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Choice of initial states in nonequilibrium dynamics
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Imposing initial conditions to nonequilibrium systems at some tigkeads, in renormalized quantum field
theory, to the appearance of singularities in the variablg, in relevant physical quantities, such as energy
density and pressure. These “initial singularities” can be traced back to the choice of initial state. We construct
here, by a Bogoliubov transformation, initial states such that these singularities are eliminated. While the
construction is not unique it can be considered a minimal way of taking into account the nonequilibrium
evolution of the system prior tt,. [S0556-282(98)04210-6
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g_g)R(T)+§a_2(T)]. 2

MZ(T)ZaZ(T)[ m?+
Nonequilibrium dynamics in quantum field theory has be-
come, during the last years, a very active field of research in
particle physic§1-6] and in solid state physic®1]. The In this caseM?(7) and thereford/(7)=M?(7)—M?(0) also
outline of typical computational experiments is as follows: acontain the scale parametafr) and the curvature scalar
guantum fieldy(x,t) is driven by a classical field degree of R(7).
freedom(Higgs, inflaton, condensates(t) which takes an A free field theory vacuum state corresponding to the
initial value away from a local or global minimum of the massm(0) would be an appropriate equilibrium staté/ift)
classical or effective action; the time development is therstayed zero for all times. However, tat 0 the potentiaV(t)
studied including the back reaction of the quantum field inchanges in a nonanalytic way. This is unavoidable since at
one-loop, Hartree or large-N approximations. The initialleast the second derivative @f(t) becomes nonzero on ac-
state of the quantum fields is usually taken to be the count of the equation of motion. As a result of these discon-
vacuum state corresponding to a free field of some “initialtinuities relevant physical quantities develop singularities in
mass”m(ty) or a thermal state built on such a vacuum statethe time variablet at t=0. In the case ok ®* theory in
In Friedmann-Robertson-WalkéFRW) cosmology[7—-20]  Minkowski space such singularities only occur in the pres-
the usual initial quantum state is chosen to be the conformaure. In FRW cosmology the problem becomes more acute.
vacuum, again corresponding to the initial mas$t,). There, even the first derivative d(t) necessarily becomes
While such choices seem very natural, they are not necessaionzero at=0; indeed, even with a constant external field
ily appropriate; nevertheless, this point has received littleg the initial state could not be at equilibrium; this manifests
attention up to now. The reason why we address this questself by a nonvanishing first derivative of the scale param-
tion is the occurrence, in some dynamically relevant physicaéter induced by the Friedmann equations. Furthermore, in
quantities, of singularities in the time variable which are re-this case both energy and pressure become singular; since
lated to the choice of initial state. We will in fact show that they enter the Friedmann equations, this singular behavior
these singularities can be removed by more appropriatelso affects the dynamics.
choices. Singularities arising from imposing initial conditions on
The origin of these singularities can be traced back to guantum systems were noted for the first time by Stueckel-
discontinuous switching on of the interaction with the exter-berg[23], who called them “surface singularities”; they are
nal field ¢(t). This interaction is given by a time-dependent briefly mentioned in the textbook of Bogoliubov and Shirkov
mass terrh m?(t)=m?(0)+V(t) where, for the simplest [24]. The “Casimir effect” arising from initial conditions
case of and®* theory[9,22], has been discussed by SymanZk]. In the context of non-
equilibrium dynamics in FRW cosmology the occurrence of
A such singularities has been noted by Ringwald While he
V(t)= §[¢>2(t)— $%(0)]. (1)  uses conformal time and the ensuing definition of the initial
state, the use of comoving time leads to rather serious prob-
lems with renormalization, again related to the initial state
In FRW cosmology theglconforma) time dependent mass [9,11]. In the following we will refer to these singularities as
term readg 7,19 “initial singularities.”
Imposing an initial condition at some timg does not
mean, in most applications, that one assumes the system to
*Electronic address: baacke@physik.uni-dortmund.de have come into being at just this time. Rathigrjs usually
TElectronic address: heitmann@hall.physik.uni-dortmund.de  chosen as a point in time at which one can make, on some
*Electronic address: paetzold@hall.physik.uni-dortmund.de physical grounds, plausible assumptions about the state of
'We chooset,=0 for convenience. the system. Clearly, if the system is not at equilibrium after
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to, it will not have been so before. Therefore, the initial stateHere G* * is the ++ matrix element of the exact nonequi-
should take into account, at least in some minimal way, thédibrium Green functiorj26,27] in the background field(t).
previous nonequilibrium evolution of the system. Such aFor a pure initial stat¢i) it can be written as
minimal requirement is the vanishing of initial singularities.
It is the aim of this paper to specify such initial states. —iGTT(txt! X ) =(i|[Ty(t, ) p(t’ x)]i). (11

