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Triangular mass matrices of quarks and Cabibbo-Kobayashi-Maskawa mixing

Rainer Häussling*
Institut für Theoretische Physik, Universita¨t Leipzig, D-04109 Leipzig, Germany

Florian Scheck†

Institut für Physik, Johannes Gutenberg-Universita¨t, D-55099 Mainz, Germany
~Received 17 November 1997; published 4 May 1998!

Every nonsingular fermion mass matrix, by an appropriate unitary transformation of right-chiral fields, is
equivalent to a triangular matrix. Using the freedom in choosing bases of right-chiral fields in the minimal
standard model, reduction to triangular form allows for simple analytic expressions for the CKM matrix in
terms of quark masses and a minimal set of parameters. Furthermore, diagonalization of the quark mass sectors
can be shifted to one charge sector only, without losing the concise and economic triangular form. The
corresponding effective triangular mass matrix is reconstructed, up to trivial phases, from the moduli of the
CKM matrix elements, and vice versa, in a unique way. This reconstruction may also be relevant for the
invariant measure ofCP violation which we briefly discuss.@S0556-2821~98!03811-9#

PACS number~s!: 12.10.Dm, 12.15.Ff, 12.15.Hh
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I. INTRODUCTION

Although generation mixing, eventually, must be due
as yet unknown physics beyond the minimal standard mo
its parametrization in terms of the Cabibbo-Kobayas
Maskawa~CKM! matrix is quite restrictive and could, in
fact, turn out to be inconsistent with precision measureme
of weak decays andCP-violating amplitudes. With the re
striction to three generations unitarity of the CKM matr
alone imposes~nonlinear! constraints on observables whic
may or may not be obeyed by experiment: see e.g.@1,2,3,4#.
Further constraints are obtained if the mixing matrix is d
rived from the primordial mass matrices of up-type qua
and of down-type quarks. In adopting this latter strategy a
before even invoking specific models of quark mass ma
ces, it is important to formulate the mass terms such tha
redundant, unobservable, features are left out from the s
Only if this is achieved can one hope to sharpen the test
compatibility of the CKM scheme for three generations w
experiment. As we shall see below this means much m
than the well-known eliminating irrelevant phases by red
nition of basis states.

In this paper we show that the essential information c
tained in a given, nonsingular quark mass matrix can be
pressed in a particularly economic and concise way. Mak
use of the well-known freedom in choosing bases of rig
chiral fields every nonsingular mass matrix is equivalent t
triangular matrix. Furthermore, simultaneous diagonalizat
of two charge sectors can be shifted to one of them with
losing the simplicity of triangular matrices. We study e
amples for the cases of two and three generations, with
without additional model assumptions. Implications for i
variants that describeCP violating observables are als
touched.

In Sec. II we formulate and prove the decomposition th

*Email address: Haeussli@tph204.Physik.Uni-Leipzig.DE
†Email address: Scheck@dipmza.Physik.Uni-Mainz.DE
570556-2821/98/57~11!/6656~7!/$15.00
l,
-

ts

-
s
d
i-
ll
rt.
of

re
-

-
x-
g
-
a
n
t

nd

-

rem that is central to our analysis. Section III contains
interpretation of triangular mass matrices in terms of qu
representations and quark mixing. Making use of the deco
position theorem, we go one step further in Sec. IV, and s
diagonalization to one charge sector only, either to the c
tomary down-sector or, equivalently, to the up-sector. T
procedure is illustrated by an analytic example with two ge
erations. The general case of three generations is treate
Sec. V which also gives explicit and analytic formulas f
the entries of the CKM matrix. In Sec. VI we briefly discu
the rephasing invariant measure ofCP violation which ex-
presses this quantity in terms of observables only.
Sec. VII we perform the reconstruction of the effective~tri-
angular! mass matrix in terms of the elements of the CK
matrix. The final section, Sec. VIII, summarizes our resu
and offers a few conclusions.

