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Dilatonic black holes in higher curvature string gravity. II. Linear stability
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We demonstrate the linear stability of dilatonic black holes appearing in a string-inspired higher-derivative
gravity theory with a Gauss-Bonnet curvature-squared term. The proof is accomplished by mapping the system
to a one-dimensional Schro¨dinger problem which admits no bound states. This result is important in that it
constitutes a linearly stable example of a black hole that bypasses the ‘‘no-hair conjecture.’’ However, dilaton
hair is secondaryin the sense that it is not accompanied by any new quantum number for the black hole
solution.@S0556-2821~98!03310-4#

PACS number~s!: 04.70.Bw, 04.20.Jb, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

In Ref. @1# we presented analytic arguments in favor
and demonstrated numerically, the existence of dilato
black hole solutions with nontrivial scalar hair, in a strin
inspired higher-derivative gravity theory with a Gauss Bo
net ~GB! curvature-squared term. The numerical solutio
clearly demonstrated the existence of a regular event hor
and asymptotic flatness of the four-dimensional spheric
symmetric space-time configurations considered in
analysis. There is a nontrivial dilaton~global! charge, which,
however, is related to the Arnowitt-Deser-Misner~ADM !
mass of the black hole, and hence the hair is of second
type @2#: the gravitational field acts as a source for the sca
hair and one does not obtain a new independent set of q
tum numbers characterizing the black hole.1 Subsequent to
the work of Ref.@1#, other researchers confirmed these
sults by discussing the internal structure of the solutions
hind the horizon, and demonstrating numerically the ex
tence of curvature singularities@5#. Also an extension of the
analysis of Ref.@1# to incorporate gauge fields became po
sible @6,7#.

The key feature for the existence of such hairy black ho
is the bypass of the no-scalar-hair theorems@8# due to the
fact that, as a result of the GB term, the scalar field str
tensor becomesnegativenear the horizon@1#, thereby violat-
ing one of the main assumptions in the proof of the no-h
theorem @8#. An additional element was the fact that th
higher-derivative GB term provides a sort of ‘‘repulsion
that balances the gravitational attraction of the standard
stein terms, and a black hole is formed. In this respect
GB term plays a similar role to thenon-Abeliangauge field
kinetic terms in Einstein-Yang-Mills-Higgs theories@4#,
which are also notable exceptions of the no-sca
~Higgs-! hair theorem.

1A similar situation occurs in the Higgs hair of the Einstein-Yan
Mills-Higgs systems~@3# and @4#!, where the Yang-Mills field acts
as a source for the nontrivial configurations of the Higgs field o
side the horizon.
570556-2821/98/57~10!/6255~10!/$15.00
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An important question which arises concerns the stabi
of the dilatonic black holes. In the Yang-Mills case, th
structures are similar to the sphaleron solutions of flat-sp
Yang-Mills theories, and thus unstable@4#. This may be eas-
ily understood by the fact that the black hole solutions o
their existence to a delicate balance between the gravitati
attraction and the Yang-Mills repulsive forces. On the oth
hand, the dilatonic black hole solutions are entirely due
the existence of asingle force, that of gravity. This already
prompts one to think that such structures might be stable

It is the purpose of this article to argue that the dilaton
black holes are indeed stable under linear time-depen
perturbations of the classical solutions. To this end, we s
map the system of gravitational-dilaton equations for sph
cally symmetric solutions into a one-dimensional Sch¨-
dinger problem, where the instabilities are equivalent
bound states. We shall prove that our dilaton-graviton sys
admits no bound states. This result is important, since i
constitutes an example of a hairy black hole structure t
appears to be, at least linearly, stable. Its importance is
related to the fact that such higher curvature gravity theo
are effective theories obtained from superstrings, which m
imply that there is plenty of room in the gravitational sect
of string theory to allow for physically sensible situation
that are not covered by the no-hair theorem as stated@8#.
Unfortunately, at present nonlinear stability of the dilato
graviton-GB system cannot be checked analytically, and
left for future investigations.

II. RELEVANT FORMALISM

We start by considering the action of the Einste
Dilaton-Gauss-Bonnet~EDGB! theory:

S5E d4x A2gS R

2
1

1

4
]mf]mf1

a8ef

8g2
RGB

2 D , ~1!

where

RGB
2 5RmnrsRmnrs24RmnRmn1R2. ~2!

-
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The spherically symmetric ansatz for the metric takes
form

ds25eG~r ,t !dt22eL~r ,t !dr22r 2~du21sin2u dw2!. ~3!

The equations of motion derived from Eq.~1! are:

f91f8S G8

2
2

L8

2
1

2

r D 2eL2GF f̈1
ḟ

2
~L̇2Ġ !G

5
a8ef

g2r 2 H G8L8e2L2L̇2e2G1~12e2L!

