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We study static, spherically symmetric, and purely magnetic solutions dfithé gauged supergravity in
four dimensions. A systematic analysis of the supersymmetry conditions reveals solutions which preserve 1/4
of the supersymmetries and are characterized by a BPS-monopole-type gauge field and a globally hyperbolic,
everywhere regular geometry. We show that the theory in which these solutions arise can be obtained via
compactification of ten-dimensional supergravity on the group manifold. This result is then used to lift the
solutions to ten dimensiongS0556-282(198)06410-9

PACS numbgs): 04.65+e, 04.62+v, 11.25-w, 11.30.Pb

[. INTRODUCTION tions of a supergravity model with non-Abelian vector fields
were directly attacked. It was shown lafé&] that, for one
In the past few years there has been considerable interespecial value of the dilaton coupling constant, the solutions
in supersymmetric solitons originating from effective field obtained exactly correspond to the reduction of the five-
theories of superstrings and heterotic strigse[1] for re-  brane-type solution described [i8].
view). These solutions play an important role in the study of Another way to construct non-Abelian solutions is to em-
the non-perturbative sector of string theory and in underbed the gravitational connection into the gauge group[ gge
standing string dualities. A characteristic feature of such soand references therein. In this approach one starts from a
lutions is that supersymmetry is only partially broken, andsolution of leading order string theory, which is sometimes
associated with each of the unbroken supersymmetries the@dtained by uplifting a four-dimensional Abelian solution.
is a Killing spinor fulfilling a set of linear differential con- Its spin-connections are then identified with the gauge field
straints. The corresponding integrability conditions can bepotential. As a result one obtains a solution of the theory
formulated as a set of non-linear Bogomol'nyi equations forwith string corrections, which sometimes can be exact in all
the solitonic background, which can often be solved analyti-orders of string expansion.
cally. No other non-Abelian supergravity solitons are known
The analysis of the supersymmetry conditions has provethan those obtained by applying the described two methods.
to be an efficient way of studying the non-perturbative dy-All known solutions are thus either essentially Abelian, or
namics. So far, however, the investigations have mainly beefiat-space non-Abelian. In this sense, they can be regarded as
restricted to the Abelian theory and little is known about thetoo special, since none of them really reflect the interplay
structure of the non-Abelian sector, which presumably is dudetween gravity and the non-Abelian gauge field. At the
to the complexity of the problem. At the same time, thesame time, the famous example of {m@n-supersymmetrjc
gauge group arising in the context of string theory is fairly Bartnik-McKinnon particleg8] shows that such an interplay
general. It includes the (@) group as a subgroup, but other- can result in an unusually rich variety of properties of the
wise it is clear that the restriction to the Abelian sector trun-solutions.
cates most of the degrees of freedom. Motivated by the arguments above, we study solitons in a
In view of this it seems reasonable to focus on studyingour-dimensional supergravity model with non-Abelian
supergravity solitons with non-Abelian gauge fields. It turnsYang-Mills multiplets. The model we consider is the=4
out that all known solutions of this type can be classifiedgauged S(R)X SU(2) supergravity[9], which can be re-
according to two different methods applied to obtain themgarded asN=1, D=10 supergravity compactified on the
The first of these methods is employed in the heterotic fivegroup manifoldS®x S°. Note that all previously known non-
brane constructiorf2]. Specifically, the geometry of the Abelian supergravity solitons have the Yang-Mills field al-
four-dimensional space transverse to the brane is supposedready in ten dimensions, and their compactification gives the
be conformally flat. This allows one to choose for the Yang-different matter content ilD=4. Our choice of the model
Mills field living in this space any known solution of the therefore ensures that we do not reproduce any known solu-
self-duality equations in flat Euclidean space. Choosing altions. Note also that the non-gauged version of the same
possible self-dual configurations, one can obtain in this waynodel, corresponding to the toroidal compactification of ten-
a large variety of different five-bran¢8,4]. The ten dimen- dimensional supergravity, has been extensively studied in the
sional solutions then further modify upon reducing to fourpast[10,11. The Abelian solutions in the gauged version of
dimensions, displaying, nevertheless, a number of commothe model have been studied[ib2].
features due to the common origin. In this connection it is In order to obtain the solutions we carry out the compo-
also worth mentioning the work in Ref5], where the equa- nent analysis of the supersymmetry constraints, which gives

0556-2821/98/5(1.0)/624213)/$15.00 57 6242 © 1998 The American Physical Society



57 NON-ABELIAN SOLITONS IN N=4 GAUGHED . .. 6243

us a set of the first integrals for the field equations. Welpluz lﬂly, (1=1,...4),vector and pseudovector non-Abelian
fiold_ configurations ‘choosing for the. gauge group. aiheP2u98 fidldsA) * and AL * with independen gauge cou-
SU2xSU2) or SU2X[U(L)P. It turns out that in the 3,9, 000 PoPeCitlh G Aene o
first case there are no supersymmetric solutions. The seco%(é ni Xrt Xf,th tion read '

choice, however, leads to the obtaining of the variety of non- osonic part ot the action reads
trivial solutions with 1/4 of supersymmetries preserved, all 1 1 1
of which can be described anqunca[l:j@]. Among them we S= f SR 9,0 bt S e*“‘/’aﬂa Ja
discover a one-parameter family of globally regular solutions 4 2 2

with quite unusual properties. First, the solutions are charac- )
terized by a regular-Bogomol'nyi-Prasad-Sommerfield- 1 26 'S F(9) ap(s) aur
(BPS-monopole-type gauge field with non-vanishing mag- 4 € &

netic charge. This is very surprising, since a Higgs field is

not present in the problem, in which case it would be rea- 2 9>

sonable to expect the regular solutions to be neutral. Sec- 5 a;::l o) axF( anyy 3 € 24| =g d*x.
ondly, the geometry of the solutions turns out to be globally

hyperbolic. This is also quite remarkable, because the stan- (2.1
dard gauge supergravity ground states usually lack of global

hyperbolicity. Here g?=g7+g3, the gauge field tensoF()2=g,AlY

Having obtained the solutions we lift them to ten dimen-—a,A® 2+ g &, ALY PAL © (there is no summation over
sions. For this we first show how to obtain tNe=4 gauged s=1,2), and*FEf,),a is the dual tensor. The dilaton potential
supergravity via compactification of thé=1, D=10 super- can be viewed as an effective negative, position-dependent
gravity on the group manifold, which is eith@xS® or  cosmological term\($)=—1 g2 e 2%. The ungauged ver-
S®X T3, It turns out that the corresponding procedure has nosion of the theory corresponds to the case whgreg,
been described in the literature. Applying to the four dimen-=0.
sional solutions the procedure inverse to the dimensional re- For a purely bosonic configuration, the supersymmetry
duction, we thus obtain the solutions of the leading ordetransformation laws arg9]
equations of motion of the string effective action in ten di-

