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Computing the spectrum of black hole radiation in the presence of high frequency dispersion:
An analytical approach

Steven Corley
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We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave
equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB
techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is
obtained by adding a higher order derivative term suppressed by powers of a fundamental momentlgn scale
to the ordinary wave equation. Depending on the sign of this new term, high frequency modes propagate either
superluminally or subluminally. We show that the resulting spectrum of created particles is thermal at the
Hawking temperature, and further that the out-state is a thermal state at the Hawking temperature, to leading
order inkg, for either modification[ S0556-282(98)06710-1

PACS numbds): 04.70.Dy, 04.62+v

[. INTRODUCTION theories have already been considerefbi8], in particular
the subluminal equation considered in this paper is the same
Since Hawking's discovery that black holes radiate a theras considered ifig]. Recently Unrui10] has also consid-
mal spectrunf1] various other derivations of this effect have ered a superluminal modificatio@lthough different from
appeared2—4)]. All seem to depend in some crucial way on the one considered her the ordinary wave equation. He
the very high frequency behavior of the theory. Clearly sucH@s shown by numerically solving the modified wave equa-
a derivation cannot be trusted without taking into accountion that the spectrum is very nearly thermal at the Hawking

backreaction effects from the spacetime metric. This has leffmperature, and that the Hawking particles arise from
a number of author§5—8] to consider the effects of high vacuum fluctuations inside the horizon. Since these vacuum

frequency dispersion on the Hawking spectrum. All havefluctuations would in principle evolve out of the singularity,

found, in the context of specific models, that the Hawking_la_obzl\"lg?;%i(s:on?:g?enmat ltJmeruimi?wl;Itaegtg gg;lgnzgdriﬂ:;riﬂ'e
radiation remains almost exactly thermal at the Hawkingv P C A ,
temperature acuum fluctuations were in the ground state outside the sin-

In this paper we show how the leading order Contributiongularity. In this paper we consider a similar superluminal

. . . dification to th di tion, with th
to the Hawking flux can be obtained by analytical methods[rggeI c;?&ll)gounndc;ry io%rdilt?c?r?/ wave equation, wi € same

for two models containing high frequency dispersion, one in™ tha remainder of this paper is as follows. We begin by
which the high frequency modes propagate subluminally anéhiroducing the model in Sec. II. In Sec. IIl we discuss the
one where the high frequency modes propagate superluMinethod used to compute the particle creation in this model.
nally. The method involves a combination of WKB and sections IV and V then describe how the relevant solutions
Laplace transform techniques to solve the modified waveor particle creation are obtained for the subluminal and su-
equations, similar techniques were also used by Brout, Masgserluminal dispersion relations respectively, and in Sec. VI
sar, Parentani, and Spindé] for different subluminal type we end with some conclusions. We use units with 7%
models. We show for both models that the Hawking flux=1,
remains exactly thermal at the Hawking temperature to lead-
ing order in inverse powers & . We further show, to lead-
ing order inkg, that static observers far outside the black
hole see the in-vacuum as a thermal state at the Hawking We consider a real scalar field propagating in a 2-
temperature, also in agreement with the ordinary wave equatimensional black hole spacetime with metric
tion cas€9].

The specific models of high frequency dispersion consid- ds?= — dt2+ (dx—v(x)dt)2. (1)
ered in this paper are obtained by adding a higher derivative
term, suppressed by a new fundamental momentum cutoﬁt

ko, to the ordinary wave equation with the appropriate sign, his is a generalization of the Leftkm line_element of
0 . . -

: ; : : chwarzschild spacetime whevéx)=—2M/x. We fol-
to generate either subluminal or superluminal propagation 01$W the convention that (x)<0 and(in units wherec=1)

high frequency modes. The low frequency modes howeve . . L ; X
behave as in the ordinary wave equation. Various sublumin |£Zir\1/oerr:2to); is located at(xy) = —1. The action for the field
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10 ' ' —vK) and k?*k¥/k2 as functions ok for a fixedw, along
with the square root of the dispersion relation resulting from
the ordinary wave equation. The intersection points are the
allowed wave vector roots t(6). The value of the slope of
the \k?+ k¥ k3 curve evaluated at an intersection point is the
00 locally measuredby a freely falling observergroup veloc-

ity of a wave packet centered about that wave vector. From

Fig. 1 we see for the/k?+k%k3 (corresponding toF_)
05 ¢ 1 curve that this slope is approximately one whes&k, and
increases with increasing, therefore the high frequency
modes propagate superluminally. Similarly tkjkz—k“/ko2
1.0 05 % 05 10 (corresponding td=.) curve has slope approximately one
when k<k, and decreases with increasikguntil at some
FIG. 1. Plot of the dispersion relations for the ordinary wavefinite k it goes to zero, with a further increasekrthe mag-
equation and its subluminal and superluminal modifications. ThEhitude of the S|0pe increases and eventua”y becomes much
intersection points with the«{—vk) line are the possible wave |arger than one. Therefore the “large” wave vector modes
vector roots. For the particular shown, there are four real wave propagate subluminally, but the “very large” wave vector
vector roots for the subluminal dispersion relation, but only two rea'modes, i.e., withk neark,, propagate superluminally. As
roots for the superluminal case. The other two roots in this case ar&lready mentioned, the latter superluminal behavior is not
complex. essential for what we discuss in this paper, it could be re-
moved by considering a dispersion relation like Unrufs$

preferred frame, the frame of freely falling observers. In theei‘h which the slope of the dispersion curve asymptotes to zero

- ; . . ask goes to infinity.
Lematre coordinate systentg;+ v (x)d,) is the unit tangent : : .
to free fall observers who start from rest at infinity, anids An important property of the actiof?), when generalized

. i - . to a complex scalar field, is that it is invariant under constant
its unit, outward pointing normal. Our action comes from

modifvina the derivative operator onlv alona the unit normal phase transformations of the field. This leads to a conserved
fying P y 9 currentj“. The time componeni®, when integrated over a

05

Ix- _ o . ) spatial slice, serves as a conserved inner product when evalu-
In the ordinary, minimally coupled actiofr(d,) =d. In  ated on solutions to the equation of motieh. For the met-
this paper we take ric (1), the inner product takes the form

. 1

_ 2 4

Fe(00)=0%=50x- 3 (F,G)=iJdx(F*(at+v(9x)G—G((9I+vz~7x)F*), )
0

The essential difference between these two derivative OPergyhereF (t,x) andG(t,x) are solutions td4). Two classes of

tors is thatF, produces subluminal propagation of high fre- solutions to the field equatioi@) are of interest. The first are

quency modéeswhereass _ produces superluminal propaga- the positive free fall frequency wave packets. They can be

tion. The simplest way to see this behavior is to look at thewritten as a sum of solutions satisfying
respective dispersion relations. Varying the action produces

the equations of motion (0 tvd)F(t,xX)=—iw'F(t,Xx) 8
1 ’ . g
2 b wherew’>0. The second are the positive Killing frequency
(0 + 8xv)(8t+vr?x)¢—(7x¢ikg - @ wave packets. These are a sum of solutions of the form

e '“'f(x) wherew>0. A positive free fall frequency wave
Assuming for simplicity thaw (x) is constant, we solvé4)  packet need not have a positive norm un@@rin general,

by looking at mode solutions of the form but does wherv(x)=const. A positive Killing frequency
_ wave packet also need not have positive norm in general, but
#(t,x) =expli(wt—kx)). (5)  does wherv(x)=0.

