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Chiral transition and monopole percolation in lattice scalar QED with quenched fermions

Wolfgang Franzki
Institut für Theoretische Physik E, RWTH Aachen, D-52056 Aachen, Germany

John B. Kogut*
Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 0

Maria-Paola Lombardo
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We study the interplay between topological observables and chiral and Higgs transitions in lattice scalar
QED with quenched fermions. Emphasis is put on the chiral transition line and magnetic monopole percolation
at strong gauge coupling. We confirm that at infinite gauge coupling the chiral transition is described by mean
field exponents. We find a rich and complicated behavior at the end point of the Higgs transition line which
hampers a satisfactory analysis of the chiral transition. We study in detail an intermediate coupling, where the
data are consistent both with a trivial chiral transition clearly separated from monopole percolation and with a
chiral transition coincident with monopole percolation, and characterized by the same critical exponentn
.0.65. We discuss the relevance~or lack thereof! of these quenched results to our understanding of thexUf4

model. We comment on the interplay of magnetic monopoles and fermion dynamics in more general contexts.
@S0556-2821~98!01111-4#

PACS number~s!: 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

Lattice gauge models with charged scalars and fermi
have been studied both analytically and numerically
some time@1,2#. Their phase diagrams display a rich stru
ture with chiral and Higgs transitions, as well as monop
condensation and percolation, and other topological exc
tions.

In this paper we study the interplay of chiral symme
breaking and monopole percolation in scalar QED w
quenched fermions. Abelian models can be rewritten b
duality transformation as theories of topological excitatio
which help in determining their phase structure and criti
behavior@3#. A classic example is the confinement transiti
of the pure compact U~1! lattice model, where monopol
condensation was identified long ago as the underly
physical mechanism@4#. It is then interesting to investigat
whether magnetic monopoles affect fermionic theories, a
in particular, the physics of chiral symmetry breaking a
restoration. The work of@5# provides a theoretical frame
work for the study of the interplay of monopole and fermi
dynamics, and a numerical strategy for its quantitative v
fication. Unfortunately, it has not been developed into a p
dictive theory, complete with equations coupling monop
and fermion observables and their interrelated scaling la
Rather, it is just a ‘‘physical picture’’ which could even b
internally inconsistent. The speculative scenario is inter
ing and will be summarized here because we will find so
support for it in our simulation data~although more conven
tional scenarios can accommodate the data as well!.

*On sabbatic leave from the University of Illinois at Urbana
Champaign.
570556-2821/98/57~11!/6625~13!/$15.00
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Consider massless, pointlike fermions propagating in
ensemble of U~1! monopoles. Suppose that the fermions e
perience only the U~1! gauge interaction. The fermion
monopole interaction is purely topological in origin becau
its strength is given by the product of the electric chargee
and the magnetic chargeg which are related by the Dirac
quantization condition,eg52p. This condition is renormal-
ization group invariant, guarantees that the fermio
monopole interaction is always ‘‘strong’’ and survives co
ventional perturbative screening, and lies at the heart
electric-magnetic duality. Suppose that the monopole n
work in the vacuum state of such an Abelian U~1! model
experiences a second order phase transition at a certain
pling eM where the monopole loops grow without bound. L
n denote the correlation length exponent for the transiti
Suppose also that ordinary photon exchange is not str
enough to cause a chiral transition neareM . Then, since the
fermion’s chirality is not a conserved property in the pre
ence of the pointlike monopole, the monopole transiti
could induce a chiral transition and the two point correlati
function of c̄c should inherit the critical exponentn from
the monopole-loop transition. Past measurements of mo
pole percolation have determinedn with good accuracy,n
.0.67, which is near the correlation length exponent of
dinary bond percolation in four dimensions. In any ca
since n is distinct from the mean field value of 1/2, th
mechanism has been cited as a potential origin of interac
fermion field theories.

This mechanism has been explored so far in@5–10,12#. In
@6# it was discussed at length how monopoles enhance ch
symmetry breaking, and how chiral symmetry is broken
ther by strong vector forces or magnetic monopoles. In t
situation, monopoles must percolate in the broken phase@7#.
In @5,8–10# chiral symmetry breaking was found coincide
6625 © 1998 The American Physical Society
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6626 57FRANZKI, KOGUT, AND LOMBARDO
within error bars with monopole percolation in QED wi
dynamical fermions. By adding a further agent of chiral sy
metry breaking, a four fermion term, the two transitio
grow far apart, the percolation occurring, as expected, in
broken phase@11#. Obviously, the statement that monopol
percolate in the broken phase or at the phase transition@7#
only applies to the class of models considered in the pa
mentioned above—models whose couplings work aga
chiral symmetry. With a scalar field, which instead favo
chiral symmetry, monopoles might well percolate in the c
ral symmetric phase, as we will show later.

All in all, there are a number of different possibilities fo
the relative position of percolation and chiral symme
breaking: that certainly comes as no surprise as even
simple models there is no unique relationship between
colation and other phase transitions. This is a trivial,
maybe worthwhile remark in view of the criticisms of@12#,
which, we feel, arise from a partial misunderstanding of o
approach. Let us try to clarify: percolation and chiral tran
tion must be studiedindependentlyand their interrelation
should be assesseda posteriori. When they are separate
monopoles are lattice artifacts and their percolation does
correspond~as far as we know! to any physical phase tran
sition. It is only when percolation and chiral phase transiti
coincide that the possibility of a common scaling, hence o
possible continuum limit, opens. This is the case of inter
of the present study. On the other hand, the lack of coin
dence between monopole percolation and chiral transi
simply indicates a different dynamical situation and does
put in jeopardy the scenario under consideration, while
lack of coincidence of percolation and other transitions
other models is, simply, irrelevant to this study.