mensions. i
1 — _
The rest of the paper is organized as follows. In Sec. Il we 5x= E €(—d,pt+iyse 2?5,y — Ee“’ € Fpp o’
describe the action and supersymmetry transformations of
the N=4 gauged supergravity, derive the field equations and 1 .
present their first integrals following from the dilatational +7 e ?e(g1+iys gy,

symmetry. Our procedure to handle the supersymmetry con-
straints, that is, the equations for the Killing spinors, is de-

scribed in Sec. lll. The supersymmetry conditions, which are — o 24 i 6= ,
the consistency conditions for the supersymmetry con-9¥,=¢€|D,=5€ " days|- ﬁ e” € Fuy vp 0"
straints, are derived in Sec. IV in the form of the first order

Bogomol'nyi equations for the bosonic background. This i .

section contains also the solutions for the Killing spinors. +——e % e (g1+iys0,) Yo (2.2

Solutions of the Bogomol’'nyi equations are presented in Sec. 42

V. Section VI describes the compactification Nf=1, D o o )
— 10 supergravity on the group manifold. The results ob-Whereas the variations of the bosonic fields vanish. Here

tained in that section then used to lift the four-dimensional

2
solutions to ten dimensions. The lifted solutions and some of —< - 1, 1
= _ = B _ (s)a
their properties are described in Sec. VII. The last section er—;( Ip ) Oap™ 2 521 9s Tisahy '
contains concluding remarks.
Our notation is as follows: Greek, Latin, and capital Latin _ Ma, : (2)a

S = ; Fo=T FUOUO8%iysT F . 2.3

letters stand for the four-dimensional, internal six- pr=Maur TIYs12)a Tuy 23

d_|menS|onaI, and general ten-dimensional indices, resPeqy these formulase= ¢' are four Majorana spinor supersym-
tively. The early letters refer to the tangent space whereas the aB . .
try parameters, is the spin-connection,o g

late ones denote the base space indices. The six-dimensiongh P
space, whose indices are a,b,c, ... amd,p, ... , splits il 7a7p], andT g a=T(5) a1y are the SW)X SU(2) gauge

further into two three-dimensional spaces. The three9"OUP generators, whose explicit form Wi!l t.)e given below_.
dimensional indices ar@,b,c, which stand also for the Throughout this paper we shall specialize to the static,

group indices, and,j k. The spacetime metric is denoted by purely magnetic fields. In this case the axion decouples and

: one can consistently pit=0. Choosing the metric in the
g, whereagy stands for the gauge coupling constant form

Il. THE MODEL .
ds?=e?Vdt?—e ?Vh;, dx'dx¥, (2.9
The action of theN=4 gauged S(2)x SU(2) supergrav-
ity includes a vierbeine;;, four Majorana spin-3/2 fields the action becomes
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s faf -4

——avav —&¢J¢
_1 @2p+2v E F(S) ap(s) aik
4 “ ik
g’ —2¢-2V 3
+ge vh dx. (2.5)
This admits a global symmetry
V—oV+e, o¢—d—e (2.9

As a consequence, there exists a conserved Noether current
0'=h(d'V—4d'¢). The corresponding conservation law is

V.Viiv-¢)=0, 2.7

whereV, is the covariant derivative with respecthg . As a
result, the following condition

V=¢-¢o

with constantg, can be imposed.

(2.9

Let us now further specialize to the case of spherical sym-
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which is the analog of that in Eq2.6). The corresponding
Noether current is

—rL= const,
e=1

(2.13

whereL =L(r,u; ,uj’) is the Lagrangian density correspond-
ing to the action(2.10.
The field equations following from the action read

(rN)’ +12Ngp' 2+ NW+ U +r?A () =1,
o'lo=r¢'?+Wir,

(oNr?2¢") = {NW+U—-r2A(¢)},

(Noe?? w))' = ge?® wy(w2—1)/r2. (2.14
Now, there are two first integrals for these equations which
provide the solution for the metric variabldsand o First,

the condition(2.8) ensures that

metry. For this we choose the spacetime metric and the

gauge fields as

2

ds2=No2dt2— — —r2(d6?+ sir? 6 de?),

Tigah s)adx'“—_(Ws{ T2 d0+T (515N 6 do}

+T(S) 3 cosy qu), (29)
where there is no summation over We assume that the
functionsN, o, wg and the dilaton¢ depend only on the
radial coordinate e[0,). Substituting Egs(2.9) into Eq.
(2.1) and omitting the surface term, the action becomes

S—4fdxd rlNU,rZN’Z
=—4T tor(fz(—);'f'?(ﬁ
2
—(NW+U)— re—2¢], (2.10
where
2 WrZ
W=W,; +W,=2e2¢>, —,
s=1 s
2 2 2
(wg—1)
U=U +Up=e> —— (2.11)
s=1 Qggr
This action admits a symmetry
r—er, o= 0, ¢—d+ Ine, wg—wg, N—N,
(2.12

a’N=e?(= %0 (2.19
In addition, putting= =0 in Eq. (2.13 yields
1-U+g?r2e 294
N= . (2.1
1+2r¢' —r?¢p'>~W

These two first integrals arise as a result of the dilatational
symmetry of the action. They provide the most general solu-
tions for the metric variables in the case where the metric is
regular at the origin. In addition, as we shall see, these con-
ditions are precisely what is required by supersymmetry. One
may wonder why the same symmetry, being expressed in the
two different forms(2.6) and(2.12), leads to the two appar-
ently different expression®.15 and(2.16). It turns out that,
although Egs(2.15 and(2.16) are indeed independent, they
are equivalent up to an equation of motion. Specifically, Eq.
(2.16 can be obtained by inserting E@2.15 into the
G;=2T, Einstein equation.

Our goal is to solve the remaining equations in the system
(2.14). For this we are turning now to the analysis of the
supersymmetry constraints, which will give us the additional
first integrals.