3FG91
G8

2
~G82L8!G2~12e2L! eL2G

3F L̈1
L̇

2
~L̇2Ġ !G J , ~4!

L8F11
a8eff8

2g2r
~123e2L!G

5
r

4
~f821eL2Gḟ2!1

12eL

r
1

a8ef

g2r
~12e2L!

3Ff91f82 2
ḟL̇

2
eL2GG , ~5!

G8F11
a8eff8

2g2r
~123e2L!G

5
r

4
~f82 1eL2Gḟ2!1

eL21

r
1

a8ef

g2r
~12e2L! eL2G

3F f̈1ḟ22
ḟĠ

2
G , ~6!
th
e
L̇F11

a8eff8

2g2r
~123e2L!G5

r ḟf8

2
1

a8ef

g2r
~12e2L!

3S ḟf81ḟ82
ḟG8

2
D , ~7!

G91
G8

2
~G82L8!1

~G82L8!

r
2eL2GF L̈1

L̇

2
~L̇2Ġ !G

51
1

2
~eL2Gḟ22f82!1

8a8

r
e2LH f 8G91 f 9G8

1
f 8G8

2
~G823L8!1eL2GFL8 f̈ 22 ḟ 8L̇

1
ḟ L̇

2
~G81L8!2 f 8L̈1~ f 8L̇2L8 ḟ !

~ Ġ1L̇ !

2
G J ,

~8!

wheref 5ef/8g2 and the prime and overdot denote differe
tiation with respect tor and t, respectively.

For later use we note that for the derivatives of the dila
field at the horizon in the static case@1# one has the follow-
ing behavior:

fh85
g2

a8
r he2fhS 216A12

6~a8!2e2fh

g4r h
4 D , ~9!

which implies that black hole solutions exists only if

efh,
g2r h

2

a8A6
. ~10!

We now notice that~1! only one of the two branches o
solutions in Eq.~9!, the one with the1 sign, leads to
asymptotic flatness of the fields, and this is the branch
shall consider here. The equation forf9 nearr h is
f952
1

2

F S a8

g2 D eff812r GF6S a8

g2 D ef1 S a8

g2 D eff82 r 212f8r 3G
26S a82

g4 D e2f1S a8

g2 D eff8r 312r 4

G81O~1!, ~11!
which is finiteO(1), as aresult of Eq.~9!. The asymptotic
form of the dilaton field and the metric components near
even horizonr .r h are

e2L~r !5l1~r 2r h!1l2~r 2r h!21¯,

eG~r !5g1~r 2r h!1g2~r 2r h!21¯, ~12!
e
f~r !5fh1fh8~r 2r h!1fh9~r 2r h!21¯,

where

l152/~a8efhfh8/g
212r h!, ~13!
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57 6257DILATONIC BLACK HOLES IN . . . . II. . . .
and g1 is an arbitrary finitepositive integration constant
which cannot be fixed by the equations of motion, since
latter involve onlyG8(r ) and notG(r ). This constant is fixed
by the asymptotic limit of the solutions at infinity. At infin
ity, one uses the following asymptotic behavior:

eL~r !511
2M

r
1

16M22D2

4r 2
1OS 1

r 3D ,

eG~r !512
2M

r
1OS 1

r 3D , ~14!

f~r !5f`1
D

r
1

MD

r 2
1OS 1

r 3D ,

which guarantees asymptotic flatness of the space t
Above, M denotes the ADM mass of the black hole andD
the dilaton charge. The numerical analysis of Ref.@1# has
shown thatM andD are not independent quantities, there
leading to the secondary nature of the dilaton hair@1,2#.

The black hole solutions of Ref.@1# are characterized
uniquely by two parameters (fh ,r h). Note, however, that the
equations of motion remain invariant under a shiftf→f
1f0 as long as it is accompanied by a radial rescalinr
→ref0/2. Because of above invariance, it is sufficient to va
only one ofr h andfh . In the present analysis we choose
keep r h fixed (r h51), and to varyfh . We also seta8/g2

51 for convenience. A typical family of solutions has dil
ton configurations~outside the horizon! of the form depicted
in Fig. 1. The solutions are characterized by negativefh and
monotonic, nonintersectingbehavior fromr h until infinity.
These are essential features of the solutions, which we s
make use of in our linear stability analysis.

