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The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical
values of the renormalized quantities which could be used to test any kind of approximate calculation. We use
finite truncations of the Fourier transform of the recursion formula for Dyson’s hierarchical model in the
symmetric phase to perform high-precision calculations of the unsubtracted Green'’s functions at zero momen-
tum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field
theory in which the large cutoff limit is obtained by lettiggreach a critical valug. (with up to 16 significant
digits in our actual calculationsWe show that the round-off errors on the magnetic susceptibility grow like
(B.— B) ! near criticality. We show that the systematic err(fisite truncations and volumecan be con-
trolled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use
of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormal-
ized coupling constant corresponding to the 4-point function and show that ghe8, , this quantity tends
to a fixed value which can be determined accurately wihen3 (hyperscaling holds and goes to zero like
[Ln(B.—B)] ! whenD=4.[S0556-282(98)05510-4

PACS numbe(s): 11.10.Hi, 05.50+q, 11.15.Tk, 64.60.Fr

I. INTRODUCTION The renormalization group meth@8] helps us to understand
the nature of the continuum limjig] for such a model. How-
Finding closed form, exact analytical solutions to difficult ever, in the case of short rangeearest neighbprinterac-
problems is considered a great achievement in theoreticaions, we are still far away from the numerical solvability
physics. In recent years, the development of fast computemrmentioned above.
and of easy electronic communications has enlarged the class In order to solve scalar field theory, one needs an approxi-
of solutions which can be considered as completely satisfaanation scheme such thdt) the zeroth-order approximation
tory. Lengthy expressions can be manipulated symbolicallypreserves the main qualitative features of the mo(ilthe
or numerically and communicated to othéfsr a concrete zeroth-order approximation is analytically or numerically
example, see for instance the Appendices of Rdj. Some-  solvable, andc) the zeroth-order approximation can be im-
times, the solution of a problem requires a combination ofproved systematically and in a practically implementable
iterations and expansions which can be performed with anway. The fact that Wilson’s approximate recursion formula
desirable precision in a short amount of time using a friendlysatisfies the requiremex) is justified in Ref.[3]. The ap-
environment such aATHEMATICA . An example of such a proximate recursion formula is an integral equation with one
solution is the calculation of the spectrum of the one-variable which can be handled by standard numerical meth-
dimensional quantum anharmonic oscillator described irods. The main sources of errors are the finite number of
Ref.[2]. In this example, even though no closed expressiomoints of integration and the parametrization of the behavior
for the eigenvalues and eigenfunctions is available, the besf the tails of the functions integrated. The errors can be
ginning of the spectrum can be obtained numerically withreduced by reducing the size of the tails and increasing the
great precision and almost instantly usimgTHEMATICA.  number of points. The question of the accuracy of this pro-
We could say that this problem is numerically solvable.  cedure is discussed in Reb]. Using instead the Fourier
Scalar field theory on a Euclidean lattice is a difficult transform of the recursion formula, we found a natural ap-
problem with many important applications, such as the interproximate method with a fast implementation and a control
actions of strongly interacting light particlépions, kaons, of the systematic errors which is better than exponential.
...), the generation of mass in the standard model of elThis alternative method of calculation is essentially a qua-
ementary particles, and the theory of critical phenomenadratic map in spaces of reasonably small dimensioyysi-
cally 50. This method is the main calculational tool used
and discussed in the present article.
*Present address. The approximate recursion formula is closely related to
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the recursion formula appearing in Dyson’s hierarchicalwhere § is the precision used to perform the arithmetical
model[6]. More precisely{7], at fixed dimension, there ex- operations. We then show that this law follows from an ap-
ists a one parameter family of recursion formulas which in-proximate renormalization group calculation which express
terpolates continuously between the two. Following R&J,  the fact that the more iterations we spend near the fixed
we call this parametef. Seen from a practical point of view point, the more the round-off errors get amplified in the un-
in our calculation, the extension to another valug ofi the  stable direction. As a by-product we obtain a numerical es-
recursion formula amounts to changing one number in on@mate of the critical exponeng in good agreement with the
line of a two page program. Physical quantities such as thexisting estimateg5,10—19 for D=3. As a general remark,
critical exponents vary slowly whefiis varied, but there is  we have a much better quantitative control on the details of
nothing that singles out a particular valuefofin the follow-  renormalization group arguments B=3 than inD=4,

ing, we specialize the discussion and the numerical study tghere confluent logarithmic singularities make the analysis
the case of Dyson’s model € 1/D) because this model has more delicate.

been studied5,8—11 in great detail in the past. Dyson’s e then discuss the systematic errors. The volume depen-
model is a well-defined lattice model and it admits the samejence of the magnetic susceptibility is discussed in Sec. V.
kind of expansiongweak and strong coupling, lardé-etc)  We show that in order to calculate the susceptibility at an
as any other scalar model on a cubic lattice. The basic recuinverse temperatur@, in D dimensions, and with relative
sion formula and the approximation methods are explaine@rrorsA, one needs a number of lattice sites which is of the
in Sec. Il. order of [A(B.—B)?] P2 We then show that when the

