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Spectrum of a largeN gauge theory near the transition from confinement to screening
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We study the spectrum of (d1)-dimensional largeN QCD coupled to an adjoint Majorana fermion of
massm. As m— 0 this model makes a transition from confinement to screening. We argue that in this limit the
spectrum of single-string states develops a continuous part. The continuum begins at exactly twice the mass of
the lightest bound state. This critical mass is nothing but the threshold for a decay into two lightest states. We
present numerical results based on DLCQ that appear to support our (51656-282198)03110-3
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I. INTRODUCTION o o 1

s=f d?x Tr(ixPTqu—mquf—FFwa A
Deriving the low-energy properties of QCD continues to g

be a largely unsolved problem. For this reason one often

resorts to simpler low-dimensional models in order to gainln many ways, this is the simplest model exhibiting some
intuition about the (3 1)-dimensional case. A classic such interesting physical features. This theory is manifestly finite
model is the ‘t Hooft mode[1], which is the(1+1)-dimen-  (unlike the model coupled to an adjoint scalar which requires
sional SUN) gauge theory coupled to Dirac fermions in the @ mass renormalizatiprand its numerical investigation can
fundamental representation. Two key elements in the soluee easily set up using the discrete light cone quantization
tion of the model are the largd limit and the light-cone [7,9—11. The model contains one adjustable dimensionless
quantization. The larg&l limit simplifies the dynamics by parametex=7m?/g°N. Several interesting features of this
removing the interactions between confined states. In the model have been noted in the literature. For examplexfor
Hooft model one thus finds a single Regge trajectory of non=1 the model becomes supersymmei8¢, while for x=0
interacting mesons. Quantization on the light cone, originallyit is essentially equivalent to SBI) gauge theory coupled to
introduced in[2], is a useful tool as well, because all un- N flavors of fundamental fermior{d.2].

physical degrees of freedom become manifestly non- Unlike the ‘t Hooft model, the theorfl) has an exponen-
dynamical and can be eliminated using the constraints. tially increasing density of bound statggM)~eM/T [8,9].

In light cone quantization, one treats one of the null co-Thus, at temperatur€, a deconfinement transition occurs.
ordinates, usually chosen to bé&, as the time. The other Surprisingly, the temperatur€, exhibits a non-trivial de-
null coordinate is then treated as spatial, and we could imageendence on mass; for examplg,—0 asm—0. This is
ine compactifying it into a circle. Then the spectrum of thebecause in the massless limit the theory undergoes a phase-
longitudinal momentump_ becomes discrete, hence the transition from the confining phase to the screening phase
name discrete light cone quantizatigpLCQ) [3,4]. This  [13,14). The string tension scales linearly with the fermion
approach to theories on the light cone is often useful as aass and vanishes at the point of the phase transition.
conceptual toolas, for example, in the matrix formulation of In order to improve our insight into the transition to
M theory[5]). It is also a practical device for solving theories screening, we need to understand, at least qualitatively, what
numerically. By now there is an enormous body of literaturehappens to the spectrum of string-like bound statesnas
on QCD on the light cone. Readers are referred, for example;»0. On the one hand, for any>0 the theory is confining,
to [6] for a recent review and list of references. hence the spectrum of single string states is strictly speaking

While the ‘t Hooft model provides the simplest demon- discrete all the way to infinite mass. On the other hand, in the
stration of confinement in a non-Abelian gauge theory, itlimit m—0, one should expect that the spectrum becomes
does not capture the complexity of {3)-dimensional dense, at least above a certain mass. A heuristic argument for
gauge dynamics. This is because it contains no dynamicdhis goes as follow§13]. In a screening theory there is finite
degrees of freedom in the adjoint representation of U( range attraction between color non-singlets which may be
In order to model the physics of transverse gluons, one magtrong enough to create a few bound states. However, since
consider (H 1)-dimensional QCD coupled to matter in the the attractive potential flattens at infinity, we expect the spec-
adjoint representatiofi7]. Such degrees of freedom can be trum to be continuous above a certain mass. In this paper we
thought of as arising from dimensional reduction of QCD inpresent numerical evidence for the apearance of a continuous
higher dimensions. A particular model which has receivedart of the single-string spectrum as—0.
some attention recently7—9] is that of a single Majorana Our results are also consistent wjtt2,15. There it was
fermion in the adjoint representation coupled to two-argued that form—O one can identify certain “basic”
dimensional QCD: bound stategsingle particles The spectrum of these par-
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ticles is discrete. For smath most of the single-string states alongx™. The massless left-moving sector is therefore de-
may be thought of as loosely bound multi-particle statescoupled from the massive sector.
These multi-particle states form a continuumnas- 0. However, instead of treating™ as space ang™ as time,

