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Spectrum of a largeN gauge theory near the transition from confinement to screening
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We study the spectrum of (111)-dimensional largeN QCD coupled to an adjoint Majorana fermion of
massm. As m→0 this model makes a transition from confinement to screening. We argue that in this limit the
spectrum of single-string states develops a continuous part. The continuum begins at exactly twice the mass of
the lightest bound state. This critical mass is nothing but the threshold for a decay into two lightest states. We
present numerical results based on DLCQ that appear to support our claim.@S0556-2821~98!03110-5#

PACS number~s!: 11.15.Pg, 12.38.Aw
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I. INTRODUCTION

Deriving the low-energy properties of QCD continues
be a largely unsolved problem. For this reason one o
resorts to simpler low-dimensional models in order to g
intuition about the (311)-dimensional case. A classic suc
model is the ‘t Hooft model@1#, which is the~111!-dimen-
sional SU(N) gauge theory coupled to Dirac fermions in th
fundamental representation. Two key elements in the s
tion of the model are the largeN limit and the light-cone
quantization. The largeN limit simplifies the dynamics by
removing the interactions between confined states. In th
Hooft model one thus finds a single Regge trajectory of n
interacting mesons. Quantization on the light cone, origina
introduced in@2#, is a useful tool as well, because all u
physical degrees of freedom become manifestly n
dynamical and can be eliminated using the constraints.

In light cone quantization, one treats one of the null c
ordinates, usually chosen to bex1, as the time. The othe
null coordinate is then treated as spatial, and we could im
ine compactifying it into a circle. Then the spectrum of t
longitudinal momentump2 becomes discrete, hence th
name discrete light cone quantization~DLCQ! @3,4#. This
approach to theories on the light cone is often useful a
conceptual tool~as, for example, in the matrix formulation o
M theory@5#!. It is also a practical device for solving theorie
numerically. By now there is an enormous body of literatu
on QCD on the light cone. Readers are referred, for exam
to @6# for a recent review and list of references.

While the ‘t Hooft model provides the simplest demo
stration of confinement in a non-Abelian gauge theory
does not capture the complexity of (311)-dimensional
gauge dynamics. This is because it contains no dynam
degrees of freedom in the adjoint representation of SU(N).
In order to model the physics of transverse gluons, one m
consider (111)-dimensional QCD coupled to matter in th
adjoint representation@7#. Such degrees of freedom can b
thought of as arising from dimensional reduction of QCD
higher dimensions. A particular model which has receiv
some attention recently@7–9# is that of a single Majorana
fermion in the adjoint representation coupled to tw
dimensional QCD:
570556-2821/98/57~10!/6420~9!/$15.00
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S5E d2x TrS i C̄TD” C2mC̄TC2
1

4g2 FmnFmnD . ~1!

In many ways, this is the simplest model exhibiting som
interesting physical features. This theory is manifestly fin
~unlike the model coupled to an adjoint scalar which requi
a mass renormalization! and its numerical investigation ca
be easily set up using the discrete light cone quantiza
@7,9–11#. The model contains one adjustable dimensionl
parameterx5pm2/g2N. Several interesting features of th
model have been noted in the literature. For example, fox
51 the model becomes supersymmetric@8#, while for x50
it is essentially equivalent to SU(N) gauge theory coupled to
N flavors of fundamental fermions@12#.

Unlike the ‘t Hooft model, the theory~1! has an exponen
tially increasing density of bound states,r(M );eM /TH @8,9#.
Thus, at temperatureTH a deconfinement transition occur
Surprisingly, the temperatureTH exhibits a non-trivial de-
pendence on mass; for example,TH→0 as m→0. This is
because in the massless limit the theory undergoes a ph
transition from the confining phase to the screening ph
@13,14#. The string tension scales linearly with the fermio
mass and vanishes at the point of the phase transition.

In order to improve our insight into the transition t
screening, we need to understand, at least qualitatively, w
happens to the spectrum of string-like bound states am
→0. On the one hand, for anym.0 the theory is confining,
hence the spectrum of single string states is strictly spea
discrete all the way to infinite mass. On the other hand, in
limit m→0, one should expect that the spectrum becom
dense, at least above a certain mass. A heuristic argumen
this goes as follows@13#. In a screening theory there is finit
range attraction between color non-singlets which may
strong enough to create a few bound states. However, s
the attractive potential flattens at infinity, we expect the sp
trum to be continuous above a certain mass. In this pape
present numerical evidence for the apearance of a continu
part of the single-string spectrum asm→0.

