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For an Abelian extended supergravity model, we investigate some important low-energy paramefgrs: tan
the Z-Z' mixing angle, lightesCP-even Higgs mass bound, mass, and effectivee parameter. By inte-
grating the renormalization group equations from the string scale down to the weak scale we constuct the scalar
potential and analyze the quantities above at the tree- and one-loop levels by including the contributions of top
squarks and top quark in the effective potenti&l0556-282(198)02211-5

PACS numbds): 04.65+e€, 12.60.Jv

I. INTRODUCTION SUGRA scale values. After discussing the requirements on
the low-energy potential for phenomenological viablility, we
There are several reasons for considering additioria) U determine the appropriate SUGRA scale parameter space.
symmetries and their associated ex@rdbosons. Such addi- We do this with a minimal amount of nonuniversality. That
tional U(1)’s arise after the breaking of grand unified theo- is, we allow for nonuniversality only between Higgs doublets
ries (GUT’s) [for exampleE(6)-based rank-5 moddlsor in ~ and remaining scalars; in particular, we choose doublet soft
string compactifications. In addition to justifying the under- mass squareds to be equal and one order of magnitude
lying model, more importantly, additional()’s would also ~ smaller than the others.
solve the minimal supersymmetric standard modiésSM) In Sec. lll we consider the issue of radiative corrections.
w problem when broken around the weak scale. Indeed, &ut of all fields which can contribute to the effective poten-
was already argued ifl], in a large class of string models, tial, we consider top quark and top squark contributions, and
the breaking scale of the extra1y’s come out to be below neglect the remaining fields. We assume that the log effects
1 TeV. which are accounted for in solving the RGE's, are enough to
The phenomenologically viable models should satisfy twotake into account the effects of Higgs, neutralino, chargino,
conditions at the string scale: First, the extréllUshould be ~ and vector boson loops, at least for calculating the low-lying
nonanomalous and should not acquire a mass from the strif§ass spectrurfil0].
or hidden sector dynamics; namely, its mass must come from In Sec. IV we work out the one-loop potential numeri-
the gauge symmetry breaking in the observable sector. Se€ally, and graph the tree- and one-loop results together to
ondly, all scalar soft mass squareds must be positive and (gnable a comparative discussion of the effects of the radia-
similar magnitude. The latter holds in a gravity-mediated sudive corrections.
persymmetry (SUSY) breaking scheme, where the mass In Sec.V we discuss the results of the work in the light of
scale is given by the gravitino mass, not necessarily so, howaccelerators of the near-future and MSSM and NMSSM pre-
ever, in gauge-mediated SUSY breaking schemes. dictions.
Soft terms, parametrizing our ignorance of the origin of
the SUSY breaking, can be obtained from a general super- Il. LOW-ENERGY TREE-LEVEL POTENTIAL
gravity (SUGRA) Lagrangian in théM p;— oo limit [2,3]. Al-
though the minimal SUGRA predicts universal soft terms, in  As is_well known, the fundamental SUGRA scalé
general SUGRA theoriegsee Ref.[4], and references =Mp /\/87 is approximately one order of magnitude larger
therein and superstring theorid®] it is possible to have than the MSSM coupling constant unification leviel
nonuniversal soft terms. Thus, considering such explicit ex~10'® GeV[11]. However, the threshold effedi&3,14 can
amples, one is free to consider nonuniversal boundary corslose the gap, and thus, in the following we shall choose the
ditions[6], without referring to the particular case of univer- MSSM unification scaleM as the starting point of the
sality. analysis at which the initial conditions of the potential pa-
For testing such extra (1) models in machines of the rameters are specified. We reconsider a general, anomaly
near-future, the tree-level potential is clearly not sufficient;free, Abelian extended SUSY model which was discussed in
one has to take into account the radiative corrections to haé 2] already. The model is specified by an Abelian extension
a meaningful model at these energies. Among other method¥ the MSSM gauge groupG=SU(3).XSU(2)xU(1)y
[7], the effective potential approach proved to be an elegank U(1)y, with the couplingsgs, 92, 9y, 9y, respectively.
and simple way of incorporating the radiative corrections toThe particle content for one family is given by the left-
the scalar potentidB,9], which we will adopt in this work as  handed chiral superfields: L~(1,2-1/2Q’,), E°
well. . ’ A ’ NC_ (2 1 _ '
This work is organized as follows. In Sec. Il we shall first Ac(l'l’—lQ e). ,Q (3'2’1/§Q o) U (3’1’. 213Q"0).
describe the model at the SUGRA scale. Using one loo ~(3,1,1/3Q"p). The Higgs sector contains the &)

renormalization group equatioft®GE'’s) we shall obtain all doubletsﬂ1~(},2,— 1/2Q'y) and H,~(1,2,1/2Q’,), and
the low-energy potential parameters as functions of theithe SM singletS~(1,1,0Q’9).
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The superpotential for the model is given by A= g?(,ZQ’lQ’SJr ho2,

f=h2SH; -H,+h%0°Q-H,, (1)
A= gger'zQ’si‘ h9?,
where the family mixings are ignored. We kept only the top
and Higgs Yukawa couplings, as the Yukawa couplings of o_ [02, 02 . . i
the other fermions are much smaller. The existence(aj \;\ii]ae'rr?t (sn_U ( 1g)f +rgY - As .?eri.t'rsarno :;(pzrlzwre?ct)?lré:glr_l
group makes the model totally different from NMSSM by > & '+ group, gy | lrary. FMIOWEver,

forbidding an elementary term and arS® term (so that the Istic mp_del§ Itis expe(_:ted thaty ~g, [15], so We assume
superpotential does not haveZa symmetry the unification ofg,, with the other gauge couplings at the