To quantize the field we assume thi(ix) is a self-adjoint
operator solution to the field equation which satisfies the
(w—vk)2=K2T (k/ko)*. (6)  canonical commutation relations. We define for a normalized
positive free fall frequency solutiof(t,x) the annihilation
In Fig. 1 we plot the square root @6), that is we plot p  operatora(f) by

This produces the dispersion relations

a(f)=(f,4). ©)
Actually F, produces both subluminal and superluminal propa- o o -
gation, however, the superluminal behavior does not play a cruciafVe make a similar deflnlthl’] for the_{innlhﬂé}tlon and cre-
role in the analysis of this paper. It could in fact be removed byation operators for a normalized positive Killing frequency
considering a model like Unruhis]. solutiong(t,x) (assuming it is also positive nojm
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Ill. COMPUTING THE PARTICLE PRODUCTION ing given that theF _ dispersion relation produces superlu-

The standard method of computing the amount of particlénin@l wave propagation. The important point concerning the
production in a given wave packet is to propagate this way@oundary conditions though is that the only packet ever out-
packet back in time to the hypersurface where the quanturﬁ'de the hQI’IZOﬂ is the late time, positive Killing frequency
state boundary condition is defined. In our case we are intef2@cket! This leads to the boundary conditions for the super-
ested in computing the particle production in a late time Uminal ODE that forx>0 the solution reduces to a single
outgoing (right-moving, positive Killing frequency wave mode with wave vector corresponding to the outgoing wave
packet. We assume that the state of the field is the free faR@cket. _ , o
vacuum, which is defined bg(p)|ff)=0 for all positive free Once we have solutions to the ODE's satisfying the
fall frequency modep on the early time hypersurface. De- boundar.y condmpns just dlscusseq, we may easily extract
noting our late time wave packet i, one may show that the particle creation. In the subluminal case, the solution at

ut»
its number expectation value in the free fall vacuum is x>0 [wherev (x)~const] can be decomposed as

N(our) = <ff|aT( ouDal ¢out)|ﬁ>: —(¢y_,y_) (10

where ¢_ is the negative free fall frequency part @t

after being propagated back to the early time hypersurface ) ) )
(see[8] for a detailed derivation wherek;(w) are the roots to the subluminal dispersion rela-

Rather than solving the full equation of motiga), we tion (6). From Fig. 1 it is easy to see that two of these roots

shall instead restrict ourselves to mode solutions of the forn@'e Positive and the other two are negative. The late time
wave packet corresponds to the small, positive wave vector

Yt x)=e "tp(x). (1D (k1s), and the early time, ingoing wave packets to the large,
positive wave vector,) and the large, negative wave vec-
Substituting into(4) (and settingky=1) produces the ordi- tor (k_) respectively. The small negative wave vectkr {)

4
¢><x>=|§l ci(w)ekit@X, (13

nary differential equatiofODE) corresponds to a long wavelength, ingoing wave packet
' which will not be important in this leading order calculation.
+= I (x)+ (L —v2(x))@"(X)+2v(X)[w—0v' (X)) P (X) The number expectation value for a mode of Killing fre-
Cwlo—p'(X)$(x)=0 (12) quencyw is then
A ’ 2
where the+ refers toF . respectively and we have used a N(w)= o’ (k-)vg(k-)cZ (o)) _ (14)
prime (r) to denote a derivative with respectxo Restrict- | (Kis)vg(kis)Ch (o)

ing ourselves to mode solutiol) therefore has the advan-

tage that we need only solve an ODE. o The kinematic factors 4(k) andw’ (k) are the group veloc-

To determine the boundary conditions fd2) it is nec- 1 a5 measured by a static observer and the frequency as
essary to study wave packet propagation in these models. Flaasred by a freely falling observer of a wave packet nar-
the subluminal,F, , equation this has been discussed inrowly peaked about wave vectér

great detail in[6,8]. The conclusion is that the late time,  The superluminal equation can be handled in almost ex-
positive Killing frequency packet comes from a pair of ingo- actly the same manner. Far outside the horizon, whéxg

ing, short wavelength packets, located far outside the blacls approximately constant and satisfies &(x)>—1, it is
hole, and nothingelse. In particular, no part of the wave again easy to see from Fig. 1 that there is one positive wave
packet piles up against the horizon as with the ordinary wavgector root k. ) of the dispersion relatiofs) (with the plus
equation, and furthermore nothing comes from across thgign) and one negative wave vector rodt (). Our bound-
horizon. This led8] to conclude that the boundary condition ary conditions dictate that the solutionsat0 is®

for (12) in the subluminal case is that the solution decays
across(and inside the horizor®

For the superluminak _ , equation we refer the reader to
[10,11] for the details of wave packet propagation. The con
clusion is that the late time, positive Killing frequency , ) ) ) . )
packet comes from a pair of right-moving, short wavelength This is not quite correct. Propagating the outgoing, positive Kill-

packets located fansidethe horizon. This is hardly surpris- ing frequency packet back in time, a piece of it will scatter into an
early time, ingoing packet. We again expect that the amount of

scattering is very small for a slowly varying background spacetime,
and in the leading order approximation discussed below we can
2There could also be an ingoing, long wavelength packet whictignore it. This problem can be dealt with by instead looking for
arises from scattering as the outgoing, positive Killing frequencymode solutions which correspond to propagating positive free fall
packet is propagated back in time. For a slowly varying backgroundrequency packets forward in time, which are necessary for com-
spacetime we expect that the amount of scattering is negligibleputing the full quantum state. This will be discussed in Sec. V A.
which is indeed what we find SNote that we use the same notation for denoting the wave vectors
3The solution cannot vanish inside the horizon because the coefor both the subluminal and superluminal cases; however, the actual
ficient of the highest derivative term does not vanish, as it does witlvalues of the wave vectors for a given differ between the two
the ordinary wave equation. cases.

