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Interacting charged particles in an electric field and the Unruh effect
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We compute the transition amplitudes between charged particles of massM andm accelerated by a constant
electric field and interacting by the exchange of quanta of a third field. We work in second quantization in
order to take into account both recoil effects induced by transitions and the vacuum instability of the charged
fields. In spite of both effects, when the exchanged particle is neutral, the equilibrium ratio of the populations
is simply exp@p(M22m2)/eE#. Thus, in the limit (M2m)/M→0, one recovers Unruh’s result characterized by
the temperaturea/2p wherea is the acceleration. When the exchanged particle is charged, its vacuum insta-
bility prevents a simple description of the equilibrium state. However, in the limit wherein the charge of the
exchanged particle tends to zero, the equilibrium distribution is once more Boltzmannian, but characterized not
only by a temperature but also by the electric potential felt by the exchanged particle. This work therefore
confirms that thermodynamics in the presence of horizons does not rely on a semiclassical treatment. The
relationship with horizon thermodynamics and the role of the horizon area as an entropy are stressed.
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I. INTRODUCTION

Shortly after Hawking’s seminal discovery of black ho
radiation@1#, Unruh @2# showed that it possesses a flat spa
analogue, namely, that a uniformly accelerated detector
ceives the Minkowski vacuum to be thermally populated a
temperatureTU5a/2p. In Unruh’s original work, only the
detector’s internal states were treated quantum mechanic
Its position was treated classically and thus was insens
to the transitions occurring between its internal states. Th
an approximation that violates momentum conservation:
transitions are accompanied by the emission of a radia
quantum, but the energy and momentum transfer due to
emission is neglected since the detector’s trajectory is fi
once and for all. In order to enforce momentum conser
tion, one must quantize the detector’s position.

This enlargement of the quantum dynamics allows one
answer questions concerning the origin of the energy emi
during transitions and the consequences of the recoil eff
@3,4#. Moreover, it provides new insight into the Unruh pr
cess and connects it with the Schwinger process@5,6# and
horizon thermodynamics@7,8#. Thus, it may serve as a guid
for other problems dealing with particle creation in the pr
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ence of horizons. Indeed, in all cases, background field
proximation schemes have been used and should be a
doned in other to address the question of the quantum b
reaction.

In Refs.@5,3,6#, the enlargement of the dynamics has be
carried out by modeling the detector by a ‘‘two-level ion
propagating in a constant electric fieldE. The ion has charge
Q and its two levels have rest massM and m. It therefore
uniformly accelerates with accelerationaM5QE/M or am

5QE/m according to its mass. The ion can make transitio
between its two levels by emitting or absorbing a quantum
a massless chargeless fieldF. Thus it behaves like an acce
erated particle detector with mass gapDM5M2m. More-
over, the transitions now satisfy Feynman rules, as in QE
see@9,10#. The main new insights concerning the Unruh e
fect which have been obtained in this way are the followin

~1! The detector can be described by a delocalized w
function, whereupon the classical geometric notion of a
rizon no longer exists.~Of course, one may approximatel
recover the concept of a horizon by building well-localiz
wave packets.! Nevertheless, thermal rates for transitions
the detector still obtain, thereby confirming that thermod
namical relations still govern the physics when one goes
yond the semiclassical treatment.

~2! Each time the detector makes a transition, it reco
both in momentum and in energy in such a way that the to
instantaneous Minkowski momentum and energy are c
served. From a space time point of view, i.e., if one bui
wave packets, the transition induces a kink in the detect
trajectory, which accounts for its change in momentum a

in
-
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57 6497INTERACTING CHARGED PARTICLES IN AN . . .
kinetic energy. This is explained in more detail in@3#, pp.
245–246.1

~3! These recoils give rise to a decoherence of
detector-radiation system. This in turn implies that the det
tor emits a steady flux of radiation, contrary to the situat
where the detector’s position is treated classica
@11,12,13,14#.

~4! One of the most interesting consequences of this
proach is that it relates the Unruh effect to the Schwin
process@15,16# of pair creation in an electric field. Indee
the two processes are ‘‘in equilibrium’’@5#.

~5! Finally both the Unruh effect and the Schwinger pr
cess are deeply related to horizon thermodynamics, since
area of the acceleration horizon@7# plays the role of an en
tropy in delivering the equilibrium population ratios@8#.

The aim of the present work is to extend these results
taking the fieldF with which the detector interacts to b
massive and charged. Its mass will be denotedm and its
chargea. The fields of the detector of massM andm then
have chargeQ and q with Q5q1a to ensure charge con
servation. We shall show that takingF to be massive doe
not modify any of the above points, but taking it to b
charged, and hence accelerated, does modify the equilib
properties.

In order to present these new properties, we first exp
in more detail the physical content of points~4! and ~5!.
When describing the charged fields by operators, i.e.,
working in a second quantization, the electric field leads t
vacuum instability through pair creation of ions and an
ions. The mean numbers of created pairs are

NM5
QEVT

2p
e2pM2/QE, Nm5

qEVT

2p
e2pm2/qE, ~1!

and similarly for theF field. The prefactorQ(q)EVT/2p
accounts for the number of quantum cells, i.e., orthogo
states, that are subject to pair creation when the electric
is turned on during a lapseT in a box of lengthL. These
expressions are valid for scalar fields in 111 dimensions
when T and L (5V) are much bigger than 1/aM ; see@17#
for more details. This prefactor will play no role in wha
follows since equilibrium distributions are governed by r
tios which are dominated by the exponentials. We theref
introduce the probabilities per unit time and unit length
creating a particle of massM :

1Note that in this model, by treating the electric field classica
one also makes an approximation that neglects certain recoil eff
However, these effects are governed by the rest mass of the
denser plates that generate the electric field and not by the rest
of the Unruh detector. It is therefore a much more legitimate
proximation to neglect condenser recoils only. Treating the elec
field classically also neglects self-interactions of the partic
These effects are proportional toQ2, the square of the charge of th
fields. On the other hand, the coupling to the external electric fi
is proportional toQQcondenserwhereQcondenseris the charge on the
condenser plates. Hence the self-interactions can be neglect
Q/Qcondenser!1.
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5

QE

2p
e2pM2/QE, ~2!

and similarly for the other fields.
A priori independently of these creation processes, an

will make transitions from its excited to its ground state a
rate RM→m or from its ground to its excited state at a ra
Rm→M . But as suggested in@5#, these two processes ar
intimately related. Indeed, whenF is neutral~Q5q, a50!,
the ratio of their rates is given by@6,18#

Rm→M

RM→m
5

PM

Pm
5e2p~M22m2!/QE. ~3!

This motivates our saying that the two processes are in e
librium since they determine the same distributionPM /Pm
of particles of massM andm. We emphasize that Eq.~3! is
exact in the sense that it takes into account all effects du
the finite mass of the detector, i.e., recoil effects, and
finite probability to create pairs of detectors.

Upon taking the limitM ,m→`, with ā52QE/(M1m)
and DM constant, both recoil effects and pair creation a
plitudes vanish. Therefore, one expects to recover Unru
result which gives the equilibrium probabilities of an acc
erated detector of given accelerationā. Indeed, upon taking
the above limit, Eq.~3! becomes

Rm→M

RM→m
5

PM

Pm
5e2pDM ~M1m!/QE5e22pDM /ā. ~4!

