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Equal-time hierarchies for quantum transport theory
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We investigate in the equal-time formalism the derivation and truncation of infinite hierarchies of equations
of motion for the energy moments of the covariant Wigner function. From these hierarchies we then extract
kinetic equations for the physical distribution functions which are related to low-order energy moments, and
show how to determine the higher order moments in terms of these lowest order ones. We apply the general
formalism to scalar and spinor QED with classical background fields and compare with the results derived
from the three-dimensional Wigner transformation method.@S0556-2821~98!01810-4#

PACS number~s!: 12.20.Ds, 05.60.1w, 52.60.1h
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I. INTRODUCTION

Transport theory@1# based on the Wigner operator is e
tensively used to describe the formation and evolution
highly excited nuclear matter produced in relativistic hea
ion collisions. The Wigner operator can be defined in
dimensional@2–6# or 3-dimensional@7,8# momentum space

which we denote byŴ(x,p) andŴ(x,p), respectively. Cor-
respondingly, there are two formulations for the phase-sp
structure of any field. Either of these two formulations has
advantages and disadvantages. In addition to its man
Lorentz covariance~which is very useful from a technica
point of view!, another characteristic feature of the
dimensional formulation for QCD@2–5# and QED@6# is that
the quadratic kinetic equation can be split up naturally int
transport and a constraint equation. The complementarit
these two ingredients is essential for a physical understa
ing of quantum kinetic theory@9#. In the classical limit, these
two equations reduce to the Vlasov and mass-shell equat
respectively. The main advantage of the 3-dimensional
proach@7,8# is that it is easier to set up as an initial valu
problem: one can directly compute the initial value of t
Wigner operator from the corresponding field operators
the same time. In the covariant frame this is not poss
since the covariant Wigner operator is defined as a
dimensional Wigner transform of the density matrix and th
includes an integration over time. Hence in this approach
initial condition for the Wigner operator at very early time
must be constructed phenomenologically. Some true qu
tum problems such as pair production@10# in a strong exter-
nal field have thus so far been solved only in the
dimensional~or equal-time! formulation @7,11#.

One way@7# to obtain equal-time kinetic equations whic
parallels the procedure in the covariant formulation is
Wigner transform the equation of motion for the equal-tim
density operator%̂(x,y). For spinor QED this procedure re
sults in the Bialynicki-Birula–Gornicki-Rafelski~BGR!
equations@7# for the equal-time Wigner functions. In Re
@12# we suggested a different derivation which is based
570556-2821/98/57~10!/6525~19!/$15.00
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taking the energy average of the covariant kinetic equati
in the 4-dimensional formulation. It exploits the fact that t
equal-time Wigner function is the energy average~i.e. zeroth
order energy moment! of the covariant one. With this
method we showed for spinor QED that the direct ene
average of the covariant kinetic equations leads, in addi
to the BGR transport equations for the spinor component
the equal-time Wigner function, also to a second group
constraint equations which couple the equal-time Wig
function to the first order energy moment of the covaria
one. In the classical (\→0) limit, these additional equation
provide essential constraints on the equal-time Wigner fu
tion and allow one to reduce the number of independ
distribution functions by a factor of 2@12#. In the general
quantum case, the additional equations determine the
evolution of the energy distribution function which in ge
eral cannot be expressed in terms of the equal-time Wig
function. In this sense the BGR equations do not provid
complete set of equal-time kinetic equations.

As we will discuss in this paper, this incompleteness ha
more general aspect. As just mentioned, the equal-t
Wigner operator is related to the covariant one by@12#

Ŵ~x,p!5E dEŴ~x,p!, ~1.1!

where we wrotep5(E,p), E independent ofp. As such it is
only the lowest member of an infinite hierarchy of ener
moments of the covariant Wigner operator:

Ŵj~x,p!5E dEEjŴ~x,p!, j 50,1,2, . . . , ~1.2!

with Ŵ0(x,p)[Ŵ(x,p). Therefore, to set up a complet
equal-time transport theory which contains the same amo
of information as the covariant theory one needs dynam
equations for all the energy moments. Any covariant kine
equation will thus correspond to an infinite hierarchy
6525 © 1998 The American Physical Society
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6526 57PENGFEI ZHUANG AND ULRICH HEINZ
coupled kinetic equations for its energy moments, i.e. for
equal-time Wigner operatorsŴj (x,p).

This infinite hierarchy only exists for genuine quantu
problems where the energy can exhibit quantum fluctuatio
In the classical limit, the covariant Wigner operator satisfi
the mass-shell constraintp25E22p25m2, and the energy
dependence of the covariant Wigner function thus dege
ates to two delta-functions atE56Ep56Am21p2. The
equal-time Wigner operatorŴ(x,p) then splits into a posi-
tive and a negative frequency component,

Ŵ~x,p!5Ŵ1~x,p!1Ŵ2~x,p! ~\→0! ~1.3!

and all energy moments can be expressed algebraical
terms of these as

Ŵj~x,p!5Ŵj
1~x,p!1Ŵj

2~x,p!

5Ep
j Ŵ1~x,p!1~2Ep! j Ŵ2~x,p!,

j 50,1,2, . . . ~\→0!. ~1.4!

The solution of the equal-time kinetic equations forŴ(x,p)
thus also determines the dynamics of all higher energy
ments. Thus, in the classical limit, a simple zeroth ord
energy average of the covariant kinetic theory yields a co
plete equal-time kinetic theory.

In the general quantum case, the higher order energy
mentsŴj (x,p), j >1, contain genuine additional informatio
and can no longer be expressed algebraically through
equal-time Wigner operatorŴ(x,p). This means that in prin-
ciple in the equal-time formulation we are stuck with t
problem of solving an infinite hierarchy of coupled equ
tions. Actually, there are two such hierarchies, one resul
from the covariant transport equation~‘‘transport hierar-
chy’’ !, the other arising from the generalized mass-shell c
straint ~‘‘constraint hierarchy’’!. In practice this raises the
problem of truncating the hierarchy in a physically sensi
way. Since only the low-order energy moments of the co
riant Wigner function have an intuitive physical interpret
tion, it turns out that physics itself suggests an appropr
truncation scheme. We will show that the hierarchies of m
ment equations are structured in such a way that the first
low-order moments form a finite and closed subgroup
equations which can be solved as an initial value proble
and that~surprisingly! all the higher order moments can b
derived from these low-order moments recursively us
only the constraint hierarchy, i.e. without solving any ad
tional equations of motion. The equations from the transp
hierarchy for the higher order moments are redundant.

We first discuss on a general basis, starting from the
variant approach, the derivation and truncation of equal-t
hierarchies of kinetic equations. For illustration we then co
sider in full generality the case of a transport theory for s
lar fields with arbitrary scalar potentials. For this case eve
thing can be worked out explicitly to arbitrary order of th
moments. We give the subgroup of equations which fu
characterize the first few low-order moments, prove the
dependence and redundancy of the transport equation
e
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the higher order moments outside this subgroup, and ob
from the constraint hierarchy explicit expressions for all t
higher order moments in terms of the solutions of the lo
order subgroup. We then apply the general formalism to s
lar and spinor QED. Here the equations have a more c
plicated structure, and we restrict our attention to the clo
subgroup of equations for the lowest order moments, d
cussing the redundancy of the transport equations for
higher order moments and their recursive determinat
through the constraint hierarchy only for the first mome
outside the closed subgroup of equations for the low-or
moments. We will compare our results with the kinetic equ
tions for the equal-time distribution functions obtained p
viously in Refs.@7,8,12#. Our final result will be a complete
set of kinetic equations which can be implemented num
cally as an initial value problem.

II. GENERAL FORMALISM

The 4-dimensional Wigner transform of the equation
motion for the covariant density operator leads to a comp
Lorentz covariant kinetic equation for the Wigner operator
couples the one-body Wigner operator to two-body corre
tions @1#, which in turn satisfy an equation which couple
them to three-body terms, and so on. After taking an
semble average this generates the so-called Bogoliub
Born-Green-Kirkwood-Yvon~BBGKY! hierarchy @13# for
then-body Wigner functions. A popular way to get a close
kinetic equation for the one-body Wigner function~i.e. the
ensemble average of the one-body Wigner operator! is to
truncate the BBGKY hierarchy at the one-body level,
factorizing the two-body Wigner functions in the Hartree a
proximation. So far most applications of quantum transp
theory have employed this approximation, and in the follo
ing we will also restrict ourselves to it. For us the mean fie
approximation provides a crucial simplification, and
present it is not obvious to us how to generalize our result
order to include correlations and collision terms.

For a scalar field in the mean field approximation t
complex equation for the self-adjoint scalar Wigner functi
can be separated into two independent real equations@12#

Ĝ~x,p!W~x,p!50, ~2.1a!

F̂~x,p!W~x,p!50. ~2.1b!

The first equation corresponds to a generalized Vlasov eq
tion; after performing the energy average it generates a h
archy of transport equations for the energy mome
Wj (x,p) ~‘‘transport hierarchy’’!. The second equation is
generalized mass-shell constraint; it generates a hierarch
non-dynamic constraint equations~‘‘constraint hierarchy’’!.
Equations with the structure given in Eqs.~2.1! will be the
starting point for our discussion of scalar field theories
Secs. III and IV A. Factors ofpm in the dynamical operators
Ĝ(x,p) andF̂(x,p) arise from the Wigner transformation o
the partial derivative]m in the Klein-Gordon equation. Sinc
the latter contains at most second order time derivatives
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57 6527EQUAL-TIME HIERARCHIES FOR QUANTUM . . .
most two powers ofp0 occur. In fact,Ĝ(x,p) is linear inp0

while F̂(x,p) is quadratic inp0 . This will be important be-
low ~see Sec. II B!.

For spinor fields the covariant Wigner function is a 434
matrix in spinor space which for a physical interpretati
must be decomposed into its 16 spinor componentsW s. In
this way the complex kinetic equation for the Wigner fun
tion matrix is split into 32 independent real equations for
self-adjoint spinor components@6,12#. These equations ca
be further divided into two subgroups according to their a
ticipated structure after performing the energy average:

(
s851

16

Ĝss8~x,p!W s8~x,p!50, ~2.2a!

