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The phase diagram d8O(3) lattice gauge theory is investigated by Monte Carlo techniques on both
symmetricN‘}, and asymmetrid.\lix N lattices with a view(i) to understanding the relationship between the
bulk transition and the deconfinement transition, éndo resolving the current ambiguity about the nature of
the high temperature phase. A number of tests, including an introduction of a magnetic field and measurement
of different correlation functions in the phases with positive and negative values for the adjoint Polyakov line,
L., lead to the conclusion that the two phases correspond to the same physical state. Studies on lattices of
different sizes reveal only one phase transition for this theory on all of them and it appears to have a
deconfining naturg.S0556-282(98)02111-F

PACS numbds): 11.15.Ha, 12.38.Aw

I. INTRODUCTION the deconfinement transition. This makes the investigation of

the phase diagram of t&Q(3) gauge theory especially in-

The formulat!on of gauge theories on dlscr.ete Space.tlm?erestmg and important. It has been argliéfithat the de-
lattices [1] provide an elegant way to investigate confine- . SR .
; . , ) . confinement transition, in this case, will show up as a cross
ment in non-Abelian gauge theories. Using numerical Monte

Carlo techniques, it was shoy2] that confinement survives ﬁlgrsvevsfnh dsgsjrgfgﬁalgéhtfa%%?&g#um limit to give the Ising-
the_ approaqh to the continuum I|.m|t a0, wherea is the Another reason for investigating the finite temperature
lattice spacing. The same techniques enabled one to eprO{re nsition iINSO(3) gauge theory is that it is SupposE to
these theories at nonzero temperatures, where it was fou ts

. . ave a bulk phase transition and may thus provide a test case
(3] that_ bothSU(2) andSU(3_) .Yang-Mllls theories undergo for studying the interplay between the types of phase transi-
deconfinement phase transitions to a new phase of decponS Recently, simulations of the Bhanot-Creutz acfish
fined glue. Exploiting the symmetry of their order param- - S.U(2) gauée theory
eters, it was argueldt] that theSU(3) theory should have a '
first order transition, while the critical exponents of the
SU(2) theory should be the same as those of the 3- S=>,
dimensional Ising model, which was confirmed by high pre- P
cision determination5] of the exponents.

Since the continuum limit is at the critical point of a lat-

tice theory, a large class of actions, which are in the sam
universality class as the popular Wilson act[dn, given by

