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Non-Abelian solitons in N54 gauged supergravity and leading order string theory
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We study static, spherically symmetric, and purely magnetic solutions of theN54 gauged supergravity in
four dimensions. A systematic analysis of the supersymmetry conditions reveals solutions which preserve 1/4
of the supersymmetries and are characterized by a BPS-monopole-type gauge field and a globally hyperbolic,
everywhere regular geometry. We show that the theory in which these solutions arise can be obtained via
compactification of ten-dimensional supergravity on the group manifold. This result is then used to lift the
solutions to ten dimensions.@S0556-2821~98!06410-8#

PACS number~s!: 04.65.1e, 04.62.1v, 11.25.2w, 11.30.Pb
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I. INTRODUCTION

In the past few years there has been considerable inte
in supersymmetric solitons originating from effective fie
theories of superstrings and heterotic strings~see@1# for re-
view!. These solutions play an important role in the study
the non-perturbative sector of string theory and in und
standing string dualities. A characteristic feature of such
lutions is that supersymmetry is only partially broken, a
associated with each of the unbroken supersymmetries t
is a Killing spinor fulfilling a set of linear differential con
straints. The corresponding integrability conditions can
formulated as a set of non-linear Bogomol’nyi equations
the solitonic background, which can often be solved anal
cally.

The analysis of the supersymmetry conditions has pro
to be an efficient way of studying the non-perturbative d
namics. So far, however, the investigations have mainly b
restricted to the Abelian theory and little is known about t
structure of the non-Abelian sector, which presumably is d
to the complexity of the problem. At the same time, t
gauge group arising in the context of string theory is fai
general. It includes the U~1! group as a subgroup, but othe
wise it is clear that the restriction to the Abelian sector tru
cates most of the degrees of freedom.

In view of this it seems reasonable to focus on study
supergravity solitons with non-Abelian gauge fields. It tur
out that all known solutions of this type can be classifi
according to two different methods applied to obtain the
The first of these methods is employed in the heterotic fi
brane construction@2#. Specifically, the geometry of th
four-dimensional space transverse to the brane is suppos
be conformally flat. This allows one to choose for the Yan
Mills field living in this space any known solution of th
self-duality equations in flat Euclidean space. Choosing
possible self-dual configurations, one can obtain in this w
a large variety of different five-branes@3,4#. The ten dimen-
sional solutions then further modify upon reducing to fo
dimensions, displaying, nevertheless, a number of comm
features due to the common origin. In this connection it
also worth mentioning the work in Ref.@5#, where the equa-
570556-2821/98/57~10!/6242~13!/$15.00
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tions of a supergravity model with non-Abelian vector fiel
were directly attacked. It was shown later@6# that, for one
special value of the dilaton coupling constant, the solutio
obtained exactly correspond to the reduction of the fi
brane-type solution described in@3#.

Another way to construct non-Abelian solutions is to e
bed the gravitational connection into the gauge group; see@7#
and references therein. In this approach one starts fro
solution of leading order string theory, which is sometim
obtained by uplifting a four-dimensional Abelian solutio
Its spin-connections are then identified with the gauge fi
potential. As a result one obtains a solution of the the
with string corrections, which sometimes can be exact in
orders of string expansion.

No other non-Abelian supergravity solitons are know
than those obtained by applying the described two metho
All known solutions are thus either essentially Abelian,
flat-space non-Abelian. In this sense, they can be regarde
too special, since none of them really reflect the interp
between gravity and the non-Abelian gauge field. At t
same time, the famous example of the~non-supersymmetric!
Bartnik-McKinnon particles@8# shows that such an interpla
can result in an unusually rich variety of properties of t
solutions.

Motivated by the arguments above, we study solitons i
four-dimensional supergravity model with non-Abelia
Yang-Mills multiplets. The model we consider is theN54
gauged SU~2!3SU~2! supergravity@9#, which can be re-
garded asN51, D510 supergravity compactified on th
group manifoldS33S3. Note that all previously known non
Abelian supergravity solitons have the Yang-Mills field a
ready in ten dimensions, and their compactification gives
different matter content inD54. Our choice of the mode
therefore ensures that we do not reproduce any known s
tions. Note also that the non-gauged version of the sa
model, corresponding to the toroidal compactification of te
dimensional supergravity, has been extensively studied in
past@10,11#. The Abelian solutions in the gauged version
the model have been studied in@12#.

In order to obtain the solutions we carry out the comp
nent analysis of the supersymmetry constraints, which gi
6242 © 1998 The American Physical Society
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57 6243NON-ABELIAN SOLITONS IN N54 GAUGED . . .
us a set of the first integrals for the field equations. W
investigate static, spherically symmetric, purely magne
field configurations choosing for the gauge group eit
SU~2!3SU~2! or SU~2!3@U(1)#3. It turns out that in the
first case there are no supersymmetric solutions. The se
choice, however, leads to the obtaining of the variety of n
trivial solutions with 1/4 of supersymmetries preserved,
of which can be described analytically@13#. Among them we
discover a one-parameter family of globally regular solutio
with quite unusual properties. First, the solutions are cha
terized by a regular-Bogomol’nyi-Prasad-Sommerfie
~BPS!-monopole-type gauge field with non-vanishing ma
netic charge. This is very surprising, since a Higgs field
not present in the problem, in which case it would be r
sonable to expect the regular solutions to be neutral. S
ondly, the geometry of the solutions turns out to be globa
hyperbolic. This is also quite remarkable, because the s
dard gauge supergravity ground states usually lack of glo
hyperbolicity.

