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Internal thermal noise in the LIGO test masses: A direct approach

Yu. Levin
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 21 July 1997; published 22 December 1997!

The internal thermal noise in LIGO’s test masses is analyzed by a new technique, a direct application of the
fluctuation-dissipation theorem to LIGO’s readout observable,x(t)5~longitudinal position of test-mass face,
weighted by laser beam’s Gaussian profile!. Previous analyses, which relied on a normal-mode decomposition
of the test-mass motion, were valid only if the dissipation is uniformally distributed over the test-mass interior,
and they converged reliably to a final answer only when the beam size was a non-negligible fraction of the
test-mass cross section. This paper’s direct analysis, by contrast, can handle inhomogeneous dissipation and
arbitrary beam sizes. In the domain of validity of the previous analysis, the two methods give the same answer
for Sx( f ), the spectral density of thermal noise, to within expected accuracy. The new analysis predicts that
thermal noise due to dissipation concentrated in the test mass’s front face~e.g., due to mirror coating! scales as
1/r 0

2, by contrast with homogeneous dissipation, which scales as 1/r 0 (r 0 is the beam radius!; so surface
dissipation could become significant for small beam sizes.@S0556-2821~97!05524-0#

PACS number~s!: 04.80.Nn, 05.40.1j
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I. INTRODUCTION

Random thermal fluctuations are expected to be the do
nant noise source for the first interferometers in the La
Interferometer Gravitational Wave Observatory~LIGO! at
frequencies between 35 and 100 Hz@1#. This thermal noise is
generally decomposed into a suspension thermal noise
an internal thermal noise for the test masses. The former
be traced back to the friction in the test mass pendular
pension system; the latter is due to internal damping ins
the test masses themselves. Traditionally, thermal noise
culations have been based on a normal-mode expan
@2,3#. However, Gonzalez and Saulson have also perform
an exact calculation of the suspension thermal noise by
plying directly the fluctuation-dissipation~FD! theorem@4#
in its most general form, due to Callan and Welton@5#. The
purpose of this paper is to use the general method of Go
lez and Saulson to calculate the internal thermal noise~also,
@6# has a somewhat complementary to this paper treatme
the internal thermal noise!.

In Sec. II we analyze a general situation when a mea
ing device ~e.g., a laser interferometer! monitors the dis-
placement of the surface of a test mass whose internal
grees of freedom are in thermal equilibrium with each oth
We develop a general formalism for using the FD theorem
calculate the thermal noise in the most general surface r
out quantity. In brief our method is as follows.

To work out the thermal noise at a particular frequencyf ,
one should mentally apply pressure oscillating at this f
quency to the observed surface of the test mass. The sp
variation of this pressure should mimic that of the light be
intensity ~for example, in the case of a Gaussian beam
oscillating pressure has a Gaussian profile of the same w
as the beam!. The thermal noise is then given by

Sx~ f !5
2kBT

p2f 2

Wdiss

F0
2

, ~1!

wherekB andT are Boltzmann’s constant and the tempe
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ture of the mirror, respectively,F0 is the amplitude of the
oscillating force applied to the surface~i.e., the pressure in-
tegrated over the surface!, and Wdiss is the time-averaged
power dissipated in the test mass when this oscillating p
sure is applied.

To demonstrate the computational power of this gene
approach, in Sec. III we consider the case of a cylindri
fused silica test mass monitored by a circular Gaussian l
beam. For the case when the radius of the beam is much
than the size of the the test mass and the dissipation is
formly distributed throughout the test-mass volume, we
rive an analytical expression for the thermal noise@cf. Eq.
~15! of Sec. III #:

Sx~ f !5
4kBT

f

12s2

p3E0r 0
IfF11OS r 0

R D G . ~2!

Heres, E0, andf are the Poisson ratio, Young’s modulu
and dissipational loss angle@Eq. ~11!# of the test-mass ma
terial, r 0 is the radius of the laser beam~which is defined
here as a radius at which the intensity of light is 1/e of the
maximum intensity!, R is a characteristic size of the te
mass, andI 51.873 22 . . . in thecase of a Gaussian beam
Putting numbers in Eqs.~1! and~2!, we find that our results
are in agreement with those of Raab and Gillespie@3#, who
used the more complicated and computationally involv
method of normal-mode decomposition. It is interesting
note that asr 0 /R tends to zero, our simple analytical formu
becomes more precise, whereas the more complicated
computationally involved method of normal-mode decomp
sition requires summing over a larger number of modes
thus becomes computationally more expensive.

