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Triangular mass matrices of quarks and Cabibbo-Kobayashi-Maskawa mixing
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Every nonsingular fermion mass matrix, by an appropriate unitary transformation of right-chiral fields, is
equivalent to a triangular matrix. Using the freedom in choosing bases of right-chiral fields in the minimal
standard model, reduction to triangular form allows for simple analytic expressions for the CKM matrix in
terms of quark masses and a minimal set of parameters. Furthermore, diagonalization of the quark mass sectors
can be shifted to one charge sector only, without losing the concise and economic triangular form. The
corresponding effective triangular mass matrix is reconstructed, up to trivial phases, from the moduli of the
CKM matrix elements, and vice versa, in a unique way. This reconstruction may also be relevant for the
invariant measure of P violation which we briefly discus§S0556-282(98)03811-9

PACS numbses): 12.10.Dm, 12.15.Ff, 12.15.Hh

I. INTRODUCTION rem that is central to our analysis. Section Il contains an
interpretation of triangular mass matrices in terms of quark
Although generation mixing, eventually, must be due torepresentations and quark mixing. Making use of the decom-
as yet unknown physics beyond the minimal standard modeposition theorem, we go one step further in Sec. IV, and shift
its parametrization in terms of the Cabibbo-Kobayashi-diagonalization to one charge sector only, either to the cus-
Maskawa(CKM) matrix is quite restrictive and could, in tomary down-sector or, equivalently, to the up-sector. This
fact, turn out to be inconsistent with precision measurementgrocedure is illustrated by an analytic example with two gen-
of weak decays an@ P-violating amplitudes. With the re- erations. The general case of three generations is treated in
striction to three generations unitarity of the CKM matrix Sec. V which also gives explicit and analytic formulas for
alone impose$n0n|inea} constraints on observables which the entries of the CKM matrix. In Sec. VI we brlefly discuss
may or may not be obeyed by experiment: see[d.@,3,4. the rephasing invariant measure ©P violation which ex-
Further constraints are obtained if the mixing matrix is de-presses this quantity in terms of observables only. In
rived from the primordial mass matrices of up-type quarksSec. VII we perform the reconstruction of the effective-
and of down-type quarks. In adopting this latter strategy an@ngulaj mass matrix in terms of the elements of the CKM
before even invoking Specific models of quark mass matrimatl'ix. The final section, Sec. VIII, summarizes our results
ces, it is important to formulate the mass terms such that afind offers a few conclusions.
redundant, unobservable, features are left out from the start.
Only if this is achieved can one hope to sharpen the tests of||. REDUCTION OF NONSINGULAR MASS MATRICES
compatibility of the CKM scheme for three generations with TO TRIANGULAR FORM
experiment. As we shall see below this means much more

than the well-known eliminating irrelevant phases by redefi- In order to set the notation we start by recalling a few
nition of basis states. well-known facts about the relation of the quark mixing ma-

In this paper we show that the essential information conifix in charged-currentCC) weak interactions to the mass
tained in a given, nonsingular quark mass matrix can be exnatrices in the charge-2/3 up-quark sector and the charge

pressed in a particularly economic and concise way. Making™ 1/3 dovyn_—quark sector. . _

chiral fields every nonsingular mass matrix is equivalent to 4i0ns by purely left-handed currents, giving rise to the effec-
triangular matrix. Furthermore, simultaneous diagonalizatioriive “V—A” Lorentz structure at low energies and maximal
of two charge sectors can be shifted to one of them withouParity violation. The right-chiral fields in the three-
losing the simplicity of triangular matrices. We study ex- generation spinor field

amples for the cases of two and three generations, with and

without additional model assumptions. Implications for in- W=(u],d] ,Ug,dr,C S ,CR,Sr.t D[ ,tr.bR)T (D)
variants that describ&€P violating observables are also ) ) ) ) .
touched. are inert to charged-current interactions and, being singlets

In Sec. Il we formulate and prove the decomposition theoWith respect to the weak SB) structure group, are fixed
only up to independent, unitary transformatioUéQ”) and

