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Lattice black holes
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We study the Hawking process on lattices falling into static black holes. The motivation is to understand
how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the
free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete
time-translation symmetry we use analytical methods to establish that, for Killing frequemey surface
gravity « satisfying k<w'®<1 in lattice units, the continuum Hawking spectrum is recovered. The low
frequency outgoing modes arise from exotic ingoing modes with large proper wave vectors that “refract” off
the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial
infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and
therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at
wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing
frequency modes into low frequency outgoing modes.
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PACS numbes): 04.70.Dy, 04.60.Nc, 63.96t

[. INTRODUCTION radiation arise from exotic ingoing modes that bounce off the
horizon?

As field modes emerge from the vicinity of the horizon  Although these models do provide a mechanism for gen-
they are infinitely redshifted. In ordinary field theory there iserating the outgoing modes without an infinite density of
an infinite density of states at the horizon to supply the outstates at the horizon, they still behave unphysically: wave
going modes. How do these outgoing modes arise if the shofackets cannot be propagated backwards in time all the way
distance physics supports no infinite density of states? Andut to “infinity” (i.e. the asymptotic region far from the
how does the short distance physics affect the Hawking rablack holg. For example, using Unruh’s dispersion relation
diation in these modes? By insisting on a fully sensible resof1], which has a group velocity that drops monotonically to
lution of the apparent conflict between black holes and shorzero at infinite wave vector, the wave vector diverges as the
distance finiteness we hope that some deep lessons can Wave packet goefackwards in timgfarther from the black
learned. That is the under|ying motivation for the presenﬂ'\Ole. So, in this case, the infinite redshift is jUSt moved to a
work. new location. Evidently the theory is pushed into the trans-

One way to avoid an infinite density of states is to havePlanckian regime after all. To make sense of—or at least to
some physical cutoff at short distances, related to a funda3€nsibly model—the true origin of the outgoing modes, it
mental graininess of spacetih@nalogies with condensed therefore seems necessary to work with a theory that has a

matter systems such as fluids, crystals, Fermi liquids, eté/_vellr—]beha\;eg _phtysi(jqal Cl;.tOff' A simpledway ;0 i.rt?]plerte}nt
suggest that in this case the long wavelength collectiv uch a cutolt Is to discretize space, and work with a fattice

modes which are described by field theory will propagateheory preserving pon'gmwty in time. This is roughly similar
) . . . ) . to what is happening in a condensed matter system, but we
with a dispersion relation that deviates from the linear, C : : .
; . . . can preserve strict linearity for the lattice field theory and
Lorentz-invariant form at high frequencies. A number of

still model the key effect of the cutoff.
(two dimensional linear field theory models with such be- ! y "

: : In this paper we study two lattice models of this nature
havior have now been studi¢d,2,3,4. It turns out that the  ghiained by discretizing the spatial coordinate in a freely
Hawking radiation is extremely insensitive to the short dis-

tance physics, as long as neither the black hole temperature———
nor the frequency at which the spectrum is examined is too

3 . . . . .
close to the scale of the new physfodlhat is striking is that 1S IS what happens in the case where the group velocity is

. subluminal at high frequencies. In the superluminal case the outgo-
%ng modes arise from superluminal modes that emerge from behind
She horizon. Ultimately these modes come from the singuldfity

a neutral black hole so it is not so clear one can make sense of this
case. However, Unrufb] and Corley{6] have recently shown that

rather bizarre: the outgoing modes that carry the Hawkin

*Email address: corley@physics.umd.edu if one simply imposes a vacuum boundary condition on these

"Email address: jacobson@physics.umd.edu modes behind the horizon the usual Hawking radiation outside the

'String theory provides a different way, in which the states areplack hole is recovered. A black hole with an inner horizsach as
less localizable than in ordinary field theory. a charged onebehaves very differently in the superluminal case

2The ultra low frequency part of the spectrum, which has not yethowever. The ergoregion inside the black hole is unstable to self-
been computed, might turn out to be non-thermal. amplifying Hawking radiatiorj 7].
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falling coordinate system(If instead a static coordinate is horizon

discretized then the lattice points have diverging acceleration

as the horizon is approached, and their worldlines are space- % /wavepacket

like inside the horizon. This leads to pathological behavior of t=

the field) If there really is a cutoff in some preferred frame, constant %

then that frame should presumably fall from the “cosmic” /

rest frame at infinity in towards a black hole. This would be

like Unruh’s sonic analog of a black hole,1,9 or the

helium-3 texture analofl0], where the short distance cutoff

is provided by the atomic structure of the fluid which is

freely flowing across the phonon or other quasiparticle hori- Ry

zon. .
One particular choice of discretization has the feature that \

a discrete remnant of time translation invariance survives.

This makes the model easier to study analytically, and we [ 1. painleveGullstrand coordinates and ingoing light rays.

exploit this to show here in Secs. II-V that in a leading The trajectory of a wave packet that is outgoing with low wave
approximation the black hole radiates thermally at the Hawkvector at late times is sketched.

ing temperature. The same result was found previously by
Unruh [11] using numerical evolution of the lattice field ds?=dt?— (dx—wv(x)dt)2 1)
equation. Unfortunately, however, this particular lattice
model is still not satisfactory as a model of physics with aThe curves of constanx are orbits of the Killing field
fundamental cutoff, because the proper lattice spacing goeg=j, . The curves witdx=wv (x)dt are geodesics which are
to zero at infinity. at rest with respect to the Killing field wherg(x) =0, and