In order to avoid excessive algebra and to keep the pre- i o , , i
sentation as transparent as possible we restrict our discussigrfn€ classical field is spatially uniform, the equation of mo-

to ®* theory in the one-loop approximation. Clearly it also tion for the fieldy(t,x) is given by

applies to the large-N approximation, to finite temperature pr. N
systems and in particular to evolution in FRW cosmology — — A+ m?+ = ¢A(t) [¢(t,x)=0. (12
where the problem of initial singularities is most stringent. at 2

The plan of the paper is as follows: in Sec. Il we presen
the basic equations and formulate the problem for the case
axd* theory; in Sec. Ill we discuss an appropriate choice of A
the initial quantum state such that the singular behavior in m2(t)=m?+ = ¢?(t), (13
the time variable is removed; the modified renormalized 2
equations for the nonequilibrium system are given in Sec.
IV; we end with some concluding remarks in Sec. V.

(R)lye introduce the notation

wi(t) =[Kk>+m?(1)]*2, (14)

and
II. FORMULATION OF THE PROBLEM

. . =[k2+m2]*2 15
We consider a scalax®* theory without spontaneous @ko=I o] (19

symmetry breaking. The Lagrangian density is given by e will discuss the choice afi, below. We define the “po-
tential” V(t) as

,c—l ORI L 2p2 }‘cp“ 3
A L TR @ V(1) = 02(t) — wly. (16)
We split the field® into its expectation valueb and the  We further introduce the mode functions for fixed momen-
guantum fluctuationg. tum U, (t)exp(k- x) which satify the evolution equatién
D(x,t) = (1) + h(x,1), 4 92
2+ i) [U(H)=0; (17
with
SO (D000 Tr dp(t) . we choose the initial conditions
={P(X,t))=——"—, )
Tr p(t) U(0)=1, U(0)=—iwyg. (18)

wherep(t) is the density matrix of the system which satisfiesThe field » can now be expanded as
the Liouville equation

i w=[7{(t),p(t)]. (6) w(t’x):f (2m)%2wyg

dt .
+al(k)Ug (e kX, (19

3
[a(k)U(t)e'

The Lagrangian then takes the form
where the operatora(k) satisfy

£:£0+ £| y (7)
[a(k),a’(k")]=(2m)32wyo83(k—K'). (20)
with
If the initial state|i) is chosen as the vacuum state corre-
A sponding to the operatora(k), i.e., as satisfyinga(k)|i)
- T m2,24 = T 242 o4 ) ,
'CO_Zaf‘wﬂl’b Mt 2%(1’(?“(25 om ¢ 41 ¢ =0, we obtain the Green functic®* *(t,t";x—x’') as
® ,

G**(t,t';x—x')zf [U(HUX (L) o(t—t")

A A A A (2m) 2wy
;Clzo"lul//o'?'u“d)—mzlpd)_47¢4_6w3¢_zl//2¢2_6¢¢3. ( 77) Wyo
| 9 FUHUE (D) ot —1) 10D (22)
The equation of motion for the fielg(t) is given by[9] The Green function at equal space and time points then reads

. N 1A
t)+mlp(t)+ = d3(1) + — = H(1)GT T (t,x;t,x)=0.
(1) $(t) 6 ¢°() i 2 $(t) ( ) Note that the function$),(t) depend only on the absolute value
(10 of k.
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dk h()=hP(t)=h®+h@(t) (31)
k) — 2 k k k k .
(,t:0) |f T U ()2 (22)
The integral equation for the functidn(t) can be derived in