The principal new result of this paper is that the con-one could have considered takimg as space anat™ as
tinuum begins at twice the mass of the lightest particle. Waime. Then, the natural gauge choice would have b&en
believe that the spectrum is discrete below this critical mass=0, and using the same argument as the one given above,
While this structure of then— 0 limit of the spectrum could one concludes that the massless right-moving sector is de-
have been anticipated from the arguments reviewed abovepupled from the massive sector.
we support it by careful analysis of the DLCQ numerical SU(N) gauge theory coupled to a massless adjoint fer-

diagonalizations. mion introduced in(1) is an example of such a gauged Wess-
Zumino-Witten (WZW) model. The current)P=22¢y,cP
Il. DECOUPLING BETWEEN MASSLESS generates a KM algebra of levdl. For generic mass, the
AND MASSIVE SECTORS single particle color singlet states in this model are of the
form

Let us begin by briefly reviewing the arguments[ag)].
Consider a conformal field theory invariant under global Tr(¢ip...p)|0) 3
symmetry groupgs. Such a model arises as a representation

of affine Lie algebras. Consider, for example, a Lagrangian and these states become non-interacting inNhe limit.

for a theory with right handed quarkg™ and left handed =~ For m=0, however, the form of the light-cone Hamil-

o . p . . tonian (2) suggests that the Hilbert space of single particle
rksxy("") in representations andr’ of G r ively: . . .
quarksx epresentations andr” of G respectively states can be block diagonalized into current blocks labeled

, , by the KM primaries. The simplest states in the current
Lopr=2 ¢ Mo, g+ T gy blocks are of the form
r r!

. T
There is a natural way to couple such a theory to a non- (J3J...9)|0)

Abelian gauge field based on gauge gr@p or

1
£:£CFT+A+aJ+a+A7aJ_a+ @(sz)Z Tr(JJJJz,b)|O)

h General highest weight states are of the form
Wi

Jra= yhoyam o, (IHI l!/aibi) |0) )

Jma=yT0\amn (),
with symmetrization of indiceq; andb; encoded in terms of
Young tableaux witm boxes. A generic state in the current

This theory is believed to be consistent if the levielandk
Y block with n fermions in the primary will be of the form

of the left and right moving Kac-Mood{KM) currents co-
incide.
In light cone quantization, one treats the light like coor- Tr(31d'2y...304))|0).
dinatesx” andx™ as space and time, respectively. The natu-
ral gauge in this coordinate system is the light cone gauge,
A_=0. In this gaugeA, and y are non-dynamical. Taking
into account the constraints imposed by these non-dynamic
fields, the light cone Hamiltonian becomes

SU(N) gauge theory coupled tdl flavors of massless
ndamental fermions is also an example of a gauged Mvel
ZW model. The decoupling theorem implies that the phys-
s in the massive sector should agree with that of the adjoint
fermion model described earlier. The highest weight states of
the KM algebra are of the form
f dx~ 92Ja+ _Ja+ (2)

n
( H — ¢Taiai lpfbiﬁi) |0>
The dependence og's has disappeared from the Hamil- i=1

tonian, other than the basic requirement that their chiral

anomaly matches that of thg#s. This implies thaty could wherea; andb; are symmeterized just as in the adjoint fer-

have been replaced with any other representatioﬁ; s mion case and_are cha_racterlzed by Young tableaux W'th
long as they have the same chiral anomaly boxes. A generic state in such a current block sector will be

