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The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical
values of the renormalized quantities which could be used to test any kind of approximate calculation. We use
finite truncations of the Fourier transform of the recursion formula for Dyson’s hierarchical model in the
symmetric phase to perform high-precision calculations of the unsubtracted Green’s functions at zero momen-
tum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field
theory in which the large cutoff limit is obtained by lettingb reach a critical valuebc ~with up to 16 significant
digits in our actual calculations!. We show that the round-off errors on the magnetic susceptibility grow like
(bc2b)21 near criticality. We show that the systematic errors~finite truncations and volume! can be con-
trolled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use
of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormal-
ized coupling constant corresponding to the 4-point function and show that whenb→bc , this quantity tends
to a fixed value which can be determined accurately whenD53 ~hyperscaling holds!, and goes to zero like
@Ln(bc2b)#21 whenD54. @S0556-2821~98!05510-6#

PACS number~s!: 11.10.Hi, 05.50.1q, 11.15.Tk, 64.60.Fr
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I. INTRODUCTION

Finding closed form, exact analytical solutions to difficu
problems is considered a great achievement in theore
physics. In recent years, the development of fast compu
and of easy electronic communications has enlarged the c
of solutions which can be considered as completely satis
tory. Lengthy expressions can be manipulated symbolic
or numerically and communicated to others~for a concrete
example, see for instance the Appendices of Ref.@1#!. Some-
times, the solution of a problem requires a combination
iterations and expansions which can be performed with
desirable precision in a short amount of time using a frien
environment such asMATHEMATICA . An example of such a
solution is the calculation of the spectrum of the on
dimensional quantum anharmonic oscillator described
Ref. @2#. In this example, even though no closed express
for the eigenvalues and eigenfunctions is available, the
ginning of the spectrum can be obtained numerically w
great precision and almost instantly usingMATHEMATICA .
We could say that this problem is numerically solvable.

Scalar field theory on a Euclidean lattice is a difficu
problem with many important applications, such as the in
actions of strongly interacting light particles~pions, kaons,
. . .!, the generation of mass in the standard model of
ementary particles, and the theory of critical phenome

*Present address.
570556-2821/98/57~10!/6326~11!/$15.00
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The renormalization group method@3# helps us to understan
the nature of the continuum limit@4# for such a model. How-
ever, in the case of short range~nearest neighbor! interac-
tions, we are still far away from the numerical solvabili
mentioned above.

In order to solve scalar field theory, one needs an appr
mation scheme such that:~a! the zeroth-order approximatio
preserves the main qualitative features of the model,~b! the
zeroth-order approximation is analytically or numerica
solvable, and~c! the zeroth-order approximation can be im
proved systematically and in a practically implementa
way. The fact that Wilson’s approximate recursion formu
satisfies the requirement~a! is justified in Ref.@3#. The ap-
proximate recursion formula is an integral equation with o
variable which can be handled by standard numerical m
ods. The main sources of errors are the finite number
points of integration and the parametrization of the behav
of the tails of the functions integrated. The errors can
reduced by reducing the size of the tails and increasing
number of points. The question of the accuracy of this p
cedure is discussed in Ref.@5#. Using instead the Fourie
transform of the recursion formula, we found a natural a
proximate method with a fast implementation and a con
of the systematic errors which is better than exponent
This alternative method of calculation is essentially a q
dratic map in spaces of reasonably small dimensions~typi-
cally 50!. This method is the main calculational tool use
and discussed in the present article.

The approximate recursion formula is closely related
6326 © 1998 The American Physical Society
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57 6327GUIDE TO PRECISION CALCULATIONS IN DYSON’S . . .
the recursion formula appearing in Dyson’s hierarchi
model @6#. More precisely@7#, at fixed dimension, there ex
ists a one parameter family of recursion formulas which
terpolates continuously between the two. Following Ref.@7#,
we call this parameterz. Seen from a practical point of view
in our calculation, the extension to another value ofz in the
recursion formula amounts to changing one number in
line of a two page program. Physical quantities such as
critical exponents vary slowly whenz is varied, but there is
nothing that singles out a particular value ofz. In the follow-
ing, we specialize the discussion and the numerical stud
the case of Dyson’s model (z51/D) because this model ha
been studied@5,8–11# in great detail in the past. Dyson’
model is a well-defined lattice model and it admits the sa
kind of expansions~weak and strong coupling, large-N, etc.!
as any other scalar model on a cubic lattice. The basic re
sion formula and the approximation methods are explai
in Sec. II.

For simplicity, all the calculations done below use an i
tial Ising measure. The infinite cutoff limit is obtained b
fine-tuning the only adjustable parameter, namely, the
verse temperatureb. All the results will be expressed in
terms ofbc2b. The general procedure@3,4# which relates
small values ofbc2b to large values of the UV cutoff is
well-known and will not be repeated here. From a calcu
tional point of view, the discussion would be essentially t
same if instead we had fixedb51 and considered initia
measures depending on a cutoff and several bare param

The rest of the presentation is based on the follow
empirical fact: the systematic errors due to finite volume
exponentially with the number of iterations (nmax) and the
systematic errors due to finite dimensional truncation
faster than exponentially with the dimension of the trunca
space (l max). In calculations involving double precision, on
can, without encountering major difficulties, choosenmax
and l max in such a way that if we increase these parame
further, no change is observed in the results. One can
first determine the critical temperature and the numerical
rors. We need to discuss these first, because the nume
errors are a fundamental limitation, whenever the precis
of the arithmetic operations is fixed, and there is no poin
trying to reduce the systematic errors much below the
merical errors.