(
s851

16

F̂ss8~x,p!W s8~x,p!50,

~s51,2, . . . ,16!. ~2.2b!

The first subgroup leads to equations containing only fi
order time derivatives and thus generates 16 hierarchie
transport equations for the energy moments of the sp
components~‘‘transport hierarchies’’!. The other subgroup
which involves both first and second order time derivativ
leads to a set of 16 hierarchies of constraint equations~‘‘con-
straint hierarchies’’! for the equal-time moments of th
spinor components. For the lowest energy moments,
spinor componentsWs(x,p) of the equal-time Wigner func
tion, the details of this procedure were worked out in R
@12#, and we will use these results in Sec. IV C. Since
original Dirac equation is linear in the time derivative, th
dynamical operatorsĜss8(x,p) and F̂ss8(x,p) contain at
most single powers ofp0 . In fact, the operatorsĜss8(x,p)
are independent ofp0 .

A. Hierarchy of energy moments

In this subsection we will concentrate for simplicity on
single covariant kinetic equation of the generic form

Ĝ~x,p!W~x,p!50, ~2.3!

whereĜ(x,p) contains at most two powers ofp0 and of the
space-time derivative operator]m , but an arbitrary numbe
of derivatives with respect to the momentum space coo
nates~see Appendix C!. We will return to the full set of
equations~2.1!, respectively~2.2!, in the following sections.

We begin by decomposing the energy dependence of
Wigner function into a basis of orthogonal polynomia
hj (E):

W~x,p!5(
j 50

`

wj~x,p!hj~E!. ~2.4!

The expansion coefficientswj (x,p) are defined in the equal
time phase space. Using the orthonormality relation
e

-

t
of
or

s

e

.
e

i-

he

E dm~E!hi~E!hj~E!5d i j , ~2.5!

wheredm(E) is the appropriate integration measure asso
ated with the chosen set of polynomialshj , the equal-time
componentswj (x,p) can be related to energy moments of t
covariant Wigner function constructed with the basis fun
tions hj (E):

wj~x,p!5E dm~E!hj~E!W~x,p!. ~2.6!

If the system has finite total energy, the covariant spin
components must vanish in the limitE→6`. We will as-
sume that they vanish at infinite energy faster than a
power of E such that for any combination of intege
i , j ,m,n>0, we have

E dm~E!
]

]E S ]n

]En @hi~E!Em#
] j

]Ej W~x,p! D50.

~2.7!

With exponential accuracy we may therefore restrict the
ergy integration to a finite interval2L<E<L. Introducing
the scaled energyv5E/L we can thus use as our set
basis functions the Legendre polynomials

hn~v!5A2n11

2
Pn~v! ~2.8!

with the trivial measuredm(v)5dv on the interval
@21,1#.

As discussed above, the dynamical operatorĜ(x,p) in
Eq. ~2.3! in general contains powers ofE up to second order
and an infinite number of energy derivatives]/]E. In terms
of the new dimensionless energy variable we may thus w

Ĝ~x,p!5 (
m50

M

(
n50

`

Ĝmn~x,p!vm S ]

]v D n

, ~2.9!

with M<2. Substituting this double expansion into Eq.~2.3!,
multiplying by hi(v) from the left and integrating over en
ergy v we obtain

(
m,n

Ĝmn~x,p!E
21

1

dvhi~v!vm
]n

]vn W~x,p!50.

~2.10!

Inserting the expansion~2.4! of the covariant Wigner func-
tionW(x,p,v), this can be written as

(
j 50

`

Ĥ i j ~x,p!wj~x,p!50, i 50,1,2, . . . , ~2.11!

where
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Ĥ i j ~x,p!5 (
m50

M

(
n50

`

Ci j
mnĜmn~x,p! ~2.12!

with

Ci j
n 5E

21

1

dvhi~v!vm]v
n hj~v!. ~2.13!

It is easy to see from Eq.~2.13! that

Ci j
mn50 for n. j and i . j 1m2n. ~2.14!

For j > i 2m1n the coefficients are in general nonzer
Therefore, the sum overj in Eqs. ~2.11! extends over the
rangej >max@0,i 2M #. For each value ofi , Eqs.~2.11! thus
contain an infinite number of terms. In this form Eqs.~2.11!
are thus not practically useful. However, one can use
surface condition~2.7! to rewrite Eqs.~2.11! in such a way
that each equation contains only a finite number of ter
Returning to Eq.~2.10! and integrating by parts, we can re
place the integrand by

hi~v!vm]v
nW~x,p!

5 (
l 50

n21

~2 ! l]v$]v
l @hi~v!vm#]v

n2 l 21W~x,p!%

1~2 !n]v
n @hi~v!vm#W~x,p!. ~2.15!

The contribution to the integral in Eq.~2.10! from each term
in the sum is fully canceled by the surface condition~2.7!,
and only the last term in Eq.~2.15! survives. Inserting it into
Eq. ~2.10! and using again the expansion~2.4! we find in-
stead of Eqs.~2.11!–~2.13! the following set of equations:

(
j 50

i 1M

ĝi j ~x,p!wj~x,p!50, i 50,1,2, . . . , ~2.16!

with

ĝi j ~x,p!5 (
m50

M

(
n50

i 1m

ci j
mnĜmn~x,p! ~2.17!

and the coefficients

ci j
mn5

1

2
A~2i 11!~2 j 11!E

21

1

dvPj~v!~2]v!n@Pi~v!vm#.

~2.18!

The latter can be determined recursively fromci j
005d i j

@which results from the orthogonality relation~2.5!# by using
the recursion relations for the Legendre polynomials;
Appendix A. Since the nonvanishing coefficientsci j

mn are
now restricted to the domain

n< i 1m and j < i 1m2n, ~2.19!
.

e

s.

e

the sum overj in Eqs. ~2.16! runs now only over the finite
range 0< j < i 1M . The first inequality in Eqs.~2.19! was
already used in Eq.~2.17! to limit the sum overn.

The Pi(v) are polynomials inv of order i , and thus the
equal-time componentswj (x,p) occurring in Eqs.~2.16! are
linear combinations of the energy momentsWk(x,p) of order
k< i @see Eq.~1.2!#. For each value ofi , Eqs. ~2.16! thus
provide a relation among the firsti 1M11 energy moments
of the covariant Wigner functionŴ(x,p) @including the ze-
roth order momentW(x,p)5&w0(x,p)]. As i is allowed to
run over all positive integers, Eqs.~2.16! form an infinite
hierarchy of relations among the energy moments of the
variant Wigner function. Each covariant equation of the ty
~2.3! generates its own such hierarchy. Only the full set
these infinite hierarchies of moment equations constitute
complete equal-time kinetic description of the system un
study.

B. Truncating the hierarchy

In order to discuss possible truncation schemes we m
return to the complete set of covariant kinetic equations.
us concentrate here on the scalar case, Eqs.~2.1!, and write
down the two resulting hierarchies of moment equations

(
j 50

i 1M

ĝi j ~x,p!wj~x,p!50, ~2.20a!

(
j 50

i 1M11

f̂ i j ~x,p!wj~x,p!50 ~ i 50,1,2, . . . !.

~2.20b!

In writing down the upper limits of the sums we already us
that F̂(x,p) in Eq. ~2.1a! contains one power ofp0 more
than Ĝ(x,p) in Eq. ~2.1a!. For the scalar field case one ha
M51. For the spinor case one obtains from Eqs.~2.2! a
similar set of equations withM50.

Let us now try to truncate these hierarchies for the m
mentswj at some orderj max. The equations from the ‘‘trans
port hierarchy’’ ~2.20a! with hierarchy indexi<I t involve
all momentswj with 0< j <I t1M , i.e. the firstI t1M11
moments~including the lowest moment with index 0!. Simi-
larly, the equations from the ‘‘constraint hierarchy’’~2.20b!
with hierarchy indexi<I c involve the firstI c1M12 mo-
ments 0< j <I c1M11. For a closed set of equations bo
hierarchies must be truncated at the same orderj max; i.e., we
must have

I t1M5I c1M115 j max. ~2.21!

Truncating in this way we are left withI t11 equations from
the transport hierarchy andI c11 equations from the con
straint hierarchy. In order solve them the number of eq
tions must at least equal the number of moments. Howe
if there are more equations than moments, the system ma
overdetermined, and therefore we would like to requ
equality of the number of equations and moments:

I t111I c115 j max11. ~2.22!



:

r

o
e
p

c
-
r

nt
n
th

xt

in

i
th

ta
ls
m

s
n

rd
th
or
or
ac
al
ill

in
o

ian

s-
f
m
m
n
e

lly

en

al

c-

n

ner

act-
s of
-

l

no
las-
the
s-
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The two conditions~2.21! and~2.22! have a unique solution

I t5I c115M , j max52M , ~2.23!

which yieldsM11 transport andM constraint equations fo
the first 2M11 energy moments. Smaller values ofj max do
not yield enough equations, and larger values lead to an~at
least superficially! overdetermined system of equations. F
spinor fields (M50) the truncated set involves only on
transport and no constraint equation; for each spinor com
nent it gives a single kinetic equation~the BGR equation@7#!
for its lowest energy moment, the equal-time Wigner fun
tion Ws(x,p). For scalar fields (M51) the truncated set con
tains two transport equations and one constraint for the th
lowest order momentsw0 ,w1 ,w2 .

If we go beyond this minimal closed subset of mome
and equations, we get two equations for every additio
moment, one from the transport hierarchy and one from
constraint hierarchy. As we will show explicitly in the ne
section, in the constrint hierarchy~2.20b! the highest mo-
ment always comes with a constant coefficient. As we
crease the hierarchy indexi in Eqs. ~2.20!, at each step the
newly occurring moment can thus be explicitly expressed
terms of the already known lower order moments using
corresponding constraint equation from Eq.~2.20b!. As we
will discuss, these higher order constraint equations con
important physics. But in addition, at each step there is a
a dynamical equation of motion for the new moment fro
the transport hierarchy~2.20a!. How can the two equation
be consistent? The answer is that this transport equatio
not an independent new equation, but~with some algebraic
effort! can be expressed as a combination of the lower o
equations which have already been used. Our proof of
fact uses explicitly the structure of the dynamical operat
Ĝmn andF̂mn . It involves cumbersome algebra, and only f
scalar fields with only scalar potential or mean field inter
tions have we been able to find a general proof. For sc
and spinor QED the proof is still incomplete, and we w
only demonstrate the first step for the 2M12nd moment. A
completion of the proof presumably requires a so far miss
deeper insight into the general dynamic structure of the m
ment equations and their relation to the underlying covar
theory.

