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One-loop effects in supergravity models with an additional U„1…
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Department of Physics, Middle East Technical University, 06531, Ankara, Turkey
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For an Abelian extended supergravity model, we investigate some important low-energy parameters: tanb,
the Z-Z8 mixing angle, lightestCP-even Higgs mass bound,Z8 mass, and effectivem parameter. By inte-
grating the renormalization group equations from the string scale down to the weak scale we constuct the scalar
potential and analyze the quantities above at the tree- and one-loop levels by including the contributions of top
squarks and top quark in the effective potential.@S0556-2821~98!02211-5#

PACS number~s!: 04.65.1e, 12.60.Jv
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I. INTRODUCTION

There are several reasons for considering additional U~1!
symmetries and their associated extraZ bosons. Such addi
tional U~1!’s arise after the breaking of grand unified the
ries ~GUT’s! @for exampleE(6)-based rank-5 models#, or in
string compactifications. In addition to justifying the unde
lying model, more importantly, additional U~1!’s would also
solve the minimal supersymmetric standard model~MSSM!
m problem when broken around the weak scale. Indeed
was already argued in@1#, in a large class of string models
the breaking scale of the extra U~1!’s come out to be below
1 TeV.

The phenomenologically viable models should satisfy t
conditions at the string scale: First, the extra U~1! should be
nonanomalous and should not acquire a mass from the s
or hidden sector dynamics; namely, its mass must come f
the gauge symmetry breaking in the observable sector.
ondly, all scalar soft mass squareds must be positive an
similar magnitude. The latter holds in a gravity-mediated
persymmetry ~SUSY! breaking scheme, where the ma
scale is given by the gravitino mass, not necessarily so, h
ever, in gauge-mediated SUSY breaking schemes.

Soft terms, parametrizing our ignorance of the origin
the SUSY breaking, can be obtained from a general su
gravity ~SUGRA! Lagrangian in theM Pl→` limit @2,3#. Al-
though the minimal SUGRA predicts universal soft terms,
general SUGRA theories~see Ref. @4#, and references
therein! and superstring theories@5# it is possible to have
nonuniversal soft terms. Thus, considering such explicit
amples, one is free to consider nonuniversal boundary c
ditions @6#, without referring to the particular case of unive
sality.

For testing such extra U~1! models in machines of the
near-future, the tree-level potential is clearly not sufficie
one has to take into account the radiative corrections to h
a meaningful model at these energies. Among other meth
@7#, the effective potential approach proved to be an eleg
and simple way of incorporating the radiative corrections
the scalar potential@8,9#, which we will adopt in this work as
well.

This work is organized as follows. In Sec. II we shall fir
describe the model at the SUGRA scale. Using one lo
renormalization group equations~RGE’s! we shall obtain all
the low-energy potential parameters as functions of th
570556-2821/98/57~11!/6609~9!/$15.00
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SUGRA scale values. After discussing the requirements
the low-energy potential for phenomenological viablility, w
determine the appropriate SUGRA scale parameter sp
We do this with a minimal amount of nonuniversality. Th
is, we allow for nonuniversality only between Higgs double
and remaining scalars; in particular, we choose doublet
mass squareds to be equal and one order of magni
smaller than the others.

In Sec. III we consider the issue of radiative correctio
Out of all fields which can contribute to the effective pote
tial, we consider top quark and top squark contributions, a
neglect the remaining fields. We assume that the log effe
which are accounted for in solving the RGE’s, are enough
take into account the effects of Higgs, neutralino, chargi
and vector boson loops, at least for calculating the low-ly
mass spectrum@10#.

In Sec. IV we work out the one-loop potential nume
cally, and graph the tree- and one-loop results togethe
enable a comparative discussion of the effects of the ra
tive corrections.

In Sec. V we discuss the results of the work in the light
accelerators of the near-future and MSSM and NMSSM p
dictions.

II. LOW-ENERGY TREE-LEVEL POTENTIAL

As is well known, the fundamental SUGRA scaleM
5M Pl /A8p is approximately one order of magnitude larg
than the MSSM coupling constant unification levelMU
'1016 GeV @11#. However, the threshold effects@13,14# can
close the gap, and thus, in the following we shall choose
MSSM unification scaleMU as the starting point of the
analysis at which the initial conditions of the potential p
rameters are specified. We reconsider a general, anom
free, Abelian extended SUSY model which was discusse
@12# already. The model is specified by an Abelian extens
of the MSSM gauge group:G5SU(3)c3SU(2)3U~1!Y
3U~1!Y8 with the couplingsg3, g2, gY , gY8 , respectively.
The particle content for one family is given by the lef
handed chiral superfields: L̂;(1,2,21/2,Q8L), Êc

;(1,1,1,Q8E), Q̂;(3,2,1/6,Q8Q), Ûc;(3̄,1,22/3,Q8U),
D̂c;(3̄,1,1/3,Q8D). The Higgs sector contains the SU~2!

doubletsĤ1;(1,2,21/2,Q81) and Ĥ2;(1,2,1/2,Q82), and
the SM singletŜ;(1,1,0,Q8S).
6609 © 1998 The American Physical Society
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The superpotential for the model is given by

f 5hs
0ŜĤ1•Ĥ21ht

0ÛcQ̂•Ĥ2 , ~1!

where the family mixings are ignored. We kept only the t
and Higgs Yukawa couplings, as the Yukawa couplings
the other fermions are much smaller. The existence of U~1!Y8
group makes the model totally different from NMSSM b
forbidding an elementarym term and anS3 term ~so that the
superpotential does not have aZ3 symmetry!.