U@ in the up- and down-charge sectors, respectively. In
*Email address: Haeussli@tph204.Physik.Uni-Leipzig.DE Eq. (1) the primes refer to the weak interaction states, and
"Email address: Scheck@dipmza.Physik.Uni-Mainz.DE the mass eigenstates will be denoted by the same symbols
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57 TRIANGULAR MASS MATRICES OF QUARKS AND . .. 6657

without a prime. Thus, if the mass matrices of up- and downdent vectorsv®=(m;;, ... my,), i=1,...n. Likewise,
quarks in the basiél) areM) andM (@, they are diagonal- the rows ofU={u;} form a set of orthogonal unit vectors
ized by the bi-unital’y transformations u(”:(uil, . ,uin), |:1, R Equation(4) then reads
VUWOMWyWT gqg DN @y DT 2 i
- R - R @ (h— G
v ET,ku , 1=1,...n.
k=1

The Cabibbo-Kobayashi-Maskawa mixing matrix refers to
CC interactions, hence to left-chiral fields only, and is given

by the product These latter equations are useful in determining the matrix

elementdt;} of T from those oM ={m;,}. For example, in

VKM — /(W (T (3) the casen=3 we have
. _ . . 3
The CKM mixing matrix is determined by the mass matrices t 2= 2 5
in the charge+ 2/3 and—1/3 sectors and depends only on [tail = [mal®, ®)
the unitary transformations acting on left-chiral fields, up to
the well-known freedom in fixing the phases of its entries 3 3
(see e.g[5]). The unitaries acting on the right-chiral fields, )= ;1 M3 Mo /1], |t22|2=k2l IMy 2=t (6)

V& and V¥, remain unobservable. We shall make use of =
this well-known freedom below. 3 3

In this section we show that the essential information that * * * * *
determines the CKM mixing matrix can be encoded in mass '3~ gl MacMak /11 t32_{§1 m2km3k_t3lt21} / t2z
matrices of triangular form, either upper or lower triangular,
provided these are not singular. For definiteness, in what 8
follows we shall always choose lower triangle matrices: |t33|2=k21 |Magi|2—|tz1]?—|ta?. (7

u d - (uld) _ :
T and TO, with TY=0 for all k>i. Note that Eqs(5)—(7) reflect the non-uniqueness of the uni-
The importance of this observation for the physics of cctery U in Eq. (4) noted above. -
weak interactions of quarks will be discussed below, in a N @pplying the decomposition theore() ;O thelmass
rather general framework for generation mixing. The math-Matrix of the quark sector with charge q=+35 or —3, let
ematical fact is based on the following lemma and decomM ® be such that it connects right-chiral fields to conjugate
position theorenj6]. left-chiral fields. The mass terms in the Lagrangian have the
Lemma:Let M be an arbitrary, nonsingular matrix of di- form
mensionn and letH=MM, so thatH is a positively defi-
nite, Hermitiannxn matrix. The matrixH can be repre- Lonase= > YMOW+H = (V) M@ (¥)z+H.c.
sented in the fornH=TT", whereT is a nonsingular, lower q q
triangular, matrix of dimension. R
The lemma is trivially true in dimension 1. Far>1 itis  Now, replacingM(® by the product on the right-hand side
proved by induction with respect 1o, see[6]. (RHS) of Eg. (4), the unitary matrices are absorbed by a
This lemma is used in proving the following theorem:  redefinition of the right-chiral fields
Decomposition theorenAny nonsingulamn X n matrix M ‘) L,
can be decomposed into the product of a nonsingular, lower {ug"™.n=1,2,3={ug.Cr.tx},
triangular matrixT and a unitary matrixJ, {dr™ n=1,2,3={dk,sk.,bR},