C, ekrsl@X, (15)
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To avoid dealing with the singularity, we shall also assume
that v(x) becomes constant behind the horizon. When the C
slope of the straight line in Fig. 1 is larger than one, it is easy
to see that there is one positive wave vector réat)(to the
dispersion relation(6) (with the positive sigh and three
negative wave vector roots which we denotekag, k_,,
andk_ in order of increasing magnitudes genotingsmall

and m denotingmiddle. As we shall see below, only the
large positive and large negative wave vector solutions will
contribute to the solution. It follows that the solution in this
region is of the form

FIG. 2. Diagram of the steepest descent con@yr The un-
c ek(@xp o glk-(0)x (16)  marked regions are directions in which the contour must asymptote
for the integral to converge. Thg's are singularities of the inte-
The number expectation value in this case again becomegand and the wavy line is a branch cut.
(14), with the kinematic factors appropriate for the superlu-

minal equationf _ . fied, i.e., that the solution decays inside the horizon, as these
are the boundary conditions relevant for particle creation.
IV. APPROXIMATE SOLUTIONS The x-space solution outside the horizon must then arise

TO THE SUBLUMINAL EQUATION from a contour that is deformable ©,. This contour is

broken up into three separate contos; C,, andC; (see
The methods applied to find approximate solutions toFig. 3). By comparing the solutions corresponding to these

ODE (12) are the same as those used in solving the Schrocontours to the WKB solutiongcomputed in Sec. 1V Bof
dinger equation for a tunneling potential. For the generappg (12), we show thatC, corresponds to the late time,
potential one may find approximate solutions to the SChrOoutgoing Hawking particle and th&; andC, correspond to
dinger equation by the WKB methdd4]; however, about a  the ingoing, large positive and negative wave vector packets
classical turning pointi.e., where the kinetic energy van- respectively from which the outgoing Hawking particle
isheg the WKB approximation breaks down. Approximate arises. Once this has been done it is a simple matter to com-
solutions can nevertheless be obtained by expanding the pguyte the particle creation as discussed in Sec. Il.

tential V(x) in the full Schralinger equation about the clas- = e first linearizev(x) andv’(x) about the horizon as
sical turning pointx;,. Solutions to the resulting equation

are straightforward to find and are valid in the region v(X)=~—1+ kX (18
_ n—-1_clnv' (n)

|X ti| <|nV (X’[p)/v (ti)| (17) U’(X)*K"’K%X (19)
if V' (Xep), .. VT B(x,) all vanish.

If the WKB solutions are valid in regions on either side of wherex is the surface gravity of the black hole described by
the classical turning point which overlap with the region of the metric(1) and « is a higher order correction to(x).
validity of the solution to the linearized potential equation, Substituting into(12) and keeping only linear terms ir
then we can obtain approximate solutions to the full Schroyields
dinger equation over the entire range>afWe now apply

this method to ODE12) for the subluminal equatiorf; . . HI(X)+2kx"(X) +2[ — (iw— k) + (k(i0— ) + k3)X]
We begin by finding the approximate solution about the ho- , o )
rizon relevant for particle creation in Sec. IV A, and then X @' (X)—iw(io—Kk—r1X)$(x)=0. (20)

match this solution to WKB solutions outside the horizon in
Sec. IV B. From this solution we then compute the amount
of particle creation in Sec. IV C. Finally we show in Sec.
IV D that this method can be extended to computing the
complete out-state to leading orderkp, i.e., compared to
just computing number expectation values.

A. Approximate solutions about the horizon

The calculations we present in this subsection are as fol-
lows. We find approximate solutions to OQE2) about the
horizon by linearizing thex-dependent coefficients in the
equation and solving the resulting_ equation b_y the method of (5 3 Diagram of the contours of integratiay, C,, andCs.
Laplace transforms. These solutions are given by cONtOUE, andc, are steepest descent contours passing through the saddle
integrals in the compless-plane (where's is the Laplace pointss, ands._ respectively. The unmarked regions are directions
transform variable The contourC, (see Fig. 2 correspond-  in which the contour must asymptote for the integral to converge.
ing to thex-space solution inside the horizon is chosen soThe x's are singularities of the integrand and the wavy line is a
that the boundary conditions described in Sec. Il are satisbranch cut.
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Validity of this equation requires thaix|<1 and|K§x/K| asymptotes to any of the three regiof®b). To find this
<1. To leading order we may therefore further simplify the solution we approximate the contour integf@?) by the

equation as method of steepest descents$].
_ First rewrite the contour integral as
HI(X)+ 2kx0"(X) = 2(iw— k) @' (X) —i 0(i w0 — k) P(X)
=0. (21) d(x)= f dsg(s)ex'® (26)
C

This is the equation we shall use in this paper to find ap-
proximate solutions about the horizon; however, to computévhere
correction terms to the flux, we must keep at least all linear

_ o l-iw/k
terms inx and possibly even higher order termsxnWe g(s)=s (27)
shall discuss this further in the Conclusions section. d
We use the method of Laplace transforfh§,16 to solve
(21). Writing the solution as a Laplace transform, . 1 /33 iw(iow—K) ”
(s)=s+ 2KX\§ S 28)

$(x)= f ds €%¢(s) (22
¢ To evaluate(26) by steepest descents we first locate the

(whereC is the contour of integratigrand substituting into saddle points off(s). These are given by the roots of

(21) yields thes-spacé ODE df(s)/ds=0 [16], which in this case are approximated by
o~ s*—2(iw—k)s—iw(iw—k) SemE = 2KX (29
d[In(s°¢(s))]= > . (23 _ . .
2KS (since we are in a region whetg x<|xx|). The contours of

) , , steepest descent through these saddle points are given by
Equation(23) is easily solved as Im(f(s)—f(s.))=0 and Réx(f(s)—f(s.))]<0. Using

_ 1/s% iw(io—«k) this one may show that the direction of the steepest descent
5(5):Sl'w/'<ex;{_ —_+ —) ) (24) contours througts, ands_ are —w/2 to w/2 and O towr

2k\ 3 S respectively. It is not hard to show that the steepest descent

, i e~ i contour,C,, throughs, asymptotes to regions 1 and 3 as
To obtain thex-space solution, we substituig(s) into g qn in Fig. 2. The contour integral in this case is now
(22) and integrate. The choice of conto@rover which we obtained by the standard formula

integrate is dictated by the boundary conditions discussed in

Sec. lll, i.e., we wante$(x) to decay inside the horizon. o

Before fin(_jing the appropriate contour to prodyce this behav- do(X)~g(s;) \ [ 20 extxy)+iay (30)
ior let us first understand the generic properties that the con- [xf"(s.)]