Our results are also consistent with@12,15#. There it was
argued that form→0 one can identify certain ‘‘basic’’
bound states~single particles!. The spectrum of these par
6420 © 1998 The American Physical Society
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57 6421SPECTRUM OF A LARGEN GAUGE THEORY NEAR THE . . .
ticles is discrete. For smallm most of the single-string state
may be thought of as loosely bound multi-particle stat
These multi-particle states form a continuum asm→0.

The principal new result of this paper is that the co
tinuum begins at twice the mass of the lightest particle.
believe that the spectrum is discrete below this critical ma
While this structure of them→0 limit of the spectrum could
have been anticipated from the arguments reviewed ab
we support it by careful analysis of the DLCQ numeric
diagonalizations.

II. DECOUPLING BETWEEN MASSLESS
AND MASSIVE SECTORS

Let us begin by briefly reviewing the arguments of@12#.
Consider a conformal field theory invariant under glob
symmetry groupG. Such a model arises as a representat
of affine Lie algebraĜ. Consider, for example, a Lagrangia
for a theory with right handed quarksc (r ) and left handed
quarksx (r 8) in representationsr and r 8 of G respectively:

LCFT5(
r

c†~r !]1c~r !1(
r 8

x†~r 8!]2x r 8.

There is a natural way to couple such a theory to a n
Abelian gauge field based on gauge groupG:

L5LCFT1A1aJ1a1A2aJ2a1
1

2g2 ~Fmn
a !2

with

J1a5c†~r !la~r !c~r !,

J2a5x†~r !la~r !x~r !.

This theory is believed to be consistent if the levelsk and k̄
of the left and right moving Kac-Moody~KM ! currents co-
incide.

In light cone quantization, one treats the light like coo
dinatesx2 andx1 as space and time, respectively. The na
ral gauge in this coordinate system is the light cone ga
A250. In this gauge,A1 andx are non-dynamical. Taking
into account the constraints imposed by these non-dynam
fields, the light cone Hamiltonian becomes

P252E dx2
1

2
g2Ja1

1

]2
2 Ja1. ~2!

The dependence onx’s has disappeared from the Ham
tonian, other than the basic requirement that their ch
anomaly matches that of thec’s. This implies thatx could
have been replaced with any other representation ofĜ as
long as they have the same chiral anomaly.

Strictly speaking, it is incorrect to conclude that the phy
ics of these models depends only on the KM level of
matter content, because by going to light cone coordina
the dynamics of massless degrees of freedom propaga
along thex2 axis is lost. This implies, however, that all da
specifying the details of matter representation other than
KM level is encoded in the massless sector propaga
.
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along x2. The massless left-moving sector is therefore d
coupled from the massive sector.

However, instead of treatingx2 as space andx1 as time,
one could have considered takingx1 as space andx2 as
time. Then, the natural gauge choice would have beenA1

50, and using the same argument as the one given ab
one concludes that the massless right-moving sector is
coupled from the massive sector.

SU(N) gauge theory coupled to a massless adjoint f
mion introduced in~1! is an example of such a gauged Wes
Zumino-Witten ~WZW! model. The currentJab52cacccb

generates a KM algebra of levelN. For generic mass, the
single particle color singlet states in this model are of
form

Tr~cc...c!u0& ~3!

and these states become non-interacting in theN→` limit.
For m50, however, the form of the light-cone Hami

tonian ~2! suggests that the Hilbert space of single parti
states can be block diagonalized into current blocks labe
by the KM primaries. The simplest states in the curre
blocks are of the form

Tr~JJJ...J!u0&

or

Tr~JJJ...Jc!u0&.

General highest weight states are of the form

S )
i 51

n

caibi D u0& ~4!

with symmetrization of indicesai andbi encoded in terms of
Young tableaux withn boxes. A generic state in the curre
block with n fermions in the primary will be of the form

Tr~Jl 1cJl 2c...Jl nc!u0&.