Not only can the normal-mode decomposition be com
tationally expensive, it can also be misleading. We dem
strate this point in Sec. IV by considering a test mass wh
has a lossy surface, e.g., due to a lossy mirror coating.
estimate the contribution of the surface to the thermal no
using the general method of Sec. II, and show that it diff
from the estimate obtained by the method of normal mo
659 © 1997 The American Physical Society
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660 57YU. LEVIN
~which gives a result too small by a factor of at lea
;r 0 /R). This breakdown of the normal-mode analysis w
in general happen when the sources of friction are not
tributed homogeneously over the test mass. The fundame
reason is that in this case different normal modes can ha
common Langevin driving force~which is not so if the de-
fects are distributed homogeneously!.

Our analysis shows that thermal noise due to surf
losses near the laser beam spot scales asSx( f )}1/r 0

2,
whereas thermal noise due to volume losses scales asr 0.
Correspondingly, for small beam spots the surface los
could become significant. To protect against this, it is imp
tant to keep the surface near the laser beam spot as fre
potential sources of friction as possible.

II. GENERAL METHOD

For concreteness, consider a situation where LIGO’s la
beam is shining on the circular surface of one of LIGO
cylindrical test masses. The phase shift of the reflected l
contains information about the motion of the test-mass s
face. The variable read out by this procedure can be wri
as

x~ t !5E f ~rW !y~rW,t !d2r . ~3!

Here rW is the transverse location of a point on the test-m
surface, andy(rW,t) is the displacement of the boundary alo
the direction of the laser beam at pointrW and time t. The
form factor f (rW) depends on the laser beam profile and
proportional to the laser light intensity at the pointrW @3#; it is
normalized by* f (rW)d2r 51.

The internal thermal noise of the test mass is defined
the fluctuations inx(t), and our objective is to find the spec
tral densitySx( f ) of these fluctuations. We assume that t
test mass is in thermal equilibrium at temperatureT.

Callen and Welton’s generalized fluctuation-dissipat
theorem@5# says that the spectral density of the fluctuatio
of LIGO’s readout variablex(t) is given by the formula

Sx~ f !5
kBT

p2f 2
uRe@Y~ f !#u, ~4!

wherekB is Boltzman’s constant andY( f ) is a complex ad-
mittance associated withx(t). This complex admittance ca
be understood and computed as follows. Introduce a spe
set of generalized coordinates for the test-mass degree
freedom—a set for whichx is one of the coordinates.~Since
x is not the coordinate of a normal mode of the test ma
these generalized coordinates will not be the usual ones
sociated with normal modes.! Apply to the test mass a gen
eralized forceF(t) that drives the generalized momentu
conjugate tox but does not drive any of the other generaliz
momenta. This generalized force will show up as the follo
ing interaction term in the test-mass Hamiltonian:

H int52F~ t !x. ~5!
t
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This driving force, together with the test-mass internal elas
forces and internal dissipation, will generate a time evolut
x(t) of the observablex. Denote byF( f ) andx( f ) the Fou-
rier transforms of the~arbitrary! driving force F(t) and the
observable’s responsex(t). Then the admittance that appea
in the thermal noise formula, Eq.~4!, is

Y~ f !52pı f x~ f !/F~ f !. ~6!

The physical nature of the driving forceF(t) can be de-
duced by inserting the definition~3! of the observablex into
the interaction Hamiltonian~5!:

H int52E P~rW !y~rW,t !d2r , ~7!

where

P~rW,t !5F~ t ! f ~rW !. ~8!

From Eq.~7! we see that the generalized forceF(t) consists
of a pressureP(rW,t) @Eq. ~8!# applied to the test-mass su
face. Note that the spatial distribution of this pressure is
same as LIGO’s laser beam intensity profile.

The real part of the admittance, Re@Y( f )#, describes the
coupling of the test-mass dissipation to the observablex. We
can see this most clearly by applying an oscillatory press
P(rW,t)5F0cos(2pft)f(rW) to the test-mass face. From the r
sponse formula~6! we infer that the powerWdiss that this
oscillatory pressure feeds into the test mass, and that the
mass then dissipates, is related touRe@Y( f )#u by

uRe@Y~ f !#u5
2Wdiss

F0
2

. ~9!

Substituting Eq.~9! into Eq. ~4!, we get

Sx~ f !5
2kBT

p2f 2

Wdiss

F0
2

. ~10!