The phase structure of the approximated models is
cussed in Sec. III. We show that the susceptibility reache
infinite volume value in the expected way, whenb,bc . On
the other hand, forb.bc , the infinite volume limit is prob-
lematic. We want to make clear that this is a feature of
numerical method and not of the model for which the ex
tence of a low temperature phase is well-established@5,8#.
We also give a practical method to identify the inverse of
critical temperature, denotedbc , with an optimal accuracy
In the following sections, it will always be assumed that w
work in the symmetric phase (b,bc).

The numerical errors on the magnetic susceptibility
studied in Sec. IV, where we show that the relative err
obey the approximate law

Udx

x U; d

bc2b
, ~1.1!
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where d is the precision used to perform the arithmetic
operations. We then show that this law follows from an a
proximate renormalization group calculation which expre
the fact that the more iterations we spend near the fi
point, the more the round-off errors get amplified in the u
stable direction. As a by-product we obtain a numerical
timate of the critical exponentg in good agreement with the
existing estimates@5,10–12# for D53. As a general remark
we have a much better quantitative control on the details
renormalization group arguments inD53 than in D54,
where confluent logarithmic singularities make the analy
more delicate.

We then discuss the systematic errors. The volume dep
dence of the magnetic susceptibility is discussed in Sec
We show that in order to calculate the susceptibility at
inverse temperatureb, in D dimensions, and with relative
errorsD, one needs a number of lattice sites which is of t
order of @D(bc2b)g#2D/2. We then show that when th
Fourier transform of the recursion formula of Dyson’s hie
archical model is projected into a finite dimensional space
dimensionl max, the relative errors on the susceptibility a
sociated with this truncation decrease faster thane2almax for
some positive numbera. We show in Sec. VII that similar
results apply to the high-temperature expansion of the s
ceptibility, justifying the procedure used in Ref.@11#.

At this point, we have only discussed the susceptibility,
in other words, the 2-point function. The 4-point function
also provided by the calculational method at no extra co
However, the calculation of the corresponding renormaliz
coupling constant requires a subtraction. In the discussio
the errors on the susceptibility, we have explained that wh
we are iterating the recursion formula, we lose significa
digits ‘‘from the right.’’ With the subtraction, we also los
significant digits ‘‘from the left.’’ This is explained in Sec
VIII, where we calculate a ‘‘dimensionless coupling co
stant’’ inspired by the field theory definition of Ref.@13# and
denotedl4 .

In the caseD53, we show that whenb→bc , l4 tends to
a fixed non-zero value that we were able to calculate wit
significant digits. This is very convincing evidence that h
perscaling holds for the model considered here. For
nearest-neighbor Ising model on a 3-dimensional cubic
tice, it is very hard to decide if hyperscaling holds on t
basis of Monte Carlo simulations@14# or high-temperature
expansion@15#. In the present case, it is a short and straig
forward calculation. This shows that it would be worth tryin
to interpolate perturbatively between Dyson’s model a
nearest neighbor models, transforming the qualitative
proximation@3# into a quantitative approximation. The acc
racy of l4 decreases, whenD increases. However, we wer
able to obtain good evidence that inD54, l4 decrease like
@ ln(bc2b)#21, in good agreement with the behavior o
tained with the field theory method@16# at lowest order in
perturbation theory.

Our results show that it is possible to calculate accurat
and without major effort, the renormalized quantities whi
can be extracted from the 2- and 4-point functions. Th
calculations can be done for an extended range of small
ues of bc2b. In other words, for existing computers, re
quirement~b! is fulfilled by the hierarchical approximation
provided that one does not require too-small values ofbc
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2b. Numerical solvability can sometimes completely chan
our point of view regarding a problem. Taking the examp
of differential equations, at a time when their numerical s
lutions were not achievable, one could dream of a perfe
deterministic approach to natural phenomena in which ev
thing could be known once the rules of evolution and
initial conditions were given.

This paper provides a calculational method to anyone w
would like to check an approximation method with accur
numerical results. As explained above, most of the appr
mation schemes which apply to a scalar field theory w
nearest neighbor interactions on a cubic lattice also appl
Dyson’s model. We are presently testing the validity of se
eral well-known, but not easy-to-control expansions:
renormalized perturbative expansion, the loop expans
and the large-N expansion.

II. THE RECURSION FORMULA
AND ITS FINITE DIMENSIONAL TRUNCATIONS

In this section, we briefly describe Dyson’s hierarchic
model and the methods used to calculate the average o
bitrary powers of the zero momentum component of the s
lar field. The models considered here have 2nmax sites. We
label the sites withnmax indices xnmax

. . . ..x1, each index
being 0 or 1. In order to visualize the meaning of this no
tion, one can divide the 2nmax sites into two blocks, each
containing 2nmax21 sites. If xnmax

50, the site is in the first

block, if xnmax
51, the site is in the second block. Repeati

this procedurenmax times ~for the two blocks, their respec
tive two sub-blocks, etc.!, we obtain an unambiguous labe
ing for each of the sites. Two sites differing only byx1 are in
the same block of size 2. We write the action as

S52
1

2 (
n51

nmax S c

4D n

(
xnmax

, . . . ,xn11
S (

xn , . . . .,x1

f~xnmax
, . . . .,x1!D 2

.