SU(N) gauge theory coupled toN flavors of massless
fundamental fermions is also an example of a gauged leveN
WZW model. The decoupling theorem implies that the ph
ics in the massive sector should agree with that of the adj
fermion model described earlier. The highest weight state
the KM algebra are of the form

S )
i 51

n

5c†aia ic†bib i D u0&

whereai andbi are symmeterized just as in the adjoint fe
mion case and are characterized by Young tableaux witn
boxes. A generic state in such a current block sector will
of the form

@ca1a1~Jl 1!a1b1c†b1b1#

3@ca2a2~Jl 2!a2b2c†b2b2#¯@canan~Jl n!anbnc†bnbn#u0&.

For n>1, these states appear to correspond ton mesons built
out of fundamental quarks.
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6422 57GROSS, HASHIMOTO, AND KLEBANOV
In general, the states in the massive sector are labele
the current block and the currents. Based on this classifi
tion, a state

uF&5Tr~Jmc!u0&

of the adjoint fermion model is associated with a state

uS&5@caa~Jm!abc†bb#u0&

of the N-flavored fundamental model. There are two pro
lems with this identification. First,uF& is a fermion whereas
uS& is a boson. Secondly,uF& is a unique state whereasuS&
hasN2-fold degeneracy due to choice of flavors. The reso
tion to this apparent discrepancy lies in the massless se
we have ignored up till now. The stateuS& is actually uF&
^ uJab& whereuJab& is a fermionic state from the massle
sector of the theory. These states carry flavor index, a
expected of the massless sector which contains all infor
tion about the matter representation beyond its KM lev
Dynamically, these states simply act as spectators and
otherwise decoupled.

Taking the massless sector into account, the structur
the full Hilbert space is expected to be of the form

H5(
s,s8

% ~Hs
c

^Hs,s8
GI

^Hs8
c

!, ~5!

wheres ands8 labels the representation of the KM algeb
on the left and right movers, respectively.Hs

c encodes the
massless spectrum of the theory which is model depend

For the adjoint fermion there are no massless states~this
is a consequence of the fact that the central charge vani
for the infrared conformal field theory!. Nevertheless,Hs

c is
non-trivial: it is built of certain discrete topological state
which, roughly speaking, label the distinct vacua for each
the current block sectors. Thus, the spectrum of the adj
fermion model in the limitm→0 should exhibit

~1! A set of ‘‘basic’’ bound states~particles! with masses
m1 ,m2 ,... . They give rise ton-body thresholds atm2

5(( j 51
n mi j

)2. The lowest such threshold is the most o
vious because this is where the spectrum becomes
tinuous. It is expected to occur atm254m1

2.
~2! There should be degeneracy arising from the ten

product structure~5! of the physical states, which in
cludes the topological sector of the theory. One manif
tation of it will be the match between the continuo
parts of the spectra of bosons and fermions.

In the following section, we will present numerical ev
dence based on DLCQ for both of these features.

III. NUMERICAL RESULTS FROM DISCRETE
LIGHT CONE QUANTIZATION

A. Review of adjoint fermion model in DLCQ

The application of DLCQ techniques to the gauged
joint fermion model has been developed in@7,9–11#. We will
briefly review the construction below.

We start with the action~1!, whereC is an adjoint Majo-
rana fermion whose spinor components are given by (x

c).
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In lightcone coordinates and in the lightcone gauge,~1! be-
comes

S5TrE dx1E dx2S ic]1c1 ix]2x2 i&mxf

1
1

2g2 ~]2A1!21A1J1D .

Here, Ji j
152c ikck j . We see thatx and A1 are non-

dynamical and simply lead to constraints.
In DLCQ, one compactifies thex2 direction into a circle