Strictly speaking, it is incorrect to conclude that the phys—Of the form
ics of these models depends only on the KM level of the [#121( 3'1) 2101, 1161
matter content, because by going to light cone coordinates,
the dynamics of massless degrees of freedom propagating X[ ®232(J'2)32P2yT0252]. . .[ y@nan( J'n)2nbnyTonbn]| ),
along thex™ axis is lost. This implies, however, that all data
specifying the details of matter representation other than itforn=1, these states appear to correspona toesons built
KM level is encoded in the massless sector propagatingut of fundamental quarks.
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In general, the states in the massive sector are labeled By lightcone coordinates and in the lightcone gaude,be-
the current block and the currents. Based on this classificazomes
tion, a state

i +ixd_x—iv2myd

|(D>:Tr(..]ml//)|0> S:Trf dXJrf dx™

of the adjoint fermion model is associated with a state
|3)=[9*2(I™**y™7]|0)

of the N-flavored fundamental model. There are two prob-Here, Jﬁzthikwa. We see thaty and A, are non-
lems with this identification. Firs{®) is a fermion whereas dynamical and simply lead to constraints.

%) is a boson. Secondlyp) is a unique state wheregs) In DLCQ, one compactifies the~ direction into a circle
hasN?-fold degeneracy due to choice of flavors. The resolu-of period L and assign periodic boundary condition to the
tion to this apparent discrepancy lies in the massless sectgauge fields. The original two dimensional model is recov-
we have ignored up till now. The staf®) is actually|®)  ered in the decompactification limit of this theory. Having
®|E*P) where|Z*F) is a fermionic state from the massless assigned periodic boundary condition for the gauge fields,
sector of the theory. These states carry flavor index, as ithe equation of motion allows two possible boundary condi-
expected of the massless sector which contains all informaions for the fermions: periodic or anti-periodic. If periodic
tion about the matter representation beyond its KM levelboundary condition are used, the mode expansiog) ai-
Dynamically, these states simply act as spectators and atfudes a zero momentum component. It is customary to ig-

1
+2—gz(&_A+)2+A+J+>.

otherwise decoupled. nore this mode when computing the DLCQ spectrum. This is

Taking the massless sector into account, the structure gfistified for generian because the constraint due to the zero-
the full Hilbert space is expected to be of the form momentum component of will set the zero momentum
component ofys to zero. Atm=0, however, this constraint

H=S @(H§®H§|sr®7'l§r)a (5) disappears, and one is no longer justified in throwing_ away
ss : the zero momentum component@fUnfortunately, the sim-

plest DLCQ cannot be applied in the presence of such a
wheres ands’ labels the representation of the KM algebra zero-mode, as will be made clear shortly. One could simply
on the left and right movers, respectivells encodes the discard the zero-modéat least form>0 this should not
massless spectrum of the theory which is model dependentffect the spectrum in thik— o limit). The price we pay is
For the adjoint fermion there are no massless stdles  that the rate of convergence to the decompactification limit
is a consequence of the fact that the central charge vanishegcomes much slower. This problem does not arise if one
for the infrared conformal field theoryNeverthelessHg is  chooses to quantize the fermions using anti-periodic bound-
non-trivial: it is built of certain discrete topological states ary conditions, since the zero momentum modes are absent
which, roughly speaking, label the distinct vacua for each ofrom the beginning. We have found empirically that a DLCQ
the current block sectors. Thus, the spectrum of the adjointomputation using anti-periodic boundary conditions for the
fermion model in the limitm— 0 should exhibit fermions indeed converges much faster compared to the pe-
riodic boundary conditions. Therefore, we will adopt the
S 5~ anti-periodic boundary conditions as the method of choice,
ml’”,‘ﬁ"" .zThey give rise ton-body thre;holds ain as did[9]. It should be stressed, however, that the decom-
=(Zj=1m;)". The lowest such threshold is the most 0b- . wsification in DLCQ is impossible to achieve in practice.
vious because this is where the spectrum becomes corFhus, a careful extrapolation is needed to extract the features
tinuous. It is expected to occur at?=4m7. of the spectrum alluded to at the end of the previous section.