tour must satisfy. Specifically, note th@(s) is dominated at ) ) L
large |s| by the exi§s®/(6«)) term, and therefore for the where o = 7/2 if we traverse the contour in the direction
integral to convergéassuming the contol runs to infinity, indicated in Fig. 2. To lowest order i@ and « this reduces
which it need notthe contour must asymptote to a region ©

where Re¢®)<0 since k is real and positive. Writings

=re'’, this implies that the contour must asymptote to any do(X)~— 2wk (—2kx) ™34 1/(28) exg — E\/ﬂ|x|3/2)_
of the three regions 3

(31)

v aa
Regionl~ §< 0<E We immediately see that this is exponentially decaying with
decreasing (recall thatx<<0). The contour through_ pro-
duces an exponentially growing solution, hence our desired
. S5 7 s . .
Region2« —< 6<— solution is given by the conto®,. Finally, note thag(s) is
6 6 singular ats=0, and that we must choose a branch cut from
this point. We choose the branch cut to run along the nega-

3 117 ; i
: tive reals-axis.
Region3— —<o<——. 25 . . .
g T2 6 @9 At this point the reader may be wondering about the va-
_ ) lidity of the approximations made so far. The steepest de-
In Fig. 2 these appear as the unmarked regions. scents method requires thad>1 while validity of the ap-

To evaluate the contour integréd2) we first consider the proximate ODE(21) requires tha kx|<1. As long asx
x<0 case. We must choose a contour that yields a solutiote 1 there is always a wide range ofvalues satisfying both
that decays with decreasinginside the horizon, and that conditions, i.e., ¥|x|<1/k. Such« correspond to black

hole temperature$, <1 (or Ty<<k, if we restorek,). For
example, if the Planck length is also one in these ui¢s,

5We have dropped a boundary term to obt@8). This term will ~ Ko=1=1/p)), and « is the surface gravity of a solar mass
vanish by our choice of contours below. black hole, the inequality orx becomes ¥|x|<10%,
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Clearly there is no problem in satisfying this inequality. It is d3(X)=—2sin( 7w/ k) T'(—iw/k) xiolx (36)
convenient to keep these numbers in mind for later approxi-
mations. To see when this approximation holds, expand
Now we turn to evaluating(x) for x>0. In principle we
must evaluate the contour integi@6) over the same con- t3 t3 t6
tour as in thex<O0 case, i.e.C,. However, by Cauchy’s i I ~1- 6103 NG (37)

theorem we may deform the contokeeping the endpoints

fixed) through any region in which the integrand is analytic Evajuating the integra(34) with the t> term produces the
to a new contour, hopefully one where the integral is easiegorrection term tops(x),

to evaluate. In particular we may deform the contour so that

it runs through any nearby saddle points so that we may sinh( o/ k)

again approximate the integral by the method of steepest Sp3(X)=
descents. In fact most of the work for these saddle points has

already been done. They are still given (89) except that . . : _
now x>0 and therefore are both imaginaftp leading or- %Zn?x)t/h; (IS)ﬁriliykl:o(lfj: ?f)—zl“(z) one may show that
den, i.e., s.~=*i\2«x. The direction of the steepest de- '~ "3 3

scent contours throughL ands. are now given by 7/4 to 1<|kxd. (39)
3r/4 and 5r/4 to /4 respectively. From this one can easily

see that the steepest descent contGyr,throughs_ asymp-  If we expand exp—iw(iw— «)Xx/(2kt)) in the same way
totes to regions 2 and @5) and the steepest descent con-and evaluate the leading order correction termptgx) as
tour, C,, throughs, asymptotes to regions 1 and25), as  before, we find that we need

shown in Fig. 3. Evaluating the leading order contributions

. I (—iwlk)xi¥x (38)
KX

to these contour integrals as before results in |ox|<1. (40
br(x)~e5e ww/(ZK)\/m(ZKX)—3/4—iw/(2K) When these conditions hold;(x) is well approximated by
! (36) (in the asymptotic expansion seise
2 3 To summarize, we have found an approximate solution
Xexp —15V2kx (B2 4(x) to the mode equatiofl2) satisfying the boundary con-

ditions that it decay inside the horizon. Just outside the ho-
 a—imlhamol(26) 5 — 34— wl(2K) rizon the solution is given by (X) = ¢1(X) + d,(X) + ¢3(X)
Pa(x)~e € 2 (24X) [see(32), (33), and (36) respectively. We now propagate
2 3 this solution out to a region wherg(x) is essentially con-
X expl i 3v2kx (33 stant by patching onto WKB solutions which are valid out-
side the horizon. Knowing the solution in the consta(x)

where we have chosen the directions of the contours as dé&ggion will then allow us to easily extract the particle flux.
picted in Fig. 3.
The contourC,+ C, is not by itself deformable t&,, B. WKB solutions

but if we add in the contou€; (see Fig. 3 which asymp- To find approximate solutions to the mode equatib?)
totes to region 2 on either side of the branch cut, tlen  py the WKB method, assume a solution of the form
+C,+ Cj is deformable taC,. To evaluate the contour in-

tegral overCjs, first define the new integration variable d(x)=elfIx kX (41)
e '"t:=sx. This produces
where the wave vectdk(x) is an unknown function ok.

_ _ Substitution yields
¢3(X) :Xlw/KJ, dt(_t)flflwlk
Cs

8 iw(ilo—k
xexp(—H— L )X)) (34)

6rkX3 2kt
where the new contouCs runs from infinity just above the
postive real axis, counter-clockwise about the origin, andvhere we denote derivatives with respecktoy primes ().
back to infinity just below the positive real axis. Ignoring the If v(x) is a slowly varying function ofx, then we expect
t* andt™* terms in the exponent for the moment, we notek(x) also to be slowly varying. We therefore try to solve for
that the remainder is just a gamma function, i.e., using th& perturbatively in derivatives o (x). More precisely, let
integral representatiofi 7], x— ax (we will take =1 at the enyl then(42) becomes

d
k*—(1-v?)k®—2v wk+ w?=i d—x[2k3—(1—v2)k—wu]

+[4kK'+3(K')?]—ik”
(42)

k*—(1—-v?)k?— 20 wk+ w?
- _ i\ 1l+v,a—t
r'@) i2sin(7v) E3dt (=9 € (35

o (1 )k wu]+ 4Kk +3(K)?]
we arrive at ~adx v wuIT e
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i = —1, therefore the right-hand side @3) clearly becomes

- —sk”’. (43 arbitrarily large as we approach the horiz@ssuming that
@ v’ (x) #0 which are the only cases we consider feltefol-

lows that the WKB approximation will break down around

In this equation we see on the right-hand-side that derivag, o oris0n Far from the horizofand outside the black

tives of k(x) andv(x) with respect tox are suppressed by hole) v(x) asymptotes to a constantl<p,<0 andv’(x)

powers of 1. goes to zero, therefore the WKB approximation will be valid.
Now assume thak(x) may be expanded in inverse pow- For thek, ¢ mode a ratio similar t@¢53) holds, and therefore
ers ofa as the WKB approximation again fails around the horizon, but
1 is valid far outside of it. To compute this ratio, we must
k(x)=kO(x)+ —k®(x)+---. (44)  computek, ¢ to order O(w?), however since we will not
@ need this later we do not give the explicit expressions here.