In this paper, we shall derive the modified equations t
replace Eqs.~3!,~4! when the exchangedF field is charged.
The new transition rates of the detector satisfy

Rm→M

RM→m
5e2p~M2/QE2m2/qE!1O~e2pm2/aE!. ~5!

Using Eq.~2!, we can reexpress this as

Rm→M

RM→m
5

q

Q

PM

Pm
1O~e2pm2/aE!. ~6!

Thus, in the limit wherein we can neglect the spontane
creation of F quanta~i.e., e2pm2/aE→0!, we recover the
equilibrium between the Schwinger and Unruh effects, up
the prefactorQ/q. This is the main result of our paper. W
now display what we can learn from it.

The semiclassical limit is obtained by generalizing wh
lead to Eq.~4!, i.e., by takingM ,m→`, (Q2q)/Q5a/Q
→0, m2/Ea→`, with DM andā5(Q1q)E/(M1m) con-
stant. In this limit Eq.~5! becomes

Rm→M

RM→m
5e~22p/ā!~DM2aE/2ā!1O~a2/Q2!1O~e2pm2/aE!.

~7!

This is again a thermodynamical relation. It shows that,
addition to the Unruh temperatureTU5ā/2p, there is now
an electric potential (5E/2ā) which modifies the equilib-
rium.

This is strictly analogous to the ratio of the rates f
charged particles to be emitted or absorbed by a char
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black hole. In Hawking’s derivation, this ratio is expressed
terms of the Bogoljubov coefficientsgv ,bv characterizing
the mixing of in andout modes of theF field. However, to
make clearer the contact with Eq.~7!, we can express Hawk
ing’s result in terms of the rateRM→M2v to jump from a
black hole of massM and chargeQ to a black hole charac
terized byM2v andQ2a and the rate of the inverse pro
cessRM2v→M . Then, Hawking’s result can be expressed

Ubv

gv
U2

5e2bH~v2af!5
RM→M2v

RM2v→M
, ~8!

wherebH is the inverse Hawking temperature,v is the en-
ergy of the quantum measured at spatial infinity, andf is the
difference of electric potential between the horizon and
finity. In Eq. ~7!, the equivalent off is E/2ā, the difference
of the electric potential between the horizon and the acce
ated trajectory where the charged quantum is emitted~ab-
sorbed!.

The occurrence of this electromagnetic potential can
derived in a more direct way by quantizing the fieldF in
Rindler coordinates and calculating the Bogoljubov transf
mation that relates the Rindler modes to the Unruh mod
This semiclassical approach is identical to the one used
Unruh @2# and Hawking in their seminal calculations. W
hope to report on it in a future publication@19#.

The main point of this discussion is that in contradistin
tion to the semiclassical treatment which yields directly a
only to Eqs.~4!,~7!, we are now able to show how thes
semiclassical equilibrium ratios arise from Eqs.~3!,~5! by
taking,a posteriori, variations limited to first order ina and
DM . Therefore, we can analyze thefinite differences and no
only the first order changes delivering the above canon
concepts through differentiation. This will play a crucial ro
in what follows.

The interest of relating the Unruh process to t
Schwinger process as in Eq.~3! is further enhanced whe
one recalls that the rate of pair creation due to the Schwin
process can be expressed in terms of the change of the
of the acceleration horizon@7,8#:

PM.e2DAH~M ,Q!/4. ~9!

The quantity that appears in the exponentialDAH(M ,Q)
5AH

0 2AH(M ,Q) is thefinite differencebetween the infinite
area of the acceleration horizon in flat space,AH

0 , and the
infinite area if a pair of particles of massM and chargeQ is
emitted,AH(M ,Q). This difference is calculated by enclo
ing the system in a fictitious box, whereupon the areas
finite, and then taking the limit as the size of the box tends
infinity; see@7#.

The simplest way to derive Eq.~9! is to note that the
Schwinger process possesses a Euclidean instanton, wh
a circle in the Euclidean continuation of Rindler space tim
The probability of pair creation is given by the action to
once round the circle:

PM.e2Sinst~M ,Q!, Sinst~M ,Q!5pM2/QE. ~10!

One can also include the gravitational field of the instan
to obtain a self-consistent Euclidean solution of the Einst
s
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matter equations. Using the Hamiltonian decomposition
the Einstein-Hilbert action, one finds that

Sinst~M ,Q!5DAH/4. ~11!

This instanton approach only gives the leading exponen
the Schwinger process. In this case Eq.~3! can be rewritten
as

Rm→M

RM→m
5e2$DAH~M ,Q!2DAH~m,Q!%/45e2DH~DM !/4, ~12!

where in the last equality we have writtenDAH(DM )
5AH(m,Q)2AH(M ,Q) as the difference of the horizo
area between the initial and final states.

WhenF is charged, if we neglect the second term in E
~6!, the transition rates can also be related to changes of
accelerating area horizon:

Rm→M

RM→m
.e2$DAH~M ,Q!2DAH~m,q!%/45e2DAH~DM ,a!/4.

~13!

In the case of black hole evaporation, a similar rewriti
of emission rates in terms of changes of the area of the
rizon is a reexpression of the first law of black hole therm
dynamics. In the present case, since Eq.~7! deals with the
change in the accelerated horizon,

DAH~DM ,a!
4

5
l in .

2p
ā ~ DM2a E

2ā! ~14!

should be considered as the~linearized! first law of
accelerated-horizon thermodynamics.

However, contrary to the black hole case, we have
tained an expression for the rates containing finite diff
ences@see Eq.~5!#, and not only linearized~canonical! ex-
pressions. Upon still neglecting the vacuum instability of t
exchangedF field, we find that the logarithm of the ratio o
the transition rates is given by the followingfinite difference:

DAH

4
5pS M2

QE
2

m2

qED . ~15!

This shows that a quarter of the area of the horizon not o
delivers canonical distributions and thermodynamics
truly determines quantum processes as in statistical mec
ics. One-quarter of the Rindler horizon area is therefore co
pletely analogous to an entropy as far as as the Unruh
cess is concerned.

To conclude the Introduction, let us emphasize the
neric character of the agreement of Eqs.~3!,~5! with the
background field expressions, Eqs.~4!,~6! when a first order
expansion in the light changes is performed. Equatio
~3!,~5! are derived in an enlarged quantum setting wher
the trajectory of the heavy ion is quantum mechanica
treated whereas Eqs.~4!,~6! are based on a background fie
approximation in which the trajectory is classically dete
mined. The agreement of the transition rates evaluated f
both treatments arises when the following procedure is
plied to transition amplitudes evaluated in the more quant
framework. Upon working with WKB waves and performin
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first order expansions inDM /M and in the momentum trans
fer, these amplitudes coincide with the corresponding am
tudes evaluated at the background field approximation;
@20# for details. What guarantees this agreement is that
order expansions of the WKB phases are controlled
Hamilton-Jacobi equations. The same relation will theref
hold when one considers gravity.~This has been explicitly
verified in mini-superspace in@21#.! To first order in the
matter energy change, transition amplitudes computed
quantum gravity with WKB waves are equal to the cor
sponding amplitudes evaluated from quantum field theory
a given classical geometry. Only second order changes,
the nonlinear response of gravity, involve the Planck ma

The present article is organized as follows. Section
this Introduction. Section II is devoted to recalling the qua
tization of a charged field in an electric field and t
Schwinger process. In Sec. III we introduce our detec
model, and consider the case when the detector interacts
a massive, but neutral, field. The techniques develope
this section are then used in Sec. IV to analyze the m
complicated case of interactions with a charged field. App
dix A is devoted to the analytical evaluation of the transiti
amplitudes and Appendix B deals with the limita°0 of the
transition amplitudes.