Eq. (D),

1

Be| 1= 5 Tre Up| +Ba 2

1
l—§Tra Up

at finite temperature reveal¢8] that the known deconfine-
ent transition point in Wilson action becomes a line in the
i-Ba plane and joins the bulk transition line seen[#].
The order of the deconfinement transition was also seen to
change from second to first fg8,=1.25. At no B,, two
1 separate transitions were found in spite of variations in the
S=p1> [1— — Re Tx Up}. (1) lattice size in temporal directions froi;=2 to 8. Consid-
p N ering the different physical nature of these transitions, their
coincidence was puzzling. In view of the behavior of the
are expected to give rise to the same predictions for conerder parameter for the deconfinement phase transition, it
tinuum physics. In particular, the trace, taken in the fundawas concluded in9] that the transition seen ii¥Y] is a de-
mental representation of the gauge group in @g. can be  confinement transition rather than a bulk one. However, very
taken in any representation of the gauge group. Indeed, ditle shift in the transition coupling was seen under a change
the 2-loopB-function for pureSU(2) gauge theory is iden- of N;, which is more characteristic of a bulk transition.
tical to that of the pur&Q(3) gauge theory, one expects the  The studies i 8,9] were all done for a relatively small
latter to yield the same continuum physics. On the othels,, i.e., close to the Wilson action. In this paper we study
hand, SO(3) does not have th&(2) center symmetry, the Bhanot-Creutz action witf$;=0 with an aim to study
whose spontaneous breakdown in 816(2) theory indicates the issue of bulk vs deconfinement transitions away from the
Wilson action axis. As the trace is then taken only in the
adjoint representation, it correspondsto(3) gauge theory.
*Email address: saumen@theory.tifr.res.in In the strong coupling domailg O(3) gauge theory is quali-
"Email address: gavai@theory.tifr.res.in tatively different fromSU(2). Itsapproach to the continuum
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theory of si2) algebra has been studied by Halliday and[10] that the action5) shows a first order bulk phase transi-
Schwimmer(5), using a modified action which is similar to tion at 8,~4.5. The chief advantage of this action is that
SQO(3) Wilson action, but which reveals the topological both the link variable&) , and the plaquette variables, can
properties explicitly. They found a phase transition, drivenbe updated using heat-bath algorithi2s We have used it
by the melting of the condensate #{N) monopoles, sepa- for both qualitative studies of nature of the high temperature
rating the strong coupling region from the weak couplingphase in the next section and for quantitative investigations
region. in later sections, where substantial computation was neces-
A study of finite temperatur&Q(3) gauge theory was sary.
carried out if11] and a deconfining transition for this theory =~ One of the observables which we used to monitor the
was found. However, there was some ambiguity about th@hase transitions is the adjoint plaguette varidbledefined
nature of the high temperature phase and the order of thas the average fTr, U, over all plaguettes for action8)
phase transition if11]. In this work, we attempt to clarify and (4); for the action(5), P is defined as the average of
the nature of the high temperature phase, and the order of the,Tr; U, over all plaquettes. The order parameter of the
phase transition fo6O(3) lattice gauge theory. deconfinement transition irSU(2) gauge theory,(L;),
The plan of our paper is as follows: in Sec. Il, we definewherel; is given by
the actions and the different observables we use for our
study. In Sec. Ill, we discuss the nature of the high tempera- . Nt .
ture phase with a view to clarify some of the issue§lifi]. L¢(r)=Tr; H U(r,i), (6)
Finite size scaling analysis is used in the next section to =1
establish the order of the transition 8X3) gauge theory. is identically zero for the actiong) and(5) due to their local

I .V, thei f bulk nfinement transiti !
n Sec. V, the issue of bulk versus deconfinement tra Sto%(2) symmetry. Its natural analogue for t8&X3) theory is

is discussed. The last section contains a summary of o 'Y th I tial sit f the adioint Pol
results and their discussion. a), the average over all spatial sites ot the adjoint Folya-
kov loop, defined by

Il. ACTIONS AND OBSERVABLES N¢
- - - L) =Tr, [T uyr,i). 7
The Wilson action forISO(3) gauge theory is alr) a iﬂl (1) @
S=82, (1_ E Tru ) (3)  Note that(L ), unlike(Ls), is not an order parameter, as it is
3 P . ! '
P not constrained to be zero in the confined phase. Sihge

i o _and(L;) can be thought of as measures of free energy of a
whereU, denotes the directed product of the basic link vari-fyndamental and an adjoint quark, respectively, their differ-
ables which describe the gauge fieldd, (x) e SX(3),  ent behavior in the confined phase is related to the fact that
around an elementary plaquegteComparing the naive clas- an adjoint quark in the confined phase can be screened by
sical continuum limit of Eq(3) with the standard action for gyons created from the vacuum, while a fundamental quark
SU(2) Yang-Mills theory, one obtaing=3/2g5, whereg,  cannot. For the same reason, an adjoint Wilson loop is not

is the bare coupling constant of the continuum theory. supposed to exhibit the area law. However, creation of gluon
Using the property of the adjoint trace,,IV=(Tr; V)®>  pairs from vacuum costs a considerable amount of energy as
—1, the action(2) can be written for3;=0 as glueballs are heavy. It may therefore be favorable for adjoint
) quarks also to have a string between them, at least when they
S— 4Ba 2 1+(E Tr U ) } 4) are not too far separated. Intermediate size adjoint Wilson
3 % 2 e loops were found12] to show an area law fd8U(2) gauge

theory, giving a string tension that is2 times as large as
This form is advantageous for numerical simulations, sincehe fundamental string tension. Furthermore, the behavior of
one can use the Pauli matrix representation for $t§2)  the adjoint Polyakov loop across ti8dJ(2) deconfinement
matrices. It was found ifi7] that this action has a first order transition was found to be qualitatively similar to that of the
bulk transition at~2.5. We have checked that the two fundamental Polyakov loogL,)~0 (for 83x2 and §x 4
actions above give identical results, and then used€dor lattices till the deconfinement transition, where it acquires a
our simulations. Another action that we used is the Halliday-nonzero valug13]. The jump in(L,) (and also in even