of period L and assign periodic boundary condition to t
gauge fields. The original two dimensional model is reco
ered in the decompactification limit of this theory. Havin
assigned periodic boundary condition for the gauge fie
the equation of motion allows two possible boundary con
tions for the fermions: periodic or anti-periodic. If period
boundary condition are used, the mode expansion ofc in-
cludes a zero momentum component. It is customary to
nore this mode when computing the DLCQ spectrum. This
justified for genericm because the constraint due to the ze
momentum component ofx will set the zero momentum
component ofc to zero. Atm50, however, this constrain
disappears, and one is no longer justified in throwing aw
the zero momentum component ofc. Unfortunately, the sim-
plest DLCQ cannot be applied in the presence of suc
zero-mode, as will be made clear shortly. One could sim
discard the zero-mode~at least form.0 this should not
affect the spectrum in theK→` limit !. The price we pay is
that the rate of convergence to the decompactification li
becomes much slower. This problem does not arise if
chooses to quantize the fermions using anti-periodic bou
ary conditions, since the zero momentum modes are ab
from the beginning. We have found empirically that a DLC
computation using anti-periodic boundary conditions for t
fermions indeed converges much faster compared to the
riodic boundary conditions. Therefore, we will adopt th
anti-periodic boundary conditions as the method of choi
as did @9#. It should be stressed, however, that the deco
pactification in DLCQ is impossible to achieve in practic
Thus, a careful extrapolation is needed to extract the feat
of the spectrum alluded to at the end of the previous sect

In light cone quantization, fermions are made to sati
the canonical anti-commutation relations imposed at eq
light cone timex1:

$c i j ~x2!,ckl~y2!%5
1

2
d~x22y2!S d i l d jk2

1

N
d i j dklD .

In terms of the modes

c i j ~x!5
1

A2L
(

nPodd
Bi j ~n!e2p inx/L,

the anticommutation relations become

$Bi j ~m!,Bkl~n!%5d~m1n!S d i l d jk2
1

N
d i j dklD ,
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TABLE I. Number of states as a function of K in adjoint fermion model using anti-periodic boun
conditions.

K 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2
Dim 18 28 40 58 93 141 210 318 492 762 1169 1791 2786 4338 67
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whereBi j (2n) for n.0 refers toBji
† (n) in the notation of

@10#.
Taking the appropriate constraints into account, the lig

cone momentum and energy become

P15 (
nPodd

S pn

L DBi j ~2n!Bji ~n!,

P25
m2

2 (
nPodd

S L

pnDBi j ~2n!Bji ~n!

1 (
nPeven

g2L

~pn!2 Ji j ~2n!Jji ~n!.

Restricting to the sector whereP15pK/L, we find

M252P1P25
g2N

p
KS m2p

Ng2 (
nPodd

1

n
Bi j ~2n!Bji ~n!

1
1

N (
nPeven

1

n2 Ji j ~2n!Jji ~n! D .

We are interested in them→0 limit of the spectrum. For any
m.0 the use of DLCQ is completely justified, and we e
pect the spectrum to converge asK→`. Thus, we will imag-
ine takingm very small in the formula above. Ifm is small
enough~say 10210!, then our numerical calculations will no
feel it at all. Hence, we will simply setm50 in the numerics,
and think of the extrapolationK→` as a representation o
the m→0 limit of the spectrum.

The Hilbert space on which theM2 operator acts can b
constructed by acting on the vacuum with the mode ope
tors B(2n),

Tr„B~2n1!B~2n2!...B~2nl !…u0&,

subject to the condition that(ni5K. These states are gen
erated by a set of ordered partitions ofK into odd integers,
up to graded cyclic permutations. There are only finite
many such states. TheM2 matrix can be evaluated explicitl
by commuting the oscillators. This is what makes DLCQ
powerful tool: the Hamiltonian is a finite dimensional matr
which can be diagonalized numerically~this feature breaks
down in the presence of zero-momentum modes!.

The decompactification limit of this theory is obtained
sendingL to infinity, keepingP1 constant. It is then neces
sary to scaleK with L. This is exactly the sense in which th
decompactification limit is a challenging limit in DLCQ. I
general, the number of partitions of a positive integer in
other positive integers grows exponentially. Solving mod
with adjoint matter in DLCQ therefore requires working wi
exponential algorithms.

In practice, the set of states and the elements of
Hamiltonian matrix can be generated with the aid of a co
t-

a-

o
s

e
-

puter program. The number of states in each sector lab
by K is summarized in Table I.