The resulting equation of motion for the classical fiei(t) a straightforward way from the differential equation satisfied

is by the functiondJ,(t); it reads
y ) N oo N .
dOFM GO+ g (D + 5 (OF=0, (23 i t ol (tt”
hk(t)zﬁ f dt’(e? @kt — 1)V(t)[1+h,(t")].
ko Jo
where we have introduced fluctuation integral (32
= 2 We obtain
F(t) J 21 20 [Ui(t)]%. (29
It determines the back reaction of the fluctuations onto the (1) _ jt 1 a2iogo(t—t') _ /
) ) h'= dt ko V(). 33
classical fieldg(t). K 2o Jo (e V(L") (33
We further consider the energy density and the pressure.
The energy density is given by Using integrations by parts this function can be analyzed
Hp(O) with respect to orders imq via
£=3 ¢2<t)+V(¢(t)>+ (0) (25)
i I+2
(=5 — dt vt )+2 L v
Calculating the trace over the Hamiltonian for the same ini-
tial state we obtain _
_e2|wk0tv(l)(o)]
E= 2 B0+ 2MPF0+ = GHD) —i "2
2 2 41 _( ) f dtreZika(t—t’)V(n+1)(t/)’
2wy 0
J dk L o L2 nlun2
* ] 2o S|V + 5 0iDUD]* - (34)

(26)  where V(1) denotes thdth derivative of V(t). For the

Using the equations of motion it is easy to see that the tim&Nery density and pressure we need the expansion of

derivative of the energy density vanishes. h)(t) as well. From Eq(34) and the relation
The pressure is given by
. t
, d3k , K2 hi = 2i woh( — f dt'v(t") (35)
— 42 + 24 + 20 _ 0
@ we find

The expressions for the fluctuation integral, the energy
density and the pressure are divergent and one has to discuss _
the renormalization of this theory. We have presented re- M= 2 (
cently [22] a fully renormalized framework for nonequilib-
rium dynamics. The main technical ingredient of this analy- ( —i

1+1
2wko) [V (1) — eenaty(0)]

sis is the perturbative expansion of the functihhgt) with
respect to orders in the potentid(t). We write the func-
tionsU, as (36)

n+1l ~y
dt/eZika(t—t’)V(n+1) ).
2wko) fo )

_ Aoyt
U =e "1+ hy(D)] (28) In the following we will need the real and imaginary parts of

and expand further in orders of the potentiét) as this expression; we introduce the following useful notation:

* t
hk(t)=n§1 hi"(t). (29 c(f,t)= fodt’f(t’)co$2wko(t—t’)], (37

We also introduce the partial sums ¢
" S(f,t)zJ dt' f(t")sin 2wye(t—t")]. (38
- 0
hP(H=2 hi(w), (30
We now insert the perturbative expansion into the fluctuation

so that integral to obtain
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_ ’ V(O) andV(0). These terms do not lead to divergences in
FH)= (27T)§2wko {1+2Rehy(t) +[h ()]} the fluctuation integral; however, in the energy and pressure
they appear multiplied bybﬁo and/ork?. While the energy
d3k V() V(0) stays finite the pressure behaves in a singular way via
3 52 7~ COY 2wyot) 3 o1 ( v
2mR200 | 20f 20 f dk , K HV<0> 2ot
. Pfiuct,sing 535, | TWkoT 5| 53 Sicwgo
V(0) V(t) V(O) (27)°2w\q 3 || 4wy
+ SiN(2wyet) + =3 COg 2wyt)
4(1)k wko 8wk0 V( )
7~ COS 2wyt | - (41
@ ) ~ Buyg ko
C(V,t)+2Reh”+]h 39 . . . :
8wig V. ehi+ Iy 39 The behavior of the momentum integrals is given in Appen-

dix B; they result in a ¥/ singularity proportional tov(0)

The first two terms in the curly brackets of the second ex-
pression, i.e., 1 and¥/(t)/22,, lead to divergent integrals and a logarithmic one proportional ¥(0). Therefore, these
ko: Jerms have to be removed as well.

which have to be absorbed by the renormalization procedure:
This has been discussed [i82]. There, the massn, was
chosen to be the “initial” massn(0) [see Eq.(13)]. With
this choice of initial mass/(0) is zero and the fluctuation ~ We have seen in the previous section that nonzero initial
integral is nonsingular &t=0. Though, with this choice, the values ofV(t) and its derivatives lead to initial singularities.
divergent integrals depend om, it was shown that the The clue for dealing with these terms has already been indi-
renormalization counterterms can be chosen independent ehted: the leading singularity can be removed by a Bogoliu-
the initial masany=m(0). bov transformation from the perturbative vacuum to a
If, on the other hand, we choosg=m, itis obvious that vacuum corresponding to free quanta of the initial mass
the divergences are absorbed by the counterterms depending0). Weexpect, therefore, that the other singular terms can
only on the renormalized mass, but we are faced with an be removed in this way as well.

