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Choice of initial states in nonequilibrium dynamics

Jürgen Baacke,* Katrin Heitmann,† and Carsten Pa¨tzold‡

Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany
~Received 21 November 1997; published 7 April 1998!

Imposing initial conditions to nonequilibrium systems at some timet0 leads, in renormalized quantum field
theory, to the appearance of singularities in the variablet2t0 in relevant physical quantities, such as energy
density and pressure. These ‘‘initial singularities’’ can be traced back to the choice of initial state. We construct
here, by a Bogoliubov transformation, initial states such that these singularities are eliminated. While the
construction is not unique it can be considered a minimal way of taking into account the nonequilibrium
evolution of the system prior tot0 . @S0556-2821~98!04210-6#

PACS number~s!: 11.15.Kc, 11.10.Gh, 11.10.Wx, 98.80.Cq
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I. INTRODUCTION

Nonequilibrium dynamics in quantum field theory has b
come, during the last years, a very active field of researc
particle physics@1–6# and in solid state physics@21#. The
outline of typical computational experiments is as follows
quantum fieldc(x,t) is driven by a classical field degree o
freedom~Higgs, inflaton, condensate! f(t) which takes an
initial value away from a local or global minimum of th
classical or effective action; the time development is th
studied including the back reaction of the quantum field
one-loop, Hartree or large-N approximations. The init
state of the quantum fieldc is usually taken to be the
vacuum state corresponding to a free field of some ‘‘init
mass’’m(t0) or a thermal state built on such a vacuum sta
In Friedmann-Robertson-Walker~FRW! cosmology@7–20#
the usual initial quantum state is chosen to be the confor
vacuum, again corresponding to the initial massm(t0).
While such choices seem very natural, they are not neces
ily appropriate; nevertheless, this point has received li
attention up to now. The reason why we address this qu
tion is the occurrence, in some dynamically relevant phys
quantities, of singularities in the time variable which are
lated to the choice of initial state. We will in fact show th
these singularities can be removed by more appropr
choices.

The origin of these singularities can be traced back t
discontinuous switching on of the interaction with the ext
nal fieldf(t). This interaction is given by a time-depende
mass term1 m2(t)5m2(0)1V(t) where, for the simples
case of alF4 theory @9,22#,

V~ t !5
l

2
@f2~ t !2f2~0!#. ~1!

In FRW cosmology the~conformal! time dependent mas
term reads@7,19#

*Electronic address: baacke@physik.uni-dortmund.de
†Electronic address: heitmann@hal1.physik.uni-dortmund.de
‡Electronic address: paetzold@hal1.physik.uni-dortmund.de
1We chooset050 for convenience.
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M2~t!5a2~t!H m21S j2
1

6DR~t!1
l

2

w2~t!

a2~t! J . ~2!

In this caseM2(t) and thereforeV(t)5M2(t)2M2(0) also
contain the scale parametera(t) and the curvature scala
R(t).

A free field theory vacuum state corresponding to t
massm(0) would be an appropriate equilibrium state ifV(t)
stayed zero for all times. However, att50 the potentialV(t)
changes in a nonanalytic way. This is unavoidable since
least the second derivative off(t) becomes nonzero on ac
count of the equation of motion. As a result of these disc
tinuities relevant physical quantities develop singularities
the time variablet at t50. In the case oflF4 theory in
Minkowski space such singularities only occur in the pre
sure. In FRW cosmology the problem becomes more ac
There, even the first derivative ofV(t) necessarily become
nonzero att50; indeed, even with a constant external fie
f the initial state could not be at equilibrium; this manifes
itself by a nonvanishing first derivative of the scale para
eter induced by the Friedmann equations. Furthermore
this case both energy and pressure become singular; s
they enter the Friedmann equations, this singular beha
also affects the dynamics.

Singularities arising from imposing initial conditions o
quantum systems were noted for the first time by Stuec
berg@23#, who called them ‘‘surface singularities’’; they ar
briefly mentioned in the textbook of Bogoliubov and Shirko
@24#. The ‘‘Casimir effect’’ arising from initial conditions
has been discussed by Symanzik@25#. In the context of non-
equilibrium dynamics in FRW cosmology the occurrence
such singularities has been noted by Ringwald@7#. While he
uses conformal time and the ensuing definition of the ini
state, the use of comoving time leads to rather serious p
lems with renormalization, again related to the initial sta
@9,11#. In the following we will refer to these singularities a
‘‘initial singularities.’’