The Hamiltonian preserves the number of oscillato
modulo 2. The states with odd oscillator number correspo
to fermions and arise for oddK. For evenK we necessarily
have an even number of oscillators; therefore, these st
describe the bosonic part of the spectrum. The Hamilton
also preserves aZ2 symmetry corresponding to reversing th
order in which the modes act on the vacuum:

Tr@B~2n1!B~2n2!...B~2nl !#u0&

↔Tr@B~2nl !B~2nl 21!...B~21!#u0&,

so that the Hilbert space decomposes into sectors odd
even under the action of thisZ2 group.

B. Numerical results and extrapolations

We will now present the results of our numerical analys
We evaluated theM2 matrix explicitly and computed the
first several eigenvalues in each of theZ2 sectors for both
bosons and fermions. We are interested in tracking the m
squared of a given state as we varyK. For this purpose we
found it useful to plot the probability that a given state hasn
bits, which is encoded in its wave function, and to track the
probabilities as we increaseK. As an example, we illustrate
in Fig. 1 the probabilities of various bit numbers for each
the low-lying eigenstates. One of the features visible in F
1 is the existence of states which are sharply peaked in
number distributions~e.g. states 1 and 5 in Fig. 1!. These
states can be readily distinguished from the rest of the st
which are superpositions of various bit number sectors
Fig. 1 we indicate by arrows the patterns with which sta
are tracked as we varyK. These choices are based on co
tinuity in the shape of the distribution and of the eigenvalu
Although there is some element of guesswork in mak
such assignments, the steady pattern we observe in the s
of the distribution provides us with confidence that we a
tracking the states correctly. AsK increases, we also observ
evidence for new tracks of states appearing in the spectr
This is to be expected since the dimension of the Hilb
space increases rapidly withK. We indicate the likely ‘‘trail
heads’’ of these tracks with ‘‘* ’’ in Fig. 1.

We can now follow the arrows in Fig. 1 and plotM2 as a
function of K. We summarize this data in Fig. 2 where w
plot M2 against 1/K for each of theZ2 sectors for both
bosons and fermions.

Several comments are in order regarding the data c
tained in Fig. 2. First of all, in all but the bosonicZ2 odd
sector, the lowest eigenvalue appears to be well separ
from the rest of the spectrum, and depends relativ
smoothly onK. We studied convergence to the largeK limit
by performing a best fit to a curve of the form



onic
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FIG. 1. Probability distributions in bit number space of the low-lying mass eigenstates of the light-cone Hamiltonian in the fermiZ2

sector. The arrows indicate the likely tracking pattern for these states as we varyK. The symbol ‘‘* ’’ indicates a ‘‘trail head’’ where a new
state appears in the spectrum.
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K D 2

. ~6!

We included the quadratic term in the fit to account for t
curvature in the data. Thus,a0 gives the extrapolated valu
of the mass squared. Our extrapolation indicates that
lightest state is a fermion withMF1

2 55.7, followed by a
boson with MB1

2 510.8, followed by a fermion withMF2
2

517.3 ~in units of g2N/p!. These states are approxima
eigenstates of the number of bits with eigenvalues 3, 2 an
respectively. These results are in good agreement with
extrapolations performed in@9,10#. The best fit curves also
indicate that the lightest states have converged fairly w
although for a linear extrapolation to be justifiable,K must
be of order 102.

The states which are not approximately pure in bit nu
ber ~e.g. states 2, 3, and 4 in Fig. 1! behave somewhat dif
ferently. These states oscillate strongly inK with a period of
4. We will have more to say about these oscillations in
following subsection but, for the time being, simply note th
they get smaller with increasingK. Figure 2 gives an indi-
cation that these levels will ultimately converge at largeK. It
is not sensible to fit a curve of the form~6! to such a wildly
oscillating data. As an alternative, we adopt the proced
where we fit ~6! to the valleys and the peaks of the da
separately. Unfortunately, this cuts in half the amount of d
used in each extrapolation. Since~6! is a 3 parameter fit, we
performed the extrapolation only in cases where at lea
data points are available.

As we illustrate in Fig. 2, these states show an indicat
that they are converging toward roughly the same mas
the largeK limit. What makes this particularly interesting
the fact that the extrapolated value based on the fit~6! is
e
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he

ll,

-

e
t

re

a

4

n
in

approximatelyMG
2 522.9. The states becoming degenerate

a particular value ofMG
2 is suggestive of the onset of con

tinuous spectrum. Notice thatMG
2 522.9 equals 4MF1

2 ,
which is where one expects the first band of continuum c
responding to the free two body spectrum of particles
massMF1 .

