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Topological dilaton black holes
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In four-dimensional spacetime, when the two-sphere of black hole event horizons is replaced by a two-
dimensional hypersurface with zero or negative constant curvature, the black hole is referred to as a topological
black hole. In this paper we present some exact topological black hole solutions in the Einstein-Maxwell
dilaton theory with a Liouville-type dilaton potential.
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The topological structure of the event horizon of a bla
hole is an intriguing subject in black hole physics. It is ge
erally believed that a black hole in four-dimensional spa
time is always with a spherical topology. That is, the ev
horizon of a black hole has the topologyS2. This was proved
by Friedman, Schleich, and Witt@1#. They suggested the
‘‘topological censorship theorem,’’ which states that in
globally hyperbolic, asymptotically flat spacetime satisfyi
the null energy condition, every causal curve~nonspacelike
curve! from J2 to J1 is homotopic to a topologically trivia
curve fromJ2 to J1. That is, general relativity does no
allow an observer to probe the topology of spacetime: A
topological structure collapses too quickly to allow light
traverse it. Later on, however, they found that nontrivial
pologies can be observed passively@2#. Black holes with
toroidal topology have indeed been found numerically
gravitational collapse@3#, although such a topological struc
ture is temporal.

When asymptotic flatness and the energy condition
given up, there are no fundamental reasons to forbid
existence of static or stationary black holes with nontriv
topologies. In particular, when the spacetime is an asy
totically anti–de Sitter one, the matter field can be in sta
equilibrium even if the potential energy is unbounded fro
below. In recent years, there has been growing interes
these black holes with nontrivial topological structures~to-
pological black holes! in asymptotically anti–de Sitter spac
@4–13#. These investigations are mainly based on Einst
~-Maxwell! theory with a negative cosmological constant.
general, one has the static solutions of the Einstein-Maxw
equations with a cosmological constant
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wheredVk
2 is the line element of a two-dimensional hype

surfaceS with constant curvature,
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dVk
25H du21sin2udf2 for k51,

du21u2df2 for k50,

du21sinh2udf2 for k521.

~2!

Here M and Q are the mass and charge of the solutio
respectively, and the cosmological constantL is negative.
For k51, the metric ~1! describes the spacetime of th
Reissner–Nordstro¨m–anti-de Sitter black holes. Here th
event horizon of the black hole has the two-sphere topol
S2, and the topology of spacetime isR23S2. Fork50, if we
identify the coordinatesu and f with certain periods, the
topology of the event horizon is that of a torus and the spa
time has the topologyR23T2. For k521, the surfaceS is
a two-dimensional hypersurface with constant negative c
vature. The topology of spacetime isR23Hg

2 @9#, whereHg
2

is the topology of the surfaceS. Brill et al. @12# have dis-
cussed in detail the topological structure of solution~1!. In
the case ofk521, solution~1! has some strange propertie
Usually the occurrence of a black hole horizon is alwa
related to the positive definiteness of the energy of spa
time. In Eq.~1!, however, even ifM5Q50, one has a black
hole structure with a black hole horizonr h5A3/uLu. In par-
ticular, when the mass is negative, one still has the bl
hole solution. Surprisingly, this negative mass black hole
also be formed by gravitational collapse@11#. Obviously,
asymptotically anti–de Sitter behavior plays a crucial role
the existence of these nontrivial topological black holes.

Note that only in Ref.@6# have one of the present autho
and Zhang considered briefly the dilaton black plane so
tions (k50). In the present paper we would like to inves
gate the deformation of these topological black holes~1! by
a dilaton field and a Liouville-type dilaton potential~an ef-
fective cosmological constant!. Because of the dilaton field
the topological dilaton black holes found here will becom
neither asymptotically anti–de Sitter nor asymptotically fl

Consider the following action:

S5
1

16pE d4xA2g@R22~¹f!222Le2bf

2e22afFmnFmn#, ~3!
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wherea and b are two constants andFmn is the Maxwell
field. We still refer toL as the ‘‘cosmological constant.’
This action~3! has been investigated in some detail by Ch
et al. @14# in finding spherically symmetric black holes. So
this paper we will consider the cases ofk50 and k521
only. Varying the action~3! yields the equations of motion

Rmn52]mf]nf1gmnLe2bf12e22afS FmlFn
l2

1

4
gmnF2D ,

~4!

05]m~A2ge22afFmn!, ~5!

¹2f5bLe2bf2
a

2
e22afF2. ~6!

We assume the metric to be solved, being of the form

ds252U~r !dt21U21~r !dr21R2~r !dVk
2 . ~7!

Thus Eq.~5! can be easily integrated to obtain

Ftr5
4pQ

VR2
e2af. ~8!