Equation~10! is the most important equation of this pa
per. Let us reemphasize its physical content:~1! Apply an
oscillatory pressureP(rW,t)5F0cos(2pft)f(rW) to the face of
the test mass;~2! work out the average powerWdiss dissi-
pated in the test mass under the action of this oscillat
pressure;~3! useF0 andWdiss in Eq. ~10! to calculateSx( f ).

This procedure is different from the one employed in p
vious calculations of internal thermal noise for the LIGO a
VIRGO test masses@2,3,7#. The previous authors decom
posed a test-mass motion into normal elastic modes; t
they calculated the contribution of each mode toSx indepen-
dently and added up these contributions. This method
‘‘normal-mode decomposition’’ works fine in many case
but it has two drawbacks.

~1! The fundamental assumption in this method is th
different normal modes have independent Langevin forc
This assumption is correct only if the sources of friction a
homogeneously distributed over the test-mass volume
breaks down if the defects are more concentrated in
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57 661INTERNAL THERMAL NOISE IN THE LIGO TEST . . .
place than in others— for example, when there is signific
damping concentrated in the test-mass surface. We will
turn to this in Sec. IV.

~2! For a small laser beam diameter the sum over nor
modes converges very slowly, and so one has to sum
many modes, which may be computationally expensive.
contrast, using the new method described in this paper,
can write down a simple analytic expression for the lo
frequency noise in the case of a narrow laser beam. In
next section we derive this expression and make compar
with the normal-mode decomposition results derived in@3#.

III. THERMAL NOISE DUE TO HOMOGENEOUSLY
DISTRIBUTED DAMPING

Consider the case where all the friction in the test m
comes from homogeneously distributed damping. It is c
ventional to characterize such friction by an imaginary p
of the material’s Young’s modulus:

E5E0@11ıf~ f !#; ~11!

f( f ) is called the material’s ‘‘loss angle.’’ It is suspecte
@8,2# that for fused silica, which will be used in LIGO’s tes
masses,f might be independent of frequency within LIGO
detection band~but there is no evidence for such behavior
f for high-quality resonators—see@9# for some healthy
scepticism!. In this f -independent case the damping is call
‘‘structural.’’

To calculate the thermal noise for homogeneous diss
tion, we expressWdiss in Eq. ~10! as

Wdiss52p f Umaxf~ f !, ~12!

whereUmax is the energy of elastic deformation at a mome
when the test mass is maximally contracted or extended
der the action of the oscillatory pressure of Eq.~8!.

LIGO’s detection frequencies~10–300 Hz! are much
lower than the eigenfrequencies of the test-mass nor
modes~the lowest of which is;6 kHz!; so we can assum
constant, nonoscillating pressureP(rW)5F0f (rW) when evalu-
ating Umax.

In the case when the beam profile is Gaussian and
center of the light spot coincides with the center of the tra
verse coordinates, we have

f ~rW !5
1

pr 0
2 e2r 2/r 0

2
, ~13!

wherer 0 is the radius of the laser beam. When the char
teristic size of the test massR is much greater thanr 0, we
can approximate the test mass as an infinite half-spac
order to findUmax. The Appendix uses elasticity theory t
deriveUmax in this case@cf. Eq. ~A5!#:

Umax5
F0

2

p2E0r 0
~12s2!I F11OS r 0

R D G , ~14!

whereE0 ands are the Young’s modulus and Poisson ra
of the material, respectively, andI .1.87322. HereO(r 0 /R)
is a correction due to the finite size of the cylinder. Putti
Eqs.~14! and ~12! into Eq. ~10!, one gets
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Sx~ f !5
4kBT

f

12s2

p3E0r 0
IfF11OS r 0

R D G . ~15!

Below we take the numerical values1 used by Gillespie
and Raab@3#: r 051.56 cm,E057.1831010 Pa, s50.16,
f51027, a mirror diameter of 25 cm, and the mirror leng
of 10 cm. Gillespie and Raab, after summing over the r
evant;30 modes, get

Sx
GR~100 Hz!.8.0310240 m2/Hz. ~16!

Our analytical approximation~15! ~which should be valid to
within ;10% in this case! gives

Sx~100 Hz!.8.7310240 m2/Hz. ~17!

