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Phase transitions in SO„3… lattice gauge theory
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The phase diagram ofSO(3) lattice gauge theory is investigated by Monte Carlo techniques on both
symmetricNs

4 and asymmetricNs
33Nb lattices with a view~i! to understanding the relationship between the

bulk transition and the deconfinement transition, and~ii ! to resolving the current ambiguity about the nature of
the high temperature phase. A number of tests, including an introduction of a magnetic field and measurement
of different correlation functions in the phases with positive and negative values for the adjoint Polyakov line,
La , lead to the conclusion that the two phases correspond to the same physical state. Studies on lattices of
different sizes reveal only one phase transition for this theory on all of them and it appears to have a
deconfining nature.@S0556-2821~98!02111-0#

PACS number~s!: 11.15.Ha, 12.38.Aw
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I. INTRODUCTION

The formulation of gauge theories on discrete space-t
lattices @1# provide an elegant way to investigate confin
ment in non-Abelian gauge theories. Using numerical Mo
Carlo techniques, it was shown@2# that confinement survive
the approach to the continuum limit ofa→0, wherea is the
lattice spacing. The same techniques enabled one to exp
these theories at nonzero temperatures, where it was fo
@3# that bothSU(2) andSU(3) Yang-Mills theories undergo
deconfinement phase transitions to a new phase of de
fined glue. Exploiting the symmetry of their order param
eters, it was argued@4# that theSU(3) theory should have a
first order transition, while the critical exponents of th
SU(2) theory should be the same as those of the
dimensional Ising model, which was confirmed by high p
cision determination@5# of the exponents.

Since the continuum limit is at the critical point of a la
tice theory, a large class of actions, which are in the sa
universality class as the popular Wilson action@1#, given by
Eq. ~1!,

S5b f(
p

F12
1

N
Re Trf UpG , ~1!

are expected to give rise to the same predictions for c
tinuum physics. In particular, the trace, taken in the fun
mental representation of the gauge group in Eq.~1!, can be
taken in any representation of the gauge group. Indeed
the 2-loopb-function for pureSU(2) gauge theory is iden
tical to that of the pureSO(3) gauge theory, one expects th
latter to yield the same continuum physics. On the ot
hand, SO(3) does not have theZ(2) center symmetry,
whose spontaneous breakdown in theSU(2) theory indicates
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the deconfinement transition. This makes the investigation
the phase diagram of theSO(3) gauge theory especially in
teresting and important. It has been argued@6# that the de-
confinement transition, in this case, will show up as a cr
over which sharpens in the continuum limit to give the Isin
like second order phase transition.

Another reason for investigating the finite temperatu
transition inSO(3) gauge theory is that it is supposed@7# to
have a bulk phase transition and may thus provide a test
for studying the interplay between the types of phase tra
tions. Recently, simulations of the Bhanot-Creutz action@7#
for SU(2) gauge theory,

S5(
p

Fb f S 12
1

2
Trf UpD1baS 12

1

3
Tra UpD G ~2!

at finite temperature revealed@8# that the known deconfine
ment transition point in Wilson action becomes a line in t
b f-ba plane and joins the bulk transition line seen in@7#.
The order of the deconfinement transition was also see
change from second to first forba>1.25. At no ba , two
separate transitions were found in spite of variations in
lattice size in temporal directions fromNt52 to 8. Consid-
ering the different physical nature of these transitions, th
coincidence was puzzling. In view of the behavior of t
order parameter for the deconfinement phase transition
was concluded in@9# that the transition seen in@7# is a de-
confinement transition rather than a bulk one. However, v
little shift in the transition coupling was seen under a chan
of Nt , which is more characteristic of a bulk transition.

The studies in@8,9# were all done for a relatively smal
ba , i.e., close to the Wilson action. In this paper we stu
the Bhanot-Creutz action withb f50 with an aim to study
the issue of bulk vs deconfinement transitions away from
Wilson action axis. As the trace is then taken only in t
adjoint representation, it corresponds toSO(3) gauge theory.
In the strong coupling domain,SO(3) gauge theory is quali-
tatively different fromSU(2). Itsapproach to the continuum
6618 © 1998 The American Physical Society
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57 6619PHASE TRANSITIONS IN SO~3! LATTICE GAUGE THEORY
theory of su~2! algebra has been studied by Halliday a
Schwimmer~5!, using a modified action which is similar t
SO(3) Wilson action, but which reveals the topologic
properties explicitly. They found a phase transition, driv
by the melting of the condensate ofZ(N) monopoles, sepa
rating the strong coupling region from the weak coupli
region.