Having obtained the solutions we lift them to ten dime
sions. For this we first show how to obtain theN54 gauged
supergravity via compactification of theN51, D510 super-
gravity on the group manifold, which is eitherS33S3 or
S33T3. It turns out that the corresponding procedure has
been described in the literature. Applying to the four dime
sional solutions the procedure inverse to the dimensiona
duction, we thus obtain the solutions of the leading or
equations of motion of the string effective action in ten
mensions.

The rest of the paper is organized as follows. In Sec. II
describe the action and supersymmetry transformation
theN54 gauged supergravity, derive the field equations a
present their first integrals following from the dilatation
symmetry. Our procedure to handle the supersymmetry c
straints, that is, the equations for the Killing spinors, is d
scribed in Sec. III. The supersymmetry conditions, which
the consistency conditions for the supersymmetry c
straints, are derived in Sec. IV in the form of the first ord
Bogomol’nyi equations for the bosonic background. Th
section contains also the solutions for the Killing spino
Solutions of the Bogomol’nyi equations are presented in S
V. Section VI describes the compactification ofN51, D
510 supergravity on the group manifold. The results o
tained in that section then used to lift the four-dimensio
solutions to ten dimensions. The lifted solutions and some
their properties are described in Sec. VII. The last sec
contains concluding remarks.

Our notation is as follows: Greek, Latin, and capital La
letters stand for the four-dimensional, internal s
dimensional, and general ten-dimensional indices, res
tively. The early letters refer to the tangent space whereas
late ones denote the base space indices. The six-dimens
space, whose indices are a,b,c, . . . andm,n,p, . . . , splits
further into two three-dimensional spaces. The thr
dimensional indices area,b,c, which stand also for the
group indices, andi , j ,k. The spacetime metric is denoted b
g, whereasg stands for the gauge coupling constant~s!.

II. THE MODEL

The action of theN54 gauged SU~2!3SU~2! supergrav-
ity includes a vierbeinem

a , four Majorana spin-3/2 fields
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cm[cm
I (I51, . . . 4),vector and pseudovector non-Abelia

gauge fieldsAm
(1) a and Am

(2) a with independent gauge cou
pling constantsg1 andg2, respectively, four Majorana spin
1/2 fields x[x I, the axiona and the dilatonf @9#. The
bosonic part of the action reads

S5E S 2
1

4
R1

1

2
]mf ]mf1

1

2
e24f]ma ]ma

2
1

4
e2f (

s51

2

Fmn
~s! aF ~s! amn

2
1

2
a (

s51

2

Fmn
~s! a* F ~s! amn1

g2

8
e22fDA2g d4x.

~2.1!

Here g25g1
21g2

2, the gauge field tensorFmn
(s) a5]mAn

(s) a

2]nAm
(s) a1gs «abc Am

(s) bAn
(s) c ~there is no summation ove

s51,2), and* Fmn
(s) a is the dual tensor. The dilaton potenti

can be viewed as an effective negative, position-depend
cosmological termL(f)52 1

4 g2 e22f. The ungauged ver-
sion of the theory corresponds to the case whereg15g2
50.

For a purely bosonic configuration, the supersymme
transformation laws are@9#

dx̄5
i

A2
ē ~2]mf1 ig5 e22f ]ma!gm2

1

2
ef ē Fmn smn

1
1

4
e2f ē ~g11 ig5 g2!,

dc̄r5 ē S DQ r2
i

2
e22f ]ra g5D2

i

2A2
ef ē Fmn gr smn

1
i

4A2
e2f ē ~g11 ig5g2! gr , ~2.2!

whereas the variations of the bosonic fields vanish. Here

ēDQ r[ē S ]Q r2
1

2
vr

ab sab1
1

2 (
s51

2

gs T~s! a Ar
~s! aD ,

Fmn[T~1! a Fmn
~1! a1 ig5T~2! a Fmn

~2! a . ~2.3!

In these formulas,e[e I are four Majorana spinor supersym
metry parameters,vr

ab is the spin-connection,sab

5 1
4 @gagb#, andT(s) a[T(s) a IJ are the SU~2!3SU~2! gauge

group generators, whose explicit form will be given below
Throughout this paper we shall specialize to the sta

purely magnetic fields. In this case the axion decouples
one can consistently puta50. Choosing the metric in the
form

ds25e2Vdt22e22Vhik dxidxk, ~2.4!

the action becomes
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S5E dtE S 2
1

4
~3!R2

1

2
] iV ] iV2

1

2
] if ] if

2
1

4
e2f12V (

s51

2

Fik
~s! aF ~s! aik

1
g2

8
e22f22VDAh d3x. ~2.5!

This admits a global symmetry

V→V1e, f→f2e. ~2.6!

As a consequence, there exists a conserved Noether cu
Q i5Ah(] iV2] if). The corresponding conservation law

¹̃ i¹̃
i~V2f!50, ~2.7!

where¹̃ i is the covariant derivative with respect tohik . As a
result, the following condition

V5f2f0 ~2.8!

with constantf0 can be imposed.
Let us now further specialize to the case of spherical sy

metry. For this we choose the spacetime metric and
gauge fields as

ds25Ns2dt22
dr2

N
2r 2~du21 sin2 u dw2!,

T~s! a Am
~s! adxm5

1

gs
~ws $2T~s! 2 du1T~s! 1 sin u dw%

1T~s! 3 cosu dw!, ~2.9!

where there is no summation overs. We assume that the
functions N, s, ws and the dilatonf depend only on the
radial coordinater P@0,̀ ). Substituting Eqs.~2.9! into Eq.
~2.1! and omitting the surface term, the action becomes

S524pE dtE
0

`

dr s H r

2
~12N!

s8

s
1

r 2

2
Nf82

1
1

2
~NW1U !2

g2

8
r 2 e22fJ , ~2.10!

where

W[W11W252e2f(
s51

2 ws8
2

gs
2

,

U[U11U25e2f(
s51

2
~ws

221!2

gs
2 r 2

. ~2.11!

