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We investigate in the equal-time formalism the derivation and truncation of infinite hierarchies of equations
of motion for the energy moments of the covariant Wigner function. From these hierarchies we then extract
kinetic equations for the physical distribution functions which are related to low-order energy moments, and
show how to determine the higher order moments in terms of these lowest order ones. We apply the general
formalism to scalar and spinor QED with classical background fields and compare with the results derived
from the three-dimensional Wigner transformation metfj&®0556-282198)01810-4
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I. INTRODUCTION taking the energy average of the covariant kinetic equations
in the 4-dimensional formulation. It exploits the fact that the
Transport theory1] based on the Wigner operator is ex- equal-time Wigner function is the energy averéige. zeroth
tensively used to describe the formation and evolution ofrder energy momentof the covariant one. With this
highly excited nuclear matter produced in relativistic heavymethod we showed for spinor QED that the direct energy
ion collisions. The Wigner operator can be defined in 4-average of the covariant kinetic equations leads, in addition
dimensiona[2—6] or 3-dimensional7,8] momentum space, !0 the BGR transport equations for the spinor components of

. - - . the equal-time Wigner function, also to a second group of
which we denote byV(x,p) andW(x,p), respectively. Cor- const(r]aint equatio%s which couple the equal-timegWigpner
respondingly, thgre are two formulations for the Phase'Sp‘f"Cﬁmction to the first order energy moment of the covariant
structure of any flelq. Either of these two fqrmulatlpns has,'tsone. In the classicati{— 0) limit, these additional equations
advantages a_nd dlsao_lvan_tages. In addition to its m_an'feﬁtrovide essential constraints on the equal-time Wigner func-
Lorentz covariancewhich is very useful from a technical tion and allow one to reduce the number of independent
point of view, another characteristic feature of the 4- gistripution functions by a factor of 12]. In the general
dimensional formulation for QCI2—5] and QED[6] is that  guantum case, the additional equations determine the time
the quadratic kinetic equation can be split up naturally into &yolution of the energy distribution function which in gen-
transport and a constraint equation. The complementarity aral cannot be expressed in terms of the equal-time Wigner
these two ingredients is essential for a physical understandunction. In this sense the BGR equations do not provide a
ing of quantum kinetic theor}9]. In the classical limit, these complete set of equal-time kinetic equations.
two equations reduce to the Vlasov and mass-shell equations, As we will discuss in this paper, this incompleteness has a
respectively. The main advantage of the 3-dimensional apmore general aspect. As just mentioned, the equal-time
proach[7,8] is that it is easier to set up as an initial value Wigner operator is related to the covariant one[bg]
problem: one can directly compute the initial value of the
Wigner operator from the corresponding field operators at
the same time. In the covariant frame this is not possible \7V(x,p)=f dEVV(x,p), (1.1)
since the covariant Wigner operator is defined as a 4-
dimensional Wigner transform of the density matrix and thus
includes an integration over time. Hence in this approach th&here we wrotep=(E,p), E independent op. As such it is
initial condition for the Wigner operator at very early times only the lowest member of an infinite hierarchy of energy
must be constructed phenomenologically. Some true quamnoments of the covariant Wigner operator:
tum problems such as pair productidt] in a strong exter-
nal field have thus so far been solved only in the 3-
dimensional(or equal-time¢ formulation[7,11]. Wi (x p):f dEE(x p), j=012... (1.2

One way[ 7] to obtain equal-time kinetic equations which e Y " ’
parallels the procedure in the covariant formulation is to
Wigner transform the equation of motion for the equal—timewith WO(X,p)EW(X,p). Therefore, to set up a Comp|ete
density operato@(x,y). For spinor QED this procedure re- equal-time transport theory which contains the same amount
sults in the Bialynicki-Birula—Gornicki-Rafelski(BGR) of information as the covariant theory one needs dynamical
equationg[7] for the equal-time Wigner functions. In Ref. equations for all the energy moments. Any covariant kinetic
[12] we suggested a different derivation which is based orequation will thus correspond to an infinite hierarchy of
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coupled kinetic equations for its energy moments, i.e. for thehe higher order moments outside this subgroup, and obtain
equal-time Wigner operatol@/j(x,p). from the constraint hierarchy explicit expressions for all the
This infinite hierarchy only exists for genuine quantum higher order moments in terms of the solutions o_f the low-
problems where the energy can exhibit quantum fluctuationgrder subgroup. We then apply the general formalism to sca-
In the classical limit, the covariant Wigner operator satisfiedar and spinor QED. Here the equations have a more com-
the mass-shell constraip?=E2—p?=m?, and the energy Plicated structure, and we restrict our attention to the closed
dependence of the covariant Wigner function thus degeneubgroup of equations for the lowest order moments, dis-
ates to two delta-functions &= +E == Jm?+p?. The Cussing the redundancy of the transport equations for the

cquakime Wigner operatch ) then sl o a pos- (97 LT moments and et [ecushe Sernaten
tive and a negative frequency component, 9 y only

outside the closed subgroup of equations for the low-order
moments. We will compare our results with the kinetic equa-
W(x,p)=W*(x,p)+W~(x,p) (h—0) (1.3  tions for the equal-time distribution functions obtained pre-

viously in Refs[7,8,12. Our final result will be a complete
and all energy moments can be expressed algebraically iget of kinetic equations which can be implemented numeri-

terms of these as cally as an initial value problem.
W, (x,p) = W;" (x,p) + W, (x,p) Il. GENERAL FORMALISM
:E{)\fv*(x,p)+(—Ep)J\7v*(x,p), The 4-dimensional Wigner transform of the equation of

motion for the covariant density operator leads to a complex,
Lorentz covariant kinetic equation for the Wigner operator. It
couples the one-body Wigner operator to two-body correla-
) ) o ) - tions [1], which in turn satisfy an equation which couples
The solution of the equal-time kinetic equations W(x,p)  them to three-body terms, and so on. After taking an en-
thus also determines the dynamics of all higher energy mosemple average this generates the so-called Bogoliubov-
ments. Thus, in the classical limit, a simple zeroth ordergorn-Green-Kirkwood-Yvon(BBGKY) hierarchy[13] for
energy average of_ thg covariant kinetic theory yields a comg,e n-body Wigner functions. A popular way to get a closed
plete equal-time kinetic theory. , kinetic equation for the one-body Wigner functigie. the

In trle general quantum case, the higher order energy mqsnsemble average of the one-body Wigner operamio
mentsW;(x,p), j=1, contain genuine additional information truncate the BBGKY hierarchy at the one-body level, by
and can no longer be expressed algebraically through thactorizing the two-body Wigner functions in the Hartree ap-
equal-time Wigner operat&g/(x,p), This means that in prin- proximation. So far most applications of quantum transport
ciple in the equal-time formulation we are stuck with the theory have employed this approximation, and in the follow-
problem of solving an infinite hierarchy of coupled equa-ing we will also restrict ourselves to it. For us the mean field
tions. Actually, there are two such hierarchies, one resultingpproximation provides a crucial simplification, and at
from the covariant transport equatigtitransport hierar-  presentitis not obvious to us how to generalize our results in
chy”), the other arising from the generalized mass-shell conorder to include correlations and collision terms.
straint (“constraint hierarchy’). In practice this raises the  For a scalar field in the mean field approximation the
problem of truncating the hierarchy in a physically sensiblecomplex equation for the self-adjoint scalar Wigner function
way. Since only the low-order energy moments of the covacan be separated into two independent real equafit®is
riant Wigner function have an intuitive physical interpreta-
tion, it turns out that physics itself suggests an appropriate R
truncation scheme. We will show that the hierarchies of mo- G(X,p)W(x,p)=0, (2.19
ment equations are structured in such a way that the first few
low-order moments form a finite and closed subgroup of
equations Whi(_:h can be solve_zd as an initial value problem, F(x,p)W(x,p)=0. (2.1
and that(surprisingly all the higher order moments can be

derived from these low-order moments recursively usingT ] ] ]
only the constraint hierarchy, i.e. without solving any addi- e first equation corresponds to a generalized Vlasov equa-

tional equations of motion. The equations from the transporfion; after performing the energy average it generates a hier-
hierarchy for the higher order moments are redundant. ~ &'chy of transport equations for the energy moments
We first discuss on a general basis, starting from the co%Vj(X,p) (“transport hierarchy’). The second equation is a
variant approach, the derivation and truncation of equal-tim@eneralized mass-shell constraint; it generates a hierarchy of
hierarchies of kinetic equations. For illustration we then con’0n-dynamic constraint equatiofisconstraint hierarchy’).
sider in full generality the case of a transport theory for scaFquations with the structure given in Eq.1) will be the
lar fields with arbitrary scalar potentials. For this case everyStarting point for our discussion of scalar field theories in
thing can be worked out explicitly to arbitrary order of the S€cs. lll and IV A. Factors of,, in the dynamical operators
moments. We give the subgroup of equations which fullyG(x,p) andF(x,p) arise from the Wigner transformation of
characterize the first few low-order moments, prove the inthe partial derivatived,, in the Klein-Gordon equation. Since
dependence and redundancy of the transport equations ftre latter contains at most second order time derivatives, at

j=0,12... (h—0). (1.4
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most two powers opg occur. In fact,é(x,p) is linear inpg

while F(x,p) is quadratic inp,. This will be important be-
low (see Sec. Il B

For spinor fields the covariant Wigner function is x4  wheredu(E) is the appropriate integration measure associ-
matrix in spinor space which for a physical interpretationated with the chosen set of polynomidis, the equal-time
must be decomposed into its 16 spinor compon&#ts In componentsv;(x,p) can be related to energy moments of the
this way the complex kinetic equation for the Wigner func- covariant Wigner function constructed with the basis func-
tion matrix is split into 32 independent real equations for thetions h;(E):
self-adjoint spinor componen{$,12]. These equations can
be further divided into two subgroups according to their an-

ticipated structure after performing the energy average: Wj(x,p):f du(E)h(E)W(X,p). (2.6)

f du(E)hi(E)hi(E)= &, (2.5

16 - . .
Aoy s B If the system has finite total energy, the covariant spinor
,E G> (X,p)W= (x,p) =0, (228 components must vanish in the linfi—=c. We will as-
st sume that they vanish at infinite energy faster than any
power of E such that for any combination of integers

16 i,j,mn=0, we have

> F¥(x,p)W* (x,p)=0,
1

- g [ " o
(s=12,...,186. (2.2 f dM(E)a_E(@[hi(E)E 1 =1 Mx,p) | =0.