(2) There should be degeneracy arising from the tensor In light cone quantization, fermions are made to satisfy
product structurg5) of the physical states, which in- the canonical anti-commutation relations imposed at equal
cludes the topological sector of the theory. One manifestight cone timex™:

tation of it will be the match between the continuous

parts of the spectra of bosons and fermions.

(1) A set of “basic” bound stategparticles with masses

1 1
(X)), ha(y )= 55(X—y)( it Ojk— N‘Sij 5k|)-
In the following section, we will present numerical evi-
dence based on DLCQ for both of these features.
In terms of the modes
I1l. NUMERICAL RESULTS FROM DISCRETE
LIGHT CONE QUANTIZATION S By (e,
dd

bij(X) = ——==
A. Review of adjoint fermion model in DLCQ V2L neo

The application of DLCQ techniques to the gauged ad- . . :
joint fermion model has been developed hH9-11. We will the anticommutation relations become
briefly review the construction below.

We start with the actionil), whereW is an adjoint Majo-

rana fermion whose spinor components are given fy ( {Bij(m),By(n)}=s(m+n)

1
Sil O — N5ij ki |
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TABLE I. Number of states as a function of K in adjoint fermion model using anti-periodic boundary
conditions.

K 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Dim 18 28 40 58 93 141 210 318 492 762 1169 1791 2786 4338 6712

whereB;;(—n) for n>0 refers tijTi(n) in the notation of  puter program. The number of states in each sector labeled

[10]. by K is summarized in Table I.
Taking the appropriate constraints into account, the light- The Hamiltonian preserves the number of oscillators
cone momentum and energy become modulo 2. The states with odd oscillator number correspond

to fermions and arise for odd. For evenK we necessarily
7n have an even number of oscillators; therefore, these states
T) Bij(—n)B;i(n), describe the bosonic part of the spectrum. The Hamiltonian
also preserves &, symmetry corresponding to reversing the
order in which the modes act on the vacuum:

__m L

P == 2 (ﬁ) Bij(—n)B;i(n)
Tr{B(—ny)B(—ny)...B(—n)]|0)

(—n)J;i(n). < T B(—n)B(—n;_y)...B(—1)]]0),

2

L
+Eg

==
neeven (7Tn)2 4

Restricting to the sector wheR" = 7K/L, we find so that the Hilbert space decomposes into sectors odd and
even under the action of thig, group.
’N [(m? 1
2 +ip-_9 77
M*=2P"P :TK(F 2 ﬁBij(—n)Bji(n)
9" n<odd B. Numerical results and extrapolations

We evaluated thevi? matrix explicitly and computed the
first several eigenvalues in each of tAe sectors for both
We are interested in the— 0 limit of the spectrum. For any bosons and fermions. We are interested in tracking the mass
m>0 the use of DLCQ is completely justified, and we ex-Squared of a given state as we vty For this purpose we
pect the spectrum to convergelas-«. Thus, we willimag- ~ found it useful to plot the probability that a given state has
ine takingm very small in the formula above. t is small bits, which is encoded in its wave function, and to track these
enough(say 1019, then our numerical calculations will not Probabilities as we increase. As an example, we illustrate
feel it at all. Hence, we will simply seh=0 in the numerics, N Fig. 1 the probabilities of various bit numbers for each of
and think of the extrapolatiok — as a representation of the low-lying eigenstates. One of the features visible in Fig.
them—0 limit of the spectrum. 1 is the existence of states which are sharply peaked in bit
The Hilbert space on which thel2 operator acts can be humber distributionge.g. states 1 and 5 in Fig).1These

constructed by acting on the vacuum with the mode operastates can be readily distinguished from the rest of the states
tors B(—n), which are superpositions of various bit number sectors. In

