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Lattice black holes

Steven Corley* and Ted Jacobson†

Department of Physics, University of Maryland, College Park, Maryland 20742-4111
~Received 30 September 1997; published 9 April 1998!

We study the Hawking process on lattices falling into static black holes. The motivation is to understand
how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the
free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete
time-translation symmetry we use analytical methods to establish that, for Killing frequencyv and surface
gravity k satisfying k!v1/3!1 in lattice units, the continuum Hawking spectrum is recovered. The low
frequency outgoing modes arise from exotic ingoing modes with large proper wave vectors that ‘‘refract’’ off
the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial
infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and
therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at
wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing
frequency modes into low frequency outgoing modes.
@S0556-2821~98!02610-1#

PACS number~s!: 04.70.Dy, 04.60.Nc, 63.90.1t
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I. INTRODUCTION

As field modes emerge from the vicinity of the horizo
they are infinitely redshifted. In ordinary field theory there
an infinite density of states at the horizon to supply the o
going modes. How do these outgoing modes arise if the s
distance physics supports no infinite density of states?
how does the short distance physics affect the Hawking
diation in these modes? By insisting on a fully sensible re
lution of the apparent conflict between black holes and sh
distance finiteness we hope that some deep lessons ca
learned. That is the underlying motivation for the pres
work.

One way to avoid an infinite density of states is to ha
some physical cutoff at short distances, related to a fun
mental graininess of spacetime.1 Analogies with condensed
matter systems such as fluids, crystals, Fermi liquids,
suggest that in this case the long wavelength collec
modes which are described by field theory will propag
with a dispersion relation that deviates from the line
Lorentz-invariant form at high frequencies. A number
~two dimensional! linear field theory models with such be
havior have now been studied@1,2,3,4#. It turns out that the
Hawking radiation is extremely insensitive to the short d
tance physics, as long as neither the black hole tempera
nor the frequency at which the spectrum is examined is
close to the scale of the new physics.2 What is striking is that
this is so even though the behavior of the field modes
rather bizarre: the outgoing modes that carry the Hawk

*Email address: corley@physics.umd.edu
†Email address: jacobson@physics.umd.edu
1String theory provides a different way, in which the states

less localizable than in ordinary field theory.
2The ultra low frequency part of the spectrum, which has not

been computed, might turn out to be non-thermal.
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radiation arise from exotic ingoing modes that bounce off
horizon.3

Although these models do provide a mechanism for g
erating the outgoing modes without an infinite density
states at the horizon, they still behave unphysically: wa
packets cannot be propagated backwards in time all the
out to ‘‘infinity’’ ~i.e. the asymptotic region far from th
black hole!. For example, using Unruh’s dispersion relatio
@1#, which has a group velocity that drops monotonically
zero at infinite wave vector, the wave vector diverges as
wave packet goes~backwards in time! farther from the black
hole. So, in this case, the infinite redshift is just moved to
new location. Evidently the theory is pushed into the tra
Planckian regime after all. To make sense of—or at leas
sensibly model—the true origin of the outgoing modes,
therefore seems necessary to work with a theory that h
well-behaved physical cutoff. A simple way to impleme
such a cutoff is to discretize space, and work with a latt
theory preserving continuity in time. This is roughly simila
to what is happening in a condensed matter system, bu
can preserve strict linearity for the lattice field theory a
still model the key effect of the cutoff.

In this paper we study two lattice models of this natu
obtained by discretizing the spatial coordinate in a fre

e

t

3This is what happens in the case where the group velocit
subluminal at high frequencies. In the superluminal case the ou
ing modes arise from superluminal modes that emerge from be
the horizon. Ultimately these modes come from the singularity~for
a neutral black hole!, so it is not so clear one can make sense of t
case. However, Unruh@5# and Corley@6# have recently shown tha
if one simply imposes a vacuum boundary condition on th
modes behind the horizon the usual Hawking radiation outside
black hole is recovered. A black hole with an inner horizon~such as
a charged one! behaves very differently in the superluminal ca
however. The ergoregion inside the black hole is unstable to s
amplifying Hawking radiation@7#.
6269 © 1998 The American Physical Society
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6270 57STEVEN CORLEY AND TED JACOBSON
falling coordinate system.~If instead a static coordinate i
discretized then the lattice points have diverging accelera
as the horizon is approached, and their worldlines are sp
like inside the horizon. This leads to pathological behavior
the field.! If there really is a cutoff in some preferred fram
then that frame should presumably fall from the ‘‘cosmic
rest frame at infinity in towards a black hole. This would
like Unruh’s sonic analog of a black hole@8,1,9# or the
helium-3 texture analog@10#, where the short distance cuto
is provided by the atomic structure of the fluid which
freely flowing across the phonon or other quasiparticle h
zon.

One particular choice of discretization has the feature
a discrete remnant of time translation invariance surviv
This makes the model easier to study analytically, and
exploit this to show here in Secs. II–V that in a leadi
approximation the black hole radiates thermally at the Haw
ing temperature. The same result was found previously
Unruh @11# using numerical evolution of the lattice fiel
equation. Unfortunately, however, this particular latti
model is still not satisfactory as a model of physics with
fundamental cutoff, because the proper lattice spacing g
to zero at infinity.

It is easy to avoid the vanishing lattice spacing by d
cretizing instead a spatial coordinate which measures pr
length on some initial spacelike surface all the way out
infinity. However, since we also want the lattice points to f
freely into the black hole, this results in a lattice spacing t
grows in time, as shown in Sec. VI. The growth of the latti
spacing suggests that we have still not found a satisfac
model with a short distance cutoff.~An alternative which
avoids this problem will be discussed at the end of this
per.! However, it is rather instructive to understand the ph
ics of this model with the growing lattice spacing. In th
model time translation symmetry is violated for short wav
length modes but not for long wavelengths. In fact, the K
ing energy of an outgoing mode can be much lower than
of the ingoing mode that gave rise to it. This is essentia
producing the outgoing long wavelength modes in this mo
since a long wavelength ingoing mode will of course s
across the horizon into the black hole rather than conver
to an outgoing mode. This mechanism is studied in Sec
with the help of the eikonal approximation.