II. REDUCTION OF NONSINGULAR MASS MATRICES
TO TRIANGULAR FORM

In order to set the notation we start by recalling a fe
well-known facts about the relation of the quark mixing m
trix in charged-current~CC! weak interactions to the mas
matrices in the charge12/3 up-quark sector and the charg
21/3 down-quark sector.

The minimal standard model describes CC weak inter
tions by purely left-handed currents, giving rise to the effe
tive ‘‘ V2A’’ Lorentz structure at low energies and maxim
parity violation. The right-chiral fields in the three
generation spinor field

C5~uL8 ,dL8 ,uR8 ,dR8 ,cL8 ,sL8 ,cR8 ,sR8 ,tL8 ,bL8 ,tR8 ,bR8 !T ~1!

are inert to charged-current interactions and, being sing
with respect to the weak SU~2! structure group, are fixed
only up to independent, unitary transformationsUR

(u) and
UR

(d) in the up- and down-charge sectors, respectively.
Eq. ~1! the primes refer to the weak interaction states, a
the mass eigenstates will be denoted by the same sym
6656 © 1998 The American Physical Society
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57 6657TRIANGULAR MASS MATRICES OF QUARKS AND . . .
without a prime. Thus, if the mass matrices of up- and dow
quarks in the basis~1! areM (u) andM (d), they are diagonal-
ized by the bi-unitary transformations

VL
~u!M ~u!VR

~u!† and VL
~d!M ~d!VR

~d!† . ~2!

The Cabibbo-Kobayashi-Maskawa mixing matrix refers
CC interactions, hence to left-chiral fields only, and is giv
by the product

V~CKM!5VL
~u!VL

~d!† . ~3!

The CKM mixing matrix is determined by the mass matric
in the charge12/3 and21/3 sectors and depends only o
the unitary transformations acting on left-chiral fields, up
the well-known freedom in fixing the phases of its entr
~see e.g.@5#!. The unitaries acting on the right-chiral field
VR

(u) and VR
(d) , remain unobservable. We shall make use

this well-known freedom below.
In this section we show that the essential information t

determines the CKM mixing matrix can be encoded in m
matrices of triangular form, either upper or lower triangul
provided these are not singular. For definiteness, in w
follows we shall always choose lower triangle matrices:

T~u! and T~d!, with Tik
~u/d!50 for all k. i .

The importance of this observation for the physics of C
weak interactions of quarks will be discussed below, in
rather general framework for generation mixing. The ma
ematical fact is based on the following lemma and deco
position theorem@6#.

Lemma:Let M be an arbitrary, nonsingular matrix of d
mensionn and letH5MM†, so thatH is a positively defi-
nite, Hermitiann3n matrix. The matrixH can be repre-
sented in the formH5TT†, whereT is a nonsingular, lower
triangular, matrix of dimensionn.

The lemma is trivially true in dimension 1. Forn.1 it is
proved by induction with respect ton; see@6#.

This lemma is used in proving the following theorem:
Decomposition theorem. Any nonsingularn3n matrix M

can be decomposed into the product of a nonsingular, lo
triangular matrixT and a unitary matrixU,

M5TU, with Tik50 ; k. i , UU†51. ~4!

This decomposition is unique up to multiplication ofU from
the left by a diagonal unitary matrix
W5diag(eiv1, . . . ,eivn).

Proof. By the lemma the Hermitian matrixH5MM†

equalsTT†, with T a lower triangle matrix. This being non
singular one calculatesU5T21M and provesU to be uni-
tary: Indeed,MM†5TUU†T†5TT†. Multiplying by T21

from the left and by (T†)21 from the right,UU†51. Sup-
pose now that there is more than one decomposition~4!, say
M5TU5T8U8, whereT andT8 are~lower! triangular. This
means thatT5T8W, where W5U8U† is unitary. The re-
quirement that bothT andT8 be lower triangular fixesW to
be diagonal.