~2.1!

The indexn, referred to as the ‘‘level of interaction’’ here
after, corresponds to interactions of the total field in bloc
of size 2n. The free parameterc, controlling the strength of
the interactions, is set equal to 2122/D in order to approxi-
mate a nearest neighbor model inD-dimensions. In this ar-
ticle, we will consider the casesD5 3, 4, and 5. In Ref.@5#,
another parametrization is used. The choicesD5 3, 4, and 5
correspond, respectively, tos/d52/3, 2/4 and 2/5 intheir
notations.

All the calculations in our paper are done withh50. For
D>4, this is also a feature of nearest neighbor models.
D53, h is small, but not zero for nearest neighbor mode
We are thus clearly not attempting to make accurate real
calculations. The main point of the paper is to show t
within the approximation considered, one can make very
curate, non-perturbative, calculations of the renormali
quantities with a large cutoff and a large volume by usin
very simple algebraic algorithm. We do not discuss any
provement of the approximation which would allowhÞ0.
This is a very difficult problem which still needs to be solv
~see, e.g., Ref.@17#!.
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The fieldf (xnmax
, . . . .,x1) is integrated with a local measur

W0(f) which needs to be specified. In the following, we u
an Ising measure,W0(f)5d(f221), which takes only the
values61. To the best of our knowledge, the results p
sented do not depend on this specific choice and would
apply, for instance to the case of Landau-Ginzburg meas
of the formW0(f)5e2Af22Bf4

.
The integrations can be performed iteratively using

recursion formula

Wn11~f!5
Cn11

2
e~b/2!~c/4!n11f2

3E df8WnS ~f2f8!

2 DWnS ~f1f8!

2 D , ~2.2!

whereCn11 is a normalization factor which can be fixed
our convenience. The relation between this recursion
mula and Wilson’s approximate recursion formula@3# is dis-
cussed in Ref.@7#. Introducing the Fourier representation

Wn~f!5E dk

2p
eikfŴn~k!, ~2.3!

and a rescaling of the sourcek by a factor 1/s at each itera-
tion, through the redefinition

Rn~k!5ŴnS k

snD , ~2.4!

the recursion formula becomes@9#

Rn11~k!5Cn11 expF2
1

2
bS c

4
s2D n11 ]2

]k2GFRnS k

sD G
2

.

~2.5!

The rescaling operation commutes with iterative integratio
and the rescaling factors can be fixed at our convenience.

In the following, we fix the normalization constantCn in
such way thatRn(0)51. Rn(k) has then a direct probabilis
tic interpretation. If we callMn the total field(fx inside
blocks of side 2n, and^ . . . &n the average calculated withou
taking into account the interactions of level strictly larg
thann ~or in other words, as ifn were equal tonmax), we can
write

Rn~k!5 (
q50

`
~2 ik !2q

2q!

^~Mn!2q&n

s2qn . ~2.6!

We see that the Fourier transform of the local measure
tained after n iterations generates the zero-momentu
Green’s functions calculated with 2n sites, and can thus b
used to calculate the renormalized coupling constants at
momentum.

The choice ofs is a matter of convenience. For calcul
tions in the symmetric~high-temperature! phase not too
close to the critical temperature, or for high-temperature
pansions@9,10#, the choices5A2 works well. For calcula-
tions very close to the critical temperature, the choices
52c21/2 prevents the appearance of very large numbers
the following calculations, wealwaysuses52c21/2.
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57 6329GUIDE TO PRECISION CALCULATIONS IN DYSON’S . . .
In the following, the finite volume magnetic susceptibili
is defined as

xn~b!5
^~Mn!2&n

2n . ~2.7!

With the rescalings52c21/2, we have the relation

xn522an,1S 2

cD n

. ~2.8!

The initial condition for the Ising measure isR05cos(k).
For the Landau-Ginsburg measure, the coefficients in
k-expansion need to be evaluated numerically.

In previous publications@10,11#, we used theb expansion
of Eq. ~2.5! to calculate the high-temperature expansion
the magnetic susceptibility of Dyson’s hierarchical model
re
io
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to order 800 with an Ising or a Landau-Ginzburg measu
The calculation of the large-order coefficients requires a
of computing time. We found that using a truncation in t
expansion ink2 at order 50 could cut the computer time by
factor of order 100, while having effects on the values of t
coefficients which were smaller than the errors due to
merical round-off.

We consider the finite dimensional approximations of d
greel max:

Rn~k!511an,1k
21an,2k

41•••1an,l max
k2l max. ~2.9!