Without specializing to a particular class of string com
pactifications, we parametrize the supersymmetry break
by considering the most general soft supersymmetry bre
ing terms

Vsoft55m1
0 2uH1u21m2

0 2uH2u21mS
0 2uSu21mU

0 2u t̃ L
c u2

1mQ
0 2uQ̃u22hs

0As
0~SH1•H21H.c.!

2ht
0At

0~ t̃ L
c* Q̃•H21H.c.!1(

a
Ma

0lala. ~2!

Herela are gauginos with the massesMa
0 , and t̃ L

c andQ̃ are

the scalar components ofÛc andQ̂, respectively. The super
script on each quantity designates its value at the SUG
scale which is determined by the vacuum expectation va
~VEV’s! of the hidden sector fields~moduli and dilaton
fields, in the case of string compactifications!, modulo the
threshold corrections.

The scalar components of the Higgs superfields are
signed the following representation under SU~2! group:

Ĥ1→H15S H1
0

H1
2D , Ĥ2→H25S H2

1

H2
0 D , Ŝ→S. ~3!

Adding to Vsoft the usualF and D terms of the associate
group factors, one obtains the full scalar potential, wh
Higgs part reads

V05m1
0 2uH1u21m2

0 2uH2u21mS
0 2uSu21l1

0uH1u41l2
0uH2u4

1lS
0uSu41l12

0 uH1u2uH2u21l1S
0 uH1u2uSu21l2S

0 uH2u2uSu2

2hs
0As

0~SH1•H21H.c.! ~4!

The terms involving parametersl i
0 come from the supersym

metric part of the Lagrangian consisting ofF andD terms,
and their explicit expressions are:

l1
05

1

8
G0

21
1

2
gY8

0 2Q81
2, ~5!

l2
05

1

8
G0

21
1

2
gY8

0 2Q82
2,

lS
05

1

2
gY8

0 2Q82
2,

l12
0 52

1

4
G0

21gY8
0 2Q81Q821hs

0 2,
f

g
k-

A
es

s-

e

l1S
0 5gY8

0 2Q81Q8S1hs
0 2,

l2S
0 5gY8

0 2Q82Q8S1hs
0 2,

where G05Ag2
0 21gY

0 2. As there is no experimental con
straint on U(1)Y8 group,gY8 is arbitrary. However, for real-
istic models it is expected thatg18;g1 @15#, so we assume
the unification ofg18 with the other gauge couplings at th
the MSSM unification scaleMU @11#. Using the trace formu-
las for the fermion sector

Tr@Qcolor
2 #5Tr@Qisospin

2 #52,Tr@Y2#5
10

3
,

Tr@Y82#56Q8Q
2 13~Q8U

2 1Q8D
2 !12Q8L

21Q8E
2 ~6!

we normalize the gauge couplings such that, atMU , they
satisfy

g3
05g2

05g1
05g18

0
5g0, ~7!

with the normalized U(1)Y and U(1)Y8 couplings

g1
05A5

3
gY

0 ,g18
0

5A6Q8Q
2 13~Q8U

2 1Q8D
2 !12Q8L

21Q8E
2

2
gY8

0 . ~8!

In obtaining the renormalization group flow of the param
eters of the potential we shall consider one-loop RG
which were listed in Appendix A of Ref.@12#. We assume
that the scale of SUSY breaking is around the weak sc
and thus we integrate RGE’s of a softly broken SUSY mo
from the SUGRA scale down to the weak scale direct
Among the RGE’s the most complicated ones are those
volving Yukawa couplingshs and ht which obey coupled
nonlinear equations. The top Yukawa couplinght reaches its
fixed point value ofht;121.2 almost independently of th
initial conditionshs

0 andht
0 . Corresponding to thishs takes

values around 0.620.8. On the other hand, the RGE’s of so
masses, being linear, can be solved exactly as a functio
their initial conditions, for givenhs

0 and ht
0 . Finally, as a

by-product of the coupling constant unification, it is natu
to assume a common massM1/2 for all gauginos at the
SUGRA scale.

In constructing the solutions of RGE’s one needs
specify the U(1)Y8 charges of the fields. Without referring t
specificE(6) based charge assignments, one can relate
ferent U(1)Y8 charges to each other by imposing the canc
lation of the triangular anomalies together with the gau
invariance of the potential. The superpotential in Eq.~1! in-
cludes only the top and Higgs trilinear mass terms, and t
we shall require the gauge invariance for these vertices o
leaving the other would-be vertices~such asÊcL̂•Ĥ1) un-
constrained. Then the solution of U(1)Y8 charges reads
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QS852~Q181Q28!, QU8 5~Q1823Q28!/3,

QD8 5~Q1813Q28!/3,

QE852~Q182Q28!, QQ8 52Q18/3, QL852Q28 , ~9!