III. LINEAR STABILITY ANALYSIS

We now consider perturbing Eqs.~4!–~8! by time-
dependentlinear perturbations of the form

FIG. 1. Dilaton configurations for a family of black hole solu
tions, corresponding to fixedr h51, for various values offh . No-
tice the monotonic behavior of the solutions and the fact that
curves do not intersect.
e

e.

all

G~r ,t !5G~r !1dG~r ,t !5G~r !1dG~r !eist,

L~r ,t !5L~r !1dL~r ,t !5L~r !1dL~r !eist,
~15!

f~r ,t !5f~r !1df~r ,t !5f~r !1df~r !eist,

where the variationsdG, dL, and df are assumed sma
~bounded!, and the quantities without ad prefactor denote
classical time-independent solutions of Eqs.~4!–~8!. The
aboveharmonic time dependence is sufficient for alinear
stability analysis, since by assumption the linear variatio
are characterized by a well-defined Fourier expansion in t
t @4,9,10#. The linear stability analysis proceeds by mappi
the algebraic system of variations of the equations of mot
under consideration to a stationary one-dimensional Sc¨-
dinger problem, in an appropriate potential well, in which t
‘‘squared frequencies’’s2 will constitute the energy eigen
values. In the present problem, the ‘‘wave function’’ tur
out to be the dilaton linear variationdf(r )eist. Instabilities,
then, correspond to negative energy eigenstates~‘‘bound
states’’!, i.e., imaginary frequenciess. As we shall show in
this article, for the system of variations corresponding
Eqs. ~4!–~8!, ~15! the corresponding Schro¨dinger problem
admitsno bound states, thereby proving the linear stability
of the EDGB hairy black holes.

As we shall discuss below, some technical complicatio
arise, as usual@4#, in the above process due to the fact th
the ‘‘naive’’ stationary Schro¨dinger equation with respect t
the original coordinater is not well defined at some points o
the domain ofr P@r h ,`). This necessitates a change of c
ordinates in such a way that the resulting Schro¨dinger prob-
lem is well defined. A convenient choice is provided by t
so-called ‘‘tortoise’’ coordinater * @4,10#, which is defined
in such a way so that the domain@r h ,`) is extended over the
entire real axisr→r * P(2`,`). In our specific problem,
we shall define the ‘‘tortoise’’ coordinater * as @4#

dr*

dr
5e2~G2L!/2. ~16!

As we shall show, then, the associated stationary Sc¨-
dinger equation, pertaining to the dilaton variation in Eq
~15!, will be of the form

p
*
2 u1V~r * !u~r * !52s2u~r * !; p* [

d

dr*
, ~17!

whereu(r * ) is related to the dilaton variationdf(r ) in Eqs.
~15!, and the potentialV is well defined over the domain o
validity of r * .

Let us now proceed with our analysis. The perturb
equations~4!–~8!, under the variations~15!, read

e
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df91df8 S G8

2
2

L8

2
1

2

r D 2df Ff91f8 S G8

2
2

L8

2
1

2

r D G2eL2Gdf̈1dG8H f8

2
2

a8ef

g2r 2

3FL8e2L1~12e2L!S G82
L8

2
D G J 1dL

a8ef

g2r 2 H G8L8e2L2e2LFG91
G8

2
~G82L8!G J

2dL8H f8

2
1

a8ef

g2r 2 FG8e2L2~12e2L!
G8

2
G J 1

a8ef

g2r 2
~12e2L! eL2GdL̈

2
a8ef

g2r 2
~12e2L! dG950, ~18!

dL8 F 11
a8eff8

2g2r
~123e2L! G1df8 F 2

rf8

2
1

a8ef

2g2r
L8 ~123e2L! G1dLH eL

r
1

a8ef2L

g2r
F3f8L8

2
2~f91f82!G J

1df
a8ef

2g2r
f8L8~123e2L!2

a8ef

g2r
~12e2L! @df912f8 df81df~f91f82! #50, ~19!

dG8 F 11
a8eff8

2g2r
~123e2L! G1dL F2

eL

r
1

3a8ef

2g2r
f8G8e2L G1df

a8ef

2g2r
f8G8~123e2L!

1df8 F 2
rf8

2
1

a8ef

2g2r
G8 ~123e2L! G2

a8ef

g2r
~12e2L! eL2G df̈50, ~20!

dL̇ F11
a8eff8

2g2r
~123e2L!G5

rf8

2
dḟ1

a8ef

g2r
~12e2L! S dḟ f81df 8̇2dḟ

G8

2
D , ~21!

dG9S 12
a8ef2L

g2r
f8D 1

dG8

2
~G82L8!1~dG82dL8!S G8

2
1

1

r D 2eL2GdL̈2
a8ef2L

g2r
H df8 G91~df912f8 df8!G8

1dG8~f91f82!1
df8G8

2
~G823L8!1

f8dG8

2
~G823L8!1

f8G8

2
~dG823dL8!1eL2G ~L8df̈2f8dL̈! J

1f8 df82
a8ef2L

g2r
F f8G91G8 ~f91f82!1

f8G8

2
~G823L8!G ~df2dL!50. ~22!
f

of
n

-
e
et
te
We can integrate Eq.~21! to obtain

dL F11
a8eff8

2g2r
~123e2L!G

5
a8ef

g2r
~12e2L! S df f81df82df

G8

2
D 1

rf8

2
df

1m~r !, ~23!

