the
[43] and compare the corresponding predicted asymmetrie§Xact expressions only, since the approximation does not
Since all these sets are determined in M8, scheme, give quantitative_ly accurate predictions. We will also use the
using HVBM regularization, we use subprocess cross sechorthand notation
tions determined in that scheme for doubly polarized predic-

tions. Clearly then, for single-spin cross sections, we use the ~ %i:9=f y PPx,u?),  Agi,Ag=f N P(x,p?),
M_SHC(M_S) scheme for the renormalization of then)polar- (146
ized parton distributions which entére. for theT;;). Con- i J7. Also,

sequently, the\ P, are always those of DREG and HVBM,

given in Egs.(29) and (30). Throughout, we use a two-loop Tmn=doPPF*BidM, (147
evolvedag, with 5 flavors. We also use=M in all numeri-

cal calculations. whereot "B was defined in Eq(12) as being the usual lep-

We will always present both the LO and NLO results for tonic integrated cross section.
the asymmetries given. We use NLO parton distributions, Consider the double-spin asymmetry
polarized and unpolarized, in all asymmetries, however. The
reason, as discussed in Sec. VII, is that the LO parton distri- A= 1 oy (148)
: - n=
butions possess a process dependence of ardewhile the
NLO ones are process dependent only at orﬂ%}r There- ) ) ) ) )
fore, it is in general not meaningful to use LO parton distri- With the above-mentioned assumptioAg, is roughly given
butions in making predictions for processes with different®Y
structure from the one where they were determined, in the — — —
polarized case, DIS. In this way, O}l/Jr LO and NLO asymme- (4/9Audu+(1/9)AdAd+(1/9)AsAs
tries are closer to the actual first two terms in the “all- (4/9uu+(1/9)dd+(1/9)ss '
orders” expansion of the asymmetry dny and the difference (149
in the LO and NLO predictions meaningfully measures the .
effect of the higher order correctiofOCS. Finally, if one Because of the gxtra fa}ctor of 4 and the rglatlve largeness of
uses the LO polarized distributions determined from DIs theu, andAu, distributions, the cross section and asymme-
one would also have to use LO unpolarized distributiond™y &r¢ mostly dominated by the up quarks.
determined entirely from DIS as well, for consistency. The polarized valence distributions are reasonably well

In order to understand the qualitative features of the nu¢onstrained over a large rangesofrom polarized DIS. The
merical results, irpp collisions, it is instructive to examine Polarized sea quark distributions, however, are only moder-
which values ofx are being probed in the parton distribu- ately_ constralne_d_at smalles, where their contr|but|_on in
tions for a givenM. We will consider the leading order D!S is non-negligible. At moderate and large there is no
contributions for simplicity. From Eq(18), we see that con_stramt experlmentally. on the polarized sea quark distri-
da/dM involves an integration ovexg(=xgo), equivalent butions, as they are vanishingly small compared to the va-
to a single integration ovex, (or x), both constrained by €nce ones. _

Egs. (19 with w=1. do/dMdx. can be obtained from Eq.  Most models, however, assume the behavior

(23), though, and involves no integration. Numerically, it is
found to generally peak at-=0. This implies that dominant
contributions come from the region=x,= /7. The peak is

not very sharp though, and so this is somewhat of an apwhich appears to be consistent with the DIS data. The result
proximation. Nonetheless, this feature holds for the energieg that the asymmetries, and the distinction between the vari-
considered here and becomes more pronounced with dgus polarized sets, will be largest at largei.e. largex)
creasingr. The basic reason is thatxf=x,= /v there is an  where the cross sections are small. Conversely, where the
equal contribution coming from theq andqq subprocesses. cross sections are largemall 7) we expect small asymme-
As one moves away frome=0, one of the contributions tries if the polarized sea quark distributions are small at low

becomes smaller since thedistribution is being evaluated at X as all the sets assume. .

larger x. This is somewhat compensated by the other term Figure 1a) gives the(virtual photon dominatedunpolar-
getting larger, especially at larger Still, the net effect is a ized Drell-Yan cross sectiondo/dM, at y/S=100 GeV,
smaller contribution ag: moves away from 0. As we go the VersusM for pp collisions relevant to RHIC. Here, we in-
lower 7, the fact that the peak is more pronounced is not sé¢lude only one type of lepton paiire. u* ™). Throughout,
surprising due to the ¥, +xp,) factor in do/dMdx:,  we present the leading order, next-to-leading order \gith

x—1 x—0

|AQU|/qv — 1, |Aqv|/qv — 0, (150)
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10° , , , , , , is intimately related to the issue of the renormalization of the

quark distribution, which in turn connects tlyg and qg
subprocesses.

The fact that the neqjg contribution is negative tells us
something about which regions of theintegration are giv-
ing dominant contributions. In order that tljg contribution
4 be negative, we see from E(L.32 that we must satisfy

_________ Lo ]
- — — NLO (qq)

NLO (qq+qg)

] A P4 21n(1 | (1_W)
107 F >~ u qg(W)[ n( —W)—nw]+ 2

do/dM (pb/GeV)

(1+3w)<0
(151)

(again working in theMS, scheme for simplicity This is
satisfied for

0.10 w>.572022. (152

Since thew integration includesv=1, we expect large con-
tributions from the term-In(1—w) fromw near 1. In light of
relation (152, we can see clearly why the corrections are
negative.