Fig. 1 we indicate by arrows the patterns with which states
Tr(B(—ny)B(—ny)...B(—n)))|0), are tracked as we varg. These choices are based on con-

tinuity in the shape of the distribution and of the eigenvalues.
subject to the condition thatn;=K. These states are gen- Although there is some element of guesswork in making
erated by a set of ordered partitions Kfinto odd integers, such assignments, the steady pattern we observe in the shape
up to graded cyclic permutations. There are only finitelyof the distribution provides us with confidence that we are
many such states. THd? matrix can be evaluated explicitly tracking the states correctly. ASincreases, we also observe
by commuting the oscillators. This is what makes DLCQ aevidence for new tracks of states appearing in the spectrum.
powerful tool: the Hamiltonian is a finite dimensional matrix This is to be expected since the dimension of the Hilbert
which can be diagonalized numericallthis feature breaks space increases rapidly wikl. We indicate the likely “trail
down in the presence of zero-momentum modes heads” of these tracks with#" in Fig. 1.

The decompactification limit of this theory is obtained by ~ We can now follow the arrows in Fig. 1 and plet? as a
sendingL to infinity, keepingP™ constant. It is then neces- function of K. We summarize this data in Fig. 2 where we
sary to scal& with L. This is exactly the sense in which the plot M? against 1K for each of theZ, sectors for both
decompactification limit is a challenging limit in DLCQ. In bosons and fermions.
general, the number of partitions of a positive integer into Several comments are in order regarding the data con-
other positive integers grows exponentially. Solving modeldained in Fig. 2. First of all, in all but the bosoni;, odd
with adjoint matter in DLCQ therefore requires working with sector, the lowest eigenvalue appears to be well separated
exponential algorithms. from the rest of the spectrum, and depends relatively

In practice, the set of states and the elements of themoothly onK. We studied convergence to the latgdimit
Hamiltonian matrix can be generated with the aid of a com-by performing a best fit to a curve of the form

1 1 We will now present the results of our numerical analysis.
N2 2l

ceven N
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FIG. 1. Probability distributions in bit number space of the low-lying mass eigenstates of the light-cone Hamiltonian in the fétpmionic
sector. The arrows indicate the likely tracking pattern for these states as wK vaie symbol ‘%" indicates a “trail head” where a new
state appears in the spectrum.

1

apt+a; K

1 ) 2 approximatelyM (23= 22.9. The states becoming degenerate at
+a,

K (6) a particular value 01\/I(23 is suggestive of the onset of con-
tinuous spectrum. Notice thaW3=22.9 equals M2,
We included the quadratic term in the fit to account for thewhich is where one expects the first band of continuum cor-
curvature in the data. Thua, gives the extrapolated value responding to the free two body spectrum of particles of
of the mass squared. Our extrapolation indicates that thgassM; .
lightest state is a fermion wittM2,=5.7, followed by a One could in principle perfon a 3 parameter fit to 3 data
boson with M§1= 10.8, followed by a fermion withv ﬁz points. These fits also give extrapolations close to 22.9. The
=17.3 (in units of g?N/). These states are approximate extent to which an extrapolation misses this mark increases
eigenstates of the number of bits with eigenvalues 3, 2 and 8S we go up in energy levels. However, since higher levels
respectively. These results are in good agreement with thefart at trail heads with higher valuesKf it is necessary to
extrapolations performed if9,10]. The best fit curves also go to higher values oK to achieve the same degree of con-
indicate that the lightest states have converged fairly wellyergence. We expect these higher levels to converge to a
although for a linear extrapolation to be justifiable,must mass-squared of 22.9 when the calculation is pushed to suf-
be of order 16. ficiently high K to allow for a reliable extrapolation. The
The states which are not approximately pure in bit num-data illustrated in Fig. 2 is quite suggestive of such degen-
ber (e.g. states 2, 3, and 4 in Fig) hehave somewhat dif- eracies at larg&.
ferently. These states oscillate stronglykirwith a period of A picture that appears to be emerging from these obser-
4. We will have more to say about these oscillations in thevations is the followingMg,, Mgy, andMg, are the masses
following subsection but, for the time being, simply note thatof the lightest particles to which the single trace stg®s
they get smaller with increasing. Figure 2 gives an indi- dissociate in the deconfinement limit. The states piling up at
cation that these levels will ultimately converge at lakget M suggest a continuous two-body spectrunjfet).
is not sensible to fit a curve of the for(6) to such a wildly There is evidence for other “single-particle” states buried
oscillating data. As an alternative, we adopt the proceduré the continuum. A clear example is the bosogig odd
where we fit(6) to the valleys and the peaks of the datastate (state 2 in Fig. 2 which, to a good approximation,
separately. Unfortunately, this cuts in half the amount of dataonsists of 4 bits and has the extrapolated mass-squared
used in each extrapolation. Sin@ is a 3 parameter fit, we equal to 25.6. Furthermore, we find evidence for a very pure
performed the extrapolation only in cases where at least 4-bit state(state 5 in Fig. 2 of extrapolated mass-squared
data points are available. 35.3 in the fermionicZ, even sector. The masses of these
As we illustrate in Fig. 2, these states show an indicatiori‘pure” states appear to vary smoothly witk similarly to
that they are converging toward roughly the same mass ithose of the “single-particle” statel§=1), |B1), and|F2).
the largeK limit. What makes this particularly interesting is Thus, we speculate that there is an infinite sequence of
the fact that the extrapolated value based on thé6fitis  “single-particle” states. At least the first few such states are
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FIG. 2. M? eigenvalues fom=0 as a function of K. In each of the 4 sectofZ, even andZ, odd for bosons and fermionwe exhibit
extrapolations of the lightest states that are pure in bit number, and also graph some of the lightest states that appear to converge to the
continuum.