HereV is the area of the hypersurfaceS when it is closed,
and Q is the electric charge defined asQ
5(21/8p)*e22af«mnabFab. Equations~4! and~6! then can
be simplified to

2
U9

2
2

R8U8

R
5Le2bf2

16p2Q2

V2R4
e2af, ~9!

2
U9

2
2

R8U8

R
2

2R9U

R
52Uf821Le2bf2

16p2Q2

V2R4
e2af,

~10!

2
1

2R2
@U~R2!8#81

k

R2
5Le2bf1

16p2Q2

V2R4
e2af, ~11!

1

R2
@R2Uf8#85Lbe2bf1

16p2aQ2

V2R4
e2af, ~12!

where a prime represents the derivative with respect tor .
From Eqs.~9! and ~10! we have

R9/R52f82. ~13!

We further assume

R~r !5gr N, ~14!

whereg andN are two constants. Such an assumption~14!
has been extensively used to look for the dilaton black h
solutions@14,15#. Thus from Eq.~13! one has

f~r !5f06AN~12N!lnr , ~15!

where f0 is an integration constant. We now discuss t
cases ofk50 andk521, respectively.
n

le

e

~I! k50: In this case we find two sets of solutions
physical interest. The first set is

U~r !52
8pM

VNg2
r 122N2

Le2bf0

N~4N21!
r 2N

1
16p2Q2e2af0

NV2g4
r 22N, ~16!

f~r !5f01AN~12N!lnr , ~17!

a5b5AN~12N!/N, ~18!

whereM is the quasilocal mass defined as in Refs.@16,15#. If
a5b52AN(12N)/N, the solution ~16! remains un-
changed, but f(r ) becomes f(r )5f02AN(12N)lnr.
From Eq. ~18! we must have 0,N,1 ~as N51 one has
only the trivial constant dilaton solution!, and NÞ1/4 @see
Eq. ~16!#.

~i! 0,N,1/4: The first term (r 122N) in Eq. ~16! is domi-
nant asr is very large. That is,U(r ) is negative asr is
enough large. In this case, the solution~16! will have a cos-
mological horizon, despite the sign of the cosmological co
stantL. The horizons are determined by

2
8pM

Vg2
r 2

Le2bf0

~4N21!
r 4N1

16p2Q2e2af0

V2g4
50, ~19!

and as a result of 4N,1, this equation has only a positiv
real root, which corresponds to the cosmological horiz
The Hawking temperature of the horizon is

Th5U2
2M

VNg2
r c

22N2
Le2bf0

~4N21!p
r c

2N21U , ~20!

wherer c is the cosmological horizon.
~ii ! 1/4,N,1: The second term (r 2N) in the solution

~16! will be dominant asr→`. Because of 4N.1, Eq.~19!
has at most two positive roots. ForL.0, Eq. ~19! clearly
has only one solution, which corresponds to the cosmolo
cal horizon. ForL,0, Eq. ~19! has no cosmological hori
zon. But it may have black hole horizons which are s
determined by Eq.~19!. For example, forN51/2, we have
the black hole horizons

r 65
4pM

Vg2uLue2f0
F16A12

Q2uLue4f0

M2 G . ~21!

For M2.uLue4f0Q2, the solution~16! has two black hole
horizons, an outer horizonr 1 and an inner horizonr 2 . For
M25uLuQ2e4f0, the two horizons coincide. This corre
sponds to the extremal topological dilaton black hole. F
M2,uLuQ2e4f0, the singularity atr 50 will be naked. Ana-
lytically continuing the black hole solution to its Euclidea
section, it is easy to find the Hawking temperature of t
hole by requiring the absence of conical singularity at
black hole horizon. The Hawking temperature of the bla
hole is found to be
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Th5
uLue2f0

2p
2

8pQ2e2f0

V2g4r 1
2

. ~22!

It is worth noting that whenQ50, the Hawking temperature
will become a constant independent of the mass. This p
erty is very similar to that of two-dimensional charged di
ton black holes@17#. For N53/4, the solution~16! may also
have two black hole horizons. We can obtain similar expr
sions of black hole horizons and the Hawking temperature
well.

The second set of solutions is

U~r !52
8pM

VNg2
r 122N

1
32p2NQ2e2af0

V2g4x~x1bN!~2bx12N11!
r 212bx, ~23!

f~r !5f01xlnr , ~24!

~a2b!x52N, ~25!

L52
x1aN

x1bN

16p2Q2e2~a2b!f0

V2g4
, ~26!

wherex5AN(12N). The solution~23! has three possibili-
ties: a naked singularity, a cosmological horizon, or a bla
hole horizon, depending on the parametersa and b. When
the horizon is a cosmological one, the singularity atr 50 is a
cosmological one. The black hole horizon is

r 15F 4pN2Q2e2af0

Vg2x~x1bN!~2bx12N11!M
G21/~112N12bx!

