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Chiral transition and monopole percolation in lattice scalar QED with quenched fermions
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We study the interplay between topological observables and chiral and Higgs transitions in lattice scalar
QED with quenched fermions. Emphasis is put on the chiral transition line and magnetic monopole percolation
at strong gauge coupling. We confirm that at infinite gauge coupling the chiral transition is described by mean
field exponents. We find a rich and complicated behavior at the end point of the Higgs transition line which
hampers a satisfactory analysis of the chiral transition. We study in detail an intermediate coupling, where the
data are consistent both with a trivial chiral transition clearly separated from monopole percolation and with a
chiral transition coincident with monopole percolation, and characterized by the same critical exponent
=0.65. We discuss the relevan@® lack thereof of these quenched results to our understanding ok the ,
model. We comment on the interplay of magnetic monopoles and fermion dynamics in more general contexts.
[S0556-282(198)01111-4
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[. INTRODUCTION Consider massless, pointlike fermions propagating in an
ensemble of 1) monopoles. Suppose that the fermions ex-
Lattice gauge models with charged scalars and fermionperience only the () gauge interaction. The fermion-
have been studied both analytically and numerically formonopole interaction is purely topological in origin because
some time[1,2]. Their phase diagrams display a rich struc-its strength is given by the product of the electric chaege
ture with chiral and Higgs transitions, as well as monopoleand the magnetic chargg which are related by the Dirac
condensation and percolation, and other topological excitsduantization conditioneg= 2. This condition is renormal-
tions. ization group invariant, guarantees that the fermion-
In this paper we study the interplay of chiral symmetry monopole interaction is always “strong” and survives con-
breaking and monopole percolation in scalar QED withventional perturbative screening, and lies at the heart of
quenched fermions. Abelian models can be rewritten by &lectric-magnetic duality. Suppose that the monopole net-
duality transformation as theories of topological excitationsWork in the vacuum state of such an Abeliari1) model
which help in determining their phase structure and criticaleXperiences a second order phase transition at a certain cou-
behavior{3]. A classic example is the confinement transition Pling ey Where the monopole loops grow without bound. Let
of the pure compact (1) lattice model, where monopole ¥ denote the correlation length exponent for the transition.
condensation was identified long ago as the underlying®Uppose also that ordinary photon exchange is not strong
physical mechanisrf¥]. It is then interesting to investigate €nough to cause a chiral transition negr. Then, since the
whether magnetic monopoles affect fermionic theories, andermion’s chirality is not a conserved property in the pres-
in particular, the physics of chiral symmetry breaking andence of the pointlike monopole, the monopole transition
restoration. The work of5] provides a theoretical frame- could inducga chiral transition and the two point correlation
work for the study of the interplay of monopole and fermion function of ¢ should inherit the critical exponent from
dynamics, and a numerical strategy for its quantitative verithe monopole-loop transition. Past measurements of mono-
fication. Unfortunately, it has not been developed into a prepole percolation have determinedwith good accuracyy
dictive theory, complete with equations coupling monopole=0.67, which is near the correlation length exponent of or-
and fermion observables and their interrelated scaling lawsdinary bond percolation in four dimensions. In any case,
Rather, it is just a “physical picture” which could even be since v is distinct from the mean field value of 1/2, this
internally inconsistent. The speculative scenario is interestmechanism has been cited as a potential origin of interacting
ing and will be summarized here because we will find someermion field theories.
support for it in our simulation dat@lthough more conven- This mechanism has been explored so fdi5R10,12. In
tional scenarios can accommodate the data as.well [6] it was discussed at length how monopoles enhance chiral
symmetry breaking, and how chiral symmetry is broken ei-
ther by strong vector forces or magnetic monopoles. In this
*On sabbatic leave from the University of lllinois at Urbana— situation, monopoles must percolate in the broken phake
Champaign. In [5,8—1(0 chiral symmetry breaking was found coincident

0556-2821/98/5(1.1)/662513)/$15.00 57 6625 © 1998 The American Physical Society



6626 FRANZKI, KOGUT, AND LOMBARDO 57

within error bars with monopole percolation in QED with compact Y1) model, where the existence of a second order
dynamical fermions. By adding a further agent of chiral sym-chiral transition was well established both analytically and
metry breaking, a four fermion term, the two transitions numerically[18—21]. Note that this transition separates con-
grow far apart, the percolation occurring, as expected, in thinement from Higgs phases, while the QED chiral transition
broken phasg11]. Obviously, the statement that monopoles separates confining and Coulomb phases.
percolate in the broken phase or at the phase trandifibn From a field theory point of view, this work continues the
only applies to the class of models considered in the papersearch for an interacting field theory which is strongly
mentioned above—models whose couplings work againstoupled at short distand@2]. Considerable work along this
chiral symmetry. With a scalar field, which instead favorsline has been invested in the study of the pure scalar-gauge
chiral symmetry, monopoles might well percolate in the chi-model, with compact and non-compact gauge fields. Detailed
ral symmetric phase, as we will show later. numerical studies have supported the idea that non-compact
All'in QII, there_ are a number of different p(_)ssibilities for scalar QED is trivial in the manner of¢* by finding evi-
the relative position of percolation and chiral symmetry yence for the tell-tale logarithni3,24. Analogous results
breaking: that certainly comes as no surprise as even ifyere reported for the compact model[25]. The simulation
S|mp!e models there is no unique relatlon_sh_|p bet\{vgen Pelrasults support the long held theoretical prejudice that there
colation and other phase transitions. This is a trivial, but].S complete charge screening and the renormalized gauge

ma_ybe worthwh|le_ remark in view of f[he cr|t|C|sms_ 2], coupling vanishes. In addition, in non-compact scalar QED
which, we feel, arise from a partial misunderstanding of our