wherem(r ) is an arbitrary function ofr which can be set
equal to zero if we require thatdL50 when df50. An
independent check of this assertion can be obtained as
lows: first we differentiate Eq.~23! with respect tor and then
ol-

use Eq.~19!, as well as the time-independent equations
motion. Thus, we obtain the following differential equatio
for m(r ):

m8~r !1m~r ! S G8

2
2

L8

2
1

1

r D 50. ~24!

This can be integrated to givem(r );e(L2G)/2/r . When r
→r h , e(L2G)/2→` and m→`, which is incompatible with
the assumption of a smalldL(r ) required for the linear sta
bility analysis. Rejecting this solution, we are left with th
trivial one m50. For calculational convenience we also s
a8/g251, from now on, which is achieved by an appropria
rescaling of the dilaton field.
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Rearranging the above equations, one obtains, after a
dious but straightforward procedure, an equation fordf
which has the following structure:

A df912B df81C df1s2 E df50, ~25!

whereA, B, C, andE are rather complicated functions off,
f8, f9, L, L8, G, G8, and G9. In the limit r→r h these
coefficients take the form

A5

2A12 S 6e2fh

r h
4 D

11A12 S 6e2fh

r h
4 D

1O ~r 2r h!, ~26!

B5

A12 S 6e2fh

r h
4 D

11A12 S 6e2fh

r h
4 D

1

~r 2r h!
1O ~1!, ~27!

C5
2 e2fh

r h
4 F 11A12

6e2fh

r h
4 G

1

~r 2r h!2
1OS 1

r 2r h

D ,

~28!

E5

r h A12
6e2fh

r h
4

g1

1

~r 2r h!2
1OS 1

r 2r h
D , ~29!

where we have used the asymptotic behavior~12! near the
event horizon.

On the other hand, whenr→` we obtain

A511
ef`DM

r 4
1OS 1

r 5D , ~30!

B5
1

r
1

M

r 2
1OS 1

r 5D , ~31!

C5
D2

2r 4
1OS 1

r 5D , ~32!

E511
4M

r
1

4M2

r 2
1

ef`DM

r 4
1OS 1

r 5D , ~33!

where we have used the asymptotic behavior~14! near infin-
ity.

As we can see from Eqs.~26!–~29! the coefficients of the
Schrödinger equation~25! are not finite at the boundaryr
5r h , where the variationdf is bounded. As mentioned pre
viously, to arrive at a well-defined Schro¨dinger problem, one
te-can use the ‘‘tortoise’’ coordinate~16!. Then, the perturbed
equation for the dilaton field takes the form

A
d2df

dr* 2
1F 2B e~G2L!/22

A

2

d~G2L!

dr*
G ddf

dr*

1eG2L~C1s2E! df50 ~34!

or

A
d2df

dr* 2
12B

ddf

dr*
1~C1s2E! df50, ~35!

where

A5A, B5B e~G2L!/22
A

4

d~G2L!

dr*
, ~36!

C5eG2LC, E5eG2LE. ~37!

Note that, near the horizon,

e~G2L!/25Ag1l1 ~r 2r h!1O~r 2r h!2, ~38!

d~G2L!

dr*
52Ag1l11O~r 2r h!, ~39!

wherel1 is given by Eq.~13!. As a result, all the coefficients
in Eq. ~34! are now well behaved near the horizonr h . In
order to eliminate the term proportional todf8, we first di-
vide Eq.~34! by A and then we use the function

F5expS E
2`

r* B
Adr* 8D . ~40!

Then, the equation fordf takes the form

p
*
2 u1F CA1s2

E
A2

B2

A2
2p* S BAD Gu50, ~41!

where

p* [
d

dr*
~42!

and we have setu5Fdf.
It is straightforward to see that

B
A→0 for r→r h and r→`, ~43!

independently ofr h , fh . In addition,

B
A

dr*

dr
5finite for r→r h . ~44!