III. SCALAR FIELD THEORY

In this section we will give an explicit and complete di
cussion of the moment hierarchy for the simplest case o
scalar field theory in the Hartree approximation. We exe
plify the truncation of the hierarchy and the recursive co
putation of the higher order moments beyond minimal tru
cation. The discussion in the following section for th
practically more relevant case of QED will be technica
more involved and, unfortunately, also less complete.

A. Covariant kinetic equations

Consider the Klein-Gordon equation with a scalar pot
tial U(x):

@]x
21m0

21U~x!#f̂~x!50. ~3.1!
r
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The covariant Wigner function is the four-dimension
Wigner transform of the covariant density matrix%(x,y)
5^%̂(x,y)&:

W~x,p!5E d4yeip•y%~x,y!

5E d4yeip•yK f̂S x1
y

2D f̂†S x2
y

2D L . ~3.2!

To derive the kinetic equations for the scalar Wigner fun

tion, we calculate the second-order derivatives (1
2 ]m

x 1]m
y )2

and (1
2 ]m

x 2]m
y )2 of the covariant density operator, and the

employ the Klein-Gordon equation~3.1! and its adjoint. Af-
ter taking the ensemble average and performing the Wig
transform we obtain two complex kinetic equations

F1

4
]x

22p21m0
21US x2

i

2
]pD2 ip•]xGW~x,p!50,

~3.3a!

F1

4
]x

22p21m0
21US x1

i

2
]pD1 ip•]xGW~x,p!50.

~3.3b!

Since the scalar Wigner function is real, adding and subtr
ing these two complex equations yields two real equation
the type~2.1!. After reinstating\ the corresponding opera
tors Ĝ and F̂ are given by

Ĝ~x,p!5\p•]x1Im M̂2~x,p!, ~3.4a!

F̂~x,p!52p21
\2

4
]x

21Re M̂2~x,p!,

~3.4b!

where the mass operatorM̂2 is defined as

M̂2~x,p!5m0
21Ŝe~x,p!1 i Ŝo~x,p!, ~3.5a!

Ŝe~x,p!5cosS \D

2 DU~x!, ~3.5b!

Ŝo~x,p!5sinS \D

2 DU~x!. ~3.5c!

Here the triangle operatorD is defined asD5]x•]p where
the coordinate derivative]x acts only on the scalar potentia
U(x) while ]p acts only on the Wigner function.

B. Semiclassical expansion

In the general quantum situation the particles have
definite mass due to quantum fluctuations around their c
sical mass shell and collision effects in the medium. In
situation here with only an external potential this is illu
trated by the mass operatorM̂2. Only in the classical limit
\→0 does it reduce to the quasiparticle mass
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Re M̂0
2~x,p!5m2~x!5m0

21U~x!, ~3.6a!

Im M̂0
2~x,p!50. ~3.6b!

In this case the constraint equation reduces to the on-s
condition

@p22m2~x!#W0~x,p!50 ~3.7!

for the classical covariant Wigner functionW0 . The classical
transport equation arises from the general transport equa
at first order in\. The first order contribution to the mas
operator is

Re M̂1
2~x,p!50,

Im M̂1
2~x,p!5\m~x!@]xm~x!#•]p , ~3.8!

and we obtain the covariant Vlasov equation

$p•]x1m~x!@]xm~x!#•]p%W0~x,p!50, ~3.9!

with a Vlasov force term induced byx-dependent effective
mass term. For scalar fields there is no first order quan
correction to the operatorF in Eqs. ~3.4!, and from the ze-
roth order term we obtain the mass-shell condition for
first order Wigner function:

@p22m2~x!#W1~x,p!50. ~3.10!

This discussion holds universally for arbitrary potentials.
for instance,U(x) is generated by the scalar fieldf̂(x) itself
in the Hartree approximation,

U~x!52C1l^f̂~x!f̂†~x!&52C1lE d4p

~2p!4 W~x,p!,

~3.11!

with a mass parameterC and a coupling strengthl, this
model provides a useful tool for a dynamical description
spontaneous symmetry breaking@8#.

C. Three-dimensional dynamical operators

We now perform the energy average of the covari
transport and constraint equations~2.1! and construct the
hierarchy~2.20! of moment equations. The first step is th
double expansion of the type~2.9! for the covariant dynami-
cal operatorsĜ(x,p) and F̂(x,p):

Ĝmn~x,p!55
\L] t for m51,n50

\p•“x2ŝo for m5n50

2q
1

n! S i\

2L D n

~] t
nŝo! for m50,nÞ0 even

2
i

n! S i\

2L D n

~] t
nŝe! for m50,n odd

0 else
~3.12a!
ell

on

m

e

,

f

t

F̂mn~x,p!5

¦

2L2 for m52,n50

\2

4
]x

21p21m0
21ŝe for m5n50

1

n! S i\

2L D n

~] t
nŝe! for m50,nÞ0even

2
i

n! S i\

2L D n

~] t
nŝo! for m50,nodd

0 else.
~3.12b!

Here

ŝe~x,p!5cosS \

2
“x•“pDU~x!, ~3.13a!

ŝo~x,p!5sinS \

2
“x•“pDU~x! ~3.13b!

are the three-dimensional analogies of the covariant op

tors Ŝe and Ŝo in Eq. ~3.5!. Again, the spatial gradients ac
only on U(x,t), while the momentum gradients act on th
equal-time Wigner functions@i.e. on the energy moment
wj (x,p)].

The three-dimensional dynamical operatorsĜmn(x,p) and
F̂mn(x,p) must now be combined with the coefficientsci j

mn to

obtain the dynamical operatorsĝi j (x,p) and f̂ i j (x,p) which
are needed in the transport and constraint hierarchies. Th
done in Appendix B.

D. Minimal truncation

The resulting transport hierarchy is truncated atI t5M
51, the constraint hierarchy atI c5M2150. This yields the
following equations forw0(x,p), w1(x,p), andw2(x,p):

ĝ00w01ĝ01w150, ~3.14a!

ĝ10w01ĝ11w11ĝ12w250, ~3.14b!

f̂ 00w01 f̂ 01w11 f̂ 02w250. ~3.14c!

The dynamical operatorsĝi j and f̂ i j are given in Appendix B
and Eqs.~3.12!. Reexpressingwj in terms of the energy mo
mentsWj from Eq. ~1.2!,

w0~x,p!5
1

L&
W~x,p!, ~3.15a!

w1~x,p!5
1

L2 A3

2
W1~x,p!, ~3.15b!

w2~x,p!5
1

2L
A5

2 S 3

L2 W2~x,p!2W~x,p! D ,

~3.15c!

equations~3.14! can be rewritten as
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] tW1~x,p!52S p•“x2
1

\
ŝo~x,p! DW~x,p!,

~3.16a!

] tW2~x,p!52S p•“x2
1

\
ŝo~x,p! DW1~x,p!

1
1

2
@] tŝe~x,p!#W~x,p!, ~3.16b!

W2~x,p!5S \2

4
~] t

22“x
2!1p21m0

2

1ŝe~x,p! DW~x,p!. ~3.16c!

Note that all powers of the cutoffL cancel in the final ex-
pressions as they should.

The two transport equations~3.16a!,~3.16b! do not de-
couple, not even in the classical limit\→0. To achieve de-
coupling one must return to the covariant equations in S
III A and study their semiclassical limit as given in Sec. III
beforeperforming the energy average. Then the mass-s
condition~3.7! can be used to rewrite all higher order ener
moments in terms of the zeroth order moment as explai
in the Introduction, Eq.~1.4!. With this information the con-
straint ~3.16c!, in the limit \→0, becomes trivial,

W2~x,p!5Ep
2~x!W~x,p!, Ep

2~x!5p21m2~x!,
~3.17!

while the two transport equations~3.16a! and ~3.16b! be-
come identical and can be written in the form of a Vlas
equation for the charge density~see Sec. IV!:

] tW1~x,p!1S p

Ep
•“x2“xEp•“pDW1~x,p!50.

~3.18!

The reason why the information contained in Eq.~1.4! can-
not be easily recovered directly from the 3-dimensio
transport and constraint equations is that in their derivat
through Eq.~2.15!, we made heavy use of partial integratio
with respect to the energy. In the classical limit this has
unfortunate effect of spreading the information contained
the on-shell condition over the whole infinite hierarchy
3-dimensional constraint equations.

Although we have always talked about Eq.~3.16c! as a
‘‘constraint equation,’’ it is clear that, as far as solving t
minimal subset~3.16! of equal-time kinetic equations is con
cerned, this terminology is only adequate in the class
limit \→0. In general quantum situations it is a second or
partial differential equation for the lowest order mome
W(x,p) which must be solved as an initial value proble
together with the first order partial differential equatio
~3.16a! and ~3.16b!.

E. Higher order moment equations

The next higher momentw3 is determined by the third
equation in the transport hierarchy and the second equa
in the constraint hierarchy:
c.

ll

d

l
n,

e
n

al
r

t

on

ĝ20w01ĝ21w11ĝ22w21ĝ23w350, ~3.19a!

f̂ 10w01 f̂ 11w11 f̂ 12w21 f̂ 13w350.
~3.19b!

With the dynamical operators from Appendix B and Eq
~3.12! and

w3~x,p!5
1

2L
A7

2 S 5

L3 W3~x,p!2
3

L
W1~x,p! D

~3.20!

we obtain@using Eq.~3.16a!#

] tW3~x,p!52S p•“x2
1

\
ŝo~x,p! DW2~x,p!

1@] tŝe~x,p!#W1~x,p!