It is easy to avoid the vanishing lattice spacing by dis-the proper time along these geodesicg.isThe constant
cretizing instead a spatial coordinate which measures propgime-slices are orthogonal to these geodesics, and the proper
length on some initial spacelike surface all the way out togjstance along these time-slicesxisin Appendix A we ex-
infinity. However, since we also want the lattice points to fall pjain why such a coordinate system can always be chosen.
freely into the black hole, this results in a lattice spacing thap To represent a black hole spacetime with an asymptoti-
grows in time, as shown in Sec. VI. The growth of the latticecq)ly flat region atx— o, we chooses(x) to be a negative,
spacing suggests that we have still not found a satisfactony,gnotonically increasing, function with(=) = 0. The event
model with & short distance cutoffAn alternative which  horizon is located where the Killing vector becomes light-
avoids this problem will be discussed at the end of this Patike, i.e. wherev(x) = — 1. For the Schwarzschild black hole
per) However, it is rather instructive to understand the physyhis  coordinate system corresponds to the Painleve
ics of this model with the growing lattice spacing. In this g strand coordinateg12,13, with x=r and v(x)=
model time translation symmetry is violated for short wave-_ >EM/x. A sketch of the relation between these coordi-
length modes but not for long wavelengths. In fact, the Kill- nates and the ingoing Eddington-Finkelstein null coordinate

ing energy of an outgoing mode can be much lower than thay js siven in Fig. 1.(The wave packet trajectory is discussed
of the ingoing mode that gave rise to it. This is essential tq Sec. IV)

producing the outgoing long wavelength modes in this mode A new coordinatey that is constant on the free-fall world-

since a long wavelength ingoing mode will of course sa“linesdx=v(x)dt is defined by

across the horizon into the black hole rather than converting

to an outgoing mode. This mechanism is studied in Sec. VI dx
e |

ingoing

J ox=
constant
ightray >

with the help of the eikonal approximation. ) 2
We adopt units in whicth =c= =1, whered is the co- v
ordinate lattice spacing, and we use the “timelike” metric g yields the line element
signature.
ds?=dt?—v2(x)dy? ®)

Il. FALLING LATTICE MODELS wherex is now a function ot —y obtained by solving2) for

Our goal is now to “latticize” the theory of a scalar field X- In these coordinates the Killing vector is given by
propagating in a static black hole spacetime. For each spheri-
cal harmonic, the physics reduces to a two-dimensional prob-
lem in the time-radius subspace. The short distance phenom-
ena we wish to study have nothing to do with the scattering
of modes off of the angular momentum barrier, so nothing

X= 0yt dy. (4)

The action for a real scalar field in these coordinates is

essential is lost in dropping the angular dependence and szl f dtdy‘/—gg“”3ﬂ¢0y¢ (5)
studying instead the physics in a two dimensional black hole 2
spacetime. 1 1
We begin with a generic static two dimensional space- _- J 2 2
time, and choose coordinates so that the line element takes 2 dtdy jv ()| (9#) lv(X)] (9y¢)

the form (6)
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and the equation of motion is not try to evolve the scalar field modes all the way to infinity,
the decreasing proper lattice spacing is benign and has no
U'(X))a $=0. (7) effect on the physics of the Hawking process. However,
v2(x) Y ' since our goal is to understand how the outgoing modes can
be accounted for in a theory that has a “reasonable” short
We could now alter the theory to include high frequencydistance cutoff, we shall return to this issue in Sec. VI.
dispersion by replacingy, by F(dy)=d,+ady+--- in the The lattice model defined b§8) was studied numerically
action (6). This is similar to what was done in the models by Unruh[11]. He found by propagating wave packets back-
already studied1-3], the only difference being that there it ward in time that the outgoing modes come from exotic in-
was dy that was replaced by (dy). Since dy=—v(X)dy, going modes and, if these ingoing modes are in their ground
these two modifications are essentially the same near thstates, then the outgoing modes are thermally occupied at the
horizon wherev(x)=—1, and in fact they are quite similar Hawking temperature. In the next three sections we use ana-
in all regions where (x) is of order unity. It is only asymp- Iytic methods to understand the propagation of these wave
totically, wherev (x) goes to zero, that their behavior should packets and the computation of the flux of radiation from the
differ substantially. We previously preferred to modidy  black hole. Our results are in agreement with Unruh’s nu-
since it is the derivative with respect ppoperdistance on a merical results.
constantt surface everywhere. Now however we want to
discretizethe spatial coordinate and, as explained in the In- Ill. LATTICE DISPERSION RELATION
troduction, we do not want to discretizebecause it is infi-
nitely accelerated at the horizon. Instead, we discretize the Due to the symmetry10) of the lattice action(8) there
free-fall coordinatey. exist mode solutions of the form

One possible spatial discretization of the actich is

1 (D m(t))? _

S= > E f dt - | O +on(D]2 Under the discrete symmet({0) the mode(11) changes by

m Um+1 Um a phase factor ag,(t)—e '“¢,(t). This identifiesw as

(8) the Killing frequencywhich is defined modulo 2n and is

where D is the forward differencing operatob ¢ (t)  conserved. _ _ _
= (s 1(t) — dm(1))/ 8, Sis the lattice spacing in the co- To derive the dispersion relation we plug the ansatz
ordinate, and ,(t):=v(x(t—mJ)). In the remainder of this
paper we shall work in units of the lattice coordinate spac-
ing, so thats= 1. Varying the action8) gives the equation
of motion for ¢ (t):

— PP+ ! Pd—v'(X)dp+
1Pt 2 ye—v L

Pm(t) =€~ (m—1). (11)

[Um(D)] (Frpm(t))?

d)m(t):e*iwteik(mft):e*i(aﬂrk)teikm (12)

into the equation of motiof®) and treaw ,(t) as a constant.
The result is

(v m(t) drpm(t))—D Db () 0. (9 lv|(w+k)==*2sink/2). (13

On(DFom 102
. ) , . The free-fall frequencyi.e. the frequency measured along
This lattice action has a discrete symmetry the free-fall lines of constanty, is defined by d,¢
(t,m)—(t+1,m+1) (10) = —iwgx¢. The form of the modesl?2) then shows that

which is the remnant of the Killing symmetry generated by wf= otk (14)

