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Dilatonic black holes in higher curvature string gravity. Il. Linear stability
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We demonstrate the linear stability of dilatonic black holes appearing in a string-inspired higher-derivative
gravity theory with a Gauss-Bonnet curvature-squared term. The proof is accomplished by mapping the system
to a one-dimensional Schdimger problem which admits no bound states. This result is important in that it
constitutes a linearly stable example of a black hole that bypasses the “no-hair conjecture.” However, dilaton
hair is secondaryin the sense that it is not accompanied by any new quantum number for the black hole
solution.[S0556-282(98)03310-4

PACS numbe(s): 04.70.Bw, 04.20.Jb, 04.56h, 11.25.Mj

[. INTRODUCTION An important question which arises concerns the stability
of the dilatonic black holes. In the Yang-Mills case, the
In Ref.[1] we presented analytic arguments in favor of, Structures are similar to the sphaleron solutions of flat-space
and demonstrated numerically, the existence of dilatonic¥ang-Mills theories, and thus unstaljil. This may be eas-
black hole solutions with nontrivial scalar hair, in a string- ily understood by the fact that the black hole solutions owe
inspired higher-derivative gravity theory with a Gauss Bon-their existence to a delicate balance between the gravitational
net (GB) curvature-squared term. The numerical solutionsattraction and the Yang-Mills repulsive forces. On the other
clearly demonstrated the existence of a regular event horizo@nd. the dilatonic black hole solutions are entirely due to

and asymptotic flatness of the four-dimensional sphericalljh® existence of aingleforce, that of gravity. This already

symmetric space-time configurations considered in th@OMPtS one to think that such structures might be stable.

analysis. There is a nontrivial dilatdglobal charge, which, blaléllsr:glec)a sg&o?ﬁ d(()a]ce:jhlzt:tgﬁlglelj;%srr?;z;?imze- dde”a:r)]ggnt

however, is related to the Arnowitt-Deser-Misn@kDM ) . : . . P

mass of the black hole. and hence the hair is of seconda erturbations of the clas_,spal soluyons. To th|.s end, we shqll
' ap the system of gravitational-dilaton equations for spheri-

type[2]: the gravitational field acts as a source for the ScalaEally symmetric solutions into a one-dimensional Sehro

hair and one does not o.bt.aln a new independent set of quaﬂinger problem, where the instabilities are equivalent to
tum numbers characterizing the black hblsgbsequent 10 pound states. We shall prove that our dilaton-graviton system
the work of Ref.[1], other researchers confirmed these re-;qmits no bound statesThis result is important, since it
sults by discussing the internal structure of the solutions beggnstitutes an example of a hairy black hole structure that
hind the horizon, and demonstrating numerically the exiszppears to be, at least linearly, stable. Its importance is also
tence of curvature singulariti¢s]. Also an extension of the related to the fact that such higher curvature gravity theories
analysis of Ref[1] to incorporate gauge fields became pos-are effective theories obtained from superstrings, which may
sible [6,7]. imply that there is plenty of room in the gravitational sector
The key feature for the existence of such hairy black holesf string theory to allow for physically sensible situations
is the bypass of the no-scalar-hair theordi8sdue to the that are not covered by the no-hair theorem as sti#éd
fact that, as a result of the GB term, the scalar field stres&infortunately, at present nonlinear stability of the dilaton-
tensor becomesegativenear the horizofil], thereby violat-  graviton-GB system cannot be checked analytically, and is
ing one of the main assumptions in the proof of the no-haileft for future investigations.
theorem[8]. An additional element was the fact that the
higher-derivative GB term provides a sort of “repulsion”
that balances the gravitational attraction of the standard Ein-
stein terms, and a black hole is formed. In this respect the e start by considering the action of the Einstein-
GB term plays a similar role to theon-Abeliangauge field  pjlaton-Gauss-BonneEDGB) theory:
kinetic terms in Einstein-Yang-Mills-Higgs theorigst],
which are also notable exceptions of the no-scalar-

