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Fixed-charge ensembles and induced parity-breaking terms

C. D. Fosco*
Centro Atómico Bariloche, 8400 Bariloche, Argentina

~Received 22 October 1997; published 21 April 1998!

Recently derived results for the exact induced parity-breaking term in 211 dimensions at finite temperature
are shown to be relevant to the determination of the free energy for fixed-charge ensembles. The partition
functions for fixed total charge corresponding to massive fermions in the presence of Abelian and non-Abelian
magnetic fields are discussed. We show that the presence of the induced Chern-Simons term manifests itself in
that the free energy depends strongly on the relation between the external magnetic flux and the value of the
fixed charge.@S0556-2821~98!06308-5#

PACS number~s!: 11.10.Kk, 11.10.Wx, 11.30.Er
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Quantum field theory in 211 dimensions continues to b
a subject of active research, because of its many distinc
properties, with no~311!-dimensional counterpart. Ex
amples, provided by~211!-dimensional~‘‘planar’’ ! models,
are worth studying not only for purely theoretical reaso
but also because many important physical systems, or ex
mental situations, are indeed essentially planar, as in
well-known examples borrowed from condensed ma
physics@1#. This also happens for some astrophysical obje
whose configurations are approximately invariant un
translations along one of the spatial dimensions, which r
ders the relevant dynamics two dimensional.

One of the more striking properties of~211!-dimensional
physics is that it allows for the existence of fractional sta
tics, realized in terms of the so-called ‘‘anyons,’’ name
identical particles with neither bosonic nor fermionic stat
tics.

Closely related to fractional statistics is the fact that
211 dimensions a gauge field can be equipped with a ga
invariant and parity-breaking action with nontrivial topolog
cal properties, namely, the Chern-Simons action. This act
if not introducedab initio in the model, may be induce
dynamically by virtual matter-field processes@2#. The issue
of the precise form of this induced action at finite tempe
ture has been a long-standing problem, with obvious
evance for the applications. In some recent works, the e
expression for this induced term under some simplifying
sumptions was derived for both the Abelian@3,4# and the
non-Abelian cases@5#. This result was also rederived an
generalized in@6#.

In this Brief Report we shall show first that the config
rations that have been studied in those references are
cisely the ones needed in order to study the statistical
chanics of a fermion gas in a background magnetic field
the ‘‘fixed charge ensemble’’@7#, and then we will find the
difference between the free energy for such an ensemble
the one corresponding to the canonical ensemble. We
also show that properties such as the behavior of this indu
action under large gauge transformations find a natural
concrete realization here.

*Member of CONICET.
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By a fixed-charge ensemble we mean one where the
ues of one or more conserved and compatible~i.e., mutually
commuting! charges have ad-like statistical weight. Namely,
if the fixed value is, say,q, only configurations having tha
eigenvalue for the charge operator are summed up in
statistical average. This should be contrasted with the gra
canonical ensemble, where only theaverageof the charge is
fixed, but there is indeed room for fluctuations around t
mean value. We may illustrate this distinction by saying th
the microcanonical ensemble is a particular case of a fix
charge one, where the fixed charge is just the Hamiltonia

The interest in this kind of ensemble stems from the f
that the experimental situation under study may very w
correspond to it~as in an electrically insulated sample, fo
example!. The predictions shall differ significantly from th
ones of other ensembles for nonmacroscopic systems~results
will of course agree in the thermodynamic limit, where a
the fluctuations may be ignored!. Illustrative examples of this
kind of calculation are the color singlet calculation„for an
SU(N) theory… of Ref. @8#, and the fixed three-momentum
ensemble of Ref.@9#.

Our main idea in this Brief Report is that, as the Che
Simons term provides a link between the magnetic field a
the charge, it will strongly affect the statistical properties
a system in the presence of an external magnetic field, an
the fixed-charge ensemble. Moreover, we shall show that
crucial to use the exact induced Chern-Simons term ra
than the perturbative one in the derivation of this free ener

The partition functionZq corresponding to the ensemb
with fixed chargeq, at a given temperatureT51/b, for a
system described by a quantum HamiltonianH, and having a
conserved additive chargeQ (@H,Q#50), is

Zq5E
2p

p du

2p
e2 iuqZu , ~1!

where

Zu5Tre2bH1 iuQ. ~2!

