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Topological dilaton black holes
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In four-dimensional spacetime, when the two-sphere of black hole event horizons is replaced by a two-
dimensional hypersurface with zero or negative constant curvature, the black hole is referred to as a topological
black hole. In this paper we present some exact topological black hole solutions in the Einstein-Maxwell
dilaton theory with a Liouville-type dilaton potential.
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The topological structure of the event horizon of a black dé?+sirfede¢? for k=1,
hole is an intriguing subject in black hole physics. It is gen- 2 94,2 .
erally believed that a black hole in four-dimensional space- dQE: d6"+¢°d¢ for k=0, @
time is always with a spherical topology. That is, the event dé?+sinifedgp? for k=-—1.
horizon of a black hole has the topolo§y. This was proved
by Friedman, Schleich, and Wiftl]. They suggested the Here M and Q are the mass and charge of the solution,
“topological censorship theorem,” which states that in arespectively, and the cosmological constantis negative.
globally hyperbolic, asymptotically flat spacetime satisfyingFor k=1, the metric(1) describes the spacetime of the
the null energy condition, every causal cur®nspacelike Reissner—Nordstrn—anti-de Sitter black holes. Here the
curve from 7 to J" is homotopic to a topologically trivial event horizon of the black hole has the two-sphere topology
curve fromJ to J'. That is, general relativity does not S?, and the topology of spacetimeRéx S2. Fork=0, if we
allow an observer to probe the topology of spacetime: Anyidentify the coordinate® and ¢ with certain periods, the
topological structure collapses too quickly to allow light to topology of the event horizon is that of a torus and the space-
traverse it. Later on, however, they found that nontrivial to-time has the topologiR?x T2. For k= —1, the surface is
pologies can be observed passivgéB]. Black holes with a two-dimensional hypersurface with constant negative cur-
toroidal topology have indeed been found numerically invature. The topology of spacetime R& X Hs [9], WhereHS
gravitational collaps¢3], although such a topological struc- is the topology of the surfacE. Brill et al. [12] have dis-
ture is temporal. cussed in detail the topological structure of soluti@h In
When asymptotic flatness and the energy condition ar¢he case ok=—1, solution(1) has some strange properties.
given up, there are no fundamental reasons to forbid thesually the occurrence of a black hole horizon is always
existence of static or stationary black holes with nontrivialrelated to the positive definiteness of the energy of space-
topologies. In particular, when the spacetime is an asymptime. In Eq.(1), however, even iM=Q=0, one has a black
totically anti—de Sitter one, the matter field can be in stablengle structure with a black hole horizap= \/3/A|. In par-
equilibrium even if the potential energy is unbounded fromtjcylar, when the mass is negative, one still has the black
below. In recent years, there has been growing interest iRole solution. Surprisingly, this negative mass black hole can
these black holes with nontrivial topological structufeés  aso be formed by gravitational collapg&1]. Obviously,
pological black holesin asymptotically anti—de Sitter space asymptotically anti—de Sitter behavior plays a crucial role in
[4-13]. These investigations are mainly based on Einsteifhe existence of these nontrivial topological black holes.
(-Maxwell) theory with a negative cosmological constant. In  Note that only in Ref[6] have one of the present authors
general, one has the static solutions of the Einstein-Maxwelind zhang considered briefly the dilaton black plane solu-
equations with a cosmological constant tions (k=0). In the present paper we would like to investi-
gate the deformation of these topological black hdBsby
oM Q2 1 a dilaton field and a Liouville-type dilaton potenti@n ef-
d2= — | k= —— + = — ZAr2|dt2 fective cosmological constgntBecause of the dilaton field,
( r rz2 3 ) the topological dilaton black holes found here will become
neither asymptotically anti—de Sitter nor asymptotically flat.

Consider the following action:
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wheredﬂﬁ is the line element of a two-dimensional hyper-
surfaces, with constant curvature, —e 2F  F#, ®)
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wherea andb are two constants anl,, is the Maxwell
field. We still refer toA as the “cosmological constant.”