Il. RELEVANT FORMALISM

. . ¢
Higgs-) hair theorem. R 1 a'e
(Higgs) S=fd4x J—g(§+zaﬂ¢aﬂ¢+8—gﬂés RGN
!A similar situation occurs in the Higgs hair of the Einstein-Yang- where
Mills-Higgs systemg[3] and[4]), where the Yang-Mills field acts
as a source for the nontrivial configurations of the Higgs field out- 5 oo B
side the horizon. RGe=RupsR*"P7— 4R, R*"+R", 2
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The spherically symmetric ansatz for the metric takes the a'etd’ rod  o'e®
form Al 1+ (1-3e ™) |= +——(1-e™M)
29°r 2 g°r
ds?=el"0d2—erMr0dr2—r2(d6?+sirfg de?). (3) ST
. . . x| ¢’ +¢'——], (D
The equations of motion derived from EQ.) are: 2
Y ) . ¢) . . T’ (F/_Ar) B A . .
"t | -+ |-t gt (AT I+ — (' =A)+———-e T A+ — (A-T
P -y bt~ (A=T) -~ +— S (A=)
a'e?l o ¢ -A 1 8a’ _
= > T''A'e —A‘e +(1_e ) :+_(eA F¢2_¢/2)+_e A F'T"+ T
gr 2 r
" I ’ ’ -A A-T T . =,
X|T +?(r —-A)|-(1-eMe +— (' =3A)+er T A T-2f"A
2
A A . ([+A
X A+E(A_F) ] 4 +?(F’+A’)—f’A+(f’A—A’f)¥ ,
8
, a'e?ep’ A
A1+ YR (1-3e ) wheref =e?/8g2 and the prime and overdot denote differen-
9 tiation with respect ta andt, respectively.
r _ 1—e)  o'e? For later use we note that for the derivatives of the dilaton
=—(¢'2+er T2+ +——(1-e™") field at the horizon in the static cafE| one has the follow-
4 gr ing behavior:
d)A 2 12026
" 12 __ 7T AT , g B 6(61’ ) e“h
X ¢ +¢ 5 e y (5) d,hzzrhe [ —1+ ]_—T (9)
gy
a'e?e’ which implies that black hole solutions exists only if
I 1+ (1-3e™ M)
29°%r gr2
efh< : (10
r o, €M1 a'e? e ot a'\6
=Z(¢’2+eA »?)+ +——(1-eMe
r gr We now notice that1l) only one of the two branches of
F solutions in Eq.(9), the one with the+ sign, leads to
x| b+ p2— ¢_ , (6)  asymptotic flatness of the fields, and this is the branch we
2 shall consider here. The equation ff nearry, is
|
a’ a’ a’
—|e?p +2r|| 6| —|el+ | —|efep’?r?+2¢'r3
19 g g
¢”=—5 > - I'"+0(1), (11
o
—6(—4 e??+| —| ep'r3+2r
g g
|
which is finite O(1), as aresult of Eq.(9). The asymptotic H(r)=pp+ di(r—rp)+ Pl(r—rp)2+---,

form of the dilaton field and the metric components near the
even horizorr=r,, are

where
e M=\ (r—rp) +hp(r—rp)2+-,

e =y (r—rp) + yo(r —1p)24+- ) (12) N1=2/(a'e’h(lg?+2ry), (13
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05 . . T(r,t)=T(r)+8T(r,t)=T(r)+ 8T (r)e'",

-1.0 _

L5 . A(r,)=A(r)+ SA(r,t)=A(r)+ SA(r)e'"",
D S — .

25 e =

50 . G(r ) =(r)+8p(r,t)=¢(r)+ 5¢(r)e',

35| i

(15

0 . . where the variationssI', A, and 6¢ are assumed small
- 10 10 10° (boundegl, and the quantities without & prefactor denote
r classical time-independent solutions of Ed4)—(8). The
FIG. 1. Dilaton configurations for a family of black hole solu- @boveharmonictime dependence is sufficient for limear
tions, corresponding to fixed,=1, for various values o#y,. No- stability analysis, since by assumption the linear variations
tice the monotonic behavior of the solutions and the fact that theareé characterized by a well-defined Fourier expansion in time
curves do not intersect. t [4,9,10. The linear stability analysis proceeds by mapping
the algebraic system of variations of the equations of motion
under consideration to a stationary one-dimensional Schro
and vy, is an arbitrary finitepositive integration constant, dinger problem, in an appropriate potential well, in which the
which cannot be fixed by the equations of motion, since thé'squared frequencies’s® will constitute the energy eigen-
latter involve onlyl'’(r) and notl'(r). This constant is fixed values. In the present problem, the “wave function” turns
by the asymptotic limit of the solutions at infinity. At infin- out to be the dilaton linear variatiofg(r)e'*". Instabilities,

ity, one uses the following asymptotic behavior: then, correspond to negative energy eigenstatésund
states’), i.e., imaginary frequencies. As we shall show in
N this article, for the system of variations corresponding to
eA“)=1+2—M+ 16M“-D +O(i> Egs. (4)—(8), (15 the corresponding Schdinger problem
r 4r2 r3)’ admitsno bound statesthereby proving the linear stability

of the EDGB hairy black holes.
As we shall discuss below, some technical complications
1 arise, as usudH], in the above process due to the fact that
_3) ' (14 the “naive” stationary Schrdinger equation with respect to
the original coordinate is not well defined at some points of
the domain ofr e[ ry,,»). This necessitates a change of co-

