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Interacting charged particles in an electric field and the Unruh effect
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We compute the transition amplitudes between charged particles ofvhassim accelerated by a constant
electric field and interacting by the exchange of quanta of a third field. We work in second quantization in
order to take into account both recoil effects induced by transitions and the vacuum instability of the charged
fields. In spite of both effects, when the exchanged particle is neutral, the equilibrium ratio of the populations
is simply expm(M?—n?)/eE]. Thus, in the limit M —m)/M —0, one recovers Unruh’s result characterized by
the temperature/27 wherea is the acceleration. When the exchanged particle is charged, its vacuum insta-
bility prevents a simple description of the equilibrium state. However, in the limit wherein the charge of the
exchanged particle tends to zero, the equilibrium distribution is once more Boltzmannian, but characterized not
only by a temperature but also by the electric potential felt by the exchanged particle. This work therefore
confirms that thermodynamics in the presence of horizons does not rely on a semiclassical treatment. The
relationship with horizon thermodynamics and the role of the horizon area as an entropy are stressed.
[S0556-282198)03210-X

PACS numbgs): 11.80—m, 04.62:+v, 04.70.Dy, 11.10.Ef

I. INTRODUCTION ence of horizons. Indeed, in all cases, background field ap-
proximation schemes have been used and should be aban-
Shortly after Hawking’s seminal discovery of black hole doned in other to address the question of the quantum back
radiation[1], Unruh[2] showed that it possesses a flat spaceeaction.
analogue, namely, that a uniformly accelerated detector per- In Refs.[5,3,6], the enlargement of the dynamics has been
ceives the Minkowski vacuum to be thermally populated at ecarried out by modeling the detector by a “two-level ion”
temperaturely=a/27. In Unruh’s original work, only the propagating in a constant electric fidkd The ion has charge
detector’s internal states were treated quantum mechanically) and its two levels have rest makt andm. It therefore
Its position was treated classically and thus was insensitiveniformly accelerates with acceleratiay,=QE/M or a,
to the transitions occurring between its internal states. This is- Q E/m according to its mass. The ion can make transitions
an approximation that violates momentum conservation: th@etween its two levels by emitting or absorbing a quantum of
transitions are accompanied by the emission of a radiatio yassless chargeless fidid Thus it behaves like an accel-

qugntgm,_but the energy and momentum, trangfer dug to thgrated particle detector with mass ga =M —m. More-
emission is neglected since the detector’s trajectory is fixe ver, the transitions now satisfy Feynman rules, as in QED:
once and for all. In order to enforce momentum Conservaéee[g,lo]_ The main new insights concerning the Unruh ef-

fect which have been obtained in this way are the following.

tion, one must quantize the detector’s position.
(1) The detector can be described by a delocalized wave

This enlargement of the quantum dynamics allows one to
émction, whereupon the classical geometric notion of a ho-

answer questions concerning the origin of the energy emittelp

during transitions and the consequences of the recoil effec . :
rizon no longer exists(Of course, one may approximately
recover the concept of a horizon by building well-localized

[3,4]. Moreover, it provides new insight into the Unruh pro-
cess and connects it with the Schwinger prodés§] and -
horizon thermodynamid¥,8]. Thus, it may serve as a guide Wave packet$.l_\|evertheless, thermal r_ate_s for transitions of
for other problems dealing with particle creation in the presthe detector still obtain, thereby confirming that thermody-
namical relations still govern the physics when one goes be-
yond the semiclassical treatment.
*Email address: gabriel@sunl.umh.ac.be (2) Each time the detector makes a transition, it recoils
"Email address: spindel@sunl.umh.ac.be both in momentum and in energy in such a way that the total
*Present address: Institute for Theoretical Physics, Princetonpleilistantaneous Minkowski momentum and energy are con-
5, P.O. Box 80006, 3508 TA Utrecht, The Netherlands. Email ad-served. From a space time point of view, i.e., if one builds
dress: S.Massar@fys.ruu.nl wave packets, the transition induces a kink in the detector’s
SEmail address: parenta@celfi.phys.univ-tours.fr trajectory, which accounts for its change in momentum and
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kinetic energy. This is explained in more detail [iB], pp. Ny OQE

245-246" Pv=y7=3%, ¢
(3) These recoils give rise to a decoherence of the

detector-radiation system. This in turn implies that the detecand similarly for the other fields.

tor emits a Steady flux of radiation, Contrary to the situation A priori independenﬂy of these creation processes, an ion

where the detector's position is treated classicallywill make transitions from its excited to its ground state at a

[11,12,13,14 rate Ry _n, or from its ground to its excited state at a rate
(4) One of the most interesting consequences of this apr .. But as suggested if6], these two processes are

proach is that it relates the Unruh effect to the Schwingeintimately related. Indeed, wheh is neutral(Q=q, a=0),

process[15,16 of pair creation in an electric field. Indeed the ratio of their rates is given Hp,18]
the two processes are “in equilibriunT5].

- 7M2/QE )

(5) Finally both the Unruh effect and the Schwinger pro- Rm-m  Pm — r(M2—m2)IQE
cess are deeply related to horizon thermodynamics, since the Ryom p_m =€ ' ©)
area of the acceleration horiz¢n] plays the role of an en-
tropy in delivering the equilibrium population rati$8]. This motivates our saying that the two processes are in equi-

The aim of the present work is to extend these results byibrium since they determine the same distributieg /P,
taking the field® with which the detector interacts to be of particles of mas$1 andm. We emphasize that E@) is
massive and charged. Its mass will be denote@nd its  exact in the sense that it takes into account all effects due to
chargea. The fields of the detector of mas$é andm then  the finite mass of the detector, i.e., recoil effects, and the
have charge andq with Q=g+ « to ensure charge con- finite probability to create pairs of detectors.
servation. We shall show that takinl to be massive does Upon taking the limitM,m—oe, with a=2QE/(M +m)
not modify any of the above points, but taking it to be and AM constant, both recoil effects and pair creation am-
charged, and hence accelerated, does modify the equilibriuplitudes vanish. Therefore, one expects to recover Unruh’s
properties. result which gives the equilibrium probabilities of an accel-

In order to present these new properties, we first explairerated detector of given acceleratianindeed, upon taking
in more detail the physical content of point4) and (5). the above limit, Eq(3) becomes
When describing the charged fields by operators, i.e., by
working in a second quantization, the electric field leads to a Ruom _ Pm_  ammsmyoE_ o 2mamia 4
vacuum instability through pair creation of ions and anti- Rv_m Pm_e —€ ' @)

ions. The mean numbers of created pairs are
In this paper, we shall derive the modified equations that

replace Eqs(3),(4) when the exchanged® field is charged.
The new transition rates of the detector satisfy

_QEVT

QEVT
— Tm</qE
M o N e

—mM2IQE 1
€ 1 m 27T 1 ( )

M:e*‘ﬂ(MZ/QE*mZ/CIE)_i_O(e*‘n'/uLZ/aE). (5)