Substituting into(43) and demanding that the coefficients of
each power of X separately vanish produces an infinite set C. The spectrum

of equations, the lowest orders being We now have all the ingredients necessary to compute the

(ONA_ (1 23/ L(ON2_ 2_ leading order spectrum of black hole radiation. First note that
(KT = (1=0) ()"~ 2v ok + &™=0 (45) validity of the WKB approximation(53) requires that 1
i d <kx°. Furthermore the approximate solution from the
kV==— In[2(k?)°3—(1-v)k®-vw]. (46) Laplace transform method is valid wher<ix|<1/k. Since
2 dx we are considering cases whete& 1, there is always a re-
gion where both the WKB and Laplace transform solutions
are valid.
If we evaluate the integrals appearing in the WKB solu-
ns of (50), (51) and, (52) respectively in a region just
outside the horizon where(x) is given by the linearized
expre35|or(18) we find that the solution outside the horizon
o(}btalned from the Laplace transform method can be ex-
pressed as

Although the leading order equation f&f®, (45), can be
solved exactly producing a set of four wave vectors, the ex*
pressions are quite unwieldy. Fortunately, since we are.
mainly interested in Killing frequencies satisfyingw<1, 10
we only need find approximate wave vector roots to this
equation. Once these roots are known, the ddrrections to
them can be found by substituting the respective wave vect
root k(© into (46) and solving fork®). These computations

produce the wave vectors ¢(X):e*iw/4\/m(_ie*ﬂ'a)/(ZK)(ﬁ_(X)
+ eww/(ZK)¢+(X))e— ww/K(EZﬂ'a)/K_ l)

XT'(—iwlk)d (X). (54

i 3d IN(1—0v2)+ O(w?)

ko= +1—p24 —2
- 1— 4 dx
(47)

With ¢(x) decomposed in terms of the WKB solutions, we

w
Kis= 1T+O(w3) (48)  are allowed to evaluate it at large i.e., wherev(X) is es-
sentially constant. In this region the WKB solutions reduce
© to simple modesup to multiplicative constantand we need
Kog=— ——+0(0?), (49 only extract the coefficients of these modes in order to com-
1-v pute the particle creation rate as given (it¥). A simple

where we have set=1. The corresponding WKB solutions computation yields

are
b (X)~=[1—p(x)2] e X VL0007 giofdxo00/1-0%(0] N<w>=ezmjx 1 (55
(50)
&, (X)~el e/ H[LTv0] (51)  exactly a thermal spectrum at the Hawking temperafiyse
d_(x)~e e/ N1v(], (52 :'ngg)c;heck on our results, recall that invariance of the

action (2) under constant phase transformations of the field
The condition of validity for these approximate solutions isleads to the existence of a conserved curijéntWhen this
that [k (x)/k©(x)|<1. For thek. wave vectors this ratio current is evaluated on fixed Killing frequency mode solu-

is tions, the time componerjt is manifestly time mdependent
and the conservation law reducesag*=0, i.e.,j* is con-

k(j)(x)’ 3| v(X)v'(x) ‘ stant. The exact form of is complicated, but when evalu-
k(io)(x)‘ ) [1—v2(x)]3’2" (53 ated on a mode of the form(w)exp(—iwt+ik(w)x) in a

region wherev(x) is constant, it reduces to

We are interested in(x)’s containing black holes. The ho-
rizon of a black hole in these units is located wixy,) k(@)= o' (K(w))vk(w)|ck(w))]? (56)
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For the solution of interest to us, i.e., the one that decay# similar computation can also be carried out for the WKB

inside the horizon, the spatial part of the current must vanistand Laplace transform solutions corresponding tokthend

everywhere. Using the solution given §§4), it is easy to k. wave vector roots. In the limit of»>« a weaker con-

show that this is indeed the case. straint than above is obtained from theg root, and the
We have made a number of approximations in order tassame constraint as above is obtained forkhevave vector.

compute the leading order flux given B5), we would now  In the same manner as above a lower bound on the allowed

like to collect them to find out what restrictions they place onrange ofw can be obtained. From the, wave vector we

the allowed parameter ranges. First recall that we have reind that we need

stricted« to valuesk<¢1 (in units ofkg=1). Physically this

says that we only expect to get a thermal spectrum of radia- 13/ 2513 1 1513
tion when the black hole is large, and therefore has a small 0> 203,13K - (61)
temperature.

The range of validity of the Laplace transform solutions
in the spatial variable is also restricted. We have already
seen that we neelk|>1 for the steepest descents approxi-
mation to hold for the various contour integrals gact| <1
for the approximate ODE21) to be valid. Closer investiga-
tion of the correction terms to the WKB solutions and the
Laplace transform solutions shows that we need

It follows that the range of validity of the analytical results
presented above are bounded both above and below in the
parametefw.