distinguished by their purity in the number of bitthe olds at mass-squaredi;+ Mg )?=32.2, Mg;+Mg,)?

“multi-particle” states tend to be far from being eigenstates=42.8, Mg, +M¢,)2=55.4, etc. Perhaps these could be

of the number of bits detected by a sufficiently detailed examination of the spec-
It follows that there should also be other two-body thresh-trum.
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Bosons, Z_2 Odd Two body spectra of F1 particles
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FIG. 3. The first three states in the boso#icodd sector of the FIG. 4. The spectrum of a pair of non-interacting F1 particles
adjoint fermion model that appear to be converging to the conwith total momentunK.

tinuum.

One final point we wish to emphasize is the fact that the (7)
continuum aﬂ\/Ié:22.9 appears to exist both in the bosonic
and the fermionic sectors. The interpretation of these stat
as the two-body continuum coming from thEl) particle

suggests that these states should be bosoRit)®|F1).

How then should we interpret the continuumMg=22.9 in

the fermionic sector? Recalling a similar issue of statistics i
the case of adjoint val-flavor fundamental correspondence
suggests the following explanation. The states in the fermiae
onic continuum must correspond to a state of the form

MEi(n)  MZ (K—n)
MZZK( n K0 )

&¥heren is an odd integer £n<K -1, andMg4(n) is the
mass of thgF1) in the K=n sector. We illustrate the spec-
trum determined using7) in Fig. 4. (Since|F1) is a fer-
mion, we only keep the states which are antisymmetric with
r}espect to their exchange.

Figures 3 and 4 are generated using completely indepen-
nt methods. It is therefore quite remarkable that the result-
ing plots areidentical This can be easily verified by laying
one on top of the other. Thus, the identification of bosahic
IFL)®|FL)®|E) odd states as non-interacting two-body statg$ah appears

to be exact even for finit&.

where|=) is a companion fermionic state arising from the ~Having found such a remarkable structure in feodd

topological sector of the theory, which is otherwise decou-S€ctor of the bosonic spectrum, it is natural to expect a simi-
pled from the dynamics. lar situation to hold in theZ, even sector. However, the

correspondence here is not exact. In Fig. 5, we illustrate both
- the bosonicZ, spectrum from previous section and the ex-
C. Oscillations pectation based o). What we seem to be finding here is
So far, our evidence for the appearance of a continuum ohat(7) captures the qualitative features of the oscillations of
states a[\/|2:4_|\/|'2:l has been based on numerical extrap0|a.the ZZ even sector states, but the DLCQ data contains addi-
tions. In this subsection, we will present stronger evidencdional “noise.” We will speculate on the source of this noise
by studying the pattern of oscillations exhibited by thesedt the end of this section. Empirically, we find that the noise
states as they converge toward the lakgémit. decays as K in the largeK limit. Therefore, despite the fact
Oscillations similar to the ones we illustrated in Fig. 2
arise in the DLCQ spectrum of a pair of free particles of Bosons, 2 2 Even
massm. For a finiteK, the spectrum is given by