D MD 1 ordinates in such a way that the resulting Sclimger prob-
H(1)= ot —+—+0| =/, lem is well defined. A convenient choice is provided by the
r r r so-called “tortoise” coordinate* [4,10], which is defined

. ] ~in'such a way so that the domdin, ,) is extended over the
which guarantees asymptotic flatness of the space tim@ntire real axisr—r* e (—,%). In our specific problem,
Above, M denotes the ADM mass of the black hole ddd e shall define the “tortoise” coordinate® as[4]
the dilaton charge. The numerical analysis of Héf. has
shown thatM andD are not independent quantities, thereby
leading to the secondary nature of the dilaton hAjg]. .

The black hole solutions of Refl] are characterized dr —e (T-A)2 (16)
uniquely by two parametersi, ,ry,). Note, however, that the dr '
equations of motion remain invariant under a shft ¢
+ ¢y as long as it is accompanied by a radial rescaling )
—re%2 Because of above invariance, it is sufficient to varyAs we shall show, then, the associated stationary Schro
On|y one Ofrh and d)h . In the present ana]ysis we choose to dinger 'equation, pertaining to the dilaton variation in EqS
keepry, fixed (r,=1), and to varyg,. We also setr’/g? (15, will be of the form
=1 for convenience. A typical family of solutions has dila-
ton configurationgoutside the horizonof the form depicted
in Fig. 1. The solutions are characterized by negafiyeand d
monotoni¢ nonintersectingbehavior fromry, until infinity. PLUHVIr)u(r*)=—o%u(r*); po=—p, (17
These are essential features of the solutions, which we shall dr
make use of in our linear stability analysis.

whereu(r*) is related to the dilaton variatiofi¢(r) in Egs.
(15), and the potential’ is well defined over the domain of
lll. LINEAR STABILITY ANALYSIS validity of r*.

We now consider perturbing Eq<4)—(8) by time- Let us now proceed with our analysis. The perturbed
dependentinear perturbations of the form equationg4)—(8), under the variation§l5), read
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S¢"+ 8¢’ DA,z 8¢ | "+ ¢’ oA, AT og+or! ¢ _ae
—_—— — — —_— — — — — _e — —
2 2 T 2 2 T 2 g°r?
A A A’ a'e? N r'
XIAe *+(1-e M| T'"—— + SA INs'e *—e I+ —({T'"—A")
2 g°r? 2
" a'e? r’ a'e? -
—an Ly e *~(1-eM—| |+ (1-e M) erTsA
2 gr? 2 g°r?
a'e? A
——— (1—e™) 8I"=0, (18)
g%r
/eqS ’ ro’ /eqS eA /eqb—A 36'A’
on | 14257 1 _ze ) |+og | =L T N (1mgeh [4an] 4 E VIV
29°r 2 2g°r r g°r 2
a,e¢ PA —A a’ed) —-A ” i ’ " 12
+5¢2ng ¢'A'(1-3e ") - o (1—e %) [0¢"+2¢" 6¢"+0¢p(P"+¢'7) ]=0, (19
a'e?ep’ ) e 3a’e? . o'e? .
oT' | 1+ (1-3e™ ) [+6A | ——+ d'T'e ™™ |+6p——¢'T'(1—3e )
29°r ro 29’ 29°r
r¢’ o'e?® a'e? .
fop | ot T 1igehy |- (e AT s, (20)
2 29% g°r
- a'etep’ | re . a'e? .\ : - ST
SA |1+ (1-3e™ ) |= — 8¢+ (1—e2) | 6¢ &'+ 8¢ — 6 —]|, (21)
29°r 2 9°r 2
rap— A ’ ’ rap—A
a'e . a'e
ST 1— ¢ |+ — (T =A)+ (T =8A")| —+—| —erToA— 5¢' T"+(8¢"+2¢" 8¢ )T’
g°r 2 2 g°r