This action admits a symmetry

r→e r , s→
1

e
s, f→f1 ln e, ws→ws , N→N,

~2.12!
ent

-
e

which is the analog of that in Eq.~2.6!. The corresponding
Noether current is

J5(
j

]L

]uj 8
S ru j82

]uj

]e D U
e51

2rL[ const, ~2.13!

whereL5L(r ,uj ,uj8) is the Lagrangian density correspon
ing to the action~2.10!.

The field equations following from the action read

~rN !81r 2Nf821NW1U1r 2L~f!51,

s8/s5rf821W/r ,

~sNr2f8!85s $NW1U2r 2L~f!%,

~Nse2f ws8!85se2f ws~ws
221!/r 2. ~2.14!

Now, there are two first integrals for these equations wh
provide the solution for the metric variablesN ands. First,
the condition~2.8! ensures that

s2N5e2~f2f0!. ~2.15!

In addition, puttingJ50 in Eq. ~2.13! yields

N5
12U1g2r 2 e22f/4

112rf82r 2f822W
. ~2.16!

These two first integrals arise as a result of the dilatatio
symmetry of the action. They provide the most general so
tions for the metric variables in the case where the metri
regular at the origin. In addition, as we shall see, these c
ditions are precisely what is required by supersymmetry. O
may wonder why the same symmetry, being expressed in
two different forms~2.6! and~2.12!, leads to the two appar
ently different expressions~2.15! and~2.16!. It turns out that,
although Eqs.~2.15! and~2.16! are indeed independent, the
are equivalent up to an equation of motion. Specifically, E
~2.16! can be obtained by inserting Eq.~2.15! into the
Gr

r52 Tr
r Einstein equation.

Our goal is to solve the remaining equations in the syst
~2.14!. For this we are turning now to the analysis of th
supersymmetry constraints, which will give us the addition
first integrals.

III. SUPERSYMMETRY CONSTRAINTS

The field configuration~2.9! is supersymmetric provided
that there are non-trivial supersymmetry Killing spinorse for
which the variations of the fermion fields defined by Eq
~2.2! vanish. Putting in Eqs.~2.2! dx̄5dc̄m50, we arrive at
the supersymmetry constraints given in the form of a sys
of equations for the spinor supersymmetry parametere :

2A2 ef ē gm ]mf22i e2f ē Fmn smn1 ē ~ ig12g5 g2!

50, ~3.1!
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4A2 ef ēDQ r22i e2f ē Fmn gr smn1 ē ~ ig12g5g2! gr

50. ~3.2!

Here Dr andFmn are defined by Eqs.~2.3! and the back-
ground fields are specified by Eqs.~2.9!. This system con-
sists of 80 linear equations for the 16 independent real c
ponents ofe. At most, in the maximally supersymmetr
case, there could be 16 independent non-trivial solutions
is clear, however, that generically the system has no n
trivial solutions at all. To find out under what conditions th
non-trivial solutions are possible, our strategy is to anal
the equations in components.

First, we choose the vierbeinea
m to be a ‘‘half-null’’ com-

plex tetrad:

e05
1

sAN

]

]t
, e15AN

]

]r
,

e25
1

A2r
S ]

]q
1

i

sin q

]

]w D , e35e2* .

~3.3!

The non-zero components of the tetrad metrichab
5(ea ,eb) are h0052h1152h2351. The dual tetradea

determines the spin-connection coefficientsvab5vr
abdxr

via the structure equation,dea1v b
a `eb50.

The gamma matricesgagb1gbga52hab are chosen to
be

g05S 0 1

1 0D , g15S 0 2s3

s3 0 D ,

g25
1

A2
S 0 2s2

s2 0 D , g35
1

A2
S 0 2s1

s1 0 D ,

g55S 21 0

0 1D , C5S is2 0

0 2 is2D , ~3.4!

where g55g552( i /4!)A2h «abgd gagbgggd with «0123

521 ~note that A2h5 i since det(hab)51); and the
charge conjugation matrixCgaC2152(ga)T. The Pauli
matrices are

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

ands65s16 is2.
The SU~2!3SU~2! group generatorsT(s) a , which are

subject to the conditions@T(1) a ,T(2) b#50 andT(s) aT(s) b
52eabcT(s) c2dab, are chosen to be
-

It
n-

e

T~1! 15S 0 2s2

s2 0 D , T~1! 25S 0 2s1

s1 0 D ,

T~1! 35S 2 is3 0

0 2 is3D , T~2! 15S 0 is3

is3 0 D ,

T~2! 25S 0 21

1 0 D , T~2! 35S 2 is3 0

0 is3D .

~3.5!

Note that this representation of the group generators dif
from that in @9# by a unitary transformation.

The Majorana condition fore requires that its Dirac con
jugate is equal to the Majorana conjugate@14#:

~e I!* T g05V J
I ~eJ!TC. ~3.6!

Here V J
I is defined by the requirement that the conditi

~3.6! is invariant with respect to the gauge transformatio
which demands that

V T~s! a1~T~s! a!T V50, V V* 51. ~3.7!