Moreover, as shown in Fig. 2, the functionB/A is well be-
haved over the entire domain outside the horizon, imply
the integrability of the functionF. Also, the quantityE/A is
finite and alwayspositiveoutside the horizon of the numer
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6260 57P. KANTI et al.
cal black hole solutions of Ref.@1# ~see Fig. 3!. It is also
immediately seen from Eq.~15! that the eigenfunctionu0,
corresponding to the eigenvalues250, can be constructed
out of the difference of any two time-independent solutio
of Eqs.~4!–~8!, i.e., out of the difference of any two curve
in Fig. 1. From themonotonicandnonintersectingnature of
the various members of the family of the numerical solutio
of Fig. 1, then, one can conclude thatu0 hasno nodesin the
domain r * P(2`,`), and that p

*
2 u0 /u0p

*
2 u0 /u0

5eG2L@ 1
2 (G8p

*
2 u0 /u05eG2L@ 1

2 (G82L8)u081u09]/u0 is fi-
nite. This, together with the finite and smooth form ofB/A
~Fig. 2!, implies, on account of Eq.~41!, the finiteness of the
coefficientC/A outside the horizon, without the need for a
explicit numerical computation. Thus, Eq.~41! assumes the
form of an ordinary Schro¨dinger with regular coefficients
over the entire domain ofr * .

If we solve Eq.~41! nearr * 52`, that is, near the hori-
zon, with s250, we find an oscillatory behavior foru0
which means thatu0 remains always bounded near the ho

FIG. 2. The graph depicts the coefficientsB/A andB/A, for a
typical member of the family of the black hole solutions of Fig.
corresponding tofh521, r h51. It is clear that the coefficien
B/A, incorporating the tortoise coordinate, is finite in the ent
domain outside the horizon, thereby implying that the quantityF is
well defined and integrable.

FIG. 3. This diagram depicts the coefficientsE/A andE/A for a
typical member of the family of the black hole solutions depicted
Fig. 1 (fh521, r h51); the coefficientE/A diverges at the hori-
zon as 1/(r 2r h)2. On the other hand,E/A5eG2LE/A, appearing in
Eq. ~40!, is finite at the horizon. The positive definiteness of bo
coefficients is clear.
s

s

zon and it can take on constant finite values. The same e
tion, near r *→`, allows u0 and df to take on constan
values as well. Sinceu0 does not vanish at the boundaries,it
is not a physical perturbationbut a shift of solution. Never-
theless, it still remains an acceptable solution of the p
turbed equations, a mathematical tool, which we can exp
to show that there are no physical perturbations, that is,
solutions withs2,0.

From Eqs.~40! and ~43! one obtains, for the eigenfunc
tion u0 on the boundaries,

p* u0ur* 56`5
B
Au0ur* 56`1Fp* dfur* 56` . ~45!

The df remains bounded atr * 56`. From the asymptotic
behavior~14! it becomes clear that, at ther 5` boundary,
B/A→B/A;1/r , independently offh . Thus, F(r *→`)
5exp@*2`

r (B/A) dr#;r for r→`. Hence, the first term in Eq
~45! becomesdf`1O(1/r ), while the second term vanishe
as 1/r , for r→` @see Eqs.~14!#. Hence, at ther 5` bound-
ary the boundary values ofp* u0 are proportional to those o
u0:

p* u0ur* 5`5
u0

r
U

r* 5` . ~46!

On the other hand, from Eqs.~40! and~44! it becomes clear
that at the boundaryr * 52` ~horizon!, F(r * 52`)51.
Moreover,p* u0ur* 52` is given by

p* u0ur* 52`5~r 2r h!~f~2!82f~1!8!ur 5r h

5S ~r 2r h!
]fh8

]fh

u0D U
r 5r h

, ~47!

since, in our construction, each family of solutions
uniquely characterized@1# by the valuefh for fixed r h @we
remind the reader that here we chose to keepr h51 ~fixed!
and vary fh]. From Eq. ~9! one easily observes that fo

linear variations df[f (2)2f (1), the difference fh
(2)8

2fh
(1)8 is finite. Hence,

p* u0ur* 52`→0. ~48!

We now discuss thes2,0 unstable modesus . It can be
easily seen from Eqs.~30!–~33! that the asymptotic form of
Eq. ~41! at ther * 5` boundary reads

p
*
2 us52s2us . ~49!

Hence, the bound-state solutionus behaves as2

2Here, and in the following, we insist on bounded or—at mos
linearly divergentus , at the boundariesr * 56`. This is due to the
fact that, sinceu5Fdf, and F is independent ofs and at most
linearly divergent atr * 5`, then it is only for such a behavior tha
the variationdf remains bounded, as required by the linear sta
ity analysis. An exponentially divergentus;er at the boundaries,
would imply df;er /F, and, hence, is not acceptable.
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us~r * 5`!5e2usur*→0. ~50!

On the other hand, from Eqs.~26!–~29! it is obvious that, on
the horizon, Eq.~41! assumes the form~for the caser h
51)

p
*
2 us1k2us50, ~51!

k2[
2g1e2fh

~11A126e2fh!A126e2fh
1s25k0

21s2. ~52!