[ll. SUPERSYMMETRY CONSTRAINTS

The field configuration(2.9) is supersymmetric provided
that there are non-trivial supersymmetry Killing spinerfor
which the variations of the fermion fields defined by Egs.
(2.2) vanish. Putting in Eqs2.2) 6x= dy,=0, we arrive at
the supersymmetry constraints given in the form of a system
of equations for the spinor supersymmetry parameter

2\2 e’ € y* 9,—2i €2 € F,, c""+ e (ig1— v 02)
=0, (3.1
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42 e® €D, ~2i €% € F,, v, o""+ € (ig1— 7592) 7, 0 —o? 0 —dt
Twiml 2 o | Tw=l g o |
=0. (3.2
—io® 0 0 ic®

Here D, and F,, are defined by Eqs2.3 and the back- Tays= 0 —ig3’ T@2)1= icd 0/
ground fields are specified by Eg®.9). This system con-
sists of 80 linear equations for the 16 independent real com- 0o -1 —ig® 0
ponents ofe. At most, in the maximally supersymmetric T2 2= v T2a= . 3.

. . . 1 0 0 o
case, there could be 16 independent non-trivial solutions. It 3.5

is clear, however, that generically the system has no non-
trivial solutions at all. To find out under what conditions the Note that this representation of the group generators differs

non-trivial solutions are possible, our strategy is to analyzérom that in[9] by a unitary transformation.

the equations in components.
First, we choose the vierbe#)" to be a “half-null” com-
plex tetrad:

1 9 d

eo:ma—, e1=JNE,
19 N i 9 .
ez_\/ir 99 " sind ap)’ B2

(3.3

The non-zero components of the tetrad metrig,z
=(e,,€p) are mog=— 111=— 723=1. The dual tetrace”
determines the spin-connection coefficiem%ﬂzwp“"dxp
via the structure equatioi,e®+ w“ﬁ/\eﬂzo.

The gamma matrices®y?+ y£y*=25%# are chosen to
be

(3.9

where y°=ys=—(i/4!1) V-7 Eapys Y YPYYY? With £g123
=—1 (note that—y=i since detf,z)=1); and the
charge conjugation matrixCy*C~1=—(y*)T". The Pauli
matrices are

N e

ando*=ol*io?.

The SU2)XSU(2) group generatord () 5, which are
subject to the conditiongT 1y 4, T(2)pb]=0 andT ) 3 T(s) b
= — €apcl (s) c— Oap» are chosen to be

The Majorana condition foe requires that its Dirac con-
jugate is equal to the Majorana conjuggid]:
()*Ty0=0';(&)TC. (3.6)
Here Q'J is defined by the requirement that the condition
(3.6 is invariant with respect to the gauge transformations,
which demands that

QTgat(Tga) Q=0 QQ*=1 3.7
The solution of these equations, in the representd8ds), is
given by
O ol 0
=l o ot (3.8

As a result, denoting the components?ﬁfby 1//'q, the Ma-
jorana condition can be expressed as a set of the following
relations betweenyy,’s:

Vi=— (W%, =Rt WA=, Y= — ()Y,
W= =Y =AY, A=), =~ ()"
(3.9

Now we can proceed to solving Eq8.1) and(3.2). First,
we choosee to be time independent. At this stage one can
obtain the first supersymmetry condition. Specifically, let us
multiply the p=0 equation in(3.2) by y° from the right and
subtract the result from Eq$3.1). Using the fact that the
electric part of7,, vanishes, and also that® commutes
with o'¥, the result is
€y"d,¢p—2€eDgyy°=0. (3.10
Computing eDo=—(1/2) € wg” o,z this condition is
equivalent to

eyl(In(6®Ne 2%))’ =0, (3.1
which finally requires that
a?N=e ¢~ %0, (3.12

thus reproducing Eq(2.195. As a result, we can omit Eq.
(3.1) and concentrate on the four gravitino supersymmetry
constrainty3.2).

Our procedure is straightforward: by inserting the above
definitions into Eqs(3.2) and projecting the equations onto
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the tetrad, we work out the result in componefvt® do not
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gs's vanish, which corresponds to the full 8)Xx SU(2)

present here the expressions explicitly in view of their com-gauge symmetry(2) Either g, or g, vanishes—the gauge
plexity). The next step is to separate the angular variablessymmetry is truncated to S2)x[U(1)]3. (3) g;=g,=0—

and for this we take advantage of the special properties of ththe gauge group iBU(1)]°. It turns out that in the first case
spinor representation chosen. Specifically, it turns out thathere are no solutions to the supersymmetry constraints
the spherical variables enter the resulting equations only iapart from the trivial ong If both coupling constants van-
such a way that they form certain differential operators. Thesh, the non-trivial Killing spinors exist and the underlying
structure of these operators coincides with the one for thgupersymmetric backgrounds are the well-known Abelian di-
raising and lowering operators in the well-known recurrencdaton black holed10,11. Our main thrust will be on the

relations for the spin-weighted spherical harmonigg;,
[15]:

g _ i d .

99 " sin o do Kco

=+ V§E0(FAFD) o1Vjm. (313

This suggests choosing the spinor componeﬂﬁtin the fol-
lowing form:

KY] m

(3.19

The spin weights of the amplitudes= Klq, are determined
by the direct inspection of the equations:

l/j:q (r,’ﬁ,@):qu(r) KY]m(ﬁIgD)

1-vi—v
1_1_ 2_ 2_ 1 72
Kl—Kg__Kz__K4_T,
1_ 1 2 2__1+V1+V2
3 3 a4 4_1—V1+V2
Kl_K3__K2__K4_T’
3_ 3. 4_ 4__1+V1_V2

(3.19

Herev =1 if g;#0 andv,=0 otherwise.

The quantum numbsgr, which is the same for all ampli-
tudes, has the meaning of the total angular momentum in-
cluding orbital angular momentum, spin and isospin. Its val-

ues are restricted by the conditiof=|«|, since ,Yjn
vanishes otherwise. We fix the value joby requiring that

j= min |k, (3.19

second case, where the gauge symmetry is truncated to
SU2)X[U(1)]°.

IV. THE SUPERSYMMETRY CONSISTENCY
CONDITIONS

If one of the coupling constants is zero, we assume that
the corresponding Abelian gauge field vanishes too. At the
same time, the other coupling constant can be set to unity via
the appropriate rescaling of the fields in the action. As a
result, one has eithg;;=1,9,=0 org;=0,9,=1. It turns
out that in both of these cases there is the same number of
non-trivial solutions of the supersymmetry constraints. The
corresponding consistency conditions are identical up to the
replacementv, < w,. We shall therefore consider explicitly
only the case wherg,=0, g,=1, since the equations con-
tain then only real coefficients.

