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Internal thermal noise in the LIGO test masses: A direct approach

Yu. Levin
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
(Received 21 July 1997; published 22 December 1997

The internal thermal noise in LIGO’s test masses is analyzed by a new technique, a direct application of the
fluctuation-dissipation theorem to LIGO’s readout observak(g),= (longitudinal position of test-mass face,
weighted by laser beam’s Gaussian profiRrevious analyses, which relied on a normal-mode decomposition
of the test-mass motion, were valid only if the dissipation is uniformally distributed over the test-mass interior,
and they converged reliably to a final answer only when the beam size was a non-negligible fraction of the
test-mass cross section. This paper’s direct analysis, by contrast, can handle inhomogeneous dissipation and
arbitrary beam sizes. In the domain of validity of the previous analysis, the two methods give the same answer
for S,(f), the spectral density of thermal noise, to within expected accuracy. The new analysis predicts that
thermal noise due to dissipation concentrated in the test mass’s fror(efgcedue to mirror coatingcales as
1/ré, by contrast with homogeneous dissipation, which scales js(t{ is the beam radiys so surface
dissipation could become significant for small beam sig86556-282(97)05524-0

PACS numbd(s): 04.80.Nn, 05.40t]

[. INTRODUCTION ture of the mirror, respectivelyi, is the amplitude of the

Random thermal fluctuations are expected to be the dom?escr'g?etzlgof,%rf?thgﬂfg );gatr:]g stu_rfa‘icseiﬁethﬁmpf;::rrae 'Qd
nant noise source for the first interferometers in the Laser 9 diss 9

Interferometer Gravitational Wave ObservataiyiGO) at power dissipated in the test mass when this oscillating pres-
: . .. sure is applied.

frequencies between 35 and 100 [HZ. This thermal noise is . .

generally decomposed into a suspension thermal noise and To demonstrate the computational power of this general

. X approach, in Sec. lll we consider the case of a cylindrical
an internal thermal noise for the test masses. The former ¢ - . . X
L used silica test mass monitored by a circular Gaussian laser
be traced back to the friction in the test mass pendular su

; ) . . R srieam. For the case when the radius of the beam is much less

pension system; the latter is due to internal damping insid he si f the th d the dissipation i ;

the test masses themselves. Traditionally, thermal noise ca?jan the size of the the test mass and the dissipation Is uni-
. ! armly distributed throughout the test-mass volume, we de-

culations have been based on a normal-mode expansiqn "2 analytical expression for the thermal ndisé Eq.
[2,3]. However, Gonzalez and Saulson have also performepés) of Sec. Il ]

an exact calculation of the suspension thermal noise by ap-

plying directly the fluctuation-dissipatioFD) theorem[4] AkeT 1— o2 r
in its most general form, due to Callan and Wel{&h The = fB ?I ¢|1+0 EO) . 2
T Eolo

purpose of this paper is to use the general method of Gonza-
lez and Saulson to calculate the internal thermal n(asso,
[6] has a somewhat complementary to this paper treatment
the internal thermal noise

In Sec. Il we analyze a general situation when a measu

ing device (e.g., a laser interferomejemonitors the dis- i intensity. R i h teristic S| f the test
placement of the surface of a test mass whose internal génaximum intensi Y, Ris a cnharactenistic size ot the es
mass, and =1.873 2 ... in thecase of a Gaussian beam.

rees of freedom are in thermal equilibrium with each other.
g q utting numbers in Eqg1) and(2), we find that our results

We develop a general formalism for using the FD theorem td

calculate the thermal noise in the most general surface rea@'® in @greement with those of Raab and Gilleggie who

out quantity. In brief our method is as follows used the more complicated and computationally involved

To work out the thermal noise at a particular frequehcy method of normal-mode decompo;ition. It is interesting to
one should mentally apply pressure oscillating at this fre.Note that as,/R tends to zero, our simple analytical formula

quency to the observed surface of the test mass. The spatfdfcomes more precise, whereas the more complicated and

variation of this pressure should mimic that of the light beamcomputatlonally involved method of normal-mode decompo-

intensity (for example, in the case of a Gaussian beam thiSition requires summing over a larger number of modes and

oscillating pressure has a Gaussian profile of the same widtItli‘us becomes computationally more EXpENSIVe.
as the beain The thermal noise is then given by Not only can the normal-mode decomposition be compu-
tationally expensive, it can also be misleading. We demon-

strate this point in Sec. IV by considering a test mass which

2kgT Wyiss . X
, (1) has a lossy surface, e.g., due to a lossy mirror coating. We
mf?2 F§ estimate the contribution of the surface to the thermal noise
using the general method of Sec. I, and show that it differs
wherekg and T are Boltzmann’s constant and the tempera-from the estimate obtained by the method of hormal modes