Without specializing to a particular class of string com- the IE\/IStShM funn‘l(_:atlon stcaIMU [11]. Using the trace formu-
pactifications, we parametrize the supersymmetry breakini;aS or the termion sector

by considering the most general soft supersymmetry break-

ing terms 10
’ TH Q) = T Qs = 2T Y21 = 5

Vsor= =m3 | Ha|?+ mg | H,|?+ mg | |2+ m{ 7 7|2

+m22Q|2—h%A%(SH, -H,+H.c) TY'?]=6Q'5+3(Q'5+Q')+2Q'{+Q'E  (6)
ChOAYT* B Ho+ He) + 0y aya we normalize the gauge couplings such thatMag, they

hPAL(TE* Q- HatHee) + 2 MQA™ @ sty
Here\? are gauginos with the massk), andt ¢ andQ are 99=g3=g0=g% =g°, 7

the scalar components Bf° andQ, respectively. The super-

script on each quantity designates its value at the SUGRA i the normalized U(1) and U(1),, couplings
scale which is determined by the vacuum expectation values

(VEV's) of the hidden sector fieldémoduli and dilaton

fields, in the case of string compactificatipnsodulo the 0_ \F 0 0
threshold corrections. 91= V399
The scalar components of the Higgs superfields are as-
signed the following representation under (@lUgroup: B \/GQ’5+ 3(Q'6+Q'%)+2Q’E+Q’Ego ®
2 Y
. HY) . Hy\ o .
Hi—H;={ |, Hx—Hx=| o], S=S @ . o
1 H5 In obtaining the renormalization group flow of the param-

_ _ eters of the potential we shall consider one-loop RGE’s
Adding to Vg the usuaIF and D terms of the as_somated which were listed in Appendix A of Ref12]. We assume
group factors, one obtains the full scalar potential, whosehat the scale of SUSY breaking is around the weak scale,

Higgs part reads and thus we integrate RGE’s of a softly broken SUSY model
021t 12 0201 17 022 . Ol 14, <Ot 14 from the SUGRA scale down to the weak scale directly.
Vo=m; “Ha[“+m; JHo|“+mg TS|+ N [Hy[*+N3[Hy| Among the RGE’s the most complicated ones are those in-

Oleld 1 0 20y 121 10 2Nel2 1 1 0 J1a2  VOlving Yukawa couplingshg and h; which obey coupled
+NglS[*+ N 1g Hal“IHo|*+ Mg H1|*[S]*+ N 35| Ha| [ nonlinear equations. The top Yukawa couplmgeaches its
—h3AY(SH; -H,+H.c) (4)  fixed point value ofh,~1—1.2 almost independently of the
initial conditionsh? andh? . Corresponding to thif, takes
The terms involving paramete}@ come from the supersym- values around 0:60.8. On the other hand, the RGE'’s of soft
metric part of the Lagrangian Consis‘[ing Bfand D terms, masses, being linear, can be solved exaCtly as a function of
and their explicit expressions are: their initial conditions, for giverhg and h?. Finally, as a
by-product of the coupling constant unification, it is natural
1 to assume a common madd,, for all gauginos at the
A=-G2+ - g27Q’? (5)
g0 oYy 1 SUGRA scale.
In constructing the solutions of RGE’s one needs to
1 specify the U(1y), charges of the fields. Without referring to
)\g=§G§+ 593,2 ’%, specificE(6) based charge assignments, one can relate dif-
ferent U(1),, charges to each other by imposing the cancel-
lation of the triangular anomalies together with the gauge
}\o:}go/z 2 invariance of the potential. The superpotential in Eq.in-
S 2%y ' cludes only the top and Higgs trilinear mass terms, and thus
we shall require the gauge invariance for these vertices only,

leaving the other would-be verticésuch asE°L-H;) un-

1
0__ "2 02~/ ’ 02
SE 4G0+gY’ Q"1Q"2+hs%, constrained. Then the solution of U(d)charges reads



which fix all but two @Q; and Q;) of the U(1),, charges.
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Qs=—(Q1+Q2), Qy=(Q1—-3Q3)/3,
Qp=(Q1+3Q3)/3,

Qe=—(Qi-Q2): Qo=-Qif3, Q=-Q;,
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ments of the U(1), charges. For example, if one chooses a
model withE(6) charge assignments, the results are affected
only by a few percent. Thus, from a practical point of view,
one can regard the above-listed solutions as independent of
U(1)y: charge assignments. On the contrary, dependence of
the low-energy parameters, especially the trilinear couplings,
on the variations of the initial conditions of Yukawa cou-

The advantageous side of this solution set is that it leaves thglings is important. In what follows we shall confine our-
U(1)y: charges of Higgs doublets free, which will be impor- selves tch)=h?=\/2g° [16], as was already used in obtain-

tant

in analyzing the mixing angle & boson and U(1y,

ing Eq.(10). The low-energy potential with the parameters in

gauge boson. We give this solution for the third family, andEg. (10) is a general one, and thus one has to specify the
assume vanishing U(%) charges for the first two families. appropriate region of the parameter space to satisfy the phe-
This is allowed in non-geometrical string compactificationsnomenological requirements existing at the weak scale.

