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Inhomogeneous cosmological models iD=6, N=2 Kaluza-Klein supergravity
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We obtain a cosmological solution in &1x R®x S? spacetime for an inhomogeneous distribution of matter
obeying an equation of state= — p# p,, wherep andp, are the isotropic pressures in the 3-space and extra
space, respectively. Our model admits exponential expansion of the three-dimeii3@napace, while the
extra space is amenable to dimensional reduction. Interestingly, aside from the well known singularity at the
big bang our inhomogeneous solutions are spatially regular everywhere, including the center of symmetry
=0. Moreover, our model seems to suggest an alternative mechanism pointing to a smooth transition from a
primorial multidimensional, inhomogeneous phase to a 4D homogeneoupS@%6-282(98)02210-3

PACS numbds): 98.80.Hw, 04.50+h

Field theories in more than four spacetime dimensions aréfies into a four-dimensional conformally flat spacetirke
considered as models for the unification of all interactions. Irand a two dimensional sphe®. The line element is given
these (4 D)-dimensional model® spacelike dimensions by
are spontaneously compactified. The symmetries of this

space appear as gauge symmetries of the effective four- ds?=dt?— B2(dr?+r2dg?+r2sintq d f?)
dimensional4D) theory. Internal spaces admitting the gauge o )
group SU3)xU(2)xU(1) or grand unified groups have been —C2(dyP+sirtydl?). (1)

proposed 1,2]. Even though a fully realistic model still re-
mains to be found, the idea is elegant enough to warrartiowever, our metric differs essentially from the Maeda-
serious investigation of some of its implications. Nishino case in that althougB=B(t) here the metric com-

In usual Kaluza-Klein supergravity theori¢8] we en-  ponentC depends both on time and the radial component
counter a large 4D cosmological constanf as a result of  So here we assume that the physical 3-space is flat and ho-
compactification of the extra dimensions. However, thismogeneous while the inhomogeneity is introduced through
large value of the cosmological constant does not at all fit inthe extra space. This, however, makes the total 6D spacetime
with our present universe because the observational upp@h inhomogeneous one. Furthermore, note that since the ex-
limit on A, is less than 102°m?pl. On the other hand to tra space depends on a radial coordinate also it is evident that
circumvent this problem we have to take recourse to anve are not dealing here with a simple product space; the
elaborate fine-tuning of ; to get rid of A 4. This fine-tuning  shape of the internal space is different at different points of
is too artificial and unnatural as we have no fundamentathe 4D world. We shall see subsequently that the fact that
principle to choose the specific value &f . inhomogeneity is being introduced via the extra space has far

In this context, theD=6, N=2 Kaluza-Klein(KK) su-  reaching implications in the cosmological evolution of our
pergravity theorny{4—6], where it is possible that six dimen- model.
sions compactify into a 4D Minkowski spacetime and a 2D Homogeneous KK extension of the Friedmann-
sphereS(2) as a product space, deserves serious attention. Robertson-WalkefFRW) model has been fairly adequately
iS encouraging to point out that in the supergravity theorydiscussed in the literature by a host of autH&9]. Starting
referred to in[4—6] one is not constrained to fine-tune the from a topology ofR*x R3x S" it is shown that both the
physical parameters like a coupling constant to obtain théstandard” and extra space expand initially after which cur-
Minkowski spacetime. This theory is, therefore, a good canvature effects become significant and the extra compact
didate for a realistic KK cosmology. space collapses to a singularity. It is conjectured that some

In an earlier work Maeda and Nishiri@] obtained two  sort of quantum gravity effect stabilizes the compact space at
families of cosmological solutions in thid=2, D=6 super- the Planckian length and thereafter the visible universe ex-
gravity theory in a homogeneous background which includepands in the usual FRW way.
both the vacuum and radiation dominated cases and showed However, inhomogeneous cosmological models in higher
that in the second case the solutions approach the Friedmauwiimensions have not, so far, attracted the attention they de-
universe asymptotically. In this Brief Report we have takenserve. The recent analysis made by de Lappageat. [10]
the same form of the line-element in 6D such that it compacef the CFA redshift survey and also the observations by

Saunderset al. [11] of the Infrared Astronomy Satellite
(RAS) survey indicate that the large scale structure of the
*Permanent address: New Alipore College, Calcutta 700 053, Inuniverse does not show itself as a smooth and homogeneous

dia. distribution of matter as was thought earlier. At the same
TPermanent address: Department of Applied Mathematics, Zulutime the failure of the theoretical considerations such as sta-

land University, South Africa. tistical fluctuations in the FRW models to explain the large
*Email address: tanwi@juphys.ernet.in scale structure suggests that the inhomogeneity factor in any
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cosmological model can no longer be avoided. Motivated by C=KB(t)r?/2+ a(t). 9)
these considerations some of us have attempted to study in-
homogeneous models and their implications in a series of At this stage, let us assume an equation of state-p

papers in 5D spacetinj@2—-15. The present work is a natu- which, when used in Eq$3) and(4), gives both
ral generalization of some of these ideas in 6D spacetime

where we have obtained an exponential inflation of 3D scale B=e?, (10
with corresponding dimensional reduction of the extra space,
assuming a specific form of the equation of state. wherea is an integration constant and also an equation in-