After each iteration, non-zero coefficients of higher ord
(an11,l max11, etc.! are obtained, but not taken into accou
~i.e., set to zero as part of the approximation! in the next
iteration. More explicitly, the recursion formula for thean,m
reads:
an11,m5

(
l 5m

l max S (
p1q5 l

an,pan,qD @~2l !!/ ~ l 2m!! ~2m!! #~c/4! l@2~1/2!b# l 2m

(
l 50

l max S (
p1q5 l

an,pan,qD @~2l !!/ l ! #~c/4! l@2~1/2!b# l

. ~2.10!
d

w-

to
III. THE PHASE STRUCTURE
OF THE APPROXIMATED MODELS

From a field theoretic point of view, an important featu
of the hierarchical model is its second order phase transit
Our first task will be to identifybc for the well-studied
@10,18# case of an Ising measure. The truncation descri
above can be used to calculate@9# exactly the high-
temperature expansion of the magnetic susceptibility up
order b l max21. This guarantees that for sufficiently lowb,
the truncation ink2 will have negligible effects. However
we know for instance that@10# for l max550, we can calcu-
late very accurately the 800th high-temperature coefficien
the susceptibility. This result can be interpreted as follo
The exponential in Eq.~2.5! is defined as an expansion inb
and by neglecting terms of orderkl max11 in R2, we also
neglect some part of the coefficient ofb l max in the suscepti-
bility. On the other hand, by normalizing and squaring,
generate terms of much larger order inb which approximate
very well the exact coefficients up to an order in the hig
temperature expansion much larger thanl max. This suggests
that the truncation ink2 could be a very efficient calculatio
tool in the high-temperature phase~where the expansion inb
converges!, but that problems may appear in the low
temperature phase. We will now investigate this question
making calculations at fixedb.

The truncated recursion formula shows very clearly
existence of a high-temperature phase, where forn large
enough, we have the scaling law

an,1}222n/D. ~3.1!

Given the choice of scaling factors52c21/2 and the defini-
tion of c discussed in Sec. II, this scaling is equivalent to
‘‘central limit’’ behavior
n.

d

to

f
.

-

y

e

e

^~Mn!2q&n}2nq. ~3.2!

This situation is characterized by ratiosan11,1/an,1 reaching
the valuec/25222/D.

On the other hand, whenb is increased sufficiently, there
is a sudden change of behavior. Whenn increases up to a
certain value, the ratioan11,1/an,1 increases suddenly an
then drops for a few iterations near the valuec521/D which
corresponds to the behavior characteristic of the lo
temperature phase@13#, namely

^~Mn!2q&n}2n2q. ~3.3!

This is illustrated in Fig. 1 forD53: we can observe a
low-temperature ‘‘shoulder,’’ where the ratio gets close

FIG. 1. an11,1/an,1 versusn for b5bc210210 ~empty circles!,
b5bc210211 ~empty triangles!, b5bc110210 ~filled circles! and
b5bc110211 ~filled triangles!.
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the value 21/D.1.26 during 6 or 7 iterations. It is possible
widen this shoulder slightly by increasingl max. However,
we have not been able to obtain the robust asymptotic sta
ity that we were able to obtain in the high-temperature pha
After reaching the low-temperature shoulder describ
above, the ratio drops to 1 andneverreturns to any kind of
behavior like Eq.~3.2!. The ‘‘irreversibility’’ of this process
allows us to identify unambiguouslybc , in the sense that a
calculation at finiten gives upper and lower bounds onbc .
By increasingn, we can obtain sharper bounds. This proc
dure is illustrated forD53 in Fig. 1.

We see that a calculation forn up to 50 allows us to
resolve the 10th digit ofbc , and a calculation forn up to 60
allows us to resolve the 11th digit. Proceeding similarly,
can determine the numerical value ofbc with as many sig-
nificant digits as the computational method allows. Dou
precision Fortran calculations made withl max580 are re-
ported below for the Ising model in 3, 4, and 5 dimensio
The results are in agreement with the bounds found in R
@18# with independent~and exact! calculational methods
The third column gives the minimal value ofn which allows
a resolution of the 16 significant digits

D bc nmin l maxmin

3 1.179030170446270 102 32
4 0.6654955715318593 111 43
5 0.4569633006170210 132 45

~3.4!

Subsequently,l max was lowered by small steps until th
value ofbc changed. This experiment shows that the cha
occurs at values much smaller than 80. In the fourth colu
of Eq. ~3.4!, we give the minimal value ofl max such that the
stable value ofbc with 16 significant digits can be reache

One may wonder if the precise value ofbc is dependent
on the numerical aspects of the calculation such as
round-off errors, which will be discussed in the next secti
To settle this question, we have used methods which perf
the arithmetic operations differently~these methods are ex
plained in detail in the next section! and found the very sam
values ofbc . In conclusion, we have found a reasonab
robust value ofbc which is consistent with existing results

We have calculatedbc
21 for dimensions much larger tha

4. The results are displayed in Fig. 2. We see that this qu

FIG. 2. 1/bc versus the dimensionD.
il-
e.
d

-

e

.
f.

e
n

e
.
m

n-

tity grows linearly with the dimension. The explicit calcula
tion of the high-temperature expansion@1# suggests that
whenD→`, i.e., whenc→2, we have

bm.S 2c

~42c!~22c! D
m

, ~3.5!

which implies that

bc
21.

D

2ln2
. ~3.6!

This estimate of the slope is in good agreement with the d
We found a slope of 0.714, while@2ln(2)#2150.721. Next
we will study the various sources of error occurring, wh
one approachesbc from below.