The expected yearly integrated RHI@p luminosity at
JS=100 GeV is£=160 pb* (assuming it is linear in/S
down to this energy This means that the statistics will be
quite poor beyondl =20 GeV, concerning asymmetry mea-
surements, whose error goes lilgee Eqs(20)]

0.056

0.00

-0.05

-0.10

-0.15 1 1 1 1 1 1

5 10 15 20 25 30 35 40 2
(CeV) A /1_“mn 1 1 1 Omn 1
b M € A= S , A = ,
(b) me N SpSn UINSSy ™ ouu SpSy

FIG. 1. (3) The cross sectiondo/dM, versusM, for |¥1~ (153
production inpp collisions at/S=100 GeV; (b) corresponding
double-spin asymmetryA, , for various sets of polarized parton
distributions. Details given in text.

where the approximate equality holds &g, not too large.
HereN is the number of events. Assuming 1 GeV binning,
this means that foM =5 GeV, AA, =.4%/P*PB. Unfortu-

tributi | d full t-to-leadi d dicti nately, this is a rather low mass scale where the parton model
contributions only, and full next-to-leading order predic |onsmay not work well. ForM=10 GeV, AA, =1.8%/P"PB,

for all cross sections and asymmetries. This means that, fof, ;0\ "\ (=10 GeV), one also has to be careful of reso-
the asymmetries, the numerators and denominators are - !

. . . . ance backgrounds. Experimental cuts will make the errors
treated in the same way with regard to which corrections ar%lightly larger. On the other hand, with two independent ex-

i_ncluded. Hergland throughout, we note that ¢ftecorrec- periments(at the PHENIX and STAR detectorshe com-
tions are positive and large. Theg subprocess makes a pined asymmetry measurements should have roughly the er-
small negative contribution though. This highlights the fact;ors given here. A more detailed error analysis is beyond the
that one cannot think of theg subprocess as being physi- scope of this paper.

cally separate from thgq subprocess. They are both related  Figure 1b) gives the corresponding,, . The behavior is
via the renormalization of the quark distributions. We will exactly as expected from the previous arguments. It the low
now investigate this issue thoroughly. mass region, where the statistics are godjs of the order
__The negativity of theqg contribution also holds in the 1-2%. There is also little distinction between the various
MS, scheme. This wil(slightly) simplify the process of un- sets. This is a result of the common assumptions
derstanding the origin of the negatigg contribution. The _ _

analytical result for the subprocess cross section is given in |Aul/u<1, Au<O0 (at smallx). (159

Eq. (132. Since, when usind1S, factorization, the scheme _

dependent part of the subprocess cross section is zero anfiere is certainly more freedom iaq than is manifest
since k9%F*B(w)>0 and u?=M? here, the only negative among the various sets. The DIS constraint\gnare rather
contribution comes from the terwAngg(W)ln(l—W). weak and it will be interesting and important to see whether
From Egs.(78), (87), (88), (92 we see that this term arose Or not the low mass Drell-Yan asymmetry is as snfafd
from (1—w)~2*A,Pgq(w)/e and is therefore of collinear POSitive as it is predicted to be.

origin. This means that such terms could be factorized via It is also of interest to study the effect of the QCD cor-
the renormalization of the quark distributions, but would "ections onA, . From Fig. 1b), we observe good stability in
most likely lead to unphysical distributions violating some of the qqg contribution in general. This is not unexpected, taking
the conservation rules mentioned in Sec. VII. So we see exnto account helicity conservation. For the GRSV and GSA
plicitly that the issue of the negativity of thegg subprocess sets,Ag is positive and sizable. For the GSC saty is
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positive at smalk, but negative and small at large Hence, 10° —

the gluonic contribution is small and uninteresting in general

for the GSC set. Therefore, we study throughout the gluonic L N Lo 3
contributions(and features in genepabnly for the GRSV . - — — NLO (qQ)

and GSA sets. We notice that the gluonic contributiod\jo 0¥ ) —— NLO (qq+qg) 7

is always positive. The gluonic contributions ég and o,

are dominated by theg subprocess. Since botfu andAg

are positive, the essential difference between the sign of th
gluonic contribution too;, and o, is that arising from the
sign of the respective subprocess cross sections. The mo: 10”

important difference betweem(® and %9 is the difference
in the overall factorgwhich are proportional to the respec-
tive Born terms: see Eq§73)—(75)]. There is a relative mi-

nus in the overall factors for% and o9,
More precisely, for the correctiofr,ﬁg, to be positive, we

do/dM (pb/GeV)

must satisfy relation(151) with Angg(W) replaced by 0.04
A Pg4(w). Itis satisfied for A,

w<.208233, w>.652396. (155 0.00
Using the same logic as before, dominant contributions will -0.04
come from neaw=1, where the corrections are positive.
Hence the corrections t@;, will be positive. Theqg correc- 008
tions to oy, are relatively larger then those tg,, since, for
typical x and u?,

_ _ o o 20 30 40 50 60

in the sets considered. Hence thg subprocess typically FIG. 2. As in Fig. 1, except afS=200 GeV.

weighs in more heavily versus tlog subprocess i), than

in a,,. Thus we can clearly understand the sizable and posigvercome this limitation, however.

tive qg corrections toA; . This rationale also applies to the  Figure 3a) shows the unpolarized cross sectidia;/d M

corrections toA;, in Z- and W~ -boson production. for 5<M <125 GeV at\/S=500 GeV. Again, we consider
Figures 2a) and 2b) show the corresponding cross sec- production of only one type of lepton pdite. u* 1~). The

tions and asymmetries aiS=200 GeV. All the features are QCD corrections behave analogously to the virtual photon

the same. The luminosity is doubled and the unpolarize@¢ase. Using the expected yearly integrated luminosity of

cross sections are larger for the same(due to the smaller 800 pb* and integrating the cross section betweer<80

