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Inhomogeneous cosmological models inD56, N52 Kaluza-Klein supergravity
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We obtain a cosmological solution in anR13R33S2 spacetime for an inhomogeneous distribution of matter
obeying an equation of state,p52rÞp1 , wherep andp1 are the isotropic pressures in the 3-space and extra
space, respectively. Our model admits exponential expansion of the three-dimensional~3D! space, while the
extra space is amenable to dimensional reduction. Interestingly, aside from the well known singularity at the
big bang our inhomogeneous solutions are spatially regular everywhere, including the center of symmetryr
50. Moreover, our model seems to suggest an alternative mechanism pointing to a smooth transition from a
primorial multidimensional, inhomogeneous phase to a 4D homogeneous one.@S0556-2821~98!02210-3#

PACS number~s!: 98.80.Hw, 04.50.1h
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Field theories in more than four spacetime dimensions
considered as models for the unification of all interactions
these (41D)-dimensional modelsD spacelike dimensions
are spontaneously compactified. The symmetries of
space appear as gauge symmetries of the effective f
dimensional~4D! theory. Internal spaces admitting the gau
group SU~3!3U~2!3U~1! or grand unified groups have bee
proposed@1,2#. Even though a fully realistic model still re
mains to be found, the idea is elegant enough to war
serious investigation of some of its implications.

In usual Kaluza-Klein supergravity theories@3# we en-
counter a large 4D cosmological constantL4 as a result of
compactification of the extra dimensions. However, t
large value of the cosmological constant does not at all fi
with our present universe because the observational u
limit on L4 is less than 102120 m2 pl. On the other hand to
circumvent this problem we have to take recourse to
elaborate fine-tuning ofLD to get rid ofL4 . This fine-tuning
is too artificial and unnatural as we have no fundamen
principle to choose the specific value ofLD .

In this context, theD56, N52 Kaluza-Klein ~KK ! su-
pergravity theory@4–6#, where it is possible that six dimen
sions compactify into a 4D Minkowski spacetime and a
sphere,S(2) as a product space, deserves serious attentio
is encouraging to point out that in the supergravity the
referred to in@4–6# one is not constrained to fine-tune th
physical parameters like a coupling constant to obtain
Minkowski spacetime. This theory is, therefore, a good c
didate for a realistic KK cosmology.

In an earlier work Maeda and Nishino@7# obtained two
families of cosmological solutions in thisN52, D56 super-
gravity theory in a homogeneous background which inclu
both the vacuum and radiation dominated cases and sho
that in the second case the solutions approach the Friedm
universe asymptotically. In this Brief Report we have tak
the same form of the line-element in 6D such that it comp
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tifies into a four-dimensional conformally flat spacetimeX
and a two dimensional sphereS2. The line element is given
by

ds25dt22B2~dr21r 2dq21r 2sin2q d f2!

2C2~dc21sin2c dz2!. ~1!

However, our metric differs essentially from the Maed
Nishino case in that althoughB5B(t) here the metric com-
ponentC depends both on time and the radial componenr .
So here we assume that the physical 3-space is flat and
mogeneous while the inhomogeneity is introduced throu
the extra space. This, however, makes the total 6D space
an inhomogeneous one. Furthermore, note that since the
tra space depends on a radial coordinate also it is evident
we are not dealing here with a simple product space;
shape of the internal space is different at different points
the 4D world. We shall see subsequently that the fact t
inhomogeneity is being introduced via the extra space has
reaching implications in the cosmological evolution of o
model.

Homogeneous KK extension of the Friedman
Robertson-Walker~FRW! model has been fairly adequate
discussed in the literature by a host of authors@8,9#. Starting
from a topology ofR13R33Sd it is shown that both the
‘‘standard’’ and extra space expand initially after which cu
vature effects become significant and the extra comp
space collapses to a singularity. It is conjectured that so
sort of quantum gravity effect stabilizes the compact spac
the Planckian length and thereafter the visible universe
pands in the usual FRW way.

However, inhomogeneous cosmological models in hig
dimensions have not, so far, attracted the attention they
serve. The recent analysis made by de Lapparentet al. @10#
of the CFA redshift survey and also the observations
Saunderset al. @11# of the Infrared Astronomy Satellite
~RAS! survey indicate that the large scale structure of
universe does not show itself as a smooth and homogen
distribution of matter as was thought earlier. At the sa
time the failure of the theoretical considerations such as
tistical fluctuations in the FRW models to explain the lar
scale structure suggests that the inhomogeneity factor in
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cosmological model can no longer be avoided. Motivated
these considerations some of us have attempted to stud
homogeneous models and their implications in a series
papers in 5D spacetime@12–15#. The present work is a natu
ral generalization of some of these ideas in 6D spacet
where we have obtained an exponential inflation of 3D sc
with corresponding dimensional reduction of the extra spa
assuming a specific form of the equation of state.

Let us now work out the energy-momentum tensor in o
model. Unlike the Maeda-Nishino~MN! case@7# where an
additional scalar field is introduced to trigger the compa
fication, we have here only classical matter field. Three p
sibilities present themselves:~i! a vacuum state,~ii ! a low
temperature state, i.e.,T,1/C where evidently 1/C gives the
curvature scale ofS2, and~iii ! a high temperature state, i.e
T.1/C. In our present work we take the case~iii ! where the
energy of the particles is higher than the excitation energ
the internal space such that the higher excitations in the
ternal space can no longer be neglected. Therefore,
higher dimensional stressp1Þ0. Furthermore, the isometrie
of our metric~1! tell us that the stress tensorTab in comov-
ing coordinates should be of the form

T0
05r, T1

15T2
25T3

352p, T4
45T5

552p1. ~2!