For simplicity, all the calculations done below use an ini- Fourier transform of the recursion formula of Dyson’s hier-
tial Ising measure. The infinite cutoff limit is obtained by archical model is projected into a finite dimensional space of
fine-tuning the only adjustable parameter, namely, the indimensionl ,,, the relative errors on the susceptibility as-
verse temperaturg. All the results will be expressed in sociated with this truncation decrease faster taafimax for
terms of 5. — 8. The general proceduf,4] which relates  some positive numbea. We show in Sec. VII that similar
small values off;— B to large values of the UV cutoff is results apply to the high-temperature expansion of the sus-
well-known and will not be repeated here. From a calculaceptibility, justifying the procedure used in RL1].
tional point of view, the discussion would be essentially the At this point, we have only discussed the susceptibility, or
same if instead we had fixe@=1 and considered initial in other words, the 2-point function. The 4-point function is
measures depending on a cutoff and several bare parametesgso provided by the calculational method at no extra cost.

The rest of the presentation is based on the followingHowever, the calculation of the corresponding renormalized
empirical fact: the systematic errors due to finite volume fallcoupling constant requires a subtraction. In the discussion of
exponentially with the number of iterations{,,) and the the errors on the susceptibility, we have explained that while
systematic errors due to finite dimensional truncation fallwe are iterating the recursion formula, we lose significant
faster than exponentially with the dimension of the truncatedigits “from the right.” With the subtraction, we also lose
space (a4 - In calculations involving double precision, one significant digits “from the left.” This is explained in Sec.
can, without encountering major difficulties, choosg,x  VIII, where we calculate a “dimensionless coupling con-
andl .4 in such a way that if we increase these parameterstant” inspired by the field theory definition of R¢fL3] and
further, no change is observed in the results. One can thedenoted\ , .
first determine the critical temperature and the numerical er- |n the caseD =3, we show that wheg— ., \, tends to
rors. We need to discuss these first, because the numericalfixed non-zero value that we were able to calculate with 6
errors are a fundamental limitation, whenever the precisiosignificant digits. This is very convincing evidence that hy-
of the arithmetic operations is fixed, and there is no point inperscaling holds for the model considered here. For the
trying to reduce the systematic errors much below the nunearest-neighbor Ising model on a 3-dimensional cubic lat-
merical errors. tice, it is very hard to decide if hyperscaling holds on the

The phase structure of the approximated models is disbasis of Monte Carlo simulatiorid4] or high-temperature
cussed in Sec. Ill. We show that the susceptibility reaches itexpansior{ 15]. In the present case, it is a short and straight-
infinite volume value in the expected way, wher.3.. On  forward calculation. This shows that it would be worth trying
the other hand, foB> 8, the infinite volume limit is prob- to interpolate perturbatively between Dyson’s model and
lematic. We want to make clear that this is a feature of thenearest neighbor models, transforming the qualitative ap-
numerical method and not of the model for which the exis-proximation[3] into a quantitative approximation. The accu-
tence of a low temperature phase is well-establisfe8l.  racy of A, decreases, wheld increases. However, we were
We also give a practical method to identify the inverse of theable to obtain good evidence thatn=4, \ , decrease like
critical temperature, denote@l,, with an optimal accuracy. [In(8.—8)] %, in good agreement with the behavior ob-
In the following sections, it will always be assumed that wetained with the field theory methdd.6] at lowest order in
work in the symmetric phaseB B.). perturbation theory.

The numerical errors on the magnetic susceptibility are  Our results show that it is possible to calculate accurately,
studied in Sec. IV, where we show that the relative errorsand without major effort, the renormalized quantities which
obey the approximate law can be extracted from the 2- and 4-point functions. These

calculations can be done for an extended range of small val-
Sx S ues of B.— B. In other words, for existing compu@ers,_re-
’_ ~—, (1.1 qguirement(b) is fulfilled by the hierarchical approximation
Xl BB provided that one does not require too-small valuegpf
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—B. Numerical solvability can sometimes completely change The field bx,

O;J:jﬁ:fomt of \I/iew regarding a probIeLn. Tahking the exarlnplewo(d)) which needs to be specified. In the following, we use
of differential equations, at a time when their numerical so- : W _ 2 ; '
lutions were not achievable, one could dream of a perfectl an Ising measuralo(¢)=5(4" 1), which takes only the

deterministi hi wral oh in which X/alues+1. To the best of our knowledge, the results pre-
eterminisic approach to natural phenomena in Which everygq yiaq o not depend on this specific choice and would also
thing could be known once the rules of evolution and the

initial conditions were given apply, for instance to thezcas?1 of Landau-Ginzburg measures
This paper provides a calculational method to anyone wh@ the formWo(¢)=e AR . _

would like to check an approximation method with accurate 1 ne Integrations can be performed iteratively using the

numerical results. As explained above, most of the approxirécursion formula

mation schemes which apply to a scalar field theory with C

nearest neighbor interactions on a cubic lattice also apply twn+1(¢):”_+1e<ﬁ'/2><°/4

Dyson’s model. We are presently testing the validity of sev- 2

eral well-known, but not easy-to-control expansions: the

renormalized perturbative expansion, the loop expansion, ded)’Wn

and the largeN expansion.