&lerea, Eo, and ¢ are the Poisson ratio, Young’s modulus,
and dissipational loss ang[&g. (11)] of the test-mass ma-
ferial, ro is the radius of the laser beafwhich is defined
here as a radius at which the intensity of light ie df the

S(H)=
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(which gives a result too small by a factor of at leastThis driving force, together with the test-mass internal elastic
~ro/R). This breakdown of the normal-mode analysis will forces and internal dissipation, will generate a time evolution
in general happen when the sources of friction are not disx(t) of the observable. Denote byF(f) andx(f) the Fou-
tributed homogeneously over the test mass. The fundamentaér transforms of thearbitrary driving force F(t) and the
reason is that in this case different normal modes can have@bservable’s responsét). Then the admittance that appears
common Langevin driving forcéwhich is not so if the de- in the thermal noise formula, E¢4), is
fects are distributed homogeneoysly

Our analysis shows that thermal noise due to surface Y(f)=2mfx(f)/F(f). (6)
losses near the laser beam spot scalesS,a(é)ocl/rS,
whereas thermal noise due to volume losses scalesrgs 1/  The physical nature of the driving ford&(t) can be de-
Correspondingly, for small beam spots the surface lossegduced by inserting the definitiof8) of the observable into
could become significant. To protect against this, it is impor-the interaction Hamiltoniaxb):
tant to keep the surface near the laser beam spot as free of

otential sources of friction as possible. - -
P P Hine=— f P(1)y(F O, @
Il. GENERAL METHOD
where
For concreteness, consider a situation where LIGO’s laser
beam is shining on the circular surface of one of LIGO’s P(r,t)=F(t)f(r). (8)

cylindrical test masses. The phase shift of the reflected light
contains information about the motion of the test-mass surFrom Eq.(7) we see that the generalized forféét) consists
face. The variable read out by this procedure can be writtegs 5 pressureP(F,t) [Eq. (8)] applied to the test-mass sur-
as face. Note that the spatial distribution of this pressure is the
same as LIGO’s laser beam intensity profile.
-~ The real part of the admittance, f)], describes the
x(t)=j F)y(r.d?r, ®) coupling of tIrJ]e test-mass dissipation[Rtrg taw]e observabwe
can see this most clearly by applying an oscillatory pressure

Herer is the transverse location of a point on the test-mas& (r',t) = Focos(2rft)f(r) to the test-mass face. From the re-

surface, an(y(F,t) is the displacement of the boundary along sponse formula(6) we mfer that the poweWss that this
the direction of the laser beam at poiﬁtand imet. The oscillatory pressure feeds into the test mass, and that the test

form factor f(r) depends on the laser beam profile and ismaSS then dissipates, is related Ref Y(f) ]| by

proportional to the laser light intensity at the pafr[tS]; it is 2Wics

normalized byf f(r)d?r =1. [REY(OIl=——" ©
The internal thermal noise of the test mass is defined as 0

the fluctuations inx(t), and our objective is to find the spec- I ;

tral densityS,(f) of‘ t)hese fluctuagions. We assume tharl)t theSUbStltu“ng Ea(9) into Eq. (4), we get

test mass is in thermal equilibrium at temperattire

Callen and Welton’s generalized fluctuation-dissipation S(f)= 2kgT Wdiss_ (10)
theorem[5] says that the spectral density of the fluctuations mf F2

of LIGO’s readout variable(t) is given by the formula
Equation(10) is the most important equation of this pa-
ksT per. Let us reemphasjze its physical ccinte{m): Apply an
2f2|R€[Y(f)]|, (4 oscillatory pressuré(r,t)=Fycos(2rft)f(r) to the face of
i the test mass(2) work out the average poweéh s dissi-