The solution of these equations, in the representation~3.5!, is
given by

V5S s1 0

0 s1D . ~3.8!

As a result, denoting the components ofē I by cq
I , the Ma-

jorana condition can be expressed as a set of the follow
relations betweencq

I ’s:

c1
252~c4

1!* , c2
25~c3

1!* , c3
25~c2

1!* , c4
252~c1

1!* ,

c1
452~c4

3!* , c2
45~c3

3!* , c3
45~c2

3!* , c4
452~c1

3!* .
~3.9!

Now we can proceed to solving Eqs.~3.1! and~3.2!. First,
we choosee to be time independent. At this stage one c
obtain the first supersymmetry condition. Specifically, let
multiply ther50 equation in~3.2! by g0 from the right and
subtract the result from Eqs.~3.1!. Using the fact that the
electric part ofFmn vanishes, and also thatg0 commutes
with s ik, the result is

ēgm]mf22ēDQ 0g050. ~3.10!

Computing ēDQ 052(1/2) ē v0
ab sab this condition is

equivalent to

ēg1~ ln~s2Ne22f!!850, ~3.11!

which finally requires that

s2N5e2~f2f0!, ~3.12!

thus reproducing Eq.~2.15!. As a result, we can omit Eq
~3.1! and concentrate on the four gravitino supersymme
constraints~3.2!.

Our procedure is straightforward: by inserting the abo
definitions into Eqs.~3.2! and projecting the equations ont
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the tetrad, we work out the result in components~we do not
present here the expressions explicitly in view of their co
plexity!. The next step is to separate the angular variab
and for this we take advantage of the special properties of
spinor representation chosen. Specifically, it turns out
the spherical variables enter the resulting equations onl
such a way that they form certain differential operators. T
structure of these operators coincides with the one for
raising and lowering operators in the well-known recurren
relations for the spin-weighted spherical harmonicskYjm
@15#:

S ]

]q
7

i

sin q

]

]w
6kcotq D kYjm

56A~ j 6k!~ j 7k11! k71Yjm . ~3.13!

This suggests choosing the spinor componentscq
I in the fol-

lowing form:

cq
I ~r ,q,w!5Rq

I ~r ! kYjm~q,w!. ~3.14!

The spin weights of the amplitudes,k5kq
I , are determined

by the direct inspection of the equations:

k1
15k3

152k2
252k4

25
12n12n2

2
,

k2
15k4

152k1
252k3

252
11n11n2

2
,

k1
35k3

352k2
452k4

45
12n11n2

2
,

k2
35k4

352k1
452k3

452
11n12n2

2
.

~3.15!

Herens51 if gsÞ0 andns50 otherwise.
The quantum numberj , which is the same for all ampli

tudes, has the meaning of the total angular momentum
cluding orbital angular momentum, spin and isospin. Its v
ues are restricted by the conditionj >uku, since kYjm
vanishes otherwise. We fix the value ofj by requiring that

j 5 min ukq
I u, ~3.16!

wherekq
I ’s are given by Eq.~3.15!. This can be regarded a

a consistent truncation of the system, since all amplitu
with ukq

I u exceeding the minimal value vanish. The values
the azimuthal quantum numberm are restricted by the con
dition 2 j <m< j . Sincem does not enter the equations, i
entire effect is to increase the degeneracy of the solution

At this stage, the complete separation of the angular v
ables is achieved in the equations. The supersymmetry
straints reduce to a set of algebraic and ordinary differen
equations for the radial amplitudesRq

I (r ). Note that the spin
weights in Eq.~3.15! and, correspondingly, the structure
the resulting equations essentially depend on whether s
of the coupling constantsgs vanish or not. As a result, ther
arise three basically different cases to consider :~1! None of
-
s,
e

at
in
e
e
e

n-
l-

s
f

.
i-
n-

al

e

gs’s vanish, which corresponds to the full SU~2!3SU~2!
gauge symmetry.~2! Either g1 or g2 vanishes—the gauge
symmetry is truncated to SU~2!3@U(1)#3. ~3! g15g250 –
the gauge group is@U(1)#6. It turns out that in the first case
there are no solutions to the supersymmetry constra
~apart from the trivial one!. If both coupling constants van
ish, the non-trivial Killing spinors exist and the underlyin
supersymmetric backgrounds are the well-known Abelian
laton black holes@10,11#. Our main thrust will be on the
second case, where the gauge symmetry is truncate
SU~2!3@U(1)#3.

IV. THE SUPERSYMMETRY CONSISTENCY
CONDITIONS

If one of the coupling constants is zero, we assume t
the corresponding Abelian gauge field vanishes too. At
same time, the other coupling constant can be set to unity
the appropriate rescaling of the fields in the action. As
result, one has eitherg151, g250 or g150, g251. It turns
out that in both of these cases there is the same numbe
non-trivial solutions of the supersymmetry constraints. T
corresponding consistency conditions are identical up to
replacementw1↔w2. We shall therefore consider explicitl
only the case whereg150, g251, since the equations con
tain then only real coefficients.

Putting Am
(1) a50, the field equations are obtained fro

Eqs.~2.14!–~2.16! by omitting the termsW1 andU1 in Eq.
~2.11!. The gauge fieldAm

(2) a is given by Eq.~2.9!, wherew2

will be denoted byw. Equations~3.15! imply that minukq
I u

50, and so we put in~3.14! j 50. Note that this can be
regarded as a manifestation of the spin-isospin coupl
since both spin and isospin are half-integer, the total ang
momentum is integer and hence its lowest value is zero.
j 50 all spin-weighted harmonics withk.0 vanish, while
0Y005const. As a result, the non-vanishing spinor comp
nents are

ē 15„R1
1~r !,0,R3

1~r !,0…, ē 35„0,R2
3~r !,0,R4

3~r !…, ~4.1!

and

ē 25„0,R2
2~r !,0,R4

2~r !…, ē 45„R1
4~r !,0,R3

4~r !,0…. ~4.2!