which fix all but two (Q18 and Q28) of the U(1)Y8 charges.
The advantageous side of this solution set is that it leaves
U(1)Y8 charges of Higgs doublets free, which will be impo
tant in analyzing the mixing angle ofZ boson and U(1)Y8
gauge boson. We give this solution for the third family, a
assume vanishing U(1)Y8 charges for the first two families
This is allowed in non-geometrical string compactificatio
~such as free-fermionic models!, where a given Higgs dou
blet couples only one family@16#. As will be discussed late
on, third family coupling of U(1)Y8 is important in analyzing
the Z8 models with CERNe1e2 LEP constraints. Finally,
for future use, we make the choiceQ185Q28521 in Eq. ~9!
which fix all of the U(1)Y8 charges. Then, the solution o
RGE’s, with the initial valueshs

05ht
05A2g0 for Yukawa

couplings, read:

hs50.595,

ht51.028,

As50.42As
020.272At

020.285M1/2,

At520.045As
010.128At

011.755M1/2,

m1
2520.064As

0 210.036As
0At

010.007At
0 220.01As

0M1/2

10.019At
0M1/210.52M1/2

2 10.047~mQ
0 21mU

0 2!

20.16mS
0 210.84m1

0 220.11m2
0 2, ~10!

m2
2520.038As

0 210.037As
0At

020.048At
0 210.045As

0M1/2

20.19At
0M1/222.47M1/2

2 20.41~mQ
0 21mU

0 2!20.1mS
0 2

20.1m1
0 210.485m2

0 2,

mS
2520.128As

0 210.072As
0At

010.014At
0 220.021As

0M1/2

10.039At
0M1/210.081M1/2

2 10.094~mQ
0 21mU

0 2!

10.68mS
0 220.32m1

0 220.22m2
0 2,

mU
2 50.017As

0 210.0005As
0At

020.037At
0 210.037As

0M1/2

20.139At
0M1/213.27M1/2

2 20.306mQ
0 210.69mU

0 2

10.038mS
0210.038m1

0220.27m2
02,

mQ
2 50.009As

0 210.0002As
0At

020.018At
0 210.019As

0M1/2

20.07At
0M1/214.72M1/2

2 10.85mQ
0 220.15mU

0 2

10.02mS
0 210.02m1

0 220.13m2
0 2.

As a result of the normalization of the gauge couplings
low-energy parameters are not very sensitive to the ass
he

e
n-

ments of the U(1)Y8 charges. For example, if one chooses
model withE(6) charge assignments, the results are affec
only by a few percent. Thus, from a practical point of vie
one can regard the above-listed solutions as independe
U(1)Y8 charge assignments. On the contrary, dependenc
the low-energy parameters, especially the trilinear couplin
on the variations of the initial conditions of Yukawa co
plings is important. In what follows we shall confine ou
selves tohs

05ht
05A2g0 @16#, as was already used in obtain

ing Eq.~10!. The low-energy potential with the parameters
Eq. ~10! is a general one, and thus one has to specify
appropriate region of the parameter space to satisfy the
nomenological requirements existing at the weak scale.

After the breaking of gauge symmetry down to SU(3c
3U(1)em, there will arise two neutral massive gauge boso
Z andZ8 whose mass matrix reads

~M2!Z2Z85S MZ
2 D2

D2 MZ8
2 D , ~11!

where

MZ
25

1

4
G2~v1

21v2
2!, ~12!

MZ8
2

5gY8
2

~v1
2Q1

21v2
2Q2

21vs
2QS

2!, ~13!

D25
1

2
gY8G~v1

2Q12v2
2Q2!, ~14!

and, Higgs VEV’s are defined as

^H1
0&5v1 /A2; ^H2

0&5v2 /A2; ^S0&5vs /A2. ~15!

There are three main conditions that the vacuum state m
satisfy: TheW boson mass must remain at its LEP1 value,
the model is extended only in the neutral direction; the co
and charge symmetries must remain unbroken; theZ-Z8
mixing anglea must be belowa f ew 31023 as otherwise
the LEPI value ofMZ is destructed.

The first condition can be satisfied using the fact that
potential~4! has a common mass scale defined by the gr
itino mass, as the soft SUSY breaking terms in Eq.~2! are
generated by the SUGRA breaking. Thus, the mass sca
the potentialm0 ~proportional to the gravitino mass!, can be
factored out and the remaining dimensionless potential
be minimized freely. The first condition above can then
met by imposing the constraint

m0Af 1
21 f 2

25246 GeV, ~16!

where f 1 and f 2 are the dimensionlessH1 and H2 VEV’s,
which are defined asv15m0f 1 ,v25m0f 2, and for future use
vs5m0f s .

The charge breaking can arise from both Higgs a
squark sectors. In the Higgs sector, with the help of SU(
symmetry, a possiblêH2

1& can be rotated away, and th
charge breaking can be parametrized in terms ofv2

5^H1
2&. As can be calculated easily, the potential prefers

charge preserving minimum, ifÃ.0, where
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Ã52 sin2 bmH6
2 , ~17!

tanb5v2 /v1, and mH6
2 is the charged Higgs boson mas

squared. Consequently, in what follows we shall work in t
portion of the parameter space where the charged Higgs
son has real mass, so that the charge breaking in the H
sector is avoided.