(4). The meaning of this is that shifting forwards in time by
one unit at fixed static coordinateis just enough time for
the next lattice point to fall fronx(t,y+ 1) to x(t,y). This
symmegy will be heavily exploited in the following
analysis>

Note that they coordinate is infinitely bunched up as k—k+2nm 139
v—0 [see(3)], which occurs at infinity for a black hole type
metric. Therefore the uniform discretizatign,=m yields a

proper lattice spacing that goes to zero at infinity. This is o any integen. Thus we can transform any(k) pair into
undesirable from a physical point of view, but it is a conve- 5, equivalent pairg’,k’) wherek’ lies within a fixed range
nient choice mathematically, since unlike other discretiza length 2r (the standard choice being w<k'< ). The
tions it preserves the symmet(¥0). Also, as long as we do value of o’ is unconstrained with this range & . One

choice of fundamental domain ofw(k) pairs is therefore
given by
“4For later convenience in the WKB approximation we take the
average ob,,; andv,, in the second term in the action. —a<k<m, —o<lo<x. 17

The existence of this discrete remnant of the Killing symmetry )
was pointed out to us by W. G. Unruh. In Secs. VI and VII we Conversely, we could just as well use the above transforma-

study a similar model in which a reparametrizationyofis dis-  tion to force ' to lie within a fixed range of length 2
cretized and no discrete symmetry survives. leavingk’ arbitrary.

To understand what range @fandk are considered dis-
tinct, note that the modes defined &y2) are invariant under
the simultaneous shifts

w— w—2N1T (16
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tion, is of order exp{ ww/k) where is the surface gravity
k of the horizon. The positive and negative wave vector pieces
P both propagate back away from the horizon, evolving into
k., the modesk, andk_ respectivel\’ Thus we see that the
outgoing positive Killing frequency modes come frongo-
ing large wave vector modes which “bounce” off the hori-
ky, T zon. This continuous evolution from one type of modes to
another is callednode conversianThe same phenomenon
k> occurs in the continuum models in which the high frequency
dispersion is put into the theory by adding higher spatial
derivative terms to the action.
Now let us compute the values of the wave vectors
andk ¢ corresponding to a fixed frequeneyas|v|—0 at
infinity. From the dispersion relatio{13) or Fig. 2, one sees

The dispersion relatiofl3) has a useful graphical repre- that all three wave vectois, s,k , andk, converge to zero
sentation(see Fig. 2 On a graph with abscissk, the modulo 27n independent of the value. ab. This r_ather
straight line with slopév| andk-intercept— o intersects the strange resulzt follzowg because the contlnuum _metrlc has the
curve +2 sin(/2) at ak that is a solution or “root” of the ~ fOrm ds’=dt*~v*dy? and so the-lattice spacing goes to

dispersion relation. A wave packet constructed from mode&€r0 @ goes to zero. Therefore any mode of finite proper
of the form (11) with Killing frequency neare will propa- Wavelength will have infinite coordinate wavelength and
gate through the lattice spacetime with conserved KiIIingzerO coordlnate wave vector. To resolve th_ese modes we can
frequency. This propagation can be represented graphicallpOK at their proper wave vectolig, = k/|v| instead of the

in the WKB approximation by following a point on the dis- ¢oordinate wave vectors. For the ; wave vector, ay —0
persion curve. Since the Killing frequency is conserved, théVe May approximate 2 sik¢)~k in the dispersion relation
k-intercept of the straight line is fixed, while the slopgx)| (13 (With the plus sign which yields k=[v|w, so the

of the straight line changes according to where the wav®OPer wave vector goes to just For thek.. wave vectors,
packet is located. The direction of motion with respect to theVe first use the symmetry relatida5),(16) to shift the co-
static position coordinaté:=y—t=m—t is determined by ordinate wave vectorgand therefore also the frequenay

FIG. 2. Graphical representation of the dispersion relafi@).

the group velocitydé/dt which is given by so that th(_ey converge to zero zas»_o, and th_en use the s_maII
k approximation in the dispersion relation to obtain the

cogk/2) proper wave vector§, . = —(w=*2m). Therefore the late
vg=do/dk==* o] -1 18 time, long wavelength, outgoing Hawking particle arises

from a pair of short but finite proper wavelength ingoing
Therefore thesign of the group velocity is the sign of the modes. It follows from the discussion beloi@8) that, at
difference between the slope of thesin curve at the inter- spatial infinity, the group velocity for these wave vectors is
section point and the slope of the straight line. The groupequal to the speed of light.

velocity in terms ofy is dy/dt=*cosk/2)/|v|, which is In the next section we compute the amplitudes of khe
always less than the speed of light according to the line eleand k_ pieces of the ingoing wave packet. Crucial to the
ment(3). validity of the approximation used in this calculation is the
maximum value of the wave vectors in the wave packet so-
IV. ORIGIN OF THE OUTGOING MODES lution near the horizon. We can estimate this maximum by a

simple calculation using the dispersion relation. The classical

In this section we argue using the dispersion relation thaturning point is located where the straight line of Fig. 2 is
outgoing low wave vector wave packets indeed originate agangent to the sine curve, labelkg in the figure. Although
ingoing high wave vector wave packets which “bounce” off the wave packet tunnels beyond the classical turning point, it
of the horizon. A spacetime diagram of the process igs not propagating there, so its shortest wavelength near the
sketched in Fig. 1. horizon should be roughly given by the wavelength at the

To see where the outgoing modes come from, consider glassical turning point. The wave vector at this point satisfies
late-time, positive Killing frequency, outgoing packet cen-
tered on a small positive wave vectors. This wave packet

is represented on the dispersion curve in Fig. 2 as the pointGOther modes get excited as well. but onlv sliahtly. From “re
labeledk, . Following this back in time using the graphical o 9 ' y SUgnty. -
flecting” off the background curvature a small negative wave vec-

method descrlbgd n .the preV|ous. $ectlon we find that IEor piece will arise. This will have extremely small amplitude how-
moves up the dispersion curve until it reaches the tangenc