S5¢p'T’ @' o’ o'T’ - . .
+ 8T (" + "2+ . (I'"=3A")+ 5 (F’—3A’)+T(5F'—35A’)+eAF(A’5¢—¢'5A)

a/eqS—A ¢,F,
¢rl—w+1—w (¢rr+¢72)+ . (F,_SA’)

¢ S — (8¢p—S5A)=0. (22)

o°r

We can integrate Eq21) to obtain use Eq.(19), as well as the time-independent equations of

motion. Thus, we obtain the following differential equation

Fad gt for w(r):
oA |1+ 2 ef (1-3e~) w)
2g9°r
I ad T’ 4 ’ _,__, — | =
~i e (5¢’ b+ o006 |+ 2 5y S PR
gr 2 2
+u(r), (23)

This can be integrated to give(r)~e*~"2/r. Whenr
—rp, €212 and u— oo, which is incompatible with
where u(r) is an arbitrary function of which can be set the assumption of a smadlA (r) required for the linear sta-

i ! bility analysis. Rejecting this solution, we are left with the
equal to zero if we require thafA =0 when §¢=0. An

_ : _ _ trivial one u=0. For calculational convenience we also set
independent check of this assertion can be obtained as foly’/g2=1, from now on, which is achieved by an appropriate

lows: first we differentiate Eq23) with respect ta and then  rescaling of the dilaton field.
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Rearranging the above equations, one obtains, after a tean use the “tortoise” coordinatél6). Then, the perturbed
dious but straightforward procedure, an equation &  equation for the dilaton field takes the form
which has the following structure:

2 —
0P .| o gr-nep_ AAT—A) | dod

A 8¢"+2B 8¢’ +C S¢p+0? E 5¢=0, (25) A a2 2 ar e
whereA, B, C, andE are rather complicated functions ¢f +el~NC+a2E) 66=0 (34)
o', ¢", A, A, T, T', andT"”. In the limit r—r, these
coefficients take the form or

6e2%n d?6¢ dé¢
2\/1- 2 A > t2B—+(C+ a?€) 6¢=0, (35)
r dr*? dr*
A= +0O (r—ry), (26)
6e2%n (= where
1+ 1- ( 7 )
A=A, B=B &l M2 Z—( - L @
6e?%n dr
1= ( ré ) 1 c=el"Ac, e=el'"E. (37)
B= +0 (1), (27 .
1+ (6e2¢h) (r=rp) Note that, near the horizon,
1_
4 _
" M=y (=1 +0(r=rp)?% (39
2e2%n 1 1 dr-A)
C= +0 ) o =2yy1A +O(r— (39
6e2®n| (r—rp)? r—rp
4
fh| 1+ 1- (4 where\ ; is given by Eq(13). As a result, all the coefficients
h (29) in Eq. (34) are now well behaved near the horizop. In
order to eliminate the term proportional &', we first di-
vide Eq.(34) by A and then we use the function
6e?%n
M 1- 7
M 1 1 F= exp(J —dr* ) (40)
E= +0 , (29 —A
Y1 (r—rp)? r=rn

Then, the equation fof¢ takes the form
where we have used the asymptotic behavid®) near the

event horizon. 5 c L& B B\|
On the other hand, when— = we obtain PR U 274" 2 P+ u=0, 4y
e?>DM 1 where
A=1+——+0| =], (30)
r
= (42
M 1 P dr*
B=—-—+ —2+O = (31)
ror r and we have sei=F §¢.
It is straightforward to see that
C= D? (@] ! (32 B
o4 5/’ 7‘—>0 for r—ry and r—oo, (43
4AM  4AM? e?-DM 1 independently of . In addition
E=1+T+—2+ 7 +0 —5>, (33) P y h,¢h '
r r r Bdr finite f 44
where we have used the asymptotic behayldy near infin- A dr —finite for r="Th- (44

ity.

As we can see from Eq$26)—(29) the coefficients of the Moreover, as shown in Fig. 2, the functidi.A is well be-
Schralinger equation(25) are not finite at the boundany  haved over the entire domain outside the horizon, implying
=ry, where the variatiod¢ is bounded. As mentioned pre- the integrability of the functiorr. Also, the quantitye/ A is
viously, to arrive at a well-defined Sclimger problem, one finite and alwaysositiveoutside the horizon of the numeri-
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T —— zon and it can take on constant finite values. The same equa-
tion, nearr* —«, allows uy and 8¢ to take on constant

J values as well. Since, does not vanish at the boundarigs,

is not a physical perturbatiobut a shift of solution Never-
theless, it still remains an acceptable solution of the per-
turbed equations, a mathematical tool, which we can exploit
to show that there are no physical perturbations, that is, no
1 solutions witha2<0.