We are assuming the normalization ofQ is such that its
eigenvalues are just integer numbers. Note thatZu is for-
mally equivalent to the grand canonical partition function f
a system with animaginarychemical potentialu. If the trace
6554 © 1998 The American Physical Society
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57 6555BRIEF REPORTS
in Eq. ~2! is evaluated using a complete set of simultane
eigenstates ofH andQ, then it follows immediately that Eq
~1! will only pick up contributions from quantum states wi
eigenvalueq for Q. Also by using this complete set one se
that Zu is a periodic function ofu, with period 2p. Of
course, this is closely related to the assumption that parti
in the physical spectrum have integer charge. We shall
how this fact turns out to be important for the application
the ~211!-dimensional case, where this periodicity is tan
mount to gauge invariance under large gauge transfor
tions.

Alternatively, definition~1! can be justified by noting tha

Pq5E
2p

p du

2p
e2 iu~q2Q! ~3!

is a projector onto charge-q states. In a fixed-charge en
semble, the fixed charge does not fluctuate at all, as ca
shown explicitly by noting that the averages~denoted̂ •••&q)
of the powers ofQ may be written as

^Qn&q5~2 i !nZq
21E

2p

p du

2p
e2 iuq

]n

~]u!n
Zu5qn, ~4!

where the periodicity ofZu has been used in order to igno
terms in the integration by parts. We want to construct
partition functionZq(A) for the case of a fermionic field in
211 dimensions in the presence of an external magn
field ~here A is the vector potential corresponding to th
magnetic field!. From the analogy betweenZu(A) and the
partition function in the presence of an imaginary chemi
potential, we immediately obtain the path-integral repres
tation

Zu~A!5E Dc̄DcexpH 2E
0

b

dtE d2xc̄~t,x!

3Fg jD j1M1g3S ]t2 i
u

b D Gc~t,x!J , ~5!

where D j5] j1 ieAj (x), and the notation and convention
are identical to the ones used in@4,5#.

It should now become evident that~5! corresponds to ex
actly the same kind of configuration considered in@4,5#, if
one makes the identificationÃ352u/eb. Periodicity in u
for Eq. ~5! is equivalent to invariance under large gau
transformations, after this identification is made.

We now separateZu into its phase and its modulus, whic
are given by the exponentials of the parity-breaking a
parity-conserving parts of the effective action, respective

Zu5e2Godd~A!3e2Geven~A!. ~6!

We know from @3–5# that, for this kind of configuration
Godd can be exactly evaluated, and moreover that its per
icity may be assured if the parity anomaly is properly tak
into account. As we have assumed that the ensemble c
sponds to anintegerchargeq, periodicity ofZu is required.
We shall later on discuss the nonperiodic ‘‘gauge anom
lous’’ Zu .
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The result forGodd, including the parity anomaly piece i
@4,5#

Godd~u,A!5 i
e

2p

M

uM u

3FH arctanF tanhS buM u
2 D tanS u

2D G2
1

2
uJ ,

~7!

whereF5*d2xe jk] jAk is the static magnetic flux, and th
branch of the arctan is chosen according to the value ou.
The even part ofG cannot be found exactly, but fortunate
there is a well-defined regime where its dependence onu can
be safely ignored. This is the case whenbuM u@1, as can be
checked explicitly in the calculation of@6#, which yields the
leading parity conserving contribution toG. For example, in
a smooth gauge field configuration~though the same hold
true without this assumption!,

Geveb~u,Aj !.G~2!~0,Aj !1
e2b

48pM

3
tanh~bM /2!

cos2~ebÃ3/2!1tanh2~bM /2!sin2~ebÃ3/2!

3E d2xFjkF jk , ~8!

where it becomes evident that dependence onÃ3 ~and hence
on u) is exponentially suppressed for largebuM u. A more
complete analysis shows that it is not even necessary to h
buM u@1, but already forbuM u of order 1 the dependence o
Ã3 can be ignored. Ignoring thus theu dependence ofGeven,

Geven~u,Aj !.Geven~0,Aj !5G~0,Aj !, ~9!

where the last equality proceeds from the fact that there is
odd part foru50. We can then take the even contributio
out of the integral overu, obtaining

Zq~A!

Z~A!
.E

2p

p du

2p
e2 iuq2Godd~u,A!. ~10!