Note that the decomposition theorem is equivalent to
Schmidt orthogonalization procedure. To see this we in
pret the rows of the matrixM5$mik% asn linearly indepen-
-

s

f

t
s
,
at

a
-
-

er

e
r-

dent vectorsv( i )5(mi1 , . . . ,min), i 51, . . . ,n. Likewise,
the rows ofU5$uik% form a set of orthogonal unit vector
u( i )5(ui1 , . . . ,uin), i 51, . . . ,n. Equation~4! then reads

v~ i !5 (
k51

i

Tiku~k!, i 51, . . . ,n.

These latter equations are useful in determining the ma
elements$t ik% of T from those ofM5$mik%. For example, in
the casen53 we have

ut11u25 (
k51

3

um1ku2, ~5!

t215 (
k51

3

m1k
! m2k /t11

! , ut22u25 (
k51

3

um2ku22ut21u2, ~6!

t315 (
k51

3

m1k
! m3k /t11

! , t325F (
k51

3

m2k
! m3k2t31t21

! G Y t22
! ,

ut33u25 (
k51

3

um3ku22ut31u22ut32u2. ~7!

Note that Eqs.~5!–~7! reflect the non-uniqueness of the un
tary U in Eq. ~4! noted above.

In applying the decomposition theorem~4! to the mass
matrix of the quark sector with chargeq, q51 2

3 or 2 1
3 , let

M̂ (q) be such that it connects right-chiral fields to conjuga
left-chiral fields. The mass terms in the Lagrangian have
form

Lmass5(
q

C̄M̂ ~q!C1H.c.[(
q

~C!LM̂ ~q!~C!R1H.c.

Now, replacingM̂ (q) by the product on the right-hand sid
~RHS! of Eq. ~4!, the unitary matrices are absorbed by
redefinition of the right-chiral fields

$uR8
~n! ,n51,2,3%[$uR8 ,cR8 ,tR8 %,

$dR8
~n! ,n51,2,3%[$dR8 ,sR8 ,bR8 %,

so that the general mass Lagrangian becomes

Lmass5 (
n,m51

3

uL8
~n!Tnm

~u!uR8
~m!1 (

n,m51

3

dL8
~n!Tnm

~d!dR8
~m!1H.c.,

~8!

whereT(u) andT(d) are 333 ~lower! triangular.

III. INTERPRETATION IN TERMS
OF GENERATION MIXING

Having shown that the essential information on mass m
trices in a given charge sector, by the decomposition th
rem, is fully contained in their triangle form, we now pau
to interpret this result in terms of the physics of generat
mixing. For the sake of simplicity let us consider the case
two generations which, in fact, need not be identical repli
of each other. Let the fermions of the theory fall into tw
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irreducible representations of the structure group, sayr I and
r II , of dimensionsn1 and n2 , respectively, and denote th
two sets of basis states which span these representation
C I andC II . Let us assume that we are given an operatoT̂
whose representation in the given basis has triangular fo
viz.

T̂5S T11 0

T21 T22
D ,

where the diagonal blocksT11 andT22 are square matrices o
dimensionn1 and n2 , respectively, andT21 is an n13n2
off-diagonal block. A unitary transformation
R̂5diag(RI ,RII) of the bases will take the operatorT̂ to

T̂85R̂T̂R̂†5S RIT11RI
† 0

RII T21RI
† RII T22RII

† D .

Thus, the subspace spanned byC II is an invariant subspace
the subspaceC I is not. In this situation the combined repr
sentation spanned by (C I ,C II ) is said to be reducible bu
indecomposable, and is written as a semi-direct sum

r Iœr II . ~9!