When, at least one of̂ t̃ L
c&, ^Q̃&, take a nonzero value

both color and charge symmetries are broken. To preven
formation of such a minimum, one has to have a cert
hierarchy between the top trilinear couplingAt and the soft
squark mass parameters. In fact, the usual criterium@17#
ht

2At
2,3(mQ

2 1mU
2 1m2

2) must hold at a scaleQ;At /ht .
More importantly, when the squark masses go negativ
charge and/or color breaking minimum will be develope
even if it is secondary. When analyzing the low-energy p
tential, we shall always keep these conditions in mind.

That theZ-Z8 mixing angle is to be small is a seve
constraint on the vacuum state. TheZ-Z8 mixing anglea is
generated by the off-diagonal elements of theZ-Z8 mass
matrix ~10!, and given by

a5
1

2
arctanS 2D2

MZ8
2

2MZ
2D . ~18!

There are mainly three regions of parameter space of
pure Higgs sector yielding a smalla.

~1! Heavy Z8 minimum. As is seen from Eq.~18!, when
MZ8@MZ , a becomes small. This occurs in that portion
the parameter space satisfying

2mS
2 @um1

2u,um2
2u, ~hsAs!

2 ~19!

for which Higgs VEV’s behave as

vs;A2mS
2/ls@v1 , v2 . ~20!

This ordering of the VEV’s makeD2 small compared to
MZ8

2 , whereby producing a small mixing angle. This mech
nism does not require any relationship among the soft ma
m1

2 and m2
2, and chargesQ18 and Q28 ; it utilizes only the

ordering in Eq.~19!. tanb, however, is closely related to th
values of chargesQ18 , Q28 and the values of the soft mass
m1

2 andm2
2. When2mS

2 takes higher and higher values, on
U(1)Y8 gets broken, and other group factors remain unb
ken. This introduces a mass scaleQ5A2mS

2 between weak
and SUGRA scales; remnants of the gauge group mus
broken by a second stage around the weak scale. Befor
occurrence of such an intermediate scale, large2mS

2 can
create a relatively largem parameter, thus2mS

2 getting large
values must be avoided.

~2! Light Z8 minimum. As Eq. ~18! suggests, anothe
way of obtaining a small mixing angle would be to makeD2

small irrespective of the value ofMZ8 . To obtain this kind of
cancellation, one needs roughlyv1

2/v2
2;uQ28/Q18u which may

be satisfied in some limited portion of the parameter spa
However, unlike MSSM and similar to NMSSM, the exi
tence of the trilinear coupling parameterhSAs opens a new
avenue in obtaining an appropriate electroweak break
That is, when
t
o-
gs

he
n

a
,
-

he

-
es

-

be
the

e.

g.

hS
2As

2@um1
2u,um2

2u,umS
2u ~21!

holds, all VEV’s are drawn approximately to the same poi

v1;v2;vs;As /~hSA2!. ~22!

If the U(1)Y8 charges of Higgs doublets satisfyQ285Q18 ,
this large trilinear coupling-induced minimum cancelsZ-Z8
mixing, allowingMZ to be compatible with LEPI data. Suc
a light Z8 must show up in theZ-pole observables, and there
fore parameters of the model can be constrained using L
data. As a side remark, the passage of the trilinear coup
from lower values to higher ones~compared to the sof
masses! is either a first order or second order phase tran
tion, depending on the sign ofm25m1

21m2
21mS

2 . In fact, if
m2 is positive, there is a first order phase transition occurr
at the critical pointAs

crit5A8m2/3.
~3! Hybrid minimum. One can obtain a phenomeno

logically viable minimum in all aspects by combining th
parameter spaces of heavyZ8 minimum and lightZ8 mini-
mum. To do this, one can choose both2mS

2 and As
2 large

compared to other soft masses. As largeAs
2 pushes all Higgs

VEV’s to the same point, and2mS
2 prefers a large SM-

singlet VEV, when both2mS
2 and As

2 are large, doublet
VEV’s @controlled byAs via Eq. ~22!# will approach to ap-
proximately the same value, and SM-singlet VEV@con-
trolled by2mS

2 via Eq. ~20!# will be much larger than them
Thus, this portion of the parameter space yields a small m
ing angle together with a relatively heavyZ8. In the analyses
below, we shall be mainly interested in this kind of para
eter space and assumeQ185Q28 . Actually, when 2mS

2 is
large, one does not need this condition, asD2 in Eq. ~14! is
already small compared toMZ8

2 . However, this kind of
choice allows for the realization of the required minimum
a reasonable range of parameter values.

In the above mentioned low-energy analysis we have
quired a certain hierarchy among the potential paramet
However, as dictated by the solution of RGE’s in Eq.~10!, it
is not realistic to consider such idealized cases since as
parameter changes, all others do too as a function of
initial conditions. Moreover, we need not only the Higg
sector parameters, but also the parameters of the squark
tor as we shall calculate the one-loop squark contribution
the Higgs potential. Thus, one has to determine the SUG
scale parameter space consistently by considering all
low-energy parameters simultaneously.