X)) is integrated with a local measure

)n+1¢2

(p—¢")
2

(p+¢")
w7

whereC,, ; is a normalization factor which can be fixed at
Il. THE RECURSION FORMULA our convenience. The relation between this recursion for-

AND ITS FINITE DIMENSIONAL TRUNCATIONS mula and Wilson's approximate recursion form{ is dis-

) ) _ ) ) _cussed in Ref{7]. Introducing the Fourier representation
In this section, we briefly describe Dyson’s hierarchical

model and the methods used to calculate the average of ar- dk . .

bitrary powers of the zero momentum component of the sca- Wi(¢)= f Ee'k‘bwn(k)- 2.3
lar field. The models considered here havea2 sites. We

label the sites withp,y indicesx, ....x;, each index and a rescaling of the sourkeby a factor 1¢ at each itera-
being 0 or 1. In order to visualize the meaning of this nota-tion, through the redefinition

tion, one can divide the "®ax sites into two blocks, each

contair?ing Pmax—1 sites.. If.xn.max=0, the site is in the firsF Rn(k):Wn(En)i 2.4
block, if Xn, =1 the site is in the second block. Repeating S

this proceduren,,, times (for the two blocks, their respec-
tive two sub-blocks, et we obtain an unambiguous label-

. (22

the recursion formula becomégg]

ing for each of the sites. Two sites differing only kyare in 1 [c _\n*1 42 k\ ]2
the same block of size 2. We write the action as Rn+1(K)=Cpy1 EXF{ - 5,3(232) WHRH(E)
(2.9
1 Nmax c\n 2 ) ) o ) ) )
S=—_= (_) > ( > bx ....x,|. Therescaling operation commutes with iterative integrations
2021 V) %y T ke X xg o Mmax UL and the rescaling factar can be fixed at our convenience.
(2.1 In the following, we fix the normalization consta@t, in

such way thaR,,(0)=1. R,(k) has then a direct probabilis-

The indexn, referred to as the “level of interaction” here- tic interpretation. If we callM the total field= ¢, inside
after, corresponds to interactions of the total field in blocksPlocks of side 2, and( . . . ), the average calculated without
of size 2. The free parametar, controlling the strength of taking into account the interactions of level strictly larger
the interactions, is set equal td 2P in order to approxi- thann (or in other words, as ifi were equal ta,,,), we can
mate a nearest neighbor modelDrdimensions. In this ar- Write

ticle, we will consider the casd3= 3, 4, and 5. In Ref{5], " 2 2

another parametrization is used. The choides 3, 4, and 5 R.(K)= 2 (=) (M), 2.6
correspond, respectively, t@/d=2/3, 2/4 and 2/5 irtheir n i=o 29! s%an '
notations.

All the calculations in our paper are done wii=0. For ~We see that the Fourier transform of the local measure ob-
D=4, this is also a feature of nearest neighbor models. Foiained after n iterations generates the zero-momentum
D=3, 5 is small, but not zero for nearest neighbor models Green’s functions calculated with” Zites, and can thus be
We are thus clearly not attempting to make accurate realistivsed to calculate the renormalized coupling constants at zero
calculations. The main point of the paper is to show thatmomentum.
within the approximation considered, one can make very ac- The choice ofs is a matter of convenience. For calcula-
curate, non-perturbative, calculations of the renormalizedions in the symmetric(high-temperatune phase not too
quantities with a large cutoff and a large volume by using aclose to the critical temperature, or for high-temperature ex-
very simple algebraic algorithm. We do not discuss any im-pansiong9,10], the choices= V2 works well. For calcula-
provement of the approximation which would allow#0. tions very close to the critical temperature, the choge
This is a very difficult problem which still needs to be solved =2c~ 2 prevents the appearance of very large numbers. In
(see, e.g., Ref17)). the following calculations, walwaysuses=2c~ %2
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In the following, the finite volume magnetic susceptibility to order 800 with an Ising or a Landau-Ginzburg measure.
is defined as The calculation of the large-order coefficients requires a lot
of computing time. We found that using a truncation in the

~{((Mp)?)y, expansion irk? at order 50 could cut the computer time by a
xn(B)= 2" 2.7 factor of order 100, while having effects on the values of the
coefficients which were smaller than the errors due to nu-
With the rescalings=2c~ 2, we have the relation merical round-off.
oin We consider the finite dimensional approximations of de-
Xn= —2an1 c (2.8 greelmax:

Ro(K)=1+ap K> +a, Kk + - +ay Kmax (2.9)
The initial condition for the Ising measure RBy=cosk).

For the Landau-Ginsburg measure, the coefficients in thé\fter each iteration, non-zero coefficients of higher order
k-expansion need to be evaluated numerically. (@nt1y,,,,+1: €tc) are obtained, but not taken into account
In previous publicationf10,11], we used the8 expansion (i.e., set to zero as part of the approximajion the next
of Eq. (2.9 to calculate the high-temperature expansion ofiteration. More explicitly, the recursion formula for tlag

the magnetic susceptibility of Dyson’s hierarchical model upreads:

[2htd—myt2mt](c/d'[—(1/2p] ™

|ma>(
» ( S an e

I=m \ p+q=I

Imax

(2.10

Ant+im=—

[201/11](cld)'[ - (1/2) 8]’