X, where the sea quark distributions are largde asymme- <100 GeV gives approximately 80Q0" .~ pairs. Hence

tries are somewhat smaller thOUgh. Hence the statistical Si@ve can measure asymmetries with an uncertd]g%e Egs.

nificance @A, /A;) is comparable. The main difference is (20), (153)]

that we probe lowex than at\/S=100 GeV. Running at

more than one energy is definitely an advantage in that one 1-1.5%

covers a larger range of and 2, compared with only run- AAmp= TSASB (157)

ning at one energy. This also allows some degree of cross- men

checking via perturbative evolution and thus allows detectioyepending on the experimental cuts. Higher energy running

of various types of systematic errors. The net result is lowe{yoid increase the& event rate. but somewhat lower the
overall errors on the polarized parton distributions so deterasymmetries, as will become clear.

mined. The double-spin asymmetry in th&-pole region goes
roughly like
X. Z-BOSON PRODUCTION AT RHIC
2 2 o
Z-boson production at RHIC is quite useful since it allows Ay~ Eq(gaq+qu)Aqﬁq , (158
us to measure the polarized parton distributions at relatively Eq(g§q+ gfq)qq

large x. Also, the parton distributions enter as a different

linear combination in th& double-spin asymmetries than for evaluated neax=/r=.18. Putting in the appropriate cou-
production by virtual photons. This is helpful for disentan- plings gives

gling the various contributions. One can also make use of

parity violation to consider additional asymmetries which .29AuAu_+.37(AdAd_+AsAs_)

vanish for virtual photon production. The major limitation is Ay=- — — . (159
the event rate. Certain asymmetries will be able to somewhat .29uu+.37(dd+ss)
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10° g , , , . . All sets assume an SB) symmetric polarized sea and
. BN 10 take a negative down valence and a positive up valence dis-
107 EA _ 3 tribution. For the GRSV set, the sea quark distributions are
-~ AN - — — NLO (q9) - : o
> 10" N NLO (qitqg) 1 negative everywhere, while for the GSA set they are positive
< o aamag at intermediate and large and become negative only at
10 E S 4 . )
é i / small x. Thus, for the GSA setAgq>0 in the x range of
s 107 F N A 1 interest,x=.18.
N -2 o~ T There will be some cancellation between the up- and
N VS = 500 GeV N 4 o ;
3 down-quark contributions, but since
107 [ T
Au,(.18 2.5-4 (160
-4 [ 1 . 1 R 1 R 1 . 1 . 1 . ———=2.5-4,
10 20 40 60 30 100 120 140 _Adv(18)
(a) M (Cev) the u contribution will still be bigger. As a result of the

smallness of the polarized sea quark distributions,

L Ag=Aq,. Hence, we expect
A>0: GRSV, A;<0: GSA (161
Ay in the Z-pole region.
. Figure 3b) presents\, for 5<M <125 GeV. The HOCs
—0.02 - \\ ] have the same behavior as for virtual photon production, for
‘\\»—7“\\ exactly the same reasons. As well, the siglAgfpredicted
—0.04 - GSA N 1 in relations(161) is verified. There is roughly a 4% variation
\\ in A, between the two extreme cases. This means that one
-0.06 - W can rule out one case or the other, but not much more. Hence
AR PR we must examine other asymmetries in order to do better. It
20 #0 80 80 100 120 140 \yould also be interesting to look & in the low mass
(b) M (GeV) region, where the virtual photons dominate, due to the large
) event rate. As mentioned in the previous sectidp, may
FIG. 3. (@) The cross sectionda/dM, versusM, for Il y,rn out to be larger than expected in that region.
production inpp collisions at\/S=500 GeV; (b) corresponding Define the single-spin asymmetry as
double-spin asymmetryA,,, for various sets of polarized parton
distributions. Lines as in Fig. 1. 1 oy 1 oy
Al—Aul_,PB Guu_ |U_PA o-uu. (162)

In general, forZ production, the GSA and GRSV sets
correspond to two extreme solutions, with the GSC set lyingrhere is an overall minus relative to the definition often used
somewhere in between. So, as in the last section, we will try44], owing to Eqgs.(14), (15). This asymmetry is nonzero
to understand qualitatively only the GSA and GRSV predic-due to the parity violatingZ vertices. It is approximately
tions, since one can make a clear prediction for those setsgiven by

S (05, 92)(2aa)] (93, +92)uu+(g2.+02,)(dd+ss)

n . Zd[2028,q(aAa—aAq)] JauJoulyAU+gagGuad,Ad
-

Oaud,UAU, + gaqd, qdAd, Au,Au+.17d,Ad  .luAu,+.17dAd, 163

(92,4 g2, uU+ (92, + 0% (dd+ss) .2auu+.37(dd+ss) .20uu+.37(dd+ss)

where we took §)qs.{X)=(A)q(x) as is done in all the inthe second term of E¢163). The net effect is that the first

sets considered. Noting that and second terms become comparable in magnitude. Hence
A, is directly sensitive ta\u andAd. Also, theAu andAd
d_(.18) contributions are comparable, unlike in virtual photon pro-
== (164  duction. The second term is reasonably well constrained
u(.18 from DIS, while the first term is almost completely uncon-

