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Fixed-charge ensembles and induced parity-breaking terms
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Recently derived results for the exact induced parity-breaking term-th @mensions at finite temperature
are shown to be relevant to the determination of the free energy for fixed-charge ensembles. The partition
functions for fixed total charge corresponding to massive fermions in the presence of Abelian and non-Abelian
magnetic fields are discussed. We show that the presence of the induced Chern-Simons term manifests itself in
that the free energy depends strongly on the relation between the external magnetic flux and the value of the
fixed charge[S0556-282(98)06308-3

PACS numbses): 11.10.Kk, 11.10.Wx, 11.30.Er

Quantum field theory in 2 1 dimensions continues to be By a fixed-charge ensemble we mean one where the val-
a subject of active research, because of its many distinctivees of one or more conserved and compatibke, mutually
properties, with no(3+ 1)-dimensional counterpart. Ex- commuting charges have &like statistical weight. Namely,
amples, provided by2+ 1)-dimensional“planar”) models, if the fixed value is, sayq, only configurations having that
are worth studying not only for purely theoretical reasonsgigenvalue for the charge operator are summed up in the
but also because many important physical systems, or expeﬁlatisti_cal average. This should be contrasted with the grand-
mental situations, are indeed essentially planar, as in thganonical ensemble, where only taeerageof the charge is
well-known examples borrowed from condensed mattefix€d. but there is indeed room for fluctuations around this
physics[1]. This also happens for some astrophysical objectS€a" value. We may illustrate this distinction by saying that

whose configurations are approximately invariant undetIhe microcanonical ense_mble IS a pa_\rtl_cular case Of. a f'.Xed'
charge one, where the fixed charge is just the Hamiltonian.

translations along one of the spatial dimensions, which ren- The interest in this kind of ensemble stems from the fact

deré the fr?rllevant dy??p'cs two dltmergfrlz;lla. ional that the experimental situation under study may very well
ne ofthe more striking properties -dimensional correspond to itas in an electrically insulated sample, for
p_)hys,lcs is that. it allows for the existence of fractional Stat's'example). The predictions shall differ significantly from the
tics, realized in terms of the so-called “anyons,” namely, gneq of other ensembles for nonmacroscopic systesssits
identical particles with neither bosonic nor fermionic statis-yi| of course agree in the thermodynamic limit, where all
tics. . L _ the fluctuations may be ignorgdilustrative examples of this
C|Ose|y related to fl’aCtlonal statistics Is the faCt that |nkind Of Ca'cu'ation are the Co'or Sing'et Ca'culatimmr an
2+1 dimensions a gauge field can be equipped with a gaugsu(N) theory) of Ref. [8], and the fixed three-momentum
invariant and parity-breaking action with nontrivial topologi- ensemble of Ref.9].
cal properties, namely, the Chern-Simons action. This action, Our main idea in this Brief Report is that, as the Chern-
if not introducedab initio in the model, may be induced Simons term provides a link between the magnetic field and
dynamically by virtual matter-field processgd. The issue the charge, it will strongly affect the statistical properties of
of the precise form of this induced action at finite tempera-a system in the presence of an external magnetic field, and in
ture has been a long-standing problem, with obvious relthe fixed-charge ensemble. Moreover, we shall show that it is
evance for the applications. In some recent works, the exaéfucial to use the exact induced Chern-Simons term rather
expression for this induced term under some simplifying asthan the perturbative one in the derivation of this free energy.

sumptions was derived for both the Abelif,4] and the _Th_e partition functioan.corresponding to the ensemble
non-Abelian case$5]. This result was also rederived and Wwith fixed chargeq, at a given temperaturé=1/8, for a
generalized irf6]. system described by a quantum Hamiltonkdnand having a

In this Brief Report we shall show first that the configu- conserved additive charge ([H,Q]=0), is
rations that have been studied in those references are pre-
cisely the ones needed in order to study the statistical me-
chanics of a fermion gas in a background magnetic field in
the “fixed charge ensemble[7], and then we will find the
difference between the free energy for such an ensemble arghere
the one corresponding to the canonical ensemble. We will
also show that properties such as the behavior of this induced Z,=Tre AHTIQ 2
action under large gauge transformations find a natural and
concrete realization here. We are assuming the normalization @f is such that its

eigenvalues are just integer numbers. Note tHatis for-
mally equivalent to the grand canonical partition function for
*Member of CONICET. a system with ammaginarychemical potentiab. If the trace

mdé i,
zq:f_ ez, @

Tl

0556-2821/98/5(1.0)/65544)/$15.00 57 6554 © 1998 The American Physical Society



57 BRIEF REPORTS 6555

in EQ. (2) is evaluated using a complete set of simultaneous The result forl" .44, including the parity anomaly piece is
eigenstates ofl andQ, then it follows immediately that Eq. [4,5]
(1) will only pick up contributions from quantum states with