Ill. REMOVING THE INITIAL SINGULARITY

initial singularity arising from the third term vigsee Appen- We define a general initial state by requiring that
dix B .
S o . [a(k) - pa’ (K)1[i)=0. (42
J (2m) 2wy 205, cod2wiot) =~ g—In(2mot) The Bogoliubov transformation to this state is given in Ap-
pendix A. If the fluctuation integral, the energy and the pres-
as t—0. (40)  sure are computed by taking the trace with respect to this

state, the functiont)(t) are just replaced by

Of course, nobody has made such an “unnatural” choice of _ S %
the initial mass; this initial singularity can be avoided trivi- F(t) =cosh y,)Uy(t) +e'%k sinh(y, )Ug (1), (43
ally by choosingmo=m(0). It is important to note, how- \yherey, and s, are defined by the relation
ever, that the renormalization can be performed in a way 5
independent of the initial condition in both cases. The dlffer- pk=¢"’ tanh(y). (44)
ence between the two approaches is in the initial “vacuum’
state. These different initial states are related by a Bogoliu- ey
bov transformationsee also Appendix A So Bogoliubov f(t)zf IF(1)]2
transformations can be used to avoid initial singularities. A (2m)% 2wy ' ¢
similar improvement of initial state, a Bogoliubov transfor- 43K
mation from the comoving time vacuum state to the confor- :f e {cosii 2 (1) ]| Uk (D)2
mal time vacuum state in FRW cosmology, has been dis- (2m) 2wy
cussed previousljy11]. . i 12

In Eqg. (39) we have extended the expansion of Hige(t) Fsinf(2y )R e UKD ]} (45)
to display also the terms of ordes,,’ which depend on Expanding as before we find

The fluctuation integral now becomes

vy V() V(0) V() V(o)

cos(zwkot)+4 3 SiN(2wyet) + cog 2wyqt)

[ dk
f(t)—f m coshi2y)| 1

2 q
2wig 2 kO kao kao

'+ Ihyl?

+sinh(2y,)cog ;) COS 2wy gt) — SINN( 2y ) SiN( 5) SIN(2 wyot)

- 4
8(1)k0

+sinh(2y,)Ree 2@kt~ 19 2h, + hﬁ)] . (46)
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Let us first discuss how to get rid of the most singular term,The factor cosh(g,) is equal to 1 fory,=0; we will need
proportional toV(0). Requiring this term to be compensated the difference

by the terms proportional to sinhgg we find

) k~>ocv2(0)
8=0, (47) cosh2y) —1=2sinf(y) = 25— (54)
Wio
V(0) There are new terms proportional to sinf(2 this factor
tanh(2y) =~ 202, 49 pehaves as
As explained in Appendix A the standard Bogoliubov trans- ) k==|\(0)]
formation from the perturbative vacuum with massto the sini(2yy) = 4ady (55
vacuum corresponding to quanta with the initial mag®)
is mediated by a functiory, (k) satisfying The dimensionally regularized fluctuation integr@l6)

takes, after cancellation of the singular integrals induced by

2 2 1/4
o r2n +k A (49) Egs.(51) and(52), the form
m=(0)+k 2
. m V(t)
which implies Fred)= " g2 (Lot D 1g2Lo
tank(2y,) = Vo) (50) d3k V(1)
K=5 2 oy .
2wyt V(0 —_— —
Wro ( ) + J (277)32ka Slnhz( ’yk)|: 1 2(1)&0:|
We see thaty, and y, agree asymptotically to leading order (56)
in L/w,q. So requiring that the most pronounced initial sin-
gularity vanish leads essentially to the usual choice for the V(t) 1 _
initial state, namelyn,=m(0) and therefora/(0)=0. The +eost2y)| g7~ — g C(V.,)+2 Reh{?
ko ko

analysis of subleading terms in the difference betwegn

andy, becomes somewhat cumbersome. After we have con-

vinced ourselves that the Bogoliubov transformation is the +1h?
right technique for getting rid of initial singularities we will

therefore choosen,=m(0) as everybody does and apply (57)

this technique to get rid of the remaining singularities. SoHere we have introduced the abbreviation
from now onV(0)=0 andw,,=[k?+m?(0)]*2 Requiring

+sinh(2y,)Re e 2@kt =19(2h, + h2)