A study of finite temperatureSO(3) gauge theory was
carried out in@11# and a deconfining transition for this theo
was found. However, there was some ambiguity about
nature of the high temperature phase and the order of
phase transition in@11#. In this work, we attempt to clarify
the nature of the high temperature phase, and the order o
phase transition forSO(3) lattice gauge theory.

The plan of our paper is as follows: in Sec. II, we defi
the actions and the different observables we use for
study. In Sec. III, we discuss the nature of the high tempe
ture phase with a view to clarify some of the issues in@11#.
Finite size scaling analysis is used in the next section
establish the order of the transition ofSO(3) gauge theory.
In Sec. V, the issue of bulk versus deconfinement transi
is discussed. The last section contains a summary of
results and their discussion.

II. ACTIONS AND OBSERVABLES

The Wilson action forSO(3) gauge theory is

S5b(
p

S 12
1

3
Tr UpD ~3!

whereUp denotes the directed product of the basic link va
ables which describe the gauge fields,Um(x)PSO(3),
around an elementary plaquettep. Comparing the naive clas
sical continuum limit of Eq.~3! with the standard action fo
SU(2) Yang-Mills theory, one obtainsb53/2g0

2, whereg0

is the bare coupling constant of the continuum theory.
Using the property of the adjoint trace, Tra V5(Trf V)2

21, the action~2! can be written forb f50 as

S5
4ba

3 (
p

F11S 1

2
Trf UpD 2G . ~4!

This form is advantageous for numerical simulations, sin
one can use the Pauli matrix representation for theSU(2)
matrices. It was found in@7# that this action has a first orde
bulk transition atb;2.5. We have checked that the tw
actions above give identical results, and then used Eq.~4! for
our simulations. Another action that we used is the Hallid
Schwimmer action@10#

S5
bv

2 (
p

sp Trf Up . ~5!

Here Up is defined as before, but the link variablesUm(x)
PSU(2), andsp561. Besides the integration over the lin
variables, the partition function in this case also contain
summation over all possible configurations of the set$sp%,
thus ensuring that the action is blind to theZ(2) center sym-
metry of SU(2). It is thus as good as Eq.~3! for exploring
the role ofZ(2) in deconfinement transition. It was found
e
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@10# that the action~5! shows a first order bulk phase trans
tion at bv;4.5. The chief advantage of this action is th
both the link variablesUm and the plaquette variablessp can
be updated using heat-bath algorithms@2#. We have used it
for both qualitative studies of nature of the high temperat
phase in the next section and for quantitative investigati
in later sections, where substantial computation was ne
sary.

One of the observables which we used to monitor
phase transitions is the adjoint plaquette variableP, defined
as the average of13 Tra Up over all plaquettes for actions~3!
and ~4!; for the action~5!, P is defined as the average o
spTrf Up over all plaquettes. The order parameter of t
deconfinement transition inSU(2) gauge theory,^L f&,
whereL f is given by

L f~rW !5Trf )
i 51

Nt

Ut~rW,i !, ~6!

is identically zero for the actions~4! and~5! due to their local
Z(2) symmetry. Its natural analogue for theSO(3) theory is
^La&, the average over all spatial sites of the adjoint Pol
kov loop, defined by

La~rW !5Tra )
i 51

Nt

Ut~rW,i !. ~7!

Note that̂ La&, unlike ^L f&, is not an order parameter, as it
not constrained to be zero in the confined phase. Since^La&
and ^L f& can be thought of as measures of free energy o
fundamental and an adjoint quark, respectively, their diff
ent behavior in the confined phase is related to the fact
an adjoint quark in the confined phase can be screene
gluons created from the vacuum, while a fundamental qu
cannot. For the same reason, an adjoint Wilson loop is
supposed to exhibit the area law. However, creation of glu
pairs from vacuum costs a considerable amount of energ
glueballs are heavy. It may therefore be favorable for adjo
quarks also to have a string between them, at least when
are not too far separated. Intermediate size adjoint Wil
loops were found@12# to show an area law forSU(2) gauge
theory, giving a string tension that is;2 times as large as
the fundamental string tension. Furthermore, the behavio
the adjoint Polyakov loop across theSU(2) deconfinement
transition was found to be qualitatively similar to that of th
fundamental Polyakov loop:̂La&;0 ~for 8332 and 8334
lattices! till the deconfinement transition, where it acquires
nonzero value@13#. The jump in ^La& ~and also in even
higher representation Polyakov loops! is surprisingly similar
to that in ^L f&. This is believed to be related to opening
mass gap across deconfinement: below the deconfinem
transition, adjoint quark can exist only by forming a bou
state with gluon, which costs a lot of energy and leads t
small expectation value for̂La&.