We adopt units in which\5c5d51, whered is the co-
ordinate lattice spacing, and we use the ‘‘timelike’’ metr
signature.

II. FALLING LATTICE MODELS

Our goal is now to ‘‘latticize’’ the theory of a scalar fiel
propagating in a static black hole spacetime. For each sph
cal harmonic, the physics reduces to a two-dimensional p
lem in the time-radius subspace. The short distance phen
ena we wish to study have nothing to do with the scatter
of modes off of the angular momentum barrier, so noth
essential is lost in dropping the angular dependence
studying instead the physics in a two dimensional black h
spacetime.

We begin with a generic static two dimensional spa
time, and choose coordinates so that the line element t
the form
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ds25dt22~dx2v~x!dt!2. ~1!

The curves of constantx are orbits of the Killing field
x5] t . The curves withdx5v(x)dt are geodesics which ar
at rest with respect to the Killing field wherev(x)50, and
the proper time along these geodesics ist. The constantt
time-slices are orthogonal to these geodesics, and the pr
distance along these time-slices isx. In Appendix A we ex-
plain why such a coordinate system can always be chos

To represent a black hole spacetime with an asympt
cally flat region atx→`, we choosev(x) to be a negative,
monotonically increasing, function withv(`)50. The event
horizon is located where the Killing vector becomes ligh
like, i.e. wherev(x)521. For the Schwarzschild black hol
this coordinate system corresponds to the Painle´-
Gullstrand coordinates@12,13#, with x[r and v(x)5
2A2GM/x. A sketch of the relation between these coor
nates and the ingoing Eddington-Finkelstein null coordin
v is given in Fig. 1.~The wave packet trajectory is discuss
in Sec. IV.!

A new coordinatey that is constant on the free-fall world
lines dx5v(x)dt is defined by

y ª t2E dx

v~x!
. ~2!

This yields the line element

ds25dt22v2~x!dy2 ~3!

wherex is now a function oft2y obtained by solving~2! for
x. In these coordinates the Killing vector is given by

x5] t1]y . ~4!

The action for a real scalar field in these coordinates

S5
1

2 E dtdyA2ggmn]mf]nf ~5!

5
1

2 E dtdyS Uv~x!U~] tf!22
1

uv~x!u ~]yf!2D
~6!

FIG. 1. Painleve´-Gullstrand coordinates and ingoing light ray
The trajectory of a wave packet that is outgoing with low wa
vector at late times is sketched.
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57 6271LATTICE BLACK HOLES
and the equation of motion is

2] t
2f1

1

v2~x!
]y

2f2v8~x!] tf1S v8~x!

v2~x! D ]yf50. ~7!

We could now alter the theory to include high frequen
dispersion by replacing]y by F(]y)5]y1a]y

31¯ in the
action ~6!. This is similar to what was done in the mode
already studied@1–3#, the only difference being that there
was ]x that was replaced byF(]x). Since ]y52v(x)]x ,
these two modifications are essentially the same near
horizon wherev(x)521, and in fact they are quite simila
in all regions wherev(x) is of order unity. It is only asymp-
totically, wherev(x) goes to zero, that their behavior shou
differ substantially. We previously preferred to modify]x
since it is the derivative with respect toproperdistance on a
constantt surface everywhere. Now however we want
discretizethe spatial coordinate and, as explained in the
troduction, we do not want to discretizex because it is infi-
nitely accelerated at the horizon. Instead, we discretize
free-fall coordinatey.

One possible spatial discretization of the action is4

S5
1

2 (
m

E dtS uvm~ t !u„] tfm~ t !…22
„Dfm~ t !…2

uvm11~ t !1vm~ t !u/2D
~8!

where D is the forward differencing operatorDfm(t)
:5„fm11(t)2fm(t)…/d, d is the lattice spacing in they co-
ordinate, andvm(t):5v„x(t2md)…. In the remainder of this
paper we shall work in units of the lattice coordinate spa
ing, so thatd51. Varying the action~8! gives the equation
of motion for fm(t):

] t„vm~ t !] tfm~ t !…2DS Dfm21~ t !

„vm~ t !1vm21~ t !…/2D50. ~9!

This lattice action has a discrete symmetry

~ t,m!→~ t11,m11! ~10!

which is the remnant of the Killing symmetry generated
~4!. The meaning of this is that shifting forwards in time b
one unit at fixed static coordinatex is just enough time for
the next lattice point to fall fromx(t,y11) to x(t,y). This
symmetry will be heavily exploited in the following
analysis.5

Note that they coordinate is infinitely bunched up a
v→0 @see~3!#, which occurs at infinity for a black hole typ
metric. Therefore the uniform discretizationym5m yields a
proper lattice spacing that goes to zero at infinity. This
undesirable from a physical point of view, but it is a conv
nient choice mathematically, since unlike other discreti
tions it preserves the symmetry~10!. Also, as long as we do

4For later convenience in the WKB approximation we take
average ofvm11 andvm in the second term in the action.

5The existence of this discrete remnant of the Killing symme
was pointed out to us by W. G. Unruh. In Secs. VI and VII w
study a similar model in which a reparametrization ofy is dis-
cretized and no discrete symmetry survives.
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not try to evolve the scalar field modes all the way to infini
the decreasing proper lattice spacing is benign and has
effect on the physics of the Hawking process. Howev
since our goal is to understand how the outgoing modes
be accounted for in a theory that has a ‘‘reasonable’’ sh
distance cutoff, we shall return to this issue in Sec. VI.

The lattice model defined by~8! was studied numerically
by Unruh@11#. He found by propagating wave packets bac
ward in time that the outgoing modes come from exotic
going modes and, if these ingoing modes are in their gro
states, then the outgoing modes are thermally occupied a
Hawking temperature. In the next three sections we use a
lytic methods to understand the propagation of these w
packets and the computation of the flux of radiation from
black hole. Our results are in agreement with Unruh’s n
merical results.