Imposing an initial condition at some timet0 does not
mean, in most applications, that one assumes the syste
have come into being at just this time. Rather,t0 is usually
chosen as a point in time at which one can make, on so
physical grounds, plausible assumptions about the stat
the system. Clearly, if the system is not at equilibrium af
6398 © 1998 The American Physical Society
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57 6399CHOICE OF INITIAL STATES IN NONEQUILIBRIUM . . .
t0 , it will not have been so before. Therefore, the initial sta
should take into account, at least in some minimal way,
previous nonequilibrium evolution of the system. Such
minimal requirement is the vanishing of initial singularitie
It is the aim of this paper to specify such initial states.

In order to avoid excessive algebra and to keep the
sentation as transparent as possible we restrict our discu
to F4 theory in the one-loop approximation. Clearly it als
applies to the large-N approximation, to finite temperat
systems and in particular to evolution in FRW cosmolo
where the problem of initial singularities is most stringen

The plan of the paper is as follows: in Sec. II we pres
the basic equations and formulate the problem for the cas
a lF4 theory; in Sec. III we discuss an appropriate choice
the initial quantum state such that the singular behavio
the time variable is removed; the modified renormaliz
equations for the nonequilibrium system are given in S
IV; we end with some concluding remarks in Sec. V.

II. FORMULATION OF THE PROBLEM

We consider a scalarlF4 theory without spontaneou
symmetry breaking. The Lagrangian density is given by

L5
1

2
]mF]mF2

1

2
m2F22

l

4!
F4. ~3!

We split the fieldF into its expectation valuef and the
quantum fluctuationsc:

F~x,t !5f~ t !1c~x,t !, ~4!

with

f~ t !5^F~x,t !&5
Tr Fr~ t !

Tr r~ t !
, ~5!

wherer(t) is the density matrix of the system which satisfi
the Liouville equation

i
dr~ t !

dt
5@H~ t !,r~ t !#. ~6!

The Lagrangian then takes the form

L5L01LI , ~7!

with

L05
1

2
]mc]mc2

1

2
m2c21

1

2
]mf]mf2

1

2
m2f22

l

4!
f4,

~8!

LI5]mc]mf2m2cf2
l

4!
c42

l

6
c3f2

l

4
c2f22

l

6
cf3.

~9!

The equation of motion for the fieldf(t) is given by@9#

f̈~ t !1m2f~ t !1
l

6
f3~ t !1

1

i

l

2
f~ t !G11~ t,x;t,x!50.

~10!
e
e
a

e-
ion

e

t
of
f
n
d
c.

HereG11 is the11 matrix element of the exact nonequ
librium Green function@26,27# in the background fieldf(t).
For a pure initial stateu i & it can be written as

2 iG11~ t,x;t8,x8!5^ i uTc~ t,x!c~ t8,x8!u i &. ~11!

If the classical field is spatially uniform, the equation of m
tion for the fieldc(t,x) is given by

F ]2

]t2 2D1m21
l

2
f2~ t !Gc~ t,x!50. ~12!

We introduce the notation

m2~ t !5m21
l

2
f2~ t !, ~13!

vk~ t !5@k21m2~ t !#1/2, ~14!

and

vk05@k21m0
2#1/2. ~15!

We will discuss the choice ofm0 below. We define the ‘‘po-
tential’’ V(t) as

V~ t !5vk
2~ t !2vk0

2 . ~16!

We further introduce the mode functions for fixed mome
tum Uk(t)exp(ik•x) which satify the evolution equation2

F ]2

]t2 1vk
2~ t !GUk~ t !50; ~17!

we choose the initial conditions

Uk~0!51, U̇k~0!52 ivk0 . ~18!

The fieldc can now be expanded as

c~ t,x!5E d3k

~2p!32vk0
@a~k!Uk~ t !eik•x

1a†~k!Uk* ~ t !e2 ik•x#, ~19!

where the operatorsa(k) satisfy

@a~k!,a†~k8!#5~2p!32vk0d3~k2k8!. ~20!