Once nonuniversality is permitted, one faces with a hu
parameter space each point of which corresponds to s
symmetry breaking scheme at low energies. The usual
cedure for the determination of the appropriate portion of
parameter space, would be to trace the SUGRA-scale pa
eter space point-by-point, and pick up those yielding a via
minimum at low energies. However, with the low-ener
parameters in Eq.~10!, and the constraints implied by th
hybrid minimum, we can determine the appropriate para
eter space analytically. In accordance with the conditio
coming from the hybrid mininum, we want to speed up2mS

2

andAs compared to other mass parameters in terms of t
dependence on a choosen SUGRA scale parameter. T
two have three parametersAs

0 , At
0, and M1/2 in common,
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and we shall useAs
0 as a probe for determining the approp

ate parameter space, by fixing other parameters with mini
amount of nonuniversality@6#. To slow down theAs

0 depen-
dence ofm1

2 andm2
2 , we make the following choice form1

02

andm2
02:

m1
02'm2

02'As
02/10. ~23!

For the remaining parameters we keep universality,

mS
025mQ

025mU
025At

02/3, ~24!

and finally we letM1/25At
0 . Under these conditions, th

low-energy parameters read

As'0.42As
020.58At

0,

At'20.045As
011.9At

0,

m1
2'0.026As

0At
010.53At

02,

m2
2'0.08As

0At
023.5At

02,

mS
2'20.18As

0210.05As
0At

010.43At
02,

mQ
2 '20.0026As

0210.02As
0At

015.0At
02,

mU
2 '20.0052As

0210.04As
0At

013.4At
02.

~25!

As we see from these equations the quadraticAs
02 depen-

dence ofm1
2 andm2

2 are supressed compared to those of
others withmS

2 being the fastest one among all concerni
their As

02 dependence. In the analysis below we shall var

z5As
0/At

0 ~26!

in a certain range of values, and determineAt
0 from the in-

variance of theW6 mass under such Abelian extensions
MSSM. Whenz is small, except form2

2, all soft masses are
positive, yielding a non zerof 2 and vanishingf 1, f 2. This is
not an acceptable minimum, as the gauge symmetry is
broken completely. Asz increases,m2

2 starts overcoming the
large negative threshold coming from@essentially the
SU(3)c] gaugino masses, andH1

0 andS do develop nonzero
VEV’s. But still it may not yield a small enough mixing
angle. Further increase ofz brings us to the sought minimum
where 0Þ f 1; f 2! f s . However, this increase cannot b
maintained further as the squark masses turn to negative
overcoming their large positive mass thresholds domina
by the SU(3)c gaugino. Negative squark masses cau
charge and color breaking minima, even if secondary, so
this limiting case will be avoided below.

III. ONE-LOOP CORRECTIONS

Until now our discussion has been based solely on
RGE-improved tree-level potential. However, quantum c
rections beyond the log effects included in the RGE analy
are important. Especially the top-quark–top-squark se
gives the most important contribution due to the relativ
al

e

f

ot

ter
d
e
at

e
-
is
or

large value of the top-quark Yukawa coupling. To take su
radiative corrections into account we shall follow effecti
potential approach@8,9# in which the radiatively corrected
one-loop potential is given by

V15V1DV, ~27!

where the one-loop contribution has the Coleman-Weinb
form

DV5
1

64p2
StrM4ln

M2

Q2
, ~28!

where Str is the usual supertrace andM2 is the field depen-
dent mass-squared matrix. We have transferred a renor
ization scheme dependent constant into a redefinition of
renormalization scaleQ2. One notes that all the paramete
in Eq. ~27! are to be evaluated at the scaleQ2;O(v1

21v2
2).

Indeed, this is consistent with the RGE analysis of the l
section as we have integrated them from the SUGRA sc
down to the weak scale. In the loop expression Eq.~28! we
consider only the contributions of top quarks and top squa
t̃ 2, t̃ 1 whose masses are given by

mt5htuH2
0u;

mt̃ 1,2

2
5

1

2
$m11

2 1m22
2 6A~m112m22!

214um12u2%, ~29!

where

m115mQ
2 1l1tuH1u21l2tuH2u21lstuSu21 l̃1QuH1

0u2

1 l̃2QuH2
1u2,

m225mU
2 1l1uuH1u21l2uuH2u21lsuuSu2,

m1252htAtH2
0* 1hshtS* H1

0* , ~30!

and the dimensionless coefficients

l1t52g2
2/42gY

2/121gY8
2 Q18QQ8 ,

l2t52g2
2/42gY

2/121gY8
2 Q28QQ8 1ht

2,

lst5gY8
2 QS8QQ8 ,

l1u5gY8
2 Q18QU8 ,

l2u5gY8
2 Q28QU8 1ht

2,

lsu5gY8
2 QS8QU8 ,

l̃1Q5g2
2/2,

l̃2Q5g2
2/22ht

2, ~31!

follow from the colored sector of the full scalar potentia
We shall calculate radiative corrections to the lighte
CP-even Higgs mass bound, so we are interested in
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CP-even scalar mass-squared matrix which can be obta
by evaluating ]2V1 /]f i]f j at the VEV’s, in the basis
(Re@H1

0#,Re@H1
0#,Re@S0#).