o _ strained(except in maximum magnitugleFrom the respec-
and taking into account relatiof160), we observe a rather tjve signs of the sea quark distributions, we exp&cto be
large cancellation between thidu, anddAd, contributions  most positive for the GSA set and least so for the GRSV set.
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006 —pr——7T— 77— 77— ] o(+,+)+o(—,—) oywto Ouu
0.04 | amms i O_E 4 = 2 = 7,
4, = ==a | (167
0.02 // GSA -
0.00 —_ assuming equal running in all four polarization modes.
gsc - ] Hence, the number of events is cut in half, but the asymme-
=0.02 - 1 try is doubled. So
-0.04 - VS = 500 GeV . AAPY 1 AA .
—-0.06 | - AI|:|>V —‘/2 Al .
-0.08 1 | | ) | 1
20 %060 80 100 120 140 This means that we gain roughly a factorv& in preci-
(a) M (GeV) sion by looking atAY. One could argue, of course, that
there are twoA: A, andA,,. Then, one could combine
e them to improve the errors. Theoretically, the two asymme-
] tries are equal, but experimentally they only approach each
0.05 - ] other in the limit of infinite events. The problem is that these
ASV ] are not independent measurements. Hence, one cannot sim-
0.00 ply add theAA, in quadrature. If we defind, as being the
] experimental average of the tw&, a proper treatment of
-0.05 [ ] the errors yields
-0.10 | ] AA_\, 11— APV2 A:TV—A_q vz
] A WNol AT AV
20 40 60 80 100 120 140
(b) M (Gev) ] APV2+1 " (169
/_NO APV2 2

FIG. 4. (a) The single-spin asymmetry, , versusM, for 11~
D e e o200 GoV ) Corespondng  in the fimit of small AT, A /A&~ AATYIATY, butin gen-
pin partty g asy i g eral AA /A >AATVIALY . Statistically, one therefore does
best withA[Y when two polarized beams are available, al-
Figure 4a) showsA, for 5<=M <125 GeV. We observe P

the predicted behavior. At small, A, vanishes as expected thoughA, is not much worse for typical experiments pro-
since the parity violating contribution also vanishes. The duction in pamcular where the fractional errors should be
peak is just above thE-pole and there is a well measurable Virtually identical in A; and inAfY. Of course, the above
separation between the various sets. So the sensitivity to thnalysis is only strictly valid in the limit of full beam polar-
sea quark distributions has improved as compared,to ization. Inclusion of partial beam polarization will not
One can take advantage of having two polarized beams tehange our conclusions, however, since we can always “pre-
improve the statistical significance of the parity violating tend” that the beams are fully polarized. Then we are mea-

asymmetry. Define the two-spin parity violating asymmetrysuring the polarized parton distributions multiplied by the
as corresponding beam polarizations, rather than just the distri-

butions themselves. When considerixg (or rapidity) dif-
ferential cross sectiong), is the quantity of interesf44]

B A
APV_ o(t+,+)=o(=,7) = 2(ou/P"+0u/P") since it is more directly related to the ratio of the polarized to
o(+,+)to(—=, =) | pas, 200wt oy /PP unpolarized parton distributions.
(165 Figure 4b) gives A" for 5<M =125 GeV. It has ex-
actly the expected behavior. Sinad\}; V= (1.5~2%)/P, we
2 oy A g can clearly distinguish between the p()jsible sglutions, and
=P ou for PR=P"=P, (1660 nence they are quite sensitive to ballu and Ad in the
regionx=.18.

where the last approximate equality holds simge< o, as

o, involves two polarized parton distributions and is thus
relatively rather suppressed. We see explicitly ﬂt\ﬁf’ is It is important to determine the intermediate- and laxge-
proportional to 1P (relative to experiment not 1/7% as is  behavior of the antiquark distributions at higtf since this
often assumed. In order to get an idea of the statistical errafalong with the largec gluonic behavior influences the be-

on Aﬁv, we will make the simplifying assumption that, ex- havior of the antiquark distributions in the limik—1 at
perimentally,PA=PB=1. Then, the total number of events lower u?, relevant to deep-inelastic scattering. This is be-
is given by cause when one evolves from a low energy scale to a high

XI. W*-BOSON PRODUCTION AT RHIC
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10° —— , . , — — . the other terms are of order one and will tend to largely
: cancel among themselves. Clearly, things are somewhat

more subtle than that though, since the term-7 in Eq.

(71) makes the finite virtual corrections small and negative.

Also, the corrections to thqasubprocess clearly increase
with decreasingy/S (i.e. increasingr). In order for the net
correction to be positive, there must be a large, positive con-

10 ‘ — — — NLO (qq) E tribution arising from thegq bremsstrahlung. Such a large
NLO (q3+qg) term4 is indeed present in- Eq132), namely., the term
~—4(1+w)In(1—w) which gives a large, positive contribu-
o . . . . tion from the integration region neav=1. There is also a
200 300 400 500 600 700 smaller term~4 In(1—w;)&(1—w) arising from the *“+”-
(a) V'S (GeV) distril_)utiqn term. AST increases, these terms_ make a Ia_rger
contribution relative to the other, potentially negative,
3 bremsstrahlung contributions. The other term arising from
] the “+"-distribution could give rise to sizable positive cor-
rw rections as well, but its exact relative magnitude depends on
10?2 | the details of the parton distributions. In the above picture,
: the behavior of the corrections is well understood.
Considering the decay channel

o (pb)

Wi—>,ui(;/)ﬂ,
for S=500 GeV, one predicts roughly 105 000" (x*)
and 27 000N~ () events. Not taking into account the de-
tails of the cuts, this corresponds roughly to an error on
(double- and single-spirasymmetries of

o (pb)