(such as free-fermionic modglsvhere a given Higgs dou-
blet couples only one familj16]. As will be discussed later

After the breaking of gauge symmetry down to SU(3)
XU(1)em, there will arise two neutral massive gauge bosons

on, third family coupling of U(1}. is important in analyzing Z andZ’ whose mass matrix reads

the Z' models with CERNe"e~ LEP constraints. Finally,

for future use, we make the choi€ =Q;=—1 in Eq.(9)

which fix all of the U(1),, charges. Then, the solution of
RGE’s, with the initial valuesh?=h?=2g° for Yukawa

couplings, read:

he=
h,=
A=
A=

2__
m;=

mg=

2 _
mQ—

0.595,

1.028,
0.42A2—0.27207—0.285M 45,
—0.04A2+0.12800+ 1.755M 5,

—0.0647°2+0.036A2A%+ 0.007A2 2~ 0.01AM 4,
+0.01AM 1/,+0.52M,,+0.047mQ*+ mp)%)

—0.16m2%+0.84n92-0.11m %, (10)

—0.038022+0.037A2 A 0.042 %+ 0.045AM 4
—0.19AM )~ 2.4M%,—0.41(mQ*+mp,%) —0.1mg 2
—0.1m?2+0.485n9 2,

—0.128022+0.07222A%+ 0.014A >~ 0.021A2M
+0.03AM 1,,+0.08IM 7, +0.094 Mg+ mp)?)
+0.68m22—0.32m% 2—0.22m5 2,

0.017A2%+0.0005A2A%— 0.037A2 2+ 0.037AM
—0.13AM )+ 3.2M%,,—0.306m%*+0.69mp)?
+0.038n22+0.03812—0.27m%?,

0.0099 2+ 0.000222A°—0.01810 2+ 0.01A°M 4,
—0.07APM 1o+ 4.72M 75+ 0.85mQ*— 0.15m)) 2
+0.02m22+0.02m9 2—0.13n5 2,

, M2 A2
M9, = , 11
( )Z z Az M;, ( )
where
2 1 2,2 2
MZ:ZG (Ul+02), (12)
M3, =05 (03Q7+v5Q5+v2Q%), (13
2 1 2 2
A :EgY’G(UlQl_U2QZ)i (14

and, Higgs VEV's are defined as
(H)=0v,/\2; (H)=0v,/\2; (S=vs/2. (15

There are three main conditions that the vacuum state must
satisfy: TheW boson mass must remain at its LEP1 value, as
the model is extended only in the neutral direction; the color
and charge symmetries must remain unbroken; ZRg’
mixing anglea must be belowa few x 10 3 as otherwise

the LEPI value ofM; is destructed.

The first condition can be satisfied using the fact that the
potential(4) has a common mass scale defined by the grav-
itino mass, as the soft SUSY breaking terms in Ej.are
generated by the SUGRA breaking. Thus, the mass scale of
the potentiaim, (proportional to the gravitino magsan be
factored out and the remaining dimensionless potential can
be minimized freely. The first condition above can then be
met by imposing the constraint

mo\T2+ f2=246 GeV,

wheref, andf, are the dimensionlesd; andH, VEV's,
which are defined as; =myf,,v,=myf,, and for future use
vs=m0fs.

The charge breaking can arise from both Higgs and
squark sectors. In the Higgs sector, with the help of SU(2)
symmetry, a possibléH,) can be rotated away, and the
charge breaking can be parametrized in terms vof

(16)

As a result of the normalization of the gauge couplings the=(Hz1)- As can be calculated easily, the potential prefers the
low-energy parameters are not very sensitive to the assigreharge preserving minimum, A>0, where
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A=2sir? gm’ ., 17 hgAZ>|mz], |m3|,|mg (21)

tand=v,/v,, and mi.t is the charged Higgs boson mass- holds, all VEV'’s are drawn approximately to the same point:
squared. Consequently, in what follows we shall work in that

portion of the parameter space where the charged Higgs bo- v1~v,~vsAs/(hsy2). (22)
son has real mass, so that the charge breaking in the Higg?s ) L ,
sector is avoided. f the U(1)y. charges of Higgs doublets satisy,=Q;,

this large trilinear coupling-induced minimum cancglsZ’
ixing, allowingM, to be compatible with LEPI data. Such
lightZ' must show up in th&-pole observables, and there-
ore parameters of the model can be constrained using LEP1
data. As a side remark, the passage of the trilinear coupling
from lower values to higher one&ompared to the soft
massekgis either a first order or second order phase transi-
fion, depending on the sign @f2=m2+m2+m2. In fact, if

'm? is positive, there is a first order phase transition occurring
at the critical pointAS™= \/8m?/3.