From Eq.~52! one can see two possibilities near the horiz
of the black hole

~i! The ‘‘total energy’’ is such that 0.s2.
2 2g1e2fh/@(11A126e2fh)A126e2fh#. Taking into ac-
count the asymptotic form atr * 5`, Eq. ~49!, one also ob-
serves that in this case the spectrum of the respective Sc¨-
dinger equation iscontinuous and nondegenerate. The
general solution of the perturbationus near the horizonis,
therefore, oscillatory~unbound state!:

us
6;e6 ikr* , r * ;2`. ~53!

Such a continuum of statescannot existin our case by con-
tinuity. Indeed, because of the nondegenerate nature o
eigenvalue problem, the limiting cases→0 should yield the
solutionu0. However, in the limits2→0, and in terms ofr ,
one obtains

u0
6;cosS efh

~126e2fh!1/4
ln~r 2r h!1w0D , ~54!

wherew0 is a constant phase shift, and we have takenu0 to
be the real part of Eq.~53!. Then,

p* u0;2k0 sinS efh

~126e2fh!1/4
ln~r 2r h!1w0D . ~55!

The above result is not in agreement with Eq.~48!, thereby
contradicting the nondegenerate nature of these soluti
which, in turn, implies the absence of such solutions in
problem~41!.

~ii ! This leaves one with the second possibility of adis-
crete spectrumof bound states, which would occur for

s2,2
2g1e2fh

~11A126e2fh!A126e2fh
,0. ~56!

As we shall show below this is alsonot realizeddue to the
special form ofu0.

To this end, one first observes that such bound st
would vanishexponentially at ther * 52` boundary:

us~r * 52`!;euku r*→0. ~57!

Note that Eqs.~50! and ~57! force the eigenfunctionus to
vanish at both boundariesr * 56`. In this way,us not only
remains bounded but is also a physical perturbation@9#.
ro

he

s,
e

es

Thus, on account of Eqs.~46!, ~48!, ~50!, ~57! the Wronskian
of any two solutionsu1 ,u2 of Eq. ~41! with s2<0 vanishes
at the boundaries:

W5~u1p* u22u2p* u1!ur* 56`50. ~58!

To count the unstable gravitational modes of the origi
problem, one needs to count the nodes of the wave func
u of the one-dimensional Schro¨dinger problem~41!. Fortu-
nately, this can be done without detailed knowledge of
solutions. As we shall discuss below, all one needs to
serve is the monotonic and nonintersecting nature of the
laton curves in Fig. 1. To this end, one first observes tha
standard ‘‘node rule’’ for the discrete spectrum of Eq.~41!
applies, which is a direct consequence of Fubini’s theorem
ordinary differential equations@11#. This theorem can be
stated as follows: consider two differential equations

u912p1u81q1u50, ~59!

u912p2u81q2u50. ~60!

If

p281p2
22q2<p181p1

22q1 ~61!

throughout the interval@a,b#, then, betweenany two con-
secutive zeroes of a solution ofEq. ~59!, in the interval
@a,b#, there is at least one zero of a solution ofEq. ~60!.

In our case, we can apply this theorem for two differe
eigenfunctionsu1, u2, corresponding to eigenvaluess1

2 and
s2

2 of Eq. ~41!. The interval@a,b# is the entire domain of
validity of the solutions of Eq.~41! (2`,`), including the
boundaries at infinity. In this case,

pi50, qi5
C
A1s i

2 E
A2

B2

A2
2p* S BAD , i 51,2. ~62!

Then, the~sufficient! condition for a ‘‘node rule’’~61! reads
simply

E
As2

2>
E
As1

2. ~63!

The positivity ofE/A ~Fig. 3! implies that the condition~63!
becomes simply

s2
2>s1

2. ~64!

This special version of the theorem is known as Sturm
theorem@12#. As a corollary of the Fubini-Sturm theorem
one obtains the standard ‘‘node rule’’ for the number of z
ros of the eigenfunctions in the discrete spectrum of bou
states, according to which if the eigenfunctions are ranke
order of increasing energy, then thenth eigenfunction has
n21 nodes ~excluding the boundary zeros! @12# ~‘‘node
rule’’ !.