For the same reason,^La& can be expected to show
sharp change at the deconfinement transition forSO(3)
gauge theory also and can, therefore, serve as a good in
tor of deconfinement transition inSO(3) gauge theory. The
behavior of^La& in finite temperatureSO(3) gauge theory
was studied numerically in Ref.@11#. Using a 7333 lattice
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6620 57SAUMEN DATTA AND RAJIV V. GAVAI
and the action~4!, it was found that̂ La& was consistent with
zero till ba;2.5, after which it became nonzero, indicating
deconfinement transition around this value ofba .

III. THE HIGH TEMPERATURE PHASE

An unexpected and curious result of Ref.@11# was that
after becoming nonzero in the high temperature phase,^La&
settles into either a positive value~→3 as ba→`!, or a
negative value~→21 asba→`!, the average value of th
action being the same for both the states. In@11# the negative
^La& state was interpreted as the manifestation of ano
zero temperature confined phase. Since its negative valu
inconsistent with its being the exponential of the free ene
of an adjoint quark, it was conjectured that the negat
value is a finite volume effect and that it should go to zero
bigger lattices.

We have carried out a number of tests in order to und
stand the nature of the negative^La& state. First, it was
checked that the appearance of this phase is not due to
algorithmic problem, by checking that it appears irrespect
of whether one uses action~3!, ~4! or ~5!. Since one uses
explicitly SO(3) symmetric multiplication table for the firs
of these actions and a heat-bath for the third, any doubt
the negativêLa&-phase being an artifact of theSU(2)-based
algorithm vanished, when it was observed for all the th
actions for the corresponding deconfined phases. Indeed
like Ref. @11# or action~4!, where only the hot starts in th
deconfined phase lead to it, the heat-bath algorithm for
action ~5! yielded it from even cold starts in the deconfin
phase. Next, we checked whether the negative value
finite size effect by simulating the theory onNs

333 lattices
with Ns ranging from 7 to 18. Our results are presented
Table I. They indicate that the value of^La& is quite stable
against change in spatial lattice size. Looking at the trend
Ns59 to Ns518 in Table I, one can estimate the value
^La& to be;20.64(1) on aǹ 333 lattice.

The constancy of̂La& in the negative phase above su
gests it to be a genuine state on an`33Nt lattice. Just as the
negative^L f&-phase of theSU(2) theory is physically the
same as the positivêL f&-phase, the negativêLa&-phase
could be similar to the positivêLa&-phase. A way to test this
possibility is to introduce a polarizing ‘‘magnetic field’’ b
adding a termh(xWLa(xW ) to the action~4!. As shown in Fig.
1, the average plaquette^P& on a 7333 lattice is not affected
strongly by this term either below the transition (ba52.3) or
above the transition (ba53.5). However,̂ La& is. Irrespec-
tive of the starting configuration, it always converges to
unique value whose sign is determined by that ofh, whereas
for h50 only some hot starts settled to negative^La&.

Defining ^La& as

^La&5 lim
h→01

lim
V→`

]

]h
ln Z~h!, ~8!

TABLE I. ^La& in the negative state forba53.5 on Ns
333

lattices withNs ranging from 7 to 18.

Ns 7 9 12 15 18
^La& 20.656(1) 20.642(3) 20.643(3) 20.639(3) 20.641(4)
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in analogy with spin models, where one looks for a spon
neous breakdown of a symmetry in this way, one also ge
positive^La& always. This too is similar to theSU(2) case,
except that the normalizations of^La& coming from the two
different phases are different here, being 3 and 1, resp
tively. This suggests strongly that the high temperature ph
of theSO(3) gauge theory also manifests itself in two wa
corresponding to positive and negative^La&. Also note in
Fig. 1 that the same definition of^La& yields a value consis-
tent with zero below the phase transition.

A further test of the similarity of the physics in these tw
phases is provided by the correlation functions in the
phases. If the phases are indeed physically similar, t
ought to have the same correlation lengths, and therefore
same correlation functions apart from normalizations. In fa
it has been argued@6# that even for theSU(2) theory the true
order parameter is the two point correlation function ofL f .
The behavior of the two point correlator is known to be qu
different in the confined and the deconfined phases. In
limit of infinite separation, it goes to zero in the confine
phase and a constant in the deconfined phase. In Fig. 2
showG(r ) on an 8334 lattice, defined by

FIG. 1. ^P& and^La& for a 7333 lattice, forba52.3 and 3.5, in
the presence of a magnetic fieldh.