If the initial stateu i & is chosen as the vacuum state cor
sponding to the operatorsa(k), i.e., as satisfyinga(k)u i &
50, we obtain the Green functionG11(t,t8;x2x8) as

G11~ t,t8;x2x8!5E d3k

~2p!32vk0
@Uk~ t !Uk* ~ t8!u~ t2t8!

1Uk~ t8!Uk* ~ t !u~ t82t !#eik~x2x8!. ~21!

The Green function at equal space and time points then re

2Note that the functionsUk(t) depend only on the absolute valu
of k.
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Gk
11~ t,t;0!5 i E d3k

~2p!32vk0
uUk~ t !u2. ~22!

The resulting equation of motion for the classical fieldf(t)
is

f̈~ t !1m2f~ t !1
l

6
f3~ t !1

l

2
f~ t !F~ t !50, ~23!

where we have introduced fluctuation integral

F~ t ![E d3k

~2p!32vk0
uUk~ t !u2. ~24!

It determines the back reaction of the fluctuations onto
classical fieldf(t).

We further consider the energy density and the press
The energy density is given by

E5
1

2
ḟ2~ t !1V„f~ t !…1

Tr Hr~0!

Tr r~0!
. ~25!

Calculating the trace over the Hamiltonian for the same
tial state we obtain

E5
1

2
ḟ2~ t !1

1

2
m2f2~ t !1

l

4!
f4~ t !

1E d3k

~2p!32vk0
H 1

2
uU̇k~ t !u21

1

2
vk

2~ t !uUk~ t !u2J .

~26!

Using the equations of motion it is easy to see that the t
derivative of the energy density vanishes.

The pressure is given by

p5ḟ2~ t !1E d3k

~2p!32vk0
H uU̇k

1~ t !u21
k2

3
uUk

1~ t !u2J 2E.
~27!

The expressions for the fluctuation integral, the ene
density and the pressure are divergent and one has to dis
the renormalization of this theory. We have presented
cently @22# a fully renormalized framework for nonequilib
rium dynamics. The main technical ingredient of this ana
sis is the perturbative expansion of the functionsUk(t) with
respect to orders in the potentialV(t). We write the func-
tions Uk as

Uk~ t !5e2 ivk0t@11hk~ t !# ~28!

and expand further in orders of the potentialV(t) as

hk~ t !5 (
n51

`

hk
~n!~ t !. ~29!

We also introduce the partial sums

hk
~n!~ t !5(

l 5n

`

hk
~ l !~ t !, ~30!

so that
e

e.

i-

e

y
uss
-

-

hk~ t ![hk
~1!~ t !5hk

~1!1hk
~2!~ t !. ~31!

The integral equation for the functionhk(t) can be derived in
a straightforward way from the differential equation satisfi
by the functionsUk(t); it reads

hk~ t !5
i

2vk0
E

0

t

dt8~e2ivk0~ t2t8!21!V~ t8!@11hk~ t8!#.

~32!

We obtain

hk
~1!5

i

2vk0
E

0

t

dt8~e2ivk0~ t2t8!21!V~ t8!. ~33!

Using integrations by parts this function can be analyz
with respect to orders invk0 via

hk
~1!~ t !5

2 i

2vk0
E

0

t

dt8V~ t8!1(
l 50

n S 2 i

2vk0
D l 12

@V~ l !~ t !

2e2ivk0tV~ l !~0!#

2S 2 i

2vk0
D n12E

0

t

dt8e2ivk0~ t2t8!V~n11!~ t8!,

~34!

where V( l )(t) denotes thel th derivative of V(t). For the
energy density and pressure we need the expansion
ḣk

(1)(t) as well. From Eq.~34! and the relation

ḣk
~1!52ivk0hk

~1!2E
0

t

dt8V~ t8! ~35!

we find

ḣk
~1!~ t !5(

l 50

n S 2 i

2vk0
D l 11

@V~ l !~ t !2e2ivk0tV~ l !~0!#

2S 2 i

2vk0
D n11E

0

t

dt8e2ivk0~ t2t8!V~n11!~ t8!.

~36!

In the following we will need the real and imaginary parts
this expression; we introduce the following useful notatio

C~ f ,t !5E
0

t

dt8 f ~ t8!cos@2vk0~ t – t8!#, ~37!