IV. THE ROUND-OFF ERRORS

Round-off errors can play an important role, when rec
sive methods are used, because they may grow faster
the improvement of the results due to the repeated use o
method. For this reason, we have studied them with th
independent methods. By independent, we mean that
arithmetic is performed in a completely uncorrelated fashi

We have compared our original Fortran calculation on
DEC-alpha with three other calculations. The first one w
the same program run on a MIPS. The second one wa
MATHEMATICA program, where a higher precision in th
arithmetic operations was set. The precision was adjuste
such a way that the susceptibility was obtained correctly w
16 significant digits. Thirdly, we have compared the calcu
tion with the one obtained with a slightly different rescalin
namely s51.98c21/2, a method already used in Ref
@10,11#. All these calculations were performed withl max
560, which is beyond what we need~see the next section!.

The relative differences in the finite volume susceptibil
are shown in Fig. 3, forD53 andbc2b510211. The figure
shows clearly that the three types of discrepancies are es
tially the same. Since the three types of errors are unco
lated, we can identify them with the round-off errors a
calculate them with the most convenient method. Using
third method, we have calculated the round-off errors

FIG. 3. Relatives differences between the susceptibility cal
lated with the main method (x) and three alternative methods (x ( i ))
with i 51 ~crosses!, 2 ~diamonds! and 3~circles! as in the text. The
calculations were done inD53 and withb5bc210211.
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57 6331GUIDE TO PRECISION CALCULATIONS IN DYSON’S . . .
various values ofb. In all the cases, the logarithm of th
relative error grows linearly at the beginning and then sta
lizes at a constant value. The period of linear growth cor
sponds roughly to the iterations, wherexn11.22/Dxn . For
larger n, the value of the susceptibility stabilizes, wi
changes decreasing by a factor 222/D at each step. During
this second stage, the numerical errors do not grow sig
cantly.

We now proceed to discuss the asymptotic values of
errors, in other words, the stable value they reach forn suf-
ficiently large. We have collected these values for vario
temperatures andD53, 4, and 5 in Fig. 4. This shows tha
the relative error is in good approximation 10216(bc
2b)21, independently ofD.

These empirical results have a simple explanation
terms of the linearized theory. Suppose thatd is a typical
round-off error in a calculation~e.g., 10216), and thatl is
the largest eigenvalue of the linearized renormalizat
group transformation near a given fixed point. One expe
the numerical error onan,1 to be of the orderlnd. With the
rescaling used in this paper, this means that the errors on
susceptibility are of the order

udxnu;lndS 2

cD n

. ~4.1!

Now for n such thatln;(bc2b)21, we havex;(2/c)n.
Plugging this into the previous equation, we get

Udx

x U; d

bc2b
, ~4.2!

which is the empirical result found above. The result may
rephrased by saying that the more iterations spent nea
fixed point, the more the round-off errors are amplified. T
is an effect of the calculation method. This is not incomp
ible with the fact that one can find numerically stable me
ods to calculate the fixed point as shown in Refs.@5,8#.

For D53, one can check the details of the above ar
ment and, as a by-product, obtain an estimate ofl. The slope
of the increasing part of Fig. 3 is approximately 0.154, w

FIG. 4. Relative difference between the susceptibility calcula
with the main methodx and with a rescalingx res as explained in
the text versusbc2b, in D53 ~circles!, D54 ~stars! and D55
~squares!.
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an estimated error of order 0.001. This implies a va
100.15451.427 forl. Using the usual formula for the critica
exponent,

g5
ln~2/c!

ln~l!
, ~4.3!

we obtain the valueg51.30, in good agreement with exis
ing estimates@5,10–12#.

For D54, the same procedure gives an exponent whic
too high by about 3 percent~compared to the trivial value!.
This is a typical error, when one does not take into acco
the marginal direction and the~related! confluent logarithmic
singularity in the susceptibility. As discussed in Refs.@5,19#,
the subleading corrections also play an important part in
analysis.

V. VOLUME EFFECTS

In the two previous sections, we developed a qualitat
understanding regarding the finite volume susceptibilityxn ,
or in other words regarding the way the susceptibility d
pends on the number of iterations. Volume effects can
important in the determination of the critical exponents. F
instance, in Ref.@18#, exactcalculation with almost a million
sites gave errors of more than 10 percent in the exponeng.
We are now ready to get a better quantitative understand
of these effects.

If we consider the evolution ofxn(b) whenn increases,
with b fixed slightly belowbc , we see from Fig. 1 that when
we are close to the fixed point,xn11.22/Dxn . This lasts
until the right order of magnitude@;(bc2b)2g # is
reached. For largern, the value of the susceptibility stab
lizes, with errors decreasing at each step. In this second
gime, the measure becomes asymptotically Gaussian,
one can estimate the change inxn from the change in thek2

term. From the basic formula~2.5!, one gets the estimate fo
the relative change:

Dn5Uxn112xn

xn
U}22~2/D !nxn . ~5.1!

From these considerations, we find the numbern(b,D) of
iterations necessary to calculate the susceptibility at fixedb,
with a relative precisionD @defined as in Eq.~5.1!#:

n~b,D!52S D ln~10!

2ln~2! D @ log10~D!1g log10~bc2b!#.

~5.2!

