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Computing the spectrum of black hole radiation in the presence of high frequency dispersion:
An analytical approach

Steven Corley*
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 28 October 1997; published 23 April 1998!

We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave
equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB
techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is
obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scalek0

to the ordinary wave equation. Depending on the sign of this new term, high frequency modes propagate either
superluminally or subluminally. We show that the resulting spectrum of created particles is thermal at the
Hawking temperature, and further that the out-state is a thermal state at the Hawking temperature, to leading
order ink0 , for either modification.@S0556-2821~98!06710-1#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

Since Hawking’s discovery that black holes radiate a th
mal spectrum@1# various other derivations of this effect hav
appeared@2–4#. All seem to depend in some crucial way o
the very high frequency behavior of the theory. Clearly su
a derivation cannot be trusted without taking into acco
backreaction effects from the spacetime metric. This has
a number of authors@5–8# to consider the effects of high
frequency dispersion on the Hawking spectrum. All ha
found, in the context of specific models, that the Hawki
radiation remains almost exactly thermal at the Hawk
temperature.

In this paper we show how the leading order contribut
to the Hawking flux can be obtained by analytical metho
for two models containing high frequency dispersion, one
which the high frequency modes propagate subluminally
one where the high frequency modes propagate superl
nally. The method involves a combination of WKB an
Laplace transform techniques to solve the modified w
equations, similar techniques were also used by Brout, M
sar, Parentani, and Spindel@6# for different subluminal type
models. We show for both models that the Hawking fl
remains exactly thermal at the Hawking temperature to le
ing order in inverse powers ofk0 . We further show, to lead
ing order in k0, that static observers far outside the bla
hole see the in-vacuum as a thermal state at the Haw
temperature, also in agreement with the ordinary wave eq
tion case@9#.

The specific models of high frequency dispersion cons
ered in this paper are obtained by adding a higher deriva
term, suppressed by a new fundamental momentum cu
k0, to the ordinary wave equation with the appropriate s
to generate either subluminal or superluminal propagatio
high frequency modes. The low frequency modes howe
behave as in the ordinary wave equation. Various sublum

*E-mail address: corley@physics.umd.edu Current E-mail
dress: scorley@phys.ualberta.ca
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theories have already been considered in@5–8#, in particular
the subluminal equation considered in this paper is the s
as considered in@8#. Recently Unruh@10# has also consid-
ered a superluminal modification~although different from
the one considered here! to the ordinary wave equation. H
has shown by numerically solving the modified wave eq
tion that the spectrum is very nearly thermal at the Hawk
temperature, and that the Hawking particles arise fr
vacuum fluctuations inside the horizon. Since these vacu
fluctuations would in principle evolve out of the singularit
a boundary condition at the singularity would be require
To avoid this problem, Unruh instead demanded that
vacuum fluctuations were in the ground state outside the
gularity. In this paper we consider a similar superlumin
modification to the ordinary wave equation, with the sam
type of boundary condition.

The remainder of this paper is as follows. We begin
introducing the model in Sec. II. In Sec. III we discuss t
method used to compute the particle creation in this mo
Sections IV and V then describe how the relevant solutio
for particle creation are obtained for the subluminal and
perluminal dispersion relations respectively, and in Sec.
we end with some conclusions. We use units withc5\
51.

II. MODEL

We consider a real scalar field propagating in a
dimensional black hole spacetime with metric

ds252dt21„dx2v~x!dt…2. ~1!

This is a generalization of the Lemaıˆtre line element of
Schwarzschild spacetime wherev(x)52A2M /x. We fol-
low the convention thatv(x)<0 and~in units wherec51)
the horizon is located atv(xh)521. The action for the field
is given by

S5
1

2E d2x@„~] t1v]x!c…
21cF̂~]x!c#. ~2!-
6280 © 1998 The American Physical Society
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57 6281COMPUTING THE SPECTRUM OF BLACK HOLE . . .
To motivate this action we note that the black hole define
preferred frame, the frame of freely falling observers. In
Lemaı̂tre coordinate system,„] t1v(x)]x… is the unit tangent
to free fall observers who start from rest at infinity, and]x is
its unit, outward pointing normal. Our action comes fro
modifying the derivative operator only along the unit norm
]x .

In the ordinary, minimally coupled action,F̂(]x)5]x
2 . In

this paper we take

F̂6~]x!5]x
26

1

k0
2
]x

4 . ~3!

The essential difference between these two derivative op
tors is thatF̂1 produces subluminal propagation of high fr
quency modes1 whereasF̂2 produces superluminal propag
tion. The simplest way to see this behavior is to look at
respective dispersion relations. Varying the action produ
the equations of motion

~] t1]xv !~] t1v]x!f5]x
2f6

1

ko
2
]x

4f. ~4!

Assuming for simplicity thatv(x) is constant, we solve~4!
by looking at mode solutions of the form

f~ t,x!5exp„i ~vt2kx!…. ~5!

This produces the dispersion relations

~v2vk!25k27~k/k0!4. ~6!

In Fig. 1 we plot the square root of~6!, that is we plot (v

1Actually F̂1 produces both subluminal and superluminal prop
gation, however, the superluminal behavior does not play a cru
role in the analysis of this paper. It could in fact be removed
considering a model like Unruh’s@5#.

FIG. 1. Plot of the dispersion relations for the ordinary wa
equation and its subluminal and superluminal modifications. T
intersection points with the (v2vk) line are the possible wave
vector roots. For the particularv shown, there are four real wav
vector roots for the subluminal dispersion relation, but only two r
roots for the superluminal case. The other two roots in this case
complex.
a
e

l

a-

e
s

2vk) andAk26k4/k0
2 as functions ofk for a fixedv, along

with the square root of the dispersion relation resulting fro
the ordinary wave equation. The intersection points are
allowed wave vector roots to~6!. The value of the slope o
theAk26k4/k0

2 curve evaluated at an intersection point is t
locally measured~by a freely falling observer! group veloc-
ity of a wave packet centered about that wave vector. Fr
Fig. 1 we see for theAk21k4/k0

2 ~corresponding toF̂2)
curve that this slope is approximately one whenk!k0 and
increases with increasingk, therefore the high frequenc
modes propagate superluminally. Similarly theAk22k4/k0

2

~corresponding toF̂1) curve has slope approximately on
when k!k0 and decreases with increasingk until at some
finite k it goes to zero, with a further increase ink the mag-
nitude of the slope increases and eventually becomes m
larger than one. Therefore the ‘‘large’’ wave vector mod
propagate subluminally, but the ‘‘very large’’ wave vect
modes, i.e., withk near k0 , propagate superluminally. A
already mentioned, the latter superluminal behavior is
essential for what we discuss in this paper, it could be
moved by considering a dispersion relation like Unruh’s@5#
in which the slope of the dispersion curve asymptotes to z
ask goes to infinity.