From Einstein’s field equationsGmn52Tmn we get the fol-
lowing set of independent equations for the line element~1!:

G0
05

2C9

B2C
1

C82

B2C2 1
4C8

B2Cr
2

3Ḃ2

B2 2
6ḂĊ

BC
2

Ċ2

C22
1

C2 52r,

~3!

G1
15

4C8

B2Cr
1

C82

B2C22
1

C22
2B̈

B
2

Ḃ2

B22
4ḂĊ

BC
2

2C̈

C
2

Ċ2

C2

5p, ~4!

G2
25G3

35
2C9

B2C
1

2C8

B2Cr
1

C82

B2C22
1

C22
2B̈

B
2

Ḃ2

B22
4ḂĊ

BC

2
2C̈

C
2

Ċ2

C2 5p, ~5!

G4
45G5

5523
B̈

B
23

Ḃ2

B223
ḂĊ

BC
2

C̈

C
1

2C8

B2Cr
1

C9

B2C
5p1 ,

~6!

G1052
Ċ8

C
22

ḂC8

BC
50, ~7!

where a prime denotes the derivative with respect to ‘‘r ’’
and a dot with respect to time ‘‘t. ’’

For economy of space we shall skip the details of
mathematical steps and give the final results only. Utiliz
the property of isotropy of 3D pressure we get, from Eqs.~4!
and ~5!,

C5A~ t !r 2/21a~ t !, ~8!

where A and a are arbitrary functions of integration. Thi
result, when compared with Eq.~7!, finally yields
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C5KB~ t !r 2/21a~ t !. ~9!

At this stage, let us assume an equation of stater52p
which, when used in Eqs.~3! and ~4!, gives both

B5eat, ~10!

wherea is an integration constant and also an equation
volving a as

Bä2Ḃȧ2
Ḃ2

B
a1B̈a1K50. ~11!

Solving for a we finally get, via Eq.~9!,

C5eat~g2Kr 2!1
K

a2 e2at1d. ~12!

Of the two arbitrary constantsg andd, the latter is set equa
to zero without any loss of generality.

Using these results we further get

r52p510a21
113K2r 224Km

C2 , ~13!

p15
6Ke2at

C
210a2. ~14!

It has not also escaped our notice that herer andp vary with
t and r . This is strikingly different from the analogous 4D
case where bothp andr are separately constant in the infl
tionary era. The fact thatr is not a constant also follows
from the time component of the Bianchi identity

ṙ1
3Ḃ

B
~r1p!1

2Ċ

C
~r1p1!50, ~15!

when the equation of stater1p50 andp1Þ0 is taken.
We can, at this stage, calculate the Kretschmann sca

Ri jkl R
i jkl for our metric. Explicit calculations~also checked

and verified with the help of a computer! show that the only
surviving components of the Riemannian tensors areR0441,
R0551, andR5454 such that

Ri jkRi jkl 5R0441R
04411R0551R

05511R5454R
5454

5
2

B2C2 ~C11!21
1

C4B4 @B21B2~Ċ8!2~Ċ8!2#.

~16!

It is encouraging to point out that when we use the value
B andC for our metric~1! we find that the scalar is regula
everywhere including the pointr 50, which may be called
the center of symmetry as in many inhomogeneous distr
tions.

Furthermore, if we chooseK to be negative, then as tim
evolves,C approaches zero at some finite timet5t0 , where

t05
1

2a
lnS 1

a2

uKu
g1uKur 2D . ~17!
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It must be emphasized that this dimensional reduction islo-
cal contrary to what is observed in homogeneous mod
because heret0 is a function ofr also. However, this par
ticular feature is generic to all inhomogeneous models. W
K.0, the extra space starts from and evolves to infinity a
bouncing off a minimum~not equal to zero!. In both the
cases the usual 3-space expands exponentially giving
well known inflationary scenario, analogous to that due
vacuum energy in the 4D case~see Shafi and Wetterich@16#,
Dereli and Tucker@17#, and also@14# for the homogeneous
model!.

It may not be out of place to point out an essential diff
ence from the analogous models in 5D referred to ear
@13#. One can calculate the 5-space curvature of
t-constant hypersurface for the line-element~1! from the ex-
pression@13#

Ri
i5R* ~5!1 u̇1u222v21ui ; i ,

whereu is the expansion scalar and the last two terms g
vorticity and acceleration andi 51 – 5. After a long but
straightforward calculation we get

R* ~5!5
2

C2 ~12K2r 2!1
24K

BC
. ~18!

When K50, our model becomes homogeneous but the
curvature does not vanish. This is in contrast with our ear
works on 5D cosmology where homogeneity (K50) neces-
ys
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sarily implies zero spatial curvature.
Before concluding a final remark may be in order. A

mentioned earlier, it is conjectured that during dimensio
reduction the extra dimensions finally stabilize at a ve
small length and then lose their dynamical character. The
after the cosmology enters the 4D phase without having
reference to the extra dimensions. For our model this tra
tion has far reaching implications because the very existe
of the extra space, so to speak, seems to induce inhom
neity in our case. So not only do we enter a 4D era, we a
envisage a smooth transition from a multidimensional, inh
mogeneous model to a 4D homogeneous one. Interesti
this desirable transition takes place without forcing us
choose very special initial conditions as is the practice
conventional four-dimensional models. This, in our opinio
is a very important feature of our model. So, in short, w
here describe an inhomogeneous scenario where the
space expands exponentially while the extra space shr
with time indefinitely. Furthermore, the promordial inhom
geneity dies down in a natural way as we enter the 4D wo
Both these results are new and sufficiently interesting to w
rant further investigations in this direction.
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