This framework is completely general. It seems to us
most economic and natural parametrization of genera
mixing. Indeed, after extracting all unphysical phases,
redefinition of quark fields, the triangular form contains t
essential, minimal information on the mass matrix. This
particularly important if one wishes to obtain analytic e
pressions of the CKM matrix in terms of quark mass ma
ces and, conversely, if one sets out to reconstruct the la
from the observed mixing. In order to emphasize this po
we note that the CKM matrix~3! is unchanged if the quark
mass matricesM (u) and M (d) are both multiplied from the
left by an arbitrary unitary matrixX such that

M 8~u!5XM~u!, M 8~d!5XM~d!.

In the case of general, non-triangular mass matrices th
formulas reflect the nine parameter freedom in reconstruc
the mass matrices from the CKM matrix discussed
Kusenko @7#. If, on the other hand, we requireM (q) and
M 8(q), with q5u or d, to be triangular before and after th
transformation, thenX must be diagonal, its entries bein
pure phases@8#. There may, in fact, be good theoretical re
sons for assuming the fermions of the standard model to
into representations of the type~9!. For example, representa
tions of this type are characteristic of graded~or super! Lie
algebras; cf.@9#. Clearly, if a multiplet of scalar Higgs field
appears multiplied with an operator acting on representat
of this type and if the electrically neutral component of t
Higgs field develops a nonzero vacuum expectation va
fermions of the same charge belonging to different s
spaces, via their Yukawa couplings, acquire triangular m
matrices.

In the case of replication of generations the two terms
Eq. ~9! are identical. All gauge interactions act within ea
of the diagonal blocks corresponding to the irreducible r
by
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resentationsr1 andr2 , while the off-diagonal block contains
the physics that causes mixing via the mass matrices.

For instance, with this interpretation in mind, it seem
natural to assume the diagonal blocks to be the same for
generation. This is equivalent to saying that if electrowe
interactions were switched off quark masses in a giv
charge sector would be degenerate. As shown in@10# and
@11#, in the case of two generations, this assumption fixes
Cabibbo angle in terms of the quark masses. Withm1 ,m1
denoting the masses of the first generation, saym1[mu and
m1[md , andm2 ,m2 denoting the masses of the second ge
eration, saym2[mc andm2[ms , one obtains

cosu5
Am1m11Am2m2

A~m11m2!~m11m2!
. ~10!

In the case of three generations, as worked out in@11#, the
same assumption leads to an analytic expression of the C
matrix ~3! in terms of the quark masses and a few parame
which has a remarkable similarity to established phenome
logical forms@12#.

IV. SHIFTING DIAGONALIZATION TO ONE
SECTOR ONLY

In computing the CKM matrix~3! one may proceed by
independent diagonalization of the triangular matricesT(u)

andT(d) of Eq. ~8!, by means of bi-unitary transformations i
each charge sector: cf. Eq.~2!. As an alternative to this te
dious calculation@11# we now show that diagonalization ca
be shifted to one of the charge sectors only, whose effec
mass matrix again has triangular form. This is the conten
the following theorem.

Shift theorem. Given two nonsingular triangle matrice
relating right-chiral to left-chiral fermion fields,T(q1) and
T(q2), in the charge sectorsq1 andq25q161, respectively,
and a bi-unitary transformation which diagonalizesT(q1),
viz.

VL
~q1!T~q1!VR

~q1!†
5T

0
~q1!. ~11!

If the same bi-unitary transformation is simultaneously a
plied to T(q2), the charge changing current relating the le
chiral fermion fields remains unchanged. Furthermore, by
additional unitary transformation of the right-chiral fields
chargeq2 , the transformed matrix can again be cast in
triangular form:

VL
~q1!T~q2!VR

~q1!†
5T_U. ~12!

The first part of the statement is fairly obvious and w
known: if the same transformationVL

(q1) is applied to the
left-chiral fields of both charges, the matrix elemen
c (q1)I 6c (q2) of isospin raising and lowering operators do n
change. The second part is a consequence of the decom
tion theorem. Here, in fact, the right-hand factorVR

(q1)† is
irrelevant because it may be absorbed in the unitaryU acting
on the right-chiral fields. Note that the right factor of th
bi-unitary transformation~11! follows from the left factor:
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VR
~q1!