Note that in the last expressionZ(A)[exp@2G(0,Aj )# is the
partition function in the presence of a magnetic field in t
canonicalensemble. This shows that the specific propert
of the fixed charge ensemble whenbuM u is large are deter-
mined byGodd. Equivalently, in terms of the respective fre
energiesF[2(1/b)ln Z,

Fq2F.2
1

b
lnH E

2p

p du

2p
e2 iuq2Godd~u,A!J . ~11!

Now we can consider the behavior of Eq.~10! for different
limits: When bM→`, as the parity anomaly term cance
the induced term coming from the explicit parity-breakin
massM , so thatGodd tends to zero. This means that, whe
bM→`,
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Fq.F→2
1

b
log@dq,0# . ~12!

The meaning of this equation is clear, ensembles with n
zero charge are separated by an infinite free energy bar
and only the zero charge one is physically possible.

When buM u is large but not necessarily zero, ensemb
with qÞ0 are possible, and we shall discuss them now.
first note that, due to Parseval’s identity, asGodd is purely
imaginary, we have the sum rule

15 (
n52`

n51` UZq~A!

Z~A!
U2

~13!

whose physical meaning in this case is that only a very
number ofq’s shall be accessible with a finite free energy

We shall now derive a more convenient formula for E
~10! in terms of the dimensionless parameters of the the
We define the dimensionless quantityb[(M /uM u)(eF/
2p), which essentially measures the magnetic flux in un
of the elementary flux quantum (eF/2p). We then note that
after some elementary algebra, Eq.~10! may be written as
follows:

Zq~A!

Z~A!
5E

2p

p du

2p
e2 iu~q2b/2!S 11e22buM ue2 iu

e22buM u1e2 iu D b/2

.

~14!

The change of integration variablez5e2 iu maps the integra-
tion path to a unit circle in the complex plane:

Zq~A!

Z~A!
5

i

2p R
C

dz

z
zq2b/2S 11e2buM uz

e2buM u1z
D b/2

~15!

which, if b is even, sayb52k for an integerk, can be
evaluated as the sum of the residues over the two poles
side the unit circle. The result of this procedure may be
as

Zq~A!

Z~A!
5

Q~q<k!

~k2q!!
lim

z2.0

dk2q

dzk2qF11e2buM uz

e2buM u1z
G k

1
Q~k,0!

~k21!!
lim

z→2e22buM u

dk21

dzk21

3@zq2k21~11e22buM uz!2k#, ~16!

where the symbolQ( inequality) is defined to be one if the
inequality is true, and zero otherwise. This is not a clos
form but may be exactly evaluated for any set of values
q, k, andbM . Note that when the sign of the magnetic flu
is the same as the one the mass,k becomes positive, and s
the second term in Eq.~16! vanishes:

FZq~A!

Z~A! G
k.0

5
Q~q<k!

~k2q!!
lim

z2.0

dk2q

dzk2qF11e2buM uz

e2buM u1z
G k

.

~17!

From a numerical evaluation of this expression, we see
finite temperature effects strongly affect the properties of
n-
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free energy. In particular, forbuM u of order 1, the maximum
of the ratioZq(A)/Z(A) is reached whenq is equal tok.
This means that, when the system is heated, the Ch
Simons term makes states with total charge proportiona
the total flux more convenient energetically. The situation
qualitatively similar for an odd number of fluxes, though w
could only check that numerically.

We shall now discuss the issue of the meaning of
fixed-charge ensembles in the ‘‘anomalous’’ case, nam
when the effective action is not invariant under large gau
transformations. Invariance under large gauge transfor
tions is, in our case, tantamount to periodicity inu. Coming
back to the definition of the fixed-charge partition functio
~2!, we may say that the effect of the induced Chern-Simo
term, in the anomalous case, is equivalent to having state
fractional charge. And indeed, a trivial way of recovering
fixed-charge ensemble for this case also would be to fix
total charge to a fractional value. An equivalent way of sa
ing this is that, if the parity anomaly term is lacking, th
effective action is no longer 2p periodic, but has a period o
4p, what can be attached to a redefinition of the cha
operator.