M=TU, with Ty=0 V k>i, UU'=1L (4 g0 that the general mass Lagrangian becomes

This decomposition is unique up to multiplication dffrom s 3
the left by a diagonal unitary  matrix Lmase X U MTWu™ 4+ > d/ MWTAOGHM L H e,
W=diag€®s, . .. ,e'“n). n,m=1 n,m=1
Proof. By the lemma the Hermitian matrixi=MM" ®
equaIsTTT, with T a lower t[iangle matrix. This being non- \whereT™ and T are 3x 3 (lowen triangular.
singular one calculated =T~ *M and provesU to be uni-
tary: Indeed, MMT=TUU'T'=TT". Multiplying by T7*
from the left and by T") ! from the right,UUT=1. Sup-
pose now that there is more than one decomposiéignsay
M=TU=T’U’, whereT andT’ are(lower) triangular. This Having shown that the essential information on mass ma-
means thaff=T'W, whereW=U'U" is unitary. The re- trices in a given charge sector, by the decomposition theo-
quirement that botfm and T’ be lower triangular fixe§V to  rem, is fully contained in their triangle form, we now pause
be diagonal. to interpret this result in terms of the physics of generation
Note that the decomposition theorem is equivalent to themixing. For the sake of simplicity let us consider the case of
Schmidt orthogonalization procedure. To see this we intertwo generations which, in fact, need not be identical replicas
pret the rows of the matrid ={m;} asn linearly indepen- of each other. Let the fermions of the theory fall into two

Ill. INTERPRETATION IN TERMS
OF GENERATION MIXING
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irreducible representations of the structure group,sagnd  resentationg, andp,, while the off-diagonal block contains

pu » of dimensionsn; andn,, respectively, and denote the the physics that causes mixing via the mass matrices.

two sets of basis states which span these representations byFor instance, with this interpretation in mind, it seems
¥, and¥,, . Let us assume that we are given an operator Natural to assume the diagonal blocks to be the same for each

whose representation in the given basis has triangular forngle€neration. This is equivalent to saying that if electroweak

Viz. interactions were switched off quark masses in a given
charge sector would be degenerate. As showhlij and

. [Ty O [11], in the case of two generations, this assumption fixes the
:(T21 T22>’ Cabibbo angle in terms of the quark masses. Wiith w4

denoting the masses of the first generation, regs=m, and
Km1=my, andm,, u, denoting the masses of the second gen-

where the diagonal blocks;; andT,, are square matrices of . .
g Bu1 22 q eration, saym,=m, and u,=m,, one obtains

dimensionn; and n,, respectively, andr,; is an n;Xn,

off-diagonal block. A unitary transformation

- -~ N ++/

R=diagR, ,R,) of the bases will take the operatbrto cos 0= Mipa ™ VMo . (10)
V(Mg +my) (g + )

T =RTR'= In the case of three generations, as worked outLitj, the
same assumption leads to an analytic expression of the CKM
matrix (3) in terms of the quark masses and a few parameters

Thus, the subspace spannedBy is an invariant subspace: \yhich has a remarkable similarity to established phenomeno-
the subspac#’, is not. In this situation the combined repre- |ggical forms[12].

sentation spanned by{ ,¥,,) is said to be reducible but
indecomposable, and is written as a semi-direct sum

R TR/ 0 )
RiTzR RiTR))

IV. SHIFTING DIAGONALIZATION TO ONE

SECTOR ONLY
piPpy - ©)

In computing the CKM matrix3) one may proceed by
This framework is completely general. It seems to us théndependent diagonalization of the triangular matrig&¥

most economic and natural parametrization of generatioandT(® of Eq.(8), by means of bi-unitary transformations in
mixing. Indeed, after extracting all unphysical phases, byeach charge sector: cf. E(R). As an alternative to this te-
redefinition of quark fields, the triangular form contains thedious calculatiori11] we now show that diagonalization can
essential, minimal information on the mass matrix. This ispe shifted to one of the charge sectors only, whose effective
particularly important if one wishes to obtain analytic ex- mass matrix again has triangular form. This is the content of
pressions of the CKM matrix in terms of quark mass matri-the following theorem.
ces and, conversely, if one sets out to reconstruct the latter Shift theorem Given two nonsingular triangle matrices
from the observed mixing. In order to emphasize this pointelating right-chiral to left-chiral fermion fieldsT(%) and
we note that the CKM matrix3) is unchanged if the quark T1(a2), in the charge sector, andq,=q;* 1, respectively,

mass matrices! ) and M(®) are both multiplied from the and a bi-unitary transformation which diagonalize&),
left by an arbitrary unitary matrixX such that Viz.