II. CHARGED PARTICLES IN AN ELECTRIC FIELD

The aim of this section is to review the quantization o
massive charged scalar field in an external electric fieldE.
For the reader interested in a more complete treatment
refer to@17# and references therein. Classically, the equat
of motion of a relativistic charged particle of massM and
chargeQ in an electric field is

M
d2xm

dt2 52QE«mn
dxn

dt
. ~16!

Its trajectory is a hyperbola with parametric equations giv
by

t1
k

QE
5

1

A
sinh A~s2s0!, ~17!

x2x05
1

A
coshA~s2s0!. ~18!

HereA5QE/M is the classical acceleration of the partic
The time coordinate of the turning point of the hyperbola
t052k/QE wherek5(Mẋ1Ax) is the conserved momen
tum canonically conjugate to the variablex in the gaugeAt
50 andAx52Et.

The corresponding Klein-Gordon equation for the field

@h1M2#cM~ t,x![@~2 i ]x1QEt!21] t
21M2#cM~ t,x!50.

~19!

The general solution of this equation can be written a
superposition of modes,

cM ,k~ t,x!5
eikx

A2p
xM ,k~ t !, ~20!
li-
ee
st
y
e

in
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n
e.,
.
s
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-

e
n

n

.

a

and their complex conjugates. The functionsxM ,k(t) obey
the equation

@] t
21M21~k1QEt!2#xM ,k~ t !50. ~21!

Because of thet dependence of this potential, there will b
some backscattering. To interpret this in the context of
Klein-Gordon equation, we note that the current operato
J052 iQ ]It . Thus the backscattering corresponds to a m
ing of positive and negative charges. In a second quant
context this corresponds to pair creation@5,17#. To describe
them we introduce a set of solutions with only positive
negative charge fort→2` ~in modes!,

cM ,k
pin ~ t,x!5

eikx

A2p

e~2p/4!eM

~2QE!1/4

3Di eM21/2Fe3ip/4S t1
k

QEDA2QEG
5

eikx

A2p
DeM

@l#, ~22!

cM ,2k
a in ~ t,x!5

e2 ikx

A2p
DeM

@l#, ~23!

and a set of solutions with only positive or negative cha
for t→1` ~out modes!,

cM ,k
p out~ t,x!5@cM ,2k

p in ~2t,x!#*

5
eikx

A2p
DeM

* @2l#, ~24!

cM ,2k
a out~ t,x!5@cM ,2k

a in ~2t,x!#*

5
e2 ikx

A2p
DeM

* @2l#, ~25!

whereeM5M2/(2QE) and where the superscriptsp and a
refer, respectively, to particle and antiparticle wave fun
tions. We have introduced a synthetic notation for the pa
bolic cylinder functions and their argument:

DeM
@l#5

e~2p/4!eM

~2QE!1/4 Di eM21/2Fe3ip/4S t1
k

QEDA2QEG ,
l5S t1

k

QED . ~26!

We also note that the parabolic cylinder function has
following integral representation@17#:

DeM
@l#5

e~2p/2!eMe2 ip/8

~2QE!1/4GS 1

2
2 i eM D e~1 i /2!l2QE

3E
0

`

dve2 ilA2QEv1 iv2/2v2 i eM21/2, ~27!
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where the integration parameterv is classically related tot
and its conjugate momentumpt by @22#

v5AQE/2F pt

QE
1S t1

k0

QED G5Am

2A
eAs. ~28!

Since the parabolic cylinder functions have the property

DeM
* @l#5aMDeM

@2l#1bMDeM
* @2l#, ~29!

the in andout modes are related by the linear transformat

c M ,k
p out5aMc M ,k

p in1bM~cM ,2k
a in !* ,

c M ,k
p in5aM* c M ,k

p out2bM~cM ,2k
a out!* , ~30!

where

aM5
A2pe2 ip/4e~2p/2!eM

GS 1

2
1 i eM D and bM5 ie2peM. ~31!

These Bogoljubov coefficients arek independent, but mas
and charge dependent. The second quantized fieldCM
should be decomposed in either thein or theout bases,

CM~ t,x!5E dk@c
M ,k
p$out

in

~ t,x!aM
$out
in

~k!

1„c
M ,k
a$out

in

~ t,x!…* b
M

†$out
in

~k!#, ~32!

to define thein andout operators. From Eq.~30! we obtain

ak
in5aMak

out2bMb2k
out† ,

bk
in5aMbk

out2bMa2k
out† . ~33!

The Heisenberg stateu0,in& contains no particles at earl
times; i.e., it is annihilated by thein destruction operators. A
late times it contains pairs of particles, as expressed by
relation

u0,in&M5N M
21 expS bM

aM
E ak

out†b2k
out†dkD u0,out&M ,

~34!
he

where

N M
215M^0,outu0,in&M ~35!

is a normalization factor. The mean number of created p
ticles @per quantum cell; see Eq.~1!# is

PM5M^0,inub2k
out†b2k

outu0,in&M5ubMu25e22pM2/QE.
~36!

III. PARTICLE INTERACTIONS: EMISSION
OF A NEUTRAL PARTICLE

In this section we consider a uniformly accelerated det
tor interacting with a neutral scalar fieldFm of massm. We
shall show that Eq.~3!, i.e., the relation between Schwinge
and radiative processes which was obtained in@6# for a mass-
less field, still holds when the exchanged quanta are mas
Moreover, we shall see that all amplitudes linear in the c
pling constant can be expressed in terms of a single am
tude describing the creation of a pair of charged quanta.
techniques developed in this section will be generalized
the next section where the fieldFm is both massive and
charged.

The detector is described by two charged scalar fieldsCM
andCm , with massM andm and the same chargeQ, propa-
gating in the electric fieldE. As in @5,3,6#, the interaction
between the fields is supposed to be given by

Hint5gE dx~CM
† Cm1CMCm

† !Fm . ~37!

A first amplitude of interest is the amplitudeA of transition
from anin M particle of momentumk into anout m particle
of momentumk8 and am particle of momentumk9, which
we schematically write asM (k)→m(k8)1m(k9). It corre-
sponds to spontaneous deexcitation of the detector~since
M.m!. In the interaction representation, to first order ing,
it is given by
Eq.
A~kuk8,k9!52 igE dtdx̂ 0,outuam~k9!am
out~k8!CMCm

† FmaM
in†~k!u0,in&. ~38!

The factorization of the vacuum states as a tensor product of three vacua,

u0,$out
in &5u0,$out

in &M ^ u0,$out
in &m^ u0&m , ~39!

leads to the expression~see@9,10#!