Putting A" 2=0, the field equations are obtained from
Egs.(2.14—(2.16 by omitting the termdV,; andU;, in Eq.
(2.11). The gauge field\?’ % is given by Eq(2.9), wherew,
will be denoted byw. Equations(3.15 imply that mir1;<11|
=0, and so we put in3.14 j=0. Note that this can be
regarded as a manifestation of the spin-isospin coupling:
since both spin and isospin are half-integer, the total angular
momentum is integer and hence its lowest value is zero. For
j=0 all spin-weighted harmonics witk>0 vanish, while
oYoo=const. As a result, the non-vanishing spinor compo-
nents are

€1=(R(r),0R3(r),0, €°=(OR3(r),0R}(r)), (4.1
and
€2=(0R%(r),0R%(r)), €*=(R¥r),0R%(r),0. (4.2

Among these components those in E41) can be chosen to
be independent, whereas
R3=(Ry)*, Ri=—(Rp*,

Ri=—(R)*, Ri=(R)*,

4.3

whereK'q’s are given by Eq(3.195. This can be regarded as
a consistent truncation of the system, since all amplitudes ) ) ) )
with | x| exceeding the minimal value vanish. The values of,V'€W OI the Majorana conjugatiof8.9). The equations for
the azimuthal quantum number are restricted by the con- Rgq @1dRg also can be obtained from those R} andRy by
dition —j<m<=j. Sincem does not enter the equations, its 2PPIying the conjugation ruled.3). We shall therefsore con-
entire effect is to increase the degeneracy of the solutions.centrate only on the independent variabigsand Ry .

At this stage, the complete separation of the angular vari- Making the linear combinations

ables is achieved in the equations. The supersymmetry con- 1 _pl, ol 2 53, o3
i ; - ; . =R+ =R;+
straints reduce to a set of algebraic and ordinary differential VI=RitRs, WI=ReTRY,
equations for the radial amplitud&s(r). Note that the spin P3= Ri— Ré Ph= Rg_ Ri (4.4)

weights in Eq.(3.195 and, correspondingly, the structure of

the resulting equations essentially depend on whether sonthe supersymmetry constraints can be represented as follows:
of the coupling constantg, vanish or not. As a result, there The temporal componenp&0) of Egs.(3.2) gives the re-
arise three basically different cases to considd) None of lations
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ATPl4CP2=0, CPl-A"T2=0,

A V3-CV¥4=0, CV3+At¥4=0, (4.5

whereas the angular components of the equatiops (

=4, ¢) together require that
b-¥l-wg ¥2=0, —wB ¥i+pb"W¥2=0,

b™W3-—wp ¥4=0, —wB ¥3+b ¥4=0. (4.6
Finally, the radial component yields
y (¥’ +(B+1)¥P1-C¥2=0,
y (¥?)'—(B+1)¥?+CW¥l=0,
y (3" —(B+1)¥3+CW¥4=0,
y (¥4 +(B+1)¥*—Ccw¥i3=0. 4.7

The coefficients in these equations are given by

2 4
B=— e??(w?-1), C= - e?Nw',

r

y=4x/m e?,

4

= — (b
B=1 €%
A*=22N e?¢’'+(B+1),

b*=8JN=2(B—1).

The algebraic equationg@.5 and (4.6) have non-trivial
solutions if only the corresponding determinants vanish:

4.9

ATAT+C?=0, b*b —w?B?=0, (4.9
under which conditions the solutions are
A~ A~
17" p2 4_"" \p3
V= W W= (4.10
for Egs.(4.5), and
w w
qflz—fg w2, \If“zb—f; w3, (4.11)

for Egs. (4.6), respectively. It is clear that these solutions

agree if only

A"b =wg C. (4.12
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and a pair of differential equations fdr? and 3
y(¥?)'+(A"—B-1)¥?=0,
y(¥3) +(A~—B—1)¥3=0. (4.19

Remarkably, it can be verified that the condition in Eq.
(4.13 is a differential consequence of the algebraic condi-
tions(4.9) and(4.12. The latter therefore provide the full set
of the consistency conditions, under which the solution of
the supersymmetry constraints is given by Eq10 [or Eq.
(4.11)] and Eq.(4.14).

Taking into account the definitions in E¢.8), the con-
sistency conditiong4.9) and (4.12 can be explicitly ex-
pressed as follows:

r2 w2—1)\?
N=1+ e 2% 1+2e?? , (4.19
8 r2
r2 (w?—1)?
I A 2¢ _ 4o _
ro 8Ne 1-4e " , (4.16
r2 w?—1
rw’'=-—2w-—e 2¢| 1+2e?¢ . (41
8N
Together with
No2=e?¢~ %0 (4.19

these equations provide the full set of the consistency condi-
tions under which the supersymmetry constraints have non-
trivial solutions. It can be verified that these conditions are
compatible with the field equation®.14. One can check
with the help of Eqs(4.16) and(4.17) that the expression for
N given by Eq.(4.15 is equivalent to that in Eq2.16).

The supersymmetry Killing spinors are given by Egs.
(4.1)—-(4.3) with

Ri=¢,Fi1+e,F,, Ri=g,Fi—e,F,,

Rg=81F2+82F1, Ri:b‘le_SzFl, (4.19
where
¢ [(rIN—-1
Fo=exp —5— | ——=dry,
2 JoryN
Fi= 2 e(N- JN-T)- = (4.20
1= 2| :

andeq, &, are two complex integration constants. One can

We thus arrive at the three consistency conditions given bgee that there are altogether four independent Killing spinors.

Egs. (4.9 and(4.12), under which the solution of the alge-

braic equationg4.5) and (4.6) is expressed by Eq$4.10

and (4.1)) in terms of two independent functionk? and
P23, Next, inserting this solution into Eq4.7) gives an ad-
ditional consistency condition

—\ 7

yC(?) +2(B+1)A"—A"2-C?=0, (4.13

The same supersymmetry conditions arise in the case
Wheregz=A£L2) 4=0, WhereasAELl) 8#0, g,=1. Then there
are also four independent Killing spinors. We therefore con-
clude that the Bogomol'nyi equatiori¢.15—(4.18 specify
the N=1 supersymmetric BPS states in tNe=4 gauged
supergravity with the gauge group 8JXx[U(1)]3.

Let us describe briefly what happens in the two other
cases, where the gauge symmetry is either Abelian or totally
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non-Abelian. Ifg;=g,=0, we make the gauge fields in Eq. r2_2a2¢
(2.9 Abelian by settingv;=w,=0: rg'=——, (5.
r2+2e2¢
Tisa AP 2dx#=T 3 cod do, 4.2
()2 (53 ¢ (423 whose general solution is given by
which corresponds to the Dirac monopole type fields. The ror2
supersymmetry constraints split then into four independent d+In—=—e 2% (5.2
groups, one group for each of the four spinars The ro 4

spinorse® and €3 can be chosen to be independasitand e*
being their Majorana conjugates. The separation of the ang
lar variables is achieved by choosing

with constantry. The corresponding metric turns out to be
Lé‘mgular both at the origin and at infinity.