) ) pated in the test mass under the action of this oscillatory
wherekg is Boltzman’s constant and(f) is a complex ad- pressure(3) useF, and W, in Eq. (10) to calculateS,(f).
mittance associated witk(t). This complex admittance can  This procedure is different from the one employed in pre-
be understood and computed as follows. Introduce a specig{oys calculations of internal thermal noise for the LIGO and
set of generalized coordinates for the test-mass degrees QRGO test masse$2,3,7. The previous authors decom-
freedom—a set for which is one of the coordinatesSince  posed a test-mass motion into normal elastic modes; then
X is not the coordinate of a normal mode of the test massthey calculated the contribution of each modeSiandepen-
these generalized coordinates will not be the usual ones agently and added up these contributions. This method of
sociated with normal modesApply to the test mass a gen- “normal-mode decomposition” works fine in many cases,
eralized forceF(t) that drives the generalized momentum pyt it has two drawbacks.
conjugate tox but does not drive any of the other generalized (1) The fundamental assumption in this method is that
momenta. This generalized force will show up as the follow-gitferent normal modes have independent Langevin forces.
ing interaction term in the test-mass Hamiltonian: This assumption is correct only if the sources of friction are

homogeneously distributed over the test-mass volume. It
Hini=—F(1)x. (5) breaks down if the defects are more concentrated in one

S(hH=
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place than in others— for example, when there is significant 4kgT 1—02 ro
damping concentrated in the test-mass surface. We will re- Si(f)= Tml ¢ 1+0| 7] |- (15

turn to this in Sec. IV.

(2) For a small laser beam diameter the sum over normal gajow we take the numerical valuésused by Gillespie
modes converges very slowly, and so one has to sum oveyfq Raab{3]: ro=1.56 cm,E,=7.18<10% Pa, ¢=0.16

many modes, which may be computationally expensive. By, _ 10~7, a mirror diameter of 25 cm, and the mirror length

conirast, using the new method Qescribed !n this paper, o 10 cm. Gillespie and Raab, after summing over the rel-
can write down a simple analytic expression for the low’gvant~30 modes, get

frequency noise in the case of a narrow laser beam. In th
next section we derive this expression and make comparison GR(100 H2=8.0x10 % m?/Hz 16
with the normal-mode decomposition results derivediah S 2=8. ' (16

Our analytical approximatiofil5) (which should be valid to
IIl. THERMAL NOISE DUE TO HOMOGENEOUSLY within ~10% in this casegives

DISTRIBUTED DAMPING

—_ — 40 2
Consider the case where all the friction in the test mass S«(100 H2=8.7x10 m“/Hz. (17)

comes from homogeneously distributed damping. It is con-

ventional to characterize such friction by an imaginary part\Cticé that our analytic expression in E(LS) gets more
of the material’s Young’s modulus: exact whenr,/R—0, whereas, by contrast, the sum over

modes converges more slowly and gets more complicated.
E=E[1+14(1)]; (1D The ratiory/R may turn out to be of order unity in real

experiments. In this case, Eql5 can only be used for
¢(f) is called the material's “loss angle.” It is suspected order-of-magnitude estimates. To work out the exact value of
[8,2] that for fused silica, which will be used in LIGO’s test the internal thermal noise, one would need to calculitg,
massesg¢ might be independent of frequency within LIGO’s numerically. We have done such a numerical computation
detection bandbut there is no evidence for such behavior of using finite-element techniques. More specifically, we have
¢ for high-quality resonators—sef9] for some healthy used finite-element software call@beAsE2D (version 3.0,
scepticism. In this f-independent case the damping is calledwhich runs as part ofiAscyma (Version 2.3, to solve the

“structural.” elasticity equations for the loaded mirror and to compute
To calculate the thermal noise for homogeneous dissipad ., and, by virtue of Eqs(12) and (10), S,. The exact
tion, we expres§V s in Eqg. (10) as answer for the mirror and light spot parameters given above

Wiiss= 27U maup (1), (12
S,(100 H2=8.76x10 %% m?/Hz, (18

whereU .« is the energy of elastic deformation at a moment

when the test mass is maximally contracted or extended URghich is consistentbetter than expecteavith our analytical
der the action of the oscillatory pressure of E8). approximation.