A~kuk8,k9!5
1

aMNM

1

amNm
~2 i !g3E dt dx c Mk

p outc mk8
p in* fmk9

* , ~40!

whereNM , Nm are the overlaps@see Eqs.~34!,~35!#.
At this point it is interesting to note that the quantityA(kuk8,k9) describes several different processes in addition to

~38!. Indeed it is not difficult to verify using Eqs.~22!–~25! that the four transitions
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M ~k!→m~k8!1m~k9!,

M̄ ~2k!→m̄~2k8!1m~2k9!,

m̄~k8!1m~k9!→M̄ ~k!,

m~2k8!1m~2k9!→M ~2k!, ~41!

whereM̄ andm̄ denote antiparticles, all have the same a
plitude A(kuk8,k9). These different amplitudes are relate
by combinations of substituting particles for antiparticle
changing the sign of the momentumk→2k, and permuting
incoming and outgoing quanta. Their origin will be furth
explained in the next section. Similar properties will obta
for all the amplitudes we shall introduce. Thus the notat
we use forA(kuk8,k9), and which is also used for all th
other amplitudes in this paper, is that the vertical bar se
rates incoming from outgoing quanta, and that6k is the
momentum of theCM quanta,6k8 of the Cm quanta, and
6k9 of the Fm quanta.

Similarly, the amplitudeB of spontaneous excitation of a
m particle into anM particle accompanied by the emissio
of a m particle is given by
-

,

n

a-

FIG. 1. A graphic representation of the relation between am
tudes B,V,A of Sec. III. Particles are denoted b
M (k),m(k8),m(k9) according to their mass and momentum, a
antiparticles byM̄ ,m̄ ~there is no antiparticle for theFm field which
is real!. The momenta in each diagram are always conservedk
5k81k9. The coefficientsbM ,bm which weight the different am-
plitudes are the amplitudes to produce a pair ofM ,M̄ or m,m̄
particles from vacuum. The picture is oriented both in time a
space: particles~antiparticles! are incoming from, and outgoing to
the right ~left! according to their acceleration in the electric fiel
The chargeless particlesm are represented as vertical lines becau
they are not accelerated.
ent, the

nd state
B~k8uk,2k9!52 igE dtdx̂ 0,outuam~2k9!aM
out~k!CM

† CmFmam
in†~k8!u0,in&

5
1

aMNM

1

amNm
~2 ig !E dt dxc M ,k

p in* c m,k8
p outfm,2k9

* . ~42!

Because of the uniform acceleration, this spontaneous excitation amplitude is nonvanishing. As in the Unruh treatm
ratio of the rates of spontaneous excitation to spontaneous deexcitation is simply given by

Rm→M

RM→m
5

uBu2

uAu2 , ~43!

since the norm of the amplitudes is independent of the momentak andk8.
Thus, when the detector reaches equilibrium, the ratio of the probabilities to find the detector in its excited or grou

is

PM equil

Pm equil
5

Rm→M

RM→m
5

uBu2

uAu2 . ~44!

Our task is to calculate this ratio and to confirm the relation with the Schwinger process, Eq.~36!. To this end we introduce
a third amplitudeV corresponding to the creation from a vacuum of anout M antiparticle, anout m particle, and am particle.
To first order ing, it is given by

V~ u2k,k8,k9!52 igE dtdx̂ 0,outuam~k9!am
out~k8!bM

out~2k!CMCmFm
† u0,in&

5
1

aMNM

1

amNm
~2 ig !E dtdxcM ,2k

a in* c m,k8
p in* fm,k9

* . ~45!
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Using the Bogoljubov transformation for theM -particle
wave function, Eq.~30!, we can reexpressV in terms of the
A amplitude:

V~ u2k,k8,k9!5
2 ig

aMNM

1

amNm
E dtdx@aMcM ,2k

a out*

1bMc M ,k
p out#c mk8

p in* fmk9
*

5bMA~kuk8,k9!1aMI~k,k8,k9!. ~46!

Similarly, using the Bogoljubov transformation for them
particle we can reexpressV in terms of theB amplitude:

V~ uk,k8,k9!5bmB~k8uk,2k9!1amI8~k,k8,k9!. ~47!

Using the identities~which constitute the main mathematic
result of this section, and are proved hereafter!

I5I850, ~48!

one obtains

bmB~k8uk,2k9!5V~ u2k,k8,k9!5bMA~kuk8,k9!,
~49!
relations that we have depicted schematically in Fig. 1.
serting Eq.~49! into Eq. ~43! yields the link between radia
tive and Schwinger processes discussed in the Introduc
Eq. ~3!:

PM equil

Pm equil
5

NM

Nm
5e2p@~M22m2!/QE#. ~50!

It remains to establish Eq.~48!. To this end, we write

I~k,k8,k9!5CstE dxdteikxe2 ik8xe2 ik9x

3DeM
@2l#Dem

* @l8#eiv9t

52pd~k2k82k9!E dtDeM
@2l#

3Dem
* @l8#eiv9t, ~51!

where we have introducedl5(t1k/QE), l85(t
1k8/QE). To perform thet integration we replace the Whit
taker’s functionsD by their integral representations, E
~27!, to obtain
n

f

I~k,k8,k9!5Cst8d~k2k82k9!E dte~ i /2!QE@ t1~k/Q!E#2
e2~ i /2!QE@ t1~k8/Q!E#2

eiv9t

3E
0

`

dudve1 iuA2QE@ t1~k/Q!E#1 iu2/2u2 i eM21/2e1 i @ t1~k8/Q!E#A2QEv2 iv2/2v i em21/2. ~52!

The quadratic phases int cancel, and thet integral yieldsd„u1v1(v91k9)/A2QE…. The argument of the delta functio
never vanishes on the domain of integration ofu andv sincev91k9Þ0 for mÞ0. HenceI50. A similar reasoning shows
that I850.

The interested reader will now find the calculation of the amplitudes themselves. By virtue of Eq.~49!, we only need to
calculate the amplitudeV. We start from Eq.~45! in which we reexpress (CM ,2k

a in )* as @(CM ,2k
a out)* 1bM(CM ,k

p in)#/aM* . The
first term does not contribute since it is equal toI(k,k8,k9)/uau2. The second term gives

V~ u2k,k8,k9!5CstE dxdteikxe2 ik8xe2 ik9xDeM
@l#Dem

* @l8#eiv9t

5Cst8d~k2k82k9!E dte~ i /2!QE@ t1~k/Q!E#2
e~2 i /2!QE@ t1~k8/Q!E#2

eiv9t

3E
0

`

dudve2 iuA2QE@ t1~k/Q!E#1 iu2/2u2 i eM21/2ei @ t1~k8/Q!E#A2QEv2 iv2/2v i em21/2

5Cst9d~k2k82k9!E
0

`

dudvdS 2u1v1
v91k9

A2QE
D

3ei @~k8/Q!E#A2QEv2 iv2/2v i em21/2u2 i eM21/2e2 iuA2QE@~k/Q!E#1 iu2/2

5Cst-d~k2k82k9!E
0

`

dveiv~v2k9!/A2QEv i em21/2S v1
v1k9

A2E
D 2 i eM21/2

.

~53!