M'(U)ZXM(U), M’ (@D =x M 0
V(qu)T(ql)ngT:T(qn_ (12)

In the case of general, non-triangular mass matrices these

formulas reflect the nine parameter freedom in reconstructing the same bi-unitary transformation is simultaneously ap-
the mass matrices from the CKM matrix discussed byp||ed to T(QZ), the Charge Changing current re|ating the left-
Kusenko[7]. If, on the other hand, we requit!® and  chiral fermion fields remains unchanged. Furthermore, by an
M’(@, with q=u or d, to be triangular before and after the additional unitary transformation of the right-chiral fields of
transformation, therX must be diagonal, its entries being chargeq,, the transformed matrix can again be cast into
pure phaseB8]. There may, in fact, be good theoretical rea- triangular form:

sons for assuming the fermions of the standard model to fall

into representations of the tyg8). For example, representa- VASERS SCHIVICIRL v (12)
tions of this type are characteristic of grad@d supey Lie - R

algebras; cfl9]. Clearly, if a multiplet of scalar Higgs fields The first part of the statement is fairly obvious and well

appears multiplie_d with an operator acting on representationﬁnown_ if the same transformatiod® is applied to the
of this type and if the electrically neutral component of the : L

Higgs field develops a nonzero vacuum expectation valuelﬁzh"""(I ;‘leld.s Of_ bOt_h_ charges, the matrix - elements
fermions of the same charge belonging to different sub# *’l-#% of isospin raising and lowering operators do not
spaces, via their Yukawa couplings, acquire triangular mas§hange. The second part is a consequence of the decomposi-
matrices. tion theorem. Here, in fact, the right-hand fact«ﬁ,&?lrr is

In the case of replication of generations the two terms inirrelevant because it may be absorbed in the unithagting
Eq. (9) are identical. All gauge interactions act within eachon the right-chiral fields. Note that the right factor of the
of the diagonal blocks corresponding to the irreducible repbi-unitary transformatiorf11) follows from the left factor:
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1

0
(91) _ (g /(90 (g — 1\ T —
v TV H (T . t Vmgmg A+ mgy/m,mg
R L ( ) 11 m{ d''ls d u'lld
We illustrate the shift theorem for the example of two 12
. . —mMmgymymgA 1
quark generations for which the basiy reduces to sVMUMSA} (13
_ ' ’ ' ’ ' ' ' INT mM.— M
¥=(ur,d(,Ur,dr,CL,S(,Cr SR) - t21:S—dAE/ ti1, too=—mgmg/tyy.  (14)
m,+mg

The mass matrices are ) _
In these formulas we have fixed phases such that all entries

a0 @ a® 0 are real and that,, is negative. The symbols and? stand
y = K(d) ,B(d) ) for

where the parameters may be chosen real, without loss of 2= Vmemst ymymg, A= ymemg— ymyms. - (19
generality. In this case they are related to the quark mass
by

TW=
PO B(U)

is now straightforward to determine the single unitary ma-
trix which diagonalizes the matrixz(7 ') and to confirm that

aWBY=mm,, a2+ W2t (W2 2y m2 this is the Cabibbo matrix witl# as given by Eq(10). One

finds
(and analogous relations for the parametéf8, (9, (9 in 1S —A
terms ofmy andms). Then C__ )
N\lA X )
a —-b 1 m@a —mgb
VW= b al VS')Ia(u) (—m b —ma)’ whereN=\(m,+m.)(mg+my), = and A being defined in
C u

Eq. (15 above. This result is equivalent to the formil).
Clearly, the procedure is symmetric in the two charge

herea andb are given b
W g y sectors. The diagonalization may as well be shifted to the

mﬁ— QW2 pharge sec_torql). In the example given this is equivalent to
a= e b=./1-a3. interchanging
C u

0 my<—=Mg, Mge—Mg.
[We note in passing that signs were chosen such TH4t

=diag(m,,—m,).] In the basis given above the step operators V. CASE OF THREE GENERATIONS
of weak isospin are represented by ) ) )
Suppose that in the case of three generations we shift