Schwimmer actiorf10] higher representation Polyakov logps surprisingly similar
to that in(L¢). This is believed to be related to opening of
S:& 2 o Tr U (5) mass gap across deconfinement: below the deconfinement
2 & Tp e transition, adjoint quark can exist only by forming a bound

state with gluon, which costs a lot of energy and leads to a
Here U, is defined as before, but the link variablegs,(x) small expectation value fai ).
€ SU(2), ando,= *+ 1. Besides the integration over the link  For the same reasorfl,) can be expected to show a
variables, the partition function in this case also contains aharp change at the deconfinement transition 3@ 3)
summation over all possible configurations of the {sef}, gauge theory also and can, therefore, serve as a good indica-
thus ensuring that the action is blind to th€2) center sym- tor of deconfinement transition iI80O(3) gauge theory. The
metry of SU(2). It is thus as good as E@3) for exploring  behavior of{L,) in finite temperatureSQ(3) gauge theory
the role ofZ(2) in deconfinement transition. It was found in was studied numerically in Ref11]. Using a 72X 3 lattice
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TABLE I. (L,) in the negative state fo,=3.5 on N3x3 1.0
lattices withNg ranging from 7 to 18. qQ s i s . s
v 05} X X X x x X B35 ]
23
N, 7 9 12 15 18 0.0 B‘F””’“
(L,) —0.656(1) —0.642(3) —0.643(3) —0.639(3) —0.641(4) .l . o ° E§233ﬁ_
. . . . 15}
and the actiori4), it was found thatL ,) was consistent with
zero till B,~ 2.5, after which it became nonzero, indicating a 11
deconfinement transition around this valueyf. 3 osl .
N
N
Il. THE HIGH TEMPERATURE PHASE 0 N q
N
An unexpected and curious result of REf1] was that 051 . e e
after becoming nonzero in the high temperature phdsg, A . . . .
settles into either a positive valug~3 as 8,—®), or a 04 02 ﬂ 0.2 04
negative valug— —1 asB,— ), the average value of the . _ _
action being the same for both the stateq11f] the negative FIG. 1.(P) and(L,) for a 7°X3 lattice, forB,=2.3 and 3.5, in

(L,) state was interpreted as the manifestation of anothdf® Presence of a magnetic fied
zero temperature confined phase. Since its negative value is
inconsistent with its being the exponential of the free energyn analogy with spin models, where one looks for a sponta-
of an adjoint quark, it was conjectured that the negativeheous breakdown of a symmetry in this way, one also gets a
value is a finite volume effect and that it should go to zero omyositive (L ,) always. This too is similar to th8U(2) case,
bigger lattices. . except that the normalizations ¢f ,) coming from the two

We have carried out a number of tests in order to undergitterent phases are different here, being 3 and 1, respec-
stand the nature of the negative,) state. First, it was 61y This suggests strongly that the high temperature phase

checked '.[hat the appearance_of this phase is not due to any the SO(3) gauge theory also manifests itself in two ways
algorithmic problem, by checking that it appears irrespective

. : corresponding to positive and negati{le,). Also note in
of whether one uses actiq@), (4) or (5)' Since one uses Fig. 1 that the same definition ¢t ,) yields a value consis-
explicitly SO(3) symmetric multiplication table for the first ith bel he oh S
of these actions and a heat-bath for the third, any doubts ot]en;\\?/ltthzerto te ?\mt € p_laste tr??ﬁ'tloﬂ' ics in th "
the negativéL ,)-phase being an artifact of tt8U(2)-based uriner test of the simiiartty of e physics In these two

lqorithm vamshed. when it w bserved for all the thr hases is provided by the correlation functions in these
algo shed, when as observed for afl In€ treg,pases. If the phases are indeed physically similar, they
actions for the corresponding deconfined phases. Indeed, u