> a,.a
=0 \ p+g=I npen.g

Ill. THE PHASE STRUCTURE ((M)29) 102", 3.2
OF THE APPROXIMATED MODELS

From a field theoretic point of view, an important feature This situation is characterized by ratiag. ; 1/an 1 reaching
of the hierarchical model is its second order phase transitiorthe valuec/2=2"2P.
Our first task will be to identifyB, for the well-studied On the other hand, whefi is increased sufficiently, there
[10,18 case of an Ising measure. The truncation describets a sudden change of behavior. Whenncreases up to a
above can be used to calculaf®] exactly the high- certain value, the rati@,,./a,, increases suddenly and
temperature expansion of the magnetic susceptibility up tethen drops for a few iterations near the vate2® which
order B'max~1, This guarantees that for sufficiently lo@, corresponds to the behavior characteristic of the low-
the truncation ink? will have negligible effects. However, temperature phadd3], namely
we know for instance thdtL0] for I ,,,,=50, we can calcu-
late very accurately the 800th high-temperature coefficient of ((M )29y 0c 229, (3.3
the susceptibility. This result can be interpreted as follows.
The exponential in Eq2.5) is defined as an expansion 1 Thjs js jllustrated in Fig. 1 foD=3: we can observe a

; +1 2
and by neglecting terms of orddfme<"! in R?, we also low-temperature “shoulder,” where the ratio gets close to
neglect some part of the coefficient gfmaxin the suscepti-

bility. On the other hand, by normalizing and squaring, we .
generate terms of much larger orderdrwhich approximate
very well the exact coefficients up to an order in the high-
temperature expansion much larger thgg,. This suggests
that the truncation itk? could be a very efficient calculation
tool in the high-temperature phagghere the expansion i
convergey but that problems may appear in the low-
temperature phase. We will now investigate this question by
making calculations at fixeg@.

The truncated recursion formula shows very clearly the
existence of a high-temperature phase, wherenfdarge

enough, we have the scaling law Su0 60 ' 80 100
an <2270, (3.2 n
Given the choice of scaling facte=2c¢~ %2 and the defini- FIG. 1. a,,1/a, versusn for B=B.—10"° (empty circles,

tion of ¢ discussed in Sec. Il, this scaling is equivalent to theg=g.— 10 ! (empty triangle 8= 8.+ 10 ° (filled circles and
“central limit” behavior B=B:+10 1 (filled triangles.
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rmension FIG. 3. Relatives differences between the susceptibility calcu-

FIG. 2. 1/3. versus the dimensioD. lated with the main methody) and three alternative methodg{)

with i =1 (crosse} 2 (diamond$ and 3(circles as in the text. The

the value 2°~=1.26 during 6 or 7 iterations. It is possible to calculations were done iB=3 and with3=8,~10 .

widen this shoulder slightly by increasirg,,,. However,

we have not been able to obtain the robust asymptotic stabifity grows linearly with the dimension. The explicit calcula-

ity that we were able to obtain in the high-temperature phasdion of the high-temperature expansi¢f] suggests that

After reaching the low-temperature shoulder describedvhenD—c, i.e., whenc—2, we have

above, the ratio drops to 1 ameverreturns to any kind of "

behavior like Eq(3.2). The “irreversibility” of this process b :( 2c )

allows us to identify unambiguousl|g., in the sense that a m \(4-c)(2—c)) '’

calculation at finiten gives upper and lower bounds ¢h .

By increasingn, we can obtain sharper bounds. This proce-which implies that

dure is illustrated folD =3 in Fig. 1.

We see that a calculation for up to 50 allows us to

resolve the 10th digit oB., and a calculation fon up to 60

allows us to resolve the 11th digit. Proceeding similarly, we

can determine the numerical value 8f with as many sig-  This estimate of the slope is in good agreement with the data.

nificant digits as the computational method allows. DoubleWe found a slope of 0.714, whil2In(2)]~*=0.721. Next

precision Fortran calculations made with,,=80 are re- Wwe will study the various sources of error occurring, when

ported below for the Ising model in 3, 4, and 5 dimensions.one approacheg. from below.

The results are in agreement with the bounds found in Ref.

(3.9

b= 5 (3.6
¢ 2In2 '

[18] with independent(and exact calculational methods. IV. THE ROUND-OFF ERRORS
The third column gives the minimal value nfwhich allows )
a resolution of the 16 significant digits _ Round-off errors can play an important role, when recur-
sive methods are used, because they may grow faster than
D 8 n. I the improvement of the results due to the repeated use of the
c min ma)gmn . . .
method. For this reason, we have studied them with three
3 1.179030170446270 102 32 independent methods. By independent, we mean that the
4 0.6654955715318593 111 43 arithmetic is performed in a completely uncorrelated fashion.
5 0.4569633006170210 132 45 We have compared our original Fortran calculation on a
(3.4 DEC-alpha with three other calculations. The first one was