7+ 0|0 0 diagonalization to the up- or the down-sector, as described in
the shift theorem and in E¢12). For the sake of clarity we
. 1|1 0 o]0 o0 write the effective mass matri¥={t;} in terms of moduli
Iy = > ) and phases of its entries as follows:
0 O0{7+ O :
tll 0 0 Clel(p“ 0 0
0 0j0 0 T=|ty ty O |=| k€1 Be's 0o |,
where the entries are>22 block matrices,r; being Pauli ty; ts tas K3€'93  K,e'¥2  yel¢y
matrices. The transformation", when applied to both (16)

charge sectors, reads, in this basis, ) ) ) ] )
a notation that is consistent with the one employed in the

al 0| =b1 0 example discussed in Sec. IV.
For definiteness let us shift the analysis to the down-
~ 0 1/ 0 o0 sector in which case the matrix7¢' ") has eigenvalues
VY = —, {m3,m2,mZ}. From its characteristic polynomial we obtain
b1 0{ al © the following equations:
0 0] 0 1 mamzmp = a?p%y?, 17
which obvipusly c'ommytes with, . _ m§m§+m§m§+m§m§:azﬁz+,8272+ y2a2+a2:<§+,82;<§
To continue with this example let us introduce the as-
sumption, mentioned above, of choosing the diagonal blocks + 72K§+ K%Kg—2,8K1K2K3
to be the same in the two generations. This implies
aW=gW=mm., «W=m—m,, o@=gd=/mm, X o g~ @11 @3~ ¢2), (18)

and k@ =mg—my. The matrix elementg={t,} are then
found to be ' mi+mZ+mi=a’+ B2+ y?+ ikl + k3+ k5. (19
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The decomposition theoreri#) tells us that the matrixz,
Eq. (12, is determined up to multiplication by
W=diagE“1,e“2,e3) from the right, where the; are arbi-
trary. Under this substitution relatioi$7) and(19) are trivi-
ally invariant; relation(18) is also invariant because the ar-
gument of the cosine is unchanged.

Having shifted the diagonalization to the down-sector, th
CKM matrix (3) is given by the Hermitian conjugate of the
unitary matrix that diagonalizes 7 ). Adapting our earlier

results(cf. Ref.[11]) to the present situation, we obtain the

following analytic expressions for the CKM matrix in terms
of the entries of7, i.e. of the parameters, ...,p, of
Eq. (16):

Céd¢c
Fe'¢r
le'é

Bei¢B
Ee'%e
He'#H

A %A
De'?p
Gé‘e

V(M= (20

f(mg)/Ng
9(mg)/Ng
h(md)/Nd

f(mg)/Nq
g(ms)/Ng
h(me)/Ng

f(my)/Ny
g(my)/Ny |,
h(mp)/Ny

21

where the function$,g,h, and the normalization factors are
given by

f(My) = aBrykqe” ' (P1F 2" ¢a™¢p)

—aky(B2—m?)e (¢3¢, 22)
g(my) =mPk kse (#3791

— Bry(a?—mP)e i (e279p), 23
h(m)=(a®~m?)(B2-m?)—Zmf, (24

with m;=my, ormg, or my,

Ng={[(&®—m3)(B%—mj) —mjxZ](mj—m3)(mi—mj)}*2
(25)

and with Ng and N, obtained from Eq(25) by cyclic per-
mutation of fng,mg,m,). The first equation, Eq(20), is
only meant to express the matrix element&/&f™ in terms
of their moduli and their phases while E1) gives our
explicit results in terms of. So, for instance, reality and the
sign of Eq.(24) imply ¢g=¢,=0 and ¢,= . Of course,
the results fulfill all relations such a82=1—A2—B? efc.
which follow from unitarity.

Finally, we recall that one may equally well shift diago-
nalization to the up-sector in which case{,mg,m,) are
replaced by fn,,m;,m,), while the parameters in E¢16)
take different values because in determining EtR) the

charge sectors are interchanged. In this case the CKM matrix Do=

(3) is given by the unitary matrix that diagonalize¥7{)
(not its Hermitian conjugaje

VI. CP-MEASURE AS A FUNCTION
OF OBSERVABLES

As is well known the following nine quantities are rephas-

RAINER HAUSSLING AND FLORIAN SCHECK

zation of the CKM matrix one choos¢s3]:
Aia:VJ(%KM)V(k(.;KM)VJ(S’KM)*V(k%KM)* Ak a8y
€{1,2,3 cyclic.