The last integral gives an integral representation of a Whittaker’s function~see@23#, formula 3.383.4!. Reinstating the value o
Cst- yields
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V~ u2k,k8,k9!5g
1

aMNMamNm
d~k2k82k9!

e~23p/4!eme~23p/4!eM

2QEA2v

1

m
e~2 i /2QE!~k1k8!v

3S v2k9

v1k9D
~ i /2!~eM2em!

W~2 i /2!~em1eM !,~ i /2!~em2eM !F2
im2

2QEG . ~54!

It is interesting to note that the delta functiond„2u1v1(v91k9)/A2QE… has the interpretation of ensuring local ener
conservation. Indeed, replacingu andv by their classical relation tot andpt , Eq. ~28!, yields simply2pt1pt81v50 where
pt is the energy of theM particle,pt8 of the m particle, andv of the m particle.

We conclude this section by calculating them→0 limit of the above amplitude. This will allow us to make contact with t
expressions of@6#, which were obtained using a different method. The evaluation of this limit needs some precautions.
for k9,0, the support of the delta function given by the integral overt in Eq. ~52! rejoins the boundary of the domain o
integration. In order to avoid ambiguities, we have to substitute in Eq.~45!, according to the sign ofk9, the decomposition of
(CM ,2k

a in )* or (Cm,k8
p in)* in terms of in andout fields and take into account the infinitesimal imaginary part that the squ

masses of the fields share. For small value ofm one finds

V~ u2k,k8,k9! 5
m→0

g
1

aMNMamNm
d~k2k82k9!

e~2p/2!~em2eM !

2QEA2v

e3ip/4

A2QE
e~2 i /2QE!~k1k8!v

3H u~k9!S 2k9
QED ~ i /2!~em2eM ! 1

G S 1
2

1 i eM DG~11 i em2 i eM !

2u~2k9!e~p/2!~em2eM !

3S 2k9
QED ~ i /2!~eM2em! 1

G S 1
2

1 i emDG~12 i em1 i eM !J . ~55!
o
en
in
r-
h

e

der
f

ty
Note the surprising fact that in this limit, the amplitudes
decay of the same process but with the opposite mom
differ. However, this is peculiar to two dimensions. Indeed
higher dimensions, the massm contains the squared transve
sal momentum and so, even in the massless limit, vanis
only on a domain of zero measure in phase space.

IV. PARTICLE INTERACTIONS: EMISSION
OF A CHARGED PARTICLE

In this section we shall suppose that theFm field is also
charged. Thus there are three fieldsCM ,Cm ,Fm , with
massesM ,m,m and chargesQ,q,a, respectively. These thre
fields interact through the Hamiltonian

Hint5gE dx~CM
† CmFm1CMCm

† Fm
† !. ~56!

Charge conservation requires

Q5q1a. ~57!

The amplitudeA of transition from anin M particle into an
out m particle and aout m particle is given at first order in
perturbation theory by
f
ta

es

A~kuk8,k9!

5 K 0,outUam
out~k9!am

out~k8!~2 i !E dtHintaM
in†~k!U0,in L

5
1

aMNM

1

amNm

1

amNm
~2 i !g

3E dtdxc Mk
p outc mk8

p in* fmk9
p in*

5Cd~k2k82k9!A~kuk8,k9!, ~58!

where

C5
2 ig

A2p

1

aMNMamNmamNm
~59!

and we have introduced the reduced amplitude

A~kuk8,k9!5E
2`

1`

dtDeM
* @2l#Dem

* @l8#Dem
* @l9# ~60!

and used the abbreviated notation for the parabolic cylin
functions introduced in Eq.~26!. Note also the appearance o
the factor 1/amNm which arises due to the vacuum instabili
of the m field.
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As in the previous section, the processes

M ~k!→m~k8!1m~k9!,

M̄ ~2k!→m̄~2k8!1m̄~2k9!,

m̄~k8!1m̄~k9!→M̄ ~k!,
l-

um
m~2k8!1m~2k9!→M ~2k!, ~61!

all have the same amplitudeA(kuk8,k9). Note that these
differ slightly from Eq. ~41! because one has to distinguis
betweenm and m̄ since the fieldFm is charged.

Similarly the amplitudeB for anm antiparticle to sponta-
neously excite into anM antiparticle and am particle is
B~k8uk,2k9!52 i E dtdx̂ 0,outuam
out~k9!bM

out~2k!CMCm
† Fm

† bm
in†~2k8!u0,in&

5Cd~k2k82k9!B~k8uk,2k9!, ~62!

where

B~k8uk,2k9!5E
2`

1`

dtDeM
* @l#Dem

* @2l8#Dem
* @l9#. ~63!

Another amplitude that we need to introduce is the amplitudeC for a m antiparticle to spontaneously excite into anM
antiparticle and anm particle,

C~k9u2k8,k!52 i E dtdx̂ 0,outubm
out~2k8!aM

out~k!CM
† CmFmam

in†~k9!u0,in&

5Cd~k2k82k9!C~k9uk,2k8!, ~64!

where

C~k9uk,2k8!5E
2`

1`

dtDeM
* @l#Dem

* @l8#Dem
* @2l9#, ~65!

and the amplitudeV for spontaneous creation from a vacuum of anM antiparticle, anm particle, and am particle:

V~ u2k,k8,k9!52 i E dtdx̂ 0,outuam
out~k8!bM

out~2k!am
out~k9!CM

† CmFmu0,in&

5Cd~k2k82k9!V~ u2k,k8,k9!, ~66!
-

e-

,

ree
of

-

where

V~ u2k,k8,k9!5E
2`

1`

dtDeM
* @l#Dem

* @l8#Dem
* @l9#. ~67!

The rules governing the product ofD functions in the
reduced amplitudesA, B, C, V can be summarized as fo
lows.

The sum of the momenta is conserved. We always ass
that k5k81k9.

Equations~22! and ~23! tell us that a functionDeM
* @2l#

is associated with an incoming particle~of massM , charge
Q.0, and momentumk! or an incoming antiparticle~of
massM , charge2Q, and momentum2k!.

Equations~24! and ~25! tell us that a functionDeM
* @l# is

associated with an outgoing particle~of massM , chargeQ
.0, and momentumk! or an outgoing antiparticle~of mass
M , charge2Q, and momentum2k!.
e

The change of variablet→2t in the integrals accompa
nied by a change in sign of momentumk→2k replaces
incoming quanta by outgoing quanta andvice versa, without
changing the value of the integral.

These rules give directly the relation~61! and similar ones
for B, C, and V. Therefore the 64 possible amplitudes d
scribing first order interactions betweenCM , Cm , andFm
quanta can all be equal to eitherA, B, C, or V.2

There is a further identity which will play a crucial role
namely,

I5E
2`

1`

dtDeM
@2l#Dem

* @l8#Dem
* @l9#50. ~68!

2Note that these amplitudes are all integrals of products of th
D* functions. Mathematically one could also consider integrals
products of threeD* andD functions. The Bogoljubov transforma
tion ~30! ensures that they can be reduced to a combination ofA, B,
C, V.
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It generalizes Eq.~48! and it is proved also by using th
integral representation of theD functions given in Eq.~27!.
As in Eq. ~52!, one verifies thatI still vanishes simply be-
cause due to charge conservation the quadratic phasest
cancel each other and the remainingt integral yields to a
delta function whose argument is strictly positive on the d
main of integration. This identity implies relations betwe
the amplitudesA, B, C, V which generalize Eq.~49!. Indeed
from Eqs.~29! and ~68! we obtain immediately

V~ u2k,k8,k9!5bMA~kuk8,k9!. ~69!