(170

-1 L 1 n 1 n 1 L 1

200 300 400 500 600 700

(b) VS (GeV) we 3% w 6%
AAm === AANLW==Z=- 171
m s MmTags 00

FIG. 5. (a) The total cross section faN* (—1" v;) production,
versus+/S, in pp collisions; (b) corresponding cross section for

> _ ) S With such large rates afS=500 GeV, it is not unreason-
W™ (—1"»)) production. Lines as in Fig. 1.

able to consider going to loweyS as a way of probing

energy scale, the largebehavior influences the evolution at largerx. In fact, the whole energy region

lower x, and vice versa. Usingy= production at RHIC, we 250<\/S<700 GeV, (172

can gain insight into the<—1 behavior of the antiquark

distributions, where other experimentsuch as deep- is interesting. Experimentally, the higher energies may be
inelastic scatteringwill have little or no sensitivity. This difficult to access. For the case of greatest experimental rel-
statement applies equally to the polarized and unpolarizegvance(500 GeVj, we are most sensitive to=.16.

antiquark distributions in the proton. The double-spin asymmetries adopt a simple form
W= production at RHIC is ideally suited for this purpose

because of the high event rate, resulting from RHIC’s high . AuAd _ AuAd
luminosity, and because of the flavor specificity of the cross Al‘{" =, A}f’ =, (173
sections. In Figs. @) and Zb), respectively, we plot the ud ud

W*—I1*y and W™ —I"», production cross sections for W - — W - _
200< \/S<700 GeV and for decay into one type of lepton SO thatA" is sensitive toAd andA;" is sensitive taAu.
(i.e. muons. Since one cannot measuké on an event by From the signs of the polarized antiquark distributions for

event basis, we have integrated over it. The HOCs have thif€ respective sets, we expect
same structure as foy* and Z production. At this point

N W
though, it is instructive to look at the variation of the QCD GSA: A <0, Ay >0,
corrections with\/S. We understand the origin of the nega- Wt W
tive qg contribution, from the discussion in Sec. IX. The fact GRSV A} >0, A} <O. (174

that the relative magnitude of thggg contribution increases . B

with \/S is understood to be a consequence of the increasing A}?’ and A|V,V are shown in Figs. ® and Gb), respec-

phase space in the initial state, reflected in a larger integrdively. The signs are as expected. We also see |thgt in-

tion region overx, andx, (or w). What we are really ob- creases a§/S decrease§.e. x increasef which is a conse-

serving is the effect of varying, sinceM =M, for all \/S. quence of relationg150. This is a general trend which
One normally thinks of the large QCD corrections as aris-nakes low energy measurements feasible. With high preci-

ing mostly from the term- 72 in the qq subprocess, which SIONA; measurements DOESiNe\@: 500 GeV, there is no

comes from the virtual corrections. The rationale is that allproblem in disentanglindu andAd nearx=.16.
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Ay 4,
-0.4 1 1 1 )
200 300 400 500 600 700 200 300 400 500 600 700
(a) V'S (GeV) (a) V'S (GeV)
0.20
0.15
A
RT:
0.05
0.00
-0.05
~-0.10 N | N | N | N | N ] 0.0 N | N | N | N | N
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(b) Vs (GeV) (b) Vs (GeV)
FIG. 6. (a) The double-spin asymmetrp,,, for W' (—1" ) FIG. 7. As in Fig. 6, except here the single-spin asymmeXry,

production inpp collisions, versus/S; (b) corresponding asymme- is plotted.
try for W~ (—1"»,) production. Lines as in Fig. 1.
Now the two terms are more comparable in magnitude, since
For A}/lV*, the HOCs have the same structureﬁqﬁ/s*:'z, u<d at largex and all the sets assundau=Ad. Thus, the

magnitudes ofA\u andAd are important as is the sign Afu.

for the same reasons. F@rﬁvf, the qg corrections have .
In this case, we expect

opposite sign since it is now thigy subprocess which enters.
Another interesting feature of this and other asymmetries in _ -

W* production is that the effect of the HOCs is comparable A" (GSA>A!" (GRsSV), (178
to the expected uncertainty in their measurement. Hence, a

complete analysis must make use of the QCD corrections igince there is a cancellation in the GRSV case. In the GSA

order not to waste the good statistics. case, there is an enhancement rather than a cancellation and
The W™ single-spin asymmetry is roughly we expect large asymmetries at sm@8, wherex is large.
h o
Figures Ta) and 7b) presen®\¥ andA)" , respectively.
. uAd dAu Ad Au We see that the behavior is exactly as expected. In all cases,
A}N = =——-—<0. (175 the distinction between the various sets is straightforward,

2ud 2ud 2d 2u more so forAY , however. ForA" , knowledge of the

HOCs is particularly important for this separation, especially
The second term is dominant over the first, but the first termat lower/S. ForA}’Vf ,we probeAu_in a very direct fashion.
does allow a distinction between sets. We expect, based orhe asymmetries are large throughout. They are roughly
the signs of the varioudd, constant for the GRSV set, but increase in magnitude in the
GS case as we go to lower energies, allowing a precise de-
termination ofAu over a wide range ok. Of course, no
single measurement should be expected to determine any
specific parton distribution exactly. One must fit all the data,
The W~ single spin asymmetry is approximately including the DIS data.
Figures 8a) and 8b) give AlY for W* andW~ produc-
— — — tion, respectively. We notice again roughly a factor of 2 en-
AW~ ﬂ_ ﬂ: A_i_ E>O. (1777~ hancement oveA,, except neal|"=1, where we are of
' " 2du 2du 2u 2d course constrained b Y=<1. Already, precisiomA, mea-