. . . . o gver, for the following reason. There is no scattering at all for a
point ktp at which the group velocity18) vanishes. This is massless scalar field in the continuum due to conformal invariance

the turning point, where the WKB approximation fails. If of the action. On the lattice this symmetry will remain approxi-
w<1, the straight line is extremely close to the sine curve formately for wavelengths much longer than the lattice spacing, and
many k values. This means that when the wave packet ishort wavelength modes will not see the curvature vAsecomes
close to the horizon it is really a superposition of mday smaller, there are also more wave vector roots to the dispersion
values, including negative ones. The amplitude of the negarelation with|k| > 2+ which are also presumably excited slightly by
tive wave vector piece, which determines the Hawking radiascattering.
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the dispersion relatiofiL3) (with the plus sighand the rela- free-fall vacuum. The standard method of computing this
tion [14] is to propagate the outgoing packet backward in time to
the hypersurface where the vacuum state is defined. The

lv|=cogk/2) (19 norm of the negative free-fall frequency part of this packet is

. . then (minug the number expectation value. The norm re-
expressing equality of the slopes of the two curvesolf  tarred to here is given by

<1 (which is the case of interest when the surface gravity
x<<1), then Fig. 2 shows clearly th&<1 as well. Using

small k approximations in(13) and (19) respectively and ||‘/’||2:'% [0 m(D](Dm(t) 1 m(t) — Pn(1) d (1)),
solving fork yields (22
ki~ (120)13<1, (200 and is the sum over a constansurface of the-component
) ) ) . of the current associated with phase invariance of the action
consistent with our approximations. ?8) (generalized to complex fielgls
This very important result states that although the scale o

L ) i Several methods can be used to compute the rate of
the new physics is the lattice spaciag=1), the effects of  yawking radiation. One approach is to evolve a wave packet
the new physics occur long before that scale is ever reachegackwards in time by numerical solution of the lattice wave
With the ordinary wave equation the maximum wave VeCtorequation(g), as was done by UnrJi.1]. Alternatively, since
near the horizon igfinite due to the infinite blueshiftactu- 4 problem has time translation symmetry, one can just
ally it is finite but trans-Planckian if the black hole is formed york with modes of definite Killing frequency. This is the
by collapsg. One might have expected that on the lathge  approach we take here. The outgoing wave packet is com-
would be of qrd'er the inverse lattice spacifg® but (20) posed of wave vectors aroukd ; (and has positive Killing
shows that this is not the casaithoughk~&~* does occur  frequency and arises from a pair of packets composed of
far from the horizon—see for example the ro&ts andk_ \ave vectors arounét, andk_ respectively(which have

in Fig. 2 and the accompanying discussiofihis fact—  positive and negative free-fall frequency respectivelising
which is also true in continuum models with high frequencyihe arguments i3], modified to the lattice model, it is
dispersion—was not noticed in earlier work on diSPerSiVestraightforward to show that, for an outgoing packet nar-

models. As long as»<1 (20) shows that the physics near yoyly peaked about the frequenay the number expectation
the horizon that determines the Hawking flux depends only,gj e is

on the low order terms ik. This result is absolutely essen-

tial for the validity of the approximation used in the next |(k_ (@) + w)vgk_(w))c_(w)?

section. R (I E o O T T e
In Sec. VI we will discuss ways to avoid the problem of e oS e

vanishing lattice spacing at infinity. This problem plays nowherec_(c.) is the constant coefficient of thie_ (k. )

role in the calculation of the rate of particle production how-mode located far outside the black hgleherev(x) is es-

ever, so we will now explain how this rate can be obtained insentially constarjt We now turn to the computation of these
a leading order approximation. coefficients.

V. HAWKING RADIATION A. Mode equation

The lattice theory can be quantized in strict analogy with  The mode solutions to the lattice wave equati@hare of
the quantization of linear field theory in curved spacetime sdhe form(11), (11)
we will not spell it out here. A difference peculiar to the
lattice theory(or dispersive continuum field theorjeis that
the local notion of the ground stater vacuum is not Lor-

Pm(H)=e"'"f(m—1), (23

where w is the conserved Killing frequency. Plugging this

entz invariant but refers to the preferred free-fall frame. In g, " equation of motiok) produces a delay-differential
region where the functiom(x) is constant—or is approxi- equation(DDE)

mately constant on the scale of the relevant wavelengths—
the line elemen(3) is flat and the actioi®) is that of a chain (&) (f"(&)+i2wf’ (&) — 02f(&))+v (&)(F' (&) +iwf(£))
of identical masses coupled by identical springs. The ground
state of this system is just the usual ground state of the nor- 2(f(6-1)—1(&)  2(f(&)—f(&+1))
mal modes, i.e., it is annihilated by annihilation operators for C W(E-D+u(d))  w(H+v(E+1))
complex solutions to the oscillator equation with time depen-
dence of the form exp{iwgt) with positive wg, that is, where we have defined the new varialdlie=(m—t), and
positive free-fall frequencyl4). This is thefree-fall vacuum v (&)'=v(x(€)). A wave packet that is outgoing at late times
Given this initial vacuum state we would like to compute is composed of mode solutions that decay inside the horizon
the particle flux seen by an observer sitting at a fixed locatior{seg[ 3] for a discussion of the analogous boundary condition
(fixed x coordinate far outside the black hole. The natural in a dispersive continuum modelWe therefore need to
notion of particle for such an observer coincides with thatsolve (24) subject to this boundary condition.
defined by Killing frequency, therefore we shall compute the The DDE (24) can be solved numerically, however it is
number expectation value for an outgoing positive Killing more instructive, and sufficient for our purposes, to find an
frequency packet in a state which at some initial time is theapproximate analytic solution. We use the same analytical