S~ f ,t !5E
0

t

dt8 f ~ t8!sin@2vk0~ t – t8!#. ~38!

We now insert the perturbative expansion into the fluctuat
integral to obtain
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57 6401CHOICE OF INITIAL STATES IN NONEQUILIBRIUM . . .
F~ t !5E d3k

~2p!32vk0
$112 Rehk~ t !1uhk~ t !u2%

5E d3k

~2p!32vk0
H 12

V~ t !

2vk0
2 1

V~0!

2vk0
2 cos~2vk0t !

1
V̇~0!

4vk0
3 sin~2vk0t !1

V̈~ t !

8vk0
3 2

V̈~0!

8vk0
3 cos~2vk0t !

2
1

8vk0
4 C~V̂,t !12 Rehk

~2!1uhku2J . ~39!

The first two terms in the curly brackets of the second
pression, i.e., 1 andV(t)/2vk0

2 , lead to divergent integrals
which have to be absorbed by the renormalization proced
This has been discussed in@22#. There, the massm0 was
chosen to be the ‘‘initial’’ massm(0) @see Eq.~13!#. With
this choice of initial massV(0) is zero and the fluctuation
integral is nonsingular att50. Though, with this choice, the
divergent integrals depend onm0 it was shown that the
renormalization counterterms can be chosen independe
the initial massm05m(0).

If, on the other hand, we choosem05m, it is obvious that
the divergences are absorbed by the counterterms depen
only on the renormalized massm, but we are faced with an
initial singularity arising from the third term via~see Appen-
dix B!

E d3k

~2p!32vk0

V~0!

2vk0
2 cos~2vk0t !.2

1

8p2 ln~2m0t !

as t→0. ~40!

Of course, nobody has made such an ‘‘unnatural’’ choice
the initial mass; this initial singularity can be avoided triv
ally by choosingm05m(0). It is important to note, how-
ever, that the renormalization can be performed in a w
independent of the initial condition in both cases. The diff
ence between the two approaches is in the initial ‘‘vacuu
state. These different initial states are related by a Bogo
bov transformation~see also Appendix A!. So Bogoliubov
transformations can be used to avoid initial singularities
similar improvement of initial state, a Bogoliubov transfo
mation from the comoving time vacuum state to the conf
mal time vacuum state in FRW cosmology, has been
cussed previously@11#.

In Eq. ~39! we have extended the expansion of Rehk
(1)(t)

to display also the terms of ordervk0
24 which depend on
-

e.

of

ing

f

y
-
’’
-

-
s-

V̇(0) andV̈(0). These terms do not lead to divergences
the fluctuation integral; however, in the energy and press
they appear multiplied byvk0

2 and/ork2. While the energy
stays finite the pressure behaves in a singular way via

pfluct,sing;E d3k

~2p!32vk0
F2vk0

2 1
k2

3 G H V̇~0!

4vk0
3 sin~2vk0t !

2
V̈~0!

8vk0
4 cos~2vk0t !J . ~41!

The behavior of the momentum integrals is given in Appe
dix B; they result in a 1/t singularity proportional toV̇(0)
and a logarithmic one proportional toV̈(0). Therefore, these
terms have to be removed as well.

III. REMOVING THE INITIAL SINGULARITY

We have seen in the previous section that nonzero in
values ofV(t) and its derivatives lead to initial singularities
The clue for dealing with these terms has already been i
cated: the leading singularity can be removed by a Bogo
bov transformation from the perturbative vacuum to
vacuum corresponding to free quanta of the initial ma
m(0). Weexpect, therefore, that the other singular terms c
be removed in this way as well.

We define a general initial state by requiring that

@a~k!2rka
†~k!#u i &50. ~42!

The Bogoliubov transformation to this state is given in A
pendix A. If the fluctuation integral, the energy and the pr
sure are computed by taking the trace with respect to
state, the functionsUk(t) are just replaced by

Fk~ t !5cosh~gk!Uk~ t !1eidk sinh~gk!Uk* ~ t !, ~43!

wheregk anddk are defined by the relation

rk5eid tanh~gk!. ~44!

The fluctuation integral now becomes

F~ t !5E d3k

~2p!32vk0
uFk~ t !u2

5E d3k

~2p!32vk0
$cosh@2gk~ t !#uUk~ t !u2

1sinh~2gk!Re@e2 idkUk
2~ t !#%. ~45!