2.
The first subgroup leads to equations containing only first @

order time derivatives and thus generates 16 hierarchies W|th exponentia| accuracy we may therefore restrict the en-
transport equations for the energy moments of the spindgrgy integration to a finite intervat A<E<A. Introducing
components(“transport hierarchies). The other subgroup the scaled energw=E/A we can thus use as our set of
Wh|Ch inVOIVeS bOth fiI’St al’ld Second Ol’der t|me derivative%asis functions the Legendre p0|yn0mia|s

leads to a set of 16 hierarchies of constraint equatjtctn-

straint hierarchies) for the equal-time moments of the

spinor components. For the lowest energy moments, the _[2n+1
spinor component8/S(x,p) of the equal-time Wigner func- hn(w)= 2
tion, the details of this procedure were worked out in Ref.

[12], and we will use these results in Sec. IV C. Since thewith the trivial measuredu(w)=dw on the interval
original Dirac equation is linear in the time derivative, the[—1 1].

Pn(w) (2.9

dynamical operator<5*¥ (x,p) and F*¥(x,p) contain at As discussed above, the dynamical opera&gx,p) in
most single powers op,. In fact, the operator&>* (x,p) Eq. (2.3 in general contains powers &fup to second order
are independent gi,. and an infinite number of energy derivativé/$E. In terms

of the new dimensionless energy variable we may thus write
A. Hierarchy of energy moments

In this subsection we will concentrate for simplicity on a - Moz, ol 9 n
single covariant kinetic equation of the generic form G(X:p)=mE:O nzo Gmn(x,p) o™ | -~ (2.9
G(x,p)W(x,p) =0, (2.3 with M=<2. Substituting this double expansion into E2.3),

multiplying by h;(w) from the left and integrating over en-
whereG(x,p) contains at most two powers pf, and of the ~ ergy o we obtain
space-time derivative operatay,, but an arbitrary number
of derivatives with respect to the momentum space coordi- 1
nates(see Appendix € We will return to the full set of > émn(X.p)f doh(0)o™ —
equationg2.1), respectively(2.2), in the following sections. mn -1 Jo
We begin by decomposing the energy dependence of the (2.10
Wigner function into a basis of orthogonal polynomials
h;(E): Inserting the expansio(®.4) of the covariant Wigner func-
tion W(X,p,w), this can be written as

n

W(X,p)=0.

©

W(x,p) =2, w;(x,p)h;(E). (2.4 = .
=0 onij(X,p)Wj(X,p)ZO, i=0,1,2..., (2.1)
=

The expansion coefficients;(x,p) are defined in the equal-
time phase space. Using the orthonormality relation where



6528 PENGFEI ZHUANG AND ULRICH HEINZ 57

A M o . the sum overj in Egs.(2.16 runs now only over the finite
Hij(x,p)= > > Ci"Gmn(X,p) (2.12  range G<j<i+M. The first inequality in Eqs(2.19 was
m=0 n=0 already used in Eq2.17 to limit the sum ovem.

The P;(w) are polynomials inw of orderi, and thus the
equal-time components;(x,p) occurring in Eqs(2.16 are
linear combinations of the energy momewg(x,p) of order
k<i [see Eq.(1.2)]. For each value of, Egs.(2.16 thus
provide a relation among the first- M+ 1 energy moments

of the covariant Wigner functiolV(x,p) [including the ze-
It is easy to see from Eq2.13 that roth order momentV(x,p) =v2wy(X,p)]. As i is allowed to
run over all positive integers, Eq$2.16 form an infinite
hierarchy of relations among the energy moments of the co-
variant Wigner function. Each covariant equation of the type
(2.3) generates its own such hierarchy. Only the full set of
these infinite hierarchies of moment equations constitutes a
complete equal-time kinetic description of the system under
study.

with

ci= [ donortne. @13
-1

Ci"=0 for n>j and i>j+m-n. (2.14

For j=i—m+n the coefficients are in general nonzero.
Therefore, the sum over in Egs. (2.11) extends over the
rangej=max{0,i —M]. For each value of, Egs.(2.1]) thus
contain an infinite number of terms. In this form E¢2.11)
are thus not practically useful. However, one can use the
surface condition(2.7) to rewrite Eqs(2.1]) in such a way
that each equation contains only a finite number of terms. In order to discuss possible truncation schemes we must
Returning to Eq(2.10 and integrating by parts, we can re- return to the complete set of covariant kinetic equations. Let

B. Truncating the hierarchy

place the integrand by us concentrate here on the scalar case, Ei$), and write
down the two resulting hierarchies of moment equations as
hi(w) @™ W(X,p) i+M
n-1 > Gi(X,PW;(x,p)=0, (2203
=2 (M)'3,43,[hi(@)0™Md WX, p)} =e
=0
i+M+1
+(=)"9"Th(w)™W(X,p). 2.1 " - .
(=)"dg[hi(@) @™ PMX,p) (2.15 J_}:jo fii(x,pW;(x,p)=0 (i=0,1,2...).
The contribution to the integral in E€R.10 from each term (2.20h

in the sum is fully canceled by the surface conditi@?),
and only the last term in Eq2.15 survives. Inserting it into  In writing down the upper limits of the sums we already used
Eg. (2.10 and using again the expansi¢2.4) we find in-  that F(x,p) in Eq. (2.1 contains one power of, more
stead of Eqs(2.1)—(2.13 the following set of equations:  hanG(x,p) in Eq. (2.19. For the scalar field case one has
M=1. For the spinor case one obtains from E(&2) a
i+M similar set of equations witivi = 0.
E Qij(x,p)wj(x,p)zo, i=0,12..., (2.16 Let us now try to truncate these hierarchies for the mo-
=0 mentsw; at some ordej .. The equations from the “trans-
_ port hierarchy” (2.203 with hierarchy indexi<I involve
with all momentsw; with 0<j<I,+M, i.e. the firstl,+M+1
moments(including the lowest moment with index.GSimi-
. M i+m A larly, the equations from the “constraint hierarchy2.20b
gij(x,p)= > > ¢i"Gmn(X,p) (2.17  with hierarchy indexi=<I involve the firstl;+M+2 mo-
m=0 n=0 ments G<j<I.+M+1. For a closed set of equations both
hierarchies must be truncated at the same ojdgy; i.e., we

and the coefficients must have

1 1 = =i
=5 2+ 1)(2] +1)f daP;j(0)(—3,)"[Pi(w) ™). Lt M=Tet MA 1= max: (229
-1
(2.18 Truncating in this way we are left with+ 1 equations from
the transport hierarchy and+1 equations from the con-

The latter can be determined recursively frocfi’= 8 straint hierarchy. In order solve them the number of equa-
[which results from the orthogonality relatié®.5)] by using ~ ions must at least equal the number of moments. However,
the recursion relations for the Legendre polynomials; sedf there are more equations than moments, the system may be

Appendix A. Since the nonvanishing coefficiemﬁ” are overdetermined, and therefore we would like to require
now restricted to the domain equality of the number of equations and moments:

n<i+m and j<i+m-—n, (2.19 i+ 1+1+1=]mat 1. (2.22
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The two conditiong2.21) and(2.22 have a unique solution: The covariant Wigner function is the four-dimensional
Wigner transform of the covariant density mati@(x,y)

=141=M, jou=2M, 223 =(e(xy)):

which yieldsM + 1 transport andM constraint equations for
the first 2M +1 energy moments. Smaller valuesjgqf,, do
not yield enough equations, and larger values lead t@aan
least superficially overdetermined system of equations. For :j d4yeip.y< b
spinor fields M =0) the truncated set involves only one

transport and no constraint equation; for each spinor compo-

nent it gives a single kinetic equatidthe BGR equatiofi7]) To derive the kinetic equations for the scalar Wigner func-
for its lowest energy moment, the equal-time Wigner func-tion, we calculate the second-order deri\/ativés;;:(Jr a/yL)Z
tion W5(x,p). For scalar fieldsil = 1) the truncated set con-
tains two transport equations and one constraint for the thr
lowest order momenta/g,wq ,Ws.