Suppose now thaw/(r) is not a constant. Introducing the
— ) new variablesx=w? and R?=3r?%e 2%, Egs.(4.15-(4.17)
e =[Ru(r)_12Ywzm, R -12Ywzm, become equivalent to one differential equation

1 1 dR
R3(r)1/2Y(1/2)m1 R4(r)1/2Y(1/2) m]v (422 2%R (R2+X_1) &‘F(X"‘ 1) R2+(X_1)2:O. (53)
and similarly fore 3. It turns out then that if one of the two _ ) )
gauge fields in Eq(4.21) vanishes, no matter which, the If R(x) is known, the radial dgpendence of the functions,
supersymmetry constraints admit two independent solution$(r) and R(r), can be determined fron¥.16 or (4.17).
for the radial amplitude®?, and similarly forR®, provided Equation(5.3) is solved by the following substitution:

that the following consistency conditions hold:
— 12 (p) 2 _ 2207 02 qé(p)
x=p? e, R*= efPW—1, (5.4
o20 P P dp P (5.4
No?=e?®~ %0, 2Nr?¢'2=—-/ N(1+r¢')?=1.
r where&(p) is a solution of

(4.23
d2§(p) 2 eélp)

In addition, the fact that the azimuthal quantum nuntben

Eq. (4.22 assumes two valuesy= = 1/2, doubles the num- dp?

ber of solutions, which finally corresponds to eight super-

symmetries. The solutions to Eq$4.23 describe well- The most generalup to reparametrizationsolution of this

known magnetic dilaton black holg&0], the fact that they —equation which ensures th& >0 is &(p)=—2In sinhf

haveN=2 supersymmetry was established iri]. —po). This gives us the general solution of Eqd.15—
Finally, in the totally non-Abelian case the supersymme-(4.18. The metric is non-singular at the origin if onjy,

try constraints are given by the most general expressions 0, in which case

described above. Similarly to the Abelian case, the minimal

(5.5

value of the angular momentum required by the condition 5 p?
(3.16 is 1/2. This is due to the presence of the two indepen- R*(p)=2pcothp— — e 1. (5.6
dent isospins, which ensures that the total angular momen- sinfr p

tum is half-integer. However, the equations in this case do " 5 4 2
not allow for any non-trivial solutions. One hasR*(p)=p°+0O(p") as p—0, and R*(p)=2p

Summarizing, the gauged $2)x SU(2) N=4 supergrav- +0(1) asp—x. The_: last step is to obtain(s) from Eq.
ity admits no supersymmetric solutions at all—in the static,(4-17, which finally gives us a family of completely regular
spherically symmetric, 3purely magnetic sector. The “half- Solutions of the Bogomol'nyi equations:

auged” SU2)x[U(1)]° model has solutions witiN=1 .
gupgrsymmetry Ehagt )\]Nill be presented below. The non- ds*=2e?? {dt*~dp®—R*(p)(d9*+ sin® 9d¢?)},
gauged theory admits solutions witth=2 supersymmetry 5.7
described i 10,11]. .

52 sinh p

—x P e
sinhp’ 2R(p)’

(5.9

V. SOLUTIONS OF THE BOGOMOL'NYI EQUATIONS

In order to find the general solution of the Bogomol'nyi where Osp<~, and we have chosen in E§4.18 2¢,
equationg4.15—(4.18 we start from the case whevg(r) is = —In2. The appearance of the free paramatén the solu-
constant. The only possibilities ave(r)=*+1 orw(r)=0. tions reflects the scaling symmetry of Eq4.15—(4.18):

For w(r)= =1 the Yang-Mills field is a pure gauge. r—ar, ¢— ¢+Ina. The geometry described by the line el-
Equation (4.17 requires then that exp(2¢)=0, which  ement(5.7) is everywhere regular, the coordinates covering
means thaip(r) = ¢,— o, implying that the metric is flat. ~ the whole space whose topology i¢.Rt is instructive to

The w(r)=0 choice corresponds to the Dirac monopoleexpress the solutions in Schwarzschild coordinates, where
gauge field. The only non-trivial equation, E@.16), then  the metric functiondN(r) ando(r) are given parametrically
reads by
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case, each geodesic has its own period of oscillations, such
that the geodesics from a poiptnever refocus again.

The shape of the amplitude(p) in Eq. (5.8 corresponds
to the gauge field of the regular magnetic monopole with unit
magnetic charge. In fact, assuming for a moment phiatthe
standard radial coordinate, the amplitude exactly coincides
with that for the flat space BPS solution. This result is quite
surprising, since the model has no Higgs field, in which case
it would be natural to expect the existence of only neutral
solutions[8]. A manifestation of this is the fact that, without
a Higgs field, the magnetic charge has no gauge invariant
meaning and can only be defined for a certain class of
gauges. In addition, since all fields in the problem are mass-
less, it is clear thatv cannot in fact exhibit exactly the same
behavior as the one for the flat space BPS monopole ampli-
tude. Indeed, passing to the physical radial coordinatbe
amplitudew for r —oo decays polynomially, and not expo-
nentially; see Eq(5.11).

. , . In conclusion, Eqs(5.7), (5.8) describe globally regular,

F_IG. 1. The conformal diagram for the spacetime described bysupersymmetric backgrounds of a new type. The existence of

the line element5.7). - ) .
unbroken supersymmetries suggests that the configurations

) should be stable, and we expect that the stability proof can

r . . i .
r=ayR(p) sinhp, N= p == (59 be given along the same lines ag[i6]. Being solutions of