A more motivated criticism~see again@12# and the dis-
cussions of@13#!, concerns the use of noncompact gau
fields where monopole solutions cannot be found anal
cally, monopoles are~naively! expected to decouple in th
continuum limit, the Dirac string costs action and sta
monopoles do not generate long-range Coulomb fields.
amusing to remind at this point one of the original motiv
tions for considering non-compact gauge fields~see again the
discussions in@7#!: indeed the hope was that magnetic mon
poles, regarded at that time as lattice artifacts, might pla
lesser role in a non-compact model. It was only the obse
tion of the ~possible! coincidence of monopole percolatio
and chiral transition in QED with dynamical fermions whic
motivated us to go beyond the naive scenario~monopoles as
lattice artifacts! and to study a possible role of magne
monopoles in the continuum along the lines reviewed abo
Clearly, it is now desirable to go back to the compact f
mulation: the ideal testing ground for the scenario of@5# is a
simple model with compact fields, a second order chiral tr
sition and monopole percolation. When we began this st
the U~1! chiral transition was thought to be first order1

These considerations lead us to consider a fermion-sc

1The recent results on pure compact QED@14–16# indicate a sec-
ond order transition and suggest that compact QED could be a
interesting testing ground for the scenario discussed in this pa
possibly also for the full theory, if negativeg is chosen@17# @ex-
tended Wilson action with2g(P cos(2Qp) term#.
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compact U~1! model, where the existence of a second ord
chiral transition was well established both analytically a
numerically@18–21#. Note that this transition separates co
finement from Higgs phases, while the QED chiral transiti
separates confining and Coulomb phases.

From a field theory point of view, this work continues th
search for an interacting field theory which is strong
coupled at short distance@22#. Considerable work along this
line has been invested in the study of the pure scalar-ga
model, with compact and non-compact gauge fields. Deta
numerical studies have supported the idea that non-com
scalar QED is trivial in the manner oflf4 by finding evi-
dence for the tell-tale logarithms@23,24#. Analogous results
were reported for the compact model in@25#. The simulation
results support the long held theoretical prejudice that th
is complete charge screening and the renormalized ga
coupling vanishes. In addition, in non-compact scalar Q
monopole percolation turns out to be unrelated with
Higgs transition@24#. These results raise the question if th
chiral nature of the transition in fermionic models mig
make the continuum limit non-trivial.

In a particle physics context, fermion-gauge-scalar m
els have been considered as possible toy models for
strongly coupled standard model@26,18,27–30#. More re-
cently, one such lattice model—dubbed in this conte
xUf4—has been reconsidered in@31–36# as a new mecha
nism for spontaneous symmetry breaking and dynam
mass generation. Recent results showed that the chiral
sition line flows into the Higgs transition line, terminatin
with a tricritical point, whose critical behavior indicates no
pertubative renormalizability, consistent with a Yukaw
theory. The long term aim is to find out whether and how t
physics of thexUf4 model is different from that of the
usual Higgs-Yukawa mechanism of fermion mass gene
tion. For this reason, the triviality issue is not really cent
here: it might well be that the model provides an alternat
to the usual Higgs-Yukawa mechanism, with higher upp
bounds for its validity.

It would be interesting if the results of this paper could
of use to further sharpen the understanding of the tricriti
point of thexUf4 model. However, this is a quenched stu
and its relationship with the full model can only be judgeda
posteriori: a better understanding of thexUf4 model, and/or
of the validity of the quenched approximation, is not t
primary scope of this work. Our aim here is to illustra
some general dynamical mechanisms possibly relevan
continuum physics by investigating the interplay betwe
chiral phase transition and monopole percolation. We cho
to do so in the simplest possible situation: a scalar U~1!
gauge model with quenched fermions.

This paper is organized as follows: first we review t
action and phase diagram of thexUf4 model. We continue
by discussing the topological excitations of Abelian mode
and the observables relevant for the chiral transition. Sec
IV gives an overview of the results for the topological exc
tations and show their correlations with other observab
characterizing the phase diagram. These results confirm
extend the previous work of@37,38#. After this general study,
we focus on three points along the chiral transition line:
Sec. V we present the results for the percolation of magn
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57 6627CHIRAL TRANSITION AND MONOPOLE PERCOLATION . . .
monopoles, in Sec. VI those for the chiral transition. W
conclude with a brief summary and discussion.

II. ACTION AND PHASE DIAGRAM

The xUf4 model is defined by the action@31#

S5Sx1SU1Sf

Sx5
1

2 (
x

x̄x (
m51

4

hxm~Ux,mxx1m2Ux2m,m
† xx2m!

1am0(
x

x̄xxx

SU52b(
P

cos~QP!

Sf52k(
x

(
m51

4

~fx
†Ux,mfx1m1H.c.!.

xx are the Kogut-Susskind fermion fields,fx is a scalar field
with frozen lengthufxu51, andUx,m represents the compac
link variable.Ux,mn is the plaquette product of the link var
ablesUx,m andhmx5(21)x11¯1xm21.

The phase diagram of the quenched approximation@19# is
shown in Fig. 1. It has two phases, the Coulomb phase
the confinement-Higgs phase. The second is separated
two regions with different realizations of chiral symmetr
which are separate phases in the chiral limit of the f
model. The region with smallk andb is chirally asymmetric,
the one with largeb andk is symmetric. These two region
are sometimes also called the confinement and Higgs
gions, respectively, because of the limiting casesk50 and
b5`.

For b50 the gauge and scalar fields can be integrated
exactly, leading to a lattice version of the Nambu–Jo
Lasinio ~NJL! model@18# ~point N!. The point E is the criti-

FIG. 1. The phase diagram of the Higgs model@19# ~xUf4

model for am05` in the update!. The chiral transition of the
quenchedxUf4 model is marked by a dotted line. The points sim
lated in this work are those marked by open circles and the poin
and E. The labels are the same as in@31,32#.
nd
nto

l

e-

ut
-

cal end point of the Higgs phase transition line ETC, whi
is a tricitical point in the chiral limit of the full model. T is
the triple point and C the phase transition from the confi
ment ~at strong gauge coupling! to the Coulomb phase~at
weak gauge coupling! in the model without the scalar field. S
is the critical point of the spin model (b5`).