If we go beyond this minimal closed subset of moment
and equations, we get two equations for every additiona
moment, one from the transport hierarchy and one from the 1 i
constraint hierarchy. As we will show explicitly in the next —(9)2(— p2+ m§+ Ul X=50dp
section, in the constrint hierarchi2.20bh the highest mo- |4 2
ment always comes with a constant coefficient. As we in- (3.33
crease the hierarchy indéxin Egs.(2.20), at each step the i
newly occurring moment can thus be explicitly expressed in Eaz_ 2, 2 r

: —p tmg+U
terms of the already known lower order moments using the |4 2 ]
corresponding constraint equation from Ef.20h. As we (3.3b
will discuss, these higher order constraint equations contain i o )
important physics. But in addition, at each step there is als$ince the scalar Wigner function is real, adding and subtract-
a dynamical equation of motion for the new moment froming these two complex equations yields two real equations of
the transport hierarch§2.20a. How can the two equations the type(2.1). After reinstatingh the corresponding opera-
be consistent? The answer is that this transport equation ters G andF are given by
not an independent new equation, lwith some algebraic

W(x,p)=f dyePYo(x,y)

y
X+§

aﬁ(x— %) > (3.2

and a;—a{b)z of the covariant density operator, and then
egmploy the Klein-Gordon equatiof3.1) and its adjoint. Af-
ter taking the ensemble average and performing the Wigner
ransform we obtain two complex kinetic equations

—ip-dx|W(X,p)=0,

X+ +ip-dx|W(X,p)=0.

p

effort) can be expressed as a combination of the lower order G(x,p)=fp- d,+Im M2(x,p), (3.43
equations which have already been used. Our proof of this

fact uses explicitly the structure of the dynamical operators A 72 A

G andF,,,. It involves cumbersome algebra, and only for F(x,p)=—p*+ Zf%zﬁr Re M?(x,p),

scalar fields with only scalar potential or mean field interac- (3.4b

tions have we been able to find a general proof. For scalar
and spinor QED the proof is still incomplete, and we will
only demonstrate the first step for th&12- 2" moment. A

completion of the proof presumably requires a so far missing

where the mass operattt? is defined as

deeper insight into the general dynamic structure of the mo- M2(x,p)=m3+ 2 e(X,p) +iZo(X,P), (3.59
ment equations and their relation to the underlying covariant
theory. - hA

2e(x,p)=co - V), (3.5b

Ill. SCALAR FIELD THEORY

In this section we will give an explicit and complete dis- S o(X,p) =sin
cussion of the moment hierarchy for the simplest case of a
scalar field theory in the Hartree approximation. We exem-
plify the truncation of the hierarchy and the recursive com-Here the triangle operatak is defined as\ =d,- d, where
putation of the higher order moments beyond minimal trunthe coordinate derivativé, acts only on the scalar potential
cation. The discussion in the following section for the U(x) while d, acts only on the Wigner function.
practically more relevant case of QED will be technically
more involved and, unfortunately, also less complete. B. Semiclassical expansion

AA
7) U(x). (3.50

In the general quantum situation the particles have no
definite mass due to quantum fluctuations around their clas-

Consider the Klein-Gordon equation with a scalar potensical mass shell and collision effects in the medium. In the
tial U(x): situation here with only an external potential this is illus-

- . trated by the mass operatbt2. Only in the classical limit
[+ mg+U(X)]p(x)=0. (3.1 %—0 does it reduce to the quasiparticle mass

A. Covariant kinetic equations



6530 PENGFEI ZHUANG AND ULRICH HEINZ 57

Re M2(x,p)=m2(x)=m2+U(x), (3.6 —A? for m=2n=0
2
. Yoo 2, 200 —ne
Im Mg(x,p)=0. (3.6b) 7 dytp+mgto, for m=n=0
H n
In this case the constraint equation reduces to the on-shelf  (x )= %(ﬂ) (Moe) for m=0n+#0even
condition ni{2A
(iR
[p2—m2(x) IWo(X,p)=0 (3.7 ~orlax) (9foe)  for m=0nodd
for the classical covariant Wigner functidfi,. The classical 0 else.
transport equation arises from the general transport equation (3.12h
at first order inf. The first order contribution to the mass
operator is ere
- . 3
ReM1{(x,p)=0, oe(X,p)=co > V-V, U(x), (3.13a
Im MZ(x,p) =Am(x)[d,m(x)]- 3., (3.9 ) "
cro(x,p)=sin(§ VX-Vp> U(x) (3.13b

and we obtain the covariant Vlasov equation

are the three-dimensional analogies of the covariant opera-
tors X, and, in Eq. (3.5. Again, the spatial gradients act
with a Vlasov force term induced by-dependent effective Only on U(x,t), while the momentum gradients act on the
mass term. For scalar fields there is no first order quanturiqual-time Wigner functiongi.e. on the energy moments
correction to the operatd in Egs.(3.4), and from the ze- W;(X,p)]. i
roth order term we obtain the mass-shell condition for the The three-dimensional dynamical operat@Grg,(x,p) and
first order Wigner function: Fmn(X,p) must now be combined with the coefficienf8” to
2 2 B obtain the dynamical operatogs;(x,p) and f;;(x,p) which

[p™=m7() Wy (x,p) =0. (3.10 are needed in the transport and constraint hierarchies. This is

done in Appendix B.

{p- ax+mO)[xm(X)]- dp}Wo(x,p)=0, (3.9

This discussion holds universally for arbitrary potentials. If,

for instanceU(x) is ge:nerated by the scalar fieddx) itself D. Minimal truncation
in the Hartree approximation,
The resulting transport hierarchy is truncatedl gt M
=1, the constraint hierarchy gt=M —1=0. This yields the

- . d*p
U(x)=—CH+N\{b(x) " (x))= _CH‘f 2n)? W(X,p), following equations fomg(x,p), Wi(X,p), andw,(x,p):

(3.1 - -
JoWo+ goW1=0, (3.143
with a mass paramete€ and a coupling strength, this
model provides a useful tool for a dynamical description of 910Wo+ G11W3 + G1W, =0, (3.14h
spontaneous symmetry breakifgj.
fowo+ fogwy + foaw,=0. (3.149

C. Three-dimensional dynamical operators

We now perform the energy average of the covariantlhe dynamical operatog; andf;; are given in Appendix B
transport and constraint equatiofd.1) and construct the and Eqs(3.12. Reexpressing; in terms of the energy mo-
hierarchy(2.20 of moment equations. The first step is the mentsW, from Eq.(1.2),
double expansion of the tyge.9) for the covariant dynami-

o P s Wo(X,p)= iW(x p) (3.153
( AAo, for m=1n=0 AV2
fip-Vy—0o, for m=n=0 LB
1(in\" . Wi(X,P)= 32 \ 5 Wilx.p), (3.159
— | n _
Gn(X.P) = { qn!(zA) (dfoo) for m=0,n#0 even o
iR\ . =—\ﬁ 3 i
_m(ﬁ) (dfoe) for m=0,n odd Wa(X.P)= 58 2<A2Wz<x,p) W(x,p)),
| (3.150
L0 else

(3.129  equationg3.14 can be rewritten as
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1. 020Wo+ QoW1+ o Wo+ GoW3=0, 3.19
(?tW1(X,p)=—(p-Vx—%UO(X,D))W(X.D), J20Wo T J21W1 T g2oWo T g23W3 ( a
(316a f10W0+,f11W1+,f12W2+:F13W3:O.
1 (3.19h
atWZ(X’p):_(p'Vx_ﬁ UO(X'p))Wl(X’p) With the dynamical operators from Appendix B and Egs.
1 (3.12 and
+ 5[00e(x,P)IW(X.P), (3.168 L Fis 3
W3(X,p)= 57+ \ﬁ (—W x.p)— W (x,p))
5 3 2A V2 (A3 ATt

h
wxxm=(z<£—Vb+&+m% 329
we obtain[using Eq.(3.163]
+(}e(x,p)>W(x,p). (3.160

1.
I W3(X,p)=— ( P V=7 o(X,p) | Wa(X,p)

Note that all powers of the cutofk cancel in the final ex-
pressions as they should. +[3,06(X,P) JW4(X,P)
The two transport equation@.163,(3.160 do not de-
couple, not even in the classical linfit—0. To achieve de- N
coupling one must return to the covariant equations in Sec. ~ 7Lt (x, P IW(X,p),
[l A and study their semiclassical limit as given in Sec. Il B
before performing the energy average. Then the mass-shell 2 R
condition(3.7) can be used to rewrite all higher order energy W3(X,p) = (T (atz— V§)+ P>+ m§+ oo(X,p)
moments in terms of the zeroth order moment as explained

(3.213

Wl(xvp)

in the Introduction, Eq(1.4). With this information the con- oo
straint(3.160, in the limit #—0, becomes trivial, ~ 5 [0o(X,P) JW(X,p). (3.21h