From Eqgs.(40) and (43) one obtains, for the eigenfunc-

i tion ug on the boundaries,

B
L E— p*u0|r*=too:Zu0|r*=toc+Fp* 5¢|r*:too- (45)
r 102 103

1 10

FIG. 2. The graph depicts the coefficieB6A andB/.A, fora  1he d¢ remains bounded at* =+ . From the asymptotic
typical member of the family of the black hole solutions of Fig. 1 behavior(14) it becomes clear that, at the=c boundary,
corresponding tag,=—1, r,=1. It is clear that the coefficient B/A—B/A~1/r, independently of¢,. Thus, F(r* —o=)
Bl A, incorporating the tortoise coordinate, is finite in the entire =exg ["..(B/A)dr]~r for r —o. Hence, the first term in Eq.
domain outside the horizon, thereby implying that the quarftity  (45) becomesd¢..+ O(1/r), while the second term vanishes
well defined and integrable. as 1f, for r - [see Eqs(14)]. Hence, at theé = bound-

ary the boundary values @f, u, are proportional to those of
cal black hole solutions of Refl] (see Fig. 3 Itis also  Ug:
immediately seen from Eq15) that the eigenfunctiom,
corresponding to the eigenvalu€=0, can be constructed _Up
out of the difference of any two time-independent solutions P o+ == T
of Egs.(4)—(8), i.e., out of the difference of any two curves
in Fig. 1. From themonotonicanq nonintersectingwature of On the other hand, from Eq&40) and (44) it becomes clear
the various members of the family of the numerlcal_solutlons[halt at the boundary* =—oo (horizon, F(r*=—)=1.
of Fig. 1, then, one can conclude thgt hasno nodesdn the
domain r*e(—o,»), and that p2ug/ugp2ug/uy

;s (46)

Moreover,p, Ug|r* - —. iS given by

=e' M3 psug/ug=e""*[3(I'" = A")ug+ugl/ug is fi- Paclolre = o= (r=rp) (92 = ¢

nite. This, together with the finite and smooth form B6f.A

(Fig. 2), implies, on account of Eq41), the finiteness of the Iy,

coefficientC/ A outside the horizon, without the need for an = ( (r_rh)&T)hUo) : (47)

explicit numerical computation. Thus, E@l1) assumes the r=rp

form of an ordinary Schidinger with regular coefficients ) ) , , . ,
over the entire domain af* . since, in our construction, each family of solutions is

If we solve Eq.(41) nearr* = —c, that is, near the hori- uniquely characterizefll] by the valueg,, for fixed My [we
zon, with #2=0, we find an oscillatory behavior fou, remind the reader that here we chose to kegp1l (fixed)
which means thati, remains always bounded near the hori-@nd vary ¢p]. From Eq. (9) one easily observes that for

linear variations =@ — 1), the difference ¢(>’

10 e — M is finite. Hence,

Py Ug|r# = ——0. (48

We now discuss the-2<0 unstable modes, . It can be
easily seen from Eq$30)—(33) that the asymptotic form of
Eqg. (41) at ther* = boundary reads

2

p2u,=—o?U,. (49)

Hence, the bound-state solutiop behaves &s

0 " " PSR | . " PR | . " PP
1 10 102 103
r

2Here, and in the following, we insist on bounded or—at most—

FIG. 3. This diagram depicts the coefficiefsA and&/ A for a linearly divergenu,,, at the boundaries® = = . This is due to the
typical member of the family of the black hole solutions depicted infact that, sinceu=F ¢, andF is independent otr and at most
Fig. 1 (¢n=—1, rp=1); the coefficienE/A diverges at the hori- linearly divergent at* =, then it is only for such a behavior that
zon as 1/ —r,,)2. On the other hand/ A=e' "*E/A, appearing in  the variations¢ remains bounded, as required by the linear stabil-
Eqg. (40), is finite at the horizon. The positive definiteness of bothity analysis. An exponentially divergent,~¢e" at the boundaries,
coefficients is clear. would imply §¢~€'/F, and, hence, is not acceptable.