It is important to realize that, had we used the perturbat
result @9–19# for the induced Chern-Simons term, no stru
ture such as the ones we are seeing here would arise. Ind
the very problem of defining the fixed charge ensem
would be ill defined, since for the perturbative Chern-Simo
term the periodicity inÃ3 is lost, and cannot be rescued by
simple interpretation in terms of a fractional charge. If t
perturbative result is used there is no periodicity whatsoe

We shall here extend the previous discussion to the n
Abelian case. It seems that we should now deal with a la
number of fixed charges. However, one should remember@7#
that in statistical mechanics not all the charges can be fi
but only a subset of them that commutes with the Ham
tonian and with all the other charges.1 Thus, when consider-
ing the partition function for fermions in a non-Abelian ma
netic background,u will have to be a matrix commuting with
the spatial componentsAj of the non-Abelian gauge field. By
identifying againu with A3, this is precisely the kind of
configuration that has been considered in@5#. Obviously, the
number of different integrations will depend on the grou
For example, for SU~2! there will only be one suchu, and
we have the analogous of Eq.~10!, the only change being a
different expression forGodd. In the general case,uW [(ua)
will have a numberf of components in internal space corr
sponding to the ‘‘directions’’ of the fixed charges. Obvious
the maximum allowed value forf shall depend on the group
for example,f 51 for the group SU~2!. Denoting byqW the
values of such charges, the corresponding partition func
is, in the same approximation we used for the Abelian ca

ZqW~A!

Z~A!
.E

2p

p

•••E
2p

p duW

~2p! f
e2 iuW •qW 2Godd~uW ,A!, ~18!

where

1This also happens in the grand canonical ensemble, where
such a subset of charges may carry chemical potentials.
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Godd5
ig

4p
trH arctanF tanhS bM

2 D tan~u!G E d2x« i j Fi j J ,

~19!

whereu[uata, and we are using the same conventions a
@5#.

We conclude by saying that the use of the nonperturba
parity-breaking term in the effective action is essential
the definition of fixed-charge ensembles in 211 dimensions.
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Even if one is going to assume that the fermions are coup
to a dynamical gauge field, the constantu will appear
coupled to the fermionic current together with the third co
ponent of the gauge field, and againu cannot be assumed t
be small since periodicity~and the interpretation as a fixed
charge ensemble! would be lost.

The author acknowledges G. L. Rossini and F.
Schaposnik for reading this manuscript.
@1# E. Fradkin, Field Theories of Condensed Matter System,
Frontiers in Physics Vol. 82~Addison-Wesley, New York,
1991!.

@2# S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett.48,
975 ~1982!; Ann. Phys.~N.Y.! 140, 372 ~1982!.

@3# S. Deser, L. Griguolo, and D. Seminara, Phys. Rev. Lett.79,
1976 ~1997!.

@4# C. D. Fosco, G. L. Rossini, and F. A. Schaposnik, Phys. R
Lett. 79, 1980~1997!; 79, 4296~E! ~1997!.

@5# C. D. Fosco, G. L. Rossini, and F. A. Schaposnik, Phys. R
D 56, 6547~1997!.

@6# I. J. R. Aitchison and C. D. Fosco, Phys. Rev. D57, 1171
~1998!.

@7# J. Kapusta,Finite-Temperature Field Theory~Cambridge Uni-
versity Press, Cambridge, England, 1993!, Appendix A.3, and
references therein.
.

.

@8# K. Redlich and L. Turko, Z. Phys. C5, 201 ~1980!.
@9# J. Kapusta, Nucl. Phys.B196, 1 ~1982!.

@10# A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett.51, 2077
~1983!.

@11# A. J. Niemi, Nucl. Phys.B251, 55 ~1985!.
@12# A. J. Niemi and G. W. Semenoff, Phys. Rep.135, 99 ~1986!.
@13# K. Babu, A. Das, and P. Panigrahi, Phys. Rev. D36, 3725

~1987!.
@14# A. Das and S. Panda, J. Phys. A25, L245 ~1992!.
@15# I. J. R. Aitchinson, C. D. Fosco, and J. Zuk, Phys. Rev. D48,

5895 ~1993!.
@16# E. R. Poppitz, Phys. Lett. B252, 417 ~1990!.
@17# M. Burgess, Phys. Rev. D44, 2552~1991!.
@18# W. T. Kim, Y. J. Park, K. Y. Kim, and Y. Kim, Phys. Rev. D

46, 3674~1992!.
@19# K. Ishikawa and T. Matsuyama, Nucl. Phys.B280, 523~1987!.