III. LATTICE DISPERSION RELATION

Due to the symmetry~10! of the lattice action~8! there
exist mode solutions of the form

fm~ t !5e2 ivt f ~m2t !. ~11!

Under the discrete symmetry~10! the mode~11! changes by
a phase factor asfm(t)→e2 ivfm(t). This identifiesv as
the Killing frequencywhich is defined modulo 2pn and is
conserved.

To derive the dispersion relation we plug the ansatz

fm~ t !5e2 ivteik~m2t !5e2 i ~v1k!teikm ~12!

into the equation of motion~9! and treatvm(t) as a constant.
The result is

uvu~v1k!562 sin~k/2!. ~13!

The free-fall frequency, i.e. the frequency measured alon
the free-fall lines of constanty, is defined by ] tf
52 iv fff. The form of the modes~12! then shows that

v ff5v1k. ~14!

To understand what range ofv andk are considered dis
tinct, note that the modes defined by~12! are invariant under
the simultaneous shifts

k→k12np ~15!

v→v22np ~16!

for any integern. Thus we can transform any (v,k) pair into
an equivalent pair (v8,k8) wherek8 lies within a fixed range
of length 2p ~the standard choice being2p,k8,p!. The
value of v8 is unconstrained with this range ofk8. One
choice of fundamental domain of (v,k) pairs is therefore
given by

2p,k,p, 2`,v,`. ~17!

Conversely, we could just as well use the above transfor
tion to force v8 to lie within a fixed range of length 2p
leavingk8 arbitrary.
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6272 57STEVEN CORLEY AND TED JACOBSON
The dispersion relation~13! has a useful graphical repre
sentation ~see Fig. 2!: On a graph with abscissak, the
straight line with slopeuvu andk-intercept2v intersects the
curve62 sin(k/2) at ak that is a solution or ‘‘root’’ of the
dispersion relation. A wave packet constructed from mo
of the form ~11! with Killing frequency nearv will propa-
gate through the lattice spacetime with conserved Kill
frequency. This propagation can be represented graphic
in the WKB approximation by following a point on the dis
persion curve. Since the Killing frequency is conserved,
k-intercept of the straight line is fixed, while the slopeuv(x)u
of the straight line changes according to where the w
packet is located. The direction of motion with respect to
static position coordinatej:5y2t5m2t is determined by
the group velocitydj/dt which is given by

vg5dv/dk56
cos~k/2!

uvu
21. ~18!

Therefore thesign of the group velocity is the sign of th
difference between the slope of the6sin curve at the inter-
section point and the slope of the straight line. The gro
velocity in terms ofy is dy/dt56cos(k/2)/uvu, which is
always less than the speed of light according to the line
ment ~3!.

IV. ORIGIN OF THE OUTGOING MODES

In this section we argue using the dispersion relation t
outgoing low wave vector wave packets indeed originate
ingoing high wave vector wave packets which ‘‘bounce’’ o
of the horizon. A spacetime diagram of the process
sketched in Fig. 1.

To see where the outgoing modes come from, consid
late-time, positive Killing frequency, outgoing packet ce
tered on a small positive wave vectork1s . This wave packet
is represented on the dispersion curve in Fig. 2 as the p
labeledk1s . Following this back in time using the graphic
method described in the previous section we find tha
moves up the dispersion curve until it reaches the tange
point ktp at which the group velocity~18! vanishes. This is
the turning point, where the WKB approximation fails.
v!1, the straight line is extremely close to the sine curve
many k values. This means that when the wave packe
close to the horizon it is really a superposition of manyk
values, including negative ones. The amplitude of the ne
tive wave vector piece, which determines the Hawking rad

FIG. 2. Graphical representation of the dispersion relation~13!.
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tion, is of order exp(2pv/k) wherek is the surface gravity
of the horizon. The positive and negative wave vector pie
both propagate back away from the horizon, evolving in
the modesk1 and k2 respectively.6 Thus we see that the
outgoing positive Killing frequency modes come fromingo-
ing large wave vector modes which ‘‘bounce’’ off the hor
zon. This continuous evolution from one type of modes
another is calledmode conversion. The same phenomeno
occurs in the continuum models in which the high frequen
dispersion is put into the theory by adding higher spa
derivative terms to the action.

Now let us compute the values of the wave vectorsk6

and k1s corresponding to a fixed frequencyv as uvu→0 at
infinity. From the dispersion relation~13! or Fig. 2, one sees
that all three wave vectorsk1s ,k2 , andk1 converge to zero
modulo 2pn independent of the value ofv. This rather
strange result follows because the continuum metric has
form ds25dt22v2dy2, and so they-lattice spacing goes to
zero asv goes to zero. Therefore any mode of finite prop
wavelength will have infinite coordinate wavelength a
zero coordinate wave vector. To resolve these modes we
look at their proper wave vectorskp5k/uvu instead of the
coordinate wave vectors. For thek1s wave vector, asv→0
we may approximate 2 sin(k/2)'k in the dispersion relation
~13! ~with the plus sign!, which yields k.uvuv, so the
proper wave vector goes to justv. For thek6 wave vectors,
we first use the symmetry relation~15!,~16! to shift the co-
ordinate wave vectors~and therefore also the frequencyv!
so that they converge to zero asv→0, and then use the sma
k approximation in the dispersion relation to obtain t
proper wave vectorskp,652(v62p). Therefore the late
time, long wavelength, outgoing Hawking particle aris
from a pair of short but finite proper wavelength ingoin
modes. It follows from the discussion below~18! that, at
spatial infinity, the group velocity for these wave vectors
equal to the speed of light.