The status of the current investigation of the full mod
including the dependence on the bare mass, can be foun
@32–36#. Even though past lattice studies in the full mod
concentrated mostly on the tricritical point E, the scali
behavior along the chiral phase transition NE except E
believed to be NJL-like with reasonable accuracy@32#. At E
the scaling behavior is different, e.g. the exponents seem
be nonclassical, which makes the point particularly intere
ing.

In this paper we study the quenched model, which cor
sponds to the limitam05` in the update. The dynamics i
the same as in scalar QED, or Abelian Higgs model, andSx

is only considered for the measurement part. The qualita
features of the phase diagram are known to be the same
the full model. The endpoint of the Higgs transition line E
known with great accuracy@25#. We expect that also in the
quenched model the point N is described by mean field
ponents, as observed in@39#, probably with logarithmic cor-
rections. The topological excitations of the model have be
considered in@37#. In our study we will characterize mor
fully the phase diagram using topological excitations and
will study in quantitative detail the chiral transition line ex
tending from the point N to the endpoint E, and its interpl
with the monopole percolation.

III. OPERATORS

In Abelian models with compact fields the periodic natu
of the interactions makes it possible to rewrite the Action
terms of its topological excitations: magnetic monopo
loops in pure compact QED, and closed vortex surfaces
pure scalar matter. For scalar-gauge systems there are st
of magnetic flux, i.e. lattice monopoles, closed vortex s
faces and open surfaces bounded by monopole loops. T
topological excitations, investigated in the continuum
@40#, are amenable to numerical studies on the latt
@37,41–43#. We review the main definitions below.

The study of the chiral transition will follow@44–46#. The
relevant operators are reviewed in the last subsection.

A. Monopoles

For the measurement of the monopole loop density
introduce the flux variables@41#

urs~x!5ux,r1ux1r,s2ux1s,r2ux,sP~24p,4p# ~1!

whereux,rP(2p,p# is the phase angle of the link variable
Ux,r and the physical flux

ūrs~x!5urs~x!12pnrs~x!P~2p,p#, ~2!

wherenrs(x) is an integer. Ifnrs(x)Þ0 a Dirac sheet goes
through the plaquette. The balance of the flux entering
leaving a 3-cube defines~on the dual lattice! a monopole
current

N
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6628 57FRANZKI, KOGUT, AND LOMBARDO
2pmm~x!5«mnrs¹nūrs~x!. ~3!

The operator¹n labels lattice differentiation. The vecto
mm(x) is the total flux out of the cubec at the dual sitex in
directionm:

2pmm~x!5 (
pP]c

ūp5 (
pP]c

~up12pnp!52p (
pP]c

np .

~4!

The loops of the monopoles~on the dual lattice! are closed,
because of current conservation

¹mmm~x!50. ~5!

They are gauge invariant objects, whereas the Dirac sh
apart from their boundaries, can be distorted.

From this we calculate the monopole loop density,
short monopole density, as

rm5
1

V K (
x,m

umm~x!u L . ~6!

Monopole percolation is detected using an order para
eter borrowed from standard percolation models@47#. A con-
nected cluster of monopoles is introduced@43#: one counts
the number of dual sitesn which are connected with eac
other by monopole line elements.n is the size of the cluster
Note that this construction ignores the vector structure of
monopole currents.

The density of the occupied bonds reads

pm5
ntot

4V
5

1

4V (
n54

nmax

gnn, ~7!

wheregn is the number of clusters with sizen, nmax is the
size of the largest cluster, andntot is the total number of
connected sites.

An order parameter for percolation is

Mperc5
nmax

ntot
. ~8!

Its associated susceptibility is

xM5V~^Mperc
2 &2^Mperc&

2!. ~9!

We have also considered the same susceptibility as in@43#

xperc5K F (
n54

nmax

gnn22nmax
2 G Y ntotL . ~10!

B. Vortex sheets

For the measurement of the vortex sheets we introd
@3,37#

q̄n~x!5wx2ux,n2wx1n1an~x!P~2p,p#, ~11!

wherewxP(2p,p# is the phase angle offx andan(x) is an
integer. The local vortex sheet is now

Vrs~x!5«rsmn„¹man~x!1 1
2 nmn~x!…. ~12!
ts,

-

e

e

From this we calculate the vortex density as

rV5
1

6V K (
x,rs

uVrs~x!u L . ~13!

C. Chiral condensate

The chiral condensate is measured in the usual way

^x̄x&5^Tr M 21& ~14!

with a stochastic estimator, whereM is the fermion matrix.
We also measured the logarithmic derivative of the ch

condensate@45#:

Rp5
] ln^x̄x&
] ln am0

U
b,k

5
am0

^x̄x&

]^x̄x&
]am0

U
b,k

. ~15!

This can be expressed as ratio of zero momentum me
propagatorsC(p50) ~susceptibilities!:

]^x̄x&
]am0

U
b,k

5Cs~p50!,
^x̄x&
am0

5Cp~p50!, ~16!

where the second is the Ward identity, which results from
chiral U(1)A symmetry of the staggered fermions@48#. This
gives

Rp5
Cs~p50!

Cp~p50!
. ~17!

We note that in the quenched approximation only the c
nected part ofCs need to be considered, since fermion loo
are neglected@49#. We have checked that our measureme
of Rp using Eq.~17! is in good agreement with the logarith
mic derivative of the chiral condensate computed by num
cal differentiation of thê x̄x& results.