Among these components those in Eq.~4.1! can be chosen to
be independent, whereas

R2
25~R3

1!* , R4
252~R1

1!* , R1
452~R4

3!* , R3
45~R2

3!* ,
~4.3!

in view of the Majorana conjugation~3.9!. The equations for
Rq

2 andRq
4 also can be obtained from those forRq

1 andRq
3 by

applying the conjugation rule~4.3!. We shall therefore con-
centrate only on the independent variablesRq

1 andRq
3 .

Making the linear combinations

C15R1
11R3

1 , C25R2
31R4

3 ,

C35R1
12R3

1 , C45R2
32R4

3 , ~4.4!

the supersymmetry constraints can be represented as foll
The temporal component (r50) of Eqs.~3.2! gives the re-
lations
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A1C11CC250, CC12A2C250,

A2C32CC450, CC31A1C450, ~4.5!

whereas the angular components of the equationsr
5q,w) together require that

b2C12wb C250, 2wb C11b1C250,

b1C32wb C450, 2wb C31b2C450. ~4.6!

Finally, the radial component yields

g ~C1!81~B11!C12CC250,

g ~C2!82~B11!C21CC150,

g ~C3!82~B11!C31CC450,

g ~C4!81~B11!C42CC350. ~4.7!

The coefficients in these equations are given by

B5
2

r 2
e2f~w221!, C5

4

r
efANw8,

b5
4

r
ef, g54A2N ef,

A652A2N eff86~B11!,

b65bAN6A2~B21!. ~4.8!

The algebraic equations~4.5! and ~4.6! have non-trivial
solutions if only the corresponding determinants vanish:

A1A21C250, b1b22w2b250, ~4.9!

under which conditions the solutions are

C15
A2

C
C2, C45

A2

C
C3, ~4.10!

for Eqs.~4.5!, and

C15
wb

b2
C2, C45

wb

b2
C3, ~4.11!

for Eqs. ~4.6!, respectively. It is clear that these solutio
agree if only

A2b25wb C. ~4.12!

We thus arrive at the three consistency conditions given
Eqs. ~4.9! and ~4.12!, under which the solution of the alge
braic equations~4.5! and ~4.6! is expressed by Eqs.~4.10!
and ~4.11! in terms of two independent functionsC2 and
C3. Next, inserting this solution into Eq.~4.7! gives an ad-
ditional consistency condition

gCS A2

C D 8
12~B11!A22A2 22C250, ~4.13!
(

y

and a pair of differential equations forC2 andC3

g~C2!81~A22B21!C250,

g~C3!81~A22B21!C350. ~4.14!

Remarkably, it can be verified that the condition in E
~4.13! is a differential consequence of the algebraic con
tions~4.9! and~4.12!. The latter therefore provide the full se
of the consistency conditions, under which the solution
the supersymmetry constraints is given by Eq.~4.10! @or Eq.
~4.11!# and Eq.~4.14!.

Taking into account the definitions in Eq.~4.8!, the con-
sistency conditions~4.9! and ~4.12! can be explicitly ex-
pressed as follows:

N511
r 2

8
e22fS 112e2f

w221

r 2 D 2

, ~4.15!

rf85
r 2

8N
e22fS 124e4f

~w221!2

r 4 D , ~4.16!

rw8522w
r 2

8N
e22fS 112e2f

w221

r 2 D . ~4.17!

Together with

Ns25e2~f2f0! ~4.18!

these equations provide the full set of the consistency co
tions under which the supersymmetry constraints have n
trivial solutions. It can be verified that these conditions a
compatible with the field equations~2.14!. One can check
with the help of Eqs.~4.16! and~4.17! that the expression fo
N given by Eq.~4.15! is equivalent to that in Eq.~2.16!.

The supersymmetry Killing spinors are given by Eq
~4.1!–~4.3! with

R1
15«1F11«2F2 , R3

15«1F12«2F2 ,

R2
35«1F21«2F1 , R4

35«1F22«2F1 , ~4.19!

where

F25expH 2
f

2
2E

0

rAN21

rAN
drJ ,

F15
F2

w H ef~AN2AN21!2
r

A2
J , ~4.20!

and «1, «2 are two complex integration constants. One c
see that there are altogether four independent Killing spin

The same supersymmetry conditions arise in the c
whereg25Am

(2) a50, whereasAm
(1) aÞ0, g151. Then there

are also four independent Killing spinors. We therefore co
clude that the Bogomol’nyi equations~4.15!–~4.18! specify
the N51 supersymmetric BPS states in theN54 gauged
supergravity with the gauge group SU~2!3@U(1)#3.