In the next section we compute the amplitudes of thek1

and k2 pieces of the ingoing wave packet. Crucial to t
validity of the approximation used in this calculation is th
maximum value of the wave vectors in the wave packet
lution near the horizon. We can estimate this maximum b
simple calculation using the dispersion relation. The class
turning point is located where the straight line of Fig. 2
tangent to the sine curve, labeledktp in the figure. Although
the wave packet tunnels beyond the classical turning poin
is not propagating there, so its shortest wavelength near
horizon should be roughly given by the wavelength at
classical turning point. The wave vector at this point satisfi

6Other modes get excited as well, but only slightly. From ‘‘r
flecting’’ off the background curvature a small negative wave v
tor piece will arise. This will have extremely small amplitude how
ever, for the following reason. There is no scattering at all fo
massless scalar field in the continuum due to conformal invaria
of the action. On the lattice this symmetry will remain approx
mately for wavelengths much longer than the lattice spacing,
short wavelength modes will not see the curvature. Asv becomes
smaller, there are also more wave vector roots to the disper
relation withuku.2p which are also presumably excited slightly b
scattering.
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57 6273LATTICE BLACK HOLES
the dispersion relation~13! ~with the plus sign! and the rela-
tion

uvu5cos~k/2! ~19!

expressing equality of the slopes of the two curves. Ifv
!1 ~which is the case of interest when the surface grav
k!1!, then Fig. 2 shows clearly thatk!1 as well. Using
small k approximations in~13! and ~19! respectively and
solving for k yields

ktp'~12v!1/3!1, ~20!

consistent with our approximations.
This very important result states that although the scal

the new physics is the lattice spacingd(51), the effects of
the new physics occur long before that scale is ever reac
With the ordinary wave equation the maximum wave vec
near the horizon isinfinite due to the infinite blueshift~actu-
ally it is finite but trans-Planckian if the black hole is forme
by collapse!. One might have expected that on the latticektp
would be of order the inverse lattice spacingd21 but ~20!
shows that this is not the case~althoughk;d21 does occur
far from the horizon—see for example the rootsk1 andk2

in Fig. 2 and the accompanying discussion!. This fact—
which is also true in continuum models with high frequen
dispersion—was not noticed in earlier work on dispers
models. As long asv!1 ~20! shows that the physics nea
the horizon that determines the Hawking flux depends o
on the low order terms ink. This result is absolutely essen
tial for the validity of the approximation used in the ne
section.

In Sec. VI we will discuss ways to avoid the problem
vanishing lattice spacing at infinity. This problem plays
role in the calculation of the rate of particle production ho
ever, so we will now explain how this rate can be obtained
a leading order approximation.

V. HAWKING RADIATION

The lattice theory can be quantized in strict analogy w
the quantization of linear field theory in curved spacetime
we will not spell it out here. A difference peculiar to th
lattice theory~or dispersive continuum field theories! is that
the local notion of the ground state~or vacuum! is not Lor-
entz invariant but refers to the preferred free-fall frame. I
region where the functionv(x) is constant—or is approxi
mately constant on the scale of the relevant wavelength
the line element~3! is flat and the action~8! is that of a chain
of identical masses coupled by identical springs. The gro
state of this system is just the usual ground state of the
mal modes, i.e., it is annihilated by annihilation operators
complex solutions to the oscillator equation with time dep
dence of the form exp(2ivfft) with positive v ff , that is,
positive free-fall frequency~14!. This is thefree-fall vacuum.

Given this initial vacuum state we would like to compu
the particle flux seen by an observer sitting at a fixed loca
~fixed x coordinate! far outside the black hole. The natur
notion of particle for such an observer coincides with th
defined by Killing frequency, therefore we shall compute t
number expectation value for an outgoing positive Killin
frequency packet in a state which at some initial time is
y

of
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free-fall vacuum. The standard method of computing t
@14# is to propagate the outgoing packet backward in time
the hypersurface where the vacuum state is defined.
norm of the negative free-fall frequency part of this packe
then ~minus! the number expectation value. The norm r
ferred to here is given by

ifi25 i(
m

uvm~ t !u„fm* ~ t !] tfm~ t !2fm~ t !] tfm* ~ t !…,

~21!

and is the sum over a constantt surface of thet-component
of the current associated with phase invariance of the ac
~8! ~generalized to complex fields!.

Several methods can be used to compute the rate
Hawking radiation. One approach is to evolve a wave pac
backwards in time by numerical solution of the lattice wa
equation~9!, as was done by Unruh@11#. Alternatively, since
the problem has time translation symmetry, one can
work with modes of definite Killing frequency. This is th
approach we take here. The outgoing wave packet is c
posed of wave vectors aroundk1s ~and has positive Killing
frequency! and arises from a pair of packets composed
wave vectors aroundk1 and k2 respectively~which have
positive and negative free-fall frequency respectively!. Using
the arguments in@3#, modified to the lattice model, it is
straightforward to show that, for an outgoing packet n
rowly peaked about the frequencyv, the number expectation
value is

N~v!5
u„k2~v!1v…vg„k2~v!…c2~v!2u

u„k1s~v!1v…vg„k1s~v!…c1s~v!2u
~22!

where c2(c1s) is the constant coefficient of thek2(k1s)
mode located far outside the black hole@wherev(x) is es-
sentially constant#. We now turn to the computation of thes
coefficients.

A. Mode equation

The mode solutions to the lattice wave equation~9! are of
the form ~11!, ~11!

fm~ t !5e2 ivt f ~m2t !, ~23!

where v is the conserved Killing frequency. Plugging th
into the equation of motion~9! produces a delay-differentia
equation~DDE!

v~j!„f 9~j!1 i2v f 8~j!2v2f ~j!…1v8~j!„f 8~j!1 iv f ~j!…

2
2„f ~j21!2 f ~j!…

„v~j21!1v~j!…
1

2„f ~j!2 f ~j11!…

„v~j!1v~j11!…
50, ~24!

where we have defined the new variablej:5(m2t), and
v(j):5v„x(j)…. A wave packet that is outgoing at late time
is composed of mode solutions that decay inside the hori
~see@3# for a discussion of the analogous boundary condit
in a dispersive continuum model!. We therefore need to
solve ~24! subject to this boundary condition.

The DDE ~24! can be solved numerically, however it
more instructive, and sufficient for our purposes, to find
approximate analytic solution. We use the same analyt
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techniques as used in@6#. We first find an approximate solu
tion ~satisfying the above boundary condition! in a neighbor-
hood of the horizon by the method of Laplace transform
and then extend this solution far outside the black hole
matching to the WKB approximation. The mode coefficien
ci can then be read off directly.