I:2M~>m

accounts for the number of quantum cells, i.e., orthogonal

states, that are subject to pair creation when the electric field Rnom 0 Pwm

is turned on during a laps€ in a box of lengthL. These RMHm: 6 p_m

expressions are valid for scalar fields in-1 dimensions

whenT andL (=V) are much bigger than &y, ; see[17]  Thus, in the limit wherein we can neglect the spontaneous

for more details. This prefactor will play no role in what creation of ® quantafi.e., efvmz/aE_,o)' we recover the

follows since equilibrium distributions are governed by ra-equilibrium between the Schwinger and Unruh effects, up to

tios which are dominated by the exponentials. We thereforghe prefactorQ/q. This is the main result of our paper. We

introduce the probabilities per unit time and unit length of how display what we can learn from it.

creating a particle of madd: The semiclassical limit is obtained by generalizing what
lead to Eq.(4), i.e., by takingM,m—~, (Q—q)/Q=a/Q
—0, w2 /Ea—o, with AM anda=(Q-+q)E/(M+m) con-

INote that in this model, by treating the electric field classically, Stant. In this limit Eq.(5) becomes

one also makes an approximation that neglects certain recoil effects.

However, these effects are governed by the rest mass of the con- “m—=M :e(*Zﬂ-/E)(AM7aE/2§)+O(a2/Q2)+O(e7 7T,U,2/(1/E)'

denser plates that generate the electric field and not by the rest mass Ry _.m

of the Unruh detector. It is therefore a much more legitimate ap- (7)

proximation to neglect condenser recoils only. Treating the electric_ = | . . . .
field classically also neglects self-interactions of the particles.ThiS is again a thermodynamical relation. It shows that, in

These effects are proportional @7, the square of the charge of the addition to the Unruh temperatuig, = a/2m, there is now
fields. On the other hand, the coupling to the external electric fieldn electric potential € E/2a) which modifies the equilib-

is proportional tdQ Q;ondenseVhereQ.ongensedS the charge on the rium.

condenser plates. Hence the self-interactions can be neglected if This is strictly analogous to the ratio of the rates for
Q/Qcondenser< 1. charged particles to be emitted or absorbed by a charged

+0(e~E), (6)
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black hole. In Hawking’s derivation, this ratio is expressed inmatter equations. Using the Hamiltonian decomposition of
terms of the Bogoljubov coefficientg, ,B, characterizing the Einstein-Hilbert action, one finds that

the mixing ofin and out modes of thed field. However, to

make clearer the contact with E(), we can express Hawk- Sinst(M, Q) =AAL/4. (11
ing’s result in terms of the rat®y_,m_, to jump from a o ) )

black hole of mas#/ and chargeQ to a black hole charac- This instanton approach only_ gives the leading exponent of
terized byM —» andQ— « and the rate of the inverse pro- the Schwinger process. In this case E2).can be rewritten

cessRy-._wm- Then, Hawking’s result can be expressed as?S

2

Bo

Yo

Rmn—m
o Bulo-ad) _ M—N—0 (8) R —e WAMQTAAMQIA= emauEWE, (1)
Rm-w—m M-—m

where 8y, is the inverse Hawking temperature,is the en- Where in the last equality we have writtedA,(AM)
B g P =AL(M,Q)—Ax(M,Q) as the difference of the horizon

ergy of the quantum measured at spatial infinity, @nd the 1 )
gy d b Y, an area between the initial and final states.

difference of electric potential between the horizon and in- ) _ :
finity. In Eq. (7), the equivalent ofp is E/2a, the difference When@ is charged, if we neglect the second term in Eq.

of the electric potential between the horizon and the accele®): tre transition rr?te_s can also be related to changes of the
ated trajectory where the charged quantum is emitest ~ 2CC€lerating area horizon:

sorbed.

The occurrence of this electromagnetic potential can be Mze—{AAmM,Q>—AAH(m,q)}/4: e~ AAH(AM, )/4.
derived in a more direct way by quantizing the fieldin Rm—m
Rindler coordinates and calculating the Bogoljubov transfor- (13

mation that relates the Rindler modes to the Unruh modes.
This semiclassical approach is identical to the one used b
Unruh [2] and Hawking in their seminal calculations. We
hope to report on it in a future publicatigt].

The main point of this discussion is that in contradistinc
tion to the semiclassical treatment which yields directly an
only to Egs.(4),(7), we are now able to show how these AAL(AM, )
semiclassical equilibrium ratios arise from Eg8),(5) by H & =

. L L. .. . R 4 lin.
taking, a posteriori variations limited to first order ix and
AM. Therefore, we can analyze tfirite differences and not should be considered as théinearized first law of
only the first order changes delivering the above canonicahccelerated-horizon thermodynamics.
concepts through differentiation. This will play a crucial role  However, contrary to the black hole case, we have ob-
in what follows. tained an expression for the rates containing finite differ-

The interest of relating the Unruh process to theences[see Eq.(5)], and not only linearizedcanonical ex-
Schwinger process as in E) is further enhanced when pressions. Upon still neglecting the vacuum instability of the
one recalls that the rate of pair creation due to the Schwingezxchangedb field, we find that the logarithm of the ratio of
process can be expressed in terms of the change of the artee transition rates is given by the followifigite difference:
of the acceleration horizo}v,8]:

In the case of black hole evaporation, a similar rewriting
Xf emission rates in terms of changes of the area of the ho-
rizon is a reexpression of the first law of black hole thermo-
_dynamics. In the present case, since Ef).deals with the
O(:hange in the accelerated horizon,

2@ _.E
. (AM o« (14)

QE qE

The quantity that appears in the exponentlh,(M,Q)  This shows that a quarter of the area of the horizon not only
=AP—Au(M,Q) is thefinite differencebetween the infinite  delivers canonical distributions and thermodynamics but
area of the acceleration horizon in flat spaé@, and the truly determines quantum processes as in statistical mechan-
infinite area if a pair of particles of mass and chargeQ is  ics. One-quarter of the Rindler horizon area is therefore com-
emitted,A(M,Q). This difference is calculated by enclos- pletely analogous to an entropy as far as as the Unruh pro-
ing the system in a fictitious box, whereupon the areas areess is concerned.
finite, and then taking the limit as the size of the box tends to To conclude the Introduction, let us emphasize the ge-
infinity; see[7]. neric character of the agreement of E@3),(5 with the
The simplest way to derive Eq9) is to note that the background field expressions, Eg4),(6) when a first order
Schwinger process possesses a Euclidean instanton, whichegpansion in the light changes is performed. Equations
a circle in the Euclidean continuation of Rindler space time(3),(5) are derived in an enlarged quantum setting wherein
The probability of pair creation is given by the action to gothe trajectory of the heavy ion is quantum mechanically
once round the circle: treated whereas Eq#l),(6) are based on a background field
approximation in which the trajectory is classically deter-
Py=e SnstMQ g (M ,Q)=7M?QE. (100 mined. The agreement of the transition rates evaluated from
both treatments arises when the following procedure is ap-
One can also include the gravitational field of the instantorplied to transition amplitudes evaluated in the more quantum
to obtain a self-consistent Euclidean solution of the Einsteirfframework. Upon working with WKB waves and performing