(3) Hybrid minimum One can obtain a phenomeno-
logically viable minimum in all aspects by combining the
parameter spaces of heady minimum and lightZ" mini-
mum. To do this, one can choose bottm2 and A? large
compared to other soft masses. As Iaﬁéepushes all Higgs
VEV’'s to the same point, and- mé prefers a large SM-

: (18 singlet VEV, when both—m2 and A? are large, doublet
VEV's [controlled byAg via Eq.(22)] will approach to ap-

There are mainly three regions of parameter space of theroximately the same value, and SM-singlet VEwon-
pure Higgs sector yielding a smat. trolled by —m3 via Eq. (20)] will be much larger than them.

(1) Heavy Z' minimum As is seen from Eqi18), when ~ Thus, this portion of the parameter space yields a small mix-
M,.>M,, a becomes small. This occurs in that portion of INg angle together with a relatively heay. In the analyses

When, at least one oft ), (Q), take a nonzero value,
both color and charge symmetries are broken. To prevent the
formation of such a minimum, one has to have a certai
hierarchy between the top trilinear couplidg and the soft
squark mass parameters. In fact, the usual criteridif
h{A?<3(mg+mg+m3) must hold at a scal@~A,/h,.
More importantly, when the squark masses go negative,
charge and/or color breaking minimum will be developed,
even if it is secondary. When analyzing the low-energy po
tential, we shall always keep these conditions in mind.

That theZ-Z' mixing angle is to be small is a severe
constraint on the vacuum state. TBeZ' mixing angle« is
generated by the off-diagonal elements of theZ’ mass
matrix (10), and given by

1 t’( 242
a=sarctan ———
2
2 M2, —M3

the parameter space satisfying below, we shall be mainly interested in this kind of param-
eter space and assun@,=Qj. Actually, when —m3 is
—mg>|mi],[m3|,  (heAg)? (19 large, one does not need this condition Adsin Eq. (14) is

already small compared tdb/li,. However, this kind of
choice allows for the realization of the required minimum in

2 a reasonable range of parameter values.
Vs~ V—MANSvq, v, 20 . .
S shsT oL 2 20 In the above mentioned low-energy analysis we have re-

This ordering of the VEV's makeA2 small compared to quired a certain hierarchy among the potential parameters.
Mi,, whereby producing a small mixing angle. This mecha-However, as dictated by the solution of RGE’s in EL)), it

nism does not require any relationship among the soft massés not realistic to consider such idealized cases since as one
2 2 ) g parameter changes, all others do too as a function of the
mi; and m3, and charge€Q; and Q; it utilizes only the . g :
ordering in Eq.(19). tang, however, is closely related to the initial conditions. Moreover, we need not only the Higgs
N K sector parameters, but also the parameters of the squark sec-
vazlues ofzchargte ’ ZQZ and the values O_f the soft Masses 1, 55 e shall calculate the one-loop squark contributions to
my andm;. When —mg takes higher and higher values, only {he Higgs potential. Thus, one has to determine the SUGRA
U(1)y: gets broken, and other group factors remain unbrogcgie parameter space consistently by considering all the
ken. This introduces a mass scéle= \/ — mzS between weak |ow-energy parameters simultaneously.
and SUGRA scales; remnants of the gauge group must be Once nonuniversality is permitted, one faces with a huge
broken by a second stage around the weak scale. Before tiygrameter space each point of which corresponds to some
occurrence of such an intermediate scale, largm3 can  symmetry breaking scheme at low energies. The usual pro-
create a relatively largg parameter, thus- mé getting large  cedure for the determination of the appropriate portion of the
values must be avoided. parameter space, would be to trace the SUGRA-scale param-
(2) Light Z' minimum As Eq. (18) suggests, another eter space point-by-point, and pick up those yielding a viable
way of obtaining a small mixing angle would be to maké  minimum at low energies. However, with the low-energy
small irrespective of the value ™, . To obtain this kind of ~parameters in Eq(10), and the constraints implied by the
cancellation, one needs roughjﬁ/v§~|Qé/Qi| which may hybrid minimum, we can determine the appropriate param-
be satisfied in some limited portion of the parameter spacegter space analytically. In accordance with the conditions
However, unlike MSSM and similar to NMSSM, the exis- coming from the hybrid mininum, we want to speed-+m3
tence of the trilinear coupling parametegA, opens a new andAs compared to other mass parameters in terms of their
avenue in obtaining an appropriate electroweak breakinglependence on a choosen SUGRA scale parameter. These
That is, when two have three parameteﬁég, A?, and M, in common,

for which Higgs VEV’s behave as
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and we shall usA? as a probe for determining the appropri- large value of the top-quark Yukawa coupling. To take such
ate parameter space, by fixing other parameters with minimadiative corrections into account we shall follow effective
amount of nonuniversality6]. To slow down theA? depen-  potential approaci8,9] in which the radiatively corrected
dence ofm? andm2, we make the following choice fan?? ~ one-loop potential is given by