Let us describe briefly what happens in the two oth
cases, where the gauge symmetry is either Abelian or tot
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non-Abelian. Ifg15g250, we make the gauge fields in E
~2.9! Abelian by settingw15w250:

T~s! a Am
~s! adxm5T~s! 3 cosu dw, ~4.21!

which corresponds to the Dirac monopole type fields. T
supersymmetry constraints split then into four independ
groups, one group for each of the four spinorsē I. The
spinorsē1 andē3 can be chosen to be independent,ē2 andē4

being their Majorana conjugates. The separation of the an
lar variables is achieved by choosing

ē 15@R1
1~r !21/2Y~1/2! m , R2

1~r !21/2Y~1/2! m ,

R3
1~r !1/2Y~1/2! m , R4

1~r !1/2Y~1/2! m], ~4.22!

and similarly for ē 3. It turns out then that if one of the two
gauge fields in Eq.~4.21! vanishes, no matter which, th
supersymmetry constraints admit two independent solut
for the radial amplitudesRq

1 , and similarly forRq
3 , provided

that the following consistency conditions hold:

Ns25e2~f2f0!, 2Nr2f825
e2f

r 2
, N~11rf8!251.

~4.23!

In addition, the fact that the azimuthal quantum numberm in
Eq. ~4.22! assumes two values,m561/2, doubles the num
ber of solutions, which finally corresponds to eight sup
symmetries. The solutions to Eqs.~4.23! describe well-
known magnetic dilaton black holes@10#, the fact that they
haveN52 supersymmetry was established in@11#.

Finally, in the totally non-Abelian case the supersymm
try constraints are given by the most general express
described above. Similarly to the Abelian case, the minim
value of the angular momentum required by the condit
~3.16! is 1/2. This is due to the presence of the two indep
dent isospins, which ensures that the total angular mom
tum is half-integer. However, the equations in this case
not allow for any non-trivial solutions.

Summarizing, the gauged SU~2!3SU~2! N54 supergrav-
ity admits no supersymmetric solutions at all—in the sta
spherically symmetric, purely magnetic sector. The ‘‘ha
gauged’’ SU~2!3@U(1)#3 model has solutions withN51
supersymmetry that will be presented below. The n
gauged theory admits solutions withN52 supersymmetry
described in@10,11#.

V. SOLUTIONS OF THE BOGOMOL’NYI EQUATIONS

In order to find the general solution of the Bogomol’n
equations~4.15!–~4.18! we start from the case wherew(r ) is
constant. The only possibilities arew(r )561 or w(r )50.

For w(r )561 the Yang-Mills field is a pure gauge
Equation ~4.17! requires then that exp(22f)50, which
means thatf(r )5f0→`, implying that the metric is flat.

The w(r )50 choice corresponds to the Dirac monopo
gauge field. The only non-trivial equation, Eq.~4.16!, then
reads
e
nt

u-

s

-

-
ns
l

n
-
n-
o

,

-

rf85
r 222e2f

r 212e2f
, ~5.1!

whose general solution is given by

f1 ln
r

r 0
5

r 2

4
e22f, ~5.2!

with constantr 0. The corresponding metric turns out to b
singular both at the origin and at infinity.

Suppose now thatw(r ) is not a constant. Introducing th
new variablesx5w2 and R25 1

2 r 2e22f, Eqs.~4.15!–~4.17!
become equivalent to one differential equation

2xR ~R21x21!
dR

dx
1~x11! R21~x21!250. ~5.3!

If R(x) is known, the radial dependence of the function
x(r ) and R(r ), can be determined from~4.16! or ~4.17!.
Equation~5.3! is solved by the following substitution:

x5r2 ej~r!, R252r
dj~r!

dr
2r2 ej~r!21, ~5.4!

wherej(r) is a solution of

d2j~r!

dr2
52 ej~r!. ~5.5!

The most general~up to reparametrizations! solution of this
equation which ensures thatR2.0 is j(r)522 ln sinh(r
2r0). This gives us the general solution of Eqs.~4.15!–
~4.18!. The metric is non-singular at the origin if onlyr0
50, in which case

R2~r!52rcothr2
r2

sinh2 r
21 . ~5.6!

One has R2(r)5r21O(r4) as r→0, and R2(r)52r
1O(1) asr→`. The last step is to obtainr (s) from Eq.
~4.17!, which finally gives us a family of completely regula
solutions of the Bogomol’nyi equations:

ds252 e2f $dt22dr22R2~r!~dq21 sin2 qdw2!%,
~5.7!

w56
r

sinh r
, e2f5a2

sinh r

2 R~r!
, ~5.8!

where 0<r,`, and we have chosen in Eq.~4.18! 2f0
52 ln2. The appearance of the free parametera in the solu-
tions reflects the scaling symmetry of Eqs.~4.15!–~4.18!:
r→ar, f→f1 lna. The geometry described by the line e
ement~5.7! is everywhere regular, the coordinates coveri
the whole space whose topology is R4. It is instructive to
express the solutions in Schwarzschild coordinates, wh
the metric functionsN(r ) ands(r ) are given parametrically
by
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r 5aAR~r! sinh r, N5
r2

R2~r!
, s5

r

r
. ~5.9!

At the origin, r→0, one has

N511
r 2

9a2
1O~r 4!, Ns252e2f5a21

2r 2

9
1O~r 4!,

w512
r 2

6a2
1O~r 4!, ~5.10!

whereas in the asymptotic region,r→`,

N} ln r , Ns252e2f}
r 2

4 lnr
, w}

4 lnr

r 2
. ~5.11!

The geometry is flat at the origin, but asymptotically it is n
flat. Specifically, all curvature invariants vanish in th
asymptotic region, however, not fast enough. For exam
the non-vanishing Weyl tensor invariantC2}21/6r 2 as
r→`.