One could in principle perform a 3 parameter fit to 3 dat
points. These fits also give extrapolations close to 22.9.
extent to which an extrapolation misses this mark increa
as we go up in energy levels. However, since higher lev
start at trail heads with higher values ofK, it is necessary to
go to higher values ofK to achieve the same degree of co
vergence. We expect these higher levels to converge
mass-squared of 22.9 when the calculation is pushed to
ficiently high K to allow for a reliable extrapolation. The
data illustrated in Fig. 2 is quite suggestive of such deg
eracies at largeK.

A picture that appears to be emerging from these ob
vations is the following.MF1 , MB1 , andMF2 are the masses
of the lightest particles to which the single trace states~3!
dissociate in the deconfinement limit. The states piling up
MG suggest a continuous two-body spectrum ofuF1&.

There is evidence for other ‘‘single-particle’’ states buri
in the continuum. A clear example is the bosonicZ2 odd
state ~state 2 in Fig. 2! which, to a good approximation
consists of 4 bits and has the extrapolated mass-squ
equal to 25.6. Furthermore, we find evidence for a very p
7-bit state~state 5 in Fig. 2! of extrapolated mass-square
35.3 in the fermionicZ2 even sector. The masses of the
‘‘pure’’ states appear to vary smoothly withK similarly to
those of the ‘‘single-particle’’ statesuF1&, uB1&, and uF2&.
Thus, we speculate that there is an infinite sequence
‘‘single-particle’’ states. At least the first few such states a
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FIG. 2. M2 eigenvalues form50 as a function of 1/K. In each of the 4 sectors~Z2 even andZ2 odd for bosons and fermions! we exhibit
extrapolations of the lightest states that are pure in bit number, and also graph some of the lightest states that appear to conv
continuum.
es

sh

be
ec-
distinguished by their purity in the number of bits~the
‘‘multi-particle’’ states tend to be far from being eigenstat
of the number of bits!.

It follows that there should also be other two-body thre
 -

olds at mass-squared (MF11MB1)2532.2, (MF11MF2)2

542.8, (MB11MF2)2555.4, etc. Perhaps these could
detected by a sufficiently detailed examination of the sp
trum.
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One final point we wish to emphasize is the fact that
continuum atMG

2 522.9 appears to exist both in the boson
and the fermionic sectors. The interpretation of these st
as the two-body continuum coming from theuF1& particle
suggests that these states should be bosonic,uF1& ^ uF1&.
How then should we interpret the continuum atMG522.9 in
the fermionic sector? Recalling a similar issue of statistics
the case of adjoint vsN-flavor fundamental correspondenc
suggests the following explanation. The states in the fer
onic continuum must correspond to a state of the form

uF1& ^ uF1& ^ uJ&

where uJ& is a companion fermionic state arising from th
topological sector of the theory, which is otherwise deco
pled from the dynamics.

C. Oscillations

So far, our evidence for the appearance of a continuum
states atM254MF1

2 has been based on numerical extrapo
tions. In this subsection, we will present stronger evide
by studying the pattern of oscillations exhibited by the
states as they converge toward the largeK limit.

Oscillations similar to the ones we illustrated in Fig.
arise in the DLCQ spectrum of a pair of free particles
massm. For a finiteK, the spectrum is given by

M25m2KS 1

n
1

1

K2nD
wheren and K2n are the numbers of units of momentu
carried by the individual particles, and 1<n<K21. This
spectrum oscillates inK. We will show that the oscillations
seen in Fig. 2 are due to a similar mechanism.

Let us focus our attention on the oscillating states in
bosonicZ2 odd sector from Fig. 2. For the sake of illustr
tion, we plot these states again in Fig. 3. Our claim is t
these states arise as the free two-body spectrum ofuF1& par-
ticles. Since each of these particles is a composite s
whose mass is determined with a finite resolution, the cor
formula for a finiteK is

FIG. 3. The first three states in the bosonicZ2 odd sector of the
adjoint fermion model that appear to be converging to the c
tinuum.
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M25KS MF1
2 ~n!

n
1

MF1
2 ~K2n!