BRIEF REPORTS

(I) k=0: In this case we find two sets of solutions of
physical interest. The first set is

This action(3) has been investigated in some detail by Chan

et al.[14] in finding spherically symmetric black holes. So in
this paper we will consider the caseslof0 andk=—-1
only. Varying the actior(3) yields the equations of motion

1
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4)

0=0,(J—ge 22?Fr), (5)
a

Vig=bAe?’— e 202 (6)

We assume the metric to be solved, being of the form

ds?=—U(rdt?+U"Y(rdr?+R¥r)dQZ. (7
Thus Eq.(5) can be easily integrated to obtain
47Q )
= ¢
Fu= VR e’ ()

HereV is the area of the hypersurfagewhen it is closed,
and Q is the electric charge defined asQ
=(—1/8m)fe **%¢ ,,,5F*F. Equationg4) and(6) then can
be simplified to
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where a prime represents the derivative with respeat.to
From Egs.(9) and(10) we have
R'/IR=—¢'2. (13
We further assume
R(r)=yr", (14

wherey andN are two constants. Such an assumptib4)

87M Ae?P%o
U(r)=——VNy2r1 ZN——N(4N_1)r2N
167T2Q2823¢0 -
—r N 16
NVZS (16)
&(r)= o+ VN(1-N)lnr, 17
a=b=\N(1-N)/N, (18

whereM is the quasilocal mass defined as in RET§,15. If
a=b=-+N(1—-N)/N, the solution (16) remains un-
changed, but¢(r) becomes ¢(r)= ¢do— VN(1—N)Inr.
From Eq.(18) we must have 8N<1 (asN=1 one has
only the trivial constant dilaton solutipnand N+ 1/4 [see
Eqg. (16)].

(i) 0<N<1/4: The first term (*~2N) in Eq. (16) is domi-
nant asr is very large. That islJ(r) is negative ag is
enough large. In this case, the solutid®) will have a cos-
mological horizon, despite the sign of the cosmological con-
stantA. The horizons are determined by

Ae?bo
T(@N-1)"
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16772Q262a¢0
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r =0, (19

and as a result of M<<1, this equation has only a positive
real root, which corresponds to the cosmological horizon.
The Hawking temperature of the horizon is

oMy Ae?%o
ITUNZ 'S @D
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(20

wherer . is the cosmological horizon.

(i) 1/4<N<1: The second termrgN) in the solution
(16) will be dominant ag —oc. Because of Bl>1, Eq.(19)
has at most two positive roots. Far>0, Eqg. (19) clearly
has only one solution, which corresponds to the cosmologi-
cal horizon. ForA <0, Eg.(19) has no cosmological hori-
zon. But it may have black hole horizons which are still
determined by Eq(19). For example, foN=1/2, we have

the black hole horizons
2| A le%%o
1+/1- %1 (22)

For M2>|A|e*#0Q?, the solution(16) has two black hole
horizons, an outer horizon, and an inner horizon_ . For
M2=|A|Q%e*¥, the two horizons coincide. This corre-

47M
re=——"——+
B Vy2|A|e2¢0

has been extensively used to look for the dilaton black holéPonds to the extremal topological dilaton black hole. For

solutions[14,15. Thus from Eq.13) one has

¢(r)= o= VN(1—N)lnr,

(19

M2<|A|Q?e*%, the singularity at =0 will be naked. Ana-
Iytically continuing the black hole solution to its Euclidean
section, it is easy to find the Hawking temperature of the
hole by requiring the absence of conical singularity at the

where ¢ is an integration constant. We now discuss theblack hole horizon. The Hawking temperature of the black

cases ok=0 andk= —1, respectively.

hole is found to be
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(22)

It is worth noting that whei®@ =0, the Hawking temperature

will become a constant independent of the mass. This prop-
erty is very similar to that of two-dimensional charged dila-

ton black hole§17]. For N=23/4, the solution(16) may also

have two black hole horizons. We can obtain similar expres-
&\hen A<0 and 0<N<1/2, we have two black hole hori-

sions of black hole horizons and the Hawking temperature
well.
The second set of solutions is

u(ry=— rl-2n
(r) VN2
322N Q%e?2%0
+ ™ Q r2+2bX’ (23)
V2y*%(x+bN)(2bx+2N+1)
@(r)= pg+xInr, (24
(a—b)x=2N, (25)
x+aN 1672Q%e?(@ P ¢o
A= , (26)

Xx+bN V2y*

wherex=yN(1—N). The solution(23) has three possibili-

ties: a naked singularity, a cosmological horizon, or a black

hole horizon, depending on the parametarand b. When
the horizon is a cosmological one, the singularity at0 is a
cosmological one. The black hole horizon is