2 A

that the terms proportional %6(0) andV(0) vanish leads to Lo=—+In —5—— 7. (58)
the conditions € my
: Using the estimate4) and(55), and using the fact that the
V) de functiorh, beh & that th t
tan(8,) = 2wy ’ (51  mode functiorh, behaves a@,,; we see that the momentum
V(0) integral is convergent.
Introducing the counterterm Lagrangian
. v2(0) | 1 i
— 2
tan}'(Z’)/k)— 40)‘;’0 \Y (0)+ 4&)50 (52) EC‘t.:§5m2q)2+ F¢4 (59)

Using these functions we are now ready to formulate thehe fluctuation integral gets replaced, in the equation of mo-
renormalized equation of motion and the energy momentuntion (23) for ¢(t), by

tensor.
Fin= Freqt i + O\ p2 t 60
IV. THE RENORMALIZED EQUATIONS m=Fregt gy AL (60
We have given the bare equation of motion and energyVith the standard choice
momentum tensor in Sec Il. The renormalization for the N
original initial state has been discussed 22]. We have to 5m2:l(|_+1) (61)
ensure now that the scheme used there is not spoiled by the 327 ’
improved initial state. The main new feature in the fluctua- )
tion integral, the energy density and the pressure is the ap- S\ = i (62)
pearance of the factors cosh® and sinh(3). We will 327% !
need their asymptotic behavior. Using E§2) we have
2 41’
= V(0)| L=Z+In 7 (63
Yk = (53

Bwio Fin is indeed finite.
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The calculation of the energy density proceeds in an analogous way. The fluctuation energy becomes, using dimensional
regularization,

1 d3k . ) ) ,
Euet™ f m{“:k(tﬂ +[ i+ V(D ]|F(t)]} (64)
4 2 3
_omg 3 2 V(t) VA(t) 1 d3k , ) V(t)
__W( ot E) 032 2(L0+1)—WL0+§I m 28In|'12(‘yk) 2ka+V(t) 1—m
V() C(Vt — o
+V(t)cosh2yy) 85)) %Jrz Reh{? +|h?|+V(t)sinh(2y,)Re e~ 2 kot~ 1%(2h,+h2) + cosh 2 )
kO kO
. 2(t) . . .
X | |hy|?==—5~| +sinh( 2y, )Re e 2kt =19 hZ— 2i wo(1+ h ) h,] | . (65)
Wyo

The divergent parts are cancelled by the counterterms

1 S\
E1=0A+ 5 SmM22(t) + ar dH(1) (66)

with the “cosmological constant” counterterm

4

m
5A:W(L+

3
E .

(67)

Finally, we have to consider the pressure. We find, for the regularized fluctuation part,

4 v 2 v
my V() i V(t) f _ ) , Kk V(t)  V(t)
pfluct__gfluct_ 96772_ 4&72 0 9617 2 (271_) 2w Slﬂhz( 7k) 2wk0+ _wk0+§ 1- 2(1)k0+8T‘|:O
2 k2 C(V t) 2 |2 —2iwyt—i§ 2 k2
+cosh2y, )V —ootg]| T g Bolo +2 Reh{? +|hk| + cosh{2y,) |hy|?sinh(2y,)Re e~ kot ~1% ~ ot 3
0
x(zhk+hﬁ)+h§—2iwko(1+hk)hk”. (68)

In order to cancel the divergent term proportionaMmne ~ as for the casey,=0 already discussed if22]. The only
introduces a counterterm for the energy momentum tensor,New, potentially singular term is

— @ v 2 d3k k2 .
5T#V_A(gMVﬁaﬁ _5Mﬁ )P, (69) J m sinI"(Zyk)( —(x)EO-F ? Re eizlkachk.
which leads to a counterterm (72)
d2 2A The leading singular behavior is given by
pe=A gz #*(0)=- V(1) (70) o P
V(O)J' dt’V(t’)f e
2)°2
in the pressure. We choose 0 (2m)"2010 40
2
A X —w§0+§ cog 2wgt). (73
A=-— 192772L (71