Rz(p)’ N=4 quantum supergravity in four dimensions, they pre-
sumably receive no quantum corrections. On the other hand,
At the origin,r—0, one has they can be considered in the framework of the string theory,
and then the issue of string corrections can be addressed. In
r2 2r? order to study this problem, we first of all need to lift the
N=1+ oa? +0(r"), No?=2e’’=a’+ 5 F o(r"), solutions to ten dimensions.
r2 VI. COMPACTIFICATION OF D=10 SUPERGRAVITY
w=1-— o +0(r%), (5.10 ON THE GROUP MANIFOLD
Our aim now is to promote the solutions of the four-
whereas in the asymptotic regian;-, dimensional supergravity model obtained above to the solu-
tions of N=1 supergravity in ten dimensions. This would
2026 r2 4 Inr make it possible to link the solutions to string theory. It is a
NecInr,  No®=2e"x i~ —,  wx 2 (51D well-known fact that ungaugedl=4 supergravity in four

dimensions can be obtained via toriodal compactification of
The geometry is flat at the origin, but asymptotically it is notten-dimensional supergravifg 7]. Similarly, the gauged su-
flat. Specifically, all curvature invariants vanish in the Pergravity can be obtained by compactification on the group
asymptotic region, however’ not fast enough_ For examp|é;nan|f0|d. This fact IS, hOWeVer, less knOWn, a|th0ugh one

the non-vanishing Weyl tensor invariant,«—1/6r2 as  could have conjectured this by studying the compactification
oo of eleven-dimensional supergravity on the seven spHedke

The global structure of the solutions is well illustrated by Because this is not p_ove_red in the Iitera.ture we shall _outline
the conformal diagram. Inspecting the part of the metric, below the. compactification procedure in some detail. We
it is not difficult to see that the conformal diagram in this Shall restrict ourselves to the purely bosonic sector and de-
case is actually identical to the one for Minkowski space,sc”be the reduction o_f the action and the _fermlomc super-
even though the geometry is not asymptotically fiee Fig. symmetry transf_ormat!ons. Th(-;- correspon.dlng procedure for
1). The spacetime is therefore geodesically complete antp® full theory, including fermion interactions, can be de-
globally hyperbolic. The latter property is quite remarkable,lved similarly but will not be given here. ,
since global hyperbolicity is usually lacking for the known 1 The action in B=10. The starting point is the bosonic
supersymmetry backgrounds in gauged supergravity modelgart of the action oN=1 supergravity in ten dimensions:
The geodesics through a spacetime ppirstre shown in the R
diagram, each geodesic approaching infinity for large abso- e
lute values of the affine parameter. Although the global be- SlO:f T2
havior of geodesics is similar to that for Minkowski space,
they locally behave differently. Fgs<o the cosmological Xd*x d®z=Sz+S;+Sy. (6.9
term A (¢) is non-zero and negative, thus having the focus-
ing effect on timelike geodesics, which makes them oscillatélhe notation is as follows: the hatted symbols are used for
around the origin. Unlike the situation in the anti—de Sitterthe 10-dimensional quantities. Late capital Latin letters stand

- e ~ ~ e ~ A N
Rt 2 du¢ Mo+ 1—2e’2"”HMNp HMNP
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for the base space indiceBI(N,P, ...) and theearly let- uDa=_ 2 gla y@a=g@ ofl =g
ters refer to the tangent space indicés§,C, ...). For
space-time indices taking 4 values, late and early Greek let-
ters denote base space and tangent space indices, respec-
tively. Similarly, the internal base space and tangent space

indices are denoted by late and early Latin letters, respec- 2. The metric and the dilatorL.et us now return to the
tively: general parametrization of the internal space. The dimen-

sional reduction of the actiof6.1) starts by choosing the
{M}={p=0,...,3; m=1,....8, vielbein and the dilaton in the following form:

f(2) =0. (6.9

(Al={a=0,...,3; &1,...,8. 6.2 et =e MWl er g2 = 2614 A%

The general coordinated’ consist of spacetime coordinates - ~a 1a a -

x* and internal coordinateg”. The flat Lorentz metric of the e,=0, € m:e( U m» $=-
tangent space is chosen to be,, ...,—) with the inter-

nal dimensions all spacelike. One AVE\SJGAML the metricis  where all quantities on the right, apart frobf,,, depend
related to the vielbein bygun=7x8€MeN= 7,48\  only on x*. One hase=e3#2U? | e. The dual basis is
— 8,£%,€%, and the antisymmetric tensor field strength is given by

¢
> (6.10

Huinp= dmBnp+ dnBpm+ dpBun - (6.3 el=eBWder elr=0,

The internal space span_ned BYis assumed to form a com- em__ 3 @6 gn pa (g-Lym

pact group space. This means that there are functions a a p a’

U2, (2) subject to the condition A

eSl=e W (y HMm (6.12)

a

fabc

(U (U™ H N(9nUT — anUT) = A (6.4 The metric components are obtained from E&10:

N~ = (32 512 apa
wheref 4. are the group structure constants. The volume of gu=e ??g,,—2e2 ¢ ATAT,

the space is
éﬂmz \/E (12 ¢ Aiuam,
sz |u2 |d°z. (6.5

émn: —ell2 ¢ UamUan ; (6.12

In particular, we shall be considering the case where the .

internal space is the product manifold @U<SU(2). It is  similarly for g“”. Using these expressions, the application of
convenient to parametrize then the 6 internal coordinates bthe standard formulagl9] gives for the gravitational and
a pair of indices{m}={(s),i}, wheres=1,2 andi=1,2,3; dilaton terms in the actiof6.1)

similarly for the tangent space coordinafeb={(s),a},

a=1,2,3. Each of the twds*s admits invariant 1-forms 1 1 1 24 a
a(s)a:@(s,)i adZ(S)iI Sé+5¢29fe _ZR+§5M¢ a,uql)_ge ¢|:l”|:a/uv
1 1 —-2¢ £2 4
de® 2+ > €abe 69 PN 9 c=0, (6.6) +358 7 fane] dX, (6.13
If we choose where
V2 F2 =3,A%— A%+ fp ADAC (6.14
UamEU(s)ia:_E e(s)ia’ (67) M 1% 1% ance

3. The two-formNow, the important role is played by the
where g, are the two gauge coupling constants, then theantisymmetric tensor field. The corresponding ansatz is
structure constants determined by E§4) will be

. R 1 . —~
fabcEfgStzc: Os €abc- (6.9 B;w: B,uw B,um: - E AZ Uﬁ’]! Bmn=Bmn, (6.19
Similarly, if one of the gauge coupling constants vanishes,

sayg,=0, the internal space is $2)X[U(1)]3. Choosing whereB,,=B,,(x), while B, depend only ore. Compu-
in this caseg;=1, tation of the field strength according to the rg&3) gives
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~ ! — —
H,,=H,,=9,B,,+3,B,,+3,B,,, H = Hup = ©,0p -

Now, taking advantage of the identity

N 1
=T = (&yAi_ (?VAZ) l-Jam'