IV. MEASUREMENT OF THE TOPOLOGICAL
EXCITATIONS—OVERVIEW

Figure 2 shows an overview of the results on the 64 lat-
tice. For b50.00 ~a! ~NJL line! all observables are very
smooth, only the ratioMperc and the chiral condensate sho
a somewhat steeper descent. Monopole and vortex den
decrease slowly for increasingb. More to the right on the NE
line for b50.60 ~b! a similar behavior is observed but th
transition region is somewhat smaller.

For b50.90 ~c! ~crosswise to the ET line first order! a
steep descent in all observables atk50.24(1) can be ob-
served, as this is typical for first order phase transitions. O
viously the monopoles and the vortices are sensitive to
phase transition.

At b51.50 ~d! ~crosswise to the TS line first order! a
phase transition from Coulomb to Higgs phase can be
served. At this phase transition only the vortex density a
the link energy are sensitive, which vary rapidly atk
50.17. The other observables stay nearly constant.

The phase transition CT from confinement to Coulom
phase is shown fork50.05 ~e!. At the phase transition a
b51.01(1) the monopole density,rm and the chiral conden
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57 6629CHIRAL TRANSITION AND MONOPOLE PERCOLATION . . .
sate steeply decrease. Link energy and vortex density
insensitive to this phase transition.

So, we have the following picture. Consider the three r
gions of the phase diagram: Coulomb phase, Higgs reg

FIG. 2. Overview of the topological observablesrm , Mperc, and

rV together withEL and ^x̄x& on the 64 lattice at the lines NE
(a1b), ET ~c!, TS ~d!, and CT ~e!. The errors~not shown! are
nearly always smaller than the symbols.
re

-
n

and confinement region. In the confinement region the mo
pole and vortex density are large and in the Higgs reg
both are small. In the Coulomb phase the vortex density
large and the monopole density small. At the first ord
phase transtions the observables which are large in one p
and small in the other show a steep decrease, wherea
others are insensitive.

The order parameter of percolationMperc follows ~essen-
tially! the monopole density but with more rapid chang
This could be understood in analogy to bond percolation
the monopole density is high, percolating clusters are v
likely, whereas for small monopole densities they are v
unlikely. The first percolating clusters occur at some int
mediate coupling. For largeb, along the line of first order
phase transitions, this seems to coincide with the phase t
sition of the monopole density. Such interplay of monopo
condensation and percolation has been investigated befo
pure compact QED in@50#.

At the line NE, which is second order in the full theor
the situation is less obvious.

At the endpoint E of the Higgs phase transition,b
50.848, rm and rV show a steep descent, which gets i
creasingly steeper for increasing lattice size~Fig. 3a!. The
derivative of these observables show an increasing m
mum. We have not done a scaling investigation but the d
suggest a divergence.

For b50.30 ~Fig. 3b!, still along the line NE, both den
sities show no maximum in the derivative. Moreover,
volume dependence was observed. Obviously they do no
critical in the region where the chiral condensate has its la
est variation.

For b50.00 the picture is very similar to that atb
50.30.

The threeb values 0.00, 0.30, and 0.848 have been
lected for the systematic investigation which we describe
the rest of this paper.

V. MAGNETIC MONOPOLES IN THE VICINITY
OF THE NE LINE

In this section we measure the critical line for the perc
lation of the magnetic monopole clusters, and its critical e
FIG. 3. Monopole densityrm and vortex densityrV for ~a! b50.848.bE and ~b! b50.30.
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6630 57FRANZKI, KOGUT, AND LOMBARDO
ponents. An accurate measurement of the critical line is
tained thanks to the combined use of reweighting techniq
and the two definitions of monopole percolationxperc and
xM .

The quality of our measurements is demonstrated in Fi
where we contrastxperc and xM at b50.30 on lattices of
different size. Both susceptibilities show a clear maximu
for all b’s in the vicinity of the line NE. The peaks are ver
close, and the volume corrections have different signs.

We have determined the precise position of the maxim
of xperc and xM with the multihistogram method. The nu
merical results forxperc and xM , together with other mag
netic observables, are summarized in Table I. In Fig. 5
show the position of the peak of the two susceptibilities a
function of 1/L for b50.00. We superimpose a power law
with different amplitudes and exponents and a common c
cal point. Again we see that, by increasing volume,xperc
approaches the critical point from above,xM from below.
They provide upper and lower bounds, hence an accu

FIG. 4. Percolation susceptibilitiesxperc~solid! andxM/10 ~open
symbols! for b50.30. The curves are interpolations made with t
use of reweighting techniques.
b-
s,

4

e
a

i-

te

determination, of the critical coupling for the percolation
magnetic monopole clusters.

A determination of the critical exponent of comparab
accuracy requires a careful consideration of scaling violat
effects, and will be presented elsewhere. For our present
poses a precision comparable to that we achieved at the
ral transition would suffice~5–10%!.

Figure 6 shows the scaling behavior of the maximum
xpercwith the lattice size. Note the linear rise with size in th
double logarithmic plot, supporting power law scaling. On
the data on the 64 lattice displays small deviations. In a fi
with the finite size scaling equation

xperc,max~L !}Lgperc/nperc ~18!

we measure forb50.00 andb50.30 the nearly identica
value ofgperc/nperc52.28(2). Thesubscript ‘‘perc’’ is added
to indicate the definition of the exponents at the percolat
transition. For comparison, the measurements in quenc
non-compact@8# and in full non-compact QED@5# yields
quite similar values ofgperc/nperc52.24(2) andgperc/nperc

FIG. 5. Position of the peak of the percolation susceptibil
xperc ~circles! andxM ~triangles! for b50.00.
d
tion
TABLE I. Position and height of the maximum of the percolation susceptibility for differentb and lattice
sizes along the line NE. The values are given for both definitionsxM and xperc. For the infinite volume
extrapolation ofkmax ~k51.3469,k50.8875, andk50.2714, respectively! also the density of the occupie
bondspm and the monopole densityrm is printed. For comparison, our best estimate for the chiral transi
in the infinite volume is given in the second column~see Sec. VI!.

b kchiral,c lattice kmax(L) xM(L) kmax(L) xperc(L) pm rm

64 1.307~4! 156.~3! 1.363~5! 16.11~5! 0.1132~1! 0.5283~6!