approach. Let us try to clarify: percolation and chiral transi-m.OnOpOIe p(_arcolauon trns out to pe unrelated- W't.h the
tion must be studiedindependentlyand their interrelation nggs transitior(24]. Thesg .resu_lts raise the question 'f. the
should be assessed posteriori When they are separated, chiral nature Qf the t_ra_nsmon |_n_ferm|on|c models might
monopoles are lattice artifacts and their percolation does ndp@ke the continuum limit non-trivial.
correspondas far as we knowto any physical phase tran- In a particle physps context, fermlon—gauge-scalar mod-
sition. It is only when percolation and chiral phase transition€lS have been considered as possible toy models for the
coincide that the possibility of a common scaling, hence of gtrongly coupled standard modg26,18,27-3Q More re-
possible continuum limit, opens. This is the case of interesgently, one such lattice model—dubbed in this context
of the present study. On the other hand, the lack of coincixU ¢,—has been reconsidered i81-3§ as a new mecha-
dence between monopole percolation and chiral transitiomism for spontaneous symmetry breaking and dynamical
simply indicates a different dynamical situation and does notmass generation. Recent results showed that the chiral tran-
put in jeopardy the scenario under consideration, while thaition line flows into the Higgs transition line, terminating
lack of coincidence of percolation and other transitions inwith a tricritical point, whose critical behavior indicates non-
other models is, simply, irrelevant to this study. pertubative renormalizability, consistent with a Yukawa
A more motivated criticism(see agairf12] and the dis-  theory. The long term aim is to find out whether and how the
cussions 0of[13]), concerns the use of noncompact gaugephysics of theyU#, model is different from that of the
fields where monopole solutions cannot be found ana'ytiusua| Higgs-Yukawa mechanism of fermion mass genera-
cally, monopoles argnaively) expected to decouple in the tion. For this reason, the triviality issue is not really central
continuum limit, the Dirac string costs action and statichere: it might well be that the model provides an alternative
monopoles do not generate long-range Coulomb fields. It ifo the usual Higgs-Yukawa mechanism, with higher upper
amusing to remind at this point one of the original motiva-pounds for its validity.
tions for considering non-compact gauge fielsise again the It would be interesting if the results of this paper could be
discussions if7]): indeed the hope was that magnetic mono-of use to further sharpen the understanding of the tricritical
poles, regarded at that time as lattice artifacts, might play @oint of theyU ¢, model. However, this is a quenched study
lesser role in a non-compact model. It was only the observagnd its relationship with the full model can only be judged
tion of the (possible coincidence of monopole percolation posteriori a better understanding of theJ ¢, model, and/or
and chiral transition in QED with dynamical fermions which of the validity of the quenched approximation, is not the
motivated us to go beyond the naive scen&mmnopoles as  primary scope of this work. Our aim here is to illustrate
lattice artifacty and to study a possible role of magnetic some general dynamical mechanisms possibly relevant to
monopoles in the continuum along the lines reviewed abovegontinuum physics by investigating the interplay between
Clearly, it is now desirable to go back to the compact for-chjral phase transition and monopole percolation. We choose
mulation: the ideal testing ground for the scenarig¢difis a  to do so in the simplest possible situation: a scaldt)U
simple model with compact fields, a second order chiral trangauge model with quenched fermions.
sition and monopole percolation. When we began this study This paper is organized as follows: first we review the
the ul) chiral transition was thought to be first Ord'er. action and phase diagram of tw ¢4 model. We continue
These considerations lead us to consider a fermion-scalagy discussing the topological excitations of Abelian models,
and the observables relevant for the chiral transition. Section
IV gives an overview of the results for the topological exci-
IThe recent results on pure compact QER—16 indicate a sec- tations and show their correlations with other observables
ond order transition and suggest that compact QED could be a vergharacterizing the phase diagram. These results confirm and
interesting testing ground for the scenario discussed in this papegxtend the previous work $87,38. After this general study,
possibly also for the full theory, if negative is chosen{17] [ex-  we focus on three points along the chiral transition line: in
tended Wilson action with- y2p cos(,) term). Sec. V we present the results for the percolation of magnetic
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[ T T ] cal end point of the Higgs phase transition line ETC, which
12 oN - is a tricitical point in the chiral limit of the full model. T is
5 1 the triple point and C the phase transition from the confine-
1o F - ment (at strong gauge couplingo the Coulomb phaséat
: o coyoe 1 weak gauge couplingn the model without the scalar field. S
Xx>=0 . ... . .
o8 F - is the critical point of the spin mode|3(=«).
“ " Confinement—Higgs phase ~ The status of the current investigation of the full model,
06 F . including the dependence on the bare mass, can be found in
- 1 [32-34. Even though past lattice studies in the full model
04  <x>=0 — concentrated mostly on the tricritical point E, the scaling
- E T 1 behavior along the chiral phase transition NE except E is
02 o B believed to be NJL-like with reasonable accurg8g]. At E
- C phasmt the scaling behavior is different, e.g. the exponents seem to
00 ———— 0'5 B S— 1'5 be nonclassical, which makes the point particularly interest-
A In this paper we study the quenched model, which corre-

FIG. 1. The phase diagram of the Higgs mo@8] (xU b, sponds to the_: limiemy=c0 in the update. _The dynamics is
model for amy=c in the updatg The chiral transition of the _the same ag in scalar QED, or Abelian Higgs model, Spd_
quenchedyU ¢, model is marked by a dotted line. The points simu- IS Only considered for the measurement part. The qualitative

lated in this work are those marked by open circles and the points Neatures of the phase diagram are known to be the same as in
and E. The labels are the same a$3a,32. the full model. The endpoint of the Higgs transition line E is

known with great accurachp5]. We expect that also in the

monopoles, in Sec. VI those for the chiral transition. Wedquenched model the point N is described by mean field ex-

conclude with a brief summary and discussion. ponents, as observed [i89], probably with logarithmic cor-
rections. The topological excitations of the model have been

considered if37]. In our study we will characterize more

II. ACTION AND PHASE DIAGRAM ! . . o
fully the phase diagram using topological excitations and we

The yU ¢, model is defined by the actidi31] will study in quantitative detail the chiral transition line ex-
tending from the point N to the endpoint E, and its interplay
S=S5,+S+S, with the monopole percolation.
1 4
— Ill. OPERATORS
SXZE E le 7]x,u(Ux,,u,Xx+,u,_ Uj;—,u,,u,)(x—,u,)
XK= In Abelian models with compact fields the periodic nature
_ of the interactions makes it possible to rewrite the Action in
+ame>, XxXx terms of its topological excitations: magnetic monopole
X

loops in pure compact QED, and closed vortex surfaces for
pure scalar matter. For scalar-gauge systems there are strings
Su=-pB> cogOp) of magnetic flux, i.e. lattice monopoles, closed vortex sur-
P faces and open surfaces bounded by monopole loops. These
topological excitations, investigated in the continuum in
4 [40], are amenable to numerical studies on the lattice
Sy=— k> 2 ($iUx ubys+H.C). [37,41-43. We review the main definitions below.
x w=l The study of the chiral transition will folloW44—46. The