2
\

4
@] t

2ŝo~x,p!#W~x,p!, ~3.21a!

W3~x,p!5S \2

4
~] t

22“x
2!1p21m0

21ŝe~x,p! DW1~x,p!

2
\

2
@] tŝo~x,p!#W~x,p!. ~3.21b!

By substituting Eq.~3.19b! into Eq. ~3.19a! and taking into
account the commutators

@Ĝ10,F̂00#522Ĝ01F̂20, ~3.22a!

@Ĝ00,F̂00#5F̂01Ĝ1022Ĝ02F̂20, ~3.22b!

F\2

4
]2,ŝe/oG5

\2

2
]ŝe/o•]1

\2

4
]2ŝe/o , ~3.22c!

@p•“x ,ŝe/o#5p•“xŝe/o1
\

2
“xŝo/e•“x , ~3.22d!

@p2,ŝe/o#52\p•“xŝo/e1
\2

4
“x

2ŝe/o , ~3.22e!

the third transport equation~3.19a! can be rewritten in terms
of the first transport equation~3.14a! as

f̂ 00~ ĝ00w01ĝ01w1!50. ~3.23!

This implies that the transport equation~3.19a! for w3 is
redundant. The third-order momentW3 is completely deter-
mined in terms of the solutions of the minimal subgro
~3.16! by the constraint equation~3.21b!. It arises from Eq.
~3.19b! by noting that f̂ 13 is a constant, f̂ 135C3

52(2A3)/(5A7)L2 ~see Appendix B!, and solving forw3 :

w352
1

C3
~ f̂ 10w01 f̂ 11w11 f̂ 12w2!. ~3.24!
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Note that, in contrast to Eq.~3.16c!, Eq. ~3.21b! does not
require solving a partial differential equation because eve
thing on the right-hand side~RHS! is known from the solu-
tion of Eqs.~3.16!.

The above procedure can be extended to all higher o
moment equations, by repeatedly using the commuta
listed in Eq. ~3.22!. In general one finds that a transpo
equation

(
j 50

i 11

ĝi j wj50 ~3.25!

with i>2 can be re-expressed in terms of the first (i 21)
transport equations as

(
j 50

i 22

f̂ i 22,j S (
k50

j 11

ĝ jkwkD 50. ~3.26!

Thus, except for the first two, all transport equations
redundant. The higher order momentswi with i .2 can be
computed from their constraint equations

wi52
1

Ci
(
j 50

i 21

f̂ i 22,jwj , ~3.27!

with the constantCi given by

Ci[ f̂ i 22,i52
i ~ i 21!

~2i 21!A~2i 23!~2i 11!
. ~3.28!

IV. APPLICATION TO QED

A. Scalar QED

In this section we discuss the application of the gene
formalism developed in Sec. II to QED. Since some of
equations will be rather lengthy, we will economize on t
notation by dropping all factors of\. The latter are correctly
given in Refs.@12,17# to which we refer in case of need.

We begin with the case of scalar QED with external el
tromagnetic fields. In Ref.@12# we discussed the semiclass
cal transport equations for this theory by energy averag
the semiclassical limit of the covariant transport equatio
In this subsection we will derive the general equal-tim
quantum transport equations by performing the energy a
age without any approximations. In the following subsect
the result will be compared with the corresponding equati
derived by directly Wigner-transforming the equations
motion for the equal-time density matrix.

In scalar QED the scalar field obeys the Klein-Gord
equation

~DmDm1m2!f~x!50. ~4.1!

From the corresponding Lagrangian density the conser
current and canonical energy-momentum tensor are der
as
y-

er
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e
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j m~x!5 ie$@Dmf~x!#f†~x!2f~x!Dm
† f†~x!%, ~4.2a!

Tmn~x!5@Dmf~x!#@Dn
†f†~x!#

1@Dnf~x!#@Dm
† f†~x!#

2 1
2 gmn]•]@f~x!f†~x!#, ~4.2b!

whereDm5]m1 ieAm(x) is the covariant derivative andDm
†

its adjoint.
Trying to express the components of the above ener

momentum tensor as moments of the covariant Wigner fu
tion results in rather complicated expressions. Simpler o
will be obtained after first subtracting the following tot
derivative terms@18#:

1
2 ]m]n@f~x!f†~x!#2 1

2 gmn]•]@f~x!f†~x!# ~4.3!

and employing the identity

]m]n@f~x!f†~x!#5@Dmf~x!#@Dn
†f†~x!#

1@Dnf~x!#@Dm
† f†~x!#1@DmDnf~x!#f†~x!

1f~x!@Dm
† Dn

†f†~x!# ~4.4!

to get a new tensor

Tmn~x!5 1
2 $@Dmf~x!#@Dn

†f†~x!#1@Dnf~x!#@Dm
† f†~x!#

2@DmDnf~x!#f†~x!2f~x!@Dm
† Dn

†f†~x!#%.

~4.5!

Following an analogous procedure as in Sec. III A~see
@12# for details! one derives two covariant kinetic equation
of type ~2.1! for the covariant Wigner function

W~x,p!5E d4yeip•yK f̂S x1
y

2D
3expF ieE

21/2

1/2

dsA~x1sy!•yG f̂†S x2
y

2D L .

~4.6!

The corresponding covariant dynamical operatorsĜ and F̂
are given by

Ĝ~x,p!5P̂m~x,p!D̂m~x,p!, ~4.7a!

F̂~x,p!5
1

4
D̂m~x,p!D̂m~x,p!2P̂m~x,p!P̂m~x,p!1m2,

~4.7b!

P̂m~x,p!5pm2 ieE
21/2

1/2

dssFmn~x2 is]p!]p
n , ~4.7c!

D̂m~x,p!5]m2eE
21/2

1/2

dsFmn~x2 is]p!]p
n . ~4.7d!

Fmn5]mAn2]nAm is the electromagnetic field tensor.
The structure of the equal-time transport theory for sca

QED is very similar to that for a scalar potentialU(x) which
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we considered in the previous section. The difference res
solely in the expressions for the dynamical operatorsĜmn

and F̂mn . In Appendix C we provide the double expansio

~2.9! for the basic operatorsP̂m andD̂m as well as forĜ and
F̂.

Upon expressing the field productff† and its covariant
derivatives in terms of the covariant Wigner function~4.6!,

f~x!f†~x!5E d4p

~2p!4 W~x,p!, ~4.8a!

@Dmf~x!#f†~x!5E d4p

~2p!4 ~ 1
2 ]m2 ipm!W~x,p!,

~4.8b!

f~x!@Dm
† f†~x!#5E d4p

~2p!4 ~ 1
2 ]m1 ipm!W~x,p!,

~4.8c!

¯ ,

the phase-space densities of the charge currentj m and the
energy-momentum tensorTmn are simply given by

j m~x,p!52epmW~x,p!, ~4.9a!

Tmn~x,p!52pmpnW~x,p!. ~4.9b!

The factors of 2 in these expressions account for the co
butions of particles and antiparticles. After performing t
energy average these equations translate into relations
tween the first three momentsw0 ,w1 ,w2 and the equal-time
phase-space distributions for the scalar densityW(x,p), the
charge densityr(x,p), and the energy densitye(x,p):

w0~x,p!5
1

L&
W~x,p!, ~4.10a!

w1~x,p!5A3

2

1

2eL2 r~x,p!, ~4.10b!

w2~x,p!5
1

2L
A5

2 S 3

2L2 e~x,p!2W~x,p! D .

~4.10c!

The charge current densityj(x,p) and the momentum densit
P(x,p) can be expressed in terms ofW andr as

j~x,p!52epW~x,p!, P~x,p!5
p

e
r~x,p!. ~4.11!

The subgroup~3.14! determining the momentsw0 , w1 and
w2 can thus be equivalently rewritten as transport and c
straint equations forW, r ande:

1

e
d̂tr12~ d̂tp̂01p̂•d̂!W50, ~4.12a!

d̂te1
1

e
~ d̂tp̂01p̂•d̂1D̂ !r12~p̂0D̂1p̂• Î2d̂tÂ1Ĝ•d̂!W

50, ~4.12b!
es

ri-

be-

-

e52S 1

4
~ d̂t

22d̂2!2~p̂0
22p̂2!1m21ÂDW2

2p̂0

e
r.

~4.12c!

The expressions ofĝi j and f̂ i j were obtained via the relation
given in Appendix B from the equal-time operators~C2! in
Appendix C. We have also used the commutators

@ d̂t ,p̂0#5D̂, ~4.13a!

@ d̂t ,Â#52Ê. ~4.13b!

As a result of the line integrals overs in the operatorsP̂m

andD̂m which guarantee the gauge invariance of the form
ism @1#, the equal-time operatorsĜmn and F̂mn for QED are
much more complicated than Eqs.~3.12! for the case of a
scalar potential. This is the origin of the more complicat
structure of the minimal subgroup~4.12! of 3-dimensional
kinetic equations. Please note the sequence of the oper
in Eqs.~4.12!: in particular the generalized time derivative
d̂t act on everything following them. Equations~4.12! are
thus much more intricately coupled than the correspond
equations~3.16! for the pure scalar case.

It is instructive to integrate Eqs.~4.12! over p to obtain
equations of motion for the corresponding space-time de
ties:

] tr~x!1“• j~x!50, ~4.14a!

] te~x!1“•P~x!2E~x!• j~x!50, ~4.14b!

e~x!52E d3p

~2p!3 S \2

4
~] t

22“x
2!1p21m2DW~x,p!.

~4.14c!

The first two equations express the conservation of elec
charge and of energy-momentum while the last equa
gives the energy density in terms of the scalar equal-t
phase-space densityW(x,p) including quantum corrections
~The factor of 2 again accounts for particles and antip
ticles.! In Eq. ~4.14b! P(x)5*@d3p/(2p)3#P(x,p) is the mo-
mentum density in coordinate space, and the last term
scribes the conversion of field energy into mechanical ene
by the work done by the electric field on moving charges

Let us now consider the next two equations in the hier
chy, the transport and constraint equations~3.19! for the
third-order momentw3 . Again the constraint equation can b
directly solved forw3 in terms of the solutionsw0 ,w1 ,w2 of
Eqs.~4.10!, ~4.12! @see Eq.~3.24!#. Our task is to show tha
the transport equation forw3 is redundant. To this end we
substitute the constraint~3.19b! into the transport equation
~3.19a! and use the scalar QED analogue of the commuta
~3.22!, namely Eqs.~4.13! and

@ d̂t ,B̂#53F̂, ~4.15a!
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@ d̂t ,p̂#52I1“xp̂0 , ~4.15b!