02.
andm;™: Vi=V+AV, 27)
m32~my2~A2%/10 (23 buti -
1 2 s [+ where the one-loop contribution has the Coleman-Weinberg
- . . form
For the remaining parameters we keep universality,
2
mgzz m0Q2= mlOJZ= A?Z/S, (24) AV= Str Mﬂnﬂ, (28)
642 Q?
and finally we IetM1,2=A?. Under these conditions, the
low-energy parameters read where Str is the usual supertrace ahtf is the field depen-
dent mass-squared matrix. We have transferred a renormal-
AS%0.42A2—0.58A?, ization scheme dependent constant into a redefinition of the
renormalization scal€@?. One notes that all the parameters
A~ —0.04500+ 1,97, in Eq. (27) are to be evaluated at the scé~ O(v5+v3).
Indeed, this is consistent with the RGE analysis of the last
mim0.0ngA% 0_5%?2' section as we have integrated them from thg SUGRA scale
down to the weak scale. In the loop expression 8) we
m2~0.08A%A%— 3.5402, Soniider only the contributions of top quarks and top squarks
t,, t1 whose masses are given by
2 02 0AO 02
mg~ —0.18A;"+ 0.05A;A; + 0.43A 7,
S * s ‘ my=hy|H3J;
mj~ —0.0026A3*+0.02A9A7+ 5.0A77,
1
2
2~ — 0.005A%+ 0.04A%A + 3.4A%, M, .= 3 (Mt e V(Mg —mzp) ™+ 4[mel), (29

(25)
where
As we see from these equations the quadrafié depen-

dence ofm? andm3 are supressed compared to those of the  my;=m+Nq¢|H 1|2+ Ay Ho| 2+ N g S|2+ X 1| HY|2
others withm% being the fastest one among all concerning

. . N +12
their A% dependence. In the analysis below we shall vary +NoqlHz [%
=AYA? (26) Moo= Mg+ N gu| Hal?+ N a0l Hol >+ N6/ S,
in a certain range of values, and determA{éfrom the in- my,= — hlAtHg* +hgh,S* H(l)* , (30

variance of theW™ mass under such Abelian extensions of ) ) o
MSSM. When( is small, except fom3, all soft masses are and the dimensionless coefficients
positive, yielding a non zerb, and vanishindg, f,. This is

2 '/
not an acceptable minimum, as the gauge symmetry is not A= _93/4_ g$/12+ 9y Q1Qq-
broken completely. Ag increasesm% starts overcoming the
large negative threshold coming frorfessentially the Not= —g§/4— g$/12+ gi,QéQ(’ﬁ— hZ,
SU(3).] gaugino masses, andi(l) andS do develop nonzero
VEV’s. But still it may not yield a small enough mixing )\stzgi,Q’SQ(’g,
angle. Further increase ¢fbrings us to the sought minimum
where O#f,~f,<f;. However, this increase cannot be Kluzg\szin,
maintained further as the squark masses turn to negative after
overcoming their large positive mass thresholds dominated )\2u:g$rQéQb+h2a

by the SU(3) gaugino. Negative squark masses cause
charge and color breaking minima, even if secondary, so that A =q2 QLQ!
this limiting case will be avoided below. su= Oy QsRu

N 2
lll. ONE-LOOP CORRECTIONS M1Q=03/2,
Until now our discussion has been based solely on the X’ZQ:gg/z— h?, (3D
RGE-improved tree-level potential. However, quantum cor-
rections beyond the log effects included in the RGE analysi$ollow from the colored sector of the full scalar potential.
are important. Especially the top-quark—top-squark sectowe shall calculate radiative corrections to the lightest
gives the most important contribution due to the relativelyCP-even Higgs mass bound, so we are interested in the



6614 D. A. DEMIR AND N. K. PAK 57

CP-even scalar mass-squared matrix which can be obtaing@op tarp is reduced compared to the tree-level one. How-
by evaluatingd®V,/d¢;d¢; at the VEV's, in the basis ever, the inversg.As dependence will force the loop con-
(Re[Hg],Re[Hg],Re[SO]). tribution to drop rapidly after somé values. In this sense,
Before going into a detailed numerical analysis, we firstone expects tree- and loop-level s be close to each other
present a general discussion on the effects of the radiativia the largel regime.
corrections based on some approximate formulas. The top- At the tree-level, for small, one expects a relatively
guark—top-squark splittingS[;=In(m;lm;2/nf) and top large mixing angle as the expected cancellation fndoes
squark splittingS;7 = m%f szz describe the most important not occur. At the loop-level, however, because of the reduced

tanB one expects a small@-Z' mixing angle as can be seen

contributions of the one-loop corrections. On the other handfrom the form ofA2 in Eq. (14). Although in the large limit
- 2 - . 2 . . -
because of the choice ¥, the remaining log IN¢/Q%) is radiative correction to tghis diminished, due to the increase