Before going into a detailed numerical analysis, we fi
present a general discussion on the effects of the radia
corrections based on some approximate formulas. The
quark–top-squark splittingSt t̃ 5 ln(mt̃ 1

mt̃ 2
/mt

2! and top

squark splittingSt̃ t̃ 5mt̃ 1

2
2mt̃ 2

2 describe the most importan

contributions of the one-loop corrections. On the other ha
because of the choice ofQ2, the remaining log ln (mt

2/Q2) is
not as important as the former ones. To extract some in
mation about the effects of the loop corrections on the t
level parameters, one can expand the minimization equat
in powers of top squark splitting and identify the renorm
ization effects on the tree-level quantities. In fact, to low
order in stop splittingSt̃ t̃ , and neglecting the terms involv
ing the gauge couplings, one finds that the most impor
contributions come toAs , m2

2, andl2 which are given by

Âs5As1bht
St t̃ At ,

m̂2
25m2

21bht
@~A21At

2!St t̃ 2A2#,

l̂25l21bht
St t̃ ht

2, ~32!

where bht
5 @3/(4p)2#ht

2 , and A25mQ
2 1mU

2 . Let us now
discuss the implications of these one-loop corrections in
light of the RGE solution set in Eq.~25!. As the first equa-
tion in Eq. ~32! shows,As is strengthened by the loop co
rections. However,As

0 dependence ofAt is approximately
one order of magnitude smaller than that ofAs so that one
does not have a significant improvement forAs , unless top-
quark–top-squark splitting is large. The improvement inm2

2,
dm2

2;bht
A2(St t̃ 21) depends, in addition toA2 itself, on

how largeSt t̃ is compared to unity. That is, if the top squar
masses are large compared tomt , the top-quark–top-squar
splitting can be large enough to give a significant contrib
tion to m2

2. Hence, bothAs andm2
2 get significantly improved

if the top-quark–top-squark splitting is large enough. As o
can read off from Eq.~25!, for small z, the squark soft
masses are large due to the contribution of the SU(c

gaugino. Therefore,m2
2 is significantly improved by the loop

corrections in this range of thez values. However, we ob
serve from Eq.~25! that for largerz valuesA2 gets smaller
and the loop contributions drop significantly. Finally, as d
tated by Eq.~32!, H2 quartic couplingl2 is significantly
improved by the radiative corrections if the top-quark–to
squark splitting is large enough. In the smallz limit, one has

f 2;A2m2
2/l2@ f 1 , f s , which clearly shows that tree-leve

f 2 is larger than the loop-level one. This radiative reduct
in f 2 causes one-loop tanb to drop:

tan2 b̂5 tan2 bS 12tan b
bht

@~A21At
212mt

2!St t̃ 2A2#

Asms
D ,

~33!

where the effective MSSMm parameterms5(hsvs)/A2 is
introduced. Indeed, with the contributions ofm̂2

2 andl̂2, one-
ed

t
ve
p-

d,

r-
e
ns
-
t

nt

e

-

e

)

-

-

n

loop tanb is reduced compared to the tree-level one. Ho
ever, the inversemsAs dependence will force the loop con
tribution to drop rapidly after somez values. In this sense
one expects tree- and loop-level tanb ’s be close to each othe
in the largez regime.

At the tree-level, for smallz, one expects a relatively
large mixing angle as the expected cancellation inD2 does
not occur. At the loop-level, however, because of the redu
tanb one expects a smallerZ-Z8 mixing angle as can be see
from the form ofD2 in Eq. ~14!. Although in the largez limit
radiative correction to tanb is diminished, due to the increas
in vs (2mS

2 increases! the loop-levelZ-Z8 mixing angle will
be still smaller than the tree-level one.

The lightestCP-even Higgs boson mass has the tree-le
bound of

mh1

2max5MZ
2cos22b1~v1

21v2
2!Fhs

2 sin2 2b

2

1gY8
2

~Q18cos2b1Q28sin2b!G . ~34!

Here the first term is the MSSM tree level bound, thehs
2 term

is the NMSSM contribution (gY850 case!, and finally the
last term is theD-term contribution of the U(1)Y8 group.
Using the same approximations that had lead us to Eq.~32!,
a straightforward calculation yields the following one-loo
bound:

m̂h1

2max5mh1

2max1bht
@~mscosb1Atsinb!214St t̃ mt

2#.

~35!

As we observe from this equation, the one-loop bound
always larger than the tree-level one. SinceAs

0 dependence
of At is weak, the main contribution to the bound com
from mt and ms terms, and it is maximized either by top
quark–top-squark splitting contribution, or by thems contri-
bution. In fact, due to thisms dependence it will be much
larger in heavyZ8 minimum than in lightZ8 minimum. In
the parameter space we shall trace one expects the one
bound be dominated bymt and ms terms in the small and
largez regimes, respectively.

Had we included the entire particle spectrum and work
to all orders our results would beQ2 independent. The one
loop expressions forÂs and m̂2

2 in Eq. ~32! are actuallyQ2

dependent and their dependence can be recovered by le
St t̃→St t̃ 1 ln (mt

2/Q2!. Therefore, if for some choice ofQ2,
ln (mt

2/Q2! happens to be important, one can analyze th
two quantities by intoducing the splitting functionSQ t̃
5 ln (mt̃ 1

mt̃ 2
/Q2!. Similarly, in the expression for tanb, ex-

cept the formt
2 term, one can make the replacementSt t̃

→SQ t̃ to take into account itsQ2 dependence. Unlike these
l̂2 in Eq. ~32!, and lightest Higgs boson mass bound in E
~35! are independent ofQ2, so they exhibit the same behav
ior for all Q2. In general, all scalar mass-squared matric
are Q2 dependent, but the lightestCP-even Higgs boson
mass bound turns out to be scale independent. In the R
analysis assumed that the scale of the SUSY breakingMSUSY

is around the weak scale, so the choice ofQ2;(v1
21v2

2) is
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necessary for consistency of the analysis. Thus, we do
expect theQ2 dependence of the parameters to change
above mentioned predictions significantly.