5T
0

~q1!VL
~q1!

~T~q1!21!†.

We illustrate the shift theorem for the example of tw
quark generations for which the basis~1! reduces to

C5~uL8 ,dL8 ,uR8 ,dR8 ,cL8 ,sL8 ,cR8 ,sR8 !T.

The mass matrices are

T~u!5S a~u! 0

k~u! b~u!D , T~d!5S a~d! 0

k~d! b~d!D ,

where the parameters may be chosen real, without los
generality. In this case they are related to the quark ma
by

a~u!b~u!5mumc , a~u!21b~u!21k~u!25mu
21mc

2

~and analogous relations for the parametersa (d),b (d),k (d), in
terms ofmd andms!. Then

VL
~u!5S a 2b

b a D , VR
~u!5

1

a~u! S mua 2mcb

2mcb 2muaD ,

wherea andb are given by

a5Amc
22a~u!2

mc
22mu

2 , b5A12a2.

@We note in passing that signs were chosen such thatT
0

(u)

5diag(mu ,2mc).# In the basis given above the step operat
of weak isospin are represented by

where the entries are 232 block matrices,t i being Pauli
matrices. The transformationVL

(u) , when applied to both
charge sectors, reads, in this basis,

which obviously commutes withÎ 6 .
To continue with this example let us introduce the a

sumption, mentioned above, of choosing the diagonal blo
to be the same in the two generations. This impl
a (u)5b (u)5Amumc, k (u)5mc2mu , a (d)5b (d)5Amdms,
and k (d)5ms2md . The matrix elementsT5$t ik% are then
found to be
of
es

s

-
ks
s

t115
1

Amu1mc

$Amdms DS1mdAmumdS

2msAmumsD%1/2, ~13!

t215
ms2md

mu1mc
DSY t11, t2252mdms /t11. ~14!

In these formulas we have fixed phases such that all en
are real and thatt22 is negative. The symbolsD andS stand
for

S5Amcms1Amumd, D5Amcmd2Amums. ~15!

It is now straightforward to determine the single unitary m
trix which diagonalizes the matrix (TT †) and to confirm that
this is the Cabibbo matrix withu as given by Eq.~10!. One
finds

VC5
1

N S S 2D

D S
D ,

whereN5A(mu1mc)(md1ms), S and D being defined in
Eq. ~15! above. This result is equivalent to the formula~10!.

Clearly, the procedure is symmetric in the two char
sectors. The diagonalization may as well be shifted to
charge sector (q1). In the example given this is equivalent t
interchanging

mu↔md , mc↔ms .

V. CASE OF THREE GENERATIONS

Suppose that in the case of three generations we s
diagonalization to the up- or the down-sector, as describe
the shift theorem and in Eq.~12!. For the sake of clarity we
write the effective mass matrixT5$t ik% in terms of moduli
and phases of its entries as follows:

T5S t11 0 0

t21 t22 0

t31 t32 t33

D [S aeiwa 0 0

k1eiw1 beiwb 0

k3eiw3 k2eiw2 geiwg

D ,

~16!

a notation that is consistent with the one employed in
example discussed in Sec. IV.

For definiteness let us shift the analysis to the dow
sector in which case the matrix (TT †) has eigenvalues
$md

2 ,ms
2 ,mb

2%. From its characteristic polynomial we obta
the following equations:

md
2ms

2mb
25a2b2g2, ~17!

md
2ms

21md
2mb

21ms
2mb

25a2b21b2g21g2a21a2k2
21b2k3

2

1g2k1
21k1

2k2
222bk1k2k3

3cos~wb2w11w32w2!, ~18!

md
21ms

21mb
25a21b21g21k1

21k2
21k3

2 . ~19!
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The decomposition theorem~4! tells us that the matrixT,
Eq. ~12!, is determined up to multiplication by
W5diag(eiv1,eiv2,eiv3) from the right, where thev i are arbi-
trary. Under this substitution relations~17! and~19! are trivi-
ally invariant; relation~18! is also invariant because the a
gument of the cosine is unchanged.