not as important as the former ones. To extract some im‘orl—n v (—m2 increaseksthe loop-levelZ-Z' mixing angle will
mation about the effects of the loop corrections on the treg gtill smséller than the tree-level one

level parameters, one can expand the minimization equations The lightestC P-even Higgs boson mass has the tree-level
in powers of top squark splitting and identify the renormal-bounoI of
ization effects on the tree-level quantities. In fact, to lowest

order in stop splittingS;7, and neglecting the terms involv- h? si? 23

ing the gauge couplings, one finds that the most important mﬁmaxz M§CO§2,8+(U§+U§) s

contributions come td\, m3, and\, which are given by ! 2
Ag=Agt Bn St At +9%,(Qico$B+ Qgsinzﬁ)}. (34)
m3=m3+ B [(A*+AY) Sy~ A%], Here the first term is the MSSM tree level bound, ieerm
A is the NMSSM contribution gy, =0 case, and finally the
>\2=)\2+,8h18t;ht2, (32 last term is theD-term contribution of the U(1) group.

Using the same approximations that had lead us to(&2),
where Bh,= [3/(4m)?]hZ, and A2=mé+ mﬁ. Let us now a straightforward calculation yields the following one-loop

discuss the implications of these one-loop corrections in thgound:

light of the RGE solution set in Eq25). As the first equa- < pmax. . 2max o )

tion in Eq. (32) shows,A, is strengthened by the loop cor- My, = Mh 7t Bn [ (1sCOSB+ASING) "+ 45T mi].
rections. HoweverA? dependence of, is approximately (35
one order of magnitude smaller than thatAof so that one

does not have a significant improvement Ay, unless top- As we observe from this equation, the one-loop bound is
quark—top-squark splitting is large. The improvementpy ~ always larger than the tree-level one. Sirk&dependence
5m§~ﬁhtA2(StT_1) depends, in addition té? itself, on  of A is weak, the main contribution to the bound comes

how largeS;; is compared to unity. That is, if the top squark- T0M M and us terms, and it is maximized either by top-
masses are large comparedntp, the top-quark—top-squark qugrk—top—squark sphttmg contribution, or py t_}mg contri-
splitting can be large enough to give a significant contribu-Pution. In fact, due to thig.; dependence it will be much

. R - L
tion to m2. Hence, bottA, andm? get significantly improved |rger in heavyZ" minimum than in lightZ" minimum. In
the parameter space we shall trace one expects the one-loop

if the top-quark—top-squark splitting is large enough. As on ; .
can read off from Eq.(25), for small £, the squark soft ebound be _domlnated bmt and u terms in the small and
large ¢ regimes, respectively.

masses are large ‘1“.9 t_o t_h_e cont_rlbutlon of the SL(3) Had we included the entire particle spectrum and worked
gaugino. Thereforen; is significantly improved by the loop to all orders our results would b@? independent. The one-

corrections in this range of th& values. However, we ob- ) - s )
serve from Eq(25) that for larger? valuesA? gets smaller 100P expressions foAs andmy in Eq. (32) are actuallyQ”
and the loop contributions drop significantly. Finally, as dic-dependent and their dependence can be recovered by letting
tated by Eq.(32), H, quartic coupling, is significantly ~ Stt— S+ In (m{/Q?). Therefore, if for some choice @@?,
improved by the radiative corrections if the top-quark—top-In (M{/Q?) happens to be important, one can analyze these
squark splitting is large enough. In the smalimit, one has ~ two quantitiesz by intoducing the splitting functioBq7t
f,~\—m/N,>f,,f,, which clearly shows that tree-level =N (Mi,M,/Q%). Similarly, in the expression for t#h ex-

f, is larger than the loop-level one. This radiative reductioncept the form? term, one can make the replacemet

in f, causes one-loop tgA to drop: — So7 to take into account itQ? dependence. Unlike these,
o 2 e 2 Xz in Eq. (32), and lightest Higgs boson mass bound in Eq.
Bht[(A A 2M) ST A7 (35) are independent dp?, so they exhibit the same behav-

tar? f= tar? | 1—tan g Agpts ' ior for all Q2. In general, all scalar mass-squared matrices

(33 are Q? dependent, but the lighte€ P-even Higgs boson
mass bound turns out to be scale independent. In the RGE
where the effective MSSM: parameterus=(hs)/2 is  analysis assumed that the scale of the SUSY breaiggsy
introduced. Indeed, with the contributionsrof and\ ,, one- is around the weak scale, so the choiceQ3f~ (vi+0v?) is
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necessary for consistency of the analysis. Thus, we do no 20
expect theQ? dependence of the parameters to change the 75
above mentioned predictions significantly.
Until now we have based our analysis on the approximate 70
formulas which were obtained by assuming that the top- o 65
guark—top-squark splitting, Im(lez), and all gauge cou- G tv 60
pling dependent terms are negligibly small. These assump( ‘ )55
tions do not necessarily hold in the entifespectrum, and 50
thus we need to have a detailed picture for {hdependence 5
of all these quantities. 0
IV. NUMERICAL ANALYSIS 35 1 1 L L L 1
45 6 8 10 12 14 16
In this section we shall investigate the effects of the ra- ¢

diative corrections on various quantities by an exact treat-
ment of the problem using numerical techniques. To obtain,
the scalar mass matrices one has to calcwétqhwiaqu
evaluated at the VEV’s. During the minimization we shall
rescale all fields and parameters of mass dimensioA?qy
consequently the parameters of the potential depend on
single quantity,, defined in Eq.(26). After minimizing the
dimensionless potential, we recover the physical shell by re
quiring

FIG. 1. Dependence 04\? on ¢ (solid line: one loop, dashed
e: tree level.