. (15

AA, M? m?
PMZG_AAH(M'Q)M. (9) 4 =1
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first order expansions inM/M and in the momentum trans- and their complex conjugates. The functiogpg ,(t) obey
fer, these amplitudes coincide with the corresponding amplithe equation

tudes evaluated at the background field approximation; see ) 5 )

[20] for details. What guarantees this agreement is that first [9f + M=+ (k+QE1) ] xm k(t)=0. (21)

order expansions of the WKB phases are controlled by

Hamilton-Jacobi equations. The same relation will thereforePccause of the d(.apenden.ce of this potgntial, there will be
hold when one considers gravitThis has been explicitly some backscattering. To interpret this in the context of the

verified in mini-superspace if21].) To first order in the KIein-GoLdon equation, we note that the current operator is
matter energy change, transition amplitudes computed ido=—i1Qd;. Thus the backscattering corresponds to a mix-
quantum gravity with WKB waves are equal to the corre-ing of positive and negative charges. In a second quantized
sponding amplitudes evaluated from quantum field theory irfontext this corresponds to pair creati@17]. To describe
a given classical geometry. Only second order changes, i.efem we introduce a set of solutions with only positive or
the nonlinear response of gravity, involve the Planck massnegative charge for— —c (in modes,

The present article is organized as follows. Section | is

. . . h . ik —l4
this Introduction. Section Il is devoted to recalling the quan- e el mmYem

R/Iif]k(tax):

tization of a charged field in an electric field and the 27 (2QE)7
Schwinger process. In Sec. Il we introduce our detector
model, and consider the case when the detector interacts with i k
a massive, but neutral, field. The techniques developed in XDigy-12 e t+ ﬁ) VZQE}
this section are then used in Sec. IV to analyze the more
complicated case of interactions with a charged field. Appen- elkx
dix A is devoted to the analytical evaluation of the transition =— DeM[)\], (22
amplitudes and Appendix B deals with the limit>0 of the V2m
transition amplitudes. ,
Mt x>=L'kXD [\] (23
Il. CHARGED PARTICLES IN AN ELECTRIC FIELD M,k 2m M

The aim of this section is to review the quantization of agnq a set of solutions with only positive or negative charge
massive charged scalar field in an external electric field o ¢, 4+ o (out modes

For the reader interested in a more complete treatment we

refer tq[l?] and references therein. Classically, the equation lpﬁ,l]g“t(t,x)z[m’ifk(—t,x)]*
of motion of a relativistic charged particle of malsk and
chargeQ in an electric field is alkx
= D [—\], (29
d?x# X, N2m ol
—_— = 134
M a2 QEe ar (16

P 2R =L Nt ]*
Its trajectory is a hyperbola with parametric equations given
by

—ikx

= Di [—\], 29)
o 5z Pal N (
Y oE A sinh A(s~So), D here em=M?2/(2QE) and where the superscripsand a
refer, respectively, to particle and antiparticle wave func-
1 tions. We have introduced a synthetic notation for the para-
X—Xo= COShA(S—Sp). (18)  bolic cylinder functions and their argument:
i i . . (— ) ey
Here A=QE/M is the classical acceleration of the particle. p r\1= e D. Z[eSiﬂ-M t+ — | V20E E}
The time coordinate of the turning point of the hyperbola is culM] (2QE)M4 Tiem U QE QE|.
to=—k/QE wherek=(Mx+A,) is the conserved momen-
tum canonically conjugate to the variablen the gaugeA, N=|t+ L 26)
=0 andA,= —Et. 7 QE/)

The corresponding Klein-Gordon equation for the field is
We also note that the parabolic cylinder function has the
[0+ M2y (t,x)=[(—idy+ QEDZ+ 2+ M2]yhy(t,x)=0.  following integral representatiofL7]:

(19) e(*’ﬂ'/z)EMe*iﬂ/B

e(+i/2))\2QE

The general solution of this equation can be written as a De, [N = 1
superposition of modes, (2QE)1’4F(§—ieM
eikx - . L, _
‘ﬁM,k(th): \/? XM,k(t)i (20) XJ dvefl)\v“varlv /207|5M71/2, 27)
m 0
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where the integration parameteris classically related t6  where
and its conjugate momentum by [22]

/ Nyt=(00ut/0,in (35)
_ %eAS. 29) M M< | >M

is a normalization factor. The mean number of created par-
ticles[per quantum cell; see E¢l)] is

pt Ko
Qe" ”ﬁ)

Since the parabolic cylinder functions have the property

v=+QE/2

D’E‘M[)\]=aMDEM[—)\]+BMD§M[—)\], (29
— ; thoutj i _ — a—27M%
thein andout modes are related by the linear transformation Pu=wm(0in|b% %] 0jin)y =|By|?=e"2™CE,

(36
2= amds Bl B (05 0%,

o= ad B M= Bu(vd 2%, (30 Ill. PARTICLE INTERACTIONS: EMISSION

OF A NEUTRAL PARTICLE
where

In this section we consider a uniformly accelerated detec-
V2me i mel=men . tor interacting with a neutral scalar fiefdl, of massu. We
1 and By =ie""M. (3D  ghall show that Eq(3), i.e., the relation between Schwinger
> and radiative processes which was obtaingdirfor a mass-
less field, still holds when the exchanged quanta are massive.

These Bogoljubov coefficients akeindependent, but mass Moreover, we shall see that all amplitudes linear in the cou-
and charge dependent. The second quantized fielg pling constant can be expressed in terms of a single ampli-

should be decomposed in either ineor the out bases tude describing the creation of a pair of charged quanta. The
' techniques developed in this section will be generalized in

amp=

r

+iEM

p{ {n the next section where the fieI@M is both massive and
Wa(t0= | aky S alio charged.
. The detector is described by two charged scalar fidgs
+ (dj"c\‘/‘l{o‘gt(tyx))* b;lout(k)]' (320 and¥, with massM andm and the same charg, propa-

gating in the electric fieldE. As in [5,3,6], the interaction
to define thein and out operators. From Eq30) we obtain  between the fields is supposed to be given by

out__ outt
ay' = ayag" = Buby",

) int_ T T
bLn:aMbck)ut_BMacluktT_ (33) H gf dX(‘I’M\I’m-F‘I’M‘I’m)(I)M. (37)
The Heisenberg stat®,in) contains no particles at early _ _ . . . N
times; i.e., it is annihilated by thie destruction operators. At A first amplitude of interest is the amplitudé of transition
late times it contains pairs of particles, as expressed by thisom anin M particle of momentunk into anout m particle

relation of momentumk’ and au particle of momentunk”, which
we schematically write ad (k) —m(k’) + w(k"). It corre-

. _ Bwm sponds to spont d itati f the detegtimc
_ a1 Pm outtroutt p pontaneous deexcitation of the de e
[0imm=Ny exp{ ay f bz dk [[00utyy, M>m). In the interaction representation, to first ordeigin

(34 itis given by

A(K|K’, k”)——|gf dtdx(0,0utla, (k") ad (k") ¥y P ld ay'(k)|0,in). (398)

The factorization of the vacuum states as a tensor product of three vacua,
|0{0ut |0{0ut>M®|0{ t>m®|o>/w (39)
leads to the expressidisee[9,10])
1 )
A(KIK K" = ——— m/\f (—i)gx f dt dx o Y ™ Bl (40
m
whereNy,, N, are the overlapfsee Eqs(34),(35)].