Until now we have based our analysis on the approxim
formulas which were obtained by assuming that the t
quark–top-squark splitting, ln (mt

2/Q2!, and all gauge cou-
pling dependent terms are negligibly small. These assu
tions do not necessarily hold in the entirez spectrum, and
thus we need to have a detailed picture for thez dependence
of all these quantities.

IV. NUMERICAL ANALYSIS

In this section we shall investigate the effects of the
diative corrections on various quantities by an exact tre
ment of the problem using numerical techniques. To obt
the scalar mass matrices one has to calculate]2V1 /]f i]f j
evaluated at the VEV’s. During the minimization we sh
rescale all fields and parameters of mass dimension byAt

0 ;
consequently the parameters of the potential depend o
single quantity,z defined in Eq.~26!. After minimizing the
dimensionless potential, we recover the physical shell by
quiring

At
05v/Af 1

21 f 2
2, ~36!

wherev5246 GeV is the Fermi scale. As we have alrea
discussed in obtaining Eq.~16!, this rescaling procedure
works very well for the tree level potential@12# due to the
uniqueness of the mass scale. However, radiative correc
do necessarily introduce an additional mass scaleQ2. Thus,
the rescaling invariance of the tree-level potential does
hold at the loop level. Using Eq.~36!, one would rescale the
basic log in Eq.~28! as

ln
M2

Q2
5 ln M̃2

At
02

Q2
, ~37!

which clearly requires the knowledge ofAt
0 which itself is

something we aim to find. The determination ofAt
0 thus

requires a consistency analysis where one inserts a trial v
in this rescaled log, and compares it with the resulting o
after the minimization. This procedure goes on until trial a
output values forAt

0 match. We have done this numericall
and the result is shown in Fig. 1 as a function ofz.

In the analysis below we shall present tree-level and o
loop quantities on the same graph for the sake of easy c
parison. In each graph the free variable isz, the ratio of the
Higgs boson trilinear coupling to the top quark trilinear co
pling at the SUGRA level. The starting value ofz is chosen
to be that one for which none of the VEV’s vanish. On t
other hand, the maximum ofz is determined by its threshol
value at whichmt̃ 2

2 turns to negative due to largevs values.

This threshold shows up before squark soft masses tur
negative; so there is no danger of charge and/or color br
ing in the range ofz values we shall consider below.

Figure 1 shows thez dependence ofAt
0 for tree- and

loop-level analyses. While tree-levelAt
0 peaks aroundz57

with a value 73 GeV, one-loopAt
0 peaks aroundz58 hitting

the value of 82 GeV. As the VEV’s leave the smallz regime
ot
e

te
-

p-

-
t-
in

l

a

e-

y

ns

ot

ue
e
d

e-
m-

-

to
k-

~or f 2 dominated regime!, the sum f 1
21 f 2

2 approaches its
minimum, asf 1 and f 2 are driven to close enough values b
As . That At

0 will be maximized around thesez values fol-
lows from Eq. ~36!. After passing by this maximization
point, all of the mass parameters become proportional to
associated power ofz, as dictated by Eq.~25!. Hence, in this
‘‘large z ’’ regime, we expect dimensionless doublet VEV
be approximately proportional toz because of which we ob
serve an approximate 1/z falloff in Fig. 1. This kind of be-
havior inAt

0 reflects itself in all the relevant masses we sh
discuss below. In solving the RGE’s we have used the p
scriptionM1/25At

0 , which implies the weak scale masses
;2.63At

0 , 0.83At
0 , At

0/4, andAt
0/10 for SU(3)c , SU(2),

U(1)Y , and U(1)Y8 gauginos, respectively. Thus, dependi
on the present and future experimental limits on the gaug
masses of different group factors, one can restrictz to a
certain range of values, keeping in mind that the cho
M1/25At

0 itself is not necessarily unique.
We plot thez dependence of tanb in Fig. 2. As we ob-

serve from this figure, for smallz values, loop contributions
really do push tanb to smaller values. Again in agreeme
with our expectations, for largez, both the tree level and
loop results come closer rapidly, and gradually approach
unity. The difference between one-loop and tree-level tanb ’s
fall below 1% afterz;8.

In Fig. 3 we present thez dependence of theZ-Z8 mixing

FIG. 1. Dependence ofAt
0 on z ~solid line: one loop, dashed

line: tree level!.