H,.
wme 2 gBP 9 H, =0 (6.22

uvp—

. 1 a b 1ic it is easy to see that the expression
H,umnzz fabcAM U Uy,

1
g e dgaHy, dx (6.23

o af
Hmnp= ImBnpt dnBpmt dpBmn- (6.16

We require that vanishes up to a surface term; hexés a Lagrange multi-
plier. Adding this to the actiof6.2)) it is possible to go to a
N 1 ) first order formalism where botH ,,, anda are treated as
Hmnp:m fapc Uy Uy UG- (6.17  independent fields. The equation of motionadimplies that
H,., is a closed form and can be expressed locally as the

This relation should be regarded as a system of equations fGUI! Of B, thus giving the action(6.21). Alternatively we
can integrate the fieldd,,,, from the action as it appears

Bnn- One can see that the solution exists in the cases that wi ; o / : :

are interested in. Indeed, if the internal spac&ix S°® Eq. cﬁjadratlcally. This is equivalent to varyirg,,, in the ac-
(6.17) assures that the 3—forrﬁmnp is proportional to the
volume form onS®x S%. Since this form is closed, the inte- Hyup= @, + € 4%
grability conditions for the system are locally satisfied. On

the other hand, since the volume form is not exact, the soluand then eliminatingd,,, from the action in favor ofa.
tion exists only locally. However, the gauge invariance Adding Egs.(6.13 and(6.21), the result is

tion with the result

d%a, (6.29

ouvp

Bmn— Brmnt dmAn— dnA 6.1 11
mn— Bmn miin n‘{im ( & SlO:Qfe _ZR+E¢9#¢¢9"L¢

allows one to globally extend the local solutions by choosing
the non-trivial transition functions in the overlapping re- 46 26 £a auv
gions. A similar argument applies when one of the manifolds tse " dadtas z ey F
is T.

The next step is to compute the vielbein projections of the 1 a L1 2 g2 4
expressions i(6.16), (6.17). The result is —5a Fo F¥ 7+ 28° fie d*x. (6.29

Hagy =% ? (H 5~ wup,), Finally, choosingJ?, andf ,,.in accordance with Eq$6.7)

and Eqs.(6.9), respectively, givesf(,)?=6 (g2+g3), and

thus the dimensionally reduced actié®25 exactly repro-

duces the bosonic part of the action of the 4 supergravity

in Eqg. (2.)—up to an overall factor. Similarly, the choice

1 (6.9 leads to the truncated model considered above.

H,=0, Hypec——=e ¢ 1., . 4. The fermm_nsCon&der_ the sup_ersym_metry transforma-
242 tions for the spinor fields in ten dimensioffor a purely

(6.19  bosonic background

1
Alopa= — = €9 ¢ F2

where F;,=el'e;F}, are the tetrad projections of the N -
gauge field tensor, and, ., are the tetrad projections of the ~ 8¢p=Dp e+ =~ * (IR +9 5¢ 'Y€ Hyo.

gauge field Chern-Simons 3-form 48
=6 A% AT S AT ALAS]. (6.2 57= " (9gd) TR et ——_ e=b fune 2
Opvp= (1] T 3 Tabe Ay Ry Ap |- (6.20 X—E(ﬁmﬁ) € F\/Ee € HuNg-

6.2
Using Eq.(6.19 it is now straightforward to compute the (626

last term in the action6.1): Here the D=10 Dirac matrices satisfnyf‘N+foM

1 , 1 =20un: One hasl'y;, o=Tiy...Tq. In order to de-
Sﬁ:QJ € ( 8 e B R — 96° 20 fobe scend to four dimensiong, we first notice that for the bosinic
background defined by Eq$6.10 and (6.19 the vector
fields coming from the vielbein and those from the two-form
are identified, while the 36 scalar fields are truncated. For
this to be consistent with supersymmetry, the fermionic
where fields which are in the same supermultiplets should also be

1
4¢ ’ 1377 4
+ 15 €% H, H P) d*x, (6.21)
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truncated simultaneously. In complete analogy with the casgs.12), where the functiond)? are defined by either Eq.

of toroidal compactification one must set: (6.7) for the SU2)x SU(2) gauge group or by Eq6.9) when

the symmetry is SI®)X[U(1)]3. If the gauge group is

[U(1)]° one hasu? =62 . The vielbein projections of the

three-form are given by Eq$6.19, from where the two-

form components can be obtained.

In order to be consistent with the reduction procedure, the et us now apply these formulas to the family of solutions

vari.aFion of.the aboye should remain zero. This implies thapptained in Sec. V. Choosing® 2=g,=0 andg,=1, the

a Killing spinor 7 exists such that lifted solutions can be represented as follows. The metric and
the dilaton are

- i~ .
——TI, y=0. 6.2
a 2\/5 aX (6.27

I p -0,

4\2

whereg,=g, for m=1,2,3, andgs=g, for m=4,5,6. The
dependence of the spinors on internal coordinatiesfactor-
ized through they dependence:

Dnhn— (6.28

~_ 9(p)

gvn=2€"* Qun., ¢:_—2 , (7.1

where the metric in the string framgy , is specified by the
line element

(6.29

The next step is to represent tie=10 32-component

€ (X,2)=¢€ (X) n(2). _
d's?=dt?—dp?—R%(p) dQ3—0203—(dz*)?

Majorana-Weyl spinors in the form —(d2®)?—(d2®)2. (7.2
o[ Va ) 3(:< X ) ;:( € ) HeredQ3 is the standard metric on unit 2-sphere,
A\ =iys )’ iys x|’ —iys €/’ .
(6.30 O*=A—*=A}, dx*— 6% dZ, (7.3

where e=¢€' with 1=1,2,3,4 ande"s are four-component

. .
spinors; similarly fory,, and y. The Dirac matrices are cho- Where¢” are the Maurer-Cartan forms & parametrized by

{(ZV={,2,%):

sen to be
~ ~ 0 T 1
I'Mm= ,ym® 1, Fla: ')’5® D a) , d0a+ E €apbc Hb/\0°=0. (74)
T(l) a O
foa —Tza O If T, are the SKQ) group generators, T, ,Ty]=i€apel
=ys2| Tiya)’ (6.3)  then the gauge field is given by
a

whereT ) , are defined by Eq3.5). Finally, let us introduce A=TA*=TAldx*
the following linear combinations:

=w(p) {—T,dO+T, sin 6 do}+T; cosd dp. (7.5

3 3i
p,=e 1? €% Yam T = Vu X | (6.32  The non-vanishing vielbein projections of the antisymmetric
2\2 tensor field are
and rescale
3 H P Y Lo iv
apa=— ——=€ 3% F3, =——=e€ 7% ey,
Y——2e 4 y. (6.33 o2 B TlabeTs o abe

(7.6
The straightforward application of all the above definitions

allows one to verify that the relation between the variations,vherepaﬁ are the tetrad projections of the gauge field tensor

oy, and oy of the spinors defined by Eq$6.30, (6.32), :
(6.33 and € in Eq. (6.30 coincides with theD=4 super-
symmetry transformation rules in ER.2) up to the Dirac

corresponding to the gauge fidlél.5) for the tetrade, speci-
fied by the four-dimensional part of the string met(it2).
These can be read off from

conjugation. This completes the compactification procedure.