At this point it is interesting to note that the quantity(k|k’,k”) describes several different processes in addition to Eq.
(38). Indeed it is not difficult to verify using Eq$22)—(25) that the four transitions
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M (k) —m(k")+ u(k"), - Tu(k") . k) © Tu(k”) ©
M(—k)—m(—k')+ u(~K"), ) §A\
_ — time Bm B = BM
m(k") +u(k")—M(k),
fx) MK
m(—k’)+u(=kK")—=M(—k), 41 x
BpBKIkk) = VEkkk) = BAKKk”)

whereM andm denote antiparticles, all have the same am-
plitude A(k|k’,k”). These different amplitudes are related
by combinations of substituting particles for antiparticles, FIG. 1. A graphic representation of the relation between ampli-
changing the sign of the momentum- —k, and permuting tudes B,V,.A4 of Sec._ Il quticles are denoted by
incoming and outgoing quanta. Their origin will be further M(K),m(k’), (k") according to their mass and momentum, and
explained in the next section. Similar properties will obtainantiparticles byM,m (there is no antiparticle for thé , field which

for all the amplitudes we shall introduce. Thus the notation'S r,ea’-"The momenta in each diagram are always conserked,
we use forA(k|k’,k"), and which is also used for all the =K *K'. The coefficients3y .5, which weight the different am-
other amplitudes in this paper, is that the vertical bar sepaPlitides are the amplitudes to produce a pairhdfM or m,m

rates incoming from outgoing quanta, and thak is the particles from vacuum. The picture is oriented both in time and
momentum of the?,, quanta, =k’ of tf;ellf quanta, and space: particlegantiparticleg are incoming from, and outgoing to,
+K" of the ® quan’\{Ia " m ' the right (left) according to their acceleration in the electric field.
* “ .

Similarly, the amplitudes of spontaneous excitation of an The chargeless particlgs are represented as vertical lines because
. . . . .. they are not accelerated.
m particle into anM particle accompanied by the emission
of a u particle is given by

B(k’Ik.—k")=—i9f dtdx(0,0utja,(—k)ag (k)W) ¥,®,an(k')|0in)
—1 —1 i p inx , p out %
= aMNM am/\/m (_|g) dt Xm/f M,k l// m,k’ ¢M,—k”' (42)

Because of the uniform acceleration, this spontaneous excitation amplitude is nonvanishing. As in the Unruh treatment, the
ratio of the rates of spontaneous excitation to spontaneous deexcitation is simply given by

R |BI
RM~>m |'A|2’

(43

since the norm of the amplitudes is independent of the monieatad k’.
Thus, when the detector reaches equilibrium, the ratio of the probabilities to find the detector in its excited or ground state
is

PM equiI: RmHM _ |B|2
l:)m equil RM—»m |~A|2

(44)

Our task is to calculate this ratio and to confirm the relation with the Schwinger proced86EdIo this end we introduce
a third amplitude) corresponding to the creation from a vacuum ofoam M antiparticle, arout m particle, and au particle.
To first order ing, it is given by

(| -k, k' k") = — igf dtdx(0,0utja,(k")ad (k" )b — k) Wy W @ f[0jin)

11 _ |
=— — (—i aink , P ink ;%
Ny Ig)Jdtdwaﬁkwmykr b - 45
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Using the Bogoljubov transformation for th®l-particle relations that we have depicted schematically in Fig. 1. In-
wave function, Eq(30), we can reexpresk in terms of the  serting Eq.(49) into Eq. (43) yields the link between radia-

A amplitude: tive and Schwinger processes discussed in the Introduction,
g 1 Eq. (3):
V(| kK k)= — f dtdx a iy 2
Mu Ny I;M equn:E_M:e,ﬂ[(Mz,mz),QE]. (50
Bt B2 B e m equt N

— By AKIK K") + ayZ(k K K).  (46) It remains to establish Eq¢48). To this end, we write

Similarly, using the Bogoljubov transformation for tie I(k,k',k")ZCStf dxdtdxe K xg k™
particle we can reexpredsin terms of thels amplitude:

XD, [—N]D* [\']el"
V(KK K") = BmB(K' [k, —K") + amT’ (k,k' ,K"). (47) M m

Using the identitiegwhich constitute the main mathematical =2mo(k—K' _k")f dtDeM[_”
result of this section, and are proved hereafter .
xDf [\']el", (51)
I=71"=0, (48
one obtains where we have introduced\=(t+k/QE), \'=(t
+k'/QE). To perform the integration we replace the Whit-
BmBK' |k, —k")=W(|—k,k" k") =Bu Ak K’ K", taker's functionsD by their integral representations, Eg.

(49 (27), to obtain

T(k,k' k")=Cst 5(k—k’—k”)f dte(ilz)QE[H(k/Q)E]Ze—(i/Z)QE[H(k'/Q)E]Zeiw"t

% f dudve+iuv’ﬁ[tﬁ—(k/Q)E]+iu2/2u—ieM—1/29+i[t+(k//Q)ENﬁU_ivz,zviem_lm. 52

The quadratic phases incancel, and the integral yieldsé(u+v + (0" +k")/y2QE). The argument of the delta function
never vanishes on the domain of integratiorucdindv sincew”+k”#0 for w# 0. HenceZ=0. A similar reasoning shows
thatZ' =

The interested reader will now find the calculation of the amplitudes themselves. By virtue Gt aqwe only need to
calculate the amplitud®. We start from Eq(45) in which we reexpress¥?, '“k)* as[ (T 20* +Bu(TH 'n)]/aM The
first term does not contribute since it is equalfig,k’,k")/|«|?. The second term gives

V(| =k’ k") = CS‘J dxdtde KX~ K'*p_ [\]D* [\']el"