AV (GRSV)|> AV (GSA)|. (176
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ot— o —
PV
All
RW
200 300 400 500 600 700
VS (GeV.
(a) (Gev) 0.1 F -
- — — NLO (qq)
1.0 v T v T v T v T T I —FF—F—F— NLO (qa+qg) 1
1 0.0 . ! . ! . ! . ! .
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FIG. 9. The ratio of theW (—I| 1) to W' (—1"») cross
sections,Ry,, versus/S, in pp collisions. Predictions are made
using both the MRSG set and the MRSG set withdhdistribution
set equal to ther distribution. Lines as in Fig. 1.

0.0 — lence to sea quarks is increasing withthe Pauli suppres-
200 300 400 500 600 700 . I i _ .
V5 (Ge¥) sion effect will increase withx such that theu/d ratio de-
(b) € creases as there are more up valence quarks than down

valence quarks, leading to greater suppression of the up sea.
More recently, low energy fixed target Drell-Yan experi-

ments at Fermilab have helped to disentanglend u at

lower 2.
surements were possible, and ’%E’_ , with the extrav2 in The quantity of experimental interegain considering
precision, can pin down rather tightly the allowed sets ofihe muonic decay channeb

parton distributions.

Z and W= production at RHIC has been previously ex-
amined in LO as a tool for pinning down the polarized parton
distributions in[44,45. In those studie§Z andW™) rapidity
differential asymmetries were considered, which are quite
useful in pinning down the-dependence of the parton dis- in a crude approximation. Since theandu contributions are
tributions. The general conclusions are the same. Also, tran%]-uite well known, we directly probe/d. With =130 000

verse momentum distributions f&@ and W= production at ; ;

, . . events, we can measuRyy, to high accuracy. At this level,
RHIC were studied using Monte Carlo methods which SUM e are again sensitiver)Nthe e?fect of theyHOCs
up certain bremsstrahlung graphg#6]. This observable is Figure 9 showsR, for 200< JS<700 GeV. Two sets are
known to be sensitive to the polarized gluon distribution. considered. First t"r‘]’e MRSG set and secoﬁd the MRSG set

Another interesting issue is the rafiid at largex and with d set equal tal. We see a clear separation between the

2 . . . .
&/d'_""?":ht'ls “”re'atzd fo _Sp'”_pfhys'cf; K”O"‘:fdtgetf’f tTetwo possibilities for ally/S. This will therefore be a crucial
urd ratio at largex and - gives Intformation on that ratio a experiment for understanding th&d ratio. This probe, at

2 . . ._
even 'afgefx at !ower,u_ ' where_ there is very little experi PHIC, has previously been studied in leading order and the
mental information. This was discussed at the beginning o . :

same conclusions were drawsee, for instancd44,49).

this section. DIS is insensitive to the sea quarks at large

since they are masked by the valence quark distributions.
From the experimentally measured violatip4i7] of the  XIl. FORWARD-BACKWARD DRELL-YAN ASYMMETRY

Gottfried sum rule[48], we can conclude thai(x) # d(x) As discussed in the Introduction, the principal purpose of
for all x. Maximal violation of SU2) flavor symmetry is performing a high precision measurement of the forward-
usually taken to occur at larget where RHIC is sensitive. packward Drell-Yan asymmetry at Fermilab is to precisely
A typical assumption fox (and %) accessible to RHIC in  determine sifi . In order to accomplish this, it is necessary
W= production isu/d=.5 [41]. This is based on the Pauli to take into account the QCD corrections. We have seen that
exclusion principle and explaining the Gottfried sum rulein the case of the spin dependent asymmetriep prcolli-
violation. The idea is that since the relative number of va-sions, theqg subprocess often destabilizes the asymmetry.

FIG. 8. As in Fig. 6, except here the two-spin parity violating
asymmetryAfY, is plotted.

_otw)_du
oW ud

w (179
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10’ ——r————————————— what smaller there. We can see this explicitly by noting that
h i Lo ] the leading order subprocess level asymmetry is proportional
________ 3 to
% . - — — NLO (gqq)
Q 0 _ — NLO (qq+q9) _ q galgaqgvlqu
3 g ] FB™ T2 2 o2 (a2 o2 (181)
& 0® [ ] (9217 9,1) (92T yg)
= i ]
E 107" E N 3 at theZ-pole. Hence there is an overall small factor
© 1072 L 4 1
Up1=— 5 (1—4sir? 6y), (182
1073 T T TR S 2
50 100 150 200 250 300
(a) M (GeV) which is sensitive to sféy, since sik 6,~.23, so that a
small fractional change in sir,, leads to a large fractional
0.8 ———————— change inAgg .
o 1 Figure 1@b) shows the effect of the QCD corrections on
Agy oer ~ i Arg. We see that, unlike the spin asymmetridsuble-spin
0.4 - . in particulay, it is the qqg subprocess which accounts for the
ozl ] dominant corrections. We understand this in the following
way. From Fig. 10a), we see that the magnitude of thg
0.0 correction too" "B is rather small compared to that of the
oo L i subprocess. Thus, in order for thg subprocess to make an
appreciable contribution té\rg, the corrections tar" B
—04F y ] would have to be quite different from those 6 *B. Since
I ) ) ! ) . ] one has the same parton distributions in both cases, all the
50 100 150 200 250 300 difference arises from the differences in the subprocess cross
(b) M (GeV) sections. As we have explained before, the dominant correc-
tions come from the term-In(1—wj) in Eq. (132 which has
FIG. 10. () The cross sectiondo/dM, versusM, for I*1~  the same form in botls" "B and o™ B. Consequently, the