0, (29
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techniques as used |B]. We first find an approximate solu- fiv)(g) k(&)
tion (satisfying the above boundary conditjan a neighbor- (&) (€) PR
hood of the horizon by the method of Laplace transforms,

and then extend this solution far outside the black hole byrrom above we know th}ﬂk(g)za,W, so we will havex
matching to the WKB approximation. The mode coefficients<|k(&)| provided thatw> k3. As long asw is not ultra small

¢; can then be read off directly. therefore we need only keep the fourth order derivative term
in the expansion(26). We therefore arrive at the ordinary
differential equationfODE)

(27)

B. Near horizon approximation

To solve the mode equatid@4) near the horizon we first

1 .
_— f(iv) _ "_ o r_ o ~
approximatey (£) as 12f 2kéf"—2(iw—Kk)f' —iw(io—k)f~0. (28

We show below by explicit calculation that the solution to
v(§)~—1+«é, (25 (29) of interest to us is consistent with the approximations
made above and therefore that this truncation of the mode
wherex is the surface gravity of the black hole, and neglectequation is valid.
all terms of order £¢£)?. This requires that we stay close ~ The ODE(28) is the same as that considered[&] (ex-
enough to the horizon thaté<1. cept for the coefficient of thé”) term) where it was solved
Next we “localize” the DDE by first Taylor expanding by the method of Laplace transforms with the same boundary
f(é—1),v(é—1), etc., and then truncating the expansions.conditions as discussed above. We therefore refer the reader
Which terms to keep can be estimated as follows. The Tayloto [6] for the details of this computation. Using the saddle
expansions produce the equation point approximation to evaluate the Laplace transform for
&>1, we find that the solution satisfying the given boundary
conditions can be expressed as

0=v(&)(f"(&)+i20f' (&) - w*F(E)+0" (O(F' (&)

f(=1.()+F_(H+1.4(8) (29
. (¢) f’(@v'(@)
+iof +| - + where
HOT = g )
( f(iv)(g) f’”(§)v’(§) (26) f+(§)%iNeSww/(ZK)§*3/4fiw/(2K) exn i § /24K§3/2)
120(8)  12%(§) (30
where we have grouped together terms in the expansion ac- f_(&)~Nemo/(20) ¢=34-i0/(20) gyd _j E \/ﬂgs/z
cording to the total number of derivatives. The ellipses that 3
appear inside parentheses denote other terms with a total of (32)
four derivatives and the other ellipses denote terms with six F,(£)~2e7/% sinh ol k)T (i wl k) &9/ 32)

or more derivatives per terifonly even numbers of deriva-
tives occur in the expansigriTruncating the equation to sec- and
ond order in derivatives produces the ordinary wave equa- _ .
tion. This is not sufficienli for us because argitrarily sr?ort N =€\ 2m(61) Y (241) 10", (33
wavelengths appear in the ordinary wave equation solution 14 check the validity of our localization procedure, note
fqr the outgomg modes, so we must keep at least some of thg, example that
higher derivative terms.
Let us define an effective local wave vectk(£) by (8 3  w)\l .

f(&)/T(&)=ik(&). Dropping thef®)(&) term compared to (0 =(( )g—'v24'<§)- (34)
the f(V)(¢) term is accurate provided thit(£)|<1 in the
near horizon regioh¢|<1/k. We can estimatk(¢) fromthe ~ The absolute values of the two terms on the right-hand-side
dispersion relation in the near horizon approximation just a®f (34) are both much less than one provided we resict
we did in Sec.(IV). Outside the classical turning point the range
(where &,~ w?¥ k), but still in a region wherg<1/«, all
relevant wave vectors are real and the largest wave vector
behaves ak(&)~ k&, and therefore satisfiek(£)|<1. For  which was already assumed in making the saddle point ap-
|§|<§tp, the relevant wave vector becomes complex and haproximation (29) and the near horizon approximati¢f5).
a magnituddk(€)|~ w3, therefore|k(&)|<1 provided we Expression(34) is also in agreement with our earlier esti-
only consider Killing frequencies satisfying*3<1. Even
deeper inside the horizon wherel/k <¢{< — &y, the wave
V.eCtor is approximately imaginary with magnltude.agam "Actually the wave vector of the outgoing wave packet is smaller
given by k(&) ~ Veld, and thereforelk(£)|<1. 1gnoring  than this. For the outgoing packet though, all higher order deriva-
sixth and higher order derivatives in the equati@f) there- e terms are negligible outside the classical turning point.
fore requires that'3<1. 8We could in principle keep the third order derivative term as well

_To further simplify the equation, note that the ratio of the and therefore enlarge the range of validity of our approximations in
£(v) term to thef” term is o, however for simplicity we work with the simpler equation.

2" 2x

l<é<k (35
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mates off ' (£) obtained by estimating the position dependentshould be satisfied as long asis not extremely small com-

wave vectork(£). Similar relations hold for thé_(£) and  pared tok, although we shall not attempt to write out the

f 1 s(€) modes as well. general conditions her@vhich are possibly more restrictive
than thek< ' condition already given