=Cst’ 5(k—k’—k”)f dte(i/z)QE[t+(k/Q)E]Ze(—i/2)QE[t+(k’/Q)E]2eiw”t

X f dudy e UV2QELt+ (KQUE]+iu/2 —iey — 12gilt+ (K IQENZQE —iv?/2)i =112
0

w//+ k//
V2QE

x el[(K'/QE]V2QEv — iv2/2 i €m— 12— ey — 12— iu2QE(( KIQ)E]+iu?/2

—u+tv+

=Cst”5(k—k’—k”)f dudv
0

w+ k" —iey—1/2

J2E

v+

— CSfﬁé(k_ k' — kn) f dveiv(wfk")/\fmviemfl/Z
0
(53

The last integral gives an integral representation of a Whittaker’s fun¢diee] 23], formula 3.383.4 Reinstating the value of
Cst” yields
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1 e(—377/4)6me(—377/4)6M 1 (—i2QEYK+K')
V(| —kk' K =g ——— S(k—K' K" = g(-iQB kK e
{ /=9 apyNwamNn ( ) 20QE\2w ®
w— K"\ (i12D(em—em) i 2
X m) W) e+ e (12 (€= €pg) _ﬁ} (54)

It is interesting to note that the delta functidd—u+v + (0" +k")/\2QE) has the interpretation of ensuring local energy
conservation. Indeed, replacimgandv by their classical relation tbandp,, Eq. (28), yields simply—p,+ p; + =0 where
p; is the energy of thé/ particle,p; of the m particle, andw of the u particle.

We conclude this section by calculating the-0 limit of the above amplitude. This will allow us to make contact with the
expressions df6], which were obtained using a different method. The evaluation of this limit needs some precautions. Indeed,
for k" <0, the support of the delta function given by the integral aver Eq. (52) rejoins the boundary of the domain of
integration. In order to avoid ambiguities, we have to substitute in(45), according to the sign &, the decomposition of
(\Ifﬁ‘,lyifk)* or (TP ')* in terms ofin andout fields and take into account the infinitesimal imaginary part that the squared

m,k’
masses of the fields share. For small valug.aine finds

(—72)(em—€m) e3i 4

v _k,kr,k/r — S(k—k' —Kk" e(*i/ZQE)(kJrk')w
{ ) =09 apyNwamNn ( ) 2QEV20w 2QE
2k" (i12)(em—€m) 1
X H(k”) ﬁ) I 0(_k”)e(7"/2)(fm75M)
F(E—I—ieM I(1+ien—iey)
2K" (i112)(epm— €m) 1
{5l %

1
F(§+iem>r(l—iem+ieM)

Note the surprising fact that in this limit, the amplitudes of 4(k|k’ k")
decay of the same process but with the opposite momenta

differ. However, this is peculiar to two dimensions. Indeed in o

higher dimensions, the magscontains the squared transver- = < 0,0ut ai“t(k”)a%“t(k’)(— i )f dtH'”ta',\'A‘T(k)‘O,in>
sal momentum and so, even in the massless limit, vanishes

only on a domain of zero measure in phase space. 1 1

1 :
- aMNM am/\fm CYMN# (_I)g

IV. PARTICLE INTERACTIONS: EMISSION . ins ins
OF A CHARGED PARTICLE X f dtdxy Bl e B
In this section we shall suppose that the, field is also — CS(k—Kk — KM A(KIK K" 58
charged. Thus there are three fieldsy , ¥, ®,, with ( JAGKK' K, 8
masseM,m,u and charge®),q, «, respectively. These three where
fields interact through the Hamiltonian
—ig 1
[ t t gt €= N NuanNpa N, 59
H'”t:gf AX(V V@, + UV D). (56) 27 AMNMEMNVmA N

and we have introduced the reduced amplitude
Charge conservation requires
+ o0
Ak K= [ de, [-\I1D2 DV IDE VT (60
— m w
Q=qg+a. (57)
and used the abbreviated notation for the parabolic cylinder
The amplitudeA of transition from arin M particle into an  functions introduced in Eq26). Note also the appearance of

out m particle and aout u particle is given at first order in the factor 14, which arises due to the vacuum instability
perturbation theory by of the u field.
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As in the previous section, the processes m(—k')+ u(—k")—=M(—Kk), (61)
M(k)—m(k’)+ w(k"), all have the same amplitudd(k|k’,k”). Note that these
_ o . differ slightly from Eg.(41) because one has to distinguish
M(—k)—m(—k")+ u(—Kk"), betweenu and u since the fieldD , is charged.
_ Similarly the amplitude3 for anm antiparticle to sponta-
m(k’)+ u(k")—M(k), neously excite into ai antiparticle and au particle is

B(k’|k,—k"):—if dtdx(0,0ut|ad (k") b (= k) ¥y Wb’ (—k")|0jin)
=Cé8(k—k’—k")B(k'|k,— k"), (62
where

B(k' |k, —K")= fjmdtD:M[)\]D:m[ ~N'1D: [\, (63)

Another amplitude that we need to introduce is the amplitddier a u antiparticle to spontaneously excite into &h
antiparticle and am patrticle,

CK"| =k’ k)= —i f dtdx(00ut/by'(—k")ay (k) Wy ¥ d a7 (k")|0in)

=Co(k—k'—k")C(k"|k,— k"), (64)

where
+
C(k”|k,—k’)=f dtD:M[)\]Dﬁ [N]DE [—\"], (65
— m m
and the amplitud®’ for spontaneous creation from a vacuum ofMrantiparticle, arm particle, and au particle:

W —k,k' K" =—i f dtdx(0,0ut|ad (k" )b (—k)aS ' (k") Wi ¥ @ ,[0,n)

:C5(k_ k,_k”)V(|_k,k,,k”), (66)

where The change of variable— —t in the integrals accompa-
nied by a change in sign of momentuk-—k replaces
" incoming quanta by outgoing quanta avide versawithout
dtD* [N]D¥ [N']D* [N"]. (67) changing the value of the integral.

M m " These rules give directly the relatigl) and similar ones
for B, C, andV. Therefore the 64 possible amplitudes de-
scribing first order interactions betwedhn, , ¥,,, and®,,
quanta can all be equal to eith&r B, C, or V.2

There is a further identity which will play a crucial role,

+

V(|—k,k’,k")=f

— o

The rules governing the product @ functions in the
reduced amplituded, B, C, V can be summarized as fol-

lows.
The sum of the momenta is conserved. We always assunﬂeamely’
thatk=k’ +Kk". +oo . .
Equations(22) and (23) tell us that a functiorD’ [ —\] I= J’,m dtD,, [—NIDg [M']DC [N"]=0. (68

is associated with an incoming partidlef massM, charge
Q>0, and momentunk) or an incoming antiparticlgof —

massM, charge—Q, and momenturm- k). Note that these amplitudes are all integrals of products of three
. - .
Equations(24) and (25) tell us that a funCtlomeD\] IS D* functions. Mathematically one could also consider integrals of

associated with an outgoing partidlef massM, chargeQ  products of thre@* andD functions. The Bogoljubov transforma-
>0, and momentunk) or an outgoing antiparticléof mass  tion (30) ensures that they can be reduced to a combinatidy &
M, charge—Q, and momentum- k). C, V.