VII. LIFTING THE SOLUTIONS TO TEN DIMENSIONS

The results of the previous section imply that any solution
of the gauged supergravity model in four dimensions given

in terms of the metrig,,, gauge fieldsﬁ\ﬁf) &, the axiona

! !

1 w w
a a _ 1 2 1 3
ETaFaﬁe /\eﬁ——Tzﬁe Ne +Tlﬁe/\e

w?—1
=2 e?/\ed. (7.7

+T3

and the dilatong, can be lifted to ten dimensions as a solu-
tion of theN=1 supergravity. The ten-dimensional metric, Finally, for the sake of completeness, we write down the
the vielbein and the dilatos are then given by Eq$6.10—  functionsR(p), w(p) and ¢(p) in Egs.(7.)—(7.7):
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2 and differ essentially from all other known solutions of lead-
==+ ing order string theory1] in that the gauge field, which now
appears as off-diagonal components of the metric, is non-
] Abelian. For this reason we call the solutions non-Abelian.
26— do) — sinh p (7.9  Specifically, the gauge field in the metric combines with the
2R(p)’ ' non-Abelian isometries of the internal space. At first glance,
) the solutions exhibit some similarities witp-branes in
where ¢, is a free parameter. _ . D =10. Herep=3 because the expressions do not depend on
One can verify that the lifted solutions given by EGs. ihree spatial coordinate, 25, z8. However, the analogy is
(7.0—(7.8) indeed fulfill the equations of motion of ten- jncomplete, since there is no 5-form to couple to the 3-brane.

R2=2p cothp—

sinfp sinhp’

dimensional supergravity: In addition, the six-dimensional transverse space is not as-
o 1 . ymptotically flat and topologically is B S3, which spoils
VuVM ¢=— 5 e 2 HynpHYNP, (7.9  theresemblance with an extended object moving through the

ten-dimensional spacetime. Moreover, we cannot introduce
the notion of mass of the brane per unit 3-volume.

V(e 2% AMNPY=q (7.10 One can regard the solutions as describing interpolating
i solitons[20]. The reason for this is the observation that for
QMNZZ(;M(}S aij>+ e 24 |2|MPQ|2|NPQ small p one can choose the gauge where the gauge field

vanishes in the limip— 0, and the geometry in string frame
L2 s f ppes (7.1 is described by the standard metric 81’ x S°, where M’
12¢ 7 9wn CEA ' is seven-dimensional Minkowski spacetime. In the opposite

_ o . limit, p— o, introducing the radial coordinate= \2p, the
The direct verification is, however, rather difficult. Although geometry is given by the metric av*x V®. HereV® is a

the dilaton equation can be checked straightforwardly, alinanifold whose metric is a “warped” product of the stan-

ready for the antisymmetric tensor field the procedure igjard metric ors® and that on the three-dimensional parabo-
much more involved. The equations then split into threg;y-

groups depending on values of the indidéandP in (7.10.
Equations of the first group are satisfied by virtue of the d=T2(dT2+d 9+ sir? 9 de?)
geometrical properties of the invariant forn#§, whereas

equations of the second and the third groups eventually re- + 8. (62— 85 cosd dg) (6°— 85 cosd do).
duce to the Yang-Mills equations D =4. Finally, we have 71
had computer check the Einstein equatiénd.l). (7.18

Note that the gauge potentiélin Eq. (7.5 can be arbi- oo that this does not correspond to any known supergrav-
trarily gauge transformed, since any gauge transformatiog"yacyum.

can now be viewed as a diffeomorphism in ten dimensions. It Although we have not studied the issuedf corrections

is instructive to see how it works at the linearized level.to o solutions, we expect them to get corrected. These
Consider an infinitesimal gauge transformation corrections could probably be balanced by adding the ten-
: dimensional Yang-Mills field7], however, the definite con-

A—A+dEHITEAL (7.12 clusion cannot be reached without special analysis. This is-
where ¢=T,£%(x). Consider at the same time a diffeomor- SU€ is currently under investigation. Another interesting
phism problem to analyze is the study of dual partners to the solu-

tions found here.
774+ 6,(2) &(x), (7.13
) VIll. SUMMARY

where 656, = &5, and the remaining seven coordinates are
intact. This causes a change in the Maurer-Cartan form In this paper we have studied non-Abelian BPS solutions

6=T,6% in N=4 gauged supergravity and leading order string theory.
Our main motivation for this was to develop a systematic

60— 0+dé+i[&,0]. (7.14 procedure for handling non-Abelian gauge fields in the con-

text of supergravity models, a problem not well covered in

As a result one has the literature. The procedure we have employed is the

. straightforward component analysis of the equations for Kill-
00*=21tr (A= 0)*—21tr (A= 0+i[£,A—0])? ing spinors. Although the procedure is rather involvegk
=0202+0(a?). (7.15  had to resort to computer calculatigiitshas given us a set of
the first integralg4.15—(4.18 for the field equation$2.14)
The D= 10 metric therefore remains invariant, and the sameén the static, spherically symmetric, purely magnetic case
can be shown to be true for the antisymmetric tensor fieldwith the gauge group S@)x[U(1)]%. These first order
This shows that the effect of gauge transformations can bBogomol'nyi equations are considerably easier to solve than
compensated by that of the diffeomorphisms. the second order field equations, with the solutions given by
Finally, let us describe some properties of the solutions irEgs.(5.7), (5.8).
Egs.(7.1)—(7.9). They preserve 1/4 of the supersymmetries Having obtained the solutions, we show that tie-4
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gauged supergravity in four dimensions can be obtained viapplied to obtain more general solutions, also in the context
compactification oN=1, D =10 supergravity on the group of other supergravity models. An interesting example would
manifold. This fact, although quite plausible, has not beerbe N=2 supergravity with non-Abelian matter in four di-
covered in the literature before. Applying a procedure in-mensions.

verse to dimensional reduction, we have lifted e 4 so-

lutions to ten dimensions, where they can be regarded as

solutions to the leading order equations of motion of the ACKNOWLEDGMENTS
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