The global structure of the solutions is well illustrated
the conformal diagram. Inspecting thet-r part of the metric,
it is not difficult to see that the conformal diagram in th
case is actually identical to the one for Minkowski spa
even though the geometry is not asymptotically flat~see Fig.
1!. The spacetime is therefore geodesically complete
globally hyperbolic. The latter property is quite remarkab
since global hyperbolicity is usually lacking for the know
supersymmetry backgrounds in gauged supergravity mod
The geodesics through a spacetime pointp are shown in the
diagram, each geodesic approaching infinity for large ab
lute values of the affine parameter. Although the global
havior of geodesics is similar to that for Minkowski spac
they locally behave differently. Forr,` the cosmological
term L(f) is non-zero and negative, thus having the foc
ing effect on timelike geodesics, which makes them oscill
around the origin. Unlike the situation in the anti–de Sit

FIG. 1. The conformal diagram for the spacetime described
the line element~5.7!.
t

e,

,

d
,

ls.

o-
-

,

-
e
r

case, each geodesic has its own period of oscillations, s
that the geodesics from a pointp never refocus again.

The shape of the amplitudew(r) in Eq. ~5.8! corresponds
to the gauge field of the regular magnetic monopole with u
magnetic charge. In fact, assuming for a moment thatr is the
standard radial coordinate, the amplitude exactly coinci
with that for the flat space BPS solution. This result is qu
surprising, since the model has no Higgs field, in which c
it would be natural to expect the existence of only neut
solutions@8#. A manifestation of this is the fact that, withou
a Higgs field, the magnetic charge has no gauge invar
meaning and can only be defined for a certain class
gauges. In addition, since all fields in the problem are ma
less, it is clear thatw cannot in fact exhibit exactly the sam
behavior as the one for the flat space BPS monopole am
tude. Indeed, passing to the physical radial coordinater , the
amplitudew for r→` decays polynomially, and not expo
nentially; see Eq.~5.11!.

In conclusion, Eqs.~5.7!, ~5.8! describe globally regular
supersymmetric backgrounds of a new type. The existenc
unbroken supersymmetries suggests that the configura
should be stable, and we expect that the stability proof
be given along the same lines as in@16#. Being solutions of
N54 quantum supergravity in four dimensions, they p
sumably receive no quantum corrections. On the other ha
they can be considered in the framework of the string theo
and then the issue of string corrections can be addresse
order to study this problem, we first of all need to lift th
solutions to ten dimensions.

VI. COMPACTIFICATION OF D510 SUPERGRAVITY
ON THE GROUP MANIFOLD

Our aim now is to promote the solutions of the fou
dimensional supergravity model obtained above to the s
tions of N51 supergravity in ten dimensions. This wou
make it possible to link the solutions to string theory. It is
well-known fact that ungaugedN54 supergravity in four
dimensions can be obtained via toriodal compactification
ten-dimensional supergravity@17#. Similarly, the gauged su
pergravity can be obtained by compactification on the gro
manifold. This fact is, however, less known, although o
could have conjectured this by studying the compactificat
of eleven-dimensional supergravity on the seven sphere@18#.
Because this is not covered in the literature we shall out
below the compactification procedure in some detail. W
shall restrict ourselves to the purely bosonic sector and
scribe the reduction of the action and the fermionic sup
symmetry transformations. The corresponding procedure
the full theory, including fermion interactions, can be d
rived similarly but will not be given here.

1. The action in D510. The starting point is the bosoni
part of the action ofN51 supergravity in ten dimensions:

S105E S 2
ê

4
R̂1

ê

2
]Mf̂ ]Mf̂1

ê

12
e22f̂ĤMNP ĤMNPD

3d4x d6z[SĜ1Sf̂1SĤ . ~6.1!

The notation is as follows: the hatted symbols are used
the 10-dimensional quantities. Late capital Latin letters sta

y
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for the base space indices (M ,N,P, . . . ) and theearly let-
ters refer to the tangent space indices (A,B,C, . . . ). For
space-time indices taking 4 values, late and early Greek
ters denote base space and tangent space indices, re
tively. Similarly, the internal base space and tangent sp
indices are denoted by late and early Latin letters, resp
tively:

$M %5$m50, . . . ,3; m51, . . . ,6%,

$A%5$a50, . . . ,3; a51, . . . ,6%. ~6.2!

The general coordinatesx̂M consist of spacetime coordinate
xm and internal coordinateszm. The flat Lorentz metric of the
tangent space is chosen to be (1,2, . . . ,2) with the inter-
nal dimensions all spacelike. One hasê5uê M

A u, the metric is

related to the vielbein byĝMN5ĥABê M
A ê N

B 5habê M
a ê N

b

2dabê M
a ê N

b , and the antisymmetric tensor field strength

ĤMNP5]MB̂NP1]NB̂PM1]PB̂MN . ~6.3!

The internal space spanned byzm is assumed to form a com
pact group space. This means that there are funct
U m

a (z) subject to the condition

~U21!b
m~U21!c

n~]mU n
a 2]nU m

a !5
f abc

A2
, ~6.4!

where f abc are the group structure constants. The volume
the space is

V5E uU m
a ud6z. ~6.5!

In particular, we shall be considering the case where
internal space is the product manifold SU~2!3SU~2!. It is
convenient to parametrize then the 6 internal coordinates
a pair of indices:$m%5$(s),i %, wheres51,2 andi 51,2,3;
similarly for the tangent space coordinates:$a%5$(s),a%,
a51,2,3. Each of the twoS3’s admits invariant 1-forms
u (s) a5u i

(s) adz(s) i :

du~s! a1
1

2
eabc u~s! b`u~s! c50. ~6.6!

If we choose

U m
a [U i

~s! a52
A2

gs
u i

~s! a , ~6.7!

where gs are the two gauge coupling constants, then
structure constants determined by Eq.~6.4! will be

f abc[ f abc
~s! 5gs eabc . ~6.8!