X O

eigenvaluey for Q. Also by using this complete set one sees e M

that Z, is a periodic function off, with period 2m. Of Fodo(a'A):'ﬂW

course, this is closely related to the assumption that particles

in the physical spectrum have integer charge. We shall see BIM| oy 1

how this fact turns out to be important for the application to arctantan ——tan 5|~ 56,

the (2+ 1)-dimensional case, where this periodicity is tanta-

mount to gauge invariance under large gauge transforma- @

tions. . . :

. . S . where ® = [d?xe;d; A, is the static magnetic flux, and the

Alternatively, definition(1) can be justified by noting that branch of the achta{n is chosen according to the valué. of
- do The even part of’ cannot be found exactly, but fortunately

0= f Z—e""<q‘Q) (3)  there is a well-defined regime where its dependence can
—mem be safely ignored. This is the case wheM|>1, as can be

, ) , checked explicitly in the calculation ¢6], which yields the

is a projector onto chargg-states. In a fixed-charge en- |g5ding parity conserving contribution . For example, in

semble, the fixed charge does not fluctuate at all, as can Be ¢;00th gauge field configuratigthough the same holds
shown explicitly by noting that the averag@enoted - -)) true without this assumption
of the powers ofQ may be written as

= do N r gaA-):r<2>(0A-)+eZ—B
. — i evel ) ] [ J
(Qg=(—D)"Z, 1f_wﬁe e @ 48mM
y tani( BM/2)
where the periodicity o, has been used in order to ignore co(eBA4/2) +tank( BM/2)sir?(eA4/2)

terms in the integration by parts. We want to construct the
partition functionZ,(A) for the case of a fermionic field in )
2+1 dimensions in the presence of an external magnetic XJ d™XF jkFj. ®
field (here A is the vector potential corresponding to the
magnetic field. From the analogy betweefi,(A) and the  yhere it becomes evident that dependencégiiand hence
partition function in the presence of an imaginary chemicalyy, 9) is exponentially suppressed for larggM|. A more
potential, we immediately obtain the path-integral represenzomplete analysis shows that it is not even necessary to have
tation B|M|>1, but already fo3|M| of order 1 the dependence on

o s - A5 can be ignored. Ignoring thus tifedependence df o,

zﬁ(A)zj szszexp{—J dTJ d2Xy( 7,x)
0 Fever(0aAj):Fever(0aAj)=F(o»Aj)a 9

X|y;D;+ M+ ys d,—i f) ( T,X)] , (50 Where the last equality proceeds from the fact that there is no
B odd part for#=0. We can then take the even contribution
out of the integral ovep, obtaining
where D;=d;+ieA;(x), and the notation and conventions
are identical to the ones used|[i,5]. Z4(A) mdo L
It should now become evident thdg) corresponds to ex- Z(A) 2f wﬂe 19T oad 0.A), (10)

actly the same kind of configuration considered4n5], if

one makes the identificatioA;= — 6/eB. Periodicity in 6
for Eq. (5) is equivalent to invariance under large gauge
transformations, after this identification is made.

We now separat&, into its phase and its modulus, which
are given by the exponentials of the parity-breaking an
parity-conserving parts of the effective action, respectively, e

Note that in the last expressiaf(A)=exd —I'(0,A;) ] is the
partition function in the presence of a magnetic field in the
canonicalensemble. This shows that the specific properties
f the fixed charge ensemble whghM| is large are deter-
ined byI' ,44. Equivalently, in terms of the respective free
nergiesc=—(1/8)In Z,

ZH: efrodd(A)Xefrever(A)_ (6) 1 - do '
Fq—F=——In f S—e M Tead @A - (11)
We know from[3-5] that, for this kind of configuration, d B { —n 2T

I' 544 can be exactly evaluated, and moreover that its period-

icity may be assured if the parity anomaly is properly takenNow we can consider the behavior of EGO) for different
into account. As we have assumed that the ensemble corrémits: When SM—oo, as the parity anomaly term cancels
sponds to arintegerchargeq, periodicity of Z, is required.  the induced term coming from the explicit parity-breaking
We shall later on discuss the nonperiodic “gauge anomamassM, so thatl',qq tends to zero. This means that, when

lous” Z,. BM — oo,
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1 free energy. In particular, fg8|M| of order 1, the maximum
Fo=F—— E|09[ dq,0] - (12)  of the ratio Z,(A)/ Z(A) is reached whemy is equal tok.