@ Î ,p̂#52“x•Ĝ, ~4.15c!

@ d̂,p̂0#5“xp̂0 , ~4.15d!

@ d̂t ,d̂#52e“x•“pE
21/2

1/2

dsE~x1 is“p ,t !, ~4.15e!

@p̂,p̂0#52 ieE
21/2

1/2

dssE~x1 is“p ,t !

1e“xE
21/2

1/2

dss2E~x1 is“p ,t !•“p ,

~4.15f!

as well as the identity

E
21/2

1/2

dsS 2is1
1

4
“x•“p2s2

“x•“pDE~x1 is“p ,t !50,

~4.16!

to rewrite Eq.~3.19a! in the form

f̂ 00~ ĝ00w01ĝ01w1!1 f̂ 01~ ĝ10w01ĝ11w11ĝ12w2!50.
~4.17!

Note that in the derivation of the commutators~4.15! we
used Maxwell’s equation

]mF̃mn50 ~4.18!

for the dual field strength tensorF̃mn5 1
2 emnsrFsr. The iden-

tity ~4.16! ~which has no analogue in a theory without gau
invariance! is proved by expanding the electric fieldE(x
1 is“p ,t)5eis“x•“pE(x,t) and integrating term by term
Equation~4.17! expresses the transport equation forw3 in
terms of the transport equations forw1 andw2 . This proves
that it is redundant.

From the comparison of Eq.~4.17! with Eq. ~3.23! we
observe that in the case of scalar QED the third trans
equation is expressed in terms of the firstand second trans-
port equations, while only the first one occurs in the case
scalar potentials. This difference results from the line in
grals which occur in the gauge theory. In a transport the
with gauge invariance, the kinetic momentum is notpm but

P̂m . The energy average of the zeroth component of
second term in Eq.~4.7c! yields the equal-time operatorp̂0

given in Eqs.~C2!, andp̂05(2)/2L) f̂ 01 in turn generates
the coefficient in front of the second bracket in Eq.~4.17!. In
a transport theory without gauge freedom all coefficie
f̂ i ,i 11 vanish due to the absence of linear terms inpm in the
covariant constraint equation.

We have not had the patience to carry the above con
erations to higher orders in the energy moments. The co
sponding calculations become extremely messy. Based
the experience with pure scalar theory we expect all hig
order transport equations to be redundant, but we have fa
rt

f
-
y

e

s

d-
e-
on
r

ed

to discover a simple calculational technique which perm
us to prove this in an elegant way.

B. Comparison with the Feshbach-Villars approach

In Ref. @8# a set of equal-time transport equations f
scalar QED was derived by directly Wigner transforming t
equations of motion for the~non-covariant! equal-time den-
sity matrix. Since the Klein-Gordon equation~4.1! contains a
second-order time derivative, its direct translation into
dimensional phase space does not lead to a sensible tran
equation which should have only first-order time derivativ
Therefore the 3-dimensional approach exploits the Feshb
Villars representation@14# of the field equations of motion
which contains only first-order time derivatives. The price
pay ~in addition to the loss of manifest Lorentz covarianc!
is the introduction of an auxiliary field which results in
rather complicated 232 matrix structure of the scala
Wigner function. For the energy averaging method ad
cated here there is no such problem. In this case sec
order time derivatives appear only in the constraint hier
chy, and the transport hierarchy contains only first-order ti
derivatives.

In terms of a two-component Feshbach-Villars field

F5S c
x D , ~4.19a!

c5
1

2 S f1
i

m
] tf2

eA0

m
f D , ~4.19b!

x5
1

2 S f2
i

m
] tf1

eA0

m
f D , ~4.19c!

we define the density matrix

%F~x,y!5K FS x1
y

2
,t DexpS 2 ieE

21/2

1/2

dsy•A~x1sy,t ! D
3F†S x2

y

2
,t D L . ~4.20!

Its three dimensional Fourier transform with respect toy
yields the equal-time Wigner function in Feshbach-Villa
representation:

WF~x,p!5E d3ye2 ip•y%F~x,y!. ~4.21!

The equations of motion for the Wigner functionWF are a
direct consequence of the field equation

i ] tF5S 1

2m
~2 i“2eA!2~s31 is2!1ms31eA0DF

~4.22!

and its adjoint. Heres2 and s3 are the well-known Pauli
matrices. We calculate the second-order derivatives of
density matrix%F with respect tox andy:
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S 1

2
“x2“yD 2

%F~s32 is2!52mK FS x1
y

2
,t DexpS 2 ieE

21/2

1/2

dsA~x1sy,t !•yD
3H F†S x2

y

2
,t D F i ]Q t1ms31eA0S x2

y

2
,t D G J L

22ieE
21/2

1/2

ds~ 1
2 2s!y3B~x1sy,t !~ 1

2“x2“y!%F~s32 is2!

1e2S E
21/2

1/2

ds~ 1
2 2s!y3B~x1sy,t ! D 2

%F~s32 is2!

1 ieE
21/2

1/2

ds~ 1
2 2s!2y•@“x1sy3B~x1sy,t !#%F~s32 is2!, ~4.23a!

S 1

2
“x1“yD 2

~s31 is2!%F522mK H F i ] t2ms32eA0S x1
y

2
,t D GFS x1

y

2
,t D J expS 2 ieE

21/2

1/2

dsA~x1sy,t !•yD
3F†S x2

y

2
,t D L 22ieE

21/2

1/2

ds~ 1
2 1s!y3B~x1sy,t !~ 1

2“x1“y!~s31 is2!%F

1e2S E
21/2

1/2

ds~ 1
2 1s!y3B~x1sy,t ! D 2

~s31 is2!%F

1 ieE
21/2

1/2

ds~ 1
2 1s!2y•@“x1sy3B~x1sy,t !#~s31 is2!%F . ~4.23b!
in
-

en
r-

f

-

-
fol-
nsi-
Note that we used the Feshbach-Villars equations forF and
F† as well as Maxwell’s equations forE52“A02 ]A/]t
andB5“3A. Subtracting the two equations~4.23! we get a
closed equation of motion for the density matrix%F(x,y);
after a Fourier transformation with respect toy we obtain the
following transport equation for the Wigner function
terms of the operatorsd̂t , d̂ and p̂ used in the last subsec
tion:

2md̂tWF1 i ~ 1
4 d̂22p̂2!@WF~s32 is2!2~s31 is2!WF#

1p̂•d̂@WF~s32 is2!1~s31 is2!WF#

22im2~WFs32s3WF!50. ~4.24!

Expressing the equal-time Wigner functionWF in terms of
the Feshbach-Villars spinors@8#,

WF5 1
2 ~ f 31 f 2s11 f 1s21 f 0s3!, ~4.25!

we recover the transport equations for the spinor compon
f i(x,p)( i 50,1,2,3) which were first derived by Best, Go
nicki and Greiner@8#:

md̂t f 052p̂•d̂~ f 21 f 3!, ~4.26a!

md̂t f 152~ 1
4 d̂22p̂2!~ f 21 f 3!12m2f 2 , ~4.26b!

md̂t f 25~ 1
4 d̂22p̂2! f 11p̂•d̂f 022m2f 1 , ~4.26c!

md̂t f 352~ 1
4 d̂22p̂2! f 12p̂•d̂f 0 . ~4.26d!
ts

The current j m(x) from Eq. ~4.2a! and energy-momentum
tensorTmn(x) from Eq. ~4.5! can be expressed in terms o
the Feshbach-Villars fieldsF andF† by using the transfor-
mation ~4.19!. Similar to Eqs.~4.8!, we have relations be
tween the field productsFF†, their derivatives, and the
Wigner functionWF :

F~x!F†~x!5E d3p

~2p!3 WF~x,p!, ~4.27a!

@~2 i“2eA!F~x!#F†~x!

5E d3p

~2p!3 S 2
i

2
“1pDWF~x,p!,

~4.27b!

F~x!@~ i“2eA!F†~x!#5E d3p

~2p!3 S i

2
“1pDWF~x,p!,

~4.27c!

¯ .

Inserting these together with the spinor decomposition~4.25!
into the expressions forj m andTmn and comparing the inte
grands of the momentum integrations, one is led to the
lowing identifications for the equal-time phase-space de
ties r, e, j andP:

rF~x,p!52em f0~x,p!, ~4.28a!

eF~x,p!5S p22
“

2

4 D @ f 2~x,p!1 f 3~x,p!#12m2f 3~x,p!,

~4.28b!
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jF~x,p!52ep@ f 2~x,p!1 f 3~x,p!#, ~4.28c!

PF~x,p!52mpf 0~x,p!. ~4.28d!

Note that here, unlike the spinor decomposition for spin
QED @6,7# where each component of the Wigner functi
has a definite physical meaning, there is no obvious phys
interpretation for the componentf 1 . We also point out that
the above expressions, especially the one for the energy
sity, differ from those given in Refs.@8,15#. The indexF was
added in order to point out that these phase-space den
are not equal to those in Eqs.~4.10!,~4.11!—they generally
differ by a total momentum-space derivative, and only th
respective momentum space integrals~i.e. the corresponding
space-time densities! are guaranteed to be identical. The e
plicit relation between the two sets of phase-space dens
is given in Appendix D, Eqs.~D8!.

Inserting the relations~4.28! into the Feshbach-Villars
equations of motion~4.26! one finds, by choosing suitabl
linear combinations, the following equations of motion f
the physical phase-space distributionsrF andeF :

1

e
d̂trF12p̂•d̂W50, ~4.29a!

d̂teF1
1

e
p̂•d̂rF2F S d̂2

4
2p̂2D d̂t1d̂tS p22

“

2

4 D GW50,

~4.29b!

eF52F1

4 S d̂t
22

1

2
d̂2D1

1

2 S p̂21p22
“

2

4 D1m2GW.

~4.29c!