An important property of the action~2!, when generalized
to a complex scalar field, is that it is invariant under const
phase transformations of the field. This leads to a conser
current j m. The time componentj 0, when integrated over a
spatial slice, serves as a conserved inner product when ev
ated on solutions to the equation of motion~4!. For the met-
ric ~1!, the inner product takes the form

~F,G!5 i E dx„F* ~] t1v]x!G2G~] t1v]x!F* …, ~7!

whereF(t,x) andG(t,x) are solutions to~4!. Two classes of
solutions to the field equation~4! are of interest. The first are
the positive free fall frequency wave packets. They can
written as a sum of solutions satisfying

~] t1v]x!F~ t,x!52 iv8F~ t,x! ~8!

wherev8.0. The second are the positive Killing frequenc
wave packets. These are a sum of solutions of the fo
e2 ivt f (x) wherev.0. A positive free fall frequency wave
packet need not have a positive norm under~7! in general,
but does whenv(x)5const. A positive Killing frequency
wave packet also need not have positive norm in general,
does whenv(x)50.

To quantize the field we assume thatf̂(x) is a self-adjoint
operator solution to the field equation which satisfies
canonical commutation relations. We define for a normaliz
positive free fall frequency solutionf (t,x) the annihilation
operatora( f ) by

a~ f ![~ f ,f̂ !. ~9!

We make a similar definition for the annihilation and cr
ation operators for a normalized positive Killing frequen
solutiong(t,x) ~assuming it is also positive norm!.
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6282 57STEVEN CORLEY
III. COMPUTING THE PARTICLE PRODUCTION

The standard method of computing the amount of part
production in a given wave packet is to propagate this w
packet back in time to the hypersurface where the quan
state boundary condition is defined. In our case we are in
ested in computing the particle production in a late tim
outgoing ~right-moving!, positive Killing frequency wave
packet. We assume that the state of the field is the free
vacuum, which is defined bya(p)uff &50 for all positive free
fall frequency modesp on the early time hypersurface. De
noting our late time wave packet bycout , one may show tha
its number expectation value in the free fall vacuum is

N~cout!5^ff ua†~cout!a~cout!uff &52~c2 ,c2! ~10!

where c2 is the negative free fall frequency part ofcout
after being propagated back to the early time hypersurf
~see@8# for a detailed derivation!.

Rather than solving the full equation of motion~4!, we
shall instead restrict ourselves to mode solutions of the fo

c~ t,x!5e2 ivtf~x!. ~11!

Substituting into~4! ~and settingk051) produces the ordi-
nary differential equation~ODE!

6f~ iv !~x!1„12v2~x!…f9~x!12v~x!„iv2v8~x!…f8~x!

2 iv„iv2v8~x!…f~x!50 ~12!

where the6 refers toF̂6 respectively and we have used
prime (8) to denote a derivative with respect tox. Restrict-
ing ourselves to mode solutions~11! therefore has the advan
tage that we need only solve an ODE.

To determine the boundary conditions for~12! it is nec-
essary to study wave packet propagation in these models
the subluminal,F̂1 , equation this has been discussed
great detail in@6,8#. The conclusion is that the late time
positive Killing frequency packet comes from a pair of ing
ing, short wavelength packets, located far outside the b
hole, and nothing2 else. In particular, no part of the wav
packet piles up against the horizon as with the ordinary w
equation, and furthermore nothing comes from across
horizon. This led@8# to conclude that the boundary conditio
for ~12! in the subluminal case is that the solution deca
across~and inside! the horizon.3

For the superluminal,F̂2 , equation we refer the reader t
@10,11# for the details of wave packet propagation. The co
clusion is that the late time, positive Killing frequenc
packet comes from a pair of right-moving, short wavelen
packets located farinsidethe horizon. This is hardly surpris

2There could also be an ingoing, long wavelength packet wh
arises from scattering as the outgoing, positive Killing frequen
packet is propagated back in time. For a slowly varying backgro
spacetime we expect that the amount of scattering is neglig
which is indeed what we find

3The solution cannot vanish inside the horizon because the c
ficient of the highest derivative term does not vanish, as it does w
the ordinary wave equation.
e
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ing given that theF̂2 dispersion relation produces superl
minal wave propagation. The important point concerning
boundary conditions though is that the only packet ever o
side the horizon is the late time, positive Killing frequen
packet.4 This leads to the boundary conditions for the sup
luminal ODE that forx@0 the solution reduces to a sing
mode with wave vector corresponding to the outgoing wa
packet.

Once we have solutions to the ODE’s satisfying t
boundary conditions just discussed, we may easily ext
the particle creation. In the subluminal case, the solution
x@0 @wherev(x)'const] can be decomposed as

f~x!5(
l 51

4

cl~v!eikl ~v!x, ~13!

wherekl(v) are the roots to the subluminal dispersion re
tion ~6!. From Fig. 1 it is easy to see that two of these ro
are positive and the other two are negative. The late t
wave packet corresponds to the small, positive wave ve
(k1s), and the early time, ingoing wave packets to the lar
positive wave vector (k1) and the large, negative wave ve
tor (k2) respectively. The small negative wave vector (k2s)
corresponds to a long wavelength, ingoing wave pac
which will not be important in this leading order calculatio
The number expectation value for a mode of Killing fr
quencyv is then

N~v!5
uv8~k2!vg~k2!c2

2 ~v!u

uv8~k1s!vg~k1s!c1s
2 ~v!u

. ~14!

The kinematic factorsvg(k) andv8(k) are the group veloc-
ity as measured by a static observer and the frequenc
measured by a freely falling observer of a wave packet n
rowly peaked about wave vectork.

The superluminal equation can be handled in almost
actly the same manner. Far outside the horizon, wherev(x)
is approximately constant and satisfies 0.v(x).21, it is
again easy to see from Fig. 1 that there is one positive w
vector root (k1s) of the dispersion relation~6! ~with the plus
sign! and one negative wave vector root (k2s). Our bound-
ary conditions dictate that the solution atx@0 is5

c1se
ik1s~v!x. ~15!

h
y
d
e,

f-
th

4This is not quite correct. Propagating the outgoing, positive K
ing frequency packet back in time, a piece of it will scatter into
early time, ingoing packet. We again expect that the amoun
scattering is very small for a slowly varying background spacetim
and in the leading order approximation discussed below we
ignore it. This problem can be dealt with by instead looking f
mode solutions which correspond to propagating positive free
frequency packets forward in time, which are necessary for co
puting the full quantum state. This will be discussed in Sec. V A

5Note that we use the same notation for denoting the wave vec
for both the subluminal and superluminal cases; however, the ac
values of the wave vectors for a givenv differ between the two
cases.
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57 6283COMPUTING THE SPECTRUM OF BLACK HOLE . . .
To avoid dealing with the singularity, we shall also assu
that v(x) becomes constant behind the horizon. When
slope of the straight line in Fig. 1 is larger than one, it is ea
to see that there is one positive wave vector root (k1) to the
dispersion relation~6! ~with the positive sign! and three
negative wave vector roots which we denote ask2s , k2m ,
andk2 in order of increasing magnitude (s denotingsmall
and m denotingmiddle!. As we shall see below, only th
large positive and large negative wave vector solutions
contribute to the solution. It follows that the solution in th
region is of the form

c1eik1~v!x1c2eik2~v!x. ~16!