FIG. 2. The two-point correlatorG(r ) plotted versusr on a 83

34 lattice forba52.3, 2.6 and 3.5.
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57 6621PHASE TRANSITIONS IN SO~3! LATTICE GAUGE THEORY
G~r !5(
i

(
xW

^La~xW1rei !La~xW !&, ~9!

as a function ofr in lattice spacing units forba52.3 and for
the positive and negativêLa& states atba52.6 and 3.5. At
eachb value 53106 iterations were made. The errors we
calculated by dividing the measurements into blocks of 50
each. It was checked that altering the bin-size does
change the error. Forba52.3, ther 54 point and the errors
for the r 53 point are not shown, as the former has a ne
tive central value, being consistent with zero within err
and the latter are of the order of the mean itself. One cle
sees that~i! below the transition atba52.3, the correlator
vanishes rapidly withr , ~ii ! it approaches a constant abo
the phase transition and~iii ! the constant is bigger for large
ba and bigger in the positivêLa&-phase for the sameba .

Finally, one can extract correlation lengths or mass g
from these correlation functions on sufficiently large lattic
The mass gap can be obtained directly from the conne
parts of the correlator above or from their zero moment
projected versions. Our intention here is only to compare
behavior of the correlators in the lowb-phase with that of
the correlators in the two states of the highb-phase. Conse
quently, a small lattice should suffice as well; the mass
so obtained will be influenced by higher states which shou
however, be expected to be similar in the two high tempe
ture phases. It was found that due to large fluctuations inLa ,
the signals for connected part of the correlation funct
were difficult to extract. However, the signal improved co
siderably by looking atG(r 21)2G(r ), as shown in Fig. 3
~errors for r 54 are of the size of the correlation functio
itself and are not shown for clarity!. As expected for state
with same physics, the positive and negative^La& states cor-
responding to bothba52.6 and 3.5 have a similar mass ga
which does not change significantly as one increasesba
52.6 to 3.5. The mass gap is, however, considerably dif
ent for ba52.3. Interestingly, this picture too matches we
with the knowledge fromSU(2) gauge theory, where it ha
been found that above the deconfinement transition, the m
gap changes very little with coupling@14#.

Essentially the same conclusions emerge from the z
momentum correlators shown in Fig. 4. Defining the ze

FIG. 3. G(r 21)2G(r ) vs r, for ba52.3,2.6,3.5.
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momentum projection by averaging the adjoint Polyak
loop over planes,

Lap~x!5(
y,z

La~x,y,z!, ~10!

one defines its correlator in the usual way:

Gp~r !5(
x

^Lap~x1r !Lap~x!&. ~11!

As is well known, a transfer matrix approach allows one
define the mass gap from the connected parts of these
elators and again we considerGp(r 21)2Gp(r ) to reduce
fluctuations.

In summary, the effect of the external fieldh on the two
phases of̂ La& above the transition and the behavior of t
correlation functions in these phases suggest strongly
they are physically the same phases. Together with the
responding results for the phase below the transition, t
further suggest that the phase transition is a deconfining
and the high temperature phase appears either as a positi
equivalently as a negativêLa&-phase.

IV. ORDER OF THE TRANSITION

In order to determine the order of the transition, simu
tions were made on 4334, 6334 and 8334 lattices with the
action ~5! and usual finite size scaling techniques we
employed.1

Long lived metastable states were observed on all latt
near the transition region, signalling a possible first ord
transition. Runtime evolutions of the plaquetteP and the
Polyakov loopLa from different starting configurations, av
eraged over bins of 50 iterations, are presented in Fig. 5

1Exploratory studies were also done for action~4! to check that
they give similar results. Some of these results can be found in@15#.
The only change in this case is that the transition occurs atba ;2.5
@11,15#, but it displays the same features as discussed in this sec
for action ~5!.

FIG. 4. Variation of the subtracted plane-plane correlat
Gp(r 21)2Gp(r ) with r . The values of couplings are 2.3, 2.6, 3.
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6622 57SAUMEN DATTA AND RAJIV V. GAVAI
the 8334 lattice. Runs on smaller lattices, not shown he
show more tunnellings and larger fluctuations in the posit
La-phase, but are otherwise similar in character. TheLa tun-
nels between all the three states, two of which correspon
the same value of the action, but different signs ofLa . The
transition point was estimated by demanding equal proba
ity in the two phases for the action for these metastable st
and error on it was estimated by observing a lack of tunn

FIG. 5. ~a! Runtime evolution of plaquette for 8334 lattice. The
values have been binned over 50 iterations.~b! Same for̂ La&.