84 1.3179~6! 342.~2! 1.3525~6! 32.00~4! 0.11323~2! 0.52852~9!

0.00 1.23~3! 124 1.3303~5! 941.~9! 1.3474~4! 80.9~4! 0.11322~1! 0.52848~5!

164 1.3358~6! 1865.~13! 1.347~1! 154.~7! 0.11322~1! 0.52847~7!

204 1.3395~3! 3054.~31! 1.3467~4! 253.~3! 0.11321~1! 0.52841~4!

64 0.861~4! 165.~3! 0.903~3! 15.6~2! 0.1074~3! 0.494~1!

84 0.8671~5! 360.~2! 0.8926~8! 31.5~1! 0.10746~3! 0.4946~2!

0.30 0.87~2! 124 0.8756~4! 989.~5! 0.8886~8! 80.3~4! 0.10749~2! 0.49474~9!

164 0.8812~4! 1937.~13! 0.8882~5! 153.7~7! 0.10750~1! 0.49477~7!

84 0.2678~1! 574.~4! 0.2732~1! 22.35~6! 0.0727~2! 0.3180~7!

124 0.2692~1! 1437.~15! 0.27204~7! 59.5~3! 0.07257~5! 0.3174~2!

0.848 0.26:0.29 164 0.2701~1! 2758.~34! 0.27191~8! 120.~1! 0.07259~7! 0.3175~3!

204 0.27065~5! 4501.~53! 0.27168~4! 206.1~8! 0.7257~2! 0.3174~1!
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52.25(3), respectively. Forb50.848 one obtains a some
what larger value ofgperc/nperc52.42(1).

The maximum ofxM shows larger deviations from th
leading finite size scaling behavior for small lattices. If w
use only lattices withL>12, we get for b50.00 and
b50.30 an exponentgM /nM52.32(3) and forb50.848
gM /nM52.23(4). ThesubscriptM indicates the exponent
which have been determined usingxM .

The g/n ’s from the two definitions are separated by le
than two standard deviations atb50.00 andb50.30. At
b50.848 the disagreement increases. Larger lattices, an
a careful consideration of correction to scaling terms sho
bring the results from the two definitions closer. Within th
uncertainty all numbers ofg/n of the percolation transition
are compatible with 2.3~1!.

We can contrast these results with those of pure rand
bond percolation@51#. For pure random bond percolation th
critical density ispc50.161. In our model the densitypm,c at
the percolation phase transition depends onb, and it is gen-
erally lower. Our result is close to that of site bond perco
tion g/n52.094(2) @52,51#. Considering the vector charac
ter of the monopole current, we should not expect that
two models are in the same universality class, as pointed
in @8#!.

To determinebperc/nperc we investigated the scaling wit
volume of Mperc at the ~infinite volume! critical coupling.
The results are very sensitive to the precise value ofkc . We
estimated anywaybperc/nperc50.85(3) in good agreemen
with the scaling relation

bperc

nperc
5

1

2 S d2
gperc

nperc
D . ~19!

The result for quenched non-compact QED isbperc/nperc
50.88(2).

The exponentbperc was determined fromMperc in the
phase with percolation, using the results not distorted by
nite size effects. The result forb50.00 is shown in Fig. 7.
Here again we fixed the critical coupling. The fits giv
bperc50.52(2), where the error was determined by varyin
the critical coupling in the intervalkc51.346...1.348. We

FIG. 6. Scaling behavior of the maximum of the percolati
susceptibilityxperc for b50.00, b50.30, andb50.848. In the fit
only data withL>8 have been considered.
/or
ld

m

-

e
ut

-

repeated this forb50.30 and obtained abperc50.50(4),
smaller but compatible within errors.@b50.58(2) in non-
compact quenched QED@8#.#

Together with our determination ofbperc/nperc50.85(3)
we get the exponent for the correlation lengthnperc
50.61(4) to be contrasted with that of non-compact QE
nperc50.66(3), and of pure random site percolationnperc
50.69(1). A more careful analysis, considering correctio
to scaling, would be necessary to assess the significanc
these differences and to decide if percolation is in the sa
universality class for allb<0.848. Differences, if any, are
anyway small.

Note that for bE50.848 the percolation transition a
k50.2714(3) is distinct from the Higgs phase transitio
which occurs atkc50.26333(1)@25,34,35#. In Fig. 8, we
see that all the observables are very sensitive to the H
phase transition~note the sharp peak of the susceptibility
the link energy!, with the exception of the susceptibilityxperc
of the percolation. This shows that at the end point,
Higgs phase transition and the percolation of the monopo
is uncorrelated. So the percolation of the monopoles pr
ably cannot help us understand the tricritical point in t
dynamical model.

FIG. 7. Scaling behavior ofMperc for b50.00. In the fit only
data withL>16 in the intervalk51.30...1.33 have been consid
ered. The critical coupling was fixed tokc51.3469.

FIG. 8. Susceptibility of the monopole percolationxperc and the
link energyxEL

, as well as the order parameter of the percolat
Mperc, the monopole densityrm and the chiral condensat

^x̄x&(am050.04) as a function ofk on a 124 lattice atb50.848 at
the end point of the Higgs phase transitions.
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VI. THE CHIRAL TRANSITION „NE… LINE

We consider first the behavior of the susceptibility rat
The discussion here aims at illustrating the general tr
along the critical line. In the second subsection we cr
check the results by fitting the data to the equations of st
That includes a more detailed discussion on the selectio
the scaling window, and a careful error analysis.

A. Rp

We measure the ratio ofRp as a function ofam0 : at the
chiral transitionRp should be independent onam0 if the
transition is described by a simple scaling law. Logarithm
corrections modify this behavior.