57 DILATONIC BLACK HOLES IN ... .Il. ...

Uy (r*=ow)=e"1vI"" 0. (50)

On the other hand, from Eq&6)—(29) it is obvious that, on

the horizon, Eq.(41) assumes the fornffor the casery,
=1)

p2u,+k2u,=0, (51)

k2_ 2 71e2¢h

= 21,2, 2
_(1+\/1—6e2¢h)\/1—662¢h+0 ko+o°. (52

From Eq.(52) one can see two possibilities near the horizon

of the black hole
(i) The “total energy” is such that ©o?>
— 2y,€?/[(1+ J1—6e??n)1—6e?n]. Taking into ac-

count the asymptotic form at* =<0, Eq. (49), one also ob-
serves that in this case the spectrum of the respective Schro

dinger equation iscontinuous and nondegenerate The
general solution of the perturbatian, near the horizons,
therefore, oscillatoryunbound state

(53

Such a continuum of statemnnot exisin our case by con-

6261

Thus, on account of Eq$46), (48), (50), (57) the Wronskian
of any two solutionsuy ,u, of Eq. (41) with o?<0 vanishes
at the boundaries:

W= (U1P, Uy~ UpPy Ug)[rx = +=0. (58)

To count the unstable gravitational modes of the original
problem, one needs to count the nodes of the wave function
u of the one-dimensional Schiimger problem(41). Fortu-
nately, this can be done without detailed knowledge of the
solutions. As we shall discuss below, all one needs to ob-
serve is the monotonic and nonintersecting nature of the di-
laton curves in Fig. 1. To this end, one first observes that a
standard “node rule” for the discrete spectrum of E4l)
applies, which is a direct consequence of Fubini’s theorem of
ordinary differential equation$l11]. This theorem can be
stated as follows: consider two differential equations

u’+2pyu’ +q.u=0, (59
u”+2p,u’ +qou=0. (60)

If
P2+ P5—dp=pi+pi—dy (61)

tinuity. Indeed, because of the nondegenerate nature of tHgroughout the intervala,b], then, betweerany two con-

eigenvalue problem, the limiting case— 0 should yield the
solutionu,. However, in the limito>— 0, and in terms of,
one obtains

e‘/’h

UaNCO{WM(r—I’h)‘FQDO , (54)

where g is a constant phase shift, and we have taligto
be the real part of Eq53). Then,

e¢h

Py Up~— kO sin m

In(r—rp)+¢o|. (55

The above result is not in agreement with E48), thereby

contradicting the nondegenerate nature of these solutions, A

secutive zeroes of a solution &qg. (59), in the interval
[a,b], there is at least one zero of a solutionBd. (60).

In our case, we can apply this theorem for two different
eigenfunctionsuy, u,, corresponding to eigenvalue?i and
o5 of Eq. (41). The interval[a,b] is the entire domain of
validity of the solutions of Eq(41) (—<,), including the
boundaries at infinity. In this case,

2 By
pi=0, qi=7t+o-————p* ik i=1,2. (62

Then, the(sufficiend condition for a “node rule”(61) reads
simply

£ £
—o5= zlaf. (63)

which, in turn, implies the absence of such solutions in the

problem(41).
(ii) This leaves one with the second possibility oflia-
crete spectrunof bound stateswhich would occur for

27,€°%

2
o< —
(1+1—6€?%n)1—6e?%n

0. (56)

As we shall show below this is alsmwt realizeddue to the
special form ofu,.

The positivity of£/ A (Fig. 3) implies that the conditio(63)
becomes simply
0'%2 O'%. (64)

This special version of the theorem is known as Sturm’s
theorem[12]. As a corollary of the Fubini-Sturm theorem
one obtains the standard “node rule” for the number of ze-
ros of the eigenfunctions in the discrete spectrum of bound
states, according to which if the eigenfunctions are ranked in

To this end, one first observes that such bound statesrder of increasing energy, then tingéh eigenfunction has

would vanishexponentially at the* = —c boundary:

U (r*=—o)~ek ™o, (57)
Note that Egs(50) and (57) force the eigenfunctiom, to
vanish at both boundarig$ = . In this way,u,, not only
remains bounded but is also a physical perturbafi®h

n—1 nodes(excluding the boundary zerp$12] (“node
rule”).