C. Match to the far zone

The next step is to propagate the ma@8) away from VI. MODELS WITH FINITE LATTICE SPACING
the horizon to the constan( ¢) region. This is accomplished AT SPATIAL INFINITY
by computing approximate solutions to the non-local DDE  one way to avoid the problem of vanishing lattice spacing
(24) by the WKB method|Since the wave vectors grow to 4 infinity is to simply not lety(x) go to zero at infinity. It
order unity asv(¢) goes to zero, we must use the full non- might seem that we have no freedom to make this choice,

local DDE at this stagé.Some details of this computation gjnce the asymptotic form of the metric is determined by the
are given in Appendix B. The result is that there exist thregyjack hole. However, we need not use a free-fall coordinate
different WKB solutions which, when evaluated ndaut  hat isat restat infinity. Instead, the coordinate lines can be
not too near the horizon, take the same functional forms aschosen moving uniformly toward the black hole at infinity.
the Laplace transform solutions given (80), (31), (32). An |5 Appendix A it is shown that, in terms of the proper tittie
appropriate linear combination of the;e WKB solut!ons Canjong the congruence of infalling geodesics of eneggyl
therefore be matched to the near horizon solut@®) yield- 514 the proper distanog along the spacelike slices orthogo-
ing nal to these geodezsics, the line element takes the &t
— 5= (a3mwl(2k) § WKB ol kg WKB —(dx’ —vg(x")dt’)- for some functiorvg . Note that this is
1(&)= V2mu(@ ! *I IR &) +em TN E)) the same form aél), with a different functiorvg# v which,
T ® in particular, does not vanish at infinityg(«) = —(E2
+2emv/x sin?-(T) F( —i— fY%&). (30  —1)Y2 Proceeding as before one then arrives at the new line
element(3), but withv replaced by . With this choice the
Since the WKB approximation holds far outside the horizon Preferred frame is not asymptotically at rest with respect to
we are free to evaluate the solution there, and thus read off!® black hole. Although this certainly solves the problem
the constant coefficients of the modes ékg) with k  from a mathematical point of view, it is not physically satis-
=K, 5.k, ,k_ in the constans (x) region. These coefficients factory. Our “in” vacuum boundary condition depends on
are simply given by the coefficients of the WKB solutions in the choice of the preferred frame, and it just does not make
(36) except thatf KB also contain the amplitude factors ( much senlset_to rtel)t/hon the assumption that the black hole is
+ ~1/2 i ; moving relative to the vacuum.
=2m) respectively(see Appendix & A more satisfactory resolution would be to choose the
_ _ discretization such that the lattice spacing is a fixed proper
D. Kinematic factors distance on some initial slice. If we then let the lattice points
The only remaining ingredient in evaluating the numberfall into the black hole, the proper lattice spacing will not
expectation valug€22) is to compute the kinematic factors remain constant on the surfaces of equal proper time. Nev-
[k(w)+ @] and group velocityvy for each wave vector. ertheless, such a lattice will be perfectly well behaved at
From the dispersion relatiofi3) (with the plus sign for the infinity, and the time dependence will be invisible to long
rootsk, ¢,k ,k_ corresponding to A, D and E respectively wavelength modes that do not “see” the lattice at all. Al-
in Fig. 2 and the expression for the group velocity given bythough they are not ultimately satisfactory, we think it is

(19) it is straightforward to show that instructive to understand the physics of such models with
growing lattice spacing. We now describe a class of such
(o)t _ cogk/2)—[v| K2 3 models.
k(@) @vglw)= |u|§/2 sin(k/2). (37 It is only necessary to reparametrize theoordinate(2)

before discretizing. To this end, we define a new coordinate
Plugging in the smallv| expressions for th&_ andk,, zby
wave vectors computed in Sec. IV, we find tli&¥) reduces
to — (w—2)/|v| for thek_ root andw/|v| for thek, ¢ root. x
Putting all these results together we find, for the number W(z)=y=t—fx dx' /v (x’), (39)
expectation valug22), n

1 wherexy, is the value ofx at the event horizon, i.ey(X;)
N(w)= A (38 = —1. The originalx coordinate measures proper length on a
e n-1 constantt surface in the metri¢l), so we choose to agree

. . ith x att=0. This implies
whereTy = /27 is the Hawking temperature. Therefore we with x 'S IMpl

see that to leading order in the lattice spacing the particle ,
flux is thermal at the Hawking temperature in agreement W(z) = _f dx’fv(x"). (40)
with the ordinary wave equation. Xp

This derivation is valid as long d$) k<w'®*<1 and(ii)
the WKB approximation can be used to connect the far zonén terms of the functiow, the defining relation foz can be
with the zonex&é<1 near the horizon. This last condition written as
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W(z) =t+WI(x), (42 sible way all the way out to where(z)~0. Therefore the
ingoing waves that produce the outgoing waves must origi-
which can be solved fox(t,z) as nate at infinity as combinations of the standard flat space
1 lattice modes. No exotic low frequency modes are available
x=W~"4(W(z)—1t). (42

in this case. The low frequency ingoing waves behave like
: . ordinary continuum ingoing waves which sail right across
In the coordinatest(z) the line element1) becomes the horizon. They willhot bounce off the horizon. So where
v(X) can a low frequency outgoing mode come from?
ds?>=dt?>— ( ) dz?, (43 The lack of even a discrete time translation symmetry

(2) seems to provide the answer. When a low frequency outgo-
wherex(t,z) is the function defined by42). In these coor- N9 wave packet is propagated back close to the horizon, it
dinates the Killing vectoy [which is g, in the (t,x) coordi-  9ets blueshifted. Eventually its wave vector gets so large that

nates andy,+ d, in the (t,y) coordinateg4)] is given by it can sense the lack of time translation invariance in the
Y lattice theory. At that point, there is no longer any reason for
X=0;—v(2)d,. (44 its Killing frequency to be conserved. Using an eikonal ap-

proximation we will show in the next section that the Killing

When 4, is modified in the action, either by higher deriva- frequency is indeed shifted so that, when the wave packet
tives or discretization, the presence of the faci(z) in (44)  propagates backwards in time back out to infinity, it arrives
will prevent the survival of the symmetry generated §y with a large wave vector, on the order of the lattice spacing,
Not even a discrete remnant of the symmetry survives in thend a correspondingly large Killing frequency. At this stage
discrete case. we have no solid proof that waves on thdattice will be-

At any finitet, the spatial scale factar(x)/v(z) goes to  have in the way indicated by the eikonal approximation. It
unity asz goes to infinity, as long as(x) goes to a constant should be possible to adapt Unruh’s numerical computation

(including zerg at infinity. Thus, the coordinate always on they-lattice to see what in fact happens on thiattice.
measures proper distance sufficiently far from the black hole.