_p2 20\ — 2 2
Wa(x,p)=Eg()W(x.p), - Eg(x)=p"+ m*(x), (3.17) By substituting Eq(3.199 into Eq. (3.199 and taking into

account the commutators
while the two transport equation8.16a and (3.16h be- o o
come identical and can be written in the form of a Vlasov [G10,Fool= —2GqiF 20, (3.22a
equation for the charge densitgee Sec. V.

b [Goo.Fool = F01G 10— 2GosF 20, (3.22h
AW1(x,p) + E_p'VX_Vpr'Vp W, (x,p)=0. 2 , ,
(3.19 [782.%/0 = 5 90go I+ ZaZUe,O, (3.229
The reason why the information contained in Et.4) can-
not be easily recovered directly from the 3-dimensional . N oo
transport and constraint equations is that in their derivation, [P Vx.0e10] =P ViTerot 5 Viooe Vi, (3.220
through Eq.2.15, we made heavy use of partial integration
with respect to the energy. In the classical limit this has the 52
unfortunate effect of spreading the information contained in 2 5 l=—4D- V., 00+ — Va0 (3.228
the on-shell condition over the whole infinite hierarchy of [P 0eo] P ¥xTore™ g VxCelo

3-dimensional constraint equations. _ _ o
Although we have always talked about E§.160 as a  the thqu transport equat|o(r_3.19a) can be rewritten in terms

“constraint equation,” it is clear that, as far as solving the Of the first transport equatiof8.143 as

minimal subse{3.16 of equal-time kinetic equations is con- o R

cerned, this terminology is only adequate in the classical foo(QogWo + goiW4) = 0. (3.23

limit #— 0. In general quantum situations it is a second order

partial differential equation for the lowest order momentThis implies that the transport equati@8.193 for wy is

W(x,p) which must be solved as an initial value problemredundant. The third-order momeW; is completely deter-

together with the first order partial differential equationsmined in terms of the solutions of the minimal subgroup

(3.163 and (3.16h. (3.16 by the constraint equatiof8.21h. It arises from Eq.
(3.19H by noting that f;3 is a constant, f;3=Cs
E. Higher order moment equations =—(2/3)/(5J7)A? (see Appendix B and solving forws:

The next higher momentv; is determined by the third 1
equation in the transport hierarchy and the second equation Wa=— — (F19Wo+ F oWy + Frowsy). (3.249
in the constraint hierarchy: ’ [
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Note that, in contrast to .Ec{3.16lo, Eq. (3.21@ does not jﬂ(x)=ie{[DM¢(x)]¢T(x)—¢(x)DL¢T(x)}, (4.29

require solving a partial differential equation because every-

t_hing on the right-hand sidéRHS) is known from the solu- TM(X)I[Dmﬁ(X)][DI(ﬁT(X)]

tion of Egs.(3.16).

The above procedure can be extended to all higher order +[D,(x)][D]¢"(x)]

moment equations, by repeatedly using the commutators )

listed in Eq.(3.22. In general one finds that a transport ~ 39,0 d(x) T ()], (4.2b

equation ) ) . o +

whereD ,=d,+ieA,(X) is the covariant derivative arid#
i+1 its adjoint.
S giwi= (3.2 Trying to express the components of the above energy-
ij ] :

momentum tensor as moments of the covariant Wigner func-
tion results in rather complicated expressions. Simpler ones

with i=2 can be re-expressed in terms of the firist 1) will be obtained after first subtracting the following total

transport equations as derivative term418J:
— i+1 % ﬁﬂﬁy[(ﬁ(X)(ﬁT(X)]— %g;“,é](?[(]s(X)d)t(X)] (43)
20 fi2J( kzo gjka) =0. (326 and employing the identity

3,0 3(x)$T()]1=[D,$(x)][D]¢"(x)]

Thus, except for the first two, all transport equations are

redundant. The higher order momemts with i>2 can be +[D,p(X)[D}¢"(x)1+[D,D,d(x)]1"(x)
computed from their constraint equations R
+¢(x)[D,D,¢'(x)] (4.9
1 o« . to get a new tensor
Wi=—& Z fi25wj, (3.27)
(0= 3 {[D,6(x)][D]¢'()]+[D,¢()][D}¢'(x)]
with the constanC; given by —[D,D,#(x)]1¢"(x)— p(x)[D] DI (x)1}.
4.9
n i(i—1
Ci=fi_,=— Mt _ . (3.28 Following an analogous procedure as in Sec. ll(ske
—3)(2i+1) [12] for detail§ one derives two covariant kinetic equations

of type (2.1) for the covariant Wigner function

IV. APPLICATION TO QED i “ y
W(x,p)=f diyePY( ¢\ x+ =
A. Scalar QED 2
In this section we discuss the application of the general o (12 - y
formalism developed in Sec. Il to QED. Since some of the xex;:{lef dsAX+ SY)‘Y}QS (X— 3]
equations will be rather lengthy, we will economize on the “u2

notation by dropping all factors df. The latter are correctly (4.6)
given in Refs[12,17) to which we refer in case of need.

We begin with the case of scalar QED with external elec-The corresponding covariant dynamical operat8rand F
tromagnetic fields. In Ref12] we discussed the semiclassi- are given by
cal transport equations for this theory by energy averaging _
the semiclassical limit of the covariant transport equations. G(X,p)= T1#(x,p)D L(X,p), (4.79
In this subsection we will derive the general equal-time .
guantum transport equations by performing the energy aver- - _*ta & - - 2
age without any approximations. In the following subsection Fx.p)= 4 D#0x,p)D (%, p) = TT#(x, p)IT,(x, p) + %,
the result will be compared with the corresponding equations (4.7b
derived by directly Wigner-transforming the equations of

motion for the equal-time density matrix. f 12 . y
In scalar QED the scalar field obeys the Klein-Gordon Mx.p)=p,~ie dSSF’“’(X 1S7p)0p (4.79
equation
. 112 _
(D,D*+ m?) ¢(x)=0. 4.1 DM(X,p):3M—ef_1/2dSFMV(X—IS§p)§;. (4.70

From the corresponding Lagrangian density the conserveB*”=¢*A”— 3”A* is the electromagnetic field tensor.
current and canonical energy-momentum tensor are derived The structure of the equal-time transport theory for scalar
as QED is very similar to that for a scalar potenti&{x) which
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we considered in the previous section. The difference resides o o . 27}0

solely in the expressions for the dynamical operaGyg, €=2 Z(df—dz)—(wg— 172)+m2+A>W— —r
andF,,,. In Appendix C we provide the double expansions (4.129
(2.9 for the basic operatord# andD* as well as foiG and

F. The expressions c@‘ij andfij were obtained via the relations

Upon expressing the field produgig™ and its covariant

P : : . 4 iven in Appendix B from the equal-time operatdf32) in
derivatives in terms of the covariant Wigner functigh6), g i q peratd(2)

Appendix C. We have also used the commutators

d4
o008 00= | 5

SIWxp), @8 (8. 7s] =D, (4133

™

d* N AT op
[0,60016'00= | 5o (10,-ip, WX, [, ,A]=2E. (4.13b

4.8b R
(489 As a result of the line integrals overin the operatordl,

; d*p . and f)# which guarantee the gauge invariance of the formal-
¢(X)[DM¢T(X)]:I 2m)? (39, +1p)WMX,p), ism[1], the equal-time operatofs,, and F,,, for QED are
(4.89  Mmuch more complicated than Eg&.12 for the case of a
scalar potential. This is the origin of the more complicated
°, structure of the minimal subgroug@.12 of 3-dimensional
kinetic equations. Please note the sequence of the operators
in Egs.(4.12: in particular the generalized time derivatives

at act on everything following them. Equatiori4.12) are

the phase-space densities of the charge cuijrérdnd the
energy-momentum tensdr” are simply given by

J*(x,p)=2ep*W(X,p), (499  thus much more intricately coupled than the corresponding
equationg3.16 for the pure scalar case.
T (X, p)=2p*p"WI(X,p). (4.9 It is instructive to integrate Eqg4.12 over p to obtain

The factors of 2 in these expressions account for the contrfffqu_atlons of motion for the corresponding space-time densi-

butions of particles and antiparticles. After performing the Ies:
energy average these equations translate into relations be-

tween the first three momentg,,w; ,w, and the equal-time dp(X)+V-j(x)=0, (4.143
phase-space distributions for the scalar denditx,p), the
charge density(x,p), and the energy densits(x,p): () + V- P(X) —E(X) -](x)=0, (4.14b
1
Wo(X,p)= ——W(X,p), (4.108 3 2
AV2 _ p ﬁ_ 2 o2 2, 2
e(x)—zf —(277')3( 7 (95— V) +p°+m=|W(x,p).
31 (4.140
W1(X,p)= \gmp(x.p), (4.100
1 The first two equations express the conservation of electric

S 3 charge and of energy-momentum while the last equation
\[E (ZA2 €(x,p) ~W(x,p) |. gives the energy density in terms of the scalar equal-time

(4.109 phase-space density(x,p) including quantum corrections.

(The factor of 2 again accounts for particles and antipar-

ticles) In Eq. (4.14b P(x)= [[d3p/(27)3]P(x,p) is the mo-

mentum density in coordinate space, and the last term de-
. p scribes the conversion of field energy into mechanical energy
i(x,p)=2epW(x,p), P(x,p)=p(x,p). (41D by the work done by the electric field on moving charges.