In particular, unitarity ofV(©*™ implies that they all have

&he same imaginary partcf. [2,3,4)),

jzlm Aia! (26)
which is a parametrization independent measure of the
amount of CP violation in the standard model with three
generations. We find it useful to call this quantity the
CP-measure. It was shown some time ago that this quantity
can be expressed in terms of moduli of CKM matrix ele-
ments[14]. In the notation of Eq(20) it reads

1
J=5{4A’B*D’E*— [A’E*+ B?D?

—(A2+B?+D?+E?) +1]312 (27)
It expresses the strength G6fP violation in terms of the
observable quantitie®\=|V 4, B=|V,J, D=|V.4, and
EE |VCS| .
From Eq.(27) the following symmetries off are evident:
(i) Jis invariant under the exchandg—D. This prop-
erty reflects our earlier remark that diagonalization
may equivalently be shifted to thg-sector in which
case the CKM matrix equals the diagonalization ma-
trix, not its Hermitian conjugate.
Simultaneous interchang®—B andD«—E leavesJ
invariant.

(i)

Combining the symmetrie€§) and (ii) one sees that the si-
multaneous interchangk— D andB«—E is also a symme-
try. Finally, by combining all three of these one shows {ifat
is also invariant undeA—E.

It easy to verify that7 vanishes, as it should, whenever
one of the three generations decouples from the other two.
For example, if the first generation decouples, we have
A=1, and henc&=D=0 and J=0.

For given values of the modulA, B, and E, the
CP-measure is defined only for values of the modulusn
the interval O0,,D,), where

D, ,={ABET V(1-A2-B?)(1-B2-E?)}/(1-B?).
(28)

J vanishes at these boundary points. It assumes its maximal
value at

VA2B2E2+ (1—A2—B2)(1—B?—E?)/(1-B2),
(29

at which point theC P-measure takes the value

in principle, theC P-measure is plus or minus the expression on
the RHS of Eq.(27). The data seem to indicate thatis positive,

ing invariants, i.e. are independent of the specific parametrirence our choice of this sign.
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trivial redefinitions of phases irrelevant for physics, because
JA2B2E2(1—A2—B?)(1—B2—E2). the triangular form of the effective mass matrix contains no

redundant information. For the sake of definiteness we again

(30 assume that diagonalization is shifted, by the shift theorem

In these formulas the moduli can be expressed in terms df.2, to the down-sector, such that the up mass sector is
our formulas(21)—(25) above. Alternatively, they may be angular form(16). We repeat, however, that the procedure is
taken from experiment, as in the following example. completely symmetric in the two charge sectors, and that the

According to the minireport of the Particle Data Group ¢@se of a nondiagonal, effective mass matrix in the up-sector
[15] an overall best fit to the data allows for values of theiS obtained from our formulas by simple and obvious modi-
magnitudeA of the matrix elemen¥,4 between 0.9745 and fications. _

0.9757, i.e. within an interval of width 0.0012. SimilarB, By absorbing redundant phases into the base states
lies between 0.219 and 0.22B, lies between 0.218 and [11]. one finds that the physically relevant information
0.224, andE lies between 0.9736 and 0.9750. The uncer-0ded byZ'is contained in seven real parameters, viz.
tainty of D being the largest was the reason why we solved

our formula(27) for the CP-measure in terms of that quan- a,B,y:Kk1,K2,K3, == @11 @3~ @2, (31)

tity. Evidently, any other choice is possible. It is amusing to o . . .

note that if we take the central values provided by the besthe first six of which can be chosen positive. Making use of
fit, i.e. A=0.9751, B=0.2215, E=0.9743, we obtain EUs.(17)—(19) that follow from the characteristic polyno-
D,=0.2213 for the point at which7 is maximal [cf. mial, we are left with four parameters. These will be deter-

Eq. (29)], a value that happens to fall in the center of theMined from the CKM matrix as follows. From Eqd.2), (2),

j(DO): 1—82

allowed interval for D. and(3) we have
— Ny 4; 2 2 2 d T
VIl. RECONSTRUCTION OF THE EFFECTIVE 7T =Vv"V{?" diagmj,mZ,m3)v{¥v
MASS MATRIX = \/(CKM) diang ,mg ,mg)V(CKM)T_ (32)