The number expectation value in this case again beco
~14!, with the kinematic factors appropriate for the super
minal equation,F̂2 .

IV. APPROXIMATE SOLUTIONS
TO THE SUBLUMINAL EQUATION

The methods applied to find approximate solutions
ODE ~12! are the same as those used in solving the Sc
dinger equation for a tunneling potential. For the gene
potential one may find approximate solutions to the Sch¨-
dinger equation by the WKB method@14#; however, about a
classical turning point~i.e., where the kinetic energy van
ishes! the WKB approximation breaks down. Approxima
solutions can nevertheless be obtained by expanding the
tential V(x) in the full Schrödinger equation about the clas
sical turning pointxtp . Solutions to the resulting equatio
are straightforward to find and are valid in the region

ux2xtpun21!un!V8~xtp!/V~n!~xtp!u ~17!

if V9(xtp), . . . ,V(n21)(xtp) all vanish.
If the WKB solutions are valid in regions on either side

the classical turning point which overlap with the region
validity of the solution to the linearized potential equatio
then we can obtain approximate solutions to the full Sch¨-
dinger equation over the entire range ofx. We now apply
this method to ODE~12! for the subluminal equation,F̂1 .
We begin by finding the approximate solution about the
rizon relevant for particle creation in Sec. IV A, and th
match this solution to WKB solutions outside the horizon
Sec. IV B. From this solution we then compute the amo
of particle creation in Sec. IV C. Finally we show in Se
IV D that this method can be extended to computing
complete out-state to leading order ink0 , i.e., compared to
just computing number expectation values.

A. Approximate solutions about the horizon

The calculations we present in this subsection are as
lows. We find approximate solutions to ODE~12! about the
horizon by linearizing thex-dependent coefficients in th
equation and solving the resulting equation by the metho
Laplace transforms. These solutions are given by con
integrals in the complexs-plane ~where s is the Laplace
transform variable!. The contourC0 ~see Fig. 2! correspond-
ing to thex-space solution inside the horizon is chosen
that the boundary conditions described in Sec. III are sa
e
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fied, i.e., that the solution decays inside the horizon, as th
are the boundary conditions relevant for particle creati
The x-space solution outside the horizon must then ar
from a contour that is deformable toC0 . This contour is
broken up into three separate contours:C1 , C2 , andC3 ~see
Fig. 3!. By comparing the solutions corresponding to the
contours to the WKB solutions~computed in Sec. IV B! of
ODE ~12!, we show thatC3 corresponds to the late time
outgoing Hawking particle and thatC1 andC2 correspond to
the ingoing, large positive and negative wave vector pack
respectively from which the outgoing Hawking partic
arises. Once this has been done it is a simple matter to c
pute the particle creation as discussed in Sec. III.

We first linearizev(x) andv8(x) about the horizon as

v~x!'211kx ~18!

v8~x!'k1k1
2x ~19!

wherek is the surface gravity of the black hole described
the metric~1! and k1 is a higher order correction tov(x).
Substituting into~12! and keeping only linear terms inx
yields

f~ iv !~x!12kxf9~x!12@2~ iv2k!1„k~ iv2k!1k1
2
…x#

3f8~x!2 iv~ iv2k2k1
2x!f~x!50. ~20!

FIG. 2. Diagram of the steepest descent contourC0 . The un-
marked regions are directions in which the contour must asymp
for the integral to converge. The3 ’s are singularities of the inte-
grand and the wavy line is a branch cut.

FIG. 3. Diagram of the contours of integrationC1 , C2 , andC3 .
C1 andC2 are steepest descent contours passing through the sa
pointss1 ands2 respectively. The unmarked regions are directio
in which the contour must asymptote for the integral to conver
The 3 ’s are singularities of the integrand and the wavy line is
branch cut.
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6284 57STEVEN CORLEY
Validity of this equation requires thatukxu!1 and uk1
2x/ku

!1. To leading order we may therefore further simplify t
equation as

f~ iv !~x!12kxf9~x!22~ iv2k!f8~x!2 iv~ iv2k!f~x!

50. ~21!

This is the equation we shall use in this paper to find
proximate solutions about the horizon; however, to comp
correction terms to the flux, we must keep at least all lin
terms inx and possibly even higher order terms inx. We
shall discuss this further in the Conclusions section.

We use the method of Laplace transforms@15,16# to solve
~21!. Writing the solution as a Laplace transform,

f~x!5E
C
ds esxf̃~s! ~22!

~whereC is the contour of integration! and substituting into
~21! yields thes-space6 ODE

]s@ ln„s2f̃~s!…#5
s422~ iv2k!s2 iv~ iv2k!

2ks2
. ~23!

Equation~23! is easily solved as

f̃~s!5s212 iv/kexpS 1

2kS s3

3
1

iv~ iv2k!

s D D . ~24!

To obtain thex-space solution, we substitutef̃(s) into
~22! and integrate. The choice of contourC over which we
integrate is dictated by the boundary conditions discusse
Sec. III, i.e., we wantf(x) to decay inside the horizon
Before finding the appropriate contour to produce this beh
ior let us first understand the generic properties that the c
tour must satisfy. Specifically, note thatf̃(s) is dominated at
large usu by the exp„s3/(6k)… term, and therefore for the
integral to converge~assuming the contourC runs to infinity,
which it need not! the contour must asymptote to a regio
where Re(s3),0 since k is real and positive. Writings
5reiu, this implies that the contour must asymptote to a
of the three regions

Region1↔
p

6
,u,

p

2

Region2↔
5p

6
,u,

7p

6

Region3↔
3p

2
,u,

11p

6
. ~25!

In Fig. 2 these appear as the unmarked regions.
To evaluate the contour integral~22! we first consider the

x,0 case. We must choose a contour that yields a solu
that decays with decreasingx inside the horizon, and tha

6We have dropped a boundary term to obtain~23!. This term will
vanish by our choice of contours below.
-
te
r

in

v-
n-

y

n

asymptotes to any of the three regions~25!. To find this
solution we approximate the contour integral~22! by the
method of steepest descents@16#.