LIGO's detection frequencie¢10-300 Hz are much The purpose of the present section is to convince the
lower than the eigenfrequencies of the test-mass normalager that the method presented in this paper is correct and
modes(the lowest of which is~6 kHz); so we can assume .14 he computationally cheaper than the normal-mode ex-
constant, nonoscillating pressupgr) =Fof(r) when evalu-  pansion. The next section concentrates on the cases where a
ating U pax- direct application of the FD theorem can be crucial for get-

In the case when the beam profile is Gaussian and thgng the right results, and the method of normal-mode de-
center of the light spot coincides with the center of the transcomposition fails.
verse coordinates, we have

IV. CASE OF SURFACE DAMPING

- 1 2,2
— —relry
F(r) wrze ' (13 In this section we study thermal noise due to surface
0 y

losses—caused, e.g., by inadequate polishing or by a lossy
wherer is the radius of the laser beam. When the characmirror coating.
teristic size of the test mad® is much greater thany, we From Eq.(10) we see that the key quantity in the thermal
can approximate the test mass as an infinite half-space inoise calculation is the power dissipated in the test mass
order to findU 5. The Appendix uses elasticity theory to when an oscillating pressure is applied to the laser beam spot
derive U 5 in this cas€cf. Eq. (A5)]: on the test-mass surface. The power dissipated at each point
of the material is proportional to the square of the stress at
this point. Most of the surface stress is in or near the spot to
which the pressure is applied, and so

2

0 2
=———(1- +
Uno= g (10?1 1+0| 5| . (4

o
R
whereE, and o are the Young’s modulus and Poisson ratio

of the material, respectively, are=1.87322. HereO(ry/R) INote that our definition of the beam radidiscation where in-

is a correction due to the finite size of the cylinder. Puttingtensity has fallen to & of its central valugdiffers by /2 from the
Egs.(14) and(12) into Eq. (10), one gets beam radius of Ref.3] (location of 1& amplitude falloff.
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coaing, | Fo\% 5 Fo Loer b A B
Wdiss FZ ro_?f- (19) """""""
0 0
Thus the thermal noise due to the surface damping scale FIG. 1. Identical defect®\ and B create fluctuating stress in
like ifferent parts of the test mass. The stress created by dé&fedf
influence the phase shift of the laser beam readout more than the
S,(boundarye 1/rg_ (20) stress created by defeBt although bothA and B make identical

contributions to theQ’s of the test-mass elastic modes.
For comparison, the thermal noise due to bulk dampim

(15)] scales as of the test mass. By conservation of momentum, the part of
the test mass which is lighter will respond more to the ran-
bulk)oc1/r . 21 :
Sd ) 0 @D dom stress than the other part; therefore defewiill have a

Thus, as the spot size decreases, the thermal noise due l@gger effect on the optical readout thBn
surface damping grows faster than that due to bulk damping. Note that if the defect# andB are positioned symmetri-
Contrast this conclusion with the intuition one gets fromcally with respect to the center of the test mass, they will
normal-mode decomposition. There one is concerned witlhave the same effect on th@'s of all elastic modegwe
how much the surface contributes to the quality fact@%{  assume for simplicity that only one-dimensional longitudinal
of the normal modes. For a typical mode the strain at thenodes are present—and all of them are either symmetric or
surface is at most of the same order as the characteristigntisymmetric with respect to the centefherefore, the
strain inside the test magiikely, much less for the first few normal-mode decomposition applied to the test mass with
modes, because of the free boundary condjtidierefore, jyst one defect-A or B—would give the same result for the
one would presume that the surface contributes no more thgfermal noise as read by the laser. Clearly, we have found
some mode-independent fraction of the test ma&s% In  yet another illustration of the breakdown of the normal-mode
order of_mz_;\gnltud_e this fraction should b_e the ratio _of thedecomposition _
power dissipated in the surface to that in the bulk if one oo onjderations presented above lead to the following

applies an o_scillating pressure uniformally to the whole SUadvice for real experiments: Keep the neighborhood of the
face, which in the context of our method corresponds to Faser beam spot as clean of defects as possible

beam radius oR. Therefore the normal-mode estimate of the Not only does our direct application of the fluctuation-

rf hermal noise i I L L
surface thermal noise is at leagf/R less than the correct dissipation theorem have broader validity than the normal-

value. R 4 .
Current experiments show that the mirror coating does no ode decomposition; it is also computationally simpler. In