Here we used the shorthandW(x,p) for the combination

W~x,p!5 f 2~x,p!1 f 3~x,p!. ~4.30!

In Appendix D it is shown thatW(x,p) defined in this way
indeed agrees with the scalar equal-time Wigner den
~4.10a! of the Klein-Gordon field. In addition to the thre
equations above, Eqs.~4.26! yield a fourth equation of mo-
tion for the unphysical Feshbach-Villars spinor compon
f 1 in terms of the scalar Wigner densityW:

f 152
1

2m
d̂tW. ~4.31!

Apparently, the set of equations~4.29! from the equal-
time Feshbach-Villars approach and the set~4.12! derived in
the energy-averaged covariant Klein-Gordon approach h
a different structure. But in Appendix D we show that bo
sets of equations are in fact equivalent. The structural dif
ence is only due to the fact that the phase-space densitier,e
in the covariant Klein-Gordon approach differ fromrF ,eF
introduced via Eqs.~4.28! in the Feshbach-Villars approach
This difference disappears in the classical limit where b
sets of equations reduce to

1

e
d̂tr12p•d̂W50, ~4.32a!
r

al

n-

ies

ir

-
es

ty

t

ve

r-

h

d̂te1
1

e
p•d̂r22ep•EW50, ~4.32b!

e52~p21m2!W. ~4.32c!

~Here we have used the classical operatorsd̂t5] t1eE•“p

andd̂5“1eB3“p , without prefactors\.! For constant ex-
ternal electric fields they coincide even on the quantum le
yielding two decoupled ordinary differential equations
time for W andr:

dtr50, ~4.33a!

@dt
314~p21m2!dt14eE•p#W50. ~4.33b!

These equations were studied before in@8,11,12#. The first
equation expresses charge conservation in a homogen
electric field while the second one is the well-known equ
tion of motion for the charge currentj @11,12# which, accord-
ing to the relationj5e@p/A(p21m2)#n, governs the time
evolution of the particle densityn by pair production in the
electric field. This latter quantity thus comes out the same
both approaches.

Finally, after integrating the Feshbach-Villars equatio
~4.29! over momentum one obtains the same conserva
laws ~4.14! for the space-time densities as in the Klei
Gordon approach. The difference between the dens
r,e,P and rF ,eF ,PF in phase-space are not visible on th
coordinate space level. Since all previous studies were d
in one of the above limiting cases, the subtleties related
the exact definition of the phase-space densitiesr ande were
apparently not noticed before. By accounting for it correc
both the equal-time Feshbach-Villars approach and
energy-averaged covariant Klein-Gordon approach are s
to be fully equivalent.

Before ending this comparison between the two a
proaches we would, however, like to point out that dropp
the derivative term in the definition~4.28b! of the energy
density as done in Ref.@8# leads to wrong conservation law
after momentum integration; instead of Eqs.~4.14! one then
finds

] tr~x!1“• j~x!50, ~4.34a!

] te~x!1“•P~x!2E~x!• j~x!5
\2¹x

2

4
] tE d3p

~2p!3 W~x,p!,

~4.34b!

e~x!52E d3p

~2p!3 F\2

4 S ] t
22

1

2
“x

2D1p21m2GW~x,p!,

~4.34c!

which contains an unphysical term on the RHS of the ene
conservation law and a spurious factor1

2 in front of the
Laplace operator in the definition of the energy dens
which breaks Lorentz covariance.

C. Spinor QED

The case of spinor QED has been discussed in the con
of the energy averaging method in Refs.@12,17,19#. The dis-
cussion presented in those papers has, however, focuse
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tirely on the equal-time kinetic equations for the lowest e
ergy moment of the covariant Wigner function. Here we w
reformulate the problem in terms of the equal-time hierarc
of energy moments as introduced in Sec. II and also disc
the equations of motion for the higher order moments.
u

n

an
m
u

d

al
-
l
y
ss

Let us briefly review the relevant technical steps. We b
gin by performing a spinor decomposition@6# of the covari-
ant Wigner function, separating in a second step explic
the temporal and spatial parts@7# of the covariant spinor
components:
W~x,p!5
1

4 FF~x,p!1 ig5P~x,p!1gmVm~x,p!1gmg5Am~x,p!1
1

2
smnSmn~x,p!G ~4.35a!

5
1

4
@g0F0~x,p!1g5g0F1~x,p!1 ig5F2~x,p!1F3~x,p!2g5g•G0~x,p!2g•G1~x,p!

1 ig5g•G2~x,p!1g5g0g•G3~x,p!#. ~4.35b!
he
dy-
tical
en-
Inserting the decomposition~4.35a! into the covariant~VGE
@6#! equation of motion for the Wigner functionW(x,p),

FgmS P̂m~x,p!1
i

2
D̂m~x,p! D2mGW~x,p!50,

~4.36!

with P̂m(x,p) and D̂m(x,p) from Eqs. ~4.7c!,~4.7d!, and
separating real and imaginary parts one arrives at two gro
of coupled covariant kinetic equations of type~2.2!; see Eqs.
~74!,~75! of Ref. @12#. Performing the energy average the
leads to two groups of equal-time kinetic hierarchies~with
16 such hierarchies of equations in each group! for the en-
ergy moments of the 16 covariant spinor components.

Since for spinor QEDM50, minimal truncation of these
2316 hierarchies according to Sec. II B results inonetrans-
port equation from each of the 16 transport hierarchies
no constraint equations. The minimal subgroup of equal-ti
kinetic equations thus consists only of the 16 transport eq
tions for the 16 zeroth-order energy momentsf i(x,p) and
gi(x,p) of the covariant spinor componentsFi(x,p) and
Gi(x,p) ( i 50,1,2,3):

d̂t f 01d̂•g150, ~4.37a!

d̂t f 11d̂•g012m f250, ~4.37b!

d̂t f 212p̂•g322m f150, ~4.37c!

d̂t f 322p̂•g250, ~4.37d!

d̂tg01d̂f 122p̂3g150, ~4.37e!

d̂tg11d̂f 022p̂3g012mg250, ~4.37f!

d̂tg21d̂3g312p̂f 322mg150, ~4.37g!

d̂tg32d̂3g222p̂f 250. ~4.37h!

These 16 equations are identical to the BGR equations
rived by Bialynicki-Birula, Gornicki and Rafelski@7# by
Wigner transforming the equations of motion for the equ
ps

d
e
a-

e-

-

time density matrix. They determine the dynamics of t
zeroth-order energy moments. The three-dimensional
namical operators occurring in these equations are iden
with the ones arising in scalar QED and are given in App
dix C.

The first-order momentsf i
1(x,p) and gi

1(x,p) satisfy 16
transport equations derived@12# from the first energy mo-
ment of the covariant transport equation~2.2a!,

1

)
d̂t f 0

11
1

)
d̂•g1

11D̂ f 01I•g150, ~4.38a!

1

)
d̂t f 1

11
1

)
d̂•g0

11
2

)
m f2

11D̂ f 11I•g050,

~4.38b!

1

)
d̂t f 2

11
2

)
p̂•g3

12
2

)
m f1

11D̂ f 212Ĝ•g350,

~4.38c!

1

)
d̂t f 3

12
2

)
p̂•g2

11D̂ f 322Ĝ•g250, ~4.38d!

1

)
d̂tg0

11
1

)
d̂f 1

11
2

)
p̂3g1

11D̂g01 Î f 122Ĝ3g150,

~4.38e!

1

)
d̂tg1

11
1

)
d̂f 0

12
2

)
p̂3g0

11
2

)
mg2

11D̂g11 Î f 0

22Ĝ3g050, ~4.38f!

1

)
d̂tg2

11
1

)
d̂3g3

11
2

)
p̂f 3

12
2

)
mg1

11D̂g21 Î3g3

12Ĝf 350, ~4.38g!
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1

)
d̂tg3

12
1

)
d̂3g2

12
2

)
p̂f 2

11D̂g32 Î3g222Ĝf 250,

~4.38h!

and 16 constraint equations derived@12# from the zeroth en-
ergy moment of the covariant constraint equation~2.2b!:

1

)
f 0

15p̂•g12p̂0f 01m f3 , ~4.39a!

1

)
f 1

15p̂•g02p̂0f 1 , ~4.39b!

1

)
f 2

152
\

2
d̂•g32p̂0f 2 , ~4.39c!

1

)
f 3

15
\

2
d̂•g22p̂0f 31m f0 , ~4.39d!

1

)
g0

15
\

2
d̂3g11p̂f 12p̂0g01mg3 , ~4.39e!

1

)
g1

15
\

2
d̂3g01p̂f 02p̂0g1 , ~4.39f!

1

)
g2

152
\

2
d̂f 31p̂3g32p̂0g2 , ~4.39g!

1

)
g3

15
\

2
d̂f 22p̂3g22p̂0g31mg0 . ~4.39h!

A discussion similar to that in scalar QED reveals@19# that
the transport equations~4.38! are not independent of th
BGR equations~4.37! and the constraint equations~4.39!.
For instance, using Eqs.~4.39!, the transport equation forf 0

1

can be expressed as an operator combination of the tran
equations forf 0 andg1 :

p̂0~ d̂t f 01d̂•g1!2p̂•~ d̂tg11d̂f 022p̂3g012mg2!50.
~4.40!

Therefore, the first-order moments are fully determined
terms of the solutions of the BGR equations~4.37! for the
zeroth-order moments by solving the constraint equati
~4.39!.

Again, we have not been able to find a simple proof t
the same is generally true for all higher order energy m
ments, and we stopped here. We do, however, believe
such a proof must exist, and that therefore all higher or
energy moments can be directly computed from the soluti
of the BGR transport equations by solving the constra
hierarchy.~Note added in proof.The general proof was re
cently found by S. Ochs@20#.!