production in pp collisions at VS=1.8 TeV; (b) correspond- (g corrections too™*B amount to a multiplicative factor

ing forward-backward lepton asymmetrfrg, obtained using Wwhich basically cancels in the ratio, in the mass region of
sir? @,=.2315. Lines as in Fig. 1. interest. We also expect small corrections Apg arising
] from thegq subprocess, for the same reasons. The question
As we will see, for the forward-backward asymmetry, the,op, i \why are thejq corrections toArs observable while
corrections arise predominantly from the subprocess. The  the g corrections are not? The correction basically arises
explanation for this feature will be given in detail. ~ from the differences in the hard bremsstrahlung contributions
_In F'_g'_ 10@), we presentlo/dM for |7 prgductlon N 0 oF*B, KI%F=B given in Eqs(90). We note that the dif-
pp collisions at \/éz?;S TeY. As us+ual, we include only ference vanishes in the limit— 1, relevant for the largé
one type of lepton-paii.e. u ™~ ore”e”). Also, asinthe  |init and for the dominant corrections teF B at lowerM.
previous numerical calculations, we use the MRBG| un-  This explains the vanishing of the corrections Mis in-
polarized parton distributions in calculating physical cross.reases. At intermediate and Idw. however. there will be

sections. The peak in the cross section is quite a bit largelyme contribution tAp arising from smallew, in which
than at RHIC due to the higher ener@e. smallerx) and the 4G.F—B . .
se the terrmk;; ;" ~=2(1+w)In w, contributes negatively

valence-valence contributions. Here, and throughout, we us ) , e ;
oppositely to the Born terjmin a significant fashion, thus

=M. The effect of varyingu will be discussed later in this ) o .
oy yings accounting for the reduction in the magnitudefgf; . Now,

section. _ , FoB
Let us define the forward-backwartepton) asymmetry for the qg subprocess, the differences in t{f all van-

as ish in the limitw—1 and are small at smallev, thereby
_ accounting for the relative smallness of tg corrections to
doPPFB/dM Are - .
Apg=— o, (180 In the end, the corrections #:g almost exactly amount
doffi" " /dM to a multiplicative factor(less than Lwhich is given in Fig.

11. We see that it increases with increasing mass, approach-
whereo" =" were defined in Eq(12). We expect largé\cg  ing unity. In theZ-pole region, it is~.975. This result is in
in pp collisions in mass regions whei— vy interference  good agreement with the finding ¢10], considering that
dominates since the asymmetry arises, at the subprocetigey use a different definition &z beyond LO and a more
level, from axial-vector interference so that tAecontribu-  involved approach, taking into account experimental cuts.
tion is pure axial and the asymmetry is unsuppressed. At thAalso, in their approach, one could not understand properly
Z-pole, on the other hand, the vector couplings enter and the structure of the QCD corrections, since the hard brems-
lead to a suppression, and so the asymmetry will be somestrahlung is handled via Monte Carlo integration. The spikes
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1'OO"'I"'I""I""I""I"II 0.3 L
] A 02| B
/‘ FB VS = 1.8 TevV
] 0.1
J- 1
<3
-0.1 - i
2 R —0.2 | i
< 0.2 )
80 85 90 95 100
| (a) M (GeV)
0.10 v T v T T T
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( e ) 0.05 L sin Bw i
FIG. 11. The ratioAN;%/ALS | using theAWC of Fig. 10b). 231
.2315
at M =89.3—89.5 GeV simply reflect the fact thaf;° and 232
ALS vanish atslightly different points and intersect just 0.00
above the zero.
Figures 12a) and 12b) showAgg in theZ-pole region for
sir? 6,=.2315. The effect of the QCD corrections is shown -0.05 , ' , L . L
as is the effect of changing i, by an amount oft.0005. 88 89 90 o 92
The magnitudes of the effects are comparable, but the char b M (GeV)
(b)