X are the Kogut-Susskind fermion fields, is a scalar field relevant operators are reviewed in the last subsection.

with frozen length ¢,| =1, andU, , represents the compact
link variable.U, ,, is the plaquette product of the link vari- A. Monopoles
ablesU, , and 7,,=(— 1) -1, For the measurement of the monopole loop density we

The phase diagram of the quenched approximdt®his  introduce the flux variablegt1]
shown in Fig. 1. It has two phases, the Coulomb phase and

the confinement-Higgs phase. The second is separated into  6,,(X)= 0y ,+ 01, o= Ox1 5~ Ox o€ (—4mam] (1)
two regions with different realizations of chiral symmetry,

which are separate phases in the chiral limit of the fullwhered, ,e(—, ] is the phase angle of the link variables
model. The region with smak andg is chirally asymmetric, U, , and the physical flux

the one with large3 and k is symmetric. These two regions

are sometimes also called the confinement and Higgs re- Em(x)=0pg(x)+2wnpg(x)e(—w,w], 2
gions, respectively, because of the limiting cages0 and
B=o. wheren,,(x) is an integer. Ifn,,(x) #0 a Dirac sheet goes

For 8=0 the gauge and scalar fields can be integrated ouhrough the plaquette. The balance of the flux entering and
exactly, leading to a lattice version of the Nambu-—Jonaleaving a 3-cube define®n the dual lattice a monopole
Lasinio (NJL) model[18] (point N). The point E is the criti- current
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— ) From this we calculate the vortex density as
Zwm#(x)_s,uvpavvepa(x)' (3) y
The operatorV, labels lattice differentiation. The vector :i 2 v 13
. . . Pv | po-(x)l . ( )
m,(x) is the total flux out of the cube at the dual sitex in 6V \ <po
direction u:
o C. Chiral condensate
ZWmM(x)=pEZﬁC 0p:p§m (0p+277”p):277p6200 Np- The chiral condensate is measured in the usual way
4 — -
(xx)=(TrM~%) (14)
The loops of the monopolden the dual latticeare closed, ) ] ) ] ] ]
because of current conservation with a stochastic estimator, wheké is the fermion matrix.
We also measured the logarithmic derivative of the chiral
vV,m,(x)=0. (5) condensatg45]:
They are gauge invarian_t objects, wh_ereas the Dirac sheets, K |n(;x>’ _amg ,9<;X>‘
apart from their boundaries, can be distorted. (15

. L ™ dlna (yy) da '
From this we calculate the monopole loop density, in mO’W X rno‘ﬁ,x

short monopole density, as . .
This can be expressed as ratio of zero momentum meson

1 propagatorsC(p=0) (susceptibilities
pm=y | 2 I, ). ®) B N
v 9x) ()
Monopole percolation is detected using an order param- damg BKZCa(pZO)’ amy =CA(p=0), (16

eter borrowed from standard percolation modélg. A con-

nected cluster of monopoles is introdudetB]: one counts where the second is the Ward identity, which results from the
the number of dual sites which are connected with each chiral U(1), symmetry of the staggered fermiof#8]. This
other by monopole line elements.is the size of the cluster. gives

Note that this construction ignores the vector structure of the

monopole currents. _Co(P=0) 1
The density of the occupied bonds reads T C(p=0)’
Nt 1 (max We note that in the quenched approximation only the con-
Pm=2v = av 24 9nh, (7) " nected part o, need to be considered, since fermion loops

are neglected49]. We have checked that our measurement

whereg,, is the number of clusters with sizg Ny, is the  of Rz using Eq.(17) is in good agreement with the logarith-
size of the largest cluster, amy,, is the total number of mic derivative of the chiral condensate computed by numeri-

connected sites. cal differentiation of the yx) results.
An order parameter for percolation is

IV. MEASUREMENT OF THE TOPOLOGICAL

M perc= ?‘_ (8) EXCITATIONS—OVERVIEW
e Figure 2 shows an overview of the results on tHeldd-
Its associated susceptibility is tice. For 8=0.00 (a) (NJL line) all observables are very
) ) smooth, only the ratid . and the chiral condensate show
XM:V(<Mperc>_<Mperc> ). 9 a somewhat steeper descent. Monopole and vortex density

decrease slowly for increasimg) More to the right on the NE

We have also considered the same susceptibility 443h line for 3=0.60 (b) a similar behavior is observed but the

Nimax transition region is somewhat smaller.
Xperc:<{2 gnnz_nﬁm / nmt>_ (10) For 8=0.90 (c) (crosswise to the ET line first ordea
n=4 steep descent in all observablesxat0.24(1) can be ob-

served, as this is typical for first order phase transitions. Ob-
B. Vortex sheets viously the monopoles and the vortices are sensitive to this
ghase transition.

At B=1.50 (d) (crosswise to the TS line first ordea
phase transition from Coulomb to Higgs phase can be ob-
served. At this phase transition only the vortex density and
the link energy are sensitive, which vary rapidly at
whereg, e (— m, 7] is the phase angle @, anda,(x) isan = 0:17. The other observables stay nearly constant.
integer. The local vortex sheet is now The phase transition CT from confinement to Coulomb

phase is shown fok=0.05 (e). At the phase transition at
Vo(X) =8 pun(V ,a,(X) + %nw(x)). (12  B=1.01(1) the monopole density,, and the chiral conden-

For the measurement of the vortex sheets we introduc
[3,37]

9,(X) == bx = Oxipta(X) e(—mm], (1D
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8 =080 and confinement region. In the confinement region the mono-

' pole and vortex density are large and in the Higgs region
both are small. In the Coulomb phase the vortex density is
large and the monopole density small. At the first order
phase transtions the observables which are large in one phase
and small in the other show a steep decrease, whereas the
others are insensitive.

The order parameter of percolatidy,, follows (essen-
tially) the monopole density but with more rapid changes.
This could be understood in analogy to bond percolation. If
the monopole density is high, percolating clusters are very
likely, whereas for small monopole densities they are very
unlikely. The first percolating clusters occur at some inter-
mediate coupling. For larg@, along the line of first order
phase transitions, this seems to coincide with the phase tran-
sition of the monopole density. Such interplay of monopole

-condensation and percolation has been investigated before in
pure compact QED if50].