1+ 1
n K-n

M?2=m?2K

MA2

wheren and K—n are the numbers of units of momentum
carried by the individual particles, and<ihh<K-—1. This
spectrum oscillates iK. We will show that the oscillations
seen in Fig. 2 are due to a similar mechanism.

Let us focus our attention on the oscillating states in the

bosonicZ, odd sector from Fig. 2. For the sake of illustra- 201; ” ” 8 20 2 24
tion, we plot these states again in Fig. 3. Our claim is that K
these states arise as the free two-body spectrur bf par- FIG. 5. Dashed lines label the first three states in the bosbnic

ticles. Since each of these particles is a composite stat@ven sector of the adjoint fermion model that appear to be converg-
whose mass is determined with a finite resolution, the correghg to the continuum. The solid line is the spectrum of a non-
formula for a finiteK is interacting pair of F1 particles.
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properly accounted for iri8). The amount of error in mo-
mentum we introduced is of orderKl/ and this is indeed the
magnitude of the noise we see in the spectrum.

This also suggests the probable cause of the noise in the
bosonicZ, even sector. The structure of these states might
very well be of the form

IF1)®|F1)®|Q)

where|Q) is a topological state carrying even fermion num-
bers. Even in theories with only fermionic matter, such a
state can arise easily from bilinears. The noise in this sector
may be due to the fact thd?) does not account for the
presence of the topological sector of this type. In the l&ge

FIG. 6. Dashed lines label the first three states for both thdimit, however, we would expect all dynamics in the topo-

fermionic Z, even and the fermioniZ, odd sectors of the adjoint

logical sector to decouple. It is therefore satisfying to find

fermion model that appear to be converging to the continuum. Théhat the noise decays aKlin the largeK limit.

solid line is the spectrum of a non-interacting pair of F1 particles.

that the correspondence is not exact at fiitewe believe
that the pattern of oscillation seen in the bosodiceven

Although in general the correspondence between the
spectra derived froni7) and(8) with the DLCQ spectrum is
not as precise as what we found in the bosahiodd sector,
the qualitative agreement, and the fact that the discrepancy

sector is also consistent with the picture that a continuum ishrinks with increasind<, provides a strong indication that

formed in the largeK limit.

the oscillations seen in the DLCQ spectrum are a signature

There are additional subtleties in attempting to extend thiof states forming a continuum. Furthermore, we feel that the

picture to the states in the fermionic sector. As was describedmall discrepancy is actually probing the topological sector
at the end of the previous subsection, the only way one caaf the theory. It would be extremely interesting to understand
make a fermionic state out of a pair ff1) particles is to this structure from first principles.

introduce states from the topological sector of the theory
carrying fermionic statistics. In DLCQ with anti-periodic
boundary conditions, such a state cannot carry zero light-

IV. CONCLUSIONS

cone momentum, as these states are required to carry mo- By performing explicit DLCQ analysis of QCD coupled
mentum in half-integer units. The closest we can get to thé0 adjoint fermions, we found isolated “single-particle

situation we hope to describe is to distribdgeunits of mo-
mentum according to |F),|F),|E))=(n,K—n—1,1). It
should be stressed, however, tHab is not really a free
particle, and it is nota priori clear how to generaliz€7)
taking the “topological sector” into account. A rough guess
is to take

Mf2:1(n)
n

MZ,(K—n—1)
(K—n—1)