B. Near horizon approximation

To solve the mode equation~24! near the horizon we firs
approximatev(j) as

v~j!'211kj, ~25!

wherek is the surface gravity of the black hole, and negle
all terms of order (kj)2. This requires that we stay clos
enough to the horizon thatkj!1.

Next we ‘‘localize’’ the DDE by first Taylor expanding
f (j21),v(j21), etc., and then truncating the expansio
Which terms to keep can be estimated as follows. The Ta
expansions produce the equation

05v~j!„f 9~j!1 i2v f 8~j!2v2f ~j!…1v8~j!„f 8~j!

1 iv f ~j!…1S 2
f 9~j!

v~j!
1

f 8~j!v8~j!

v2~j! D
1S 2

f ~ iv !~j !

12v~j!
1

f-~j!v8~j!

12v2~j!
1¯ D 1¯ ~26!

where we have grouped together terms in the expansion
cording to the total number of derivatives. The ellipses t
appear inside parentheses denote other terms with a tot
four derivatives and the other ellipses denote terms with
or more derivatives per term~only even numbers of deriva
tives occur in the expansion!. Truncating the equation to sec
ond order in derivatives produces the ordinary wave eq
tion. This is not sufficient for us because arbitrarily sh
wavelengths appear in the ordinary wave equation solu
for the outgoing modes, so we must keep at least some o
higher derivative terms.

Let us define an effective local wave vectork(j) by
f 8(j)/ f (j)5 ik(j). Dropping thef (v i )(j) term compared to
the f ( iv)(j) term is accurate provided thatuk(j)u!1 in the
near horizon regionuju!1/k. We can estimatek(j) from the
dispersion relation in the near horizon approximation just
we did in Sec.~IV !. Outside the classical turning poin
~wherej tp;v2/3/k), but still in a region wherej!1/k, all
relevant wave vectors are real and the largest wave ve
behaves ask(j);Akj, and therefore satisfiesuk(j)u!1. For
uju,j tp , the relevant wave vector becomes complex and
a magnitudeuk(j)u;v1/3, thereforeuk(j)u!1 provided we
only consider Killing frequencies satisfyingv1/3!1. Even
deeper inside the horizon where21/k!j,2j tp , the wave
vector is approximately imaginary with magnitude aga
given by k(j);Akuju, and thereforeuk(j)u!1. Ignoring
sixth and higher order derivatives in the equation~26! there-
fore requires thatv1/3!1.

To further simplify the equation, note that the ratio of t
f ( iv) term to thef- term is
,
y
s

t
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U f ~ iv !~j !

f-~j!v8~j!
U; k~j!

k
. ~27!

From above we know that7 k(j)*v1/3, so we will havek
!uk(j)u provided thatv@k3. As long asv is not ultra small
therefore we need only keep the fourth order derivative te8

in the expansion~26!. We therefore arrive at the ordinar
differential equation~ODE!

1

12
f ~ iv !22kj f 922~ iv2k! f 82 iv~ iv2k! f '0. ~28!

We show below by explicit calculation that the solution
~28! of interest to us is consistent with the approximatio
made above and therefore that this truncation of the m
equation is valid.

The ODE~28! is the same as that considered in@6# ~ex-
cept for the coefficient of thef ( iv) term! where it was solved
by the method of Laplace transforms with the same bound
conditions as discussed above. We therefore refer the re
to @6# for the details of this computation. Using the sadd
point approximation to evaluate the Laplace transform
j@1, we find that the solution satisfying the given bounda
conditions can be expressed as

f ~j!5 f 1~j!1 f 2~j!1 f 1s~j! ~29!

where

f 1~j!' iNe3pv/~2k!j23/42 iv/~2k! expS i
2

3
A24kj3/2D

~30!

f 2~j!'Nepv/~2k!j23/42 iv/~2k! expS 2 i
2

3
A24kj3/2D

~31!

f 1s~j!'2epv/k sinh~pv/k!G~2 iv/k!j iv/k ~32!

and

N :5eip/4A2p~6k!1/4~A24k!212 iv/k. ~33!

To check the validity of our localization procedure, no
for example that

f 18 ~j!

f 1~j!
5XS 3

4
1 i

v

2k D 1

j
2 iA24kjC. ~34!

The absolute values of the two terms on the right-hand-s
of ~34! are both much less than one provided we restrictj to
the range

1!j!k21 ~35!

which was already assumed in making the saddle point
proximation ~29! and the near horizon approximation~25!.
Expression~34! is also in agreement with our earlier es

7Actually the wave vector of the outgoing wave packet is sma
than this. For the outgoing packet though, all higher order der
tive terms are negligible outside the classical turning point.

8We could in principle keep the third order derivative term as w
and therefore enlarge the range of validity of our approximation
v, however for simplicity we work with the simpler equation.
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57 6275LATTICE BLACK HOLES
mates off 8(j) obtained by estimating the position depende
wave vectork(j). Similar relations hold for thef 2(j) and
f 1s(j) modes as well.

C. Match to the far zone

The next step is to propagate the mode~29! away from
the horizon to the constantv(j) region. This is accomplished
by computing approximate solutions to the non-local DD
~24! by the WKB method.@Since the wave vectors grow t
order unity asv(j) goes to zero, we must use the full no
local DDE at this stage.# Some details of this computatio
are given in Appendix B. The result is that there exist th
different WKB solutions which, when evaluated near~but
not too near! the horizon, take the same functional forms
the Laplace transform solutions given by~30!, ~31!, ~32!. An
appropriate linear combination of these WKB solutions c
therefore be matched to the near horizon solution~29! yield-
ing

f ~j!5A2pk„e3pv/~2k! f 1
WKB~j!1epv/k f 2

WKB~j!…

12epv/k sinhS pv

k DGS 2 i
v

k D f 1s
WKB~j!. ~36!