D. Computing the quantum state

We have so far computed the outgoing flux of particles
from a black hole for the subluminal equation of moti@n
(with the plus sigi There is, however, much more informa-
tion contained in the quantum state than just number expec-
This inequality means that the matching of the WKB andtation values, for instance, correlations. It is therefore of in-
Laplace transform solutions can be done anywhere in thigerest to compute the full quantum state in this modified
range. To derive these inequalities, note that the WKB andheory and compare it to the state arising with the ordinary
Laplace transform solutions cannot be matched to arbitrarwave equation, as already computed by W&H
order because in fact they solve different equations. The To be a bit more precise, we are not actually “comput-
Laplace transform solutions were obtained by finding aping” the quantum state because we already know what it is,
proximate solutions to the linearizedx) ODE (21), while  i.e., we have assumed that it is the free fall vacuum. What we
the WKB solutions were obtained by finding approximateare going to do is re-express this state in terms of a vacuum
solutions to the full ODE. By computing the first set of cor- state defined by late time observers. We define the out-
rection terms to both the WKB and Laplace transform solu-Hilbert space as the tensor product of Hilbert spaces on ei-
tions that differ, i.e., do not match, and demanding that theyher side of the horizon. Outside the horizon we use Killing
are small(compared to the leading order tenne/e derive  frequency to define the Hilbert space, as we have done so far.
the above inequality. Inside the horizon we do the following. We take &) that

These correction terms also restrict the rangeofSince  asymptotes to a constafiéss than—1), then we define our
the corrections arg dependent, by matching the WKB and Hilbert space in this region using free fall frequency. If we
Laplace transform solutions about an appropnesatisfying  are only interested in the observations made by the outside
(57) we can minimize the difference between the solutionsobserver then we would trace over the inside degrees of free-
To carry this out we compute the leading order correctionrdom, in which case the Hilbert space we use inside the ho-
terms for the WKB and Laplace transform solutions that dif-rizon is irrelevant. For the computations here though, the
fer and sum their absolute values. As a specific case, thehoice we have made is the simplest.
leading order relative difference between the WKB solution  Our method of computing the state is very similar to the
corresponding to the wave vectbr and the Laplace trans- techniques employed by Wal®]. In the time dependent
form solution corresponding to the contaQs is picture we would take an ingoing, positive free fall fre-
guency wave packet and evolve it from the hypersurface

1k P<|x|<1/k35. (57)

2\ "ok 1 (2kx)5?2 where the free fall vacuum is defined to the hypersurface
o~|—| ——t=— (58)  where the out vacuum is defined. If this packet is sufficiently
m?] K (2kx)¥* 40«

peaked in its wave vector, we may follow it on the dispersion
relation as discussed in detail [i]. It is not hard to see that

in the limit of > k. Minimizing this with respect tx we
find that kX in~ (9 w?/ (47))?13 and

5/26
13( 2 w3
o~-—| —| 12108 (59
120( ﬂ_z) (813

Demanding thatr<1 we arrive at the constraint

1 7T2 1/4 120 13/10

E K4/5. (60)

this packet will propagate toward the horizon and scatter
(mode conveit the reflected piece propagatésrward in
time) away from the horizon to the region whevé€x) is
essentially constant, and the transmitted packet propagates
deeper inside the horizon to wheséx) is essentially con-
stant. The late time packet outside the horizon corresponds to
the Hawking particle, and the late time packet inside the
horizon corresponds to the partner. If the initially positive
free fall frequency packet . ; contains only positive Killing
frequencies, the final packeiNg ., o+ Niy_i) contains
only positive Killing frequenciesy, ., outside the horizon
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and negative free fall frequencies , inside the horizorall
packets are assumed normalized awgl and N; are con-
stant3. The annihilation operator associated with¢ , i.e.,
a(y.4):=(¥+4.,0), annihilates the free fall vacuum. Using {
the time independence of the inner product, we therefore

derive the equation
(Nga(¢+out)_NiaT(¢tin))|ﬁ>:0- (62 \\

»Cs

N

2

/

Similarly, if the initially positive free fall frequency

packet contains only negative Killing frequencies, the final , ) )
FIG. 4. Diagram of the contours of integrati@y, C,, andCs.

acket outside the horizon will contain only negative Killin
lPrequencies and the final packet inside th()a/ hoﬁzon will cogn—C2 andCj are steepest descent contours passing through the saddle
- . . . . . _pointss, ands_ respectively; the solutions for these contours are
te.un.only positive free fal! frequencies. Using this, a'relatlonva"d for x>0. The solution corresponding to the contddj is
similar to (62) can be d_erlve(_j. As shown by W], 9IVEN  yalid for x<0. The unmarked regions are directions in which the
a complete set (.)f re!atlons I|_K62) (constructed by taking & contour must asymptote for the integral to converge. Xis are
complete set of ingoing, positive free fall ffequency packets singularities of the integrand and the wavy line is a branch cut.
we can re-express the free fall vacuum in terms of the out
vacuum. Because the details of computing the other n-mode solu-
As we have done thus far, we shall actually use modg;q, giscussed above are essentially the same as discussed in
solutions instead of wave packets. We derive the mode soligeos v A and IV B. we shall only sketch the computation.
tions which, when appropriately summed, produce the timgye first solve the mode equatidd?) (with the plus sigh

dependent wave packet solutions just discussed. We havg,t the horizon by the method of Laplace transforms ex-
already derived one mode solution(®4), although itis not  5cqy a5 before. The only difference is that the contour of
of thg form that we want. Rather it decays inside the horizorlntegration must be changed so as to satisfy the boundary
and is a superposition of plane waves with wave vectorgngitions that the solution reduce to a plane wave with
Kis, ki, andk_ far outside the horizofiwherev(x) IS yave vectork_ inside the horizon where(x) is essentially
essentially constaptin the time dependent picture it corre- constant. A straightforward computation shows that the con-
sponds to propagating a pair of ingoing, positive and Negagy C, shown in Fig. 4 does the job, i.e., evaluating the

tive free fall frequency wave packets forward in time, with ¢ont6r integral(26) over C, and propagating the solution
just the right relative weights so that the entire packet com; eeper inside the black hole by the WKB approximation to
pletely mode converts around the horizon, turns around, ana]e constant (x) region shows that the solution is

propagates out to the constanfx) region. This late time

outgoing packet is the Hawking particle. To obtain the mode ba(X)~2e™!% sinl( 7ol )T (—iw/k)d_(X), (63)
solutions that we want, we shall construct another mode so-

lution below which is a superposition of plane waves withyyhered _ (x)~exif*/(1+v(x))] inside the horizon. This
wave vectork, andk_ far outside the horizofwherev(x) s the boundary condition we want.

is essentially constahtwhereas inside the horizdmwhere To evaluate the solution outside the horizon, we deform
v(_x) is again essentially consté,riﬁt reduces to a pl_ane Wave the contourC, into C, andCg as shown in Fig(4). These

with wave vectork_ . In the time dependent picture this e can evaluate by the method of steepest descents. In fact
mode solution corresponds to propagating a pair of ingoingg, s exactly the same as the contdly before; see Fig. 3.
positive and negative free fall frequency wave packets forc, js the same a€; before(see Fig. 3, except that it lies on
ward in time, with just the right relative weightalthough 3 different Riemann sheet, so only the overall scale changes.
different than aboveso that the entire packet propagatesTthe complete solution outside the horizon after being propa-

across the horizon and converts into just a negative free fallateq out to the constan{(x) region by the WKB approxi-
frequency packet. This packet corresponds to the partner ¢fation is

the Hawking particle. Its wave vectdr_ should therefore

agree with the wave vector of the partner in the ordinary X) + s(x) ~e~ 4Tl (26) [D 7 (b, (X
wave equation. Indeed we find that ~ w/(1+v (X)) inside o ol $+(x)
the horizon, in agreement with the ordinary wave equation. —ie™ ¢ _(x)). (64)