the same program run on a MIPS. The second one was a
Subsequentlyl .« was lowered by small steps until the MATHEMATICA program, where a higher precision in the
value of 8. changed. This experiment shows that the changarithmetic operations was set. The precision was adjusted in
occurs at values much smaller than 80. In the fourth columsuch a way that the susceptibility was obtained correctly with
of Eq. (3.4), we give the minimal value df, 5, such that the 16 significant digits. Thirdly, we have compared the calcula-
stable value of3. with 16 significant digits can be reached. tion with the one obtained with a slightly different rescaling,
One may wonder if the precise value Bf is dependent namely s=1.9& 2 a method already used in Refs.
on the numerical aspects of the calculation such as thgl0,11. All these calculations were performed with, .,
round-off errors, which will be discussed in the next section.= 60, which is beyond what we nedgee the next sectipn
To settle this question, we have used methods which perform The relative differences in the finite volume susceptibility
the arithmetic operations differentighese methods are ex- are shown in Fig. 3, fob =3 andB.— =10 The figure
plained in detail in the next sectipand found the very same shows clearly that the three types of discrepancies are essen-
values of .. In conclusion, we have found a reasonablytially the same. Since the three types of errors are uncorre-
robust value of3. which is consistent with existing results. lated, we can identify them with the round-off errors and
We have calculategwc‘l for dimensions much larger than calculate them with the most convenient method. Using the
4. The results are displayed in Fig. 2. We see that this quarthird method, we have calculated the round-off errors for
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ol T T T T T T T an estimated error of order 0.001. This implies a value
= ] 10°1%4=1.427 for\. Using the usual formula for the critical
T 1 exponent,

9 r -
e In(2/c)
= y=—, 4.3
= o ] In(\)
=3 ] we obtain the valuey=1.30, in good agreement with exist-
& 1 ing estimate$5,10—13.
SL i ForD =4, the same procedure gives an exponent which is
! . s L. R N I too high by about 3 perceritompared to the trivial valye
0 5 10 15 This is a typical error, when one does not take into account
the marginal direction and theelated confluent logarithmic
—log;(B.—) singularity in the susceptibility. As discussed in R¢f519],
FIG. 4. Relative difference between the susceptibility calculatedIhe subleading corrections also play an important partin this

with the main methogy and with a rescaling® as explained in analysis.

the text versus3.— B, in D=3 (circles, D=4 (star3 andD=5
(squares V. VOLUME EFFECTS

] ) In the two previous sections, we developed a qualitative
various values of8. In all the cases, the logarithm of the yngerstanding regarding the finite volume susceptibjity
relative error grows linearly at the beginning and then stabiy in other words regarding the way the susceptibility de-
lizes at a constant value. The period of linear growth Corrépends on the number of iterations. Volume effects can be
sponds roughly to the iterations, whegg.,1=2?"x,. For  important in the determination of the critical exponents. For
larger n, the value of the susceptibility stabilizes, with instance, in Ref[18], exactcalculation with almost a million
changes decreasing by a faC_tOTZ@ at each step. During sjtes gave errors of more than 10 percent in the expompent
this second stage, the numerical errors do not grow signifiyie are now ready to get a better quantitative understanding
cantly. of these effects.

We now proceed to discuss the asymptotic values of the |f we consider the evolution of,(8) whenn increases,
errors, in other words, the stable value they reacmfsuf-  \yith B fixed slightly below, , we see from Fig. 1 that when
ficiently large. We have collected these values for variousye are close to the fixed poink,+1~22Py,,. This lasts
temperatures anB® =3, 4, and 5 in Fig. 4. This shows that ntil the right order of magnitudg ~(8.—8)"? ] is

the [ellqtlve error is in good approximation (8.  reached. For largen, the value of the susceptibility stabi-

— )", independently oD. _ ~_lizes, with errors decreasing at each step. In this second re-
These empirical results have a simple explanation ifyime, the measure becomes asymptotically Gaussian, and

terms of the linearized theory. Suppose tidais a typical  gne can estimate the changeyip from the change in thi?

round-off error in a calculatiorte.g., 10*%), and that\ is  term. From the basic formukg.5), one gets the estimate for
the largest eigenvalue of the linearized renormalizationthe relative change:

group transformation near a given fixed point. One expects

the numerical error om,, ; to be of the orden"s. With the

rescaling used in this paper, this means that the errors on the Ap=
susceptibility are of the order

Xn+17 Xn
Xn

59— (2D)n

Xn- (5.9

From these considerations, we find the numbgg,A) of

\ n iterations necessary to calculate the susceptibility at figed
| OXnl ~\"5 cl 4D with a relative precisiorA [defined as in Eq(5.1)]:
_ DIn(10
Now f_or n _suph that)\”~(,[_3c—,8) L we havey~ (2/c)". n(B,A)= —(%)['0910(A)+7|0910(BC—B)]-
Plugging this into the previous equation, we get n(2)

(5.2

(4.2 The comparison with a numerical calculation, where we re-
quiredA=10 '°is given in Fig. 5 forD=3, 4, and 5. The
agreement with the estimate of E¢.2) with y=1.3 (1.0

which is the empirical result found above. The result may bdor D=3 (4 and 5, is quite good.

rephrased by saying that the more iterations spent near the The fact that we were able to stabilize sixteen digits of the

fixed point, the more the round-off errors are amplified. Thissusceptibility does not mean that the results have sixteen

is an effect of the calculation method. This is not incompat-digit accuracy. The asymptotic stability of the numerical re-
ible with the fact that one can find numerically stable meth-sults comes from the fact that the right-hand siB&1S) of

ods to calculate the fixed point as shown in R¢Es8]. Eq. (5.1 will go to zero, whenevel, quits growing. This