Along a line of fixedz, v(x)/v(z) grows as a function dfas
the horizon is approached, singas getting smaller and we
are assumingp (x)| grows asx decreases. That is, the proper  In deriving the eikonal approximation we forget that the
spacing of the coordinate grows with because of the rela- space is discrete and just make the substitution
tive acceleration of the free-fall worldlines. d,—exp@E,)—1 in the continuum action int(z) coordinates

At the horizonuv(x,)=—1, W(x,)=0, and thereforez  (in units of the lattice spacing
=W~ 1(t). This yields the form of the line element evaluated
at the horizon:

5% horizon= dt?— [0 (W (1))] 2d 2. (45) =3 f dtdZ( = (0,¢)?— = g*4(e”— 1) ¢)?|.
(50)

VII. ORIGIN OF THE OUTGOING MODES REVISITED

Let us now consider two examples to see what this coor-
dinate change yields. First, consider the Schwarzschild lingpis |eads to an infinite order PDE to which the standard

/
element, for whichu(x) = — (2«x) "' wherex is the sur-  gjkonal or geometrical optics approximation can be applied.
face gravity 1/&M. In this case the line elemeM3) be-  One assumes that the wavelength and period of the wave are

comes short compared with the length and time scales on which the
3t 23 background is varying and slowly changing on their own

dszzdtz_(l_ ) dz, 46) Scales. This is reasonable for much of the trajectory of the
2(2xz%)"* 48 wave packets we are interested in, but the latter condition

fails at the turning point near the horizon. Nevertheless, the

results obtained in this way seem reasonable and we would
O o $E (L I0Z (a7 D SUDISEC o Blce oo e conlm e o

For numerical calculation, it would be more convenient to Making this approximation, and assuming a wave of the

haveu (x) go to zero more quickly thar~ 2 so let us also ~ form

consider the exponential velocity(x) = —exp(—«X). In this

case the line elemern#3) becomes exp( —i ot)expikz), (51)

and at the horizon this reduces to

_At2__ _ —KZ\—2
ds?=dt*~(1—«te™**)"2dZ, (48) we arrive at the dispersion relation

and at the horizon this reduces to

2_ _~Z 2
A5 horizor= dt2— (14 kt)2d 2. (49) w g*1t,2)(F(k))%, (52)

Discretizing thez coordinate will yield a new lattice where the functiorf(k) is given by
theory in which the proper lattice spacing is constant at in-
finity, so it is possible to propagate wave packets in a sen- F(k)=2 sink/2) (53
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6.0 : : : ‘ The equations of motiof66) and (57) are symmetric under
k— —Kk, so the solutions for negativie's are obtained by
changing the sign of.
At spatial infinity, wherev(x)=0, the right moving
40T modes haveke (0,77) and the left moving modes have
k ' € (m,2m). Thus we send in modes witk in (7,27). The
ones near 2 are equivalent to ordinary small negatike
modes and just cross the horizon. Since the group velocity

20 ¢ (56) is always less than or equal to the speed of light
[—g,(dZ/dt)%=(9,F)?=cog(ki2)<1], these modes can
never return to the outside once having crossed the horizon.

0.0 Coming down from 2, at some critical value df there is a

1.0 -0.8 -0.6 -0.4 0.2 0.0 trajectory that asymptotes to the horizon and Zer@elow

\' this critical k are the exotic modes that bounce off the hori-
zon and return to spatial infinity. The crucial thing to notice
here is that an exotic ingoing mode can produce a non-
exotic, very low wave vector outgoing mode. This is only
and, using43), possible because the lattice equations violate time translat.ion
symmetry at short wavelengths, so there is no conservation

—g4(t,2)=[v(2)/v(x(t,2))]?. (54)  of Killing frequency to prevent this from happening.

FIG. 3. Plot of the wave vector trajectories as a function of the
background free-fall velocity function(x).

Note that noww (rather thanwg) stands for the free-fall
frequency.

The eikonal approximation in this case amounts to Hamil- It is intriguing that violation of time-translation invariance
ton’s equations for the phase space variabigk)(with the  visible only at short wavelengths plays a crucial role in ac-

VIIl. DISCUSSION

Hamiltonian counting for the outgoing modes. In our model this time-
dependence is a consequence of the growing lattice spacing
H=+ \/?ZZF(k). (55) due to spreading of free-fall trajectories. At a more funda-

mental level, one expects the Killing symmetry of a black
hole background to be violated by the gravitational back-
reaction to the quantum fluctuations of the matter fields. A
vague suggestion was made [ib5] that the back-reaction
might evade the conservation of Killing frequency and allow
the outgoing modes to originate as ingoing modes from spa-
Ot{}al infinity. Our simple model studied here seems to lend
credence to this hypothesis, although the implementation is
still in a background field approximation and has nothing
obvious to do with the back-reaction.

It is scary to be violating time-translation invariance in
the lattice theory. However, the characteristic time scale is
long, ! according to eithet47) or (49) for example, and

The free-fall frequency is justh=H, so the sign of this
frequency is the sign of F(k). On the lattice, wave vectors
differing by 27n are identified, so a complete setlofalues
is the interval0,27). In this intervalF (k) in (53) is positive,
so the sign ofw is the sign of the prefactot-. Instead of
keeping this prefactor alternative, we can double the range
k to (—2m,2w) and always use the- sign in the Hamil-
tonian (55), since F(k)=—F(—k) is negative wherke
(—2,0).

Hamilton’s equations are

dz/dt=y—g*%,F (56)  even this time dependence is invisible to wavelengths long
compared with the lattice spacing. It therefore seems that the
low energy physics is immune fromirect effects of this

dk/dt=—d,y—g*F. (57 yiolation of time-translation symmetry, even though the out-

0qfoing modes owe their very existence to this violation.