FIG. 6. The distribution of the plaquette onNs
334 lattices at the

critical couplings given in Table II.
,
e

to

il-
es
l-

ling. For the 4334, 6334 and 8334 lattices the transition
points are atbvc54.4360.02, 4.4560.01 and 4.4560.01,
respectively.

In order to confirm the above indications of a first ord
transition in a more quantitative study, the distributions
the plaquette and̂La& were analyzed. Figure 6 displays th
distributions of the plaquette variable on the lattices stud
from the runs made at the critical couplings, but from diffe
ent starts. We performed about 100–400 K heat-bath swe
depending on the size of the lattice. There is a clear two-p
structure in the distributions. While the position of one of t
peaks shift slightly in going from 4334 to 6334 lattice, no
shift is seen in going from 6334 to 8334 lattice. Assuming
the peak positions to correspond to the expectation value
Ns→` limit, the estimates of the discontinuities in th
plaquette are presented in Table II. Clearly, the plaqu
discontinuity remains constant with increasing lattice si
As seen from Fig. 6, the valley between the peaks beco
steeper with increasing spatial size for the lattice, signall
again a first order transition. The corresponding distributio
for the Polyakov loopLa are presented in Fig. 7, and th
estimates of the discontinuity for both the positive and ne
tive La phases are also given in Table II. While the freque
tunnelling smoothens the peak structure for the 4334 lattice
considerably, a clear three-peak structure is seen for both
6334 and the 8334 lattices. Once again the peak positio
are seen not to shift and the valley between peaks is see

FIG. 7. Distribution ofLa on Ns
334 lattices for couplings of

Table II.

TABLE II. The discontinuities in the plaquettêP& and^La& at
the transition temperature onNs

33Nt lattices. The last two columns
list the differences of̂La& in the two high temperature phases wi
that in the low temperature phase. The errors correspond to the
size used.

Nt Ns bvc DP DLa1
DLa2

4 4 4.43 0.0630~30! 0.92~6! -
4 6 4.45 0.0575~30! 0.86~4! 0.26~2!

4 8 4.45 0.0575~30! 0.87~4! 0.28~4!

6 6 4.45 0.0575~30! 0.42~4! 0.13~4!

8 8 4.45 0.0575~30! 0.20~4! 0.04~4!
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57 6623PHASE TRANSITIONS IN SO~3! LATTICE GAUGE THEORY
become steeper with increasing lattice size, pointing t
finite discontinuity in the infinite volume limit and a firs
order transition. It is also interesting to note that the peak
the confined phase is almost precisely at zero. As argue
Sec. II, one expects to see a linearly rising potential betw
static adjoint quarks in the confined phase of theSO(3)
theory for intermediate distances. The leading or
strong coupling contribution to^La(rW)La(0W )&, } exp
„2V(r ,T)/T…, is b rNt for a set of plaquettes spread betwe
the loops, andb8Nt for tubes around the loops. Thus if one
still in the leading order strong coupling regime atbv
54.45, one expects to see a linearly rising potential for
tice distances up to 8. This may explain^La&50 in the con-
fined phase. We have, however, checked that even on a3

34 lattice, it continues to remain zero and the histogram
Figs. 6 and 7 do not shift at all, but become sharper
narrower.

V. NATURE OF THE TRANSITION

As mentioned in the Introduction,SO(3) lattice gauge
theory is supposed to have a bulk transition@7,10#, while we
argued above that the only transition seen onNt54 lattices
is more appropriately identified as the deconfinement ph
transition at high temperatures. In this section we attemp
address the issue of bulk transition.

Since the deconfinement temperature is a physical qu
tity ~in the hypothetical world of 2 colors and only gluons!, it
is expected to remain constant under a change ofNt : Tc
51/Nta(bc) implies that a change inNt should merely
changebc and push it to largerb asNt is increased. In orde
to check this, we studied the theory on 8332, 44, 64 and 84

lattices. On all these lattices, only one transition point w
found, where both the plaquette and^La& show a discontinu-
ity. The critical couplings forNt52,4,6,8, extracted from the
runs made on the lattices above, are presented in Table
We have also included in the table the corresponding crit
couplings for action~4! from our own work and those for th
deconfinement transition inSU(2) gauge theory, taken from
Ref. @16#.