For D=3, one can check the details of the above argu-occurs independently of the fact that numerical errors may

ment and, as a by-product, obtain an estimate.dfhe slope  occur, while x,, builds up its bulk value. Consequently, a

of the increasing part of Fig. 3 is approximately 0.154, withmore realistic approach would be to require a precision con-

’ﬂ %
X Bc—B'
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FIG. 5. n(B,A) defined in Eq«(5.2), for D=3 (circles, D=4 =0 @2 30 35
(starg and D=5 (squares Filled symbols correspond to a fixed 1
value A=10"%5, empty symbols correspond to a variable value
=10"%%(8.— B). FIG. 7. Relative difference between the susceptibility calculated

with | o=1+1 andl =!I in D=3 (circles and with 8= 3.

sistent with the round-off errors discussed in the previous— 10", compared with a linear fit of these points.

section. Imposing a temperature-dependent requiremient

=108 8.~ B) 1, we obtain values ofi shown in Fig. 5.  analysis shows that this new parametrization reduces the
square root of the sum of the square of the relative differ-

VI. CONTROLLING THE EEFECTS enced| (fit-datg/datg by one order of magnitude. This sug-
OF EINITE DIMENSIONAL TRUNCATIONS gests that one should try to derive rigorous bounds, where

the errors are proportional to some inverse powel gf{).

In this section, we study thig,,, dependence of the mag-  We have thus studied the logarithm of the relative differ-
netic susceptibility for8<B.. For notational purposes, we enceddue to the change ih,,,) divided by the logarithm of
call (" the susceptibility corresponding to a given valuel .y for various temperatures with=3. The results are
lmax=1. For each calculation, the value of,,, has been shown in Fig. 7. We then used linear fits for the part falling
increased until no change could be observed. The results alieearly. In other words, we assumed the approximate law
displayed in Fig. 6 for8,— 8=108. For low|, x(" grows
at a not-very regular rate and within the bounds 1
< x9N <10. Whenl gets close to 20y(") starts stabi-
lizing with a precision which seems to be exponential. For ) )
instance, foD =3, the relative errors fall approximately like The results can be summarized as follows. The slope is al-
10-%9_ This exponential rate is based on the assumption thah0st independent o3 and takes the approximate value
the logarithm of the relative errors falls linearly. However, a —0-41 with changes of order 0.01. The intercept grows lin-
closer look shows that it falls slightly faster. This is illus- €arly with—log,o(8.— B), as shown in Fig. 9. A linear fit of
trated in Fig. 7. The best parametrization that we have foundis data gives an intercept of the form +.0.83
is a linear function times the logarithm bf A more detailed

=|(=lsll+a) (6.2)

y=log, J1—x(1+1)/x(1)/1og (1)

y:loglo |1—X(l+1)/x(l)| L e B L By s s S s s
\ T 1 T [ i
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FIG. 8. Relative difference between the susceptibility calculated
FIG. 6. Relative difference between the susceptibility calculatedwith | ,,=1+1 andl = in D=3 with 8=8,—10 2 (filled
with | a=1+1 andl.=1 in D=3 (circley, D=4 (starg and circles, B=B.—10°% (asterisks B=pB.—10* (crossey
D=5 (squares B=B.—10 %in the three cases. =~ ...... up toB=B.— 10 *? (empty circle.
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N . . . . 1-dependence of b (D=3)
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FIG. 9. Intercept of the linear fits corresponding to the linear

part of Fig. 8.
FIG. 10. Relative difference between the coefficients of the sus-
X logio( Bc— B). If we neglect the slow logarithmic varia- ceptibility by, calculated with a,=1+1 andl na,=1in D=3 with
tions and approximate it by a constant central value in thé"=200 (squares m=300 (circles and m=400 (triangles.
falling part of Fig. 8, we obtain the approximate law
In[ (b — b))/ bl
In(l) '

1)
’—X~3.2>< 10X (Be— B) 12X (4.1) 'max. (6.2 |
X Wherebﬁn) is the truncated version of the exdgt. Figure 10

show these lines i =3, for m=200, 300, and 400. Very
imilar numerical values are obtained for=4 andD=5.
or this reason, it was impossible to display the values for
the three chosen dimensions in a single graph. The graphs in
D=4 andD=5 are similar looking and show a linear be-
havior as good as ilD=3. We can thus express the trun-
cated coefficients as

If we require these errors to be smaller than the numeric
errors, we find that,,,,=40 is a safe choice for all the
values of B.— B accessible with double precision. Slightly
larger values are obtained f&=4 and 5, which confirms
that the last column of Eq3.4) represents approximately the
values ofl,,x above which no significant changes are ob-

served. In conclusion, for calculations using double preci- b =p, (1—]Isi+ay 7.2)
sion, the choice,,,,= 50 is convenient and safe for the three mom ’ '
values ofD considered above. wheres andq are, respectively, the slope and intercept of the