Let us now consider the next two equations in the hierar-
The subgroug3.14 determining the moments,, w, and  chy, the transport and constraint equatid@sl9 for the
w, can thus be equivalently rewritten as transport and conthird-order momeniv;. Again the constraint equation can be

Wa(X,p)= ETN

The charge current densiggx,p) and the momentum density
P(x,p) can be expressed in terms\&f and p as

straint equations fow, p ande: directly solved forws in terms of the solutiong/q,wq,w, of
1 Egs.(4.10, (4.12 [see Eq{(3.24]. Our task is to show that
A NS AW the transport equation faws is redundant. To this end we
—dip+2(dmo+ m- d)W=0, 4.12 . 08 Y .
e P (dimo+ ar-) ( 3 substitute the constrairi8.19b into the transport equation

1 (3.193 and use the scalar QED analogue of the commutators
e+ <@g+ 78+ D)p+2(7oD+ 71— A+ G Gw (322, namely Eqs(4.13 and

=0, (4.12b [d,,B]=3F, (4.153
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[d,,7]=—1+V 7}0 (4.158 to discover a simple calculational technique which permits
v X us to prove this in an elegant way.
[I,7@]=-V,-G, (4.150
B. Comparison with the Feshbach-Villars approach
[d,70]=V o, (4.159 In Ref. [8] a set of equal-time transport equations for

scalar QED was derived by directly Wigner transforming the
A 1/2 equations of motion for thénon-covariant equal-time den-
[d;,d]=—eV,- fo dsE(x+isV,,t), (4.159  sity matrix. Since the Klein-Gordon equati¢h 1) contains a
e second-order time derivative, its direct translation into 3-
12 dimen_sionallphase space does not lead to a.sensiblt_e transport
[7,70] = — ief dSE(x+isV 1) equation which should have only first-order time derivatives.
- Therefore the 3-dimensional approach exploits the Feshbach-
1 ViII_ars reprgsentati0r1_j14] of the_ field equa_tions of mo'gion
+ EVXJ dSSE(X+isV 1)V, which contains only first-order time derivatives. The price to
pay (in addition to the loss of manifest Lorentz covariance
(4.150 is the introduction of an auxiliary field which results in a
' rather complicated 2 matrix structure of the scalar
as well as the identity Wigner function. For the energy averaging method advo-
cated here there is no such problem. In this case second-
order time derivatives appear only in the constraint hierar-

12 1
f ds| 2is+ 2 Vi Vp—SZVX- V, |E(x+isV,,t)=0, chy, and the transport hierarchy contains only first-order time
-1z 41 derivatives.
' n terms of a two-component Feshbach-Villars fie
(4.16 | f Feshbach-Villars field
to rewrite EqQ.(3.193 in the form "
tI>=<X , (4.193
foo(GooWo+ Jo1wW1) + fo1(J10Wo+ 911W1 +g15W5) =0.
(4.17
. o g==|p+— a¢— A°¢ (4.19H
Note that in the derivation of the commutato15 we t m ' '
used Maxwell's equation
~ 1 ehy
a,F*'=0 (4.18 X=3 (l)——t?tqb W(b , (4.199
for the dual field strength tensér, ,= > WUPF"P The iden- we define the density matrix

tity (4.16 (which has no analogue in a theory without gauge

invariance is proved by expanding the electric fiel(x

+isz,t)=e'SVx'VpE(x,t) and integrating term by term. QF(X,Y):<

Equation(4.17) expresses the transport equation oy in

terms of the transport equations feoy andw,. This proves

that it is redundant. x Pt
From the comparison of Eq4.17 with Eq. (3.23 we

observe that in the case of scalar QED the third transport

equation is expressed in terms of the fimsd second trans- Its three dimensional Fourier transform with respectyto

port equations, while only the first one occurs in the case ofields the equal-time Wigner function in Feshbach-Villars

scalar potentials. This difference results from the line interepresentation:

grals which occur in the gauge theory. In a transport theory

with gauge invariance, the kinetic momentum is pgtbut

ﬁ#. The energy average of the zeroth component of the
second term in Eq4.79 yields the equal-time operator,

given in Eqs.(C2), and m=(—v3/2A),, in turn generates ' N€ equations of motion for the Wigner functiol: are a
the coefficient in front of the second bracket in E¢17). In  direct consequence of the field equation
a transport theory without gauge freedom all coefficients

y 1/2

D x+ =t ex;{ —ief dw-A(x+sy,t)>
2 ~172

y

X—E,t)>. (420}

WF(x,p)=J d3ye "PYor(X,y). (4.2

fi,iﬂ vanish due to the absence of linear termgjnin the i <I>=(i(—iV—eA)2(cr +iop) +Mmosteh, |
covariant constraint equation. t 2m 3 2 8
We have not had the patience to carry the above consid- (4.22

erations to higher orders in the energy moments. The corre-

sponding calculations become extremely messy. Based cand its adjoint. Herer, and o3 are the well-known Pauli
the experience with pure scalar theory we expect all highematrices. We calculate the second-order derivatives of the
order transport equations to be redundant, but we have failedensity matrixo ¢ with respect tax andy:
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1/2
exr( —ief dsA(x+sy,t)~y)
~1/2

a2l

1/2
e J ds(—S)yxB(x+sy.)(}V,— V,)er(o5—i0y)
1/2

1 ? . y
EVX—Vy Q,:(a'3—|0'2)=2m ) X+§,t

x[qﬂ(x—%, i+ Mos+eAq

1/2 2
+e? J ds(z —s)yxXB(x+sy,t) | er(oz—iop)
-1/2
. 1/2 N .
+|ef71/2d5(5—s)2y.[vx+sy>< B(x+sy,t)]er(o3—ioy), (4.233
1 ’ y y 12
(EVX+V¥ (o3tio)p=—2m [ Igy—mog—eAg| X+ 5,1 1P| x+ 5.t }exr{—ief dsA(x+sy,t)-y
-1/2

X ®T

1/2
X— %t)> —2ieJ ds(3 +S)yXB(x+sy,t)(3Vy+ V) (o3+ioy)er
~12

2

+ez (O'3+i0'2)g|:

1/2
j ds(3+s)yxX B(x+sy,t)
12

1/2
+ ief ds(3+s)%y- [ViisyXB(x+sy,t)][(o3+io,) Q. (4.23h
~1/2

Note that we used the Feshbach-Villars equationsifand ~ The currentj ,(x) from Eg. (4.2a8 and energy-momentum
®T as well as Maxwell’'s equations fdE=—VAy,— JA/Jt tensorT ,,(x) from Eq. (4.5 can be expressed in terms of
andB=V X A. Subtracting the two equatiori$.23 we geta the Feshbach-Villars fielo® and®" by using the transfor-

closed equation of motion for the density matgx(x,y);  mation (4.19. Similar to Egs.(4.8), we have relations be-
after a Fourier transformation with respectytave obtain the ~tween the field productsb®’, their derivatives, and the
following transport equation for the Wigner function in Wigner functionWe:

t f th tord,, d and 77 used in the last subsec- d°p
ti%rrTS of the operatord,, d and # used in the last subsec @(x)@T(x)zf s We(x.p), (4.273
2MaWe +i (30— @) [ We (03— i0a) — (03+i05) We] [(—iV—eA)d(x)]DT(x)
+ - dWe(o3—ia,)+ (a3 +ion)W, dp i
7 A We(o3—i03) +(o3+ion) We] = —(277)3 <—§V+p)Wp(X,p),
—2im?(Wgo3— o3Wg) =0. (4.24
(4.279
Expressing the equal-time Wigner functid: in terms of &p (i
the Feshbach-Villars spinofs], ®(X)[(iV—eA)q)T(X)]:f EEE (5 V+p)WF(x,p),
WF:%(f3+f20'1+f10'2+f00'3), (425) (427O

we recover the transport equations for the spinor components
fi(x,p)(i=0,1,2,3) which were first derived by Best, Gor- Inserting these together with the spinor decomposifib25

nicki and Greinef8]: into the expressions fgr, andT,, and comparing the inte-
. o grands of the momentum integrations, one is led to the fol-
mdfo=—a-d(f,+f3), (4.26a lowing identifications for the equal-time phase-space densi-
tiesp, € j andP:

ma,f,=— (22— m?)(f,+f5)+2m?f,,  (4.26D pe(X.p) = 2emb(X.p). (4.283

V2
er(X,p) = ( PP 7)[fz(x,p)+fs(x,p)]+2m2f3(x,p),
mafz=—(id?— 7 f,— m-df,. (4.260 (4.28H

maf,=(id?— 7 f,+adfg—2m3f,,  (4.260
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ie(X,p)=2ep[ fo(X,p)+ f3(X,p)], 4.28 " 1 .
Jr(X,p) pLfo(x,p) + f3(x,p)] (4.289 dte+6p.dp—2ep.Ew=0, (4328
Pr(x,p)=2mpfo(x,p). (4.280
e=2(p*+m?)W. (4.320