We still do not have a satisfactory discretization of field
theory in a black hole background. Either our lattice spacing
goes to zero at infinity, or it grows as points fall in towards
the horizon. For the Schwarzschild metric, the total amount

V—g%(t,2)=1— kte™ "% (58  of growth during the Hawking lifetimé® is, from (47), of

orderM?3, Thus if the lattice starts out with Planck spacing,

We usedxk=0.001 and started the trajectories at the initialit ends up with spacing of one angstrom after the evaporation
position z(0)= 10,000 att=0. The unit here is the lattice of a solar mass black hole. But this is only the radial spacing.
spacing in thez-coordinate. For each initial wave vector If the lattice points are falling on radial trajectories from
k(0) we obtain a trajectoryk(t),z(t)]. To visualize the radiusr, to r; their transverse proper spacidgcreasedy
results, it is convenient to pld{(t) versusv(x(t)) because the factorr,/r,.
the value ofv (x) indicates the static radial position whereas It seems that to maintain a uniform lattice spacing in some
thez coordinate lines are fallin\We could also have plotted preferred frame with a freely falling lattice of fixed topology
versusx(t) itself but it is helpful to be able to see the value is not possible. This suggests that one should be thinking
of v(x) on the same graphThe results are given in Fig. 3. about a lattice in which points can be created or annihilated

We have solved these equations numerically for the case
the exponential velocity function (x)= —exp(—«x), for
which (54) yields
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(B1)

in order to keep the spacing uniform. 3

An expanding cosmology provides a simpler setting than f(f)ZeXF< +if k(&)
the black hole in which to contemplate the lattice question.
As the universe expands, the lattice spacing will grow if theand substitute into the DDE4). This results in the equation
lattice points are at rest in the cosmic rest frame. WEi§$
confronted this issue in trying to formulate lattice field u(&)(+ik’(&)—k?(&)—2wk(€)—wd)+iv'(&)K(&)+ w)
theory in an expanding universe. He noted a very interesting (B2)
point: if the couplings of an interacting field theory are fixed
on the expanding lattice, then the renormalized parameters at N N
a fixed proper scale will depend strongly on the cosmological 2 eX‘{"L k(u))—l} 2 1—ex;{—|J§ k(u))
epoch. One could of course adjust the lattice parameters as- +
the scale factor evolves, but from a fundamental point of (=1 +uv(8) () +v(£+1))
view that is artificial. Moreover, if the lattice spacing started  _—q (B3)
out in the early universe at the Planck scale, it would quickly
become too large to appear continuous at large scales. Botfye can rewrite the exponentials in a form more appropriate
these problems would be eliminated if the lattice were itselffor the WKB approximation by Taylor expanding the inte-
dynamical, with points being added at the right rate to kee[grand about and then eva|uating the integra|s, e.g.,
their density constant.

Allowing the lattice topology to be dynamical thus seems é+1 1
very natural. It would be interesting to see if field theory can f k(u)du=k(&)+ 5k (§)+--- . (B4)
be sensibly formulated on dynamical lattice models and, if ¢
$0, to study the consequences for cosmology and black hole, pookkeeping purposes, it is now convenient to make the
physics. substitutioné— a £, which has the effect of scalingth order
derivatives in the equation by &7. Now expandk(&) as
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grant PHY94-13253. substitute intoB3), and demand that each coefficient of the
separate powers of &/vanish. The leading order equations
APPENDIX A: FREE-FALL COORDINATES are
In this appendix we show that in a general static two- 02(€)(ko(€) + w)?=[2 sinke(£)/2)]? (B6)
dimensional spacetime coordinates can always be chasen
least locally so the line element takes the forth). Let x? i d sin(ko(€))
be the time-translation Killing field, lat® be the unit tangent ki=+35 d_gln v (&) (Ko(§) +w)— o ) (B7)

vector to a congruence of timelike geodesics all of the same

energyE and invariant under the symmetry, agdsétbe the  The first of these equations is of course the dispersion rela-
(unique up to signunit vector orthogonal ta®. Thenu tion (13) that we derived in Sec. IIl, while the second pro-

= E_1Xa+v5_a. V\{hefev2=1—(X2/Ez)- The assumed sym- duces the first order correction to the leading order root from
metry of u® implies [ x,s]=0, so there exist coordinates the dispersion relation.

andx such thatE ~*x?=(4,) ands®=(4,). In these coor- To solve the dispersion relation near the horizemere
dinates the line element takes the form v~—1) note that when w<1 then 2 sinky2)~ (ko
—kg/24). Using this approximation it is straightforward to
ds?=(1—v?)d?+2vdrdx—dx? (A1)  show that the roots are
2
—d2— (dx—vd7)2 (A2) Ko ()~ + B __ov®  ag
0+()~=N2AL-To(OD- 5715577 B9

Note thatr coincides with the proper time along the orbits of (&)
u, the lines of constant are orthogonal to these orbits, and Ko oo S
x measures the proper distance along these lines. Note also T 1-u(d)]

that, because of the symmetmy(t,x)=v(x) depends only o ) . )
on the coordinatex. If  is normalized at infinity we have Substituting these into the expression kgrabove gives the
v(0)=+(1—E 212 first order correction term.

To match the WKB solutions given here to the Laplace
transform solutions given in Sec. IV we need only substitute
the near horizon expansion fo¢)~ —1+ «¢ into the ex-

In this appendix we discuss the application of the WKB pressions fokky andk; and evaluate the integrals given in
approximation to finding approximate solutions to the DDE(B1). Note thatk, will yield in general a non-trivial ampli-
(24). We assume a solution of the form tude factor.

(B9)

APPENDIX B: WKB SOLUTIONS TO THE DDE
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