Having shifted the diagonalization to the down-sector,
CKM matrix ~3! is given by the Hermitian conjugate of th
unitary matrix that diagonalizes (TT †). Adapting our earlier
results~cf. Ref. @11#! to the present situation, we obtain th
following analytic expressions for the CKM matrix in term
of the entries ofT, i.e. of the parametersa, . . . ,wg of
Eq. ~16!:

V~CKM![S AeifA BeifB CeifC

DeifD EeifE FeifF

GeifG HeifH Ieif I

D ~20!

5S f ~md!/Nd f ~ms!/Ns f ~mb!/Nb

g~md!/Nd g~ms!/Ns g~mb!/Nb

h~md!/Nd h~ms!/Ns h~mb!/Nb

D , ~21!

where the functionsf ,g,h, and the normalization factors ar
given by

f ~mi !5abk1k2e2 i ~w11w22wa2wb!

2ak3~b22mi
2!e2 i ~w32wa!, ~22!

g~mi !5mi
2k1k3e2 i ~w32w1!

2bk2~a22mi
2!e2 i ~w22wb!, ~23!

h~mi !5~a22mi
2!~b22mi

2!2k1
2mi

2 , ~24!

with mi5md , or ms , or mb ,

Nd5$@~a22md
2!~b22md

2!2md
2k1

2#~mb
22md

2!~ms
22md

2!%1/2,
~25!

and with Ns and Nb obtained from Eq.~25! by cyclic per-
mutation of (md ,ms ,mb). The first equation, Eq.~20!, is
only meant to express the matrix elements ofV~CKM! in terms
of their moduli and their phases while Eq.~21! gives our
explicit results in terms ofT. So, for instance, reality and th
sign of Eq.~24! imply fG5f I50 andfH5p. Of course,
the results fulfill all relations such asC2512A22B2 etc.
which follow from unitarity.

Finally, we recall that one may equally well shift diag
nalization to the up-sector in which case (md ,ms ,mb) are
replaced by (mu ,mc ,mt), while the parameters in Eq.~16!
take different values because in determining Eq.~12! the
charge sectors are interchanged. In this case the CKM m
~3! is given by the unitary matrix that diagonalizes (TT†)
~not its Hermitian conjugate!.

VI. CP-MEASURE AS A FUNCTION
OF OBSERVABLES

As is well known the following nine quantities are repha
ing invariants, i.e. are independent of the specific parame
e

rix

-
ri-

zation of the CKM matrix one chooses@13#:

D ia5Vj b
~CKM!Vkg

~CKM!Vj g
~CKM!!Vkb

~CKM!! ,$ i , j ,k%,$a,b,g%

P$1,2,3% cyclic.

In particular, unitarity ofV~CKM! implies that they all have
the same imaginary part,~cf. @2,3,4#!,

JªIm D ia , ~26!

which is a parametrization independent measure of
amount ofCP violation in the standard model with thre
generations. We find it useful to call this quantity th
CP-measure. It was shown some time ago that this quan
can be expressed in terms of moduli of CKM matrix e
ments@14#. In the notation of Eq.~20! it reads1

J5
1

2
$4A2B2D2E22@A2E21B2D2

2~A21B21D21E2!11#2%1/2. ~27!

It expresses the strength ofCP violation in terms of the
observable quantitiesA[uVudu, B[uVusu, D[uVcdu, and
E[uVcsu.

From Eq.~27! the following symmetries ofJ are evident:

~i! J is invariant under the exchangeB↔D. This prop-
erty reflects our earlier remark that diagonalizati
may equivalently be shifted to theup-sector in which
case the CKM matrix equals the diagonalization m
trix, not its Hermitian conjugate.