Consider, now, the case wheres2 corresponds to the zer
eigenvalue of Eq.~41!, s050. As can be seen from th
numerical solution of Fig. 1, themonotonicandnonintersect-
ing character of the dilaton curves in the entire domain o
side the horizon implies that the solutionu25u0, which, as
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we have mentioned earlier, can be constructed out of
difference of two such solutions, hasno nodesin the domain
r * P(2`,`). Since any solutionun from thediscrete setof
negative eigenvaluessn

2,0 ~unstable modes! has at least
two nodes at the boundaries, according to the Fubini-St
theorem,u0 should have at least one in the domainr * P
(2`,`). This contradicts the fact thatu0 is nodeless. Thus
the only consistent situation is the onewithoutsuchnegative
energymodes. This, in turn, implieslinear stability for the
dilaton-GB black holes of Ref.@1#. The reader might worry
about the divergent boundary conditions ofu0 at r * 5`,
which makes itnot an ordinaryeigenfunction of a Schro¨-
dinger problem. In the Appendix we argue that this is not
obstacle. In fact, we present an explicit proof of the abse
of bound states in our case, following the same spirit use
the proof of the Fubini-Sturm theorem. The crucial eleme
which allows the standard proof to go through, is the spe
boundary condition for the Wronskian~58!, which is valid
for the entire spectrum of eigenfunctions of Eq.~41! with
s2<0, including the nonstandard oneu0.

The above considerations can be extended straigh
wardly to the case wherer h→0. All the coefficients of Eq.
~41! are still well defined in this case, which implies that t
stability in principle does not change. However, according
the analysis of Ref.@1#, the caser h→0 corresponds to a
singular scalar curvature

R;
2

r h
2

r h→0 . ~65!

Moreover, from the condition for the existence of black ho
solutions~10!, one observes that the only consistent value
fh for r h→0 is @1# fh→2`. In this limit, the first deriva-
tive of the dilaton field~9! diverges. Both of the above re
sults imply the absence of regular ‘‘particlelike’’ solutions
the EDGB system@1,13#. What we are left with is a stable
‘‘pointlike’’ spacetime singularity.

On the other hand, if we take the limitfh→2` keeping
r h fixed at a nonvanishing value, Eq.~9! givesfh8→0 which
means that the dilaton remains constant. In addition, in
limit, the coupling between the dilaton and the Gauss-Bon
term vanishes. This implies that in such a case the GB t
in the action~1! becomes irrelevant, and one is left with th
standard Einstein term, which admits only Schwarzsch
black holes, known to be stable. This stability is confirm
by the smooth limit of the coefficients in Eq.~41! as efh

→0.

IV. REMARKS AND OUTLOOK

Above we have demonstrated the linear stability of
dilatonic black hole solutions in the EDGB system, found
Ref. @1#. This result is important, since it constitutes an e
ample of a stable, albeit secondary, hair that bypasses
no-hair conjecture@4,8#. Nonlinear stability of the EDGB
system, however, although expected, still remains an o
issue.

Before closing we would like to compare our semianaly
results on linear stability with some remarks in favor of s
bility by virtue of a catastrophe theory approach made
Ref. @6#. As usual@4,14#, catastrophe theory can only ind
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caterelative changesof stability, and hence cannot constitu
a ‘‘proof’’ of stability. In Ref. @6# a numerical solution was
found for the (1) branch of solutions~9! which indicated
the existence of a ‘‘turning point’’~TP! in the r h-M ~or
equivalentlyfh-M ) graph. The TP occurs at the ‘‘critica
point’’ for the existence of black hole solutions, which is th
point where the black hole acquires a minimal mass, be
which no solution is found. In the numerical solution of Re
@6# a continuation beyond this critical point emerged, whi
ends at a point~‘‘singular point’’! where a singularity ap-
pears in the square of the Riemann tensor, as well as infh9 .

The part of the solution from the critical point to the si
gular point was argued in Ref.@6# to be relatively unstable,
as compared to the regular branch discussed here. Su
change in stability manifests itself as a cusp in an appropr
catastrophe theory diagram@4,14#. In Ref.@6# such a diagram
has been chosen to be the diagram of the thermodyna
entropy@15# versus the mass of the black hole.

In our numerical solutions@1#, used here, we found no
evidence for such a TP. Our black hole solutions a
uniquely specified by the pair (r h ,fh), which was essentia
in our linear stability analysis above. In this respect we are
agreement with the results of Ref.@5#, where a branching of
solutions was found onlyinside the event horizon. These
authors have also given a graph of the entropy versus
mass of the black hole solution of Ref.@1# outside the hori-
zon, and found, as expected, a smooth curve, with no cu
In this article we have provedanalytically the stability under
linear perturbations of this~unique! branch of the black hole
solutions, which in ther h-M graphs of Figs. 4 and 5 appea
to terminate at the minimum-mass critical point.