Expanding as before we find
F~ t !5E d3k

~2p!32vk0
H cosh~2gk!F12

V~ t !

2vk0
2 1

V~0!

2vk0
2 cos~2vk0t !1

V̇~0!

4vk0
3 sin~2vk0t !1

V̈~ t !

8vk0
4 2

V̈~0!

8vk0
4 cos~2vk0t !

2
1

8vk0
4 C~V̂,t !12 Rehk

~2!1uhku2G1sinh~2gk!cos~dk!cos~2vk0t !2sinh~2gk!sin~dk!sin~2vk0t !

1sinh~2gk!Re e22ivk0t2 id~2hk1hk
2!J . ~46!
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Let us first discuss how to get rid of the most singular ter
proportional toV(0). Requiring this term to be compensate
by the terms proportional to sinh(2gk) we find

dk50, ~47!

tanh~2gk!52
V~0!

2vk0
2 . ~48!

As explained in Appendix A the standard Bogoliubov tran
formation from the perturbative vacuum with massm to the
vacuum corresponding to quanta with the initial massm(0)
is mediated by a functiongk8(k) satisfying

egk85S m21k2

m2~0!1k2D 1/4

, ~49!

which implies

tanh~2gk8!5
2V~0!

2vk0
2 1V~0!

. ~50!

We see thatgk andgk8 agree asymptotically to leading orde
in 1/vk0 . So requiring that the most pronounced initial si
gularity vanish leads essentially to the usual choice for
initial state, namelym05m(0) and thereforeV(0)50. The
analysis of subleading terms in the difference betweengk

andgk8 becomes somewhat cumbersome. After we have c
vinced ourselves that the Bogoliubov transformation is
right technique for getting rid of initial singularities we wi
therefore choosem05m(0) as everybody does and app
this technique to get rid of the remaining singularities.
from now onV(0)50 andvk05@k21m2(0)#1/2. Requiring
that the terms proportional toV̇(0) andV̈(0) vanish leads to
the conditions

tan~dk!52vk0

V̇~0!

V̈~0!
, ~51!

tanh~2gk!5
1

4vk0
3 F V̇2~0!1

V̈2~0!

4vk0
2 G1/2

. ~52!

Using these functions we are now ready to formulate
renormalized equation of motion and the energy momen
tensor.

IV. THE RENORMALIZED EQUATIONS

We have given the bare equation of motion and ene
momentum tensor in Sec II. The renormalization for t
original initial state has been discussed in@22#. We have to
ensure now that the scheme used there is not spoiled by
improved initial state. The main new feature in the fluctu
tion integral, the energy density and the pressure is the
pearance of the factors cosh(2gk) and sinh(2gk). We will
need their asymptotic behavior. Using Eq.~52! we have

gk .
k→`uV̇~0!u

8vk0
3 . ~53!
,

-

e

n-
e

o

e
m

y

he
-
p-

The factor cosh(2gk) is equal to 1 forgk50; we will need
the difference

cosh~2gk!2152 sinh2~gk! .
k→`V̇2~0!

32vk0
6 . ~54!

There are new terms proportional to sinh(2gk); this factor
behaves as

sinh~2gk! .
k→`uV̇~0!u

4vk0
3 . ~55!

The dimensionally regularized fluctuation integral~46!
takes, after cancellation of the singular integrals induced
Eqs.~51! and ~52!, the form

Freg~ t !52
m0

2

16p2 ~L011!2
V~ t !

16p2 L0

1E d3k

~2p!32vk0 H sinh2~gk!F12
V~ t !

2vk0
2 G

~56!

1cosh~2gk!F V̈~ t !

8vk0
4 2

1

8vk0
4 C~V̂,t !12 Rehk

~2!

1uhku2G1sinh~2gk!Re e22ivk0t2 id~2hk1hk
2! J .

~57!
Here we have introduced the abbreviation

L05
2

e
1 ln

4pm2

m0
2 2g. ~58!

Using the estimates~54! and~55!, and using the fact that the
mode functionhk behaves asvk0

21 we see that the momentum
integral is convergent.