It is found from Table III that as one goes fromNt52 to
Nt54, there is a clear shift inbc in all the three cases. Thi
behavior is consistent with the deconfinement scena
However, no perceptible change inbc was found for either
of the actions forSO(3) in going fromNt54 to 6 and 8.
This is in sharp contrast to theSU(2) case, and is also un
expected for a deconfinement transition; the behavior, h
ever, is similar to that of the transition seen in Ref.@9# for

TABLE III. The critical couplingbc as a function of the lattice
size in the time direction, for the actions~4! and~5!. Also presented
are the corresponding values ofbc for pure SU(2) gauge theory
with the action~1! ~taken from@16#!.

SO(3) SO(3) SU(2)
Nt action ~5! action ~4! action ~1!

2 4.156~10! 2.415~5! 2.1768~30!

4 4.43~2! 2.53~1! 2.2986~6!

6 4.45~2! 2.52~2! 2.4265~30!

8 4.45~2! 2.52~2! 2.5115~40!
a
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SU(2) gauge theory with action~2!. The distributions for the
plaquetteP are exhibited in Fig. 8. They again suggest a fi
order phase transition and the estimated discontinuity
plaquette is listed in Table II. One sees that it remains c
stant as one increasesNt . We have also looked at the corre
sponding distributions of̂La& for these lattices. In spite o
the noisy signals due to small spatial sizes, a three-p
structure could still be ascertained in all of them. Table
lists the corresponding discontinuities for^La&. It should be
noted that̂ L f& at the transition point decreases withNt for
bothSU(2) andSU(3) theories. The decrease in the disco
tinuities in ^La& in Table II are for similar reasons.

VI. SUMMARY AND DISCUSSION

The study of phase transitions inSO(3) gauge theory is
important for understanding both the interplay of the bu
and the deconfinement transition and the nature of its dec
finement as it has no center symmetry. The theory was s
ied in Ref. @11# on a 7333 lattice and a deconfining phas
transition atbac;2.5 was reported. Forba.bac , ^La& was
found to take either a positive value or a negative value. T
positive^La& state was taken to correspond to the high te
perature deconfined phase, while the negative^La& state was
interpreted as being another zero temperature confined ph

Our simulations with a variety of actions confirmed th
results of Ref.@11#. In particular, the negativêLa&-state was
present in all of them. However, using a ‘‘magnetic field
term to polarize, we found uniquêLa& state depending on
the sign of the field. The correlation function measureme
in both the phases of positive and negative^La& also indi-
cated that the two states are physically identical. Both
these correspond to the high temperature deconfined pha
SO(3) gauge theory, as the correlators approached a non
constant in the large separation limit, while below the tra
sition a confined phase was indicated by their exponen
drop to zero.

By studying the system on lattices of different sizes a
different aspect ratios, it was established that there is o
one phase transition for this theory, which is of first order.
addition to the average action, the adjoint Polyakov loop a
showed a jump across the transition. Its vanishing until

FIG. 8. Distributions of the plaquette onN4 lattices at the criti-
cal couplings given in Table II.
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transition point further supports the interpretation of a dec
fining transition. The correlation lengths below and abovebc
behave similar to the correlation lengths near the deconfi
ment transition ofSU(N) gauge theories. If the transition i
accepted to be a deconfinement phase transition, then its
order nature is as puzzling as the observations of Ref.@9#,
since theSU(2) gauge theory is known to have an Isin
model-like second order phase transition.

On increasingNt from 4 to 6 to 8, the transition point did
not move. While investigations on still larger lattices will b
required to conclude firmly, this observed behavior does
against the usual expectations of a deconfinement transi
Since we did not find any other transition, one might
inclined to accept either a coincident deconfinement tra
tion or a total lack of a deconfinement phase transition
SO(3) gauge theory. If it is the former then it is remarkab
similar to the results for the mixed action@8,9#, where too a
y

-

e-

rst

o
n.

i-
r

shift in bc was observed only in going fromNt52 to 4 for
largeba , but no further shift occurred in changingNt up to
8. Very large lattices are therefore necessary to see the s
larity of SO(3) andSU(2) theories at finite temperature,
at all. The second alternative is incompatible with the beh
ior of ^La& and its correlation function across the phase tr
sition. It is also clearly in disagreement with the naive e
pectations of purely gluonic confinement forSO(3) gauge
theory.
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