~ii ! Simultaneous interchangeA↔B andD↔E leavesJ
invariant.

Combining the symmetries~i! and ~ii ! one sees that the si
multaneous interchangeA↔D andB↔E is also a symme-
try. Finally, by combining all three of these one shows thaJ
is also invariant underA↔E.

It easy to verify thatJ vanishes, as it should, whenev
one of the three generations decouples from the other t
For example, if the first generation decouples, we ha
A51, and henceB5D50 andJ50.

For given values of the moduliA, B, and E, the
CP-measure is defined only for values of the modulusD in
the interval (D1 ,D2), where

D1,25$ABE7A~12A22B2!~12B22E2!%/~12B2!.
~28!

J vanishes at these boundary points. It assumes its max
value at

D05AA2B2E21~12A22B2!~12B22E2!/~12B2!,
~29!

at which point theCP-measure takes the value

1In principle, theCP-measure is plus or minus the expression
the RHS of Eq.~27!. The data seem to indicate thatJ is positive,
hence our choice of this sign.
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J~D0!5
1

12B2
AA2B2E2~12A22B2!~12B22E2!.

~30!

In these formulas the moduli can be expressed in term
quark masses and the parameters ofT, Eq. ~16!, by means of
our formulas~21!–~25! above. Alternatively, they may b
taken from experiment, as in the following example.

According to the minireport of the Particle Data Grou
@15# an overall best fit to the data allows for values of t
magnitudeA of the matrix elementVud between 0.9745 and
0.9757, i.e. within an interval of width 0.0012. Similarly,B
lies between 0.219 and 0.224,D lies between 0.218 and
0.224, andE lies between 0.9736 and 0.9750. The unc
tainty of D being the largest was the reason why we solv
our formula~27! for the CP-measure in terms of that quan
tity. Evidently, any other choice is possible. It is amusing
note that if we take the central values provided by the b
fit, i.e. A50.9751, B50.2215, E50.9743, we obtain
D050.2213 for the point at whichJ is maximal @cf.
Eq. ~29!#, a value that happens to fall in the center of t
allowed interval for D.

VII. RECONSTRUCTION OF THE EFFECTIVE
MASS MATRIX

In this section we show how to reconstruct the effecti
triangular mass matrixT, Eq. ~16!, from the CKM mixing
matrix. This reconstruction is essentially unique, except
e

on
tr
ar
o
n
a

-

of

-
d

st

,

r

trivial redefinitions of phases irrelevant for physics, becau
the triangular form of the effective mass matrix contains
redundant information. For the sake of definiteness we ag
assume that diagonalization is shifted, by the shift theor
~12!, to the down-sector, such that the up mass secto
already diagonal while the down-sector has the effective,
angular form~16!. We repeat, however, that the procedure
completely symmetric in the two charge sectors, and that
case of a nondiagonal, effective mass matrix in the up-se
is obtained from our formulas by simple and obvious mo
fications.

By absorbing redundant phases into the base states~see
@11#!, one finds that the physically relevant informatio
coded byT is contained in seven real parameters, viz.

a,b,g,k1 ,k2 ,k3 ,F5wb2w11w32w2 , ~31!

the first six of which can be chosen positive. Making use
Eqs. ~17!–~19! that follow from the characteristic polyno
mial, we are left with four parameters. These will be det
mined from the CKM matrix as follows. From Eqs.~12!, ~2!,
and ~3! we have

TT†5VL
~u!VL

~d!† diag~md
2 ,ms

2 ,mb
2!VL

~d!VL
~u!†

5V~CKM! diag~md
2 ,ms

2 ,mb
2!V~CKM!†. ~32!

Denoting the moduli of CKM matrix elements as in Eq.~20!
one derives the following expressions from Eq.~32!:
a25md
2A21ms

2B21mb
2~12A22B2!, ~33!

a2k1
25md

4A2D21ms
4B2E21mb

4~12A22B2!~12D22E2!1~md
2ms

22md
2mb

22ms
2mb

2!