First rewrite the contour integral as

f~x!5E
C
dsg~s!ex f~s! ~26!

where

g~s!5s212 iv/k ~27!

and

f ~s!5s1
1

2kxS s3

3
1

iv~ iv2k!

s D . ~28!

To evaluate~26! by steepest descents we first locate t
saddle points off (s). These are given by the roots o
d f(s)/ds50 @16#, which in this case are approximated by

s6'6A22kx ~29!

~since we are in a region wherev,k!ukxu). The contours of
steepest descent through these saddle points are give
Im„f (s)2 f (s6)…50 and Re@x„f (s)2 f (s6)…#,0. Using
this one may show that the direction of the steepest des
contours throughs1 and s2 are 2p/2 to p/2 and 0 top
respectively. It is not hard to show that the steepest des
contour,C0 , throughs1 asymptotes to regions 1 and 3 a
shown in Fig. 2. The contour integral in this case is no
obtained by the standard formula

f0~x!'g~s1!A 2p

ux f9~s1!u
ex f~x1!1 ia1 ~30!

wherea15p/2 if we traverse the contour in the directio
indicated in Fig. 2. To lowest order inv andk this reduces
to

f0~x!'2A2pk ~22kx!23/42 iv/~2k! expS 2
2

3
A2kuxu3/2D .

~31!

We immediately see that this is exponentially decaying w
decreasingx ~recall thatx,0). The contour throughs2 pro-
duces an exponentially growing solution, hence our des
solution is given by the contourC0 . Finally, note thatg(s) is
singular ats50, and that we must choose a branch cut fro
this point. We choose the branch cut to run along the ne
tive reals-axis.

At this point the reader may be wondering about the
lidity of the approximations made so far. The steepest
scents method requires thatuxu@1 while validity of the ap-
proximate ODE~21! requires thatukxu!1. As long ask
!1, there is always a wide range ofx values satisfying both
conditions, i.e., 1!uxu!1/k. Such k correspond to black
hole temperaturesTH!1 ~or TH!k0 if we restorek0). For
example, if the Planck length is also one in these units~i.e.,
k05151/l Pl), andk is the surface gravity of a solar mas
black hole, the inequality onx becomes 1!uxu!1038.
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57 6285COMPUTING THE SPECTRUM OF BLACK HOLE . . .
Clearly there is no problem in satisfying this inequality. It
convenient to keep these numbers in mind for later appr
mations.

Now we turn to evaluatingf(x) for x.0. In principle we
must evaluate the contour integral~26! over the same con
tour as in thex,0 case, i.e.,C0 . However, by Cauchy’s
theorem we may deform the contour~keeping the endpoints
fixed! through any region in which the integrand is analy
to a new contour, hopefully one where the integral is ea
to evaluate. In particular we may deform the contour so t
it runs through any nearby saddle points so that we m
again approximate the integral by the method of steep
descents. In fact most of the work for these saddle points
already been done. They are still given by~29! except that
now x.0 and therefore are both imaginary~to leading or-
der!, i.e., s6'6 iA2kx. The direction of the steepest de
scent contours throughs2 ands1 are now given by 7p/4 to
3p/4 and 5p/4 to p/4 respectively. From this one can eas
see that the steepest descent contour,C1 , throughs2 asymp-
totes to regions 2 and 3~25! and the steepest descent co
tour, C2 , throughs1 asymptotes to regions 1 and 2~25!, as
shown in Fig. 3. Evaluating the leading order contributio
to these contour integrals as before results in

f1~x!'ei5p/4e2pv/~2k!A2pk~2kx!23/42 iv/~2k!

3expS 2 i
2

3
A2kx3/2D ~32!

f2~x!'e2 ip/4epv/~2k!A2pk ~2kx!23/42 iv/~2k!

3expS i
2

3
A2kx3/2D ~33!

where we have chosen the directions of the contours as
picted in Fig. 3.

The contourC11C2 is not by itself deformable toC0 ,
but if we add in the contourC3 ~see Fig. 3! which asymp-
totes to region 2 on either side of the branch cut, thenC1
1C21C3 is deformable toC0 . To evaluate the contour in
tegral over C3 , first define the new integration variab
e2 ipt:5sx. This produces

f3~x!5xiv/kE
C̄3

dt~2t !212 iv/k

3expX2t1S 2
t3

6kx3
2

iv~ iv2k!x

2kt D C ~34!

where the new contourC̄3 runs from infinity just above the
postive real axis, counter-clockwise about the origin, a
back to infinity just below the positive real axis. Ignoring th
t3 and t21 terms in the exponent for the moment, we no
that the remainder is just a gamma function, i.e., using
integral representation@17#,

G~n!52
1

i2sin~pn!
E

C̄3

dt ~2t !211ne2t ~35!

we arrive at
i-

r
t
y
st
as

-

s

e-

d

e

f3~x!'22sinh~pv/k! G~2 iv/k! xiv/k. ~36!

To see when this approximation holds, expand

expS 2
t3

6kx3D '12
t3

6kx3
1OS t6

k2x6D . ~37!

Evaluating the integral~34! with the t3 term produces the
correction term tof3(x),

df3~x!5
sinh~pv/k!

3kx3
G~2 iv/k!xiv/k. ~38!

Using the identity G(z11)5zG(z) one may show that
udf3(x)/f3(x)u!1 holds if

1!ukx3u. ~39!

If we expand exp„2 iv( iv2k)x/(2kt)… in the same way
and evaluate the leading order correction term tof3(x) as
before, we find that we need

uvxu!1. ~40!

When these conditions hold,f3(x) is well approximated by
~36! ~in the asymptotic expansion sense!.

To summarize, we have found an approximate solut
f(x) to the mode equation~12! satisfying the boundary con
ditions that it decay inside the horizon. Just outside the
rizon the solution is given byf(x)5f1(x)1f2(x)1f3(x)
@see ~32!, ~33!, and ~36! respectively#. We now propagate
this solution out to a region wherev(x) is essentially con-
stant by patching onto WKB solutions which are valid ou
side the horizon. Knowing the solution in the constantv(x)
region will then allow us to easily extract the particle flux

B. WKB solutions

To find approximate solutions to the mode equation~12!
by the WKB method, assume a solution of the form

f~x!5ei *dx k~x! ~41!

where the wave vectork(x) is an unknown function ofx.
Substitution yields

k42~12v2!k222vvk1v25 i
d

dx
@2k32~12v2!k2vv#

1@4kk913~k8!2#2 ik-

~42!

where we denote derivatives with respect tox by primes (8).
If v(x) is a slowly varying function ofx, then we expect
k(x) also to be slowly varying. We therefore try to solve f
k perturbatively in derivatives ofv(x). More precisely, let
x→ax ~we will take a51 at the end!, then~42! becomes

k42~12v2!k222vvk1v2

5
i

a

d

dx
@2k32~12v2!k2vv#1

1

a2
@4kk913~k8!2#
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2
i

a3
k-. ~43!