It was shown in Ref.@12# that in the classical limit the
simple algebraic relation~1.4! changes the structure of th
constraints~4.39! for the first-order moments and turns the
into additional constraints for the zeroth-order moments~i.e.
ort

n

s

t
-
at
r
s
t

the equal-time Wigner functions!. These extra constraints re
duce the number of independent zeroth-order moments f
16 in the quantum case to 4 in the classical limit. They
thus extremely important. As a result the BGR equatio
reduce to two decoupled Vlasov-type transport equations
the charge and spin distribution functions. In the gene
quantum case there are no such extra constraints on
equal-time Wigner functions@19#. One must solve all 16
coupled transport equations~4.37!, but these solutions then
fully determine also all higher order moments. These hig
order moments have important physical meaning: the fi
order moment ofF0(x,p), for instance, describes the energ
distribution in phase-space. With the help of the constra
~4.39a! it is given by

e~x,p!5TrE dE

2p
Eg0W~x,p!5A2

3
f 0

1~x,p!

5&@m f3~x,p!2p̂0f 0~x,p!1p̂•g1~x,p!#. ~4.41!

V. CONCLUSIONS

We have presented a universal method for the const
tion of equal-time quantum transport theories from the co
riant quantum field equations of motion. It is based on e
ergy averaging the covariant kinetic equations for t
covariant Wigner operator~which is the Wigner transform o
the covariant, ‘‘two-time’’ density matrix! and its energy
moments. This procedure yields a hierarchy of coupled tra
port and constraint equations for the energy moments of
covariant Wigner function, the so-called equal-time Wign
functions. We showed how, in the mean-field approximati
this hierarchy can be truncated at a rather low level, req
ing the solution of only a small number of equal-time tran
port equations, and how the higher order energy mome
~higher order equal-time Wigner functions! can be con-
structed from these solutions via constraints.

The major advantage of the equal-time formulation
~quantum! transport theory is that the resulting transpo
equations can be solved as initial value problems, w
boundary values for the equal-time Wigner functions at
52` which can be calculated from the fields att52`.
This is not the case for the covariant transport equations
the covariant Wigner function. The present paper thus p
vides an essential step in the direction of practical compu
tions of the dynamics of relativistic quantum field system
out of thermal equilibrium in the language of transpo
theory, i.e. in a phase-space oriented approach. The me
presented here improves upon previous approaches by b
much more systematic: we did not just focus on the low
energy moments~which contain only a small fraction of the
information contained in the covariant Wigner function!, but
we discussed and showed how to solve the complete hie
chy of moment equations. We had already before dem
strated for spinor QED that the non-covariant thre
dimensional approach~which starts directly from the equal
time density matrix! yields an incomplete set of equal-tim
transport equations. In this paper we also discussed the
of scalar QED and showed that again the correct phys
interpretation of the Feshbach-Villars spinor compone
f 0 , . . . ,f 3 in the direct non-covariant equal-time approach
not possible without a comparison to the energy-avera
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covariant approach which we presented in Appendix D.
conclude that the only safe way of deriving a correct a
complete set of equal-time quantum transport equations i
starting from the covariant formulation and taking ener
moments of the covariant kinetic equations. The method
be generalized in a straightforward way to other types
interactions@16,17,19#, including non-Abelian gauge interac
tions @20#.

The structure of the hierarchy of equal-time quantum
netic equations depends on the structure of the covariant
equations from which one starts. For scalar or vector theo
with second order time derivatives one has to solve
coupled set of three equations for the three lowest ene
moments, two resulting from the equal-time transport hier
chy and one stemming from the constraint hierarchy.
spinor theories with only first order time derivatives in t
field equations one ends up with only one equal-time tra
port equation for the lowest energy moment of each spi
component of the Wigner function. All higher order ener
moments can be determined from the solutions of th
equations by solving constraints.

Important further simplifications occur in the classic
limit \→0: then all higher order energy moments can
expressed algebraically in terms of the zeroth energy
ment, and the number of equations is drastically reduced.
scalar theories one obtains just one Vlasov-type equation
the on-shell charge distribution function. For spinor theor
one obtains two decoupled Vlasov-type equations~one scalar
and one vector equation! for the on-shell charge and spi
density distributions in phase-space. Again the only syst
atic way of deriving the constraints leading to these sim
fications is by energy averaging the~classical limit of the!
covariant transport equations.

All results in this paper were derived in the mean fie
approximation, i.e. in the collisionless limit. It is general
known that including collision terms in the covariant tran
port equations leads to the appearance of non-localitie
time ~‘‘memory effects’’! in the equal-time transport equa
tions @21#. It is not inconceivable that these memory effec
lead to serious complications for the truncation of the equ
time transport hierarchy. This is certainly an interesting a
difficult problem for future studies.
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APPENDIX A: THE COEFFICIENTS cij
mn

From the definition of the coefficientsci j
mn in Eq. ~2.18!

and the orthogonality condition~2.5! we see that

ci j
005d i j . ~A1!

Furthermore, it is easy to see from Eq.~2.18! that

ci j
mn50 for n. i 1m or j . i 1m2n. ~A2!
e
d
by

n
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e
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-
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d

-

d,

Therefore, if the finite sum overm has the upper limitM , the
sum over j in Eq. ~2.16! extends only over the rangej <
i 1M .

From the recursion relation for the Legendre polynomi

vPi~v!5
i 11

2i 11
Pi 11~v!1

i

2i 11
Pi 21~v! ~A3!

one easily derives the recursion relation

ci , j
m11,n5

i 11

A~2i 11!~2i 13!
ci 11,j

m,n 1
i

A~2i 11!~2i 21!
ci 21,j

m,n

~A4!

for the coefficientsci j
mn . This allows one to raise the firs

upper indexm, starting from Eq.~A1!. In particular we have

ci 21,i
10 5

i

A~2i 21!~2i 11!
, ~A5a!

ci 21,i 11
20 5

i ~ i 11!

~2i 11!A~2i 21!~2i 13!
,

~A5b!

which we will need in Appendix B. Similarly the secon
upper index can be raised by using the relations

]v@Pj 11~v!2Pj 21~v!#5~2 j 11!Pj~v!,

Pj~61!5~61! j ~ j >0!, ~A6!

which, for j >2, lead to

ci , j
m,n115A2 j 11

2 j 23
ci , j 22

m,n111A~2 j 11!~2 j 21!ci , j 21
m,n .

~A7!

This expression is useless forj 50 andj 51; these cases ca
be treated by another recursion relation which can be
tained by using Eqs.~A6! on the Legendre polynomial with
the indexi :

ci , j
m,n115A2i 11

2i 23
ci 22,j

m,n112A~2i 11!~2i 21!ci 21,j
m,n

2mS ci , j
m21,n2A2i 11

2i 23
ci 22,j

m21,nD . ~A8!

For i ,2 this must be used together with

c2 i , j
m,n 5A21ci 21,j

m,n ~A9!

which follows fromP2 i(x)5Pi 21(x).
The above recursion relations can be initialized with t

following nonvanishing coefficients fori , j ,m,n<1:

c00
005c11

0052c00
1151, c01

105c10
105

1

)
, c10

0152),

c11
11522. ~A10!
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APPENDIX B: THE OPERATORS ĝij AND f̂ i j

FOR SCALAR THEORIES

The three-dimensional dynamical operatorsĝi j (x,p) and
f̂ i j (x,p) needed in Eqs.~3.14! and ~3.19! are obtained from
the definition~2.17! with the coefficientsci j

mn from Appendix

A. Please note that forĝi j the upper limit in Eq.~2.17! for
the sum overm is M51 while for f̂ i j it is M1152. One
finds

ĝ005Ĝ002Ĝ11, ~B1a!

ĝ015
1

)
Ĝ10, ~B1b!

ĝ105)S 2Ĝ011
1

3
Ĝ1012Ĝ12D , ~B1c!

ĝ115Ĝ0022Ĝ11, ~B1d!

ĝ125
2

A15
Ĝ10, ~B1e!

ĝ205A5~3Ĝ022Ĝ1129Ĝ13!, ~B1f!

ĝ215A15S 2Ĝ011
2

15
Ĝ1013Ĝ12D , ~B1g!

ĝ225Ĝ0023Ĝ11, ~B1h!

ĝ235
3

A35
Ĝ10, ~B1i!

f̂ 005F̂002F̂111
1

3
F̂2012F̂22, ~B1j!

f̂ 015
1

)
~ F̂1022F̂21!, ~B1k!

f̂ 025
2

3A5
F̂20, ~B1l!

f̂ 105)S 2F̂011
1

3
F̂1012F̂122F̂2126F̂23D ,

~B1m!

f̂ 115F̂0022F̂111
3

5
F̂2016F̂22, ~B1n!

f̂ 125
2

A15
~ F̂1023F̂21!, ~B1o!

f̂ 135
2)

5A7
F̂20. ~B1p!
The dynamical operatorsĜmn and F̂mn are given in Eqs.
~3.12! for scalar mean field interactions and in Appendix
for scalar QED. Please note that in both casesF̂2k50 for k

Þ0 and thus some of the expressions forf̂ i j above simplify.
We also note that in

f̂ i 21,i 115 (
m50

2

(
n50

i 211m

ci 21,i 11
mn F̂mn ~B2!

the only term which does not violate the second inequality
Eq. ~A2! is the one withm52, n50:

f̂ i 21,i 115ci 21,i 11
20 F̂205

i ~ i 11!

~2i 11!A~2i 21!~2i 13!
F̂20.

~B3!

In the last equality we used Eq.~A5b!. From Eq.~3.12b! or
~C4g! we thus see thatf̂ i 21,i 11 is just a constant. Following
the same reasoning one also obtains

ĝi 21,i5 (
m50

1

(
n50

i 1m

ci 21,i
mn Ĝmn5ci 21,i

10 Ĝ10

5
i

A~2i 21!~2i 11!
Ĝ10, ~B4!

where according to Eq.~3.12a! or ~C3d! Ĝ10 is proportional
to the time derivative] t on d̂t , respectively.

APPENDIX C: THE OPERATORS Ĝmn AND F̂ mn

FOR SCALAR QED

The elementary operatorsP̂m and D̂m are extensions of
the covariant momentumpm and the covariant derivative]m ,
respectively. Their double expansions inv and]/]v are

P̂05Lv1p̂01
Â

L

]

]v
2

B̂

L2

]2

]v22
Ĉ

L3

]3

]v3 1¯ , ~C1a!