57 INTERACTING CHARGED PARTICLES IN AN . .. 6505

m(k")

MeH @ e e tions ina/ u, the ratio of the population ah andM species
\/’V is in thermodynamical equilibrium up only to nonperturba-
>/ =P < tive corrections, as expressed in EG2).
R a0 ® Thus the equilibrium distribution of the detector states is

given by
ﬂmB(k‘Ik,-k") +]3uC(k“Ik,-k') - BmﬁuA(-kI-k’,-k”) = Vikx k) =aMmk|k',k"> PM eqUII |:8M|
FIG. 2. A graphic representation of the relation between the m equil m
amplitudesA, B, C, V when the field® , is charged. The relation —e TMZIQE+mm?/qE | O(B,,). (73

between the amplitudes is more complicated than in Fig. 1 because
of the nonvanishing amplitud@,, to produce pairs of:,u quanta. ~ Therefore this equilibrium distribution is governed by the
The conventions are the same as in Fig. 1, except ghahd u finite change of the horizon area; cf. the Introduction from
denote a particle and antiparticle of tde, field, and are repre- Eq. (9) to Eq. (15).

sented by slanted lines since they are also accelerated by the electric Upon taking the double limitM/M —0, a/Q—0 with
field. Note that this picture is not the unique representation of thehe mean acceleration
amplitudesA, B, C, V since as indicated in the text each amplitude

corresponds to four different processes. We have used this to rep- Q+q E
resent the amplitudé(—k|—k’,—k”) as the amplitudem(k’) _ 2
+u(k")—M(k), but it could equally well be represented by a= M+m (74)
M(=k)—m(—Kk') + u(—K"). > )
) o ) fixed, one gets the linearized expression
It generalizes Eq(48) and it is proved also by using the
integral representation of tHB functions given in Eq(27). PmM equil _ 2m E 2
As in Eq. (52), one verifies thaf still vanishes simply be- P _ equ”_ex o |Am—a o= +0(a”) | +0(B,)
cause due to charge conservation the quadratic phages in (75)

cancel each other and the remainingntegral yields to a db ¢ w2 d lectri tential
delta function whose argument is strictly positive on the do-govemed by a lemperatuggzm and an €electric potenta

main of integration. This identity implies relations between(:Elza)' Indeed, in Rindler coordinates p, the (statig

the amplitudes4, B, C, V which generalize Eq49). Indeed potential is
from Egs.(29) and (68) we obtain immediately A.(p)=Eap?/2. (76)
V(|—k,k' k") =BuAKKk" K"). (69)  Evaluated ap=1/a, it givesE/2a.

Thus when the charge of the emitted particle is small
On the other hand, starting from E@7) and using the iden- enough with respect to its mass squése as to neglect its
tity (29) to split into sums, successively, the functionsvacuum instability, its effect, at the linearized level, is to
D:m[)\’], D* [\"], and amD’:m[—)\’] and finally using the modify Unruh equilibrium by the addition of an electric po-
13

complex conjugate version of relati¢f8), we obtain tential, thereby enlarging the relation to thermodynamics in a
’ nontrivial way; cf. the Introduction for a comparison with
V(| =k, k' ,k") = BmB(Kk' |k, —K") +ﬁuC(k"|k’ —k’) charged black hole thermodynamics.
Note addedAfter this work was completed, we learned of
— BuBmA(—k|—k',—K"). (700 a similar investigation of the interaction of three charged

. ) o ] fields propagating in an external electric field by Nikishov
These relations are illustrated in Fig. 2. Using E69) to  and Ritug24]. The main point of that work is that when the

eliminateV (| —k,k’,k") yields charges and masses of the particles are such that they propa-
, . " , gate semiclassically in a substantially different way than in
B(k'|k,—k") _Bu_ Bu C(K'[k,—K') Unruh’s model, then the rates of transitions differ from those
Aklk" k") Bm Bm A(K|K',K") obtained by Unruh, since they are severely modified by re-
coil effects or the spontaneous creation of particles in the
—k|=k',—K") electric field. In this limit, the analogy with thermodynamics

+Bu A(k|k’,k") (71) is of course no longer valitecall that temperature emerges
from microcanonical ensembles only in the reservoir limit
This shows that when the Charge of the exchanged particlen the other hand, the present work emphasizes the recovery

tends to zero, i.eB,=e ™ /2a_)0 the ratio of the ampli- of an extended thermodynamics in the limit of a small charge

tudesA(k|k’, k") andB(k’ |k, — k") is still directly related to @ of the emitted particle.
the amplitudes for the Schwinger process:
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APPENDIX A: AMPLITUDES OF DECAY DUE TO THE EXCHANGE OF CHARGED PARTICLES

For completeness we give here closed forms for the amplitAd&s C, V. We first discuss thel(k|k’,k”) amplitude. We
have to evaluate the integréd0), which, in terms of Whittaker’s functions, reads as

. k'
e STl t+ q E) \/2qE}

k
e 3|Tr/4(t+M )\/M}Dieml/z

1= j dtD_ic,—12 —

”n

k
t+—
na

XD—ieM—llz[e_siWM V2pa. (A1)

The evaluation of this integral is similar to the pattern followed to obtain E). First we split the function
D—ieM—1/2[e| ™(t+k/QE) y2QE] into two others functions thanks to the relati@®) and reexpress all the parabolic cylinder
functions involved in terms of their integral representati@m). This yields

e 'rrem/4ef 'rre,u/4 ei 4

To=— _ dte(—i/2)qE[t+(k’/qE)]ze—(iIZ)aE[H—(k"/aE)]ze(iIZ)QE[H—(k/QE)]2
U T(ien+12 (i€, +1/2) o7

o]
> f dudy dwe? ZTEL L+ (K [E) |- iv2/2giw ZaE t+ (K"/aE) |~ iw?/2, i =112 yji€, 112 ~iey — 1/2
0

% [e(ﬂ-/4)EMe—3i m/8g—iu vﬁ[t%—(k/QE)]Huz/Z_}_ g~ 374 ey ol mBGIUV2QE[t+(K/QE) |+ iu2/2] (A2)

with k=k’+k”. Charge conservatioQ=q+ a eliminates the quadratic terms inand thet integration leads to two delta
functionsé(VqEv + VaEw JQEU). The positivity of theu, v, andw variables makes only the first one contributing to the
amplitude. After some elementary algebra, we obtainZfothe expression