Consider, now, the case wheatg corresponds to the zero
eigenvalue of Eq(41), o,=0. As can be seen from the
numerical solution of Fig. 1, thenonotonicandnonintersect-
ing character of the dilaton curves in the entire domain out-
side the horizon implies that the solution=ug, which, as
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we have mentioned earlier, can be constructed out of the L5
difference of two such solutions, has nodesn the domain

r* e (—,). Since any solutiom,, from thediscrete sebf Mr

negative eigenvalueerﬁ<0 (unstable modgshas at least 13l
two nodes at the boundaries, according to the Fubini-Sturm
theorem,u, should have at least one in the domaihe Thoo12F

(—,). This contradicts the fact that, is nodeless. Thus,
the only consistent situation is the omg&hout suchnegative
energymodes. This, in turn, implieBnear stability for the
dilaton-GB black holes of Refl1]. The reader might worry
about the divergent boundary conditions wf at r* =oo, 0.9 ! ! ! !
which makes itnot an ordinaryeigenfunction of a Schiro 1.0 L1 12 13 14 L5
dinger problem. In the Appendix we argue that this is not an M
obstacle. In fact, we present an explicit proof of the absence FIG. 4. The graph depicts, versus the ADM massM of the
of bound states in our case, following the same spirit used imlack hole, for a fixed value of,=—1. The emergence of the
the proof of the Fubini-Sturm theorem. The crucial elementasymptotic critical pointr=6a'?e?#n/g*, below which there are
which allows the standard proof to go through, is the speciaho solutions, is apparent. At this point the mass becomes minimal.
boundary condition for the Wronskiai®8), which is valid
for the entire spectrum of eigenfunctions of Egl) with caterelative changesf stability, and hence cannot constitute
02<0, including the nonstandard ong. a “proof” of stability. In Ref. [6] a numerical solution was
The above considerations can be extended straightfofound for the ) branch of solutiong9) which indicated
wardly to the case wheng,—0. All the coefficients of Eq. the existence of a “turning point(TP) in the r,-M (or
(41) are still well defined in this case, which implies that the equivalently ¢,-M) graph. The TP occurs at the “critical
stability in principle does not change. However, according topoint” for the existence of black hole solutions, which is the
the analysis of Ref[1], the caser,—0 corresponds to a point where the black hole acquires a minimal mass, below
singular scalar curvature which no solution is found. In the numerical solution of Ref.
[6] a continuation beyond this critical point emerged, which
ends at a point“singular point”) where a singularity ap-
pears in the square of the Riemann tensor, as well g in
The part of the solution from the critical point to the sin-
Moreover, from the condition for the existence of black holegular point was argued in Reff6] to berelatively unstable
solutions(10), one observes that the only consistent value ofts compared to the regular branch discussed here. Such a
&y, for r,—0 is[1] ¢p— — . In this limit, the first deriva- change in stability manifests itself as a cusp in an appropriate
tive of the dilaton field(9) diverges. Both of the above re- catastrophe theory diagre#,14]. In Ref.[6] such a diagram
sults imply the absence of regular “particlelike” solutions in has been chosen to be the diagram of the thermodynamic

the EDGB systeni1,13. What we are left with is a stable €ntropy[15] versus the mass of the black hole.
“pointlike” spacetime singularity. In our numerical solution$l], used here, we found no

On the other hand, if we take the limft,— — keeping evidence for such a TP. Our black hole solutions are
r, fixed at a nonvanishing value, E@) gives ¢;—0 which  uniquely specified by the pair(,¢n), which was essential |
means that the dilaton remains constant. In addition, in thig" our linear stability analysis above. In this respect we are in
limit, the coupling between the dilaton and the Gauss-Bonneddreement with the results of R¢6], where a branching of
term vanishes. This implies that in such a case the GB terrolutions was found onlynside the event horizon. These
in the action(1) becomes irrelevant, and one is left with the @uthors have also given a graph of the entropy versus the
standard Einstein term, which admits only Schwarzschildhass of the black hole solution of R¢i] outside the hori-
black holes, known to be stable. This stability is confirmedZon. and found, as expected, a smooth curve, with no cusps.

by the smooth limit of the coefficients in E¢41) ase?r N this article we have proveanalytically the stability under
0. linear perturbations of thieunique branch of the black hole

solutions, which in the,-M graphs of Figs. 4 and 5 appears
to terminate at the minimum-mass critical point.