However, the apparent discrepancy between our res
and that of Ref.@6#, concerning the existence of a TP,
easily resolved if we notice that the corresponding graph
Ref. @6# was drawn with a different scaling, that is, for
fixed value off`50. Using the aforementioned invarianc
of the equations of motion, we reconstructed ther h-2M
graph, keeping fixed, this time, the value off`50. Then, a
cusp point and a continuation of our solutions beyond
critical point indeed emerged in accordance with Ref.@6#.
Since we both study the same mode of the black hole s
tions, that is, the radial mode, we reach the conclusion
the two different methods used by us and the authors of R

FIG. 4. The graph depictsr h versus the ADM mass 2M of the
black hole, for a fixed value offh521. The emergence of the
asymptotic critical point,r h

4.6a82 e2fh/g4, below which there are
no solutions, is apparent. At this point the mass becomes minim
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@6# are equivalent and possibly complementary. However
both cases one cannot draw any conclusions about thenon-
linear stability of the black hole solutions, which therefo
remains an open issue.

As a final remark we would like to mention that the e
fects of gauge fields on the dilatonic black hole GB solutio
have been considered in Refs.@6# and@7#. From the point of
view of stability, one expects that, in the case of ‘‘colored
black holes, involving non-Abelian gauge fields,instabilities
occur in both the gauge and gravitational sectors of the
lutions. Instabilities in the gauge sector are of sphaleron t
@4#. Those in the gravitational sector can be studied in
similar way as for colored black holes in Einstein-Yan
Mills theories@4#. One can go beyond linear stability anal
sis in such systems, by invoking catastrophe theory@4,14#,
which is capable of giving the relative stability of variou
branches of solutions for the colored EDGB black ho
@6,7#. However, analytic methods can still be combined w
the catastrophe theory approach@4# in order to count the
unstable modesin both sectors, gauge and gravitational,
invoking appropriate maps of the system of perturbatio
into one-dimensional stationary Schro¨dinger problems
@4,10#. We hope to return to a detailed analytic study of the
issues in a future publication.
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APPENDIX: ABSENCE OF BOUND STATES

In this appendix we prove the absence of bound state
the problem~41! by following a Wronskian treatment for th

FIG. 5. The magnification around the critical point, depicted
the above figure, shows clearly the absence of a turning point.
.
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entire set of eigenmodes withs2<0. This justifies the valid-
ity of the Fubini-Sturm theorem in our case. We stress t
the crucial point in the proof is the special boundary con
tions of the Wronskian~58!. These allow a standard Wronsk
ian treatment to go through for theu0 solution of Eq.~41!,
despite its~linear! divergence at ther * 5` boundary, which
makes it not an ordinary eigenfunction of a Schro¨dinger
problem.

To this end, we consider first the two solutions of E
~41!, u0, andub—the ground state, at the bottom of the di
crete spectrum. Both of these haveno nodesin the interior
domain ofr * , excluding the boundaries~the node structure
of ub follows from the ‘‘node rule’’!. We then employ prop-
erties of the Wronskian of the solutions as follows: first w
multiply each equation by the other eigenfunction. Next,
subtract the resulting system of equations, and then integ
it over the entire domain ofr * P(2`,`). In this way one
obtains, in a standard fashion@12#,

DWur* 56`5~sb
22s0

2!E
2`

`

dr*
E
Aubu0 , ~A1!

where the left-hand side denotes the change in the Wro
ian between the two boundaries. From Eq.~58! this vanishes.
Moreover, as we have mentioned previously,E/A is positive
definitefor the entire domain ofr * P(2`,`) ~Fig. 3!. Since
ub andu0 haveno nodesin the domain (2`,`), excluding
the boundaries, one obtains from Eq.~A1! that theonly con-
sistentcase is the degenerate onesb

25s0
2 . But s0

250, while
sb

2,0 by assumption; this implies a contradiction, excludi
sb from the spectrum.

One repeats the construction, usingu0 and any of the
higher eigenfunctions of the discrete spectrum,un , corre-
sponding tosn

2,0. The change in the Wronskian betwee
2` and the first encountered zero ofun , at r * 5z0, is then
given by

DWu
r* 52`

z0 52u0p* unuz0
5~sn

22s0
2!E

2`

z0
dr*
E
Aunu0 .

~A2!

Without loss of generality, one may assume thatun.0 in the
interval (2`,z0). Thenp* un(z0),0. It is immediate to see
that there is a contradiction in Eq.~A2!. The middle part has
the sign ofu0, while the right-hand side has the opposite si
of u0. The case of a zero ofun , at a pointz0, such that
p* u(z0)50, is dealt with similarly. In that case the contr
diction lies in the fact that the left-hand side vanishes, wh
the right-hand side is a negative number~for un.0 in the
interval!. These results exclude the possibility of bound-st
eigenfunctions with zeros in (2`,`).

The above analysis, therefore, implies theabsence of
negative energy modes~bound states! in the problem~41!,
which, in turn, leads tolinear stability for the Dilaton-Gauss-
Bonnet black holes of Ref.@1#
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