YU T(iem+t1/2T (i€, +1/2) \2QE 2\QE qE «E
where
o EK' —qEk [ VaE E
IZ:J dvdwexr{ 5 E(\/ v—\/q_EW)2+i\/§Q d ( a v—\/q_w>
0 Q QEqExE \ YyQE  {QE
/_ —ie 1/2
\/_ : Uiemfl/Z\Niep_71/2
VQE VQE
~=\lemt1l2/ —=\lie,+12/ —=\iey+1/2
= E E g LE i i 1 el W 12gmélag—iml
T+ ¥, (Ad)
JaE VaE VqE 2
with
Ek—QEK
:&1 (A5)
VQEQqE«E
E=€nte,—en, (AB6)
and
: 1 1 1 E
T3={D_jc_ 1 +v2€'™*01B i6M+§,—i5+§ oF1 i6M+E’i6“+§'1+i6M_i€m;_z_E)
. 1 1 1 1 E
+D_i5_1/2[\/§e_”7/40]8 |Em+§,_|€+§ ZFl i6M+E’i6m+§’1+i€M_i6M;_:{_E)J. (A7)
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The way to obtain this last result and others similar is postponed to the end of this appendix. Collecting all these results, the
amplitudeA(k|k' k") reads
k2 er k/rZ

—imldn(— 7/2)(emt€,) aTEIB
V2me e e ex;{ (QE qE “E

Q (i/2) (i12)epm Q (i12)em
(2QE)Y(2qE)**(2aE) "™ (i€ + 1/2)T (i€, +1/2) (E) (a) (Z)

1022

AKK' k") =

1
(A8)
As expected this result is symmetric with respect to the exchamge, k') < (u,a,k”).

The computation oB(k’|k,—k”) is somewhat different. Starting from the general expres@a) we have to evaluate the
integral

_ , k'’ . k"
jlzf dtD i, 12 e3'"’4(t+—E \/ZQE}Dieml,Z[—ei"”"‘ t+ = \/2qE}Dieul,2 g Siml4 t— szz},
(A9)
with k=k’ +k”. After the same transformations as those performed to evalyatere obtain
e(—ﬂ'/4)(em+5 ) 1 I7r/4
Ty= fdte( |/2)qE(t+k/qE)2 (— |/2)aE(t+k”/aE)2 (i/2)QE(t+k/QE)2
Y T(ien+1/2) T(ie,+1/2) 2
% fwdudvdWe—iv&ﬁ(uk'/qE)—ivzlzeiw&ﬁ(wk”/aE)—iwzlzviem—llzwieﬂ—llzu—ieM—llz
X [ e( ™ emg3imlBgiu2QE(+ KIQE)+iu?/2 o~ 3ml4) ey gi T8~ 1uVZQE(t+K/Q E)+iu2/2]_ (A10)

As previously charge conservation implies that the quadratic termhsamcel and the integration yields a delta functions

8(VaEw—+gEv = yQEU). However, this time, both terms will contribute {§ and we are left with the following expres-
sion:

e(—ﬂ'/4)(em+s'u)eiw/4 B k2 k12 (k//)Z 1 - simss 1 3t s
= -~ - ml4)e — 3l - —3ml4)€ | 77}
A en+ DT (e, +172) V2 J_eXp( [QE QE o ]) NN =R |
(A11)
where
QEk—QEK [JaE \QE )
= | dudwexg — =——= (VaEu+ VQEwW)?+iv2 u+ w
%), ”[ 2qE< "V QEqEaE (ﬁ VaE
% ( \/_VaE \/_V u—ieM—1/2WisIu—1/2 (A12)
qE
and
- i _qEk-QEK [VQE  VgE )
=| dudv exd — =——= (VQEv+VqEUW?2+iv2 + u
j3 fO F{: ZOZE( Q v \/q_ ) /—QEanE \/a_E v \/E
/_ 5 —-1/2
\/_ Iemfl/2u7ieM71/2
\/_ \/_ v . (A13)

Note that the last integral; can be obtained from the first o by exchanging ifh,a) with (u,e) and Kk’ k") with
(—=k,—k",—k’). In particular, note the invarianapEk— QEk'— — aEk+ QEK'=gEk— QEk’'. We display here the result
for J>:

—iey+1/2 ie, +1/2 2iey —iemt1/2
_ VgE VaE | Rt PRI L I Z S g iy ATl VQE
= — —_— I'lie+ s |e*7e™ e D_ic 1 —v2€'™Q]
VaE JQE 2 VaE
1 1 1 1 qE
X B IEM‘F 5,—I€M+§ 2Fl 1E+ Ei_IEM+§’1+I(€M_€M); ﬁ) (A14)
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Therefore, theB(k’|k,—k”) amplitude reads

(—7/2)(emt €)@l T4 o _i_ k_z_k_2+k_2
B(K’ [k, — k") = | 2 (i) e i) ( g (2 (eniew) © MENET SR T2 QE qE T o
(k'lk, —k")= Q Q (2QE)*(2qE)"(2aE) ™I (i€m+ 1/2)T (i€, +1/2)
1\ A .
«<Tlie+ E) eISZZ/ZeWE/BE—IW/8D7i57 AV2E5™0 T, (A15)
with
Ja=1e 37| i e AT O T DO P
4= 6:“‘ 2, GM 2 21 21 2 6M1 EI,L GM, QE
_ 1 11 E
+87”EM6'”/88 i6m+ z,_iEM‘i‘ E 2F1 IS—F E, E_iEMyl+iEm_iEM; &)} . (A16)

Finally, notice that theC(k”|k,—k’) amplitude can be easily obtained froB(k’|k,—k”) by the substitution
m,q,k’— u,a,k”, and hencé)l— — ). To complete the calculation we have to evaluate the inte@sals/,, and J;. As an
example we consider the integtal; the others follow a similar pattern:

—qu+QEk'(\/E _ VqE )
JQEqEaE | VQE' VQE

o0 i
I,= f dvdw ex;{ — —— (VaEv— JqEwW)?+iv2
0 2QE

ey 112
% W % v) piem-12yie, ~ 12 (A17)

By using the reduced variables

X

aE v gqE Q kqE—QEK y [qE (A18)
=24 =\VAeW =—, Cc=e’=1\/—7],
QE" QE JVQEQEeE akE

this integral becomes

o)
m

isM+l/2 iemt+1/2
T
q o

m
m

where
T= fxddeéfi/Z)(XfY)zfiV“?Q(X*Y)(Cx_kC*lY)fiEM71/2xiemfl/2Yieﬂfl/2. (AZO)
0
The change of variables

0 -9
X=—, Y= , 0<p<o, —oof<om, (A21)

andz=p sinh @ factorizes the double integral:
I:27i5'+lIZJ'dedee(7i/2)222i571/2(sinh 0)7i€71/2{ei 0(emfe'u)(eﬂ+ Y+e 0+ y)*ierlIZefil/in
0
+e—i0(em— Eﬂ)(ey—ﬂ_’_e— 0+ y)—ieM—1/2ei\/§QZ}’ (A22)

where the two terms come from the separation of the positive and negative values of the integration #afiabieintegrals
are the representatid27) of the parabolic cylinder function, and so

2

& 1) . . * . . . .
T= ZF(I — 4 E eIQZIZeTré‘Meflﬂ'/SJ' d9(2 sinh 0)7|£71/2{D7i871/2(‘f2el 77/4Q)e| 0(em— eﬂ)(e()Jr Y+e~ 0+ y)flerlIZ
0