By adding these two mode solutions, call them the n-modes o o .
since they are the relevant ones for computing number excombining this with¢4(x) produces the connection formula
pectation values, with the correct relative coefficient, we can

eliminate thek_ (k,) mode outside the horizon. These are 2e™'* sinl( wwl k) (—iwl/ k) $_(X)

the mode solutions we want, call them the s-modes since —imld mol(25) el

they are the relevant ones for computing the state, because —e e V2w k(¢ (x)— 18T (x))
they correspond to propagating an ingoing, posifimega- (65

tive) free fall frequency packet forward in time which splits

around the horizon into a pair of wave packets, one propawhere the left-hand side refers 16<0 and the right-hand
gates back away from the horizdthe Hawking particlg  side tox>0. This is the second of the n-mode solutions; the
and the otherthe partnerfalls inside the black hole. first is given in(54).
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eww/x¢ (X)<—>¢ (X)+e—i3w/4£¢ (X)
- +s T(—iwln) ?~ ¢,
(66)

e K p_(X) > b o(X)

To obtain the s-mode solutions, we add the n-mode solu-
tions given in(54) and (65) with the correct relative coeffi-
cient so that either theb_(x) mode or the,(x) mode
cancels at large positive this produces the connection for-
mulas

/

FIG. 5. Diagram of the contour of integratio@g. The un-

il 37l (26) 2Tk marked regions are directions in which the contour must asymptote
—e e T(—iwlk) ¢+(X) (67)  for the integral to converge. The's are singularities of the inte-

grand and the wavy line is a branch cut.

where again the left-hand side refers to negakvand the ) ) ) i
right-hand side to positive. Noting that the annihilation Priate connection formula for these solutions, we now find an
operator associated with the modes (x) and ¢* (x) at  aPProximate solution across the horizon. .
large positivex (in the time dependent picture these would _ S°lutions about the horizon can be obtained by again lin-

be the early time ingoing, positive free fall frequency wave&arizingv(x) as in(18) ang solvir;]g thef resullting appr?xi—
packet$ both annihilate the free fall vacuufff), we derive mate_modg equation by the met oq of Laplace transforms.
the following relations as i162) The linearized equation is jug2l) with a minus sign in-

' serted before the fourth derivative term. Writing the solution

@' (b, —e™ a(*))|f)=0 (68)  as a Laplace transform as {@2) and substituting into the
P SN equation produces the-space ODE(23) with s*— —s*.
@'(¢*)—e™*a(¢. ))|ff)=0. (69) This equation is again trivial to solve. One finds upon writing

the solution in the form

These two relations completely determine the, and ¢*
content of the free fall vacuum for the Killing frequenay ¢(x)=f ds g's)ex'® (72)
Using these relations it is simple to show that the free fall c

vacuum is a thermal state at the Hawking temperature, exfhat

actly as with the ordinary wave equati¢@.

1 /83 iw(io—kK)
V. APPROXIMATE SOLUTIONS f(s)=s— 2ex1 3~ S (73
TO THE SUPERLUMINAL EQUATION
Since the calculations involved in solving the mode equa-and
tion (12) with the superluminal operatdf _ are virtually g(s)=s"17ie/x, (74)

identical to those given above for the subluminal operator

E. , we shall be brief. Computing the approximate solutions Before evaluating(72), first note that at largds|, the
outside the horizon by the WKB approximation proceedsntegral is dominated by exp-s°/(6«)), and therefore for
exactly as before. The main difference compared to the sugh€ integral to converge, the contour must asymptote to a
luminal case is that ware now interested in WKB solutions region where Ref®)>0. Writing s=re'’, these regions are
both inside and outside the horizon. Outside the horizon, thgiven by

relevanf WKB mode is

. —ar s
¢+5(X)%eiw~{dx,[l+v(x)], (70) Reg|0n1<—> T< 0<€ (75)
and inside the relevant WKB modes are cecions " 0<57T 5
, egion2e 5 (76)
b (X)=(— 1+ v2(x))~ HeriTdx V=140%00
. 7 37
xelefoxe iyl (71) Region3— -gr<0<—-, (77

As before, it is straightforward to show that these approxi-;nq are the unmarked regions in Fig. 5.

mate solutions break down around the horizon, but far 14 eyajuate the contour integrél2), recall from Sec. il
enough outside the horizon they are valid. To find the approg,a¢ our boundary conditions are specified outside the hori-

zon and state that the solution must reduce to a plane wave
with wave vectork, ¢ in the constant (x) region. This so-
"There are other linearly independent solutions both inside andution does not correspond to a saddle point because those
outside the horizon, but they will not be needed in this calculationsolutions are either exponentially growing or decaying. It is
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between the WKB and Laplace transform solutions for the
superluminal case is essentially the same as the difference
between the WKB and Laplace transform solutions for the
subluminal case. Therefore the constraints on the range of
validity of the solutions in the parametets x, andw are the
same as in the subluminal case.

A. Computing the quantum state

Lfg For the superluminal equation we can as well compute the
decomposition of the free fall vacuum in terms of particle
_ states as seen by late time observers. We define the out Hil-
FIG. 6. Diagram of the steepest descent contoUrsandCs,  pert space as before, i.e., we take it to be a tensor product of
through the saddle points; ands. respectively. The unmarked Hjpert spaces inside and outside the horizon respectively.
regions are directions in which the contour must asymptote for they \tside the horizon we define the Hilbert space using Killing
integral to converge. Th&'’s are singularities of the integrand and frequency, and inside we use free fall frequertag before
the wavy line is a branch cut. we take av(x) that asymptotes to a constant smaller than

not hard to guess what contour we need though, given ou?1 behind the horizon -
' To compute the decomposition of the free fall vacuum,

past experience with the subluminal dispersion relation. If : ' .
. we again look for mode solutions which when summed to-
we take a contou€Cg that encircles the branch cut and as-

) . gether produce an early time positive free fall frequency
ymptotes to regions 2 and(37), see Fig. 5, we get a contour . - )
very similar to the contou€; in Fig. 3. The approximations packet propagating toward the horiznit now located be

that went into evaluating that contour also work here Thehmd the horizon Around the horizon this packet scatters
result is exactly — ds(x) of (36). This solution is just (mode convertsinto a pair of packets, a reflected packet