However, the apparent discrepancy between our results
Above we have demonstrated the linear stability of theand that of Ref[6], concerning the existence of a TP, is
dilatonic black hole solutions in the EDGB system, found ineasily resolved if we notice that the corresponding graph of
Ref.[1]. This result is important, since it constitutes an ex-Ref. [6] was drawn with a different scaling, that is, for a
ample of a stable, albeit secondary, hair that bypasses tHixed value of¢..=0. Using the aforementioned invariance

no-hair conjecture4,8]. Nonlinear stability of the EDGB of the equations of motion, we reconstructed the2M
system, however, although expected, still remains an opegraph, keeping fixed, this time, the value ®f=0. Then, a
issue. cusp point and a continuation of our solutions beyond the
Before closing we would like to compare our semianalyticcritical point indeed emerged in accordance with Réf.
results on linear stability with some remarks in favor of sta-Since we both study the same mode of the black hole solu-
bility by virtue of a catastrophe theory approach made intions, that is, the radial mode, we reach the conclusion that
Ref. [6]. As usual[4,14)], catastrophe theory can only indi- the two different methods used by us and the authors of Ref.

1.1

2
i

IV. REMARKS AND OUTLOOK
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0.952 . . . . . . . entire set of eigenmodes withf<0. This justifies the valid-

ity of the Fubini-Sturm theorem in our case. We stress that
the crucial point in the proof is the special boundary condi-
tions of the Wronskiarg58). These allow a standard Wronsk-
ian treatment to go through for the, solution of Eq.(41),
despite itylinear divergence at the* = boundary, which
makes it not an ordinary eigenfunction of a Salirmer
problem.

To this end, we consider first the two solutions of Eq.
(41), ug, andu,—the ground state, at the bottom of the dis-
0.948 . . . . . . . crete spectrum. Both of these hawe nodesin the interior

100 102 104 106 108 110 112 114 domain ofr*, excluding the boundariedhe node structure

2M of uy, follows from the “node rule’). We then employ prop-
erties of the Wronskian of the solutions as follows: first we
multiply each equation by the other eigenfunction. Next, we
subtract the resulting system of equations, and then integrate

[6] are equivalent and possibly complementary. However, irit Over the entire domain of* & (—,%). In this way one
both cases one cannot draw any conclusions aboutdhe  Obtains, in a standard fashigh2],
linear stability of the black hole solutions, which therefore
remains an open issue.

As a final remark we would like to mention that the ef-
fects of gauge fields on the dilatonic black hole GB solutions
have been considered in Ref6] and[7]. From the point of

view of stability, one expects that, in the case of “colored” . : : :
black holes, involving non-Abelian gauge fieldsstabilities 2 PetWeen the two boundaries. From Ep) this vanishes

. L Moreover, as we have mentioned previousli4 is positive
occur inboth the gauge and gravitational sectors of the SO-yefinitefor the entire domain of* c (= o0, (Fig. 3. Since
lutions. Instabilities in the gauge sector are of sphaleron typ(Laj andu. haveno nodesin the domain 6“3 ) .exéludin
[4]. Those in the gravitational sector can be studied in a%b 0 Lo 9
similar way as for colored black holes in Einstein-Yang-
Mills theories[4]. One can go beyond linear stability analy-
sis in such systems, by invoking catastrophe thddr{4],
which is capable of giving the relative stability of various “b from the spectrum. , ,
branches of solutions for the colored EDGB black holes ©One repeats the construction, usiog and any of the
[6,7]. However, analytic methods can still be combined withhigher eigenfunctions of the discrete spectrum, corre-
the catastrophe theory approah] in order tocountthe  sponding too,<0. The change in the Wronskian between
unstable mode# both sectors, gauge and gravitational, by —> and the first encountered zerowf, atr* =z, is then
invoking appropriate maps of the system of perturbationgiven by
into one-dimensional stationary Schinger problems

0.951

Tho 0.950

0.949

FIG. 5. The magnification around the critical point, depicted in
the above figure, shows clearly the absence of a turning point.

2 2 * * €
AW| x— o= (af—0F) dr 1 Unlio, (A1)
where the left-hand side denotes the change in the Wronsk-
he boundaries, one obtains from E41) that theonly con-

sistentcase is the degenerate omg= 3. But 03=0, while
(r§<0 by assumption; this implies a contradiction, excluding

[4,10]. We hope to return to a detailed analytic study of these 2 79 £
i : i AW =—ugp,upl,=(c2—03) | dr* —upyup.
issues in a future publication. % =—o 0P Ynlzg n~ %) | 4 Unto
(A2)
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The above analysis, therefore, implies thbsence of
negative energy modegbound statesin the problem(41),

In this appendix we prove the absence of bound states iwhich, in turn, leads téinear stabilityfor the Dilaton-Gauss-
the problem(41) by following a Wronskian treatment for the Bonnet black holes of Ref1]

APPENDIX: ABSENCE OF BOUND STATES
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