like Ref. [11] or action(4), where only the hot starts in the ught to have the same correlation lengths, and therefore, the
deconfined phase lead to it, the heat-bath algorithm for th
action (5) yielded it from even cold starts in the deconfined
phase. Next, we checked whether the negative value is
finite size effect by simulating the theory d)dﬁxS lattices
with Ng ranging from 7 to 18. Our results are presented in
Table I. They indicate that the value ¢f,) is quite stable
against change in spatial lattice size. Looking at the trend fo
Ns=9 to Ng=18 in Table I, one can estimate the value of
(L,) to be ~—0.64(1) on are>x 3 lattice.

same correlation functions apart from normalizations. In fact,
ft has been argudd] that even for th&sU(2) theory the true
arder parameter is the two point correlation functionLef
The behavior of the two point correlator is known to be quite
different in the confined and the deconfined phases. In the
limit of infinite separation, it goes to zero in the confined
Ehase and a constant in the deconfined phase. In Fig. 2 we
howI'(r) on an §x 4 lattice, defined by

The constancy ofL,) in the negative phase above sug- 4401
gests it to be a genuine state oncatix N, lattice. Just as the
negative(L)-phase of theSU(2) theory is physically the 10l
same as the positivél ;)-phase, the negativél ,)-phase % < < < <
could be similar to the positivL ,)-phase. A way to test this 1}h + + + +
possibility is to introduce a polarizing “magnetic field” by = a s s
adding a termh=;L ,(x) to the action(4). As shown in Fig. = %'} ® ® ®
1, the average plaqueit®) on a 7#x 3 lattice is not affected ~ 001 °
strongly by this term either below the transitiof (= 2.3) or '
above the transitiong,=3.5). However(L,) is. Irrespec- 0.001 L Bo23 e
tive of the starting configuration, it always converges to a B =28, +ve Ly 3
unique value whose sign is determined by thahpfvhereas ¢ goo1 L ng-gv ""Z'Laa*ﬁ*
for h=0 only some hot starts settled to negat{s,). g;3:5: e L, .

Defining(L,) as 1e-05 . : . 5 . Z . -

r
(Lyy= lim lim %In Z(h), (8) FIG. 2. The two-point correlatdr(r) plotted versus on a &

h—ot Voo X 4 lattice forB,=2.3, 2.6 and 3.5.
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10 1

B=23 B=23
B = 2.6, +ve Ly - B = 2.6, +ve Ly -
1t & p=2.8,-veLa & | B=2.6,-ve Ly &~
% B=3.5, +ve Ly 0.1} B=3.5,+ve Ly » 1
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FIG. 3. T'(r—21)—I'(r) vsr, for 8,=2.3,2.6,3.5. FIG. 4. Variation of the subtracted plane-plane correlator,
[p(r—1)—Ty(r) with r. The values of couplings are 2.3, 2.6, 3.5.
T(r)=2 X (La(x+re)La(x)), (9 momentum projection by averaging the adjoint Polyakov
box loop over planes,
as a function of in lattice spacing units foB,= 2.3 and for _
the positive and negativi ;) states af3,=2.6 and 3.5. At Lap(X)—yEl La(xy.2), (10

eachp value 5x 10° iterations were made. The errors were

calculated by dividing the measurements into blocks of 500@ne defines its correlator in the usual way:
each. It was checked that altering the bin-size does not
change the error. Fg8,= 2.3, ther =4 point and the errors
for ther =3 point are not shown, as the former has a nega-
tive central value, being consistent with zero within error,
and the latter are of the order of the mean itself. One clearlAs is well known, a transfer matrix approach allows one to
sees thati) below the transition a,=2.3, the correlator define the mass gap from the connected parts of these corr-
vanishes rapidly wittr, (ii) it approaches a constant above elators and again we considEr,(r—1)—1I",(r) to reduce

the phase transition ar(di) the constant is bigger for larger fluctuations.