On the other hand, starting from Eq.~67! and using the iden-
tity ~29! to split into sums, successively, the functio
Dem

* @l8#, Dem
* @l9#, andamDem

* @2l8# and finally using the

complex conjugate version of relation~68!, we obtain

V~ u2k,k8,k9!5bmB~k8uk,2k9!1bmC~k9uk,2k8!

2bmbmA~2ku2k8,2k9!. ~70!

These relations are illustrated in Fig. 2. Using Eq.~69! to
eliminateV(u2k,k8,k9) yields

B~k8uk,2k9!

A~kuk8,k9!
5

bM

bm
2

bm

bm

C~k9uk,2k8!

A~kuk8,k9!

1bm

A~2ku2k8,2k9!

A~kuk8,k9!
. ~71!

This shows that when the charge of the exchanged par
tends to zero, i.e.,bm5e2pm2/2a→0, the ratio of the ampli-
tudesA(kuk8,k9) andB(k8uk,2k9) is still directly related to
the amplitudes for the Schwinger process:

B~k8uk,2k9!

A~kuk8,k9!
5

bM

bm
1O~bm!. ~72!

This estimate is proven in Appendix B where thea→0 limit
is studied in detail. It is shown that while each amplitu
involving a chargedm particle involves polynomial correc

FIG. 2. A graphic representation of the relation between
amplitudesA, B, C, V when the fieldFm is charged. The relation
between the amplitudes is more complicated than in Fig. 1 bec
of the nonvanishing amplitudebm to produce pairs ofm,m̄ quanta.
The conventions are the same as in Fig. 1, except thatm and m̄
denote a particle and antiparticle of theFm field, and are repre-
sented by slanted lines since they are also accelerated by the el
field. Note that this picture is not the unique representation of
amplitudesA, B, C, V since as indicated in the text each amplitu
corresponds to four different processes. We have used this to
resent the amplitudeA(2ku2k8,2k9) as the amplitudem̄(k8)
1m̄(k9)→M̄ (k), but it could equally well be represented b
M (2k)→m(2k8)1m(2k9).
n

-

le

tions ina/m, the ratio of the population ofm andM species
is in thermodynamical equilibrium up only to nonperturb
tive corrections, as expressed in Eq.~72!.

Thus the equilibrium distribution of the detector states
given by

PM equil

Pm equil
5

ubMu2

ubmu2
1~bm!

5e2pM2/QE1pm2/qE1O~bm!. ~73!

Therefore this equilibrium distribution is governed by th
finite change of the horizon area; cf. the Introduction fro
Eq. ~9! to Eq. ~15!.

Upon taking the double limitdM /M→0, a/Q→0 with
the mean acceleration

ā5

S Q1q

2 DE

S M1m

2 D ~74!

fixed, one gets the linearized expression

PM equil

Pm equil
5expF2

2p

ā S Dm2a
E

2āD1O~a2!G1O~bm!

~75!

governed by a temperatureā/2p and an electric potential
(5E/2ā). Indeed, in Rindler coordinatest, r, the ~static!
potential is

At~r!5Eār2/2. ~76!

Evaluated atr51/ā, it givesE/2ā.
Thus when the charge of the emitted particle is sm

enough with respect to its mass square~so as to neglect its
vacuum instability!, its effect, at the linearized level, is t
modify Unruh equilibrium by the addition of an electric po
tential, thereby enlarging the relation to thermodynamics i
nontrivial way; cf. the Introduction for a comparison wit
charged black hole thermodynamics.

Note added.After this work was completed, we learned o
a similar investigation of the interaction of three charg
fields propagating in an external electric field by Nikish
and Ritus@24#. The main point of that work is that when th
charges and masses of the particles are such that they p
gate semiclassically in a substantially different way than
Unruh’s model, then the rates of transitions differ from tho
obtained by Unruh, since they are severely modified by
coil effects or the spontaneous creation of particles in
electric field. In this limit, the analogy with thermodynamic
is of course no longer valid~recall that temperature emerge
from microcanonical ensembles only in the reservoir lim!.
On the other hand, the present work emphasizes the reco
of an extended thermodynamics in the limit of a small cha
a of the emitted particle.
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APPENDIX A: AMPLITUDES OF DECAY DUE TO THE EXCHANGE OF CHARGED PARTICLES

For completeness we give here closed forms for the amplitudesA, B, C, V. We first discuss theA(kuk8,k9) amplitude. We
have to evaluate the integral~60!, which, in terms of Whittaker’s functions, reads as

I15E dtD2 i eM21/2F2e23ip/4S t1
k

MADA2MAGD2 i em21/2Fe23ip/4S t1
k8

q
EDA2qEG

3D2 i em21/2Fe23ip/4S t1
k9

ma DA2ma G . ~A1!

The evaluation of this integral is similar to the pattern followed to obtain Eq.~45!. First we split the function
D2 i eM21/2@eip/4(t1k/QE)A2QE# into two others functions thanks to the relation~29! and reexpress all the parabolic cylind
functions involved in terms of their integral representation~27!. This yields

I15
e2pem/4e2pem/4

G~ i em11/2!G~ i em11/2!

eip/4

A2p
E dte~2 i /2!qE@ t1~k8/qE!#2

e2~ i /2!aE@ t1~k9/aE!#2
e~ i /2!QE@ t1~k/QE!#2

3E
0

`

dudvdweivA2qE@ t1~k8/qE!#2 iv2/2eiwA2aE@ t1~k9/aE!#2 iw2/2v i em21/2wi em21/2u2 i eM21/2

3@e~p/4!eMe23ip/8e2 iuA2QE@ t1~k/QE!#1 iu2/21e~23p/4!eMeip/8eiuA2QE@ t1~k/QE!#1 iu2/2#, ~A2!

with k5k81k9. Charge conservationQ5q1a eliminates the quadratic terms int and thet integration leads to two delta
functionsd(AqEv1AaEw7AQEu). The positivity of theu, v, andw variables makes only the first one contributing to t
amplitude. After some elementary algebra, we obtain forI1 the expression

I15
e~p/4!~eM2em2em!e2 ip/8

G~ i em11/2!G~ i em11/2!

A2p

A2QE
expF i

2 S k2

QE
2

k82

qE
2

k92

aED GI2 , ~A3!

where

I25E
0

`

dvdw expF2
i

2QE
~AaEv2AqEw!21 i&

QEk82qEk

AQEqEaE
S AaE

AQE
v2

AqE

AQE
wD G

3S AaE

AQE
w1

AqE

AQE
v D 2 i eM21/2

v i em21/2wi em21/2

5S AQE

AaE
D i em11/2S AQE

AqE
D i em11/2S AaE

AqE
D i eM11/2

GS iE1
1

2DeiV2/2epE/4e2 ip/8I3 , ~A4!

with

V5
qEk2QEk8

AQEqEaE
, ~A5!