At the line NE, which is second order in the full theory,
the situation is less obvious.

At the endpoint E of the Higgs phase transitiof,
=0.848, p,, and py show a steep descent, which gets in-
creasingly steeper for increasing lattice sigg. 38. The
derivative of these observables show an increasing maxi-
mum. We have not done a scaling investigation but the data

ek i ©:Mpare =Nimgs/ Ttet suggest a divergence.

' ' :g“ For 8=0.30(Fig. 3b), still along the line NE, both den-

o b 1 ,;<}(x> sities show no maximum in the derivative. Moreover, no
volume dependence was observed. Obviously they do not get

] critical in the region where the chiral condensate has its larg-
est variation.

For B=0.00 the picture is very similar to that g
=0.30.

FIG. 2. Overview of the topological observabigs, M pe,, and The threeg values 0.00, 0.30, and 0.848 have been se-
pv together withE, and (xx) on the &' lattice at the lines NE lected for the systematic investigation which we describe in
(a+b), ET (c), TS (d), and CT (e). The errors(not shown are  the rest of this paper.
nearly always smaller than the symbols.

v d Link d d . V. MAGNETIC MONOPOLES IN THE VICINITY
sate steeply decrease. Link energy and vortex density are OF THE NE LINE

insensitive to this phase transition.
So, we have the following picture. Consider the three re- In this section we measure the critical line for the perco-
gions of the phase diagram: Coulomb phase, Higgs regiotation of the magnetic monopole clusters, and its critical ex-

S AU L B 1.2 ' | '
- (b) $=0.30 |

(a) $=0.848 1
T a:6* __ 10 - a:6*
L Pm o:12* _| i o:8* |
6 o:12*

0.8 [~ o164

FIG. 3. Monopole density,, and vortex density,, for (a) 8=0.848= 8¢ and(b) 8= 0.30.
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Xpere

symbolg for 8=0.30. The curves are interpolations made with the
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1 £=0.30

1 ©Xpere
1 ®xy /10

: u:g*
1 a2t

*16*

FIG. 4. Percolation susceptibilitigge (solid) and /10 (open

use of reweighting techniques.

ponents. An accurate measurement of the critical line is ob-
tained thanks to the combined use of reweighting technique

and the two definitions of monopole percolatiqne,. and

XM

The quality of our measurements is demonstrated in Fig.

where we contrasfpe,c and xy at §=0.30 on lattices of

different size. Both susceptibilities show a clear maximumy
for all B's in the vicinity of the line NE. The peaks are very

close, and the volume corrections have different signs.

We have determined the precise position of the maximu
of Xxperc @nd xy Wwith the multihistogram method. The nu-
merical results foryec and v , together with other mag-

1.26 [~

.05

10
1/L

15

1 M=

] £=0.00

O Xpere

T 2

1 fit: ko +AXLT

ko= 1.3469(4)
6(3)
1371(7362)
N=  1.47(6)
A= -0.62(8)
Xar=0.818738

A=

FIG. 5. Position of the peak of the percolation susceptibility
Xperc (Circles and xy, (triangles for 8=0.00.

magnetic monopole clusters.

determination, of the critical coupling for the percolation of

A determination of the critical exponent of comparable
accuracy requires a careful consideration of scaling violating
S ,

gffects, and will be presented elsewhere. For our present pur-

poses a precision comparable to that we achieved at the chi-

m

netic observables, are summarized in Table I. In Fig. 5 we
show the position of the peak of the two susceptibilities as ave measure fo3=0.00 and3=0.30 the nearly identical
function of 1L for 8=0.00. We superimpose a power law fit value of yper/ vper= 2.282). Thesubscript “perc” is added
with different amplitudes and exponents and a common critito indicate the definition of the exponents at the percolation

cal point. Again we see that, by increasing volumge
approaches the critical point from abovg, from below.
They provide upper and lower bounds, hence an accuratguite similar values ofypere/ Vperc=2.24(2) andypere! Vperc

ﬁal transition would sufficé5—10%).
Figure 6 shows the scaling behavior of the maximum of
percWith the lattice size. Note the linear rise with size in this
double logarithmic plot, supporting power law scaling. Only
the data on the 6lattice displays small deviations. In a fit
with the finite size scaling equation

Xperc, mak L)L Vperc! Vperc

(18

transition. For comparison, the measurements in quenched
non-compaci8] and in full non-compact QED5] yields

TABLE I. Position and height of the maximum of the percolation susceptibility for diffefeeutd lattice
sizes along the line NE. The values are given for both definitjpsand xpec. For the infinite volume
extrapolation ofxk . (k= 1.3469,k=0.8875, and«=0.2714, respective)yalso the density of the occupied
bondsp,, and the monopole densipy, is printed. For comparison, our best estimate for the chiral transition
in the infinite volume is given in the second colurfsee Sec. VL

B Kchiral,c lattice KmaXL) xm(L) KmaxL) Xpern{l-) Pm Pm
6% 1.30714) 156(3) 1.3635) 16.115) 0.11321) 0.52836)
84 1.31796) 342(2) 1.35256) 32.004) 0.113232) 0.528529)
0.00 1.233) 12 1.33035) 941(9) 1.34744) 80.94) 0.113271) 0.528485)
16* 1.33586) 1865(13) 1.3471) 154(7) 0.113221) 0.528477)
20 1.3395%3) 3054(31) 1.34674) 253(3) 0.113211) 0.528414)
6% 0.8614) 165(3) 0.9033) 15.62) 0.10743) 0.4941)
84 0.86715) 360(2) 0.89268) 31.51) 0.107463) 0.49482)
0.30 0.872) 12 0.87564) 989(5) 0.888G8) 80.34) 0.107492) 0.494749)
16* 0.88124) 1937(13) 0.88825) 153.17) 0.1075@01) 0.494777)
84 0.26781) 574(4) 0.27321) 22.356) 0.07272) 0.318Q7)
12 0.26921) 1437(15) 0.272047) 59.53) 0.072575) 0.31742)
0.848 0.26:0.29 % 0.27011) 2758(34) 0.271918) 120(1) 0.072597) 0.317%3)
20t 0.2706%5) 4501(53) 0.271684) 206.18) 0.72572) 0.31741)
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1o [T T T T 6-0.00
q fit: ALY vere;
| o:8=0.00
V/ Voere= 2.269(6) J
A= 0.286(4) ¢ 8*
Xaor=1.985187 1 w1zt
4 . 4
3 1 2:8=0.30 ) A.16‘
H 1 H 0:20
1 7/ Vpere= 2.288(8) £
= | A= 0.271(5) 1 Bpere= 0.519(9)
1 Xaor=1.947799 - A= 2.42(9)
B 2 _
| ap=0848 Xaot=1.377699
¥/ Voore= 2.425(5)