3~12A22B22D22E21A2E21B2D2!22mb
2~md

2A2D21ms
2B2E2!, ~34!

a2k3
25md

4A2~12A22D2!1ms
4B2~12B22E2!1mb

4~12A22B2!~A21B21D21E221!

2~md
2ms

22md
2mb

22ms
2mb

2!~12A22B22D22E21A2E21B2D212A2B2!12mb
2@md

2A2~A21D221!

1ms
2B2~B21E221!#, ~35!

b21k1
25md

2D21ms
2E21mb

2~12D22E2!. ~36!
have
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These equations, together with Eqs.~17!–~19!, are sufficient
to calculate the set~31!, once the moduli of the CKM mixing
matrix and the quark masses are given. Thus, we obtain
plicit and unambiguous expressions for the parameters~31!
which determine the effective mass matrixT, in terms of
observables only.

If one of the charge sectors, say the up-sector, is diag
from the start, the problem of reconstructing the mass ma
from the data is completely solved. If the two sectors
treated more symmetrically and if the mass matrices are n
diagonal in either charge sector, one might wish to go o
step further by trying to reconstruct the original nondiagon
triangular mass matricesT(u) and T(d) from the effective
matrix T. A promising example would be the physically in
x-

al
ix
e
n-
e
l,

teresting case mentioned above, where these matrices
equal entries in the main diagonal. Although we have
necessary analytic formulas at our disposal,@cf. Eqs. ~5!–
~7!#, this reconstruction is rather lengthy and tedious, and
leave it to later investigation.

VIII. SUMMARY AND CONCLUSIONS

In the minimal standard model right-chiral fields do n
participate in the charged current weak interaction and, as
as the interactions with vector bosons are concerned,
model is immune against base transformations of right-ch
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fields. Making use of this freedom in the choice of bases
right-chiral quark fields we showed that every nonsingu
mass matrix is equivalent to a triangular matrix whose
tries are calculated in Eqs.~5!–~7!. In contrast with a more
general form of the mass matrix~in a given charge sector!,
the equivalent triangular form is optimized in the sense t
it eliminates all redundant parameters and exhibits in
simple and transparent manner the remaining freedom
fact, the triangular form is suggestive and natural if the qu
generations fall into representations of ‘‘semi-sum’’ type, i
which are reducible but indecomposable@cf. Eq. ~9!#. Such
representations are typical for super Lie algebras and h
been discussed in the context of electroweak interactions
non-commutative geometry@10,11,16#.

We then showed that even if both charge sectors, up
down, initially have nondiagonal, nonsingular mass sect
diagonalization can be shifted to one charge sector only,
resulting effective mass matrix having again triangular for
Once the latter is known, the elements of the CKM mat
ap
-
-

r
r
-

t
a
In
k
.

ve
nd

nd
s,
e
.

can be calculated analytically@cf. Eqs. ~20!–~25!#. In turn,
the effective, triangular mass matrix is reconstructed anal
cally from the moduli of the CKM matrix elements@cf.
Eqs. ~32!–~36!#. This reconstruction is unique up to trivia
phase redefinitions. Because the procedure is independe
any specific parametrization of the CKM matrix, but main
because it is economic, concise and transparent, we stro
advocate the use of triangular matrices in describing qu
and lepton mass sectors.

Analytic expressions of CKM matrix elements in terms
quark mass matrices may also be relevant for the invar
measure forCP violation, Eq. ~27! and @14#, which ex-
presses it in terms of observable moduli.

We illustrate our procedure by simple examples for tw
and three generations. A more detailed numerical anal
including the available experimental data with their err
bars is left for a future investigation. The application
charged lepton and neutrino masses, and the conseque
for neutrino oscillations, is worked out in@16#.
.
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