Introducing the counterterm Lagrangian

Lc.t.5
1

2
dm2F21

dl

4!
F4 ~59!

the fluctuation integral gets replaced, in the equation of m
tion ~23! for f(t), by

Ffin5Freg1
2dm2

l
1

dl

3l
f2~ t !. ~60!

With the standard choice

dm25
lm2

32p2 ~L11!, ~61!

dl5
3l2

32p2 L, ~62!

L5
2

e
1 ln

4pm2

m2 2g , ~63!

Ffin is indeed finite.
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The calculation of the energy density proceeds in an analogous way. The fluctuation energy becomes, using dim
regularization,

Efluct5
1

2 E d3k

~2p!32vk0
$uḞk~ t !u21@vk0

2 1V~ t !#uFk~ t !u2% ~64!

52
m0

4

64p2 S L01
3

2D2 m0
2 V~ t !

32p2 ~L011!2
V2~ t !

64p2 L01
1

2 E d3k

~2p!32vk0
H 2 sinh2~gk!F2vk0

2 1V~ t !S 12
V~ t !

2vk0
2 D G

1V~ t !cosh~2gk!F V̈~ t !

8vk0
4 2
C~V̂,t !

8vk0
4 12 Rehk

~2!1uhku2G1V~ t !sinh~2gk!Re e22ivk0t2 idk~2hk1hk
2!1cosh~2gk!

3S uḣku22
V2~ t !

4vk0
2 D 1sinh~2gk!Re e22ivk0t2 idk@ ḣk

222ivk0~11hk!ḣk#J . ~65!

The divergent parts are cancelled by the counterterms

Ec.t.5dL1
1

2
dm2f2~ t !1

dl

4!
f4~ t ! ~66!

with the ‘‘cosmological constant’’ counterterm

dL5
m4

64p2 S L1
3

2D . ~67!

Finally, we have to consider the pressure. We find, for the regularized fluctuation part,

pfluct52Efluct2
m0

4

96p2 2
V~ t !

48p2 m0
22

V̈~ t !

96p2 S L01
1

3D1E d3k

~2p!32vk0
H sinh2~gk!F2vk0

2 1S 2vk0
2 1

k2

3 D S 12
V~ t !

2vk0
2 1

V̈~ t !

8vk0
4 D G

1cosh~2gk!VS 2vk0
2 1

k2

3 D F2
C~V̂,t !

8vk0
4 12 Rehk

~2!1uhku2G1cosh~2gk!uḣku2sinh~2gk!Re e22ivk0t2 idkF S 2vk0
2 1

k2

3 D
3~2hk1hk

2!1ḣk
222ivk0~11hk!ḣkG J . ~68!
or

la
tio

am
ec-
ior
In order to cancel the divergent term proportional toV̈ one
introduces a counterterm for the energy momentum tens

dTmn5A~gmn]a]a2]m]n!F2, ~69!

which leads to a counterterm

pc.t.5A
d2

dt2
f2~ t !5

2A

l
V̈~ t ! ~70!

in the pressure. We choose

A52
l

192p2 L. ~71!

The remaining momentum integral is finite and nonsingu
in t. For most of the terms this can be seen by inspec
using Eqs.~54!,~55!, and the expansions~34! and~36!. There
are some internal cancellations which are, however, the s
,

r
n

e

as for the casegk50 already discussed in@22#. The only
new, potentially singular term is

E d3k

~2p!32vk0
sinh~2gk!S 2vk0

2 1
k2

3 DRe e22ivk0t2hk .

~72!

The leading singular behavior is given by

V̇~0!E
0

t

dt8V~ t8!E d3k

~2p!32vk0

1

4vk0
4

3S 2vk0
2 1

k2

3 D cos~2vk0t !. ~73!

While the momentum integral behaves as lnt as t→0 the
time integral behaves ast2 sinceV(0)50. So the renormal-
ized pressure is indeed nonsingular att50.

From the analysis of divergent integrals given in this s
tion it is obvious that only the leading asymptotic behav
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of gk is relevant, more precisely, only the terms of ordervk0
23

and vk0
24. This means that any Bogoliubov transformati

whose functiongk has this leading asymptotic behavior
equally suitable for defining an appropriate initial state.

We have formulated our modified renormalized equatio
for lF4 theory in flat space. The generalization to a sca
field in a flat Friedmann-Robertson-Walker universe
straightforward and the cancellation of singular terms in
energy density and the trace of the energy momentum te
proceeds in the same way.