The comparison with a numerical calculation, where we
quiredD510215 is given in Fig. 5 forD53, 4, and 5. The
agreement with the estimate of Eq.~5.2! with g51.3 ~1.0!
for D53 ~4 and 5!, is quite good.

The fact that we were able to stabilize sixteen digits of
susceptibility does not mean that the results have sixt
digit accuracy. The asymptotic stability of the numerical r
sults comes from the fact that the right-hand side~RHS! of
Eq. ~5.1! will go to zero, wheneverxn quits growing. This
occurs independently of the fact that numerical errors m
occur, while xn builds up its bulk value. Consequently,
more realistic approach would be to require a precision c

d
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sistent with the round-off errors discussed in the previo
section. Imposing a temperature-dependent requiremenD
510216(bc2b)21, we obtain values ofn shown in Fig. 5.

VI. CONTROLLING THE EFFECTS
OF FINITE DIMENSIONAL TRUNCATIONS

In this section, we study thel max dependence of the mag
netic susceptibility forb,bc . For notational purposes, w
call x ( l ) the susceptibility corresponding to a given val
l max5 l . For each calculation, the value ofnmax has been
increased until no change could be observed. The results
displayed in Fig. 6 forbc2b51028. For low l , x ( l ) grows
at a not-very regular rate and within the bounds
,x ( l 11)/x ( l ),10. Whenl gets close to 20,x ( l ) starts stabi-
lizing with a precision which seems to be exponential. F
instance, forD53, the relative errors fall approximately lik
1020.6l . This exponential rate is based on the assumption
the logarithm of the relative errors falls linearly. However
closer look shows that it falls slightly faster. This is illu
trated in Fig. 7. The best parametrization that we have fo
is a linear function times the logarithm ofl . A more detailed

FIG. 5. n(b,D) defined in Eq.~5.2!, for D53 ~circles!, D54
~stars! and D55 ~squares!. Filled symbols correspond to a fixe
value D510215, empty symbols correspond to a variable valueD
510216/(bc2b).

FIG. 6. Relative difference between the susceptibility calcula
with l max5 l 11 and l max5 l in D53 ~circles!, D54 ~stars! and
D55 ~squares!. b5bc21028 in the three cases.
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analysis shows that this new parametrization reduces
square root of the sum of the square of the relative diff
ences@~fit-data!/data# by one order of magnitude. This sug
gests that one should try to derive rigorous bounds, wh
the errors are proportional to some inverse power of (l max!).

We have thus studied the logarithm of the relative diffe
ences~due to the change inl max) divided by the logarithm of
l max for various temperatures withD53. The results are
shown in Fig. 7. We then used linear fits for the part falli
linearly. In other words, we assumed the approximate la

Ux l 112x l

x l U. l ~2usu l 1q!. ~6.1!

The results can be summarized as follows. The slope is
most independent ofb and takes the approximate valu
20.41 with changes of order 0.01. The intercept grows l
early with2 log10(bc2b), as shown in Fig. 9. A linear fit of
this data gives an intercept of the form 1.720.83

FIG. 8. Relative difference between the susceptibility calcula
with l max5 l 11 and l max5 l in D53 with b5bc21022 ~filled
circles!, b5bc21023 ~asterisks!, b5bc21024 ~crosses!,
. . . . . . up tob5bc210212 ~empty circles!.

d

FIG. 7. Relative difference between the susceptibility calcula
with l max5 l 11 and l max5 l in D53 ~circles! and with b5bc

21028, compared with a linear fit of these points.



-
th

ic

ly

e
b
c
e

ar
m

e
ct
ct
u-
s-

l-
ur
ha
ed
o

re
5

.

for
s in
-
-

he
ns,

t

the

eed

a

us-

57 6333GUIDE TO PRECISION CALCULATIONS IN DYSON’S . . .
3 log10(bc2b). If we neglect the slow logarithmic varia
tions and approximate it by a constant central value in
falling part of Fig. 8, we obtain the approximate law

Udx

x U;3.231023~bc2b!21.23~4.1!2 l max. ~6.2!

If we require these errors to be smaller than the numer
errors, we find thatl max540 is a safe choice for all the
values ofbc2b accessible with double precision. Slight
larger values are obtained forD54 and 5, which confirms
that the last column of Eq.~3.4! represents approximately th
values of l max above which no significant changes are o
served. In conclusion, for calculations using double pre
sion, the choicel max550 is convenient and safe for the thre
values ofD considered above.

Having an acceptable control on the susceptibility gu
antees that we have an acceptable control on the higher
ments,^Mn

2q&n/2qn for q.1, since to leading order in th
volume, these quantities are dominated by the disconne
parts. The precision which can be achieved on the conne
parts~which enter in the definition of the renormalized co
pling constants! is a more delicate question, which is di
cussed in Sec. VIII.

VII. EFFECTS OF FINITE DIMENSIONAL TRUNCATIONS
ON THE HT COEFFICIENTS

In a previous publication@11#, we used the truncated a
gorithm to calculate 800 coefficients of the high-temperat
expansion of the magnetic susceptibility. We claimed t
this truncation did not affect the numerical values obtain
In this section, we provide a more systematic justification
this procedure.

We examine thel max-dependence of the high-temperatu
coefficients of the susceptibility, for dimensions 3, 4, and
As in Sec. VI, we replacel max with l for notational purposes
We denote the high-temperature coefficients asbm for the
mth coefficient.