acter is distinctly different. Changing $if,, amounts to a
shift in Agg rather than a multiplicative factor. As a result, ~ FIG. 12. (@) The Agg of Fig. 10b), but in the mass region, 80
changing sif  shifts somewhat the zero 5. Since the ~=<M=100 GeV. The effect of varying sfréhy by +.0005, on
QCD corrections do not shift the zero appreciably, one seefFs - is shown.(b) Same asa), but in the mass region, 88\
that measuring precisely the zero Agg may allow one to <92 GeVv.
get a good handle on g, without worrying about ne-
glected higher order QCD effectand possibly other uncer- fects. Normally, one would not consider the latter effects at
tainties such as choice of parton distributipnslow pre-  such highu?, but as we are dealing with a very high preci-
cisely this may be measured is left for a separate studysion measurement, they should not be taken for granted as
Using the GRV NLO MS) set[50] produced no appreciable being negligible. There is also a pure QED contribution to
change in the predictions. The CTEQ3M ¢8tl], on the Arp at ordera®, which was originally studied in connection
other hand, gave slightly different predictions for thewith e"e”—u™ ™ [52].
forward-backward asymmetry. Hence, closer agreement be- With £=110 pb*, Agg for e"e™ pairs in theZ-pole
tween the various sets is required before precision determtegion was measured with a statistical error of roughly
nations of sif 6, are possible. +20% [53]. The maximum possibl€ for Run Il after sev-
The fact that the zero okgg does not change appreciably eral years running is 100f8 [7]. We will take
under HOCs is understandable since the zero essentialkmax="70 fb~! as being a more realistiGif not optimistic
arises from the zero in the subprocess cross section, which kalue in determining the best possible measuremeA-gf
turn depends oM in a way independent of parton distribu- Then, statistically, we expect to be able to meashgg to
tion effects. Each subprocess, at NLO, is proportional to dat best +.8%. Hence, our statistical error goes down by a
Born term with a well-defined zero. So any shift in the zerofactor of roughly 25. The same statement applies té &in
must arise predominantly from the fact that each quark flavoirhe statistical error on st of =.003 which is obtained
passes through zero at slightly different valueshof The  from 110 pbt is reduced to+.00012 with 70 fbL. If one
NLO corrections, however, do not appreciably affect thetakes into account two detectors and both muons and elec-
weighting of the various quark flavors relative to the LO trons, in a best case scenario, we could multiply our number
weightings, since the same parton distributions enter. Hencef events by a factor of 4 and get.00006 as an error on
there is very little shift in the position of the zero. sir? 6. For a more realistic 30 fif, we get an error of
We studied the effect of varying. on Agg and it was  +.00009=*.0001. If we do not combine the data from both
found to be negligible. This is not unexpected since ghe detectors, muons and electrons, this goes up 10002. Ei-
dependent part of the corrections has the same foratitf  ther way, the error is very small.
and o™ "B, Hence, the major uncertainties are in the parton Of course, this error analysis is very naive and all the
distributions, the neglected nonleading corrections, the QEBystematic errors must be put under tight control for a real-
corrections and possible intrinsic transverse momentum efstic ultrahigh precision measurement as discussed above. A
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more detailed analysis is beyond the scope of this papebetweernu andd valence contributions. With large rates and
Nonetheless, if any of the above scenarios could be realizeasymmetries\= production can directly measure the polar-
this would be the best sir,, determination available. In ized sea and valence distributions as well as the unpolarized

fact, it would be better than the world average. Even withy/d ratio. Lower energy running could directly measure
lower luminosity running such as 10fhand not combining andd at rather larges (both polarized and unpolarized

muons and electrons, the measurement is of the same preci- ;| QCD predictions for the forward-backward lepton
sion as the SLAC measurement and hence could help t9symmetry at Fermilab were made. The QCD corrections
resolve the SLAC-LEP discrepancy. amounted almost exactly to a multiplicative factor on the
asymmetry which was a function of the mass of the lepton
XlIl. CONCLUSIONS pair produced. This function was found to be less than unity
| throughout and approached 1 with increasing invariant mass.

Complete analytical results for mass differential Drel X
In the Z-pole region, the factor was roughly .975. It was thus

Yan type cross sections relevant to all possible initial longi- ; :
tudinal polarization states were calculated at the one-looPServed that the zero in the asymmetry was quite stable
level in QCD. Interference between bosons of arbitrary mas&inder QCD corrections. The zero was rather sensitive to
width and couplings was considered. For all observablesi™ w, however. This suggested an alternate method for
considered, the corresponding forward-backward cross sef€términing sifi 6y (.e. measuring precisely the zerdhe
tions were determined. The results were presented in a forfi€tails were left for a separate study, however. Based on
valid for all consistent n-dimensional regularization €XPected luminosities for Fermilab's Run Il and previous
schemes. A survey of constraints on allowable factorizatiorf €Milab determinations which used a standard algorithm for
and regularization schemes was given. The mechanism b&Xtracting sif éy from Agg, high precision sifif, mea-

hind scale dependences was discussed in some detail andSHrements were found to be possible at a level much better

a general fashion. than (statistically, or at worst competitive with, the best
NLO predictions for all longitudinal Drell-Yan type pro- measurements presently available and should be able to re-

cesses at RHIQW=, Z and y*) were made using polarized SOIVe the SLAC-LEP discrepancy.
parton distributions which fit the recent DIS data. The HOCs

increased the cross sections substantially and had a major
impact on the asymmetries, while preserving the features of The author would like to thank W. J. Marciano for sug-

the LO asymmetries. The exact sign and magnitude of thgesting much of the work done here and for countless valu-
HOCs depended on the details of the polarized parton distriable discussions, without which this project would not have
butions used, especially the sea and gluon distributionsseen possible. | would also like to thank F. E. Paige for
Faced with either low rates or small asymmetrig$, pro-  insightful discussions and suggestions, which stimulated my
duction did not appear very interesting at face value, folinterest in some of the work done. | also acknowledge very
longitudinal polarization. On the other hand, if the agreementiseful discussions with G. Bunce, P. van Nieuwenhuizen, N.
between the various parton distributions at smxals acci-  Saito, M. Tannenbaum and T. L. Trueman as well as useful
dental, rather than constraineg;, production at RHIC could correspondence with W. Vogelsang. Finally, | would like to

demonstrate that possibility by yielding an unpredictedthank Z. Parsa and the ITP of UCSB, where part of this work
asymmetry. TheZ-asymmetries were all quite sensitive to was done, for their hospitality during the workshop on future
the sea quarks, the parity violating ones being the largeshigh energy colliders. This work was supported by U.S. De-
with unexpected sensitivity due to a coincidental cancellatiorpartment of Energy contract number DE-AC02-76 CH00016.
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