,

~27!

and the associated Hawking temperature is

Th5
2~2N21!M

VNg2r 1
2N

1
16pN~11bx!NQ2e2af0r 1

112bx

V2g4x~x1bN!~2bx12N11!
.

~28!

~II ! k521: In this case, we also find two sets of solutio
of physical interest. The first is

U~r !52
8pM

VNg2
r 122N2

Le2bf0

~12N!
r 222N

1
16p2Q2e2af0

NV2g4
r 22N, ~29!

f~r !5f02AN~12N!lnr , ~30!

b5a215N/AN~12N!, ~31!

L52
12N

122N

e22bf0

g2
. ~32!
p-

-
s

k

If b5a2152N/AN(12N), the solution~29! remains un-
changed, butf(r )5f01AN(12N)lnr. When L.0 and
1/2,N,1 @see Eq.~32!#, the solution~29! has only one
cosmological horizon:

r c5
4p~12N!M

VNLe2bf0
F211A11

NLQ2e2~a1b!f0

~12N!M2 G .

~33!

When L,0 and 0,N,1/2, we have two black hole hori
zons,

r 65
4p~12N!M

VNuLug2e2bf0
F16A12

NuLuQ2e2~a1b!f0

~12N!M2 G ,

~34!

and the Hawking temperature is

Th5
2~2N21!M

VNg2r 1
2N

1
uLue2bf0r 1

122N

2p
2

8pQ2e2af0

V2g4r 1
2N11

.

~35!

The second set of solutions is

U~r !52
8pMr 122N

VNg2
2

Le2bf0r 222N

~12N!

1
16p2Q2e2af0r 222N

V2g4~12N!
, ~36!

f~r !5f01AN~12N!, ~37!

a52b5N/AN~12N!, ~38!

L52
~12N!e22bf0

g2~122N!
F16p2Q2e2af0

V2g2~12N!
11G . ~39!

When a52b52N/AN(12N), the solutionU(r ) remains
unchanged, butf(r )5f02AN(12N)lnr. When L,0,
namely, 0,N,1/2 @see Eq.~39!#, obviously, the solution
~36! has a black hole horizon

r 15
8pM

VNg2F2
Le2bf0

~12N!
1

16p2Q2e2af0

V2g4~12N!
G21

. ~40!

The Hawking temperature is

Th5
2~2N21!M

VNg2r 1
2N

2
Le2bf0r 1

122N

2p
1

8pQ2e2af0r 1
122N

V2g4
.

~41!

These topological dilaton black hole solutions are cou
terparts of spherically symmetric black holes (k51) @14#.
They are neither asymptotically flat nor~anti–!de Sitter, but
they have finite quasilocal masses and finite conser
charge for compact event horizons. These solutions h
only a singularity atr 50, and it is enclosed by black hol
horizons or a cosmological horizon. In addition, althou
these topological dilaton black holes exhibit unusu
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asymptotic behavior, it is easy to show that the entropy
black holes still obeys the area formula

S5
1

4
VR2~r 1!5

1

4
A~r 1!, ~42!

where A(r 1)5VR2(r 1) is the horizon area of topologica
black holes. This is because the black hole entropy co
from the surface term of the Euclidean counterpart of
action~3! and the entropy is just the value of the surface te
at the black hole horizon@18#. In the above we only analyz
the causal structure of solutions for positive quasilocal ma
If a negative quasilocal mass is allowed, there are ric
black hole structures for both cases ofk50 andk51. Simi-
lar to that in Ref.@14#, the generalization of the above top
logical dilaton black holes to two Liouville-type potentia
V52L1e2b1f12L2e2b2f (b1Þb2) is straightforward, but
the causal structure of solutions will become complicat
tt.

tt.

. D

,

as

’’
f

es
e

s.
r

.

Because of the dilaton black hole solutions obtained by C
et al. @14#, our black hole solutions presented here can
regarded as complements of those spherically symmetric
laton black holes. Finally, it is worth noting that whenL50,
the action~3! allows the existence of the spherically symme
ric black hole solutions, but does not for topological dilat
black holes.

In summary, we have obtained some topological bla
hole solutions in the dilaton gravity with a Liouville-typ
dilaton potential. Their event horizons are the hypersurfa
with zero curvature or negative constant curvature. Fr
these solutions we have found that the effective cosmolo
cal constant in the action~3! must still be negative in order to
have these topological black hole solutions. This situation
quite different from that of spherically symmetric dilato
black holes@14#.
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