In this section we show how to reconstruct the effective,
triangular mass matriZ, Eq. (16), from the CKM mixing  Denoting the moduli of CKM matrix elements as in E80)
matrix. This reconstruction is essentially unique, except forone derives the following expressions from E82):

a?=miA2+m2B%+ mi(1— A?—B?), (33
a®k7=miA?D 2+ m¢BZE2+ mp(1— A%~ B?)(1— D?— E?)+ (m3m; — mgmi— mZmp)
X (1—A2—B2—D?-E2+ A’E2+ B2D?)— 2m3(m3A2D %+ m2B2E?), (34)
a?k5=miA%(1-A?—D?)+m¢B%(1-B?—E?)+ mj(1—- A’—B?)(A%+B2+ D2+ E?—1)
— (m3mZ—m3m2—mZm?2)(1— A?—B%—D2— E?+ A%E?+ B?D?+ 2A%B?) + 2m2 m3A%(A%+ D% 1)
+m2B%(B2+E?-1)], (35

B2+ 12 =mZD?+ m2E2+ m(1— D2~ E2). (36)

These equations, together with E¢s7)—(19), are sufficient teresting case mentioned above, where these matrices have
to calculate the séB1), once the moduli of the CKM mixing  equal entries in the main diagonal. Although we have the
matrix and the quark masses are given. Thus, we obtain E)ﬁ-ecessary ana|y'[ic formulas at our diSpO$ﬁf, Egs. (5)—-

plicit and unambiguous expressions for the parame®ts  (7)] this reconstruction is rather lengthy and tedious, and we
which determine the effective mass matfix in terms of leave it to later investigation.

observables only.
If one of the charge sectors, say the up-sector, is diagonal

from the start, the problem of reconstructing the mass matrix

from the data is completely solved. If the two sectors are V. SUMMARY AND CONCLUSIONS

treated more symmetrically and if the mass matrices are non-

diagonal in either charge sector, one might wish to go one In the minimal standard model right-chiral fields do not

step further by trying to reconstruct the original nondiagonal participate in the charged current weak interaction and, as far

triangular mass matrice$(") and T¥ from the effective as the interactions with vector bosons are concerned, the

matrix 7. A promising example would be the physically in- model is immune against base transformations of right-chiral
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fields. Making use of this freedom in the choice of bases forcan be calculated analyticallgf. Egs. (200—(25)]. In turn,
right-chiral quark fields we showed that every nonsingularthe effective, triangular mass matrix is reconstructed analyti-
mass matrix is equivalent to a triangular matrix whose en<ally from the moduli of the CKM matrix elementsf.
tries are calculated in Eq$5)—(7). In contrast with a more Egs. (32)—(36)]. This reconstruction is unique up to trivial
general form of the mass matr{in a given charge sectpr  phase redefinitions. Because the procedure is independent of
the equivalent triangular form is optimized in the sense thaany specific parametrization of the CKM matrix, but mainly
it eliminates all redundant parameters and exhibits in @ecause it is economic, concise and transparent, we strongly
simple and transparent manner the remaining freedom. ladvocate the use of triangular matrices in describing quark
fact, the triangular form is suggestive and natural if the quarkand lepton mass sectors.
generations fall into representations of “semi-sum” type, i.e.  Analytic expressions of CKM matrix elements in terms of
which are reducible but indecomposapté. Eq. (9)]. Such  quark mass matrices may also be relevant for the invariant
representations are typical for super Lie algebras and haweeasure forCP violation, Eq. (27) and [14], which ex-
been discussed in the context of electroweak interactions artesses it in terms of observable moduli.
non-commutative geometfy10,11,18. We illustrate our procedure by simple examples for two
We then showed that even if both charge sectors, up andnd three generations. A more detailed numerical analysis
down, initially have nondiagonal, nonsingular mass sectorsncluding the available experimental data with their error
diagonalization can be shifted to one charge sector only, thbars is left for a future investigation. The application to
resulting effective mass matrix having again triangular form.charged lepton and neutrino masses, and the consequences
Once the latter is known, the elements of the CKM matrixfor neutrino oscillations, is worked out {i.6].
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