(or f, dominated regime the sumf2+f3 approaches its
rginimum, asf, andf, are driven to close enough values by
As. ThatA? will be maximized around thesg values fol-
lows from Eq. (36). After passing by this maximization
point, all of the mass parameters become proportional to the
associated power df, as dictated by Eq25). Hence, in this
A?:v/\/f—m, (36) “large ¢ regime, we expect dimensionless doublet VEV's
be approximately proportional % because of which we ob-
wherev =246 GeV is the Fermi scale. As we have alreadyserve an approximate {lfalloff in Fig. 1. This kind of be-
discussed in obtaining Eq.16), this rescaling procedure havior inA? reflects itself in all the relevant masses we shall
works very well for the tree level potentifl2] due to the discuss below. In solving the RGE’s we have used the pre-
uniqueness of the mass scale. However, radiative correctiorssription M 1,= A?, which implies the weak scale masses of
do necessarily introduce an additional mass s@fleThus, ~2.6xA?, 0.8xA?, A4, andAY/10 for SU(3),, SU(2),
the rescaling invariance of the tree-level potential does not(1)y, and U(1),» gauginos, respectively. Thus, depending
hold at the loop level. Using E¢36), one would rescale the on the present and future experimental limits on the gaugino
basic log in Eq(28) as masses of different group factors, one can resifidb a
certain range of values, keeping in mind that the choice
M o= A? itself is not necessarily unique.
We plot the{ dependence of tghin Fig. 2. As we ob-
serve from this figure, for small values, loop contributions

which clearly requires the knowledge 8f which itself is ~ really do push taf to smaller values. Again in agreement
something we aim to find. The determination Af thus with our expectations, for largé, both the tree level and

requires a consistency analysis where one inserts a trial val@oP results come closer rapidly, and gradually approach to
in this rescaled log, and compares it with the resulting ond!Nity. The difference between one-loop and tree-levetan

after the minimization. This procedure goes on until trial andf@ll below 1% after{~8. L
output values foA® match. We have done this numerically, N Fig. 3 we present th¢ dependence of the-Z" mixing
and the result is shown in Fig. 1 as a functionfof

In the analysis below we shall present tree-level and one- ' ! ' ' ' '
loop quantities on the same graph for the sake of easy com
parison. In each graph the free variable jghe ratio of the 2
Higgs boson trilinear coupling to the top quark trilinear cou-
pling at the SUGRA level. The starting value ois chosen 175
to be that one for which none of the VEV’s vanish. On the
other hand, the maximum dfis determined by its threshold

. 2 .
value at whichmz_turns to negative due to large values.
2

This threshold shows up before squark soft masses turn t
negative; so there is no danger of charge and/or color break
ing in the range of values we shall consider below.
. 0 _ 1

Figure 1 shows theg.dependence of\; for tree- and 45 " S 0 ¢ 12 ” 6
loop-level analyses. While tree—IeVAE peaks around'=7
with a value 73 GeV, one-loop peaks around =8 hitting FIG. 2. Dependence of tghon ¢ (solid line: one loop, dashed
the value of 82 GeV. As the VEV's leave the smallegime line: tree level.

In M _ In M?— (37
Q

tan 3
1.5
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FIG. 3. Dependence af on ¢ (solid line: one loop, dashed line: FIG. 5. Dependence ofis on ¢ (solid line: one loop, dashed
tree leve). line: tree level.

anglea. In agreement with the predictions of the last sectlon,~0_65 at the weak scale. This ratio would push the value of

the one-loop mixing angle is smaller than the tree level on o
everywhere. As we see from this figure, the phenomenologﬁ-\/I z, above 600 GeV, gy =gy were the case. One notes

cal bound ofa.,~ afewx 1073 after/~7 is comfortably ~ that the recent Fermilab Tevatron res{di8] giving Mz,
satisfied afte¢~7. The last point about this figure is that for =590 GeV would be well satisfied &, were equal tayy .
large { values one-loop and tree-level results remain ap- As explained in the Introduction, one of the basic aims of
proximately parallel, indicating the fact that both doubletconstructing such extended models is of course the dynami-
VEV’s reach their limiting values controlled b¥s, and the  cal formation of the MSSMu parameter. The effective
SM-singlet VEV enter the-mg dominated regime. parameter in the present model has {héependence shown
Another important quantityMz , is shown in Fig. 4 as a in Fig. 5, for which we have almost the same behavior ob-
function of {. First, we see that loop corrections generallyserved inZ, mass, as both are controlled lé‘)?. The one-
increase th&Z, mass in the entirg range. Both tree-level |oop ug peaks around=11, and takes the value 350 GeV
and one-loop masses increase ugti10 in accordance with 3t this point. Similarly, the tree leveks peaks around