1 A= 0.1443(18)
Xoaor=0.369933

#

FIG._6_._ Scaling behavior of the maximum of the percola}tion FIG. 7. Scaling behavior oM e for 5=0.00. In the fit only
susceptibility xperc for £=0.00, 5=0.30, and3=0.848. In the fit  data withL=16 in the intervalx=1.30..1.33 have been consid-
only data withL=8 have been considered. ered. The critical coupling was fixed tq, = 1.3469.

repeated this for3=0.30 and obtained #B,e=0.504),
smaller but compatible within error§3=0.58(2) in non-
compact quenched QE[3].]

Together with our determination 8¢/ Vperc=0.85(3)
we get the exponent for the correlation lengthe
=0.61(4) to be contrasted with that of nhon-compact QED
vperc=0.663), and of pure random site percolationye.
=0.691). A more careful analysis, considering corrections
to scaling, would be necessary to assess the significance of
these differences and to decide if percolation is in the same
niversality class for alj3<0.848. Differences, if any, are
nyway small.

Note that for Bg=0.848 the percolation transition at
xk=0.2714(3) is distinct from the Higgs phase transitions
which occurs atk.=0.26333(1)[25,34,39. In Fig. 8, we
mee that all the observables are very sensitive to the Higgs
phase transitioinote the sharp peak of the susceptibility of
the link energy, with the exception of the susceptibilifyec

=2.253), respectively. Foi8=0.848 one obtains a some-
what larger value ofypere/ vperc=2.421).

The maximum ofy,, shows larger deviations from the
leading finite size scaling behavior for small lattices. If we
use only lattices withL=12, we get for 3=0.00 and
B=0.30 an exponentyy /vy =2.32(3) and for3=0.848
ym!vm=2.234). ThesubscriptM indicates the exponents
which have been determined usigg, .

The y/v's from the two definitions are separated by less
than two standard deviations @=0.00 andB3=0.30. At
B=0.848 the disagreement increases. Larger lattices, and/8
a careful consideration of correction to scaling terms should®
bring the results from the two definitions closer. Within this
uncertainty all numbers of/v of the percolation transition
are compatible with 23).

We can contrast these results with those of pure rando
bond percolation51]. For pure random bond percolation the

critical density isp.=0.161. In our model the densi at . i ¢
W 1P Bhn.c of the percolation. This shows that at the end point, the

the percolation phase transition dependsBpland it is gen- i h . d th lati £ th |
erally lower. Our result is close to that of site bond percola-'99S phase transition and the percolation of the monopoles

tion y/v=2.094(2)[52,51]. Considering the vector charac- 'S uncorrelated. So the percolation of t_he_ _monopples_ prob-
ter of the monopole current, we should not expect that th@bly cannot help us understand the tricritical point in the

two models are in the same universality class, as pointed Olg(ynamlcal model.

in[8]). LA L B £=0.848 12*
To determingBperc/ Vperc WE investigated the scaling with ¢ | % ]

volume of M e at the (infinite volume critical coupling. 14 .

The results are very sensitive to the precise valug.ofWe i - 1 s 50

estimated anywayB e/ Vper=0.85(3) in good agreement te L ‘} ﬁf \\*\ . :ﬁ /50

with the scaling relation
1 Ofm

0:<kx> (ame=.04)

IBperc_ 1 _ Yperc
P (d —Q) . (19

Vperc Vper

The result for quenched non-compact QED Agerc/ vperc
=0.892).

The exponentB,e,. was determined fronM . in the
phase with percolation, using the results not distorted by fi- FIG. 8. Susceptibility of the monopole percolatigpecand the
nite size effects. The result f@=0.00 is shown in Fig. 7. link energyxg , as well as the order parameter of the percolation
Here again we fixed the critical coupling. The fits give M., the monopole densityp,, and the chiral condensate
Bperc=0.522), where the error was determined by varying (yy)(amy=0.04) as a function ok on a 12 lattice at3=0.848 at
the critical coupling in the intervak.=1.346..1.348. We the end point of the Higgs phase transitions.
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VI. THE CHIRAL TRANSITION (NE) LINE 1o [ ' ' i T ‘ ] =0.00
We consider first the behavior of the susceptibility ratio. ! 8. a8t
The discussion here aims at illustrating the general trend 08 [ B 012
along the critical line. In the second subsection we cross 07 [ B ]
check the results by fitting the data to the equations of state. 06 [ . ﬁ”“‘\\ﬂ - x=140
That includes a more detailed discussion on the selection of s . [ R 1o
the scaling window, and a careful error analysis. J S - s g | «=120
T TTTTE e & { «=1.15
AR, TP T i
02 e BT s o )
We measure the ratio @&, as a function oamy: at the o1 F e’y@"i'fz ]
chiral transitionR, should be independent ocam, if the R e
transition is described by a simple scaling law. Logarithmic 00, 02 04 06 .08
corrections modify this behavior. (a) am,
For 8=0.00(Fig. 98 our data indicate a chiral transition
at k.= 1.23(3) withR_=0.355). This value compares well Lo T ' ' 7] 8=0.30
with the expected mean field resuR,(x.)=1/6=1/3. 09 [ e T e
Logarithmic corrections, if any, are small, as we will see 08 b g g J e
later on. o b T, e ] oue
For 8=0.30 (Fig. 9b the results suggest.=0.87(2) ‘ -_535,\8 e P
with R, (x.)=0.45(10). This corresponds t6=2.2(6). o6 [ S TR oes
Logarithmic corrections in the manner of Nambu and Jona-~ o5 o TR E- «=0.90
Lasinio would predict w5 I O = 08T
L = 1 «=0.85
—_ & -1 «=0.80
R, (ko) =13+ 109 (xx))) (20 oL e SR =] o
L e e e aiaiainde 2 | x=0.70
resulting in a slight upward trend of the critical ratio, still o1 BT e =
compatible with the data. We comment more on this point in 00 —— 0'4 0'6 0'8
the next subsection. The curves f@my>0.02—0.04 starts ®) 'am
bending downwards, after the initial rise: masses larger than °
0.04 cannot be used safely to assess the critical behavior. In, ; — T gm0 84t
the next subsection we discuss in detail how to select the 00 ] '
appropriate scaling window. Tt 108
For 3=0.848 (point E) the Higgs phase transition is at 0.8 [ 1o
x.~=0.263. We have shown above that the Higgs transition is R S = 7
separate from monopole percolation, and hgtig. 90 we 0.6 - =030
see that at thig a conventional second order chiral transition o 5 [ B ETTTTTOR o
is incompatible with the data. The data in Fig. 9c would i 1 =027
rather suggest a chiral transition in the interp@&28-0.30), 1 x=0.265
even on the right of the percolation transition. But this be- J Ry
havior is far from clear. B3 ]
As an alternative strategy to locate the chiral transition at o1 [T g B 8
3=0.848 we investigated the scaling behavior afr(,)? as O e . S R
a function ofamy (Fig. 10. For k=0.255 and«=0.26 ther © 0 02 04 06 08
meson mass scales corresponding to the PQgettial con- At
servation of axial vector currentelation @m,)?«<am,. For FIG. 9. R, as function ofamy, at (a) 8=0.00, (b) 8=0.30, and