For l andm large enough, we find good linear fits inl for
the quantity

FIG. 9. Intercept of the linear fits corresponding to the line
part of Fig. 8.
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ln@~bm2bm
~ l !!/bm#

ln~ l !
,

wherebm
( l ) is the truncated version of the exactbm . Figure 10

show these lines inD53, for m5200, 300, and 400. Very
similar numerical values are obtained forD54 andD55.
For this reason, it was impossible to display the values
the three chosen dimensions in a single graph. The graph
D54 andD55 are similar looking and show a linear be
havior as good as inD53. We can thus express the trun
cated coefficients as

bm
~ l !5bm~12 l 2usu l 1q!, ~7.1!

wheres andq are, respectively, the slope and intercept of t
corresponding fitted line. For the three chosen dimensio
the lines seem to ‘‘focus’’ in one point close to thel 50 axis.
The intercepts are approximately independent ofm and take
the approximate values 3.4 (D53), 2.3 (D54), and 1.7
(D55). For the slopes, we find straight line fits, if we plo

ln@2s~m!#

ln~m!

versus ln(m) for D53, and versusm for D5 4 and 5. In
Figs. 11 and 12 we have used every tenth coefficient in
range fromm5300 . . .400. From these fits, we find forD
53:

s52m0.013ln~m!20.22. ~7.2!

For D54 we found

s52m0.000024m20.19 ~7.3!

and forD55:

s52m0.000028m20.21. ~7.4!

In D53, for example, these results show us that we n
l larger than 34 for the error onb1000 to be less than 10216,

r

FIG. 10. Relative difference between the coefficients of the s
ceptibility bm calculated withl max5 l 11 andl max5 l in D53 with
m5200 ~squares!, m5300 ~circles! and m5400 ~triangles!.
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while for D54, l .38. Therefore, the value ofl 550 we
have previously used in calculating the first 800 coefficie
is more than adequate.

VIII. CALCULATION OF SUBTRACTED QUANTITIES

In this section, we discuss the numerical aspects of
calculation of subtracted quantities. We specialize the
cussion to the calculation of the ‘‘dimensionless renorm
ized coupling constant’’@13# corresponding to the 4-poin
function.

From Eq. ~2.6!, it is clear that the calculation ofRn(k)
allows us to determine the renormalized coupling consta
The first step in the calculation of these quantities is to
tract the connected parts. In other words, we first subtract
disconnected parts from the 2k-point function. From a nu-
merical point of view, this is not a trivial operation, becau
the subtracted quantities~connected parts! scale differently
with the volume than the parts of which they are made.
instance, forb,bc andn sufficiently large,

^Mn
4&n23~^Mn&n!2}2n, ~8.1!

FIG. 11. ln@2s(m)#/ ln(m) versus ln(m) in D53.

FIG. 12. ln@2s(m)#/ ln(m) versusm in D54.
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while the individual components scale like 22n. The situation
is worse, if we consider the 6-point functions, where t
connected part has the same scaling as Eq.~8.1!, but the
individual components scale like 23n. In other words, the
beginning significant numbers of the individual terms do n
matter for the subtracted quantities. Assuming 16 signific
digits, when 22n reaches 1016, we still get the subtracted
parts with 8 significant digits. When 2n reaches 1016, there
are no significant digits left for the subtracted part.

As a consequence, it is not always possible to stabilize
value of the connected part during as many iterations as
would like, given the study of Sec. V. This is an interesti
situation. As long as we increase the number of iteratio
we get a value of the unsubtracted quantity which becom
closer to its infinite volume limit. If we represent the signifi
cant digits of a double precision number as a sequence o
digits written in the conventional way, we can visualize th
procedure as the successive obtention of the digits on
right side of the number. Unfortunately, at the same time,
part which gets subtracted increases in magnitude. Co
quently, more and more digits on the left side of the num
are wasted for the evaluation of the subtracted quantit
The situation gets worse, if we consider the 6 or higher po
functions.

The subtracted quantities are diverging near critical
However, it is possible to define@13# dimensionless renor
malized coupling constants which have a finite limit. In t
case of the four point function, the dimensionless renorm
ized coupling constantl4 is obtained by multiplying the
zero-momentum connected Green’s functionG4

c by the D
14 power of the renormalized massmR : namely,

l452G4
cmR

D14 . ~8.2!

The mnemonic forD14 is 8 ~amputation of the 4 legs a
zero-momentum! 1 D24 ~the canonical dimension of th
f4 bare coupling constant!. We are using the notation

G4
c5 limn→`

^Mn
4&n23~^Mn&n!2

2n . ~8.3!

In order to compare with field theory results, one shou
consider Landau-Ginzburg measures where the cutoff de
dence has been restored explicitly. For instance, inD53, the
definition of the functions entering in the Callan-Symanz
equations~the beta function, etc.! given in Ref.@13# requires
that we keep thedimensionfulconstant fixed, while the cut
off goes to infinity. In other words, we need to change t
dimensionlessconstant entering inR0(k), while taking the
infinite cutoff limit. This delicate procedure is beyond th
scope of this paper, where we emphasize the basic nume
aspect of a single calculation. As explained in the Introd
tion, we continue using a fixed Ising measure and a sin
adjustable parameter (b).