—1/(1+2N+2b
4mN?Q?e??%0 ( Y

T V(X +bN)(2bx+ 2N+ 1)M

r

(27)
and the associated Hawking temperature is

167N(1+bx)NQ2e?abor 1+2bx

V2y*x(x+bN)(2bx+2N+1) |
(28)

2(2N—1)M

=
VNy?r2N

(I k=—1: In this case, we also find two sets of solutions

of physical interest. The first is

2b
U(r)=— 87M 1—2N_Ae—¢0r2—2N
VNy? (1-N)
16 2 2e23¢0
Lr—ZN, (29
NVZ’)’4

é(r)=o— VN(1-N)lnr, (30)
b=a 1=N/{N(1-N), (31)

1-N e %%
A=— (32
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If b=a '=—N/N(1—N), the solution(29) remains un-

changed, bute(r)= ¢o+N(1—N)Inr. When A>0 and
1/2<N<1 [see Eq.(32)], the solution(29) has only one

cosmological horizon:
-1+ \/1+

_4m(1-N)M
~ VNAe?P%o

NAQZeZ(a+b)¢O
(1-N)M?

c

(33

zons,
47(1-N)M N|A|Q?%e*@*b)do
ro=————|1+x\/1— ,
VN|A|y?e?%o (1-N)M?
(34)
and the Hawking temperature is
T _22N-1)M |A|e?P¢orl 2N grQ2e2a%0
VN,eriN 2 VZ,y4r%rN+l :
(39
The second set of solutions is
87TMI’1_2N Ae2b¢0r2—2N
U(r)=- -
) VNy? (1-N)
167T2Q2e2a¢0r2—2N
2,4 (36
Vey*(1—N)
éd(r)=c¢o+ VN(1—N), (37)
a=—b=N/N(1-N), (38)
1—N)e20%0| 1672Q2e?3%0
__ 47N [ Q +1{. (39
Y(1-2N) | V2y2(1-N)

Whena=—b=—N/{/N(1—N), the solutionU(r) remains
unchanged, buté(r)= ¢o— VN(1—N)Inr. When A<O,
namely, 0<N<1/2 [see Eq.(39)], obviously, the solution
(36) has a black hole horizon

8rM[ Ae®%  1672Q%e%%|

r,= - +
TTVUNYY (1-N) V2941 —N)

(40)

The Hawking temperature is

_2(2N—-1)M Ae?Pdorl—2N N 8mQ2e?adorl-2N

h™ VN’)/ZriN - 2 VZ,y4

(41)

These topological dilaton black hole solutions are coun-
terparts of spherically symmetric black holds=(1) [14].
They are neither asymptotically flat n@nti-)de Sitter, but
they have finite quasilocal masses and finite conserved
charge for compact event horizons. These solutions have
only a singularity ar =0, and it is enclosed by black hole
horizons or a cosmological horizon. In addition, although
these topological dilaton black holes exhibit unusual
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asymptotic behavior, it is easy to show that the entropy oBecause of the dilaton black hole solutions obtained by Chan
black holes still obeys the area formula et al. [14], our black hole solutions presented here can be
regarded as complements of those spherically symmetric di-
laton black holes. Finally, it is worth noting that whanr=0,

the action(3) allows the existence of the spherically symmet-
ric black hole solutions, but does not for topological dilaton
where A(r.)=VR?(r.) is the horizon area of topological black holes.

black holes. This is because the black hole entropy comes In summary, we have obtained some topological black
from the surface term of the Euclidean counterpart of thehole solutions in the dilaton gravity with a Liouville-type
action(3) and the entropy is just the value of the surface ternfilaton potential. Their event horizons are the hypersurfaces
the causal structure of solutions for positive quasilocal masghese solutions we have found that the effective cosmologi-
If a negative quasilocal mass is allowed, there are riche'flal constant in the actiof8) must still be negative in order to
black hole structures for both caseskaf 0 andk=1. Simi- ave these topological black hole solutions. This situation is

lar to that in Ref[14], the generalization of the above topo- glu'ti ﬂm;eref‘tl from that of spherically symmetric dilaton
logical dilaton black holes to two Liouville-type potentials ack holeg14].

V=2A,e*19+2A,e?%2¢ (b;#b,) is straightforward, but This work was supported by the Center for Theoretical
the causal structure of solutions will become complicatedPhysics of Seoul National University.

— 1 2 _ 1
S= VR, )=7A(r,), (42)
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