A? in Fig. 1. Likewise, parallel to the behavior 8¢, Mz, =10 with a value~280 GeV.
decreases gradually aftér10, and is expected to saturate  Finally, in Fig. 6, we present thé dependence of the
after some point due to the fact that thelependence oA?  lightest Higgs boson mass boumﬂf‘X which is seen to sat-

and the dimensionless SM-singlet VEV are almost inverseI){Sfy the predictions of the last section. As we see from Eq.
proportional to each other in thls'range bfvalues. The (34), the tree level bound depends solely on the doublet
one-loopMz, peaks af~11 by taking the value of-405  y/g\rs 5o that after reaching the ta8~1 regime the bound
GeV; thus, it cannot increase indefinitely with As ex- s maximized and saturated af|~118 GeV. In the same

pected, the tree-levéVlz,, in similarity with the tree-level oy il leaving the smalf region, the one-loop bound also
AY, peaks atf~10, with a value~330 GeV. The values increases and hits the value125 GeV in the far end of the
taken byMz, depends crucially on the value gf,. Under  total { range. The fact that one-loop bound saturates much
the normalization in Eq(8), and the U(1), charge assign- later than the tree-level one is due to the dependence of
ments in Eq.(9), the solution of the RGE'’s yield)y. /gy  the radiative corrections.

400 T T
\ 124
o /S . -
M22 ———————————— mznlaa:
300 ] 120
(GeV) (GeV)
250 . 118
116
200 -
114 p
150 -
4 1 1 1 1 1 1 112 | 1 1 1 1 1
45 6 8 10 12 14 16 45 6 8 12 14 16
¢ ¢
FIG. 4. Dependence dfl, on ¢ (solid line: one loop, dashed FIG. 6. Dependence oﬁhmlax on ¢ (solid line: one loop, dashed

line: tree level. line: tree level.
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V. CONCLUSIONS AND DISCUSSIONS enough to supress the effectsdf fermion couplings in the
Z-pole observablef22]. TheZ’' mass in the present model

In this work we investigated one-loop contributions to .
certain low-energy quantities in the framework of the effec-ha.S an upper bound efz_loo GeV, and satisfies the presently
existing phenomenological bounds.

tive potential approach, using an RGE-improved radiatively The lightest Higgs mass bound turns out to-b&25 GeV

corrected scalar potential, following from the superpotential . o
: oo . 23] in MSSM. In NMSSM, however, it is~140 GeV[10].
in Eq. (1). However, derivation of the entire low-energy par- En 'Ehe present model, it tums out to bel25 GeV[ Tawe

ticle spectrum(such as top quark, bottom quark, and . o
: ._bounds of the present model and MSSM practically coincide,
massekrequires the study of a more general superpotenhaﬁowever the Eound in the present modgl is expgcted to in-

involving, in addition to the superpotential in Ed,), exotics . ) :
predicted in most string models and nonrenormalizable quargrea_lse slightly if th_e next to next leading ord&NL) cor-
rections are taken into accour3]. In the near future, the

tic mass terms from which light fermion masses follow | : . ) i
[16,19. Here we have restricted ourselves mainly to the"ghtes‘t Higgs boson will be discovered at LEPII r'hhl

study of certain low-energy quantities determined by the<95 GeV, and at Fermilab im, <120 GeV after accumu-

Higgs sector of the model, for which the typical superpotendating an integrated limunosity of 25-307Th[24].

tial in Eq. (1) should sufficd12,19. In conclusion, we have analyzed the effects of the radia-
Among the low-energy quantities we have worked out,tive corrections on the various low energy quantities in the

the Z' boson and lightest Higgs boson mass bound are opresent model by taking the contributions of top quarks and

phenomenological importance. The search Z6r[20] will top squarks into account. As we have shown graphically, the

be one of the goals of the next generation of accelerators. lane-loop improvment in the low energy parameters are in no

the near future, LEPII will be searching for t&¢ boson in  way negligible. Moreover, the one-loop corrections support

leptonic andWW channels. In addition to this, the CERN the satisfaction of the phenomenological requirements com-

Large Hadron CollidefLHC) will search forZ’ boson with  pared to the bare tree-level potential. The findings of the

guark-antiquark fusion processes. In general, the exclusiowork will be tested in colliders of the near-future.

limits of Z' mass and its couplings depend on the model and

collider parameter§21]. The U(1),, charges of the presg:-nt ACKNOWLEDGMENTS

model are generation dependent, and thus, the constraints on

its Z' boson is weaker than that of the generation indepen- One of us(D.A.D.) thanks Paul Langacker for his helpful

dent ones. TheZ-Z' mixing angle (see Fig. 3 is small remarks at the earliest stages of this work.
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