E5em1em2eM , ~A6!

and

I35H D2 iE21/2@1&eip/4V#BS i em1
1

2
,2 iE1

1

2D 2F1S i eM1
1

2
,i em1

1

2
,11 i eM2 i em ;2

aE

qED
1D2 iE21/2@&e2 ip/4V#BS i em1

1

2
,2 iE1

1

2D 2F1S i eM1
1

2
,i em1

1

2
,11 i eM2 i em ;2

qE

aED J . ~A7!
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The way to obtain this last result and others similar is postponed to the end of this appendix. Collecting all these res
amplitudeA(kuk8,k9) reads

A~kuk8,k9!5

A2pe2 ip/4e~2p/2!~em1em!epE/8 expF i

2 S k2

QE
2

k82

qE
2

k92

aED GeiV2/2

~2QE!1/4~2qE!3/4~2aE!1/4G~ i em11/2!G~ i em11/2! S Q

q D ~ i /2!emS a

q D ~ i /2!eMS Q

a D ~ i /2!em

GS iE1
1

2DI3 .

~A8!

As expected this result is symmetric with respect to the exchange (m,a,k8)↔(m,a,k9).
The computation ofB(k8uk,2k9) is somewhat different. Starting from the general expression~63!, we have to evaluate the

integral

J15E dtD2 i eM21/2Fe23ip/4S t1
k

QEDA2QEGD2 i em21/2F2e23ip/4S t1
k8

qEDA2qEGD2 i em21/2Fe23ip/4S t1
k9

aEDA2aEG ,
~A9!

with k5k81k9. After the same transformations as those performed to evaluateI1 , we obtain

J15
e~2p/4!~em1em!

G~ i em11/2!

1

G~ i em11/2!

eip/4

A2p
E dte~2 i /2!qE~ t1k8/qE!2

e~2 i /2!aE~ t1k9/aE!2
e~ i /2!QE~ t1k/QE!2

3E
0

`

dudvdwe2 ivA2qE~ t1k8/qE!2 iv2/2eiwA2aE~ t1k9/aE!2 iw2/2v i em21/2wi em21/2u2 i eM21/2

3@e~p/4!eMe23ip/8eiuA2QE~ t1k/QE!1 iu2/21e~23p/4!eMeip/8e2 iuA2QE~ t1k/QE!1 iu2/2#. ~A10!

As previously charge conservation implies that the quadratic terms int cancel and thet integration yields a delta function
d(AaEw2AqEv6AQEu). However, this time, both terms will contribute toJ1 and we are left with the following expres
sion:

J15
e~2p/4!~em1em!eip/4

G~ i em11/2!G~ i em11/2!
A2p expS i

2 H k2

QE
2

k82

qE
2

~k9!2

aE J D F 1

A2qE
e~p/4!eMe23ip/8J21

1

A2aE
e~23p/4!eMeip/8J3G ,

~A11!

where

J25E
0

`

dudw expF2
i

2qE
~AaEu1AQEw!21 i&

qEk2QEk8

AQEqEaE
S AaE

AqE
u1

AQE

AqE
wD G

3S AaE

AqE
w1

AQE

AqE
uD i em21/2

u2 i eM21/2wi em21/2 ~A12!

and

J35E
0

`

dudv expF2
i

2aE
~AQEv1AqEu!21 i&

qEk2QEk8

AQEqEaE
S AQE

AaE
v1

AqE

AaE
uD G

3S AQE

AaE
u1

AqE

AaE
v D i em21/2

v i em21/2u2 i eM21/2. ~A13!

Note that the last integralJ3 can be obtained from the first oneJ2 by exchanging (m,a) with ~m,a! and (k,k8,k9) with
(2k,2k9,2k8). In particular, note the invarianceqEk2QEk8°2aEk1QEk95qEk2QEk8. We display here the resul
for J2 :

J25S AqE

AaE
D 2 i eM11/2S AqE

AQE
D i em11/2

GS iE1
1

2DeiV2/2epE/4e2 ip/8D2 iE21/2@2&eip/4V#S AQE

AaE
D 2i eM2 i em11/2

3BS i em1
1

2
,2 i eM1

1

2D 2F1S iE1
1

2
,2 i eM1

1

2
,11 i ~em2eM !;

qE

QED . ~A14!
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Therefore, theB(k8uk,2k9) amplitude reads

B~k8uk,2k9!5S q

QD ~ i /2!~em2 i eM !S a

QD ~ i /2!~em2 i eM ! e~2p/2!~em1em!eip/4A2p expF2
i

2 S k2

QE
2

k82

qE
1

k92

aED G
~2QE!3/4~2qE!1/4~2aE!1/4G~ i em11/2!G~ i em11/2!

3GS iE1
1

2DeiV2/2epE/8e2 ip/8D2 iE21/2@&ei5p/4V#J4 , ~A15!

with

J45H e23ip/8BS i em1
1

2
,2 i eM1

1

2D 2F1S iE1
1

2
,

1

2
2 i eM,11 i em2 i eM ;

qE

QED
1e2peMeip/8BS i em1

1

2
,2 i eM1

1

2D 2F1S iE1
1

2
,

1

2
2 i eM,11 i em2 i eM ;

aE

QED J . ~A16!

Finally, notice that theC(k9uk,2k8) amplitude can be easily obtained fromB(k8uk,2k9) by the substitution
m,q,k8°m,a,k9, and henceV°2V. To complete the calculation we have to evaluate the integralsI2 , J2 , andJ3 . As an
example we consider the integralI2 ; the others follow a similar pattern:

I25E
0

`

dvdw expF2
i

2QE
~AaEv2AqEw!21 i&

2qEk1QEk8

AQEqEaE
S AaE

AQE
v2

AqE

AQE
wD G

3S AaE

AQE
w1

AqE

AQE
v D 2 i eM21/2

v i em21/2wi em21/2. ~A17!

By using the reduced variables

X5AaE

QE
v, Y5AqE

QE
w, V5

kqE2QEk8

AQEqEaE
, c5eg5AqE

aE
, ~A18!

this integral becomes

SAQE

qE D i em11/2SAQE

aE D i em11/2

I, ~A19!

where

I5E
0

`

dXdYe~2 i /2!~X2Y!22 iA2V~X2Y!~cX1c21Y!2 i eM21/2Xi em21/2Yi em21/2. ~A20!