Having an acceptable control on the susceptibility guarqresnonding fitted line. For the three chosen dimensions,
antees that we have an acceptable control on the higher Mg, ines seem to “focus” in one point close to the 0 axis
ments, (M77),/29" for g>1, since to leading order in the Thg intercepts are approximately independenncdnd take
volume, these quantities are dominated by the disconnectgflo approximate values 3.DE3), 2.3 O=4), and 1.7

parts. The precision which can be achieved on the connecte(fb: 5). For the slopes, we find straight line fits, if we plot
parts(which enter in the definition of the renormalized cou-

pling constantsis a more delicate question, which is dis- In[ —s(m)]
cussed in Sec. VIII. In(—m)
versus Inf) for D=3, and versusn for D= 4 and 5. In
VIl. EFFECTS OF FINITE DIMENSIONAL TRUNCATIONS Figs. 11 and 12 we have used every tenth coefficient in the
ON THE HT COEFFICIENTS range fromm=300...400. From these fits, we find fdd
In a previous publicatiofll], we used the truncated al- =3:
orithm to calculate 800 coefficients of the high-temperature
g g p s=— mO.OlSIr{m)70.22' (7.2)

expansion of the magnetic susceptibility. We claimed that

this truncation did not affect the numerical values obtained

In this section, we provide a more systematic justification oiFor D=4 we found

this procedure. g= — m0-0000241-0.19 (7.3
We examine thé,,,,-dependence of the high-temperature

coefficients of the susceptibility, for dimensions 3, 4, and 5.3nd forD=5:

As in Sec. VI, we replack,,, with | for notational purposes.

We denote the high-temperature coefficientsbasfor the s= —m?0:0000281-0.21 (7.9
mth coefficient.
Forl andm large enough, we find good linear fitslirior In D=3, for example, these results show us that we need

the quantity | larger than 34 for the error oo to be less than 10,



6334 J. J. GODINA, Y. MEURICE, M. B. OKTAY, AND S. NIERMANN 57

m-dependence of s (D=3) while the individual components scale liké"2 The situation

is worse, if we consider the 6-point functions, where the
connected part has the same scaling as (Bd), but the
individual components scale like*2 In other words, the
beginning significant numbers of the individual terms do not
matter for the subtracted quantities. Assuming 16 significant
digits, when 2" reaches 1%, we still get the subtracted
parts with 8 significant digits. When"eaches 1%, there

are no significant digits left for the subtracted part.

As a consequence, it is not always possible to stabilize the
value of the connected part during as many iterations as we
would like, given the study of Sec. V. This is an interesting
situation. As long as we increase the number of iterations,
] we get a value of the unsubtracted quantity which becomes
- 58 39 & closer to its infinite volume limit. If we represent the signifi-
cant digits of a double precision number as a sequence of 16
digits written in the conventional way, we can visualize this
FIG. 11. If —s(m)]/In(m) versus In(n) in D=3. procedure as the successive obtention of the digits on the
right side of the number. Unfortunately, at the same time, the
part which gets subtracted increases in magnitude. Conse-
uently, more and more digits on the left side of the number
re wasted for the evaluation of the subtracted quantities.
The situation gets worse, if we consider the 6 or higher point
functions.

VIIl. CALCULATION OF SUBTRACTED QUANTITIES The subtracted quantities are diverging near criticality.

However, it is possible to defingl3] dimensionless renor-

In this section, we discuss the numerical aspects of g, jized coupling constants which have a finite limit. In the

calculation of subtracted quantities. We specialize the disg,se of the four point function, the dimensionless renormal-
cussion to the calculation of the “dimensionless renormal+

) ) X X . '“Vized coupling constank, is obtained by multiplying the

Iflz;(cj:tif)cr)luplmg constant[13] corresponding to the 4-point zero-momentum connected Green's functi@f) by the D
From Eg.(2.6), it is clear that the calculation dR,(k) 4 power of the renormalized mags,: namely,

allows us to determine the renormalized coupling constants.

The first step in the calculation of these quantities is to ex-

tract the connected parts. In other words, we first subtract the

disconnected parts from thekzoint function. From a nu- The mnemonic foD +4 is 8 (amputation of the 4 legs at

merical point of view, this is not a trivial operation, becausez€ro-momentum+ D —4 (the canonical dimension of the

the subtracted quantiti€€onnected parisscale differently ~ ¢* bare coupling constantWe are using the notation

with the volume than the parts of which they are made. For

instance, for3<B. andn sufficiently large, ) (M =3((M)n)?
Gi=Ilim,_.. on _

In(—s(m))/In(m)

—0-148-0.147-0.146 -0.145-0.144

In{m)

while for D=4, |>38. Therefore, the value df=50 we
have previously used in calculating the first 800 coefficientd]
is more than adequate. a

Ag=—G5mR*4. (8.2

(8.3

<Mﬁ>n_3(<Mn>n)2“2n, (8.1

In order to compare with field theory results, one should
consider Landau-Ginzburg measures where the cutoff depen-
dence has been restored explicitly. For instanc® #n3, the
' ‘ ' ' ' ' definition of the functions entering in the Callan-Symanzik
] equationgthe beta function, etggiven in Ref.[13] requires
that we keep thelimensionfulconstant fixed, while the cut-
off goes to infinity. In other words, we need to change the
dimensionlesgonstant entering ilRy(k), while taking the
infinite cutoff limit. This delicate procedure is beyond the
scope of this paper, where we emphasize the basic numerical
aspect of a single calculation. As explained in the Introduc-
tion, we continue using a fixed Ising measure and a single
adjustable parametegy.