Since the WKB approximation holds far outside the horizo
we are free to evaluate the solution there, and thus read
the constant coefficients of the modes exp(ikj) with k
5k1s ,k1 ,k2 in the constantv(x) region. These coefficient
are simply given by the coefficients of the WKB solutions
~36! except thatf 6

WKB also contain the amplitude factors (v
62p)21/2 respectively~see Appendix B!.

D. Kinematic factors

The only remaining ingredient in evaluating the numb
expectation value~22! is to compute the kinematic factor
@k(v)1v# and group velocityvg for each wave vector
From the dispersion relation~13! ~with the plus sign for the
rootsk1s ,k1 ,k2 corresponding to A, D and E respective
in Fig. 2! and the expression for the group velocity given
~18! it is straightforward to show that

„k~v!1v…vg~v!5
cos~k/2!2uvu

uvu2/2
sin~k/2!. ~37!

Plugging in the smalluvu expressions for thek2 and k1s
wave vectors computed in Sec. IV, we find that~37! reduces
to 2(v22p)/uvu for thek2 root andv/uvu for thek1s root.
Putting all these results together we find, for the num
expectation value~22!,

N~v!5
1

ev/TH21
~38!

whereTH5k/2p is the Hawking temperature. Therefore w
see that to leading order in the lattice spacing the part
flux is thermal at the Hawking temperature in agreem
with the ordinary wave equation.

This derivation is valid as long as~i! k!v1/3!1 and~ii !
the WKB approximation can be used to connect the far z
with the zonekj!1 near the horizon. This last conditio
t

e

s

n

,
ff

r

r

le
t

e

should be satisfied as long asv is not extremely small com-
pared tok, although we shall not attempt to write out th
general conditions here~which are possibly more restrictiv
than thek!v1/3 condition already given!.

VI. MODELS WITH FINITE LATTICE SPACING
AT SPATIAL INFINITY

One way to avoid the problem of vanishing lattice spac
at infinity is to simply not letv(x) go to zero at infinity. It
might seem that we have no freedom to make this cho
since the asymptotic form of the metric is determined by
black hole. However, we need not use a free-fall coordin
that isat restat infinity. Instead, the coordinate lines can
chosen moving uniformly toward the black hole at infinit
In Appendix A it is shown that, in terms of the proper timet8
along the congruence of infalling geodesics of energyE.1
and the proper distancex8 along the spacelike slices orthogo
nal to these geodesics, the line element takes the formdt82

2„dx82vE(x8)dt8…2 for some functionvE . Note that this is
the same form as~1!, with a different functionvEÞv which,
in particular, does not vanish at infinity:vE(`)52(E2

21)1/2. Proceeding as before one then arrives at the new
element~3!, but with v replaced byvE . With this choice the
preferred frame is not asymptotically at rest with respect
the black hole. Although this certainly solves the proble
from a mathematical point of view, it is not physically sati
factory. Our ‘‘in’’ vacuum boundary condition depends o
the choice of the preferred frame, and it just does not m
much sense to rely on the assumption that the black ho
moving relative to the vacuum.

A more satisfactory resolution would be to choose t
discretization such that the lattice spacing is a fixed pro
distance on some initial slice. If we then let the lattice poin
fall into the black hole, the proper lattice spacing will n
remain constant on the surfaces of equal proper time. N
ertheless, such a lattice will be perfectly well behaved
infinity, and the time dependence will be invisible to lon
wavelength modes that do not ‘‘see’’ the lattice at all. A
though they are not ultimately satisfactory, we think it
instructive to understand the physics of such models w
growing lattice spacing. We now describe a class of su
models.

It is only necessary to reparametrize they coordinate~2!
before discretizing. To this end, we define a new coordin
z by

W~z!5y5t2E
xh

x

dx8/v~x8!, ~39!

wherexh is the value ofx at the event horizon, i.e.,v(xh)
521. The originalx coordinate measures proper length on
constantt surface in the metric~1!, so we choosez to agree
with x at t50. This implies

W~z! ª 2E
xh

z

dx8/v~x8!. ~40!

In terms of the functionW, the defining relation forz can be
written as



a-

th

t

ol

er
-

ed

o
lin

to

in
e

igi-
ace
ble
ike
ss
e

try
tgo-
, it

that
the
for
p-
g
ket
es
ng,
ge

It
tion

e
ion

rd
ed.

are
the
n

the
tion
the
ould
n-

he

6276 57STEVEN CORLEY AND TED JACOBSON
W~z!5t1W~x!, ~41!

which can be solved forx(t,z) as

x5W21
„W~z!2t…. ~42!

In the coordinates (t,z) the line element~1! becomes

ds25dt22S v~x!

v~z! D
2

dz2, ~43!

wherex(t,z) is the function defined by~42!. In these coor-
dinates the Killing vectorx @which is ] t in the (t,x) coordi-
nates and] t1]y in the (t,y) coordinates~4!# is given by

x5] t2v~z!]z . ~44!

When ]z is modified in the action, either by higher deriv
tives or discretization, the presence of the factorv(z) in ~44!
will prevent the survival of the symmetry generated byj.
Not even a discrete remnant of the symmetry survives in
discrete case.

At any finite t, the spatial scale factorv(x)/v(z) goes to
unity asz goes to infinity, as long asv(x) goes to a constan
~including zero! at infinity. Thus, the coordinatez always
measures proper distance sufficiently far from the black h
Along a line of fixedz, v(x)/v(z) grows as a function oft as
the horizon is approached, sincex is getting smaller and we
are assuminguv(x)u grows asx decreases. That is, the prop
spacing of thez coordinate grows witht because of the rela
tive acceleration of the free-fall worldlines.

At the horizon v(xh)521, W(xh)50, and thereforez
5W21(t). This yields the form of the line element evaluat
at the horizon:

ds2uhorizon5dt22@v„W21~ t !…#22dz2. ~45!

Let us now consider two examples to see what this co
dinate change yields. First, consider the Schwarzschild
element, for whichv(x)52(2kx)21/2, wherek is the sur-
face gravity 1/4GM. In this case the line element~43! be-
comes

ds25dt22S 12
3t

2~2kz3!1/2D 22/3

dz2, ~46!

and at the horizon this reduces to

ds2uhorizon5dt22~113kt !2/3dz2. ~47!