Note that here, unlike the spinor decomposition for spinor

QED [6,7] where each component of the Wigner function (Here we have used the classical operatiys o, +€E-V,
has a definite physical meaning, there is no obvious physical,§g=Vv + eBx V , without prefactors:.) For constant ex-

interpretation for the componefj. We also point out that

ternal electric fields they coincide even on the quantum level,

the above expressions, especially the one for the energy depi|ding two decoupled ordinary differential equations in

sity, differ from those given in Ref$8,15]. The indexF was

time for W and p:

added in order to point out that these phase-space densities

are not equal to those in Eq&tl.10,(4.1)—they generally

dp=0, (4.333

differ by a total momentum-space derivative, and only their

respective momentum space integr@ls. the corresponding
space-time densitiesre guaranteed to be identical. The ex-

[dP+4(p*+m?)d,+4eE-p]W=0.  (4.33h

plicit relation between the two sets of phase-space densitieEhese equations were studied beforg811,12. The first

is given in Appendix D, Eqs(D8).

equation expresses charge conservation in a homogeneous

Inserting the relationg4.29 into the Feshbach-Villars €lectric field while the second one is the well-known equa-
equations of motior(4.26 one finds, by choosing suitable tion of motion for the charge currepf11,12 which, accord-
linear combinations, the following equations of motion for ing to the relationj=e[p/\(p?>+m?)]n, governs the time

the physical phase-space distributignsand e :

1. n
. .- @ ). . v?
dt€F+€ 'ﬂ'dpF_ (Z_ﬂ'z d'[+dt( p2_ T) WZO,
(4.299

2
i %) + mz}w.
(4.290

1., 1.
6;22[Z<dt2—§d2

L
2

Here we used the shorthaWd(x,p) for the combination

(4.30

In Appendix D it is shown thaWW(x,p) defined in this way

W(Xip) = fZ(va) + f3(X1p)'

evolution of the particle density by pair production in the
electric field. This latter quantity thus comes out the same in
both approaches.

Finally, after integrating the Feshbach-Villars equations
(4.29 over momentum one obtains the same conservation
laws (4.14) for the space-time densities as in the Klein-
Gordon approach. The difference between the densities
p,€,P and pg,ex P in phase-space are not visible on the
coordinate space level. Since all previous studies were done
in one of the above limiting cases, the subtleties related to
the exact definition of the phase-space densjtiaad e were
apparently not noticed before. By accounting for it correctly
both the equal-time Feshbach-Villars approach and the
energy-averaged covariant Klein-Gordon approach are seen
to be fully equivalent.

Before ending this comparison between the two ap-
proaches we would, however, like to point out that dropping
the derivative term in the definitiof4.28 of the energy
density as done in Ref8] leads to wrong conservation laws

indeed agrees with the scalar equal-time Wigner densityfter momentum integration; instead of E¢$.14) one then
(4.109 of the Klein-Gordon field. In addition to the three fjngs

equations above, Eq#4.26 yield a fourth equation of mo-
tion for the unphysical Feshbach-Villars spinor component

f, in terms of the scalar Wigner densiy:

Apparently, the set of equation.29 from the equal-
time Feshbach-Villars approach and the(@e12 derived in

the energy-averaged covariant Klein-Gordon approach have
a different structure. But in Appendix D we show that both

dp(X)+V-j(x)=0, (4.34a9

. h?V; d°p
dre(X)+ V- P(x) —E(x) - j(x)= T&tf WW(X,D),

(4.34b
d’p [4? 1
G(X):ZJ ﬁ[z((??_—v)%

2

+p?+ mz}W(x,p),
(4.349

sets of equations are in fact equivalent. The structural differWhich contains an unphysical term on the RHS of the energy
ence is only due to the fact that the phase-space dengjties conservation law and a spurious factprin front of the

in the covariant Klein-Gordon approach differ fropg ,eg

Laplace operator in the definition of the energy density

introduced via Eqs(4.28) in the Feshbach-Villars approach. Which breaks Lorentz covariance.
This difference disappears in the classical limit where both

sets of equations reduce to

d,p+2p-dwW=0, (4.323

oK

C. Spinor QED
The case of spinor QED has been discussed in the context

of the energy averaging method in Rdf62,17,19. The dis-
cussion presented in those papers has, however, focused en-
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tirely on the equal-time kinetic equations for the lowest en- Let us briefly review the relevant technical steps. We be-
ergy moment of the covariant Wigner function. Here we will gin by performing a spinor decompositi¢@] of the covari-
reformulate the problem in terms of the equal-time hierarchyant Wigner function, separating in a second step explicitly
of energy moments as introduced in Sec. Il and also discuske temporal and spatial parfg] of the covariant spinor
the equations of motion for the higher order moments. components:

1 1
W(x,p)= 7 | F(X,p) +1ysP(X,p) + 7, VXX, P) + 7, ysA*(X,p) + 5 0,57 (X,P) (4.353

1 .
= Z[YOFO(X,D) + v5¥oF1(X,p) +iysF2(X,p) + F3(X,p) — v5¥- Go(X,p) — ¥- G1(X,P)

+iysy- Ga(X,p)+ ¥5Y0Y: Ga(X,p)]. (4.35h

Inserting the decompositiof@.353 into the covariantVGE  time density matrix. They determine the dynamics of the

[6]) equation of motion for the Wigner functioW(x, p), zeroth-order energy moments. The three-dimensional dy-
namical operators occurring in these equations are identical
with the ones arising in scalar QED and are given in Appen-
dix C.

(4.36 The first-order moments$'(x,p) and g'(x,p) satisfy 16

. R transport equations derivgd 2] from the first energy mo-

with IT,(x,p) and D,(x,p) from Egs. (4.70,(4.7d, and  ment of the covariant transport equati¢h2a,

separating real and imaginary parts one arrives at two groups

of coupled covariant kinetic equations of ty(#®2); see Egs. 1 1

(74),(75) of Ref. [12]. Performing the energy average then —dfg+—d-gi+Dfo+1-9,=0, (4.383

leads to two groups of equal-time kinetic hierarchiesth

16 such hierarchies of equations in each gjdiap the en-

ergy moments of the 16 covariant spinor components.

Since_ for sp_inor QED\/I_=O, minimal truncatio_n of these i atfiJr i a_géJr imf%+f)f1+| -Go=0,

2X 16 hierarchies according to Sec. Il B resultoimetrans- 3 3 V3

port equation from each of the 16 transport hierarchies and (4.38n

no constraint equations. The minimal subgroup of equal-time

kinetic equations thus consists only of the 16 transport equa-

W(x,p)=0,

'}’M(ﬁ#(xrp)"' Iz D#(X,p)) —m

(o8
(o8

. 1. 2 . 2 . .
tions for the 16 zerqth-orde_r energy momemiéx,p) and —difi+ — mg53— —mfi+Df,+2G gg=0,
gi(x,p) of the covariant spinor components(x,p) and V3 V3
Gi(x,p) (i=0,1,2,3): (4.380
dfo+d-g;=0, (4.373 1 )
o —dfi— — 7 g3+ Df;—2G.g,=0, (4.380
d,f;+d-go+2mf,=0, (4.37b V3 V3
difo+ 27 g3—2mfy =0, (4.379 Lo, log 25 4o ,
— Ogpt+ —dipt — @aXg+Dgot11,-2GXg; =0,
Nk o Vi o0 v3 V3
d,go+df,—2mx g, =0, (4.37¢
1., 1., 2. 2 . . .
8,01+ 8f g — 277X go+ 2Mg, =0, (4.37h 3 gt oo dfgm oo X got —omg; +Da o
d,g,+dX gg+ 2mf3— 2mg, =0, (4.379 —2GXxgy=0, (4.38f)
d,gs— dx g,— 27f,=0. (4.37h

1. 1. 2 . 2 N -
— dygs+ — dx g3+ — @f3— —mgr+Dg,+1 X
These 16 equations are identical to the BGR equations de- y3 12 yz O 987 3 Ta™ JoMarT D% 120
rived by Bialynicki-Birula, Gornicki and Rafelski7] by

Wigner transforming the equations of motion for the equal- +2Gf;=0, (4.389
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the equal-time Wigner functiohsThese extra constraints re-
1., 1. 0 2., 4 . A ;
— dgi— — dxgi— — mfi+Dgy—ixg,—26f,=0, duce the number of independent zeroth-order moments from
V3 V3 V3 16 in the quantum case to 4 in the classical limit. They are

(4380  thus extremely important. As a result the BGR equations
reduce to two decoupled Vlasov-type transport equations for
the charge and spin distribution functions. In the general
guantum case there are no such extra constraints on the
1 equal-time Wigner function$19]. One must solve all 16
_f(l): gy — mof o+ mfs, (4.393  coupled transport equatiortd.37), but these solutions then
V3 fully determine also all higher order moments. These higher
order moments have important physical meaning: the first-
1 - - order moment ofy(x,p), for instance, describes the energy
%flzﬂ" %o~ mof1, (4399 gistribution in phase-space. With the help of the constraint
(4.393 it is given by

and 16 constraint equations derivil?] from the zeroth en-
ergy moment of the covariant constraint equatigr2b):

if1=—éa-g—%f (4.399 _TJ dEE —\Ffl

32T T Tl : €X,P)=Tr | S—EyoMx,p)=\/3 fo(x,P)