This means that, when the system is heated, the Chern-
The meaning of this equation is clear, ensembles with nonSimons term makes states with total charge proportional to
zero charge are separated by an infinite free energy barrieifje total flux more convenient energetically. The situation is
and on|y the zero Charge one is physica”y possib|e_ qualitatively similar for an odd number of fluxes, though we

When B|M| is large but not necessarily zero, ensemblescould only check that numerically.

with q#0 are possible, and we shall discuss them now. We We shall now discuss the issue of the meaning of the
first note that, due to Parseval's identity, Bgyq is purely ~ fixed-charge ensembles in the “anomalous” case, namely,

imaginary, we have the sum rule when the effective action is not invariant under large gauge
transformations. Invariance under large gauge transforma-
"l Z4(A)]? tions is, in our case, tantamount to periodicitydnComing
1=n2_w Z(A) (13 back to the definition of the fixed-charge partition function

(2), we may say that the effect of the induced Chern-Simons

whose physical meaning in this case is that only a very fewf€rm, in the anomalous case, is equivalent to having states of
number ofg's shall be accessible with a finite free energy. fractional charge. And indeed, a trivial way of recovering a
We shall now derive a more convenient formula for Eq.fixed-charge ensemble for this case also would be to fix the
(10) in terms of the dimensionless parameters of the theorytotal charge to a fractional value. An equivalent way of say-
We define the dimensionless quantity=(M/|M|)(ed/ N9 this is that, if the parity anomaly term is lacking, the
2), which essentially measures the magnetic flux in unitsffective action is no longer2 periodic, but has a period of
of the elementary flux quantune®/27). We then note that 47, what can be attached to a redefinition of the charge
after some elementary algebra, E@0) may be written as Operator.

follows: It is important to realize that, had we used the perturbative
result[9-19 for the induced Chern-Simons term, no struc-
Z4(A) = do i6q-bi2) 1+ e 2B8IMlg=io\ P72 ture such as the ones we are seeing .here would arise. Indeed,
ZA) =f_ Ee 4 W the very problem of defining the fixed charge ensemble
” would be ill defined, since for the perturbative Chern-Simons

(14 term the periodicity iM5 is lost, and cannot be rescued by a

The change of integration varialte=e~'? maps the integra- Simple interpretation in terms of a fractional charge. If the
tion path to a unit circle in the complex plane: perturbative result is used there is no periodicity whatsoever.
We shall here extend the previous discussion to the non-
Abelian case. It seems that we should now deal with a large

(15 number of fixed charges. However, one should remerfifier

that in statistical mechanics not all the charges can be fixed
but only a subset of them that commutes with the Hamil-

evaluated as the sum of the residues over the two poles pjonian and with all the other chargehus, when consider-

side the unit circle. The result of this procedure may be pu{ng_the partition funcyon for fermions in a non-AbeI_|an mag-
as netic backgroundgd will have to be a matrix commuting with

the spatial components; of the non-Abelian gauge field. By

k identifying againé with Aj, this is precisely the kind of
configuration that has been considered5h Obviously, the
number of different integrations will depend on the group.
For example, for S(2) there will only be one sucl#, and

b/2

(A _ i d_qu_b,2 1+ e?AMIz
ZA) 27 Loz

e?fMl 1 7

which, if b is even, sayb=2k for an integerk, can be

Z(A)  O(q=k)  d<9[1+eM
= im
Z(A) (k_q)' Z*>Odzk7q\_ ezﬁlM‘_{_Z

+@(k< 0) lim d<? we have the analogous of E€L0), the only change being a
(k=)' —opmdZt different expression fof .44. In the general casei=(6?)
i1 —28Moy—k will have a numbeif of components in internal space corre-
X[z (1+e z)" "], (16 sponding to the “directions” of the fixed charges. Obviously

where the symbo® (inequality) is defined to be one if the the maximum allowed value fdrshall depend on the group,

inequality is true, and zero otherwise. This is not a closed®f €xample,f=1 for the group SR). Denoting byq the

form but may be exactly evaluated for any set of values fOIvaIues of such charges, the corresponding partition function
g, k, and@M. Note that when the sign of the magnetic flux is, in the same approximation we used for the Abelian case,

is the same as the one the massHecomes positive, and so Z(A _ Iy
the second term in Eq16) vanishes: al ):j o f e—ié-d—l“odd(é,A)’ (18)
ZA) ) a2

Z4(A)
Z(A)

_0(g=k) dk’q[1+ezﬁ|"’”z K

= m
o (K=, —_odZ 0| e2Mlyy

where

a7

From a numerical evaluation of this expression, we see that!This also happens in the grand canonical ensemble, where only
finite temperature effects strongly affect the properties of theuch a subset of charges may carry chemical potentials.
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Even if one is going to assume that the fermions are coupled

tan( 9)“ deSij Fij } to a dynamical gauge field, the constastwill appear
(19) coupled to the fermionic current together with the third com-

ponent of the gauge field, and agdircannot be assumed to
wherefd= #27%, and we are using the same conventions as irbe small since periodicityand the interpretation as a fixed-
[5]. charge ensemblevould be lost.

We conclude by saying that the use of the nonperturbative

parity-breaking term in the effective action is essential for The author acknowledges G. L. Rossini and F. A.
the definition of fixed-charge ensembles it 2 dimensions.  Schaposnik for reading this manuscript.
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