Notice that our analytic expression in Eq.~15! gets more
exact whenr 0 /R→0, whereas, by contrast, the sum ov
modes converges more slowly and gets more complicate

The ratior 0 /R may turn out to be of order unity in rea
experiments. In this case, Eq.~15! can only be used for
order-of-magnitude estimates. To work out the exact value
the internal thermal noise, one would need to calculateUmax
numerically. We have done such a numerical computat
using finite-element techniques. More specifically, we ha
used finite-element software calledPDEASE2D ~version 3.0!,
which runs as part ofMASCYMA ~Version 2.1!, to solve the
elasticity equations for the loaded mirror and to comp
Umax and, by virtue of Eqs.~12! and ~10!, Sx . The exact
answer for the mirror and light spot parameters given ab
is

Sx~100 Hz!58.76310240 m2/Hz, ~18!

which is consistent~better than expected! with our analytical
approximation.

The purpose of the present section is to convince
reader that the method presented in this paper is correct
could be computationally cheaper than the normal-mode
pansion. The next section concentrates on the cases wh
direct application of the FD theorem can be crucial for g
ting the right results, and the method of normal-mode
composition fails.

IV. CASE OF SURFACE DAMPING

In this section we study thermal noise due to surfa
losses—caused, e.g., by inadequate polishing or by a lo
mirror coating.

From Eq.~10! we see that the key quantity in the therm
noise calculation is the power dissipated in the test m
when an oscillating pressure is applied to the laser beam
on the test-mass surface. The power dissipated at each
of the material is proportional to the square of the stress
this point. Most of the surface stress is in or near the spo
which the pressure is applied, and so

1Note that our definition of the beam radius~location where in-
tensity has fallen to 1/e of its central value! differs byA2 from the
beam radius of Ref.@3# ~location of 1/e amplitude falloff!.
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662 57YU. LEVIN
Wdiss
coating}S F0

r 0
2 D 2

r 0
25

F0
2

r 0
2 . ~19!

Thus the thermal noise due to the surface damping sc
like

Sx~boundary!}1/r 0
2 . ~20!

For comparison, the thermal noise due to bulk damping@Eq.
~15!# scales as

Sx~bulk!}1/r 0 . ~21!

Thus, as the spot size decreases, the thermal noise d
surface damping grows faster than that due to bulk damp

Contrast this conclusion with the intuition one gets fro
normal-mode decomposition. There one is concerned w
how much the surface contributes to the quality factors (Q’s!
of the normal modes. For a typical mode the strain at
surface is at most of the same order as the character
strain inside the test mass~likely, much less for the first few
modes, because of the free boundary condition!. Therefore,
one would presume that the surface contributes no more
some mode-independent fraction of the test mass’sQ’s. In
order of magnitude this fraction should be the ratio of t
power dissipated in the surface to that in the bulk if o
applies an oscillating pressure uniformally to the whole s
face, which in the context of our method corresponds t
beam radius ofR. Therefore the normal-mode estimate of t
surface thermal noise is at leastr 0 /R less than the correc
value.

Current experiments show that the mirror coating does
contribute significantly to theQ’s of the test-mass norma
modes. The conclusion commonly made is that coating
also not likely to contribute significantly to the internal the
mal noise. The above analysis shows that this conclusio
not justified and that there might be a significant contribut
of the coating to the internal thermal noise, despite the
that Q’s are not significantly changed.

V. DISCUSSION AND CONCLUSION

The normal-mode decomposition of the thermal noise
exact when the defects are distributed homogeneo
through the volume of the test mass. However, as was sh
explicitly in Sec. IV for the case of surface losses, when
defect distribution is not homogeneous, the normal-mode
composition may be misleading, and a direct application
the fluctuation-dissipation theorem is required.

Thermal noise is ultimately linked to friction in the te
mass; this friction is caused by various~structural and other-
wise! defects. Those defects which are closer to the be
spot will contribute more to the thermal noise that is read
by the laser-beam phase shift. Although this fact is a dir
consequence of the formalism developed in this paper,
would like to give an intuitive example in order to emphas
this point.

Consider, for the sake of simplicity, a one-dimension
elastic test mass with two identical defectsA and B, as
shown on Fig. 1;A is closer to the beam spot thanB. Each of
these defects creates a random stress which pushes ap
pulls together the left and right~relative to the defect! parts
es
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of the test mass. By conservation of momentum, the par
the test mass which is lighter will respond more to the ra
dom stress than the other part; therefore defectA will have a
larger effect on the optical readout thanB.