1 h. . =V2[mfs(x,p) = mofo(X,P) + 7 G (X,P)]. (4.4

—13= 5 d-g— mofa+mfo, (4.399

v3 V. CONCLUSIONS

1 5o R R We have presented a universal method for the construc-

— gé= 3 dX g+ @f— m9Qgo+ Mys, (4.39%¢ tion of equal-time quantum transport theories from the cova-

V3 riant quantum field equations of motion. It is based on en-
ergy averaging the covariant kinetic equations for the

1 . ~ - covariant Wigner operatdwhich is the Wigner transform of

1_ —

V3 9=3 dXgo+ arfo— oGy, (4390 e covariant, “two-time” density matrix and its energy
moments. This procedure yields a hierarchy of coupled trans-

1 A port and constraint equations for the energy moments of the

— go=— 5 df 3+ TX g3~ moUp, (4.399  covariant Wigner function, the so-called equal-time Wigner

V3 2 functions. We showed how, in the mean-field approximation,

this hierarchy can be truncated at a rather low level, requir-
1 , A, - - ing the solution of only a small number of equal-time trans-
v B=35 df;— X g, — moGs + Mo - (4390 port equations, and how the higher order energy moments

(higher order equal-time Wigner functiongan be con-

A discussion similar to that in scalar QED revef1§] that ~ Structed from these solutions via constraints. _

the transport equation&t.38 are not independent of the ~ The major advantage of the equal-time formulation of
BGR equations(4.37) and the constraint equatiorid.39.  (quantum transport theory is that the resulting transport
For instance, using Eq#4.39, the transport equation fdg, ~ €quations can be solved as initial value problems, with

can be expressed as an operator combination of the transp&ipundary values for the equal-time Wigner functionst at
equations forf, andg; : =—o which can be calculated from the fields tat —oo.

This is not the case for the covariant transport equations and
7A'Fo((ﬂjtfoJr(Aj'gl)—;1'-(<A1t91+6h‘0—2§1->< Oo+2mg,)=0. the covariant Wigner fu_nction. _The_present paper thus pro-
(4.40 v_|des an essential step in the pll_re<_:t|on of pract_lcal computa-
tions of the dynamics of relativistic quantum field systems
Therefore, the first-order moments are fully determined inout of thermal equilibrium in the language of transport
terms of the solutions of the BGR equatio@#s37) for the  theory, i.e. in a phase-space oriented approach. The method
zeroth-order moments by solving the constraint equationgresented here improves upon previous approaches by being
(4.39. much more systematic: we did not just focus on the lowest
Again, we have not been able to find a simple proof thattnergy moment§which contain only a small fraction of the
the same is generally true for all higher order energy moinformation contained in the covariant Wigner functipbut
ments, and we stopped here. We do, however, believe thate discussed and showed how to solve the complete hierar-
such a proof must exist, and that therefore all higher ordechy of moment equations. We had already before demon-
energy moments can be directly computed from the solutionstrated for spinor QED that the non-covariant three-
of the BGR transport equations by solving the constraindimensional approactwhich starts directly from the equal-
hierarchy.(Note added in proofThe general proof was re- time density matrix yields an incomplete set of equal-time
cently found by S. Ochg20].) transport equations. In this paper we also discussed the case
It was shown in Ref[12] that in the classical limit the of scalar QED and showed that again the correct physical
simple algebraic relatioil.4) changes the structure of the interpretation of the Feshbach-Villars spinor components
constraintg4.39 for the first-order moments and turns them f, . . . ,f5 in the direct non-covariant equal-time approach is
into additional constraints for the zeroth-order momdh&s  not possible without a comparison to the energy-averaged
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covariant approach which we presented in Appendix D. WeTherefore, if the finite sum oven has the upper limiM, the
conclude that the only safe way of deriving a correct andsum overj in Eq. (2.16 extends only over the ranges
complete set of equal-time quantum transport equations is biy+ M.
starting from the covariant formulation and taking energy From the recursion relation for the Legendre polynomials
moments of the covariant kinetic equations. The method can )
be generalized in a straightforward way to other types of . I
interactiong16,17,19, including non-Abelian gauge interac- wPi(0)=5=7 Pisi(0)+ 577 Pioi(w) (A3)
tions[20].

The structure of the hierarchy of equal-time quantum ki-one easily derives the recursion relation
netic equations depends on the structure of the covariant field

equations from which one starts. For scalar or vector theories ., , i+1 mn mn

. . . . C: = C:. . + —_ G .
with second order time derivatives one has to solve a™i. 2i+1)(2i+3) i+1] (2i+1)(2i-1) i—1]
coupled set of three equations for the three lowest energy (Ad)

moments, two resulting from the equal-time transport hierar-
chy and one stemming from the constraint hierarchy. Fofor the coefficientsc{!". This allows one to raise the first

spinor theories with only first order time derivatives in the ypper indexm, starting from Eq(A1). In particular we have
field equations one ends up with only one equal-time trans-

port equation for the lowest energy moment of each spinor 0 i

component of the Wigner function. All higher order energy CiZq= JZ-Dain (A53)
moments can be determined from the solutions of these (2i-1)(2i+1)

equations by solving constraints.

Important further simplifications occur in the classical 20 i(i+1)
limit #—0: then all higher order energy moments can be Ci-1i+1= (2i+1)\(2i—1)(2i +3)
expressed algebraically in terms of the zeroth energy mo- (A5b)

ment, and the number of equations is drastically reduced. For

scalar theories one obtains just one Vlasov-type equation fowhich we will need in Appendix B. Similarly the second
the on-shell charge distribution function. For spinor theoriesupper index can be raised by using the relations

one obtains two decoupled Vlasov-type equati@ree scalar

and one vector equatiprfor the on-shell charge and spin o[ Pj+1(@) = Pj_1(@)]=(2] +1)Pj(w),
density distributions in phase-space. Again the only system- _
atic way of deriving the constraints leading to these simpli- Pi(x1)=(x1)! (j=0), (A6)
fications is by energy averaging tlielassical limit of the ] )
covariant transport equations. which, forj=2, lead to

All results in this paper were derived in the mean field TR
approximation, i.e. in the collisionless limit. It is generally mn+1_ mn+1 : 1 .mn
known that including collision terms in the covariant trans- i 2j-3 Cijm2 TN+ D@ =D,
port equations leads to the appearance of non-localities in (A7)

time (“memory effects”) in the equal-time transport equa- _ . o )

tions[21]. It is not inconceivable that these memory effects | NiS expression is useless for 0 andj=1; these cases can
lead to serious complications for the truncation of the equalP€ treated by another recursion relation which can be ob-
time transport hierarchy. This is certainly an interesting and@ined by using EqA6) on the Legendre polynomial with

difficult problem for future studies. the indexi:
m,n+1_ 2i+1 m,n+1 \/— m,n
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APPENDIX A: THE COEFFICIENTS Cir}m

From the definition of the coefficients" in Eq. (2.18 which follows fromP_;(x)=P;_1(x). o _
and the orthogonality conditiof2.5) we see that The above recursion relations can be initialized with the

following nonvanishing coefficients farj,m,n<1:
00__
Cij = 5” . (Al) 1
00 00 11 10 10 01
Cop=Cii= —Cop=1, C;=Cip=—, Cio=—V3,
Furthermore, it is easy to see from EQ.19 that 00~ 1t 00 RV 10

ci"=0 for n>i+m or j>i+m-n. (A2) chi=—2. (A10)
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APPENDIX B: THE OPERATORS g;; AND fj;
FOR SCALAR THEORIES

The three-dimensional dynamical operat(:;rg(x,p) and

fij(x,p) needed in Eqs(3.14) and(3.19 are obtained from
the definition(2.17) with the coefficients{]" from Appendix

A. Please note that fofqij the upper limit in Eq.(2.17) for

the sum ovem is M =1 while for f;; it is M+1=2. One
finds

9oo=Goo— G11, (Bla
o G (B1b)
Jo1 v 101
~ n 1. n
910=V3| —Gp1t+ 3 G0+ 2Gy,|, (Blo
911= Goo— 2613, (B1d)
g 2 G (Ble
= — y e
12 \/E 10
920= V5(8G o~ G1,-9G1y), (B1f)
R n 2 . n
9= V15 —Gpy+ 15 Gipt 3G/, (Blg
922= Goo— 3G11, (B1h)
g 3 G (B1i)
= — y I
J23 \/3—5 10
foo=Foo— F11t 5 Faot 2F 22, (B1j)
N 1 .
for1= —3(F10_2F21), (B1Kk)
f 2 F (B1l)
02= o= Fo,
. “ 1. n ~ ~
f10=Vv3 _F01+§ 10t 2F 1= F21—6F 3/,
(B1m)
R “ “ 3. n
f11=Foo—2F 11+ 5 Foot6F2;, (B1n)
f 2 (F10—3F,) (Blo)
= — —_— y O
12 \/1—5 10 2
(= 2v3 F (B1p)
13~ 5\/7 20+ p
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The dynamical operator&,,, and F,,, are given in Egs.
(3.12 for scalar mean field interactions and in Appendix C
for scalar QED. Please note that in both caSgs=0 for k

#0 and thus some of the expressionsffgrabove simplify.