In this equation we see on the right-hand-side that der
tives of k(x) and v(x) with respect tox are suppressed b
powers of 1/a.

Now assume thatk(x) may be expanded in inverse pow
ers ofa as

k~x!5k~0!~x!1
1

a
k~1!~x!1¯. ~44!

Substituting into~43! and demanding that the coefficients
each power of 1/a separately vanish produces an infinite s
of equations, the lowest orders being

~k~0!!42~12v2!~k~0!!222vvk1v250 ~45!

k~1!5
i

2

d

dx
ln@2~k~0!!32~12v2!k~0!2vv#. ~46!

Although the leading order equation fork(0), ~45!, can be
solved exactly producing a set of four wave vectors, the
pressions are quite unwieldy. Fortunately, since we
mainly interested in Killing frequenciesv satisfyingv!1,
we only need find approximate wave vector roots to t
equation. Once these roots are known, the 1/a corrections to
them can be found by substituting the respective wave ve
root k(0) into ~46! and solving fork(1). These computations
produce the wave vectors

k656A12v21
v v

12v2
1 i

3

4

d

dx
ln~12v2!1O~v2!

~47!

k1s5
v

11v
1O~v3! ~48!

k2s52
v

12v
1O~v3!, ~49!

where we have seta51. The corresponding WKB solution
are

f6~x!'@12v~x!2#23/4e6 i *dx A12v~x!2
eiv*dx v~x!/@12v2~x!#

~50!

f1s~x!'eiv*dx/@11v~x!# ~51!

f2s~x!'e2 iv*dx/@12v~x!#. ~52!

The condition of validity for these approximate solutions
that uk(1)(x)/k(0)(x)u!1. For thek6 wave vectors this ratio
is

Uk6
~1!~x!

k6
~0!~x!

U' 3

2U v~x!v8~x!

@12v2~x!#3/2U . ~53!

We are interested inv(x)’s containing black holes. The ho
rizon of a black hole in these units is located atv(xh)
-

t

-
e

s

or

521, therefore the right-hand side of~53! clearly becomes
arbitrarily large as we approach the horizon@assuming that
v8(x)Þ0 which are the only cases we consider here#. It fol-
lows that the WKB approximation will break down aroun
the horizon. Far from the horizon~and outside the black
hole! v(x) asymptotes to a constant21,v0,0 andv8(x)
goes to zero, therefore the WKB approximation will be val
For thek1s mode a ratio similar to~53! holds, and therefore
the WKB approximation again fails around the horizon, b
is valid far outside of it. To compute this ratio, we mu
computek1s to order O(v3), however since we will not
need this later we do not give the explicit expressions he

C. The spectrum

We now have all the ingredients necessary to compute
leading order spectrum of black hole radiation. First note t
validity of the WKB approximation~53! requires that 1
!Akx3. Furthermore the approximate solution from th
Laplace transform method is valid when 1!uxu!1/k. Since
we are considering cases wherek!1, there is always a re
gion where both the WKB and Laplace transform solutio
are valid.

If we evaluate the integrals appearing in the WKB so
tions of ~50!, ~51! and, ~52! respectively in a region jus
outside the horizon wherev(x) is given by the linearized
expression~18!, we find that the solution outside the horizo
obtained from the Laplace transform method can be
pressed as

f~x!5e2 ip/4A2pk„2 ie2pv/~2k!f2~x!

1epv/~2k!f1~x!…e2pv/k~e2pv/k21!

3G~2 iv/k!f1s~x!. ~54!

With f(x) decomposed in terms of the WKB solutions, w
are allowed to evaluate it at largex, i.e., wherev(x) is es-
sentially constant. In this region the WKB solutions redu
to simple modes~up to multiplicative constants! and we need
only extract the coefficients of these modes in order to co
pute the particle creation rate as given in~14!. A simple
computation yields

N~v!5
1

e2pv/k21
, ~55!

exactly a thermal spectrum at the Hawking temperatureTH
5k/(2p).

As a check on our results, recall that invariance of t
action ~2! under constant phase transformations of the fi
leads to the existence of a conserved currentj m. When this
current is evaluated on fixed Killing frequency mode so
tions, the time componentj t is manifestly time independen
and the conservation law reduces to]xj x50, i.e., j x is con-
stant. The exact form ofj x is complicated, but when evalu
ated on a mode of the formc(v)exp„2 ivt1 ik(v)x… in a
region wherev(x) is constant, it reduces to

j x
„k~v!…5v8„k~v!…vg„k~v!…uc„k~v!…u2. ~56!
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57 6287COMPUTING THE SPECTRUM OF BLACK HOLE . . .
For the solution of interest to us, i.e., the one that dec
inside the horizon, the spatial part of the current must van
everywhere. Using the solution given by~54!, it is easy to
show that this is indeed the case.

We have made a number of approximations in order
compute the leading order flux given by~55!, we would now
like to collect them to find out what restrictions they place
the allowed parameter ranges. First recall that we have
strictedk to valuesk!1 ~in units ofk051). Physically this
says that we only expect to get a thermal spectrum of ra
tion when the black hole is large, and therefore has a sm
temperature.

The range of validity of the Laplace transform solutio
in the spatial variablex is also restricted. We have alread
seen that we needuxu@1 for the steepest descents appro
mation to hold for the various contour integrals andukxu!1
for the approximate ODE~21! to be valid. Closer investiga
tion of the correction terms to the WKB solutions and t
Laplace transform solutions shows that we need

1/k1/3!uxu!1/k3/5. ~57!

This inequality means that the matching of the WKB a
Laplace transform solutions can be done anywhere in
range. To derive these inequalities, note that the WKB
Laplace transform solutions cannot be matched to arbit
order because in fact they solve different equations. T
Laplace transform solutions were obtained by finding
proximate solutions to the linearizedv(x) ODE ~21!, while
the WKB solutions were obtained by finding approxima
solutions to the full ODE. By computing the first set of co
rection terms to both the WKB and Laplace transform so
tions that differ, i.e., do not match, and demanding that th
are small~compared to the leading order terms!, we derive
the above inequality.

These correction terms also restrict the range ofv. Since
the corrections arex dependent, by matching the WKB an
Laplace transform solutions about an appropriatex satisfying
~57! we can minimize the difference between the solutio
To carry this out we compute the leading order correct
terms for the WKB and Laplace transform solutions that d
fer and sum their absolute values. As a specific case,
leading order relative difference between the WKB solut
corresponding to the wave vectork1 and the Laplace trans
form solution corresponding to the contourC2 is

s'S 2

p2D 1/4
v

k

Ak

~2kx!3/4
1

1

40

~2kx!5/2

k
~58!

in the limit of v@k. Minimizing this with respect tox we
find thatkxmin'„9kv2/(4p)…2/13 and

s'
13

120S 2

p2D 5/26

1210/13
v10/13

k8/13
. ~59!