While the momentum integral behaves ag bist—0 the
The remaining momentum integral is finite and nonsingulatime integral behaves a$ sinceV(0)=0. So the renormal-
in t. For most of the terms this can be seen by inspectiorized pressure is indeed nonsingulat &tO.
using Egs(54),(55), and the expansion(84) and(36). There From the analysis of divergent integrals given in this sec-
are some internal cancellations which are, however, the sant®n it is obvious that only the leading asymptotic behavior
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of y, is relevant, more precisely, only the terms oforab«{'(ﬂlg3 Using the general relations given @8] one finds the ex-
and w.y. This means that any Bogoliubov transformation plicit form of the operatoQ as
whose functiony, has this leading asymptotic behavior is

equally suitable for defining an appropriate initial state. 1 d3k .
We have formulated our modified renormalized equations Q== f ———— yJe%a’(k)a'(—k)
for A\®* theory in flat space. The generalization to a scalar 2 (2m) 2w
field in a flat Friedmann-Robertson-Walker universe is —e a(k)a(—k)]. (A4)

straightforward and the cancellation of singular terms in the

energy density and the trace of the energy momentum tensor ] }
proceeds in the same way. Here vy, and & are defined by the relation

V. CONCLUSIONS pr= €' *ktanh y (A5)

We have considered here the choice of initial states for a
nonequilibrium system in quantum field theory. Our consid-so that Eq(A2) can also be written as
erations arose from the problem that logarithmic and linear
singularities in the variable—t, appear in the energy mo-  ~ =~ ~ P + ~
mentum tensor and affect the dynamics of FRW cosmology. 2(K)|0)=[cosf{v)a(k)+e'*sinh(y)a’(~k)]|0)=0.
We consider such singularities—and their consequences—as (AB)
unphysical, at least ify is just some conveniently chosen
point in time within a continuous evolution of the system. A special class of new “vacuum” statd:5> is obtained
I\:I]ost authors, ijncludingl_gqrselves, ha\;e ri:hosen initi\«'/:l\} S':]ateﬁ/hen the new creation and annihilation operators refer to
that correspond to equilibrium states of the system. We hav, ; ; ; =~ :
constructeg here im?)roved initial states for );lonequilibriumﬁ-ee parﬂcle_s with a different maseo. In thezﬁeldzeﬁ? an-
) — " sion (19) this means that the energyyo=(k“+mg) ™ is

systems in such a way that the appearance of initial singu- ~ S~ )
larities is avoided. These states are obtained from the usuffPlaced bywio=(k"+mg)== In this case
“vacuum” states by a Bogoliubov transformation. The es-
sential part of this transformation is a Bogoliubov ‘“rota- ~
tion” of the creation and annihilation operators at large mo- a(k)= \/m a(k)+ /,ﬂ a'(k) (A7)
mentum. The construction presented here specifies a @Ko kO
transformation of creation and annihilation operators at all
momenta. !t_ is not unique in the sense that it may be ar.bi'and therefore
trarily modified at small momenta. This nonuniqueness is,
however, nothing else as the freedom for choosing an “arbi-
trary,” pure or mixed, initial state. Our construction can be 1 wyw
considered as formulating a minimal requirement for choos- w=5In= (A8)
ing such states in the sense that it specifies the initial state of
the high momentum quantum modes.

while 8,=0. Fork>m,,m, the functiony, behaves as
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

. . . . APPENDIX B: SOME SINGULAR INTEGRALS

In this appendix we briefly recall some basic features of
the Bogoliubov transformatiofsee, e.g[28]). We start with The singular behavior in time arises from the following
a vacuum state defined by integrals:

a(k)|0)=0. (A1)

d3k 1
|1(t)=f 2m 20 ol cog wyot) (B1)

We would like to obtain a new stat@) that is annihilated
by a(k) + pa’(k), wherep, is some complex function d;
i.e. we require

and
[a(k)—pia’(k)][0)=0. (A2)

d3k 1

Such a state can be obtained fré@nhby a Bogoliubov trans- Io(t)= f (27 2wy oy sin(wyot). (B2
formation ) £®ko Pko

|0)=exp(Q)|0). (A3)  The first integral can be rewritten as
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1 » dwJw?—m? 1 t—0 1
h()=7-> fm o coq2wt) I (t)=— ﬁvo(th)JFO(tZ) = — mln(th).
(B4)
1 fwd 1 ) . o _
=42 | _do \/ﬁ cog2mwt) The integrall ,(t) is simply given by
1d
m? «2 t)) ©3) ()=~ 5 g1V (B5)
— ———= coq2wt) |.
2 [2—m2
@ e mm and therefore
The integral over the second term is nonsingular; the first | (t)t;O 1 (B6)
term yields a Bessel functio¥iy(2mt), explicitly 2 8wt
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