~K2n!
D , ~7!

wheren is an odd integer 1<n<K21, andMF1(n) is the
mass of theuF1& in the K5n sector. We illustrate the spec
trum determined using~7! in Fig. 4. ~Since uF1& is a fer-
mion, we only keep the states which are antisymmetric w
respect to their exchange.!

Figures 3 and 4 are generated using completely indep
dent methods. It is therefore quite remarkable that the res
ing plots areidentical. This can be easily verified by laying
one on top of the other. Thus, the identification of bosonicZ2
odd states as non-interacting two-body states ofuF1& appears
to be exact even for finiteK.

Having found such a remarkable structure in theZ2 odd
sector of the bosonic spectrum, it is natural to expect a si
lar situation to hold in theZ2 even sector. However, th
correspondence here is not exact. In Fig. 5, we illustrate b
the bosonicZ2 spectrum from previous section and the e
pectation based on~7!. What we seem to be finding here
that ~7! captures the qualitative features of the oscillations
the Z2 even sector states, but the DLCQ data contains a
tional ‘‘noise.’’ We will speculate on the source of this nois
at the end of this section. Empirically, we find that the no
decays as 1/K in the largeK limit. Therefore, despite the fac

-
FIG. 4. The spectrum of a pair of non-interacting F1 partic

with total momentumK.

FIG. 5. Dashed lines label the first three states in the bosonicZ2

even sector of the adjoint fermion model that appear to be conv
ing to the continuum. The solid line is the spectrum of a no
interacting pair of F1 particles.
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that the correspondence is not exact at finiteK, we believe
that the pattern of oscillation seen in the bosonicZ2 even
sector is also consistent with the picture that a continuum
formed in the largeK limit.

There are additional subtleties in attempting to extend
picture to the states in the fermionic sector. As was descri
at the end of the previous subsection, the only way one
make a fermionic state out of a pair ofuF1& particles is to
introduce states from the topological sector of the the
carrying fermionic statistics. In DLCQ with anti-periodi
boundary conditions, such a state cannot carry zero lig
cone momentum, as these states are required to carry
mentum in half-integer units. The closest we can get to
situation we hope to describe is to distributeK units of mo-
mentum according to (uF&,uF&,uJ&)5(n,K2n21,1). It
should be stressed, however, thatuJ& is not really a free
particle, and it is nota priori clear how to generalize~7!
taking the ‘‘topological sector’’ into account. A rough gue
is to take

M25~K21!S MF1
2 ~n!

n
1

MF1
2 ~K2n21!

~K2n21!
D . ~8!

The data from the fermionic sector of the adjoint fermi
model suggests the presence of two-particle states which
both symmetric and antisymmetric under their exchan
This is puzzling in light of the fact thatuF1& ’s constitute a
pair of identical fermions. PerhapsuJ& is binding with one of
the uF1& ’s so that the resulting pair of constituents are
longer identical. Here we have included the symmetric wa
functions for the sake of comparison with the DLCQ data

Although ~8! is admittedlyad hoc, it appears to capture
the general structure of the oscillations seen in the spect
computed for the adjoint fermion model, as we illustrate
Fig. 6. Again, we find qualitative agreement accompanied
some ‘‘noise’’ which decays as 1/K. This time, however,
there is a natural suspect for the culprit responsible for
noise. The topological sector plays an important role in
signing appropriate statistics for the states in this sector.
using anti-periodic boundary conditions, however, we w
forced to mutilate the structure of the topological sector
forcing it to carry small but finite momenta. This effect is n

FIG. 6. Dashed lines label the first three states for both
fermionic Z2 even and the fermionicZ2 odd sectors of the adjoin
fermion model that appear to be converging to the continuum.
solid line is the spectrum of a non-interacting pair of F1 particle
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properly accounted for in~8!. The amount of error in mo-
mentum we introduced is of order 1/K, and this is indeed the
magnitude of the noise we see in the spectrum.