larger k, especally for those between the transitions, devia- (c) 3=0.848=8c. (Solid, dashed, dotted lingare for (16*, 12,

tions from the PCAC relation can be observed. The data fog?) lattices. Approximate values for the critical point are indicated

«k=0.27 on the 12lattice might suggest a straight line join- with horizontal lines.

ing the origin and the two smaller points. But the data for

amy,=0.01 on the 16 lattice indicate that we have to be

aware of finite size effects and the data on the larger lattice The results of the susceptibility ratio pose at least two

favor a violated PCAC relation. These ambiguities in thequestionsi(1) is the critical behavior a3=0.30 really dif-

extrapolations are not uncommon in the numerical studies derent from the one aB=0.007? (2) If yes, and the data at

phase transition. We conclude that also the PCAC analysig=0.30 are described by a power law scaling, what are the

does not reliably locatec, of the chiral transition at3  other critical exponents?—in particular, we are interested in

=0.848. the relative position of percolation and chiral transition, and
Because of the unusual behavior of the chiral condenstat@ their correlation length exponents

the equation of state also fails. So we cannot decide from this The standard way to address these questions is to exploit

data if the Higgs and chiral transition meet at the end pointthe chiral equations of stat&OS. First we briefly discuss

as observed in the dynamical thedB2,35. the results ag=0.00, which we shall use as a term of com-

B. Equation of state
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_ T T T
£=0.848 ; 1 £=0.00
12t 35 - o:amy=.02 (16%)
e 1 a:amy=.015 (12%)
] :c=0.28 ] o:amg=.01 (16%)
Sx=0.27 ]
o 1 = 0.559(34)
“:"‘0'265 1 6= 3.06(19)
| 2x=0.26 />\< 1 &= 247(38)
w 0:k=0.255 153 1 pP= 3.22(72)
g \ v 1 k.= 1.2278(68)
| 1e* 1 Xoao=2.352719
® =028
+x=0.27
1 4x=0.26
1 | b i I

amy,

FIG. 11. Results of the power law fits described in the text at
FIG. 10. Behavior of the quadratic meson mass as function of A~ 0-00. The arrows indicate the fitted interval.

am,. In the broken phase a straight line through the origin is ex- . .

pected. The lines indicate a fit to the*l@ata. Fork=0.27 we hand S'de_Of elthe_r_ Eq22) or Eq.(23). We then C(_)mput_e the
observed large finite size effects, which make the extrapolation un€"ors by Jagk-kmfmg the rgsults obtame@ by Q|scard|ng one
reliable. point at a time. The quality of the fit is estimated Ky

, , _ , - =[me—m(Oox) JLAM(xx))DNpoid - FOr @ good fit
parison, and then we will devote more time to the discussionve expectQ to be close to one.
at 8=0.30.

The EOS framework is borrowed from ancient studies of 1. $=0.00
ferromagnetic transitions, and, as such, uses data in the ther- As mentioned above, we expect that@t0 the model

modynamic limit. Happily, this approach requires that We e qces 1o a lattice NJL model. Recent numerical studies of
simulate the model within its scaling window but not neces-, .- dimensional NJL models includ&3-55.

sarily directly at the critical point. Consequently it is possible 5, 3=0.00
to work with data free from finite volume effectahich will =(1.15, 1.20, 1.25). A power law fit with 5 free parameters
not be possiblat the critical point where a finite size scaling which Ljses the data at bare masses 0.02 and 0.01 from the
analysis would be mandatgryBoth the selection of the scal- 16* lattice. and the data at 0.015 from the*1ttice. is

ing window, and the control over finite size effects are dis-g,0n in ’Fig. 11. The quality of the fitF1] is nice: the

cussed below. . ;
. . . . _exponentss=3.06(19),5,=0.56(4) are all consistent with
Recall the possible critical behavior, and the relatlveme(,;ln field theory. The critical coupling, is 1.2287).

equations of state. If scaling holds, the data are described by We have then included logarithmic corrections, initially

a "standard” equation of state without scalethe parametes=1 in the EOS. We used data
— — from the 12 lattice, and the procedurg2]. In the same

_ 5 18 )
amo= () (U Oon) ™), (21) interval we obtaink.=1.2594). Adding one further point at

wheret is the reduced couplingn our caset=«—«.) and k=1.30, amy=0.02 moves the central values te.

whose first order approximation—used in actual fits—reads=1.258. The inclusion of a free scale parameter in the fits
moves the critical point tac.=1.248, closer to the power

amo=aP’(k— ke){(xx)> YBx+bP{xx)°. (22) law results. We have checked that we can discard the points

with bare mass 0.02 without altering the results. We can also

If the theory is trivial, the most natural candidate to describeconstrain the exponents to their mean field values without
the data is an equation of state in the manner of Nambu anappreciably degrading the quality of the fits—that corre-
Jona-Lasinio. We will use the following form, which is mo- sponds to “cancelling” the logs in the NJL equation of state.

tivated by the leading term of theN/expansior{53]: K. is then 1.2248).
_ _ _ In conclusion, the data a8=0.00 are well described, as
amy=a""(k— ko) (xx) +b" " (xx)*(log(xx)/s) expected, by a mean field critical behavior, with in the
(23)  range 1.22—1.26, in agreement with the ratio analysis. This

we restricted ourselves tok

- . . .__.._range of critical couplings is well separated from that of
and we will just comment on its possible generalizations ) .
monopole percolation as can be seen from Table | and Fig. 5.