+D_je_1(V2e ™) e emmeu) (@ 04 g0 ) Tiem— 12 (A23)
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A final change of variable=e?? reduces the last integrals to products of Euler and hypergeometric fundt&8jsformula
3.197.2. The final result forZ, reads

e isM+1/2 E iemt+1/2 i 1 . .
1'2: \ [;g_E) S_E ( 3 4= 5 eIQZ/ZeTrSMe Iﬂ'/8( D*ié’* l/i‘/?el 77/4Q]
11 , 1 , oE -
XBlie +§, |5+§ oF; §+|eM,|e +2,1 |em+|eM;—q—E +D _je_qd —v2€'™Q]
1 T 1. gE
X B |6m+§,—|5+§ 2F1 §+IEM’|€m+§’1_IE"+IGM'_E . (A24)
|
Similarly, for the amplituddB(k’ |k, —k”) the last integration 1 _
can be carried out by using23], formula 3.197.1 AKKKY Il 5—ig|l| 5 +igjem™m
BKTk—K) ©  T(ie,—iem(1-ie,+iey)
APPENDIX B: SMALL CHARGE LIMIT +e "0 (alu)
OF THE AMPLITUDES
=e "~ w4 e” "wuO(al p), (B2)

In this appendix we compute the small charge limit of the
amplitudesA(k|k’,k”) andB(k’ |k, —k”). We also prove Eq.
(72), i.e., that the ratio of the amplitudes(k|k’,k”) and
B(k’|k,—K") is given by the ratios of the Schwinger ampli-
tudes, up to terms proportional & "¢~. Moreover, we shall
evaluateA(k|k’,k”) in the limit a— 0. As emphasized in the
main text, a consequence of this calculation is that while the
amplitudesA(k|k’,k") and B(k’|k,—k") differ polynomi-
ally in the variablea/u from their chargeless limits, their
ratio is nevertheless given by E(y2), which differs from
the chargeless limit only by nonperturbative corrections
When « is small, the two hypergeometric functions giving
Js in EQ. (A17) can be combined into one thanks to the
formulas(9.131.2 and(9.131.1 of Ref.[23]:

which is the sought for result. Now we discuss in more detail
the limit of the amplitudeA (k| k’,k”) whena— 0, and check
that we recover the=0 result in the limit. The computation
is done in three steps. Equation@\9),(A8) express
A(k|k',k") as products of phases afidunctions with a sum
of products of EulerianB) functions, Whittaker'§D) func-
tions, and hypergeometric functions.

First, we obtain, by a saddle point evaluation, appropriate
approximations of Whittaker’'s functions. Then we estimate
the limits of the hypergeometric functions as confluent hy-
pergeometric functions. Finally, applying several times the
Stirling and reflection formulae on tHé andB Euler func-
tions we obtain the result.

The integrals

e 8g ﬂ'eM\/_ .
[wE) M€ i& 1) . _ _
j4: Q ( ) M~ iém T 54_5 eIQZIZeﬂglseﬂmSD_ig/z_]_/z[i\/zelﬂmﬂ]
—iepn—3ie,—3ie 1 ; 1 f *® i3 P
X (\QE) ~iem~3ie,~Siemp STiem, 5 Tiem :f dy etiv2Qu—iv?2,ie-1/2 (B3)
0
F(1+I16m_IEM)I;(I6“_|6M) oF1 %*l—iem, have saddle points located respectively at
r=+i& F(——ieM> VIO V(O E)V2
2 2
Us= > . (B4)
i i i q — e
§+I6M,1—Ie#+|6M .~ E/T¢ #O(alp) They are approximated by
v2mr . -
(Bl) \/? e—lw/4(2aE)l/4elzps’ (BS)
w

Note that(and this constitutes a check of the exactness of the ith

calculation in the limit o/ u—0, there appears diverging 2 5 , _ ,
phases in the first factor of this expression which cancel each _+_3 (k+k)” o _(ktk)o g| o+ (k+k")

other. If we omit the small corrections proportional to the '° 4 aE 40E" 2aE 2 J2aE
Schwinger factoe™ "¢#, most of the prefactors are common , , ,
between the amplitudest(k|k’k”) and B(k'|k—k") and  (ktk)(k—k") (k=Ko (B6)

thus can be omitted in the ratid/ B which reduces to 2QE ~ 2QE
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Let us emphasize that both integréBs) have their modulus
of the same order of magnitude il . B
To obtain the limits of the hypergeometric functions ap-

, 1 , 1
i€mt+ 5,—|6M+|(6M—Em)+§

pearing in Eq.(52) as confluent hypergeometric functions ) 1\ e —12 e o im a
when a—0 is straightforward. For small value of we ob- =I|ient 5) €, " e e 1+0 ;) :
tain
(B10)
] ) ) ) aE
SF 1| iey~+ §,|eﬂ+ §,1+|6M_|6m;_ q_E We see that the exponential facter "+ appearing in Eq.
(B9) makes the first term af; in Eqg. (A7) negligible with
. 1 _ iw? a respect to the second one in the limit-0 at a fixed non-
=Mliew+ 5 1t+iem—ien, — ﬁ) +0 ;) (B7)  vanishing value ofs. Collecting all the result$B7), (B9),
and (B1), we obtain the limit we are discussing. At zero
and order in a/u, once more(as expectedall the diverging
phases cancel in the first term and the remaining factors
. : . . qE group together to give the expressi@b) with gE=QE. So
oF1|lemt 5 lemt S 1 len—le, — E) we obtain, at the end
:emqu(M_z)'“M“m)’zew)(ewfm) AKIK) =LA ) Ol & "s0 e,
2qE
i 2 o where Ay(k|k’k”) is the transition amplitude in the neutral
XW(—1/2) (e, + ) (1D (e~ eg)| aqE +0 ;) (B8  case(55). Using Eq.(A17), one can similarly show that

B(k|k'k")=[By(k' |kKk")+O(al )]+ e~ ":O(al ),

Here also these two functions are of the same order of mag- (B12)

nitude in o/ but the prefactors multiplying them in the
amplitude A(k|k’,k") are quite different. The first one is \here B,(k|k'k") is the transition amplitude in the neutral

multiplied by case. From these relatiofB11),(B12) one can onlya priori
1 1 deduce that their ratio behaves as
Blie,+=,— i€, +i —€n)+t =
et ilenen 2) AMKKD o riena] 14 0] 2| |+ e~ 0
R m~ €M + — |+
2 rel(em—em) gTem/2g— Tem/2g— e, a) } B(k' | k—K") “ e "rO(alu),
- : 1+0[ ||, (B13
FA+i(ey—em) 7
(B9) while our previous computation, E¢B2), shows that actu-
ally all the polynomial corrections ia/u to the Boltzmann
whereas the second one is pondered by factor cancel each other.
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