FIG. 2. Dependence of tanb on z ~solid line: one loop, dashed
line: tree level!.
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anglea. In agreement with the predictions of the last secti
the one-loop mixing angle is smaller than the tree level o
everywhere. As we see from this figure, the phenomenol
cal bound ofamax; a few3 1023 afterz;7 is comfortably
satisfied afterz;7. The last point about this figure is that fo
large z values one-loop and tree-level results remain
proximately parallel, indicating the fact that both doub
VEV’s reach their limiting values controlled byAs , and the
SM-singlet VEV enter the2mS

2 dominated regime.
Another important quantity,MZ2

, is shown in Fig. 4 as a

function of z. First, we see that loop corrections genera
increase theZ2 mass in the entirez range. Both tree-leve
and one-loop masses increase untilz;10 in accordance with
At

0 in Fig. 1. Likewise, parallel to the behavior ofAt
0, MZ2

decreases gradually afterz;10, and is expected to satura
after some point due to the fact that thez dependence ofAt

0

and the dimensionless SM-singlet VEV are almost invers
proportional to each other in this range ofz values. The
one-loopMZ2

peaks atz;11 by taking the value of;405

GeV; thus, it cannot increase indefinitely withz. As ex-
pected, the tree-levelMZ2

, in similarity with the tree-level

At
0 , peaks atz;10, with a value;330 GeV. The values

taken byMZ2
depends crucially on the value ofgY8 . Under

the normalization in Eq.~8!, and the U(1)Y8 charge assign-
ments in Eq.~9!, the solution of the RGE’s yieldgY8 /gY

FIG. 3. Dependence ofa on z ~solid line: one loop, dashed line
tree level!.

FIG. 4. Dependence ofMZ2
on z ~solid line: one loop, dashed

line: tree level!.
,
e
i-

-
t

ly

'0.65 at the weak scale. This ratio would push the value
MZ2

above 600 GeV, ifgY85gY were the case. One note

that the recent Fermilab Tevatron result@18# giving MZ2

>590 GeV would be well satisfied ifgY8 were equal togY .
As explained in the Introduction, one of the basic aims

constructing such extended models is of course the dyna
cal formation of the MSSMm parameter. The effectivem
parameter in the present model has thez dependence shown
in Fig. 5, for which we have almost the same behavior o
served inZ2 mass, as both are controlled byAt

0 . The one-
loop ms peaks aroundz511, and takes the value;350 GeV
at this point. Similarly, the tree levelms peaks aroundz
510 with a value;280 GeV.

Finally, in Fig. 6, we present thez dependence of the
lightest Higgs boson mass boundmh1

max which is seen to sat-

isfy the predictions of the last section. As we see from E
~34!, the tree level bound depends solely on the doub
VEV’s, so that after reaching the tanb;1 regime the bound
is maximized and saturated atmh1

max;118 GeV. In the same

way until leaving the smallz region, the one-loop bound als
increases and hits the value;125 GeV in the far end of the
total z range. The fact that one-loop bound saturates m
later than the tree-level one is due to thems dependence of
the radiative corrections.

FIG. 5. Dependence ofms on z ~solid line: one loop, dashed
line: tree level!.

FIG. 6. Dependence ofmh1

max on z ~solid line: one loop, dashed
line: tree level!.
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V. CONCLUSIONS AND DISCUSSIONS

In this work we investigated one-loop contributions
certain low-energy quantities in the framework of the effe
tive potential approach, using an RGE-improved radiativ
corrected scalar potential, following from the superpoten
in Eq. ~1!. However, derivation of the entire low-energy pa
ticle spectrum~such as top quark, bottom quark, andt
masses! requires the study of a more general superpoten
involving, in addition to the superpotential in Eq.~1!, exotics
predicted in most string models and nonrenormalizable q
tic mass terms from which light fermion masses follo
@16,19#. Here we have restricted ourselves mainly to t
study of certain low-energy quantities determined by
Higgs sector of the model, for which the typical superpote
tial in Eq. ~1! should suffice@12,19#.

Among the low-energy quantities we have worked o
the Z8 boson and lightest Higgs boson mass bound are
phenomenological importance. The search forZ8 @20# will
be one of the goals of the next generation of accelerators
the near future, LEPII will be searching for theZ8 boson in
leptonic andWW channels. In addition to this, the CER
Large Hadron Collider~LHC! will search forZ8 boson with
quark-antiquark fusion processes. In general, the exclu
limits of Z8 mass and its couplings depend on the model
collider parameters@21#. The U(1)Y8 charges of the presen
model are generation dependent, and thus, the constrain
its Z8 boson is weaker than that of the generation indep
dent ones. TheZ-Z8 mixing angle ~see Fig. 3! is small
ys
.
,

s
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-
y
l

al

r-

e
e
-

,
of

In

n
d

on
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enough to supress the effects ofZ8 fermion couplings in the
Z-pole observables@22#. The Z8 mass in the present mode
has an upper bound of;400 GeV, and satisfies the present
existing phenomenological bounds.

The lightest Higgs mass bound turns out to be;125 GeV
@23# in MSSM. In NMSSM, however, it is;140 GeV@10#.
In the present model, it turns out to be;125 GeV. The
bounds of the present model and MSSM practically coinci
however, the bound in the present model is expected to
crease slightly if the next to next leading order~NNL! cor-
rections are taken into account@23#. In the near future, the
lightest Higgs boson will be discovered at LEPII ifmh1

<95 GeV, and at Fermilab inmh1
<120 GeV after accumu-

lating an integrated limunosity of 25–30 fb21 @24#.
In conclusion, we have analyzed the effects of the rad

tive corrections on the various low energy quantities in
present model by taking the contributions of top quarks a
top squarks into account. As we have shown graphically,
one-loop improvment in the low energy parameters are in
way negligible. Moreover, the one-loop corrections supp
the satisfaction of the phenomenological requirements c
pared to the bare tree-level potential. The findings of
work will be tested in colliders of the near-future.
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