Demanding thats!1 we arrive at the constraint

v!
1

12S p2

2 D 1/4S 120

13 D 13/10

k4/5. ~60!
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A similar computation can also be carried out for the WK
and Laplace transform solutions corresponding to thek2 and
k1s wave vector roots. In the limit ofv@k a weaker con-
straint than above is obtained from thek1s root, and the
same constraint as above is obtained for thek2 wave vector.
In the same manner as above a lower bound on the allo
range ofv can be obtained. From thek1 wave vector we
find that we need

v@
13

6pS 2

p D 5/13 1

203/13
k15/13. ~61!

It follows that the range of validity of the analytical resul
presented above are bounded both above and below in
parameterv.

D. Computing the quantum state

We have so far computed the outgoing flux of partic
from a black hole for the subluminal equation of motion~4!
~with the plus sign!. There is, however, much more informa
tion contained in the quantum state than just number exp
tation values, for instance, correlations. It is therefore of
terest to compute the full quantum state in this modifi
theory and compare it to the state arising with the ordin
wave equation, as already computed by Wald@9#.

To be a bit more precise, we are not actually ‘‘compu
ing’’ the quantum state because we already know what it
i.e., we have assumed that it is the free fall vacuum. What
are going to do is re-express this state in terms of a vacu
state defined by late time observers. We define the o
Hilbert space as the tensor product of Hilbert spaces on
ther side of the horizon. Outside the horizon we use Killi
frequency to define the Hilbert space, as we have done so
Inside the horizon we do the following. We take av(x) that
asymptotes to a constant~less than21), then we define our
Hilbert space in this region using free fall frequency. If w
are only interested in the observations made by the out
observer then we would trace over the inside degrees of f
dom, in which case the Hilbert space we use inside the
rizon is irrelevant. For the computations here though,
choice we have made is the simplest.

Our method of computing the state is very similar to t
techniques employed by Wald@9#. In the time dependen
picture we would take an ingoing, positive free fall fre
quency wave packet and evolve it from the hypersurfa
where the free fall vacuum is defined to the hypersurfa
where the out vacuum is defined. If this packet is sufficien
peaked in its wave vector, we may follow it on the dispersi
relation as discussed in detail in@8#. It is not hard to see tha
this packet will propagate toward the horizon and sca
~mode convert!, the reflected piece propagates~forward in
time! away from the horizon to the region wherev(x) is
essentially constant, and the transmitted packet propag
deeper inside the horizon to wherev(x) is essentially con-
stant. The late time packet outside the horizon correspond
the Hawking particle, and the late time packet inside
horizon corresponds to the partner. If the initially positi
free fall frequency packetc1ff contains only positive Killing
frequencies, the final packet (Noc1out1Nic2 in) contains
only positive Killing frequenciesc1out outside the horizon
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6288 57STEVEN CORLEY
and negative free fall frequenciesc2 in inside the horizon~all
packets are assumed normalized andNo and Ni are con-
stants!. The annihilation operator associated withc1ff , i.e.,
a(c1ff):5(c1ff ,f̂), annihilates the free fall vacuum. Usin
the time independence of the inner product, we theref
derive the equation

„No* a~c1out!2Nia
†~c2 in* !…uff &50. ~62!

Similarly, if the initially positive free fall frequency
packet contains only negative Killing frequencies, the fin
packet outside the horizon will contain only negative Killin
frequencies and the final packet inside the horizon will c
tain only positive free fall frequencies. Using this, a relati
similar to ~62! can be derived. As shown by Wald@9#, given
a complete set of relations like~62! ~constructed by taking a
complete set of ingoing, positive free fall frequency packe!,
we can re-express the free fall vacuum in terms of the
vacuum.

As we have done thus far, we shall actually use mo
solutions instead of wave packets. We derive the mode s
tions which, when appropriately summed, produce the t
dependent wave packet solutions just discussed. We h
already derived one mode solution in~54!, although it is not
of the form that we want. Rather it decays inside the horiz
and is a superposition of plane waves with wave vect
k1s , k1 , and k2 far outside the horizon@where v(x) is
essentially constant#. In the time dependent picture it corre
sponds to propagating a pair of ingoing, positive and ne
tive free fall frequency wave packets forward in time, wi
just the right relative weights so that the entire packet co
pletely mode converts around the horizon, turns around,
propagates out to the constantv(x) region. This late time
outgoing packet is the Hawking particle. To obtain the mo
solutions that we want, we shall construct another mode
lution below which is a superposition of plane waves w
wave vectorsk1 andk2 far outside the horizon@wherev(x)
is essentially constant#, whereas inside the horizon@where
v(x) is again essentially constant# it reduces to a plane wav
with wave vectork2 . In the time dependent picture th
mode solution corresponds to propagating a pair of ingo
positive and negative free fall frequency wave packets
ward in time, with just the right relative weights~although
different than above! so that the entire packet propagat
across the horizon and converts into just a negative free
frequency packet. This packet corresponds to the partne
the Hawking particle. Its wave vectork2 should therefore
agree with the wave vector of the partner in the ordin
wave equation. Indeed we find thatk2'v/„11v(x)… inside
the horizon, in agreement with the ordinary wave equati
By adding these two mode solutions, call them the n-mo
since they are the relevant ones for computing number
pectation values, with the correct relative coefficient, we c
eliminate thek2 (k1) mode outside the horizon. These a
the mode solutions we want, call them the s-modes si
they are the relevant ones for computing the state, bec
they correspond to propagating an ingoing, positive~nega-
tive! free fall frequency packet forward in time which spli
around the horizon into a pair of wave packets, one pro
gates back away from the horizon~the Hawking particle!,
and the other~the partner! falls inside the black hole.
re

l

-

t

e
u-
e
ve

n
s

a-

-
d

e
o-

g,
r-

ll
of

y

.
s

x-
n

e
se

a-

Because the details of computing the other n-mode s
tion discussed above are essentially the same as discuss
Secs. IV A and IV B, we shall only sketch the computatio
We first solve the mode equation~12! ~with the plus sign!
about the horizon by the method of Laplace transforms
actly as before. The only difference is that the contour
integration must be changed so as to satisfy the bound
conditions that the solution reduce to a plane wave w
wave vectork2 inside the horizon wherev(x) is essentially
constant. A straightforward computation shows that the c
tour C4 shown in Fig. 4 does the job, i.e., evaluating t
contour integral~26! over C4 and propagating the solutio
deeper inside the black hole by the WKB approximation
the constantv(x) region shows that the solution is

f4~x!'2epv/k sinh~pv/k!G~2 iv/k!f2~x!, ~63!

wheref2(x)'exp@i*xv/„11v(x)…# inside the horizon. This
is the boundary condition we want.