contribute significantly to th&’s of the test-mass normal the case of _homogeneogs structura_l damping it y'e'd$ a
modes. The conclusion commonly made is that coating i§|mple analytical expression for the internal thermal noise
also not likely to contribute significantly to the internal ther- SPectrumict. Eq. (15)]:

mal noise. The above analysis shows that this conclusion is

not justified and that there might be a significant contribution )

of the coating to the internal thermal noise, despite the fact S (f) = 4k_BT 1-o | [1_0(2)} 22

that Q’s are not significantly changed. f  7Eorg R/|

V. DISCUSSION AND CONCLUSION . _ _ _ _
This result is consistent with the numerical sum over modes

The normal-mode decomposition of the thermal noise igjone in Ref[3] and is accurate when the radius of the laser
exact when the defects are distributed homogeneouslijeam is small relative to the size of the test mass, i.e., in the
through the volume of the test mass. However, as was showfagime when the sum over modes converges especially
explicitly in Sec. IV for the case of surface losses, when thesjowly. Whenr,/R is not small, a numerical solution of the
defect distribution is not homogeneous, the normal-mode deg|asticity equations to deduce the dissipation poW&y.,
composition may be misleading, and a direct application ofnq thence the thermal noi§&0), is straightforward and is

the fluctuation-dissipation theorem is required. probably also much simpler than performing a sum over
Thermal noise is ultimately linked to friction in the test pnodes.

mass; this friction is caused by vario(structural and other-

wise) defects. Those defects which are closer to the beam

spot will contribute more to the thermal noise that is read out

by the laser-beam phase shift. Although this fact is a direct ACKNOWLEDGMENTS
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APPENDIX: THE STRAIN ENERGY IN A TEST MASS 1-0? 1
SUBJECTED TO A GAUSSIAN DISTRIBUTED G(fi)=—o (A3)
’ E = =
SURFACE PRESSURE TEo |r—r’|

The objective of this appendix is to derive Ed4) of  whereo is the Poisson ratio and, the Young’'s modulus of
Sec. Il for the energy of elastic strain in a cylindrical testthe material. The elastic energy stored in the material is
mass when the pressuFE(F)zFof(F) is applied to one of 5 .
its circular faces(As was discussed in Sec. Ill, we canas- | _1 f P(r) (r)dzr—l 1-o f P(r)P(r’)
sume that the pressure is constant in time since LIGO’s de-~ ™ 2 y 2 wEg Ir=r7|
tection frequencies are much lower than the lowest normal-

d?rd?r’

mode frequency.For a circular laser beam with a Gaussian 1 1— g2 ef(r2+r’2>/r§ -
intensity profilef(r) is given by[cf. Eq. (13)] 2 WsEofo f \/r2+r’2—2rr’coggd rd<r’, (A4)
- 1 . > — . .
f(r)= —ze—fz”é, (A1)  whered is the angle between andr’. The integral in the
o last term of Eq.(A4) (as was pointed out by Glenn Sober-

manr can be taken by introducing “polar” coordinatés
and ¢: r=Rcosp, r’' =Rsing. One then integrates out the

If the radius of the laser beang is small compared to the radlal part of the integrand and expands the remaining angu-
Ia part in a power series with respect to épgermwise

size of the test mass, we can approximate the test mass by a fllegration of this power series finally yields Bd4) [up to
infinite elastic half-space. Then our calculation of the elastic 9 P yy P
a fractional error ofO(ry/R)]

energy is correct up to a fractional accuracy@fr,/R),

where we assume that the center of the light spot coincide®
with the center of the test-mass circular face.

whereR is the characteristic size of the test mass. F2
Let y(r) be the normal displacement of the surface at U max= T(l o?)l, (A5)
locationr under the action of the pressupér). In the linear
approximation of small strains, where
y(F)=f G(r,r)P(r)d?r’ (A2) ngz{l > DR | e7320 (A6)
’ ’ 1 (214" (2n+1) ' '

WhereG(F,ﬁ) is a Green'’s function. The calculation @fis It can be shown that if, instead of an infinite half-space, we
a nontrivial albeit standard exercise in elasticity theld®], consider a finite cylindrical test mass, the leading fractional
which gives correction to the elastic energy is of the ord(r,/R).
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