V. CONCLUSIONS

We have considered here the choice of initial states fo
nonequilibrium system in quantum field theory. Our cons
erations arose from the problem that logarithmic and lin
singularities in the variablet2t0 appear in the energy mo
mentum tensor and affect the dynamics of FRW cosmolo
We consider such singularities—and their consequences
unphysical, at least ift0 is just some conveniently chose
point in time within a continuous evolution of the system
Most authors, including ourselves, have chosen initial sta
that correspond to equilibrium states of the system. We h
constructed here improved initial states for nonequilibriu
systems in such a way that the appearance of initial sin
larities is avoided. These states are obtained from the u
‘‘vacuum’’ states by a Bogoliubov transformation. The e
sential part of this transformation is a Bogoliubov ‘‘rot
tion’’ of the creation and annihilation operators at large m
mentum. The construction presented here specifie
transformation of creation and annihilation operators at
momenta. It is not unique in the sense that it may be a
trarily modified at small momenta. This nonuniqueness
however, nothing else as the freedom for choosing an ‘‘a
trary,’’ pure or mixed, initial state. Our construction can
considered as formulating a minimal requirement for cho
ing such states in the sense that it specifies the initial sta
the high momentum quantum modes.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

In this appendix we briefly recall some basic features
the Bogoliubov transformation~see, e.g.,@28#!. We start with
a vacuum state defined by

a~k!u0&50. ~A1!

We would like to obtain a new stateu0̃ & that is annihilated
by a(k)1rka

†(k), whererk is some complex function ofk;
i.e. we require

@a~k!2rka
†~k!#u0̃&50. ~A2!

Such a state can be obtained fromu0& by a Bogoliubov trans-
formation

u0̃ &5exp~Q!u0&. ~A3!
s
r

e
or

a
-
r

y.
as

.
s

ve

u-
al

-

-
a

ll
i-
,
i-

-
of

r

f

Using the general relations given in@28# one finds the ex-
plicit form of the operatorQ as

Q5
1

2 E d3k

~2p!32vk0
gk@eidka†~k!a†~2k!

2e2 idka~k!a~2k!#. ~A4!

Heregk anddk are defined by the relation

rk5eidktanhgk ~A5!

so that Eq.~A2! can also be written as

ã~k!u0̃ &5@cosh~gk!a~k!1eidksinh~gk!a
†~2k!#u0̃ &50.

~A6!

A special class of new ‘‘vacuum’’ statesu0̃ & is obtained
when the new creation and annihilation operators refer
free particles with a different massm̃0 . In the field expan-
sion ~19! this means that the energyvk05(k21m0

2)1/2 is

replaced byṽk05(k21m̃ 0
2)1/2. In this case

ã~k!5Aṽk0

vk0
a~k!1Avk0

ṽk0

a†~k! ~A7!

and therefore

gk5
1

2
ln

vk0

ṽk0

~A8!

while dk50. Fork@m0 ,m̃0 the functiongk behaves as

gk.
m0

22m̃ 0
2

4k2 . ~A9!

APPENDIX B: SOME SINGULAR INTEGRALS

The singular behavior in time arises from the followin
integrals:

I 1~ t !5E d3k

~2p!32vk0

1

vk0
2 cos~vk0t ! ~B1!

and

I 2~ t !5E d3k

~2p!32vk0

1

vk0
sin~vk0t !. ~B2!

The first integral can be rewritten as



rs
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I 1~ t !5
1

4p2 E
m

` dvAv22m2

v2 cos~2vt !

5
1

4p2 E
m

`

dvS 1

Av22m2
cos~2vt !

2
m2

v2Av22m2
cos~2vt !D . ~B3!

The integral over the second term is nonsingular; the fi
term yields a Bessel functionY0(2mt), explicitly
B.

. D

. D

D

u

. D

n

A.
t

I 1~ t !52
1

8p
Y0~2mt!1O~ t2! .

t→0

2
1

4p2 ln~2mt!.

~B4!

The integralI 2(t) is simply given by

I 2~ t !52
1

2

d

dt
I 1~ t ! ~B5!

and therefore

I 2~ t ! .
t→0 1

8p2t
. ~B6!
ii,
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