For b50.00 ~Fig. 9a! our data indicate a chiral transitio
at kc51.23(3) withRp50.35(5). This value compares wel
with the expected mean field resultRp(kc)51/d51/3.
Logarithmic corrections, if any, are small, as we will s
later on.

For b50.30 ~Fig. 9b! the results suggestkc50.87(2)
with Rp(kc)50.45(10). This corresponds tod52.2(6).
Logarithmic corrections in the manner of Nambu and Jo
Lasinio would predict

Rp~kc!51/„311/log~^x̄x&!… ~20!

resulting in a slight upward trend of the critical ratio, st
compatible with the data. We comment more on this poin
the next subsection. The curves foram0.0.02– 0.04 starts
bending downwards, after the initial rise: masses larger t
0.04 cannot be used safely to assess the critical behavio
the next subsection we discuss in detail how to select
appropriate scaling window.

For b50.848 ~point E! the Higgs phase transition is a
kc.0.263. We have shown above that the Higgs transitio
separate from monopole percolation, and here~Fig. 9c! we
see that at thisk a conventional second order chiral transiti
is incompatible with the data. The data in Fig. 9c wou
rather suggest a chiral transition in the interval@0.28–0.30#,
even on the right of the percolation transition. But this b
havior is far from clear.

As an alternative strategy to locate the chiral transition
b50.848 we investigated the scaling behavior of (amp)2 as
a function ofam0 ~Fig. 10!. Fork50.255 andk50.26 thep
meson mass scales corresponding to the PCAC~partial con-
servation of axial vector current! relation (amp)2}am0 . For
largerk, especally for thosek between the transitions, devia
tions from the PCAC relation can be observed. The data
k50.27 on the 124 lattice might suggest a straight line join
ing the origin and the two smaller points. But the data
am050.01 on the 164 lattice indicate that we have to b
aware of finite size effects and the data on the larger lat
favor a violated PCAC relation. These ambiguities in t
extrapolations are not uncommon in the numerical studie
phase transition. We conclude that also the PCAC anal
does not reliably locatekc of the chiral transition atb
50.848.

Because of the unusual behavior of the chiral condens
the equation of state also fails. So we cannot decide from
data if the Higgs and chiral transition meet at the end po
as observed in the dynamical theory@32,35#.
.
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B. Equation of state

The results of the susceptibility ratio pose at least t
questions:~1! is the critical behavior atb50.30 really dif-
ferent from the one atb50.00? ~2! If yes, and the data a
b50.30 are described by a power law scaling, what are
other critical exponents?—in particular, we are interested
the relative position of percolation and chiral transition, a
in their correlation length exponentsn.

The standard way to address these questions is to ex
the chiral equations of state~EOS!. First we briefly discuss
the results atb50.00, which we shall use as a term of com

FIG. 9. Rp as function ofam0 at ~a! b50.00, ~b! b50.30, and
~c! b50.848.bE . ~Solid, dashed, dotted lines! are for ~164, 124,
84! lattices. Approximate values for the critical point are indicat
with horizontal lines.
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57 6633CHIRAL TRANSITION AND MONOPOLE PERCOLATION . . .
parison, and then we will devote more time to the discuss
at b50.30.

The EOS framework is borrowed from ancient studies
ferromagnetic transitions, and, as such, uses data in the
modynamic limit. Happily, this approach requires that w
simulate the model within its scaling window but not nece
sarily directly at the critical point. Consequently it is possib
to work with data free from finite volume effects~which will
not be possibleat the critical point where a finite size scalin
analysis would be mandatory!. Both the selection of the sca
ing window, and the control over finite size effects are d
cussed below.

Recall the possible critical behavior, and the relat
equations of state. If scaling holds, the data are describe
a ‘‘standard’’ equation of state

am05^x̄x&d f ~ t/^x̄x&1/bx!, ~21!

wheret is the reduced coupling~in our caset5k2kc! and
whose first order approximation—used in actual fits—rea

am05aP~k2kc!^x̄x&d21/bx1bP^x̄x&d. ~22!

If the theory is trivial, the most natural candidate to descr
the data is an equation of state in the manner of Nambu
Jona-Lasinio. We will use the following form, which is mo
tivated by the leading term of the 1/N expansion@53#:

am05aNJL~k2kc!^x̄x&1bNJL^x̄x&3~ log^x̄x&/s!
~23!

and we will just comment on its possible generalizatio
@57,58# ~in practical analysis loĝx̄x&/s will be replaced by
log^x̄x&1c!.

In many cases we used two different fitting procedure
For the first one we numerically invert Eq.~22! for ^x̄x&

and then make a minimumx2 fit for the measured chira
condensate, taking into account the errors. We label the
sults obtained with this procedure@F1#.

The second one@F2# is a least squares procedure whi
minimizes@am02am(^x̄x&)#2, am(^x̄x&)2 being the right-

FIG. 10. Behavior of the quadraticp meson mass as function o
am0 . In the broken phase a straight line through the origin is
pected. The lines indicate a fit to the 164 data. Fork50.27 we
observed large finite size effects, which make the extrapolation
reliable.
n
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hand side of either Eq.~22! or Eq.~23!. We then compute the
errors by jack-knifing the results obtained by discarding o
point at a time. The quality of the fit is estimated byQ

5@m02m(^x̄x&)#2/@D„m(^x̄x&)2
…Npoints#. For a good fit

we expectQ to be close to one.

1. b50.00

As mentioned above, we expect that atb50 the model
reduces to a lattice NJL model. Recent numerical studie
four dimensional NJL models include@53–55#.

At b50.00 we restricted ourselves to k
5(1.15, 1.20, 1.25). A power law fit with 5 free paramete
which uses the data at bare masses 0.02 and 0.01 from
164 lattice, and the data at 0.015 from the 124 lattice, is
shown in Fig. 11. The quality of the fit@F1# is nice; the
exponentsd53.06(19),bx50.56(4) are all consistent with
mean field theory. The critical couplingkc is 1.228~7!.