To evaluate the solution outside the horizon, we defo
the contourC4 into C2 andC5 as shown in Fig.~4!. These
we can evaluate by the method of steepest descents. In
C2 is exactly the same as the contourC2 before; see Fig. 3.
C5 is the same asC1 before~see Fig. 3!, except that it lies on
a different Riemann sheet, so only the overall scale chan
The complete solution outside the horizon after being pro
gated out to the constantv(x) region by the WKB approxi-
mation is

f2~x!1f5~x!'e2 ip/4epv/~2k!A2pk„f1~x!

2 iepv/kf2~x!…. ~64!

Combining this withf4(x) produces the connection formul

2epv/k sinh~pv/k!G~2 iv/k!f2~x!

↔e2 ip/4 epv/~2k!A2pk„f1~x!2 iepv/kf2~x!…

~65!

where the left-hand side refers tox,0 and the right-hand
side tox.0. This is the second of the n-mode solutions; t
first is given in~54!.

FIG. 4. Diagram of the contours of integrationC2 , C4 , andC5 .
C2 andC5 are steepest descent contours passing through the sa
pointss1 ands2 respectively; the solutions for these contours a
valid for x.0. The solution corresponding to the contourC4 is
valid for x,0. The unmarked regions are directions in which t
contour must asymptote for the integral to converge. The3 ’s are
singularities of the integrand and the wavy line is a branch cut.
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57 6289COMPUTING THE SPECTRUM OF BLACK HOLE . . .
To obtain the s-mode solutions, we add the n-mode s
tions given in~54! and ~65! with the correct relative coeffi-
cient so that either thef2(x) mode or thef1(x) mode
cancels at large positivex: this produces the connection fo
mulas

epv/kf2~x!↔f1s~x!1e2 i3p/4
A2pk

G~2 iv/k!
f2~x!

~66!

e2pv/kf2~x!↔f1s~x!

2e2 ip/4e23pv/~2k!
A2pk

G~2 iv/k!
f1~x! ~67!

where again the left-hand side refers to negativex and the
right-hand side to positivex. Noting that the annihilation
operator associated with the modesf1(x) and f2* (x) at
large positivex ~in the time dependent picture these wou
be the early time ingoing, positive free fall frequency wa
packets! both annihilate the free fall vacuumuff &, we derive
the following relations as in~62!,

„a†~f1s!2epv/ka~f2* !…uff &50 ~68!

„a†~f2* !2epv/ka~f1s!…uff &50. ~69!

These two relations completely determine thef1s and f2*
content of the free fall vacuum for the Killing frequencyv.
Using these relations it is simple to show that the free
vacuum is a thermal state at the Hawking temperature,
actly as with the ordinary wave equation@9#.

V. APPROXIMATE SOLUTIONS
TO THE SUPERLUMINAL EQUATION

Since the calculations involved in solving the mode eq
tion ~12! with the superluminal operatorF̂2 are virtually
identical to those given above for the subluminal opera
F̂1 , we shall be brief. Computing the approximate solutio
outside the horizon by the WKB approximation procee
exactly as before. The main difference compared to the s
luminal case is that weare now interested in WKB solutions
both inside and outside the horizon. Outside the horizon,
relevant7 WKB mode is

f1s~x!'eiv*dx/@11v~x!#, ~70!

and inside the relevant WKB modes are

f6~x!'„211v2~x!…23/4e6 i *dx A211v2~x!

3eiv*dx v~x!/@12v2~x!#. ~71!

As before, it is straightforward to show that these appro
mate solutions break down around the horizon, but
enough outside the horizon they are valid. To find the app

7There are other linearly independent solutions both inside
outside the horizon, but they will not be needed in this calculati
u-
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priate connection formula for these solutions, we now find
approximate solution across the horizon.

Solutions about the horizon can be obtained by again
earizingv(x) as in ~18! and solving the resulting approxi
mate mode equation by the method of Laplace transfor
The linearized equation is just~21! with a minus sign in-
serted before the fourth derivative term. Writing the soluti
as a Laplace transform as in~22! and substituting into the
equation produces thes-space ODE~23! with s4→2s4.
This equation is again trivial to solve. One finds upon writi
the solution in the form

f~x!5E
C
ds g~s!ex f~s! ~72!

that

f ~s!5s2
1

2kxS s3

3
2

iv~ iv2k!

s D ~73!

and

g~s!5s212 iv/k. ~74!

Before evaluating~72!, first note that at largeusu, the
integral is dominated by exp„2s3/(6k)…, and therefore for
the integral to converge, the contour must asymptote t
region where Re(s3).0. Writing s5reiu, these regions are
given by

Region1↔
2p

6
,u,

p

6
~75!

Region2↔
p

2
,u,

5p

6
~76!

Region3↔
7p

6
,u,

3p

2
, ~77!

and are the unmarked regions in Fig. 5.
To evaluate the contour integral~72!, recall from Sec. III

that our boundary conditions are specified outside the h
zon and state that the solution must reduce to a plane w
with wave vectork1s in the constantv(x) region. This so-
lution does not correspond to a saddle point because th
solutions are either exponentially growing or decaying. It
d
.

FIG. 5. Diagram of the contour of integrationC6 . The un-
marked regions are directions in which the contour must asymp
for the integral to converge. The3 ’s are singularities of the inte-
grand and the wavy line is a branch cut.
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6290 57STEVEN CORLEY
not hard to guess what contour we need though, given
past experience with the subluminal dispersion relation
we take a contourC6 that encircles the branch cut and a
ymptotes to regions 2 and 3~77!, see Fig. 5, we get a contou
very similar to the contourC3 in Fig. 3. The approximations
that went into evaluating that contour also work here. T
result is exactly2f3(x) of ~36!. This solution is just
f1s(x) ~70! up to a multiplicative constant, and therefo
the contourC6 produces the correct boundary condition
x@0.

To evaluate~72! for x!0 we use the steepest desce
approximation. The saddle points in the integrand of~72! are
given by

s6'6 iA2kuxu, ~78!

and the steepest descent contours must pass through
points in the directions2p/4 to 3p/4 for s1 and p/4 to
5p/4 for s2 . The contours,C7 andC8 , therefore must as
ymptote to regions 1 and 2 and regions 2 and 3 respectiv
see Fig. 6. Furthermore,C71C8 is deformable toC6 , and
therefore is the contour we want. Evaluating~72! over C7
1C8 by the steepest descents approximation and expres
the result in terms of the WKB solutions~71! results in

f71f8~x!'e2 ip/4A2pk„e2pv/2kf2~x!2 iepv/2kf1~x!….