D̂05d̂t2
D̂

L

]

]v
2

Ê

L2

]2

]v2 1
F̂

L3

]3

]v3 1¯ , ~C1b!

P̂5p̂2
Ĝ

L

]

]v
1

Ĥ

L2

]2

]v2 1¯ , ~C1c!

D̂52d̂1
Î

L

]

]v
1

Ĵ

L2

]2

]v2 1¯ , ~C1d!

with the equal-time dynamical operators,

p̂0~x,p!5 ie\E
21/2

1/2

dssE~x1 is\“p ,t !•“p , ~C2a!

p̂~x,p!5p2 ie\E
21/2

1/2

dssB~x1 is\“p ,t !3“p , ~C2b!

d̂t~x,p!5\] t1e\E
21/2

1/2

dsE~x1 is\“p ,t !•“p , ~C2c!
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d̂~x,p!5\“x1e\E
21/2

1/2

dsB~x1 is\“p ,t !3“p , ~C2d!

Â~x,p!5e\2E
21/2

1/2

dss2
]

]t
E~x1 is\“p ,t !•“p , ~C2e!

B̂~x,p!5
ie\3

2 E
21/2

1/2

dss3
]2

]t2 E~x1 is\“p ,t !•“p , ~C2f!

Ĉ~x,p!5
e\4

6 E
21/2

1/2

dss4
]3

]t3 E~x1 is\“p ,t !•“p , ~C2g!

D̂~x,p!5 ie\2E
21/2

1/2

dss
]

]t
E~x1 is\“p ,t !•“p , ~C2h!

Ê~x,p!5
e\3

2 E
21/2

1/2

dss2
]2

]t2 E~x1 is\“p ,t !•“p , ~C2i!

F̂~x,p!5
ie\4

6 E
21/2

1/2

dss3
]3

]t3 E~x1 is\“p ,t !•“p , ~C2j!

Ĝ~x,p!5e\2E
21/2

1/2

dss2
]

]t
B~x1 is\“p ,t !3“p

1 ie\E
21/2

1/2

dssE~x1 is\“p ,t !, ~C2k!

Ĥ~x,p!5
ie\3

2 E
21/2

1/2

dss3
]2

]t2 B~x1 is\“p ,t !3“p

2e\2E
21/2

1/2

dss2
]

]t
E~x1 is\“p ,t !, ~C2l!

Î ~x,p!5 ie\2E
21/2

1/2

dss
]

]t
B~x1 is\“p ,t !3“p

2e\E
21/2

1/2

dsE~x1 is\“p ,t !, ~C2m!

Ĵ~x,p!5
e\3

2 E
21/2

1/2

dss2
]2

]t2 B~x1 is\“p ,t !3“p

1 ie\2E
21/2

1/2

dss
]

]t
E~x1 is\“p ,t !. ~C2n!

By substituting these expansions into the expressions oĜ

and F̂ in Eqs. ~4.7! and using the definition ofĜmn , Eq.
~2.9!, we list some low-orderĜmn and F̂mn which will be
used in the derivation of the kinetic equations for low-ord
energy moments:

Ĝ005p̂0d̂t1p̂•d̂, ~C3a!
r

Ĝ0152
1

L
~p̂0D̂1p̂• Î2Âd̂t1Ĝ•d̂!, ~C3b!

Ĝ025
1

L2 ~Ĥ•d̂1Ĝ• Î2p̂• Ĵ2B̂d̂t2ÂD̂2p̂0Ê!,

~C3c!

Ĝ105Ld̂t , ~C3d!

Ĝ1152D̂, ~C3e!

Ĝ1252
Ê

L
, ~C3f!

Ĝ135
F̂

L2 , ~C3g!

and

F̂005
1
4 ~ d̂t

22d̂2!2~Â1p̂0
22p̂2!1m2, ~C4a!

F̂015
1

L
@ 1

4 ~$d̂, Î%2$d̂t ,D̂%!22p̂0Â2$p̂,Ĝ%12B̂#,

~C4b!

F̂025
1

L2 @ 1
4 ~D̂22 Î21$d̂,Ĵ%2$d̂t ,Ê%!

2~Â22Ĝ22$p̂,Ĥ%22p̂0B̂!13Ĉ#, ~C4c!

F̂10522Lp̂0 , ~C4d!

F̂11522Â, ~C4e!

F̂1252
B̂

L
, ~C4f!

F̂2052L2. ~C4g!

APPENDIX D: RELATION BETWEEN FV AND KG
APPROACHES

In this appendix we relate the Wigner function of th
Feshbach-Villars~FV! approach to that of the Klein-Gordo
~KG! formulation, both on the covariant and equal-tim
level.

We rewrite the FV Wigner function~4.21! as an energy
integral of the covariant FV Wigner densityWF(x,p),

WF~x,p!5E dp0

2p
WF~x,p!5E dp0

2p E d4yeip•y%F~x,y!,

~D1!

where the covariant FV density matrixrF(x,y) is defined as

%F~x,y!5FS x1
y

2DexpS ieE
21/2

1/2

dsA~x1sy!•yD
3F†S x2

y

2D . ~D2!

With the transformation~4.19! the covariant FV 232 den-
sity matrix can be expressed in terms of the KG field
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%F~x,y!5expS ieE
21/2

1/2

dsA~x1sy!•yD
3

1

4 S 11
i

m
~D1

0 2D2
0 !1

1

m2 D1
0 D2

0 , 11
i

m
~D1

0 1D2
0 !2

1

m2 D1
0 D2

0

12
i

m
~D1

0 1D2
0 !2

1

m2 D1
0 D2

0 , 12
i

m
~D1

0 2D2
0 !1

1

m2 D1
0 D2

0
D f~x1!f†~x2!, ~D3!

wherex65x6y/2 and

D6
0 5]x6

0 6 ieA0~x6!. ~D4!

Using the identities

]x1

0 expS ieE
21/2

1/2

dsA~x1sy!•yD 5 ieS A0~x1!1E
21/2

1/2

ds~ 1
2 1s!F0m~x1sy!ymD expS ieE

21/2

1/2

dsA~x1sy!•yD ,

]x2

0 expS ieE
21/2

1/2

dsA~x1sy!•yD 5 ieS 2A0~x2!1E
21/2

1/2

ds~ 1
2 2s!F0m~x1sy!ymD expS ieE

21/2

1/2

dsA~x1sy!•yD ,

and Fourier transforming with respect toy one obtains the covariant FV Wigner density in terms of the covariant KG Wig
function:

WF~x,p!5
1

4 S 12
2

m
P̂01

1

m2 ~ 1
4 D̂0

21P̂0
2! 11

i

m
D̂02

1

m2 ~ 1
4 D̂0

21P̂0
2!

12
i

m
D̂02

1

m2 ~ 1
4 D̂0

21P̂0
2! 11

2

m
P̂01

1

m2 ~ 1
4 D̂0

21P̂0
2!
D W~x,p!. ~D5!

Here D̂0(x,p) and P̂0(x,p) are the time components of the operators given in Eqs.~4.7c!,~4.7d!. Performing the energy
average we finally obtain a relation between the equal-time FV Wigner function and the energy moments of the KG
function:

WF~x,p!5
1

4
~11s1!W~x,p!2

1

4m
s2d̂t~x,p!W~x,p!1

1

2m
s3S r~x,p!

2e
1p̂0~x,p!W~x,p! D

1
1

4m2 ~12s1!S 1

4
d̂t

2~x,p!W~x,p!1
1

2
e~x,p!1

1

e
p̂0~x,p!r~x,p!2Â~x,p!W~x,p!1p̂0

2~x,p!W~x,p! D .

~D6!
d

FV
-

ion
HereW(x,p), r(x,p), ande(x,p) are the scalar, charge, an
energy density in phase-space as defined in Eqs.~4.10! for
the Klein-Gordon field, and the operatorsp̂0(x,p) and
d̂t(x,p) are defined in Appendix C. Comparing Eq.~D6! with
the Feshbach-Villars spinor decomposition~4.25! we find the
following relations:

2em f05r12ep̂0W, ~D7a!

f 152
1

2m
d̂tW, ~D7b!

f 21 f 35W, ~D7c!

m2~ f 22 f 3!5~ 1
4 d̂t

21p̂0
22Â!W1 1

2 e1
1

e
p̂0r. ~D7d!

Inserting them into Eqs.~4.28! we obtain the following rela-
tions between the FV phase-space densities~4.28! and the
KG phase-space densities~4.10!, ~4.11!:
rF5r12ep̂0W, ~D8a!

jF5 j52epW, ~D8b!

eF5 1
2 e1

1

e
p̂0r1@ 1

4 ~ d̂t
22“x

2!1p2

1m21p̂0
22Â#W, ~D8c!

PF5P12pp̂0W5
1

e
prF .

~D8d!

One easily checks that the momentum integrals of the
and KG phase-space densities~i.e. the corresponding space
time densities! agree with each other.

Inserting these relations into the equations of mot
~4.29! we find
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1

e
d̂tr12~ d̂tp̂01p̂•d̂!W50,

d̂te1
2

e
~ d̂tp̂01p̂•d̂!r12@ 1

4 ~ d̂t
22d̂2!d̂t1p̂2d̂t1d̂tp̂0

22d̂tÂ

1m2d̂t12p̂•d̂p̂0#W50,

e52@ 1
4 ~ d̂t

22d̂2!2~p̂0
22p̂2!1m21Â#W2

2p̂0

e
r.

~D9!
D

e

The first and third equations are now seen to agree with
corresponding equations~4.12! from the energy-averaged co
variant KG approach while the equation of motion for t
energy density still looks different. However, by acting wi

p̂0 on the first and withd̂t on the third equation and the
combining them with the second equation, using the comm
tators ~4.13! and ~4.15!, one indeed also recovers E
~4.12b!. This shows that the Feshbach-Villars equatio
~4.29! are equivalent to the minimal subgroup of equal-tim
kinetic equations~4.12! in the energy-averaged covaria
Klein-Gordon approach.
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