M?=(K-1) 8

The data from the fermionic sector of the adjoint fermion

model suggests the presence of two-particle states which a

both symmetric and antisymmetric under their exchang
This is puzzling in light of the fact thdfF1)'s constitute a
pair of identical fermions. Perhafi§) is binding with one of

the |[F1)'s so that the resulting pair of constituents are no
longer identical. Here we have included the symmetric wave-

functions for the sake of comparison with the DLCQ data.
Although (8) is admittedlyad hog it appears to capture

states|F1), |B1) and |F2) at mass-squared equal to 5.7,
10.8, and 17.3 respectivel(in units ofg°N/ ). These states
are approximate eigenstates of the number of bits with eigen-
values 3, 2 and 5 respectively. In addition, we found an
indication that a continuum of states is appearingl\/%
=22.9 in both the bosonic and the fermionic sector. The fact
that M2=4M2, suggests that these states are a two-particle
continuum built out of theéF1)’s. To account for the statis-
tics, the states are interpreted to be of the foF)®|F1)
or [F1)®|F1)®|E), where|E) describes a fermionic state
in the topological sector of the theory, which is otherwise
coupled from the dynamics. The existence of fermionic
states converging to the continuum M%:22.9 thus pro-
vides some numerical evidence for the “direct sum of tensor
products” structure of the Hilbert space,

H=>, &(HoHC!

/ s,s’
S,s

®H,)

the general structure of the oscillations seen in the spectrugiggested if12]. The oscillatory behavior oM? for the
computed for the adjoint fermion model, as we illustrate instates converging to the continuum can be understood ex-
Fig. 6. Again, we find qualitative agreement accompanied byactly (at least for the bosonig, odd stategin terms of the

some “noise” which decays as K/ This time, however,

spectrum of a non-interacting 2-body systén. This pro-

there is a natural suspect for the culprit responsible for theides strong support for our claim about the continuity of the
noise. The topological sector plays an important role in asspectrum forM2>4M§1.

signing appropriate statistics for the states in this sector. By In addition, we find evidence for other “single-particle”
using anti-periodic boundary conditions, however, we werestates whose mass is higher thdrg . At least the first few
forced to mutilate the structure of the topological sector bysuch states are distinguished from the continuum states by

forcing it to carry small but finite momenta. This effect is not

their purity in bit number. For example, in the bosoiig
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odd sector there is a state of mass-squared 25.6 which is, tmly count these particles as fundamental. It is natural to
a high accuracy, a 4-bit state. We are thus led to specula&xpect that these particles form a single Regge trajectory,
that there is an infinite sequence of “single-particle” states.hence they do not have an exponentially growing density of
Perhaps these states can be grouped into one Regge trajstates. The problem is that the particles from a single Regge
tory of the fermions and one Regge trajectory of the bosondrajectory, and the multiparticle states built out them, do not

Our analysis indicates clearly that the adjoint fermionhave enough degeneracy to form an exponentially rising den-
model contains string-like states made out of adjoint bitssity of states whemn is turned on15]. Thus, it seems nec-
which dissociate in then— 0 limit into the stable constituent essary to take into account additional large degeneracy due
“particles.” For smallm these states can be thought of asto the presence of certain topological stdtE,15. It would
loosely bound state of such “particles.” In the— O limit, be interesting to see how the resolution to this apparent para-
these “particles” are free, as can be inferred from the threshdox manifests itself in the DLCQ numerical analysis.
old of the continuum.

While we have seen that the DLCQ gives convincing evi-
dence for the existence of constituent “particles” and their
2-body continua, some puzzles about the structure of the We are grateful to D. Kutasov for discussions. We also
spectrum remain. A paradox having to do with the stateacknowledge support from the Supercomputer Facility at
counting of this model was noted [A5]. Since the tension UCSB (NSF Grant CDA96-01954 The work of D.J.G. and
of the QCD string vanishes in the— 0 limit, one expects to  A.H. was supported in part by the NSF grant PHY94-07194.
find a spectrum with Hagedorn temperatdrig—0. On the  The work of I.R.K. was supported in part by the DOE grant
other hand, one expects the spectrum of a screening theory BE-FG02-91ER40671, the NSF Presidential Young Investi-
haveT,=<. Since form=0 the spectrum decomposes into gator Program through Grant PHY-9157482, and the James
the more basic building blocksingle particles we should S. McDonnell Foundation grant No. 91-48.
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