The quantityl4 has a finite~and supposedly non-zero
when D,4) limit, when L→` or equivalently, whenb
→bc . We can thus bypass the explicit introduction of t
cutoff. Taking into account that there is no wave functi
renormalization, or in other words that the critical expone
h is zero, we definel4 as the limit, wheren goes to` of
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l4,n5
2^Mn

4&n13~^Mn
2&n!2

2n~^Mn
2&n/2n!D/212 . ~8.4!

Equivalently, with the convention of Eq.~2.9!, which
does not involve inverse factorials, and for the values
52c21/2 always used here, we obtain

l4,n512
an,1

2 22an,2

~22an,1!
D/212 . ~8.5!

In practice, we pick a given relative precisionD and we
require thatn is large enough to stabilize the susceptibil
and l4 with a relative precisiond. The reason for requiring
both conditions is thatl4 may temporarily stabilize, when
the flow passes near the fixed point~and so we are still far
away from the infinite volume limit!, but this is signaled by
the fact that the susceptibility is still growing. In summar
we require

Uan11,1

an,1
2

c

2U,D ~8.6!

and

FIG. 13. log10(l42l4* ) versus2 log10(bc2b) in 3 dimensions.

FIG. 14. 1/l4 versus2 log10(bc2b) in 4 dimensions.
Ul4,n11

l4,n
21U,D. ~8.7!

When these two conditions are satisfied, we check that
result forl4 is compatible with the expected precision, or
other words, that we have enough significant digits left
an,1

2 22an,2 to calculatel4 with a relative precisionD. We
thus require the additional condition

Uan,1
2 22an,2

2an,2
U. d

D
, ~8.8!

whered is a typical round-off error (10216 in double preci-
sion!. If the additional condition is not satisfied, we lowerd
and repeat the calculation. We have applied this algorithm
D53, 4, and 5 and for2 log10(bc2b)52,3, . . . ,14.

For D53, we were able to do all the calculations wi
D51026. We found thatl4 reaches a limitl4* 51.92786,
whenb→bc . In other words, hyperscaling holds very we
Figure 13 shows that to a good approximation

l42l4* .1.683~bc2b!10.43. ~8.9!

In D54, we had to reduce toD51024. We found thatl4
tends to zero, whenb→bc . As shown in Fig. 14, we have
the approximate law

l4.
1

21.9620.7463 ln~bc2b!
, ~8.10!

which is consistent with perturbative calculations@16#.
In D55, we had to reduce further toD51022. We found

that l4 tends to zero according to the approximate law

l4.1.023~bc2b!0.507, ~8.11!

as shown in Fig. 15. If we replace (bc2b) by L22, we see
that our result is consistent withl4}L21.

IX. CONCLUSIONS AND PERSPECTIVES

We have shown that the use of truncations in the Fou
transform of the recursion relation of Dyson’s hierarchic
model leads to systematic errors which can be suppre

FIG. 15. log10(l4) versus2 log10(bc2b) in 5 dimensions.
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more than exponentially, when the dimension of the tru
cated space increases. We have justified the use of the
cation for calculations@11# of the high-temperature expan
sion. We have shown that the finite volume effects can
reduced with an exponential precision. We have found
temperature dependence of the numerical errors and
plained the empirical results with a simple renormalizat
group argument.

The numerical errors can be seen as a practical aspe
the so called ‘‘mass hierarchy problem’’ often used as a m
tivation for supersymmetry or technicolor. In a scalar theo
maintaining a small physical mass in cutoff units usua
requires a fine tuning of some parameter. In the calculati
described above, we have fine-tunedb close to its critical
value. One can use (bc2b)2g/2 as an order of magnitud
estimate for the ratio of the cutoff and the renormalized m
L/mR . From a calculational point of view, the determinatio
of bc is numerically robust, however our calculation
method of the physical quantities becomes numerically
stable when we get too close tobc . This difficulty is not
unsurmountable, if we want to reach a cutoff of the order
the Planck scale which isonly 17 orders of magnitude large
than the weak scale. We can use programming methods
enough significant digits. To take the analogy with differe
tial equations, the problem of sensitive dependence on in
conditions can be dealt with provided that we do not evo
the system during a too-long amount of time.

The methods presented here can be applied to field t
retical calculations. The simplest one is the calculation of
renormalized mass. This quantity is crucial because it en
al
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into the definition of the functions appearing in the Calla
Symanzik equations@13#. For the model considered here,
possible definition of the renormalized mass is

mR
2~m!5 limL→`

L2

x`~bc1l2Lm!
, ~9.1!

wherel is the largest eigenvalue of the linearized renorm
ization group transformation which needs to be calcula
precisely.L is a UV cutoff taking the value 2L/DLR , where
LR is a scale of reference below which we are considering
effective theory. Finally,m is a parameter which allows us t
change the value of the renormalized mass. As explaine
Sec. VIII, the method can also be applied to the calculat
of renormalized quantities in Landau-Ginzburg mode
These calculations will be used to check the validity of t
perturbative evaluations of the functions entering the Call
Symanzik equations. In the caseD54, the high-temperature
expansion@19# indicates that the perturbative result@16# is
very accurate.

More generally, the calculational method presented h
can be used to check any kind of approximate calculat
which applies to the hierarchical model.
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