We have then included logarithmic corrections, initial
without scale~the parameters51 in the EOS!. We used data
from the 124 lattice, and the procedure@F2#. In the same
interval we obtainkc51.259(4). Adding one further point at
k51.30, am050.02 moves the central values tokc
51.258. The inclusion of a free scale parameter in the
moves the critical point tokc51.248, closer to the powe
law results. We have checked that we can discard the po
with bare mass 0.02 without altering the results. We can a
constrain the exponents to their mean field values with
appreciably degrading the quality of the fits—that cor
sponds to ‘‘cancelling’’ the logs in the NJL equation of sta
kc is then 1.224~8!.

In conclusion, the data atb50.00 are well described, a
expected, by a mean field critical behavior, withkc in the
range 1.22– 1.26, in agreement with the ratio analysis. T
range of critical couplings is well separated from that
monopole percolation as can be seen from Table I and Fig
Logarithmic corrections, if any, are small; their inclusio
improves the quality of the fits, but does not alterkc nor do
they allow fits on a wider interval. These critical coupling
are significantly different from those of the percolation tra
sition.

2. b50.30

Our first task is to select a reliable data sample for our fi
From the results forRp , we know that masses larger tha

-

n-

FIG. 11. Results of the power law fits described in the text
b50.00. The arrows indicate the fitted interval.
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6634 57FRANZKI, KOGUT, AND LOMBARDO
0.02 are too heavy. On the other hand, small masses, w
require large lattices, are only available for threek ’ s. All in
all, our candidate window for fits narrows down to the ni
points at k50.85,0.87,0.90—we occasionally checked t
stability of our results by including the twoam050.02
points atk50.80 and 0.95 but we did not venture any fu
ther. By contrasting data in this range obtained on a 84, 124,
and a 164 lattice, we checked that finite volume effects a
already small on a 84 lattice, and that the difference betwee
results on a 124 and on a 164 lattice is statistically not sig-
nificant ~the worst case isam050.005 where the data ar
separated by two standard deviations!. We used the data on
the 164 lattice for our fits.

The results from@F1# applied to the power law form ar
shown in Fig. 12. The stability of these results was chec
by performing the@F2# fits on the same range of paramete
The results are shown in Table II, first line. We getkc
50.874(6), d52.12(15), andbx50.88(5). @These expo-
nents are very close to those of quenched, non-com
QED: d52.12(1), bx50.86(3), g51.0 @56,46#.# Assuming
scaling, these critical exponents given50.695. We have
verified that the fit is stable against the inclusion of the t
points atam050.02, k50.80 and 0.95. Finally, since w
want to contrast the position of the chiral transition with t
position of the peaks of the monopole susceptibility, we ha
also tried fits constraining the criticalk50.882, at the lower
bound of kc percolation. The results for the critical expo
nents~second line of Table II! are compatible with the pre
vious ones and given50.73. The quality parameter Q~1.79!
is still acceptable. Constrainingkc deeper into the critica
interval spanned by the criticalk for percolation further de-
grades the quality of the fit, which remains nevertheless
erable. We have also searched for the best exponents as
ing by eye the quality of the scaling plots built following E
~21!. The best plot pickskc50.868,d52.26, bx50.8, giv-
ing n50.65.

FIG. 12. As in Fig. 11, butb50.30. This fit corresponds to th
first line in Table II.

TABLE II. Results of the powerlaw EOS@Eq. ~22!# fits at b
50.30.

aP bP kc
P d d21/bx Q

2.54~4! 1.58~36! 0.874~6! 2.12~15! 0.999~68! 1.068
2.19~28! 1.22~7! 0.882@Fixed# 1.94~2! 0.932~47! 1.79
2.00~40! 1.08~8! 0.8875@Fixed# 1.83~3! 0.893~82! 2.96
ch

d
.

ct

e

l-
ess-

We have also tried to fit the data with a logarithmic im
proved mean field equation. The results of the fits are d
played in Table III.~Note, that this fit has less free param
eters.! We see that the only fit of quality comparable to t
power law fits requires a variable scale. In this case,
critical coupling is smaller than that from the power law fit
kc50.866(2) to be contrasted withkc50.874(6). Theshift
in the critical coupling with respect to the power law resu
can also be appreciated by performing a constrained fit w
kc50.882, which fails completely~third line of Table III,
Q583.26!: this definitively shows that a NJL critical behav
ior cannot be associated with the percolation of magn
monopoles.

We can also study the sensitivity of the position of t
critical point to the equation of state by inspectingRp . This
gives a clearer indication of the role played by the prec
location of the critical point in determining the critical sca
ing. In Fig. 13 we show the results forRp in the critical
region constrasted with 1/d ~solid line! from our best power
law fit, and with Rp(kc) from the logarithmic fit without
scale. We see that theRp’s corresponding to the two hypoth
eses~logarithms and power law! fall in the k interval pre-
dicted by the fits—between 0.85 and 0.87 for log fits (kc
.0.86), and between 0.87 and 0.90 for power law (kc
.0.88).

Summarizing.If the correct results~i.e., those describing
the physics of the chiral limit on infinite volumes! are given
by the logarithmic fits, second line Table III, the percolati
transition and the chiral transition are distinct. In this case
have not learned anything about a possible role of magn
monopoles in the existence of strongly coupled theor

TABLE III. Results of the logarithmic EOS@Eq. ~23!# fits at
b50.30.

aNJL bNJL kc
NJL c Q

2.46~6! 23.68(16) 0.861~1! 0 @Fixed# 6.94
2.54~5! 26.12(84) 0.866~2! 0.69~14! 1.18
2.81~19! 213.88(2.01) 0.882@Fixed# 1.23~13! 83.26

FIG. 13. Rp in the critical region. The dotted line is for the 164

lattice; the dot-dash line for the 124. The dashed line isRp(kc)
51/d from the power law fit Table II; the solid line isRp(kc) from
the logarithmic fit, first line Table III.
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57 6635CHIRAL TRANSITION AND MONOPOLE PERCOLATION . . .
Simply, the chiral transition would be trivial and magne
monopoles would have nothing to do with it, as it is forb
50.00 and probably also forb50.848.