Ba and bigger in the positivél ,)-phase for the samg, . In summary, the effect of the external fighdon the two
Finally, one can extract correlation lengths or mass gapphases of L,) above the transition and the behavior of the
from these correlation functions on sufficiently large lattices.correlation functions in these phases suggest strongly that
The mass gap can be obtained directly from the connectetthey are physically the same phases. Together with the cor-
parts of the correlator above or from their zero momentunresponding results for the phase below the transition, they
projected versions. Our intention here is only to compare théurther suggest that the phase transition is a deconfining one
behavior of the correlators in the logphase with that of and the high temperature phase appears either as a positive or
the correlators in the two states of the higfphase. Conse- equivalently as a negativg ,)-phase.

quently, a small lattice should suffice as well; the mass gap

Fp(r>=§ (Lap(X+1)Lap(X)). (12)

so obtained will be influenced by higher states which should, V. ORDER OF THE TRANSITION
however, be expected to be similar in the two high tempera-
ture phases. It was found that due to large fluctuations, in In order to determine the order of the transition, simula-

the signals for connected part of the correlation functiorfions were made on%< 4, 6°x 4 and &x 4 lattices with the

were difficult to extract. However, the signal improved con-action (5) and usual finite size scaling techniques were

siderably by looking al’(r—1)—1I'(r), as shown in Fig. 3 employed:

(errors forr=4 are of the size of the correlation function Long lived metastable states were observed on all lattices

itself and are not shown for clarityAs expected for states Near the transition region, signalling a possible first order

with same physics, the positive and negatilg) states cor-  transition. Runtime evolutions of the plaqueffe and the

responding to botiB,= 2.6 and 3.5 have a similar mass gap, Polyakov loopL , from different starting configurations, av-

which does not change significantly as one increg8gs €raged over bins of 50 iterations, are presented in Fig. 5 for

=2.6 to 3.5. The mass gap is, however, considerably differ-

ent for 8,=2.3. Interestingly, this picture too matches well

with the knowledge fron8U(2) gauge theory, where it has  1gxpjoratory studies were also done for acti@h to check that

been found that above the deconfinement transition, the Magsey give similar results. Some of these results can be fouftbin

gap changes very little with couplifd4]. The only change in this case is that the transition occug, at 2.5
Essentially the same conclusions emerge from the zerpi1,15, but it displays the same features as discussed in this section

momentum correlators shown in Fig. 4. Defining the zerofor action(5).
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0.82 T — TABLI_E_ Il. The discontinuities in th_e plaquett®) and{L ) at
Cold Start —— the transition temperature dMﬁX N, lattices. The last two columns
0.81 " i _ ,ths ot list the differences ofL ) in the two high temperature phases with
Y Ll I ik ‘ﬁ( AT that in the low temperature phase. The errors correspond to the bin
size used.
0.79
% o N, N Boe AP Al,, AL,
§ 077 4 4 4.43 0.063(B0) 0.926) -
’ 4 6 4.45 0.05780) 0.864) 0.262)
0.76 4 8 4.45 0.057630) 0.874) 0.284)
6 6 4.45 0.05780) 0.424) 0.134)
075 8 8 445 0057800 0.204)  0.044)
0.74 ‘
200 800 1200 600 2000
s no- ofterations / 50 . ling. For the £x4, 6°x4 and x4 lattices the transition
&old St — points are atB,.=4.43t0.02, 4.45-0.01 and 4.4%0.01,
1t o Hot Start - respectively.

' i il : : In order to confirm the above indications of a first order
transition in a more quantitative study, the distributions of
the plaquette andL,) were analyzed. Figure 6 displays the
distributions of the plaquette variable on the lattices studied

- from the runs made at the critical couplings, but from differ-

ent starts. We performed about 100-400 K heat-bath sweeps
depending on the size of the lattice. There is a clear two-peak
structure in the distributions. While the position of one of the
peaks shift slightly in going from #x 4 to 63X 4 lattice, no