For numerical calculation, it would be more convenient
havev(x) go to zero more quickly thanx21/2, so let us also
consider the exponential velocityv(x)52exp(2kx). In this
case the line element~43! becomes

ds25dt22~12kte2kz!22dz2, ~48!

and at the horizon this reduces to

ds2uhorizon5dt22~11kt !2dz2. ~49!

Discretizing thez coordinate will yield a new lattice
theory in which the proper lattice spacing is constant at
finity, so it is possible to propagate wave packets in a s
e

e.

r-
e

-
n-

sible way all the way out to wherev(z)'0. Therefore the
ingoing waves that produce the outgoing waves must or
nate at infinity as combinations of the standard flat sp
lattice modes. No exotic low frequency modes are availa
in this case. The low frequency ingoing waves behave l
ordinary continuum ingoing waves which sail right acro
the horizon. They willnot bounce off the horizon. So wher
can a low frequency outgoing mode come from?

The lack of even a discrete time translation symme
seems to provide the answer. When a low frequency ou
ing wave packet is propagated back close to the horizon
gets blueshifted. Eventually its wave vector gets so large
it can sense the lack of time translation invariance in
lattice theory. At that point, there is no longer any reason
its Killing frequency to be conserved. Using an eikonal a
proximation we will show in the next section that the Killin
frequency is indeed shifted so that, when the wave pac
propagates backwards in time back out to infinity, it arriv
with a large wave vector, on the order of the lattice spaci
and a correspondingly large Killing frequency. At this sta
we have no solid proof that waves on thez-lattice will be-
have in the way indicated by the eikonal approximation.
should be possible to adapt Unruh’s numerical computa
on they-lattice to see what in fact happens on thez-lattice.

VII. ORIGIN OF THE OUTGOING MODES REVISITED

In deriving the eikonal approximation we forget that th
space is discrete and just make the substitut
]z→exp(]z)21 in the continuum action in (t,z) coordinates
~in units of the lattice spacing!:

S5
1

2 E dtdzS 1

A2gzz
~] tf!22A2gzz

„~e]z21!f…

2D .

~50!

This leads to an infinite order PDE to which the standa
eikonal or geometrical optics approximation can be appli
One assumes that the wavelength and period of the wave
short compared with the length and time scales on which
background is varying and slowly changing on their ow
scales. This is reasonable for much of the trajectory of
wave packets we are interested in, but the latter condi
fails at the turning point near the horizon. Nevertheless,
results obtained in this way seem reasonable and we w
be surprised if a lattice calculation failed to confirm the ge
eral picture provided by this approximation.

Making this approximation, and assuming a wave of t
form

exp~2 ivt !exp~ ikz!, ~51!

we arrive at the dispersion relation

v252gzz~ t,z!„F~k!…2, ~52!

where the functionF(k) is given by

F~k!52 sin~k/2! ~53!
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and, using~43!,

2gzz~ t,z!5@v~z!/v„x~ t,z!…#2. ~54!

Note that nowv ~rather thanv ff! stands for the free-fal
frequency.

The eikonal approximation in this case amounts to Ham
ton’s equations for the phase space variables (z,k) with the
Hamiltonian

H56A2gzzF~k!. ~55!

The free-fall frequency is justv5H, so the sign of this
frequency is the sign of6F(k). On the lattice, wave vector
differing by 2pn are identified, so a complete set ofk values
is the interval@0,2p!. In this intervalF(k) in ~53! is positive,
so the sign ofv is the sign of the prefactor6. Instead of
keeping this prefactor alternative, we can double the rang
k to (22p,2p) and always use the1 sign in the Hamil-
tonian ~55!, since F(k)52F(2k) is negative whenkP
(22p,0).

Hamilton’s equations are

dz/dt5A2gzz]kF ~56!

dk/dt52]zA2gzzF. ~57!

We have solved these equations numerically for the cas
the exponential velocity functionv(x)52exp(2kx), for
which ~54! yields

A2gzz~ t,z!512kte2kz. ~58!

We usedk50.001 and started the trajectories at the init
position z(0)510,000 att50. The unit here is the lattice
spacing in thez-coordinate. For each initial wave vecto
k(0) we obtain a trajectory@k(t),z(t)#. To visualize the
results, it is convenient to plotk(t) versusv„x(t)… because
the value ofv(x) indicates the static radial position where
thez coordinate lines are falling.@We could also have plotted
versusx(t) itself but it is helpful to be able to see the valu
of v(x) on the same graph.# The results are given in Fig. 3

FIG. 3. Plot of the wave vector trajectories as a function of
background free-fall velocity functionv(x).
l-

of

of

l

The equations of motion~56! and ~57! are symmetric under
k→2k, so the solutions for negativek’s are obtained by
changing the sign ofk.

At spatial infinity, where v(x)50, the right moving
modes havekP(0,p) and the left moving modes havek
P(p,2p). Thus we send in modes withk in ~p,2p!. The
ones near 2p are equivalent to ordinary small negativek
modes and just cross the horizon. Since the group velo
~56! is always less than or equal to the speed of lig
@2gzz(dz/dt)25(]kF)25cos2(k/2)<1#, these modes can
never return to the outside once having crossed the hori
Coming down from 2p, at some critical value ofk there is a
trajectory that asymptotes to the horizon and zerok. Below
this critical k are the exotic modes that bounce off the ho
zon and return to spatial infinity. The crucial thing to noti
here is that an exotic ingoing mode can produce a n
exotic, very low wave vector outgoing mode. This is on
possible because the lattice equations violate time transla
symmetry at short wavelengths, so there is no conserva
of Killing frequency to prevent this from happening.

VIII. DISCUSSION

It is intriguing that violation of time-translation invarianc
visible only at short wavelengths plays a crucial role in a
counting for the outgoing modes. In our model this tim
dependence is a consequence of the growing lattice spa
due to spreading of free-fall trajectories. At a more fund
mental level, one expects the Killing symmetry of a bla
hole background to be violated by the gravitational ba
reaction to the quantum fluctuations of the matter fields
vague suggestion was made in@15# that the back-reaction
might evade the conservation of Killing frequency and allo
the outgoing modes to originate as ingoing modes from s
tial infinity. Our simple model studied here seems to le
credence to this hypothesis, although the implementatio
still in a background field approximation and has nothi
obvious to do with the back-reaction.