[57,58 (in practical analysis logx)/s will be replaced by | ogarithmic corrections, if any, are small; their inclusion
log(xx)+C). improves the quality of the fits, but does not aliernor do
In many cases we used two different fitting procedures. they allow fits on a wider interval. These critical couplings
For the first one we numerically invert E(R2) for (yx)  are significantly different from those of the percolation tran-
and then make a minimuny? fit for the measured chiral ~sition.
condensate, taking into account the errors. We label the re-
sults obtained with this procedufE1]. 2.=0.30
The second ongF2] is a least squares procedure which  Qur first task is to select a reliable data sample for our fits.
minimizes[amy—am({xx)) 12, am({xx))? being the right-  From the results foR,, we know that masses larger than
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170 T R e s

1 p=0.30
1 o0:amy=.02 (16%)
1 o:amg=.01 (16%)

1 2:ame=.005 (16%)

1 f= 0.882(52)
1 6= 2a3(11)
1 af= 2.49(30)
7 bP=  1.58(25)
1 k.= 0.8735(47)
1 xBar=2.018288

<¥x>

FIG. 12. As in Fig. 11, buB=0.30. This fit corresponds to the
first line in Table 1.

0.02 are too heavy. On the other hand, small masses, wh
require large lattices, are only available for thi€es. All in

all, our candidate window for fits narrows down to the nine
points at «=0.85,0.87,0.90—we occasionally checked the

stability of our results by including the twamy=0.02

points atk=0.80 and 0.95 but we did not venture any fur-

ther. By contrasting data in this range obtained orf a12*,

and a 16 lattice, we checked that finite volume effects are
already small on a‘8lattice, and that the difference between

results on a 12and on a 16 lattice is statistically not sig-
nificant (the worst case iemy=0.005 where the data are
separated by two standard deviatipi&/e used the data on
the 16 lattice for our fits.

The results fron{F1] applied to the power law form are

shown in Fig. 12. The stability of these results was checke
by performing thg F2] fits on the same range of parameters.

The results are shown in Table I, first line. We get
=0.8746), 6=2.12(15), andB,=0.895). [These expo-

nents are very close to those of quenched, non-compact

QED: 6=2.121), 8,=0.863), y=1.0[56,46.] Assuming
scaling, these critical exponents give=0.695. We have

verified that the fit is stable against the inclusion of the two

points atam;=0.02, xk=0.80 and 0.95. Finally, since we

want to contrast the position of the chiral transition with the
position of the peaks of the monopole susceptibility, we have"

also tried fits constraining the critical=0.882, at the lower
bound of k. percolation. The results for the critical expo-
nents(second line of Table Jlare compatible with the pre-
vious ones and give=0.73. The quality parameter Q.79

is still acceptable. Constraining, deeper into the critical
interval spanned by the critical for percolation further de-

grades the quality of the fit, which remains nevertheless tol-

erable. We have also searched for the best exponents ass
ing by eye the quality of the scaling plots built following Eq.
(21). The best plot picks.=0.868, §=2.26, 8,=0.8, giv-
ing »=0.65.

TABLE II. Results of the powerlaw EOfEq. (22)] fits at B
=0.30.

aP bP K 8 s—-1B, Q
2.544) 1.5836) 0.8746) 2.1215 0.99968) 1.068
2.1928) 1.227) 0.882[Fixed] 1.942) 0.93247) 1.79

2.0040) 1.088) 0.8875[Fixed] 1.833) 0.89382 2.96
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TABLE lll. Results of the logarithmic EO$Eq. (23)] fits at
B=0.30.

NJL NJL

a pNIt Ky c Q
2.466) —3.68(16) 0.86(1) 0 [Fixed] 6.94
2545  —6.12(84) 0.860) 0.6914) 1.18
2.81(199 —13.88(2.01) 0.882Fixed] 1.2313) 83.26

We have also tried to fit the data with a logarithmic im-
proved mean field equation. The results of the fits are dis-
played in Table Ill.(Note, that this fit has less free param-
eters) We see that the only fit of quality comparable to the
power law fits requires a variable scale. In this case, the
critical coupling is smaller than that from the power law fits:
d&=0.866(2) to be contrasted witt,=0.8746). Theshift
In the critical coupling with respect to the power law results
can also be appreciated by performing a constrained fit with
k.=0.882, which fails completelythird line of Table llI,
Q=283.26: this definitively shows that a NJL critical behav-
ior cannot be associated with the percolation of magnetic
monopoles.

We can also study the sensitivity of the position of the
critical point to the equation of state by inspectiRg. This
gives a clearer indication of the role played by the precise
location of the critical point in determining the critical scal-
ing. In Fig. 13 we show the results f&® . in the critical
region constrasted with &/(solid line) from our best power
law fit, and with R («.) from the logarithmic fit without
&cale. We see that the,’s corresponding to the two hypoth-
eses(logarithms and power lawfall in the « interval pre-
dicted by the fits—between 0.85 and 0.87 for log fitg. (
=0.86), and between 0.87 and 0.90 for power lax (
0.88).

Summarizinglf the correct resultsi.e., those describing
the physics of the chiral limit on infinite volumkeare given

by the logarithmic fits, second line Table lIlI, the percolation
transition and the chiral transition are distinct. In this case we
have not learned anything about a possible role of magnetic
onopoles in the existence of strongly coupled theories.