shift is seen in going from¥x 4 to 83x 4 lattice. Assuming

the peak positions to correspond to the expectation values in
Ns— limit, the estimates of the discontinuities in the
plaquette are presented in Table Il. Clearly, the plaguette
discontinuity remains constant with increasing lattice size.
As seen from Fig. 6, the valley between the peaks becomes
steeper with increasing spatial size for the lattice, signalling
the 8x 4 lattice. Runs on smaller lattices, not shown here’again a first order transition. The corresponding distributions
show more tunnellings and larger fluctuations in the positivd®" the Polyakov loopL, are presented in Fig. 7, and the
L,-phase, but are otherwise similar in character. Théun- gsUmates of the d|scont|QU|ty for both the p0§|t|ve and nega-
nels between all the three states, two of which correspond tB€ La Phases are also given in Table Il. While the frequent
the same value of the action, but different signd_gf The tunngllmg smoothens the peak structure fo_r the 4 lattice
transition point was estimated by demanding equal probab"gonsmerably, a clear three-peak structure is seen for both the

3 - . .
ity in the two phases for the action for these metastable state® X4 and the 8x4 lattices. Once again the peak positions
and error on it was estimated by observing a lack of tunnel@r Séen not to shift and the valley between peaks is seen to

-0.4

00 800 260 1800 2000
no. of iterations / 50
FIG. 5. (&) Runtime evolution of plaquette for’& 4 lattice. The

values have been binned over 50 iteratidiy.Same for(L,).

140 r . r . r . . 7
Ng=8 —
120 } Ng=6 6
Ng=4 -
100 | 51
80} 41
£ 3
b4 b4
60} 3tk
40t 2t
20t X 1}
7607 076 078 08 085 084 086

Plaquette

FIG. 7. Distribution ofL, on N§><4 lattices for couplings of
Table 1.

FIG. 6. The distribution of the plaquette o@><4 lattices at the
critical couplings given in Table II.
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TABLE IIl. The critical coupling 8. as a function of the lattice 200
size in the time direction, for the actio®) and(5). Also presented 180t —
are the corresponding values gBf for pure SU(2) gauge theory
with the action(1) (taken from[16]). e | N=d-
140 |
SQ(3) SQ(3) SU(2)
N, action (5) action (4) action (1) N 1201
L 100}
2 4.15610) 2.4155) 2.176830) z
4 4.432) 2.531) 2.29866) 80
6 4.452) 2.522) 2.426%30) 60 |
8 4.452) 2.522) 2.511540) 40l
20
become steeper with increasing lattice size, pointing to a q T

finite discontinuity in the infinite volume limit and a first ‘ ' ) Plaguette
order transition. It is also interesting to note that the peak for

the confined phase is almost precisely at zero. As argued in FIG. 8. Distributions of the plaquette dv lattices at the criti-
Sec. I, one expects to see a linearly rising potential betweepal couplings given in Table II.

static adjoint quarks in the confined phase of ®€(3)

theory for intermediate distances. The leading ordeiSU(2) gauge theory with actiof2). The distributions for the
strong coupling contribution to(L,(r)L,(0)), =« exp PlaquetteP are exhibited in Fig. 8. They again suggest a first
(= V(r,T)/T), is ™ for a set of plaguettes spread betweenorder phase transition and the estimated discontinuity in
the loops, angg®\ for tubes around the loops. Thus if one is Plaquette is listed in Table Il. One sees that it remains con-
still in the leading order strong coupling regime g  Stantas one increastg. We have also looked at the corre-
=4.45, one expects to see a linearly rising potential for latSPonding distributions ofL,) for these lattices. In spite of
tice distances up to 8. This may expldin,)=0 in the con- the noisy S|gnals_ due to sma!l spgtlal sizes, a three-peak
fined phase. We have, however, checked that even orf a 1§tructure could still _be a_scerta_me_d_ in all of them. Table I
X 4 lattice, it continues to remain zero and the histograms ifiSts the corresponding discontinuities fdr,). It should be

Figs. 6 and 7 do not shift at all, but become sharper andoted tha(L) at the transition point decreases with for
narrower. bothSU(2) andSU(3) theories. The decrease in the discon-

tinuities in{L,) in Table Il are for similar reasons.