It is scary to be violating time-translation invariance
the lattice theory. However, the characteristic time scale
long, k21 according to either~47! or ~49! for example, and
even this time dependence is invisible to wavelengths lo
compared with the lattice spacing. It therefore seems that
low energy physics is immune fromdirect effects of this
violation of time-translation symmetry, even though the o
going modes owe their very existence to this violation.

We still do not have a satisfactory discretization of fie
theory in a black hole background. Either our lattice spac
goes to zero at infinity, or it grows as points fall in towar
the horizon. For the Schwarzschild metric, the total amo
of growth during the Hawking lifetimeM3 is, from ~47!, of
orderM2/3. Thus if the lattice starts out with Planck spacin
it ends up with spacing of one angstrom after the evapora
of a solar mass black hole. But this is only the radial spaci
If the lattice points are falling on radial trajectories fro
radiusr 2 to r 1 their transverse proper spacingdecreasesby
the factorr 1 /r 2 .

It seems that to maintain a uniform lattice spacing in so
preferred frame with a freely falling lattice of fixed topolog
is not possible. This suggests that one should be think
about a lattice in which points can be created or annihila

e
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6278 57STEVEN CORLEY AND TED JACOBSON
in order to keep the spacing uniform.
An expanding cosmology provides a simpler setting th

the black hole in which to contemplate the lattice questi
As the universe expands, the lattice spacing will grow if t
lattice points are at rest in the cosmic rest frame. Weiss@16#
confronted this issue in trying to formulate lattice fie
theory in an expanding universe. He noted a very interes
point: if the couplings of an interacting field theory are fix
on the expanding lattice, then the renormalized paramete
a fixed proper scale will depend strongly on the cosmolog
epoch. One could of course adjust the lattice parameter
the scale factor evolves, but from a fundamental point
view that is artificial. Moreover, if the lattice spacing start
out in the early universe at the Planck scale, it would quic
become too large to appear continuous at large scales.
these problems would be eliminated if the lattice were its
dynamical, with points being added at the right rate to ke
their density constant.

Allowing the lattice topology to be dynamical thus seem
very natural. It would be interesting to see if field theory c
be sensibly formulated on dynamical lattice models and
so, to study the consequences for cosmology and black
physics.
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APPENDIX A: FREE-FALL COORDINATES

In this appendix we show that in a general static tw
dimensional spacetime coordinates can always be chose~at
least locally! so the line element takes the form~1!. Let xa

be the time-translation Killing field, letua be the unit tangen
vector to a congruence of timelike geodesics all of the sa
energyE and invariant under the symmetry, and letsa be the
~unique up to sign! unit vector orthogonal toua. Then ua

5E21xa1vsa, wherev2512(x2/E2). The assumed sym
metry of ua implies @x,s#50, so there exist coordinatest
andx such thatE21xa5(]t)

a andsa5(]x)
a. In these coor-

dinates the line element takes the form

ds25~12v2!dt212vdtdx2dx2 ~A1!

5dt22~dx2vdt!2. ~A2!

Note thatt coincides with the proper time along the orbits
ua, the lines of constantt are orthogonal to these orbits, an
x measures the proper distance along these lines. Note
that, because of the symmetry,v(t,x)5v(x) depends only
on the coordinatex. If x is normalized at infinity we have
v(`)56(12E22)1/2.

APPENDIX B: WKB SOLUTIONS TO THE DDE

In this appendix we discuss the application of the WK
approximation to finding approximate solutions to the DD
~24!. We assume a solution of the form
n
.

e

g

at
al
as
f

y
th

lf
p

if
le

d
e
F

-

e

lso

f ~j!5expS 1 i E j

k~j! D ~B1!

and substitute into the DDE~24!. This results in the equation

v~j!„1 ik8~j!2k2~j!22vk~j!2v2
…1 iv8~j!„k~j!1v…

~B2!

2

2FexpX2 i E
j

j21

k~u!C21G
„v~j21!1v~j!…

1

2F12expX2 i E
j

j11

k~u!CG
„v~j!1v~j11!…

50. ~B3!

We can rewrite the exponentials in a form more appropri
for the WKB approximation by Taylor expanding the int
grand aboutj and then evaluating the integrals, e.g.,

E
j

j11

k~u!du5k~j!1
1

2
k8~j!1¯ . ~B4!

For bookkeeping purposes, it is now convenient to make
substitutionj→aj, which has the effect of scalingnth order
derivatives in the equation by 1/an. Now expandk(j) as

k~j!5k0~j!1
1

a
k1~j!1¯ , ~B5!

substitute into~B3!, and demand that each coefficient of th
separate powers of 1/a vanish. The leading order equation
are

v2~j!„k0~j!1v…

25@2 sin„k0~j!/2…#2 ~B6!

k151
i

2

d

dj
lnS v~j!„k0~j!1v…2

sin„k0~j!…

v~j! D . ~B7!

The first of these equations is of course the dispersion r
tion ~13! that we derived in Sec. III, while the second pr
duces the first order correction to the leading order root fr
the dispersion relation.

To solve the dispersion relation near the horizon~where
v'21! note that when v!1 then 2 sin(k0/2)'(k0

2k0
3/24). Using this approximation it is straightforward t

show that the roots are

k0,6~j!'6A24„12uv~j!u…2
vv2~j!

2„12uv~j!u…
~B8!

k0,1s'
vuv~j!u

12uv~j!u
. ~B9!

Substituting these into the expression fork1 above gives the
first order correction term.

To match the WKB solutions given here to the Lapla
transform solutions given in Sec. IV we need only substit
the near horizon expansion forv(j)'211kj into the ex-
pressions fork0 and k1 and evaluate the integrals given
~B1!. Note thatk1 will yield in general a non-trivial ampli-
tude factor.
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