This also suggests the probable cause of the noise in
bosonicZ2 even sector. The structure of these states mi
very well be of the form

uF1& ^ uF1& ^ uV&

whereuV& is a topological state carrying even fermion num
bers. Even in theories with only fermionic matter, such
state can arise easily from bilinears. The noise in this se
may be due to the fact that~7! does not account for the
presence of the topological sector of this type. In the largeK
limit, however, we would expect all dynamics in the top
logical sector to decouple. It is therefore satisfying to fi
that the noise decays as 1/K in the largeK limit.

Although in general the correspondence between
spectra derived from~7! and~8! with the DLCQ spectrum is
not as precise as what we found in the bosonicZ2 odd sector,
the qualitative agreement, and the fact that the discrepa
shrinks with increasingK, provides a strong indication tha
the oscillations seen in the DLCQ spectrum are a signa
of states forming a continuum. Furthermore, we feel that
small discrepancy is actually probing the topological sec
of the theory. It would be extremely interesting to understa
this structure from first principles.

IV. CONCLUSIONS

By performing explicit DLCQ analysis of QCD couple
to adjoint fermions, we found isolated ‘‘single-particle
statesuF1&, uB1& and uF2& at mass-squared equal to 5.
10.8, and 17.3 respectively~in units ofg2N/p!. These states
are approximate eigenstates of the number of bits with eig
values 3, 2 and 5 respectively. In addition, we found
indication that a continuum of states is appearing atMG

2

522.9 in both the bosonic and the fermionic sector. The f
that MG

2 54MF1
2 suggests that these states are a two-part

continuum built out of theuF1& ’s. To account for the statis
tics, the states are interpreted to be of the formuF1& ^ uF1&
or uF1& ^ uF1& ^ uJ&, whereuJ& describes a fermionic stat
in the topological sector of the theory, which is otherwi
decoupled from the dynamics. The existence of fermio
states converging to the continuum atMG

2 522.9 thus pro-
vides some numerical evidence for the ‘‘direct sum of ten
products’’ structure of the Hilbert space,

H5(
s,s8

% ~Hs
c

^Hs,s8
GI

^Hs8
c

!

suggested in@12#. The oscillatory behavior ofM2 for the
states converging to the continuum can be understood
actly ~at least for the bosonicZ2 odd states! in terms of the
spectrum of a non-interacting 2-body system~7!. This pro-
vides strong support for our claim about the continuity of t
spectrum forM2.4MF1

2 .
In addition, we find evidence for other ‘‘single-particle

states whose mass is higher thanMG . At least the first few
such states are distinguished from the continuum states
their purity in bit number. For example, in the bosonicZ2

e

e
.
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odd sector there is a state of mass-squared 25.6 which i
a high accuracy, a 4-bit state. We are thus led to specu
that there is an infinite sequence of ‘‘single-particle’’ stat
Perhaps these states can be grouped into one Regge t
tory of the fermions and one Regge trajectory of the boso

Our analysis indicates clearly that the adjoint fermi
model contains string-like states made out of adjoint b
which dissociate in them→0 limit into the stable constituen
‘‘particles.’’ For small m these states can be thought of
loosely bound state of such ‘‘particles.’’ In them→0 limit,
these ‘‘particles’’ are free, as can be inferred from the thre
old of the continuum.

While we have seen that the DLCQ gives convincing e
dence for the existence of constituent ‘‘particles’’ and th
2-body continua, some puzzles about the structure of
spectrum remain. A paradox having to do with the st
counting of this model was noted in@15#. Since the tension
of the QCD string vanishes in them→0 limit, one expects to
find a spectrum with Hagedorn temperatureTH→0. On the
other hand, one expects the spectrum of a screening theo
haveTH5`. Since form50 the spectrum decomposes in
the more basic building blocks~single particles!, we should
ro
,’
to
te
.
jec-
s.

s

-

-
r
e

e

to

only count these particles as fundamental. It is natura
expect that these particles form a single Regge traject
hence they do not have an exponentially growing density
states. The problem is that the particles from a single Re
trajectory, and the multiparticle states built out them, do
have enough degeneracy to form an exponentially rising d
sity of states whenm is turned on@15#. Thus, it seems nec
essary to take into account additional large degeneracy
to the presence of certain topological states@12,15#. It would
be interesting to see how the resolution to this apparent p
dox manifests itself in the DLCQ numerical analysis.
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