] £=0.30

0:x=0.9
O:x=0.87
*:x=0.85

€St

am,

FIG. 13. R, in the critical region. The dotted line is for the“16
lattice; the dot-dash line for the 42The dashed line iR, («.)
=1/6 from the power law fit Table II; the solid line B,(«.) from
the logarithmic fit, first line Table lII.
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Simply, the chiral transition would be trivial and magnetic probably mean field like along the whole line N&ithout
monopoles would have nothing to do with it, as it is fr the point B, as it seems to be in the full model. Moreover,
=0.00 and probably also fg8=0.848. the chiral transition is separated from the percolation transi-
If the correct results are given by power law fits, Table Il, tion: when this is the case monopoles should be irrelevant to
the chiral transition coincides within errors with the percola-the dynamics of the chiral transition in the large volume,
tion transition. The critical eXponemfor the chiral transi- continuum limit—see again the discussion in the Introduc-
tion is in the range 0.65-0.73, to be contrasted Witg,:  tion. Except for the point Ewe reiterate that we do not have
=0.61(4), as wedetermined in Sec. V. Taking into account any conclusion on the relative position of monopoles and
the possibility of further corrections, the exponentfor the  chiral transition at the point Ehis goes hand in hand with
two transitions are compatible ar€l0.65. the transition being trivial. Still, the behavior gt=0.30 re-
Note again these results differ from the ones in the fullmains different from that ap=0.00, and and it would be
model where the critical behavior along the line NE seemsnteresting to find a coherent scenario accomodating these
the same as the one of the trivial NJL point. It is not in thegpservations.
scope of the present paper to investigate the relationship be- The scenario of5] requires instead a chiral transition
tween the quenched and full model, but this is certainly aroincident with the percolation transition, and sharing the
interesting subject for further investigations. same correlation length exponent. When this occurs, the dy-
Finally, we might wonder about the sensitivity of the namics of the chiral transition should inherit the characteris-
quality of the logarithmic fits and/or the value of the critical tjcs of that of the magnetic monopoles, which survive the
coupling to further corrections. Typical corrections include ngn-trivial continuum limit. This could be the case At
powers of the logarithms. Although such corrections are not- g 30. The scenario db] receives then some support from
there, up to O(M?), they cannot be excluded in general. gy investigation.
Our model, however, could be in the Yukawa universality |mportant questions concern the relevance of these results
class[57,58. In this case, one can conceive of sizeablefor the full model, and, in general, the sensitivity to the num-
variation, even in sign, of the exponents and the simplesger of flavors. If the scenario 6] is realized, the situation
parametrization of such crossover behavior would suggess different from the one observed in the full model: If this is
that the powers in the logs should be kept free. It cannot bene case, fermion screening plays an important role in this
excluded that more general logarithmic equations of state fitfhodel as it presumably does in the gauged Nambu—Jona-
the data well, and certainly this would make the study of thg gsinio model: there the laddéguenchell approximation
interrelation between the chiral transition and monopole Perpredicts a non-mean field scenafi69,60, while the full

colation more subtle. model is presumably trivigl11]. These observations do not
detract from the illustrative value of our results@#¢ 0.30,
VII. SUMMARY but, of course, prevent us from extending any of our conclu-

sions to the full model at this stage of our investigation. If

We have investigated the topological excitations in thethe full and quenched models really have different critical
phase diagram of scalar QED. We confirmed with great prebehavior along the line NE, then we are challenged to under-
cision the picture suggested b37,38 and see clear signals stand something unexpected and special about fermionic
for first order phase transitions in the topological observ-screening in this model. In the present quenched model, the

ables. dynamical scalar field in the configurations completely
We have investigated in detail chiral transition and mono-screens the electric charge, producing a vanishing renormal-
pole percolation for three points. ized gauge coupling in this sector of the model. If the fermi-

B=0.00: The chiral transition is described by mean fieldons were also treated dynamically, they would add nothing
exponents, possibly with smdlbgarthmig corrections. The qualitatively new in terms of charge screening. Therefore,
percolation transition is well separated from the chiral tranthe fermion-monopole interaction would have to have some
sition. essential ingredient which renders the monopoles ineffective

B=0.30: Two possibilities are consistent with the data:in driving chiral symmetry breaking in the full model. Simu-
1%t a situation analogous to that gt=0.00, but with large lations of non-compact QED with the number of flavots
logarithmic corrections; ¥ percolation and chiral transition varying from 2 to 32, do not show such an effect—there
coincident, with the same critical exponent chiral symmetry breaking and monopole percolation were

B=0.848: The only clear statement here is that the Higgsoincident, within ample error bars, for al; [5]. Better
transition and monopole percolation are distinct. We havesimulations of the full and quenched models with smaller
not been able to measure with confidence the chiral transbare fermion masses and larger lattices are needed now.
tion, which has proven hard to study with conventional nu- We should define better numerical strategies so to show
merical methods. more clearly the correlation, or lack thereof, between chiral

Since the scalar field increases the order in the gaugend monopole observables. It is however evident from our
fields and favors chiral symmetry, separate chiral and monodata, that for3=0.00, when the chiral and monopole transi-
pole percolation transitions are not unexpected: it might weltions are clearly distinct, the chiral transition is clearly trivial
be that monopoles percolate in the symmetric phase, b@nd is not correlated with the percolation of monopoles.
their tendency to break chiral symmetry is overcome by théVhen the transitions grow closer f@=0.30, so do the
ordering effects of the scalar fields. This seems to be the casm®rrelation length exponenis(or the effective critical expo-
at 8=0.00, and it is also possible #=0.30 (if the first nentv in the case of logarithmic trivialiy The transitions
possibility is realizefl In this case chiral transition is most may be coincident, with the same critical exponent
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Note addedShortly after the completion of our work, an putations have been performed on the CRAY-YMP and T90
interesting paper by Baig and CI{)&1] appeared which con- of HLRZ Juich; for some large lattices and small masses we
tains results overlapping, and confirming, a subset of outsed the CRAY-C90’'s of PSC and NERSC. W.F. thanks
own. HLRZ for hospitality. J.B.K. thanks the Pittsburgh Super-

computer Center and the National Energy Research Super-
ACKNOWLEDGMENTS computer Center for access to their facilities. M.P.L. thanks
the Physics Department of the University of Bielefeld for its

We thank J. Jergafor stimulating discussions, for reading hospitality. This work was supported by DFG, the National
the manuscript and for useful comments. This study used th8cience Foundation, NSF-PHY9605199, the U.S. Depart-
codes developed for theU ¢, project for the field dynamics ment of Energy(D.O.E) under cooperative research agree-
and the chiral observables, and the Hands-Wensley routin@ent No. DF-FC02-94ER40818, and by Nato Grant No.
for the magnetic monopole measurements. Most of the comERG 950896.
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