.4(x) (70) up to a multiplicative constant, and therefore which propagates deeper inside the black hole to the constant
S l

" v(x) region and a transmitted packet which propagates
;h:ocontources produces the correct boundary condition atacross the horizon out to the constarfk) region. In this

To evaluate(72) for x<0 we use the steepest descentspicture the transmitted packet corresponds to the Hawking

L o : particle and the reflected packet to the partner. From such a
gﬁ/pérr?ﬁ;natlon. The saddle points in the integrand7a) are solution we could obtain an equation for the free fall vacuum

analogous td62).
S.~*i\2«kl|X|, (78 To compute the s-modedhose needed to compute the

statg we again first compute the n-modébose needed to
and the steepest descent contours must pass through th%?ﬁnpute number expectation valied/e have already com-
points in the directions- w/4 to 3w/4 for s, and w/4 to puted one n-mode given b§80). Recall that in the time
Sw/4 for s_. The contoursC; and Cg, therefore must as- genendent picture this corresponds to a pair of positive and
ymptote to regions 1 and 2 and regions 2 and 3 respectivelyiegative free fall frequency packets propagating toward to
see Fig. 6. Furthermoré&;;+Cg is deformable taCe, and  the horizon(and located inside the black hpleith just the
therefore is the contour we want. Evaluatitt®) over C;  right relative coefficient that the entire packet propagates
+Cg by the steepest descents approximation and expressingoss the horizon out to the constagk) region. The other
the result in terms of the WKB solutior(g1) results in n-mode therefore correponds in the time dependent picture to

Cimlh = mwl2x el a pair of positive and negative free fall frequency packets

b7+ pa(x)~e TN 2m(e TG (x) ~ 16T P (x). propagating toward the horizon with the right relative coef-
(79 ficient such that the entire packet is reflected and propagates

We now have the complete solution for all which can be deep inside the black hole to whepgx) is constant. The

displayed as the connection formula appropriate mode solution therefore must deoasidethe
e*iﬂ'/4\/2_(ef 7Tw/2K¢ (X) _ ieﬂ'w/2x¢ (X)) horizon. X . . .
TK - + Computing this mode solution involves the same tech-

niques used already many times, so we shall simply quote
(80 the result. The connection formula expressed in terms of the
WKB solutions is

e—iﬂ'/4\/m(_ieww/(ZK)¢+(X)+e377m/(2:<)¢_(x))

—i2
quﬁﬂ(x)

where the left-hand side refers #6<0 and the right-hand
side tox>0. Evaluating(80) at x>0 andx<0 allows us to
pull off the coefficientx, {(w) andc_ (w). Substituting into )
(14) again produces a thermal spectrum at the Hawking tem- A mwlk 77 —i3ml4 Tl k
perature. e I'(1+io/k) $-m(X)| e BT e+ (0
As before we have made a number of approximations to 81)
arrive at this result. Collecting these approximations to-
gether, we can compute the range of validity of these resultavhere the left-hand side refers 16<0 and the right-hand
However, because the difference between the solutions faide tox>0. The solutiong_ (x) for positive x decays ex-
the subluminal equation and the superluminal equation igponentially with increasingk, and therefore satisfies the
only the change of a few signs in the end, then the differencéoundary conditions.
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To compute the s-modes we take linear combinations of An important assumption made in deriving the thermal
the n-modes(80) and (81) to eliminate either¢,(x) or  radiation for the superluminal equation of motion was that
¢_(x) behind the horizon. This results in the connectionpositive free fall frequency modes, located behind the hori-

formulas zon, were in their ground state. Clearly we do not knaw
d_(X)+iNe™* p_ (X)—=iNd, (X) (82)  priori whether this is the physically correct quantum state
condition. In principle we would have to begin with a quan-
B+ (X)+Np_y(x)—>Ne™ b, (x) (83 tum state which evolves into a black hole, and then ask if
these modes actually are in their ground state. This requires
where quantum gravity. A more realistic problem to tackle at this
_ il mol(26) T time is simply to ask where these modes came from in a
N=e""e \/m sinh( 7w/ ) F(1+iw/;<)' semiclassical approximation. One would guess naively from

(84) the singularity. Recent investigatiof$2,13 have shown;
however, that for certain charged black holes it is possible
These relations are enough to carry out the decomposition ahat these modes simply reflect outside the singularity and
the free fall vacuum as discussed in Sec. IV D. In particulabecome ingoing modes, backward in time. This would have
the method of obtaining the equatio(®89) on the free fall important implications because it would mean that the
vacuum for the subluminal dispersion relation follows ex-Hawking radiation, even for an eternal black hole, would
actly in this case as well, with the replacementdof in the  originate from ingoing modes, and therefore we would not

subluminal case by, in the superluminal case. have the infinite degrees of freedom problgm
We end by noting that the subluminal modehd possi-
VI. CONCLUSIONS bly the superluminal model as wgltonsidered in this paper

] ) o suffers from the “stationarity puzzle.” If we try to propagate
We have considered two different modifications of theihe outgoing modes backward in time all the way out to

wave equation in a black hole spacetime, one producing Subxfinity, wherew(x) goes to zero, then there can be no par-
luminal propagation of high frequency modes and the othefic|e creation by conservation of Killing frequency. One way
superluminal propagation of high frequency modes. We havet of this problem is to introduce time dependence into the
shown that both equations give rise to exactly a thermabqation of motior(perhaps via backreactipto destroy the
spectrum of radiation from a black hole to leading order injjiing symmetry. A step in this direction is to put the ordi-
an expansion in powers ofKy. It is natural to try to push  nary wave equation on a spatial lattice; this has the advan-
the analysis further to obtain a correction term to the 0UtgOrage of introducing naturally a short distance cutoff and at
ing flux. We immediately run into the following difficulty he same time destroying the Killing symmetfor discreti-
though. In obtaining an approximate solution (&) about  zations of most spatial coordinatesSuch a model is cur-

the horizon, we actually solved instead just the linearizedently peing investigatefiL8] by techniques similar to those
equationg21). To obtain a better approximate solution aboutjescribed in this paper.

the horizon, we need a better approximation(i®). We
could, for instance, keep higher order termsxinvhen ex-
pandingv(x) andv’(x). If we try to solve the resulting
equation by the Laplace transform method, we find that we
get a higher order ordinary differential equation in the | would like to thank Ted Jacobson for many valuable
Laplace transform variabls. In other words, thes-space conversations and suggestions on a draft of this paper, and
equation is really not much better than the origiradpace also Jorma Louko for helpful discussions. This work was
equation. supported in part by NSF grant PHY94-13253.
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