If the correct results are given by power law fits, Table
the chiral transition coincides within errors with the perco
tion transition. The critical exponentn for the chiral transi-
tion is in the range 0.65–0.73, to be contrasted withnperc
50.61(4), as wedetermined in Sec. V. Taking into accou
the possibility of further corrections, the exponentsn for the
two transitions are compatible and.0.65.

Note again these results differ from the ones in the
model where the critical behavior along the line NE see
the same as the one of the trivial NJL point. It is not in t
scope of the present paper to investigate the relationship
tween the quenched and full model, but this is certainly
interesting subject for further investigations.

Finally, we might wonder about the sensitivity of th
quality of the logarithmic fits and/or the value of the critic
coupling to further corrections. Typical corrections inclu
powers of the logarithms. Although such corrections are
there, up to O(1/N2), they cannot be excluded in genera
Our model, however, could be in the Yukawa universa
class @57,58#. In this case, one can conceive of sizea
variation, even in sign, of the exponents and the simp
parametrization of such crossover behavior would sugg
that the powers in the logs should be kept free. It canno
excluded that more general logarithmic equations of stat
the data well, and certainly this would make the study of
interrelation between the chiral transition and monopole p
colation more subtle.

VII. SUMMARY

We have investigated the topological excitations in
phase diagram of scalar QED. We confirmed with great p
cision the picture suggested by@37,38# and see clear signal
for first order phase transitions in the topological obse
ables.

We have investigated in detail chiral transition and mon
pole percolation for three points.

b50.00: The chiral transition is described by mean fie
exponents, possibly with small~logarthmic! corrections. The
percolation transition is well separated from the chiral tra
sition.

b50.30: Two possibilities are consistent with the da
1st a situation analogous to that atb50.00, but with large
logarithmic corrections; 2nd percolation and chiral transition
coincident, with the same critical exponentn.

b50.848: The only clear statement here is that the Hig
transition and monopole percolation are distinct. We ha
not been able to measure with confidence the chiral tra
tion, which has proven hard to study with conventional n
merical methods.

Since the scalar field increases the order in the ga
fields and favors chiral symmetry, separate chiral and mo
pole percolation transitions are not unexpected: it might w
be that monopoles percolate in the symmetric phase,
their tendency to break chiral symmetry is overcome by
ordering effects of the scalar fields. This seems to be the
at b50.00, and it is also possible atb50.30 ~if the first
possibility is realized!. In this case chiral transition is mos
,
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probably mean field like along the whole line NE~without
the point E!, as it seems to be in the full model. Moreove
the chiral transition is separated from the percolation tran
tion: when this is the case monopoles should be irrelevan
the dynamics of the chiral transition in the large volum
continuum limit—see again the discussion in the Introdu
tion. Except for the point E~we reiterate that we do not hav
any conclusion on the relative position of monopoles a
chiral transition at the point E! this goes hand in hand with
the transition being trivial. Still, the behavior atb50.30 re-
mains different from that atb50.00, and and it would be
interesting to find a coherent scenario accomodating th
observations.

The scenario of@5# requires instead a chiral transitio
coincident with the percolation transition, and sharing t
same correlation length exponent. When this occurs, the
namics of the chiral transition should inherit the characte
tics of that of the magnetic monopoles, which survive t
non-trivial continuum limit. This could be the case atb
50.30. The scenario of@5# receives then some support fro
our investigation.

Important questions concern the relevance of these res
for the full model, and, in general, the sensitivity to the nu
ber of flavors. If the scenario of@5# is realized, the situation
is different from the one observed in the full model: If this
the case, fermion screening plays an important role in
model as it presumably does in the gauged Nambu–Jo
Lasinio model: there the ladder~quenched! approximation
predicts a non-mean field scenario@59,60#, while the full
model is presumably trivial@11#. These observations do no
detract from the illustrative value of our results atb50.30,
but, of course, prevent us from extending any of our conc
sions to the full model at this stage of our investigation.
the full and quenched models really have different critic
behavior along the line NE, then we are challenged to und
stand something unexpected and special about fermi
screening in this model. In the present quenched model,
dynamical scalar field in the configurations complete
screens the electric charge, producing a vanishing renorm
ized gauge coupling in this sector of the model. If the ferm
ons were also treated dynamically, they would add noth
qualitatively new in terms of charge screening. Therefo
the fermion-monopole interaction would have to have so
essential ingredient which renders the monopoles ineffec
in driving chiral symmetry breaking in the full model. Simu
lations of non-compact QED with the number of flavorsNf
varying from 2 to 32, do not show such an effect—the
chiral symmetry breaking and monopole percolation w
coincident, within ample error bars, for allNf @5#. Better
simulations of the full and quenched models with smal
bare fermion masses and larger lattices are needed now

We should define better numerical strategies so to sh
more clearly the correlation, or lack thereof, between ch
and monopole observables. It is however evident from
data, that forb50.00, when the chiral and monopole trans
tions are clearly distinct, the chiral transition is clearly trivi
and is not correlated with the percolation of monopol
When the transitions grow closer forb50.30, so do the
correlation length exponentsn ~or the effective critical expo-
nent n in the case of logarithmic triviality!. The transitions
may be coincident, with the same critical exponentn.
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Note added.Shortly after the completion of our work, a
interesting paper by Baig and Clue@61# appeared which con
tains results overlapping, and confirming, a subset of
own.
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