We also note that in
2

fifl,i+l: 2

m=0

i—1+m

2 Cinlnl,iJrl'A:mn (BZ)
n=0

the only term which does not violate the second inequality in

Eqg. (A2) is the one withm=2, n=0:

R R i(i+1) R

fii1ie1=0% Fo= Fo.
i—1i+1 i—1i+1"20 (2i+1) (2i-1)(2i+3) 20
(B3)
In the last equality we used E@A5b). From Eq.(3.12h or

(C4g we thus see tha‘Ati_lm is just a constant. Following
the same reasoning one also obtains

1 i+m
A _ mn A _.10 A
gi—l,i_mZO nZO Ci=1iGmn=Ci=1;G1o0

i R
= G1o» (B4)
Jei—ni+y
where according to Eq3.123 or (C3d) G, is proportional
to the time derivative); on at, respectively.

APPENDIX C: THE OPERATORS G, AND F 1,
FOR SCALAR QED

The elementary operatoﬂ?u and Iﬁu are extensions of
the covariant momentum,, and the covariant derivativg, ,
respectively. Their double expansionsdrandd/dw are

HA+“+A5 |‘3(;26;(93+ C1
o= Aot ot K T RN aw? A awed T (€13
b_af)a E # F & c1h
0=y G A%a0? T AT aed T (C1h
fi God H # o1
Xoo azae? (¢19
D= 8+r 0,37 + c1
= R e T azaa? T (19
with the equal-time dynamical operators,
. 12
wo(x,p):ieﬁj dSE(X+ishiV,,t)-V,, (C29
—-1/2
. 12
w(x,p):p—ieﬁf dsB(x+isaV,,t)XV,,  (C2b
—-1/2
. 1/2
dt(x,p):hﬁﬁeﬁf dsE(x+ishVy,t)-V, (C20
—-1/2
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. 1/2
d(x,p)=hVX+ehJ dsB(x+ishiV,,t)XV,, (C2d
~1/2
R 1/2 9
A(x,p):ehzf dss — E(x+isiV,,1)-V,, (C2¢
—1/2 at
iefi 12 o 92 ,
B(x, p)= > 71/2ds pr E(x+ishV,,t)-V,, (C2f)
eh“ V2 J° _
C(x, p)=— 71/2ds P E(x+ishVp,1)-V (C29
R 1/2 9
D(x,p)zieﬁzf dss— E(x+ishiV,,t)-V,, (C2h
—1/2 at
eﬁ3 12 92 ) .
E(x.p)= A58 g ECxtishV -V, (C2)
ien* 12 3 3 ) _
F(x, p)= 5 _1/2ds 73 E(x+ishV,1)-V,, (C2))
. 112 i
G(x,p)zeﬁZJ ds€ — B(x+ishV,,t)XV,
—112 at
1/2
+|ehf dssE(x+ishV,,t), (C2k
i77)
iend (12 3 92 )
(x p) = > _1/2ds 2 B(x+ish V1) XV,
1/2 9
—eh2J dss — E(x+isfiV,,t), (C2l)
~1/2 at
. P 9 _
I(x,p)=ieh f_llzdssﬁ B(x+ish V1) XV,
112
—eﬁf dsE(x+ishiV 1), (C2m)
1/2
ﬁ3 1/2 2 92 .
J(x, p)= 71/2ds pr B(x+ishV,, 1) XV,
12 9
+ieﬁzf dss— E(x+ishV,,t). (C2n
12 at

By substituting these expansions into the expressiorﬁ% of
and F in Egs. (4.7) and using the definition 06,,,, Eq.
(2.9), we list some low-orde6,,, and F,, which will be
used in the derivation of the kinetic equations for low-order

energy moments:

GOOZ ;Toat'f' ;T a, (C3a
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A S

(C30

Gio=Ad,, (C3d
Gu=-D (C3¢
Gio=— E (C3f)

A
Gia= A% (C39
and

Foo=3(df — ) — (A+ m§— =) +m?, (C4a

1 ~ A ~ A A “ A N
For= T L5({d1}—{d, DY)~ 270A— {78} + 28],

(C4b)
F02:P[%(DZ—I2+{d,J}—{dt,E})
—(A?2=G?—{m,H}—2mB)+3C], (C4o
[E]_O:_ZA’;T(), (C4Q)
Fi=—2A, (C4e
. B
F12:2K, (C4f)
Foo=—A2 (C4g

APPENDIX D: RELATION BETWEEN FV AND KG
APPROACHES

In this appendix we relate the Wigner function of the
Feshbach-VillargFV) approach to that of the Klein-Gordon
(KG) formulation, both on the covariant and equal-time
level.

We rewrite the FV Wigner functiog4.21) as an energy
integral of the covariant FV Wigner densityr(x,p),

d d .
WF(X'p):f Z_S;)WF(X’p):f 2_5)7(') f d4ye|pAyQF(le)1
(D1)

where the covariant FV density matix(X,y) is defined as
y 1/2

= exp(ief dsA(x+sy)-y>

2 ~112

X— X) . (D2)

Cr(X,y)=®| x+

+
X O >

With the transformatior{4.19 the covariant FV X2 den-
sity matrix can be expressed in terms of the KG fields:
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1/2
0r(Xy)= exp( ieJ_l/zdsA(xsty) . y)

i 1 i 1
L[ 1 m(P2-D+5DIDY, 1+ (DS +D%)- 5DID?

*a i 1 i 1 P(x:) b (x-), (D3)
1-—(D$+D%)— DYDY, 1-—(D§-D%)+ DID?

wherex. =x=*y/2 and
Dgzagtiier(xi). (D4)

Using the identities

1/2 1/2 1/2
&2+exp(ief_1/2ds,6(x+sy)-y> :ie(Ao(x+)+ f_llzds(%vLs)FoM(ersy)y“)ex;{ief_mdsA(ersy)-y),

1/2 1/2 1/2
(92 exp(ieJ dsA(x+sy)~y) =ie( —Ao(x,)+j ds(%—s)FOM(x+sy)y“)exr(ief dsA(x+sy)‘y),
- -1/2 12 -1/2

and Fourier transforming with respectyone obtains the covariant FV Wigner density in terms of the covariant KG Wigner
function:

2 - 1 . ~ 1 . -
1 1—EHO+W(%D3+HS 1+ DO_W(%D(Z)—FHS
We(X,p)= 7 , W(X,p). (D5)
4 I A 1 1R2, 112 1 1R2, 112
1= Do= 2 (zDo+1lp) 1+ —1lo+ — (3Do+1lp)

Here Iﬁo(x,p) and ﬁo(x,p) are the time components of the operators given in E45.0,(4.70. Performing the energy
average we finally obtain a relation between the equal-time FV Wigner function and the energy moments of the KG Wigner
function:

1 1 . 1 p(X,p) -
WE(X,p) = Z(1+ o) W(X,p)— mazdt(x,p)w(x,pH 5m%l 2e T mo(X,PYW(X,p)

1 1. 1 1. ) .
+ W(l_ o) 1 dZ(x,p)W(X,p)+ Ee(x,p)+ s 7o(X,P) p(X, ) — A(X,p) W(X, p) + m5(X,p) W(X,p) | .

(D6)
|
HereW(x,p), p(x,p), ande(x,p) are the scalar, charge, and =+ 2em-W DS
energy density in phase-space as defined in Eq&0 for PE=P ot (D8
the Klein-Gordon field, and the operatoﬁso(x,p) and jr=j=2epW (D8b)
d,(x,p) are defined in Appendix C. Comparing E&6) with '
the Fe_shbach-_ViIIars spinor decompositi@n25 we find the 1
following relations: er=1let - Top+[ (02— V) +p?
2emfy=p+2emoW, (D7a) o
+m?+ 75— AW, (D80
1.
fi=— >m d,W, (D7b) i 1
PF: P+ 2p7TOW: - pPF .
fotfa=W, (D70 e (D89
o mp 1.
m?(f,—f3)=(3 df+ 75— AW+ e+ 5 Top- (D7d)  One easily checks that the momentum integrals of the FV

and KG phase-space densitig¢g. the corresponding space-
Inserting them into Eqg4.28 we obtain the following rela- time densitiesagree with each other.
tions between the FV phase-space densit#28 and the Inserting these relations into the equations of motion
KG phase-space densitié$.10), (4.11): (4.29 we find
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. o The first and third equations are now seen to agree with the
dip+2(dymo+ @ d)W=0, corresponding equatiortd.12 from the energy-averaged co-
variant KG approach while the equation of motion for the
energy density still looks different. However, by acting with

o on the first and withd, on the third equation and then
combining them with the second equation, using the commu-
+m?2d,+ 27 dmy JW=0, tators (4.13 and (4.15, one indeed also recovers Eq.
A (4.12h. This shows that the Feshbach-Villars equations
o A I " 2mg (4.29 are equivalent to the minimal subgroup of equal-time
e=2[3(df— )~ (mg— =)+ m’+ A]W- e P kinetic equations(4.12 in the energy-averaged covariant
(D9) Klein-Gordon approach.

ol P

dte+E(dtwo+w-d)p+2[%(dt2—d2)dt+wzdt+dt77(2)—th
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