~79!

We now have the complete solution for allx, which can be
displayed as the connection formula

e2 ip/4A2pk„e2pv/2kf2~x!2 iepv/2kf1~x!…

↔
2 i2p

G~11 iv/k!
f1s~x! ~80!

where the left-hand side refers tox,0 and the right-hand
side tox.0. Evaluating~80! at x@0 andx!0 allows us to
pull off the coefficientsc1s(v) andc2(v). Substituting into
~14! again produces a thermal spectrum at the Hawking t
perature.

As before we have made a number of approximations
arrive at this result. Collecting these approximations
gether, we can compute the range of validity of these res
However, because the difference between the solutions
the subluminal equation and the superluminal equation
only the change of a few signs in the end, then the differe

FIG. 6. Diagram of the steepest descent contours,C7 and C8 ,
through the saddle pointss1 and s2 respectively. The unmarked
regions are directions in which the contour must asymptote for
integral to converge. The3 ’s are singularities of the integrand an
the wavy line is a branch cut.
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between the WKB and Laplace transform solutions for
superluminal case is essentially the same as the differe
between the WKB and Laplace transform solutions for
subluminal case. Therefore the constraints on the rang
validity of the solutions in the parametersk, x, andv are the
same as in the subluminal case.

A. Computing the quantum state

For the superluminal equation we can as well compute
decomposition of the free fall vacuum in terms of partic
states as seen by late time observers. We define the out
bert space as before, i.e., we take it to be a tensor produ
Hilbert spaces inside and outside the horizon respectiv
Outside the horizon we define the Hilbert space using Killi
frequency, and inside we use free fall frequency~as before
we take av(x) that asymptotes to a constant smaller tha
21 behind the horizon!.

To compute the decomposition of the free fall vacuu
we again look for mode solutions which when summed
gether produce an early time positive free fall frequen
packet propagating toward the horizon~but now located be-
hind the horizon!. Around the horizon this packet scatte
~mode converts! into a pair of packets, a reflected pack
which propagates deeper inside the black hole to the cons
v(x) region and a transmitted packet which propaga
across the horizon out to the constantv(x) region. In this
picture the transmitted packet corresponds to the Hawk
particle and the reflected packet to the partner. From suc
solution we could obtain an equation for the free fall vacuu
analogous to~62!.

To compute the s-modes~those needed to compute th
state! we again first compute the n-modes~those needed to
compute number expectation values!. We have already com
puted one n-mode given by~80!. Recall that in the time
dependent picture this corresponds to a pair of positive
negative free fall frequency packets propagating toward
the horizon~and located inside the black hole! with just the
right relative coefficient that the entire packet propaga
across the horizon out to the constantv(x) region. The other
n-mode therefore correponds in the time dependent pictur
a pair of positive and negative free fall frequency pack
propagating toward the horizon with the right relative co
ficient such that the entire packet is reflected and propag
deep inside the black hole to wherev(x) is constant. The
appropriate mode solution therefore must decayoutsidethe
horizon.

Computing this mode solution involves the same te
niques used already many times, so we shall simply qu
the result. The connection formula expressed in terms of
WKB solutions is

S e2 ip/4A2pk„2 iepv/~2k!f1~x!1e3pv/~2k!f2~x!…

1 iepv/k
2p

G~11 iv/k!
f2m~x! D↔e2 i3p/4epv/kf1~x!

~81!

where the left-hand side refers tox,0 and the right-hand
side tox.0. The solutionf1(x) for positive x decays ex-
ponentially with increasingx, and therefore satisfies th
boundary conditions.
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To compute the s-modes we take linear combinations
the n-modes~80! and ~81! to eliminate eitherf1(x) or
f2(x) behind the horizon. This results in the connecti
formulas

f2~x!1 iNepv/kf2m~x!↔ iNf1s~x! ~82!

f1~x!1Nf2m~x!↔Nepv/kf1s~x! ~83!

where

N5eip/4e2pv/~2k!
p

A2pk sinh~pv/k! G~11 iv/k!
.

~84!

These relations are enough to carry out the decompositio
the free fall vacuum as discussed in Sec. IV D. In particu
the method of obtaining the equations~69! on the free fall
vacuum for the subluminal dispersion relation follows e
actly in this case as well, with the replacement off2 in the
subluminal case byf2m in the superluminal case.

VI. CONCLUSIONS

We have considered two different modifications of t
wave equation in a black hole spacetime, one producing s
luminal propagation of high frequency modes and the ot
superluminal propagation of high frequency modes. We h
shown that both equations give rise to exactly a therm
spectrum of radiation from a black hole to leading order
an expansion in powers of 1/k0 . It is natural to try to push
the analysis further to obtain a correction term to the out
ing flux. We immediately run into the following difficulty
though. In obtaining an approximate solution to~12! about
the horizon, we actually solved instead just the lineariz
equations~21!. To obtain a better approximate solution abo
the horizon, we need a better approximation to~12!. We
could, for instance, keep higher order terms inx when ex-
panding v(x) and v8(x). If we try to solve the resulting
equation by the Laplace transform method, we find that
get a higher order ordinary differential equation in t
Laplace transform variables. In other words, thes-space
equation is really not much better than the originalx-space
equation.
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An important assumption made in deriving the therm
radiation for the superluminal equation of motion was th
positive free fall frequency modes, located behind the ho
zon, were in their ground state. Clearly we do not knowa
priori whether this is the physically correct quantum sta
condition. In principle we would have to begin with a qua
tum state which evolves into a black hole, and then as
these modes actually are in their ground state. This requ
quantum gravity. A more realistic problem to tackle at th
time is simply to ask where these modes came from i
semiclassical approximation. One would guess naively fr
the singularity. Recent investigations@12,13# have shown;
however, that for certain charged black holes it is possi
that these modes simply reflect outside the singularity
become ingoing modes, backward in time. This would ha
important implications because it would mean that t
Hawking radiation, even for an eternal black hole, wou
originate from ingoing modes, and therefore we would n
have the infinite degrees of freedom problem@7#.

We end by noting that the subluminal model~and possi-
bly the superluminal model as well! considered in this pape
suffers from the ‘‘stationarity puzzle.’’ If we try to propagat
the outgoing modes backward in time all the way out
infinity, wherev(x) goes to zero, then there can be no p
ticle creation by conservation of Killing frequency. One wa
out of this problem is to introduce time dependence into
equation of motion~perhaps via backreaction! to destroy the
Killing symmetry. A step in this direction is to put the ord
nary wave equation on a spatial lattice; this has the adv
tage of introducing naturally a short distance cutoff and
the same time destroying the Killing symmetry~for discreti-
zations of most spatial coordinates!. Such a model is cur-
rently being investigated@18# by techniques similar to thos
described in this paper.
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