Note that if the defectsA andB are positioned symmetri
cally with respect to the center of the test mass, they w
have the same effect on theQ’s of all elastic modes~we
assume for simplicity that only one-dimensional longitudin
modes are present—and all of them are either symmetri
antisymmetric with respect to the center!. Therefore, the
normal-mode decomposition applied to the test mass w
just one defect—A or B—would give the same result for th
thermal noise as read by the laser. Clearly, we have fo
yet another illustration of the breakdown of the normal-mo
decomposition .

The considerations presented above lead to the follow
advice for real experiments: Keep the neighborhood of
laser beam spot as clean of defects as possible.

Not only does our direct application of the fluctuatio
dissipation theorem have broader validity than the norm
mode decomposition; it is also computationally simpler.
the case of homogeneous structural damping it yield
simple analytical expression for the internal thermal no
spectrum@cf. Eq. ~15!#:

Sx~ f !5
4kBT

f

12s2

p3E0r 0
IfF12OS r 0

R D G . ~22!

This result is consistent with the numerical sum over mo
done in Ref.@3# and is accurate when the radius of the las
beam is small relative to the size of the test mass, i.e., in
regime when the sum over modes converges espec
slowly. Whenr 0 /R is not small, a numerical solution of th
elasticity equations to deduce the dissipation powerWdiss,
and thence the thermal noise~10!, is straightforward and is
probably also much simpler than performing a sum o
modes.
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FIG. 1. Identical defectsA and B create fluctuating stress in
different parts of the test mass. The stress created by defectA will
influence the phase shift of the laser beam readout more than
stress created by defectB, although bothA and B make identical
contributions to theQ’s of the test-mass elastic modes.
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APPENDIX: THE STRAIN ENERGY IN A TEST MASS
SUBJECTED TO A GAUSSIAN DISTRIBUTED

SURFACE PRESSURE

The objective of this appendix is to derive Eq.~14! of
Sec. III for the energy of elastic strain in a cylindrical te
mass when the pressureP(rW)5F0f (rW) is applied to one of
its circular faces.~As was discussed in Sec. III, we can a
sume that the pressure is constant in time since LIGO’s
tection frequencies are much lower than the lowest norm
mode frequency.! For a circular laser beam with a Gaussi
intensity profilef (rW) is given by@cf. Eq. ~13!#

f ~rW !5
1

pr 0
2 e2r 2/r 0

2
, ~A1!

where we assume that the center of the light spot coinc
with the center of the test-mass circular face.

If the radius of the laser beamr 0 is small compared to the
size of the test mass, we can approximate the test mass b
infinite elastic half-space. Then our calculation of the elas
energy is correct up to a fractional accuracy ofO(r 0 /R),
whereR is the characteristic size of the test mass.

Let y(rW) be the normal displacement of the surface
locationrW under the action of the pressureP(rW). In the linear
approximation of small strains,

y~rW !5E G~rW,r 8W !P~r 8W !d2r 8, ~A2!

whereG(rW,r 8W ) is a Green’s function. The calculation ofG is
a nontrivial albeit standard exercise in elasticity theory@10#,
which gives
t

e-
l-

es

an
c

t

G~rW,r 8W !5
12s2

pE0

1

urW2r 8W u
, ~A3!

wheres is the Poisson ratio andE0 the Young’s modulus of
the material. The elastic energy stored in the material is

Umax5
1

2 E P~rW !y~rW !d2r 5
1

2

12s2

pE0
E P~rW !P~r 8W !

urW2r 8W u
d2rd2r 8

5
1

2

12s2

p3E0r 0
4 F0

2E e2~r 21r 82!/r 0
2

Ar 21r 8222rr 8cosu
d2rd2r 8, ~A4!

whereu is the angle betweenrW and r 8W . The integral in the
last term of Eq.~A4! ~as was pointed out by Glenn Sobe
mann! can be taken by introducing ‘‘polar’’ coordinatesR
and f: r 5Rcosf, r 85Rsinf. One then integrates out th
radial part of the integrand and expands the remaining an
lar part in a power series with respect to cosu ; termwise
integration of this power series finally yields Eq.~14! @up to
a fractional error ofO(r 0 /R)#

Umax.
F0

2

p2E0r 0
~12s2!I , ~A5!

where

I 5
p3/2

4 F11 (
n51

`
~4n21!!!

~2n!!4n~2n11!G.1.873 22. ~A6!

It can be shown that if, instead of an infinite half-space,
consider a finite cylindrical test mass, the leading fractio
correction to the elastic energy is of the orderO(r 0 /R).
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