The change of variables

X5
reu

2
, Y5

re2u

2
, 0,r,`, 2`,u,`, ~A21!

andz5r sinhu factorizes the double integral:

I522 iE11/2E
0

`

dzdue~2 i /2!z2
ziE21/2~sinh u!2 iE21/2$eiu~em2em!~eu1g1e2u1g!2 i eM21/2e2 i&Vz

1e2 iu~em2em!~eg2u1e2u1g!2 i eM21/2ei&Vz%, ~A22!

where the two terms come from the separation of the positive and negative values of the integration variableu. Thez integrals
are the representation~27! of the parabolic cylinder function, and so

I52GS i
E
2

1
1

2DeiV2/2epE/4e2 ip/8E
0

`

du~2 sinhu!2 iE21/2$D2 iE21/2~&eip/4V!eiu~em2em!~eu1g1e2u1g!2 i eM21/2

1D2 iE21/2~&eip/4V!e2 iu~em2em!~eg2u1eu2g!2 i eM21/2%. ~A23!
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A final change of variables5e2u reduces the last integrals to products of Euler and hypergeometric functions~@23#, formula
3.197.2!. The final result forI2 reads

I25SAQe

qED i em11/2SAQE

aE D i em11/2

GS iE
2

1
1

2DeiV2/2epE/4e2 ip/8H D2 iE21/2@&eip/4V#

3BS i em1
1

2
,2 iE1

1

2D 2F1S 1

2
1 i eM ,i em1

1

2
,12 i em1 i eM ;2

aE

qED1D2 iE21/2@2&eip/4V#

3BS i em1
1

2
,2 iE1

1

2D 2F1S 1

2
1 i eM ,i em1

1

2
,12 i em1 i eM ;2

qE

aED J . ~A24!
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Similarly, for the amplitudeB(k8uk,2k9) the last integration
can be carried out by using~@23#, formula 3.197.1!.

APPENDIX B: SMALL CHARGE LIMIT
OF THE AMPLITUDES

In this appendix we compute the small charge limit of t
amplitudesA(kuk8,k9) andB(k8uk,2k9). We also prove Eq.
~72!, i.e., that the ratio of the amplitudesA(kuk8,k9) and
B(k8uk,2k9) is given by the ratios of the Schwinger amp
tudes, up to terms proportional toe2pem. Moreover, we shall
evaluateA(kuk8,k9) in the limit a→0. As emphasized in the
main text, a consequence of this calculation is that while
amplitudesA(kuk8,k9) and B(k8uk,2k9) differ polynomi-
ally in the variablea/m from their chargeless limits, thei
ratio is nevertheless given by Eq.~72!, which differs from
the chargeless limit only by nonperturbative correctio
When a is small, the two hypergeometric functions givin
J4 in Eq. ~A17! can be combined into one thanks to t
formulas~9.131.2! and ~9.131.1! of Ref. @23#:

J45
eip/8e2peMAaE

QE
~AaE!2eM2 i em

3~AQE!2 i em23i em23i emBS 1

2
2 i eM ,

1

2
1 i emD

3H G~11 i em2 i eM !G~ i em2 i eM !

GS 1

2
1 iEDGS 1

2
2 i eM D 2F1S 1

2
1 i em ,

1

2
1 i eM,12 i em1 i eM ,2

qE

aED1e2pemO~a/m!J .

~B1!

Note that~and this constitutes a check of the exactness of
calculation! in the limit a/m→0, there appears divergin
phases in the first factor of this expression which cancel e
other. If we omit the small corrections proportional to t
Schwinger factore2pem, most of the prefactors are commo
between the amplitudesA(kuk8k9) and B(k8uk2k9) and
thus can be omitted in the ratioA/B which reduces to
e

.

e

ch

A~kuk8k9!

B~k8uk2k9!
5e2p/2

GS 1

2
2 iEDGS 1

2
1 iEDepeM

G~ i em2 i eM !G~12 i em1 i eM !

1e2pemO~a/m!

5e2p~em2eM !1e2pemO~a/m!, ~B2!

which is the sought for result. Now we discuss in more de
the limit of the amplitudeA(kuk8,k9) whena→0, and check
that we recover thea50 result in the limit. The computation
is done in three steps. Equations~A9!,~A8! express
A(kuk8,k9) as products of phases andG functions with a sum
of products of Eulerian (B) functions, Whittaker’s~D! func-
tions, and hypergeometric functions.

First, we obtain, by a saddle point evaluation, appropri
approximations of Whittaker’s functions. Then we estima
the limits of the hypergeometric functions as confluent h
pergeometric functions. Finally, applying several times
Stirling and reflection formulae on theG andB Euler func-
tions we obtain the result.

The integrals

GS iE
2

1
1

2DeiV2/2epE/8e2 ip/8D2 iE/221/2@6&eip/4V#

5E
0

`

dv e6 i&Vv2 iv2/2v iE21/2 ~B3!

have saddle points located respectively at

vs5
6&V1&~V21E!1/2

2
. ~B4!

They are approximated by

A2p

A2v
e2 ip/4~2aE!1/4eiws

6

, ~B5!

with

ws
65

3

4

~k1k8!2

aE
2

v2

4aE
7

~k1k8!v

2aE
1
E
2

ln
v7~k1k8!

A2aE

2
~k1k8!~k2k8!

2QE
6

~k2k8!v

2QE
. ~B6!
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Let us emphasize that both integrals~B3! have their modulus
of the same order of magnitude ina/m.

To obtain the limits of the hypergeometric functions a
pearing in Eq.~52! as confluent hypergeometric function
whena→0 is straightforward. For small value ofa we ob-
tain

2F1S i eM1
1

2
,i em1

1

2
,11 i eM2 i em ;2

aE

qED
5M S i eM1

1

2
,11 i eM2 i em ,2

im2

2qED1OS a

m D ~B7!

and

2F1S i eM1
1

2
,i em1

1

2
,11 i eM2 i em ;2

qE

aED
5e2 im2/4qES m2

2qED i ~eM1em!/2

e~p/4!~eM1em!

3W~21/2!~em1eM !,~1/2!~em2eM !F2
im2

4qEG1OS a

m D . ~B8!

Here also these two functions are of the same order of m
nitude in a/m but the prefactors multiplying them in th
amplitude A(kuk8,k9) are quite different. The first one i
multiplied by

BS i em1
1

2
,2 i em1 i ~eM2em!1

1

2D
5

2pei ~eM2em!epeM /2e2pem/2e2pem

G„11 i ~eM2em!… F11OS a

m D G ,
~B9!

whereas the second one is pondered by
o

ra
-

g-

BS i em1
1

2
,2 i em1 i ~eM2em!1

1

2D
5GS i em1

1

2D em
2 i em21/2e2pem/2eip/4F11OS a

m D G .

~B10!

We see that the exponential factore2pem appearing in Eq.
~B9! makes the first term ofI3 in Eq. ~A7! negligible with
respect to the second one in the limita→0 at a fixed non-
vanishing value ofm. Collecting all the results~B7!, ~B9!,
and ~B1!, we obtain the limit we are discussing. At ze
order in a/m, once more~as expected! all the diverging
phases cancel in the first term and the remaining fac
group together to give the expression~55! with qE5QE. So
we obtain, at the end

A~kuk8k9!5@A0~k8ukk9!1O~a/m!#1e2pemO~a,m!,
~B11!

whereA0(kuk8k9) is the transition amplitude in the neutra
case~55!. Using Eq.~A17!, one can similarly show that

B~kuk8k9!5@B0~k8ukk9!1O~a/m!#1e2pemO~a/m!,
~B12!

whereB0(kuk8k9) is the transition amplitude in the neutra
case. From these relations~B11!,~B12! one can onlya priori
deduce that their ratio behaves as

A~kuk8k9!

B~k8uk2k9!
5e2p~em2eM !F11OS a

m D G1e2pemO~a/m!,

~B13!

while our previous computation, Eq.~B2!, shows that actu-
ally all the polynomial corrections ina/m to the Boltzmann
factor cancel each other.
ep.
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