The quantityh, has a finite(and supposedly non-zero,
when D<4) limit, when A—o or equivalently, wheng

m—dependence of s (D=4)

In(—s(m})/In(m)
—0.181

-0.182

00 320 340 380 380 400 — B.. We can thus bypass the explicit introduction of the
cutoff. Taking into account that there is no wave function
renormalization, or in other words that the critical exponent
FIG. 12. If —s(m)]/In(m) versusm in D=4, 7 is zero, we define 4, as the limit, wheren goes tox of

-9.183

m
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(MM +3((MY),)? Mania_g| oy 8.7
MM 2P 84 An

When these two conditions are satisfied, we check that our
Equivalently, with the convention of Eq2.9), which  result forh, is compatible with the expected precision, or in
does not involve inverse factorials, and for the vakie other words, that we have enough significant digits left in
=2c~ 12 always used here, we obtain aﬁll— 2a,, to calculateh , with a relative precisioml\. We
thus require the additional condition

2
anl_zanz 2
Ngg=12—0t =02 8. ap1—2a,7 &
4n (_zan'1)D2+2 ( 5) nza 2n >K, (88)
n,

In practice, we pick a given relative precisianand we  where§ is a typical round-off error (10*® in double preci-
require thatn is large enough to stabilize the susceptibility sion). If the additional condition is not satisfied, we lowér
and \4 with a relative precisiors. The reason for requiring and repeat the calculation. We have applied this algorithm in
both conditions is thak, may temporarily stabilize, when D=3, 4, and 5 and for-log;o(B.— 8)=2,3,...,14.
the flow passes near the fixed poiand so we are still far For D=3, we were able to do all the calculations with
away from the infinite volume limjt but this is signaled by A=107%. We found that\, reaches a limit\} =1.92786,
the fact that the susceptibility is still growing. In summary, when 8— .. In other words, hyperscaling holds very well.

we require Figure 13 shows that to a good approximation
ani11 C A~ N5=1.68x(B.—B) 0% (8.9
a. 3 <A (8.6
an,1 In D=4, we had to reduce th=10"%. We found thai ,

tends to zero, whep— B.. As shown in Fig. 14, we have

and the approximate law
T T T T T T T T T ' ] )\ 1 (8 l@
. ] 4 —1.96-0.746XIn(B.— B) '
ol ]
. : which is consistent with perturbative calculatidis].

o [ . b In D=5, we had to reduce further to=10"2. We found
= o 1 that A, tends to zero according to the approximate law
~ r a 7
Tef . . Na=1.02¢(B.~ )%, (8.11)

i @ ] as shown in Fig. 15. If we replaceg{— B) by A 2, we see

wr o ] that our result is consistent with,oc A ~ L.

ol v v v ] IX. CONCLUSIONS AND PERSPECTIVES

0 5 10 15

We have shown that the use of truncations in the Fourier
transform of the recursion relation of Dyson’s hierarchical
FIG. 14. 1A, versus—log;o(8.— B) in 4 dimensions. model leads to systematic errors which can be suppressed

_|031o(ﬁc - ﬁ)
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more than exponentially, when the dimension of the trun4nto the definition of the functions appearing in the Callan-
cated space increases. We have justified the use of the truBymanzik equationgl3]. For the model considered here, a
cation for calculation§11] of the high-temperature expan- possible definition of the renormalized mass is

sion. We have shown that the finite volume effects can be

reduced with an exponential precision. We have found the A2
temperature dependence of the numerical errors and ex- m&(w)=lim__.. (Bt T’ 9.1
plained the empirical results with a simple renormalization X=\Pe K

group argument.

The numerical errors can be seen as a practica| aspect mhere)\ is the Iargest eigenvalue of the linearized renormal-
the so called “mass hierarchy problem” often used as a moization group transformation which needs to be calculated
tivation for supersymmetry or technicolor. In a scalar theoryprecisely.A is a UV cutoff taking the value '2°Ag, where
maintaining a small physical mass in cutoff units usually/Ar is @ scale of reference below which we are considering an
requires a fine tuning of some parameter. In the calculationgffective theory. Finallyu is a parameter which allows us to
described above, we have fine-tungdclose to its critical ~change the value of the renormalized mass. As explained in
value. One can uses(—B) "2 as an order of magnitude Sec. VI, the method can also be applied to the calculation
estimate for the ratio of the cutoff and the renormalized mas§f renormalized quantities in Landau-Ginzburg models.
A/mg. From a calculational point of view, the determination These calculations will be used to check the validity of the
of B. is numerically robust, however our calculational perturbative evaluations of the functions entering the Callan-
method of the physical quantities becomes numerically unSymanzik equations. In the caBe=4, the high-temperature
stable when we get too close .. This difficulty is not  €xpansion[19] indicates that the perturbative res{dif] is
unsurmountable, if we want to reach a cutoff of the order ofvery accurate.
the Planck scale which isnly 17 orders of magnitude larger ~ More generally, the calculational method presented here
than the weak scale. We can use programming methods witpfn be used to check any kind of approximate calculation
enough significant digits. To take the analogy with differen-Which applies to the hierarchical model.
tial equations, the problem of sensitive dependence on initial
conditions can .be dealt with provided tha.t we do not evolve ACKNOWLEDGMENTS
the system during a too-long amount of time.
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