Let us now work out the energy-momentum tensor in ourvolving « as
model. Unlike the Maeda-NishinGMN) case[7] where an
additional scalar field is introduced to trigger the compacti-
fication, we have here only classical matter field. Three pos-
sibilities present themselves{i) a vacuum stategjji) a low
temperature state, i.€l <1/C where evidently & gives the  Solving for « we finally get, via Eq(9),
curvature scale o8, and(iii) a high temperature state, i.e.,
T>1/C. In our present work we take the cagie) where the
energy of the patrticles is higher than the excitation energy of
the internal space such that the higher excitations in the in-
ternal space can no longer be neglected. Therefore, th©f the two arbitrary constantg and &, the latter is set equal
higher dimensional stregs # 0. Furthermore, the isometries to zero without any loss of generality.
of our metric(1) tell us that the stress tensoy,z in comov- Using these results we further get
ing coordinates should be of the form

B'd—Ba—Ea-l-BcH-K:O. (11

C=et —K2+5 Tatp s 12
e (y—Kr9) 2 ¢ : (12

1+ 3K?r2—4Km

T0=p, Th=T2=Ti=—p, Ti=Ti=-p. @ p=—p=10a"+ ——7——, (13

From Einstein’s field equationG,,=—T,, we get the fol- 6K at

lowing set of independent equations for the line elent&nt D= e 1002 (14)
C .

, 2C" C'? 4Cc’ 3B* 6BC C* 1
Go= BZC ' B2 BZr BZ BC 2 2T A It has not also escaped our notice that heamdp vary with
3) t andr. This is strikingly different from the analogous 4D
case where botp andp are separately constant in the infla-

. 4c C’2 1 2B B2 4BC 2C c2 tionary era. The fact thgp is not a constant also follows
Gi= B%cr B2 2 B B2 BC C 2 from the time component of the Bianchi identity
=p, 4 . 3B 2C
P @ pt g (ptP)+ = (p+p)=0, (15
, 5 2C" 2¢’ C'? 1 2B B? 4BC
GC=Gs=gx=*Ber B2 2 B B2 BC when the equation of staje+ p=0 andp;+#0 is taken.
o We can, at this stage, calculate the Kretschmann scalar,
2C C? Riji R for our metric. Explicit calculationgalso checked
T c2° p, ©) and verified with the help of a compuieshow that the only
surviving components of the Riemannian tensorsRyg,
BZ BC C 2C, CH R0551, and R5454 Such that

4_5__ 2 P St -
G4=Gs=-35-3527 3¢ ¢ "B%er T8%C P
(6)
. . 2 1 ; ! ; !
C’ BC, :BZCZ (Cll)2+ C4B4 [BZ+BZ(C )Z(C )2]

610226_2%:0: (7)

ikl _ 0441 0551 5454
RijkR" = RgaaR™"+ RssiR ™7+ Reus R

(16)

where a prime denotes the derivative with respect tg It is encouraging to point out that when we use the value of

and a dot with respect to timet:” . . .
For economy of space we shall skip the details of theB andC for our metric(1) we find that the scalar is regular

X . . -._._everywhere including the point=0, which may be called
mathematical steps and give the final results only. Ut|||2|ngthe center of symmetry as in many inhomogeneous distribu-
the property of isotropy of 3D pressure we get, from Eds.

and (5) tions.
’ Furthermore, if we choosk to be negative, then as time
C=A(1)r2/2+ a(t) (8) evolves,C approaches zero at some finite titvet,, where
where A and « are arbitrary functions of integration. This ¢ :i In i K| 17
result, when compared with EG?), finally yields 0 2a \a? y+|K|r?)"
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It must be emphasized that this dimensional reductido-is sarily implies zero spatial curvature.

cal contrary to what is observed in homogeneous models Before concluding a final remark may be in order. As

because herg, is a function ofr also. However, this par- mentioned earlier, it is conjectured that during dimensional
ticular feature is generic to all inhomogeneous models. Whereduction the extra dimensions finally stabilize at a very
K>0, the extra space starts from and evolves to infinity aftesmall length and then lose their dynamical character. There-
bouncing off a minimum(not equal to zerp In both the  after the cosmology enters the 4D phase without having any
cases the usual 3-space expands exponentially giving th@ference to the extra dimensions. For our model this transi-

well known inflationary scenario, analogous to that due tQjon has far reaching implications because the very existence
vacuum energy in the 4D casgee Shafi and Wetteriq6],  of the extra space, so to speak, seems to induce inhomoge-
Dereli and Tuckef17], and also[14] for the homogeneous qity in our case. So not only do we enter a 4D era, we also

mo|<t:ieb. tb t of ol ¢ int out tial diff envisage a smooth transition from a multidimensional, inho-
may Not be out of place to point out an essential d er'mogeneous model to a 4D homogeneous one. Interestingly

ence from the analogous models in 5D referred to earhe{his desirable transition takes place without forcing us to
[13]. One can calculate the 5-space curvature of the

t-constant hypersurface for the line-eleméhtfrom the ex- choose very SpECI(?Il |n|t|§1I conditions as IS Fhe pract'|c.e n
pression13] conventional four-dimensional models. This, in our opinion,

is a very important feature of our model. So, in short, we
here describe an inhomogeneous scenario where the 3D
space expands exponentially while the extra space shrinks

where § is the expansion scalar and the last two terms giveW'th time indefinitely. Furthermore, the promordial inhomo-

vorticity and acceleration and=1-5. After a long but geneity dies down in a natural way as we enter the 4D world.
straightforward calculation we get ' Both these results are new and sufficiently interesting to war-

rant further investigations in this direction.

RI=R*®)+ g+ 02— 202+ u';i,

R*(5>=i (1-K2r?)+ % (18) T.G. wishes to thank the DST, India for financial support
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hospitality where part of the work was done. We also thank
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