V. NATURE OF THE TRANSITION

. . . . VI. SUMMARY AND DISCUSSION
As mentioned in the IntroductiorSQO(3) lattice gauge

theory is supposed to have a bulk transiti@mnl0], while we The study of phase transitions $10(3) gauge theory is
argued above that the only transition seenNy 4 lattices  important for understanding both the interplay of the bulk
is more appropriately identified as the deconfinement phasend the deconfinement transition and the nature of its decon-
transition at high temperatures. In this section we attempt téinement as it has no center symmetry. The theory was stud-
address the issue of bulk transition. ied in Ref.[11] on a X 3 lattice and a deconfining phase
Since the deconfinement temperature is a physical quartransition atg3,.~2.5 was reported. FQ8,> B,., (La) was
tity (in the hypothetical world of 2 colors and only glugns  found to take either a positive value or a negative value. The
is expected to remain constant under a chang&of T, positive(L ,) state was taken to correspond to the high tem-
=1/N,a(B;) implies that a change imN; should merely perature deconfined phase, while the negativg state was
changeB; and push it to largeB asN; is increased. In order interpreted as being another zero temperature confined phase.
to check this, we studied the theory o#>82, 4%, 6* and & Our simulations with a variety of actions confirmed the
lattices. On all these lattices, only one transition point wagesults of Ref[11]. In particular, the negativd. ,)-state was
found, where both the plaquette afld,) show a discontinu- present in all of them. However, using a “magnetic field”
ity. The critical couplings foN;=2,4,6,8, extracted from the term to polarize, we found uniqui,) state depending on
runs made on the lattices above, are presented in Table llihe sign of the field. The correlation function measurements
We have also included in the table the corresponding criticain both the phases of positive and negatitg) also indi-
couplings for actior{4) from our own work and those for the cated that the two states are physically identical. Both of
deconfinement transition iBU(2) gauge theory, taken from these correspond to the high temperature deconfined phase of
Ref.[16]. SO(3) gauge theory, as the correlators approached a nonzero
It is found from Table IIl that as one goes frofy=2 to  constant in the large separation limit, while below the tran-
N;=4, there is a clear shift i8. in all the three cases. This sition a confined phase was indicated by their exponential
behavior is consistent with the deconfinement scenariodrop to zero.
However, no perceptible change  was found for either By studying the system on lattices of different sizes and
of the actions forSQ(3) in going fromN,;=4 to 6 and 8. different aspect ratios, it was established that there is only
This is in sharp contrast to tf@U(2) case, and is also un- one phase transition for this theory, which is of first order. In
expected for a deconfinement transition; the behavior, howaddition to the average action, the adjoint Polyakov loop also
ever, is similar to that of the transition seen in R for  showed a jump across the transition. Its vanishing until the
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transition point further supports the interpretation of a deconshift in 8. was observed only in going froM;=2 to 4 for
fining transition. The correlation lengths below and abByve large 8., but no further shift occurred in changimg up to
behave similar to the correlation lengths near the deconfines. Very large lattices are therefore necessary to see the simi-
ment transition oSU(N) gauge theories. If the transition is larity of SO(3) andSU(2) theories at finite temperature, if
accepted to be a deconfinement phase transition, then its firat all. The second alternative is incompatible with the behav-
order nature is as puzzling as the observations of Rdf. ior of (L) and its correlation function across the phase tran-
since theSU(2) gauge theory is known to have an Ising sition. It is also clearly in disagreement with the naive ex-
model-like second order phase transition. pectations of purely gluonic confinement f81I0(3) gauge

On increasing\; from 4 to 6 to 8, the transition point did theory.
not move. While investigations on still larger lattices will be
required to conclude firmly, this observed behavior does go
against the usual expectations of a deconfinement transition.
Since we did not find any other transition, one might be We thank Dr. Srinath Cheluvaraja and Dr. Sourendu
inclined to accept either a coincident deconfinement transiGupta for many helpful discussions. It is a pleasure for one
tion or a total lack of a deconfinement phase transition forf us (R.V.G) to thank Professors Frithjof Karsch and Hel-
SQ(3) gauge theory. If it is the former then it is remarkably mut Satz and the staff at the Zentrunr fiaterdisziplinae
similar to the results for the mixed acti®8,9], where too a  Forschung, UniversitaBielefeld for their kind hospitality.
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