Similarly, if one of the gauge coupling constants vanish
say g250, the internal space is SU~2!3@U(1)#3. Choosing
in this caseg151,
t-
pec-
ce
c-

ns

f

e

y

e

,

U i
~1! a52A2 u i

~1! a , U i
~2! a5d i

a ⇒ f abc
~1! 5eabc ,

f abc
~2! 50. ~6.9!

2. The metric and the dilaton.Let us now return to the
general parametrization of the internal space. The dim
sional reduction of the action~6.1! starts by choosing the
vielbein and the dilaton in the following form:

ê m
a 5e2 ~3/4! f e m

a , ê m
a 5A2 e~1/4! f Am

a ,

ê m
a 50, ê m

a 5e~1/4! f U m
a , f̂52

f

2
, ~6.10!

where all quantities on the right, apart fromU m
a , depend

only on xm. One hasê5e23f/2uU m
a u e. The dual basis is

given by

êa
m5e~3/4! f ea

m , êa
m50,

êa
m52A2 e~3/4! f ea

m Am
a ~U21!a

m ,

êa
m5e2 ~1/4! f ~U21!a

m . ~6.11!

The metric components are obtained from Eq.~6.10!:

ĝmn5e2 ~3/2! f gmn22 e~1/2! f Am
a An

a ,

ĝmm5A2 e~1/2! f Am
a U m

a ,

ĝmn52e~1/2! f U m
a U n

a ; ~6.12!

similarly for ĝmn. Using these expressions, the application
the standard formulas@19# gives for the gravitational and
dilaton terms in the action~6.1!

SĜ1Sf̂5VE e S 2
1

4
R1

1

2
]mf ]mf2

1

8
e2f Fmn

a Fam n

1
1

32
e22f f abc

2 D d4x, ~6.13!

where

Fmn
a 5]mAn

a2]nAm
a 1 f abcAm

b An
c . ~6.14!

3. The two-form.Now, the important role is played by th
antisymmetric tensor field. The corresponding ansatz is

B̂mn5Bmn , B̂mm52
1

A2
Am

a Um
a , B̂mn5B̃mn , ~6.15!

whereBmn5Bmn(x), while B̃mn depend only onz. Compu-
tation of the field strength according to the rule~6.3! gives
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Ĥmnr5Hmnr[]mBnr1]nBrm1]rBmn ,

Ĥmnm52
1

A2
~]mAn

a2]nAm
a ! U m

a ,

Ĥmmn5
1

2
f abc Am

a U m
b U n

c ,

Ĥmnp5]mB̃np1]nB̃pm1]pB̃mn . ~6.16!

We require that

Ĥmnp5
1

2A2
f abc U m

a U n
b U p

c . ~6.17!

This relation should be regarded as a system of equation
B̃mn . One can see that the solution exists in the cases tha
are interested in. Indeed, if the internal space isS33S3 Eq.
~6.17! assures that the 3-formĤmnp is proportional to the
volume form onS33S3. Since this form is closed, the inte
grability conditions for the system are locally satisfied. O
the other hand, since the volume form is not exact, the s
tion exists only locally. However, the gauge invariance

B̂mn→B̂mn1]mLn2]nLm ~6.18!

allows one to globally extend the local solutions by choos
the non-trivial transition functions in the overlapping r
gions. A similar argument applies when one of the manifo
is T3.

The next step is to compute the vielbein projections of
expressions in~6.16!, ~6.17!. The result is

Ĥabg5e~9/4! f ~Habg2vabg!,

Ĥaba52
1

A2
e~5/4! f Fab

a ,

Ĥaab50, Ĥabc5
1

2A2
e2~3/4! f f abc,

~6.19!

where Fab
a 5ea

meb
nFmn

a are the tetrad projections of th
gauge field tensor, andvabg are the tetrad projections of th
gauge field Chern-Simons 3-form

vmnr526S A[m
a ]nAr]

a 1
1

3
f abc Am

a An
b Ar

cD . ~6.20!

Using Eq. ~6.19! it is now straightforward to compute th
last term in the action~6.1!:

SF̂5VE e S 2
1

8
e2f Fmn

a Fam n 2
1

96
e22f f abc

2

1
1

12
e4f Hmnr8 H8mnrD d4x, ~6.21!

where
for
we

u-

g

s

e

Hmnr8 5Hmnr2vmnr .

Now, taking advantage of the identity

«smnr ]sHmnr50 ~6.22!

it is easy to see that the expression

2VE S 1

6
«smnr ]sa HmnrDd4x ~6.23!

vanishes up to a surface term; herea is a Lagrange multi-
plier. Adding this to the action~6.21! it is possible to go to a
first order formalism where bothHmnr and a are treated as
independent fields. The equation of motion ofa implies that
Hmnr is a closed form and can be expressed locally as
curl of Bmn thus giving the action~6.21!. Alternatively we
can integrate the fieldHmnr from the action as it appear
quadratically. This is equivalent to varyingHmnr in the ac-
tion with the result

Hmnr5vmnr1e24f«smnr ]sa, ~6.24!

and then eliminatingHmnr from the action in favor ofa.
Adding Eqs.~6.13! and ~6.21!, the result is

S105VE e S 2
1

4
R1

1

2
]mf ]mf

1
1

2
e24f ]ma ]ma2

1

4
e2f Fmn

a Fam n

2
1

2
a Fmn

a * Fam n1
1

48
e22f f abc

2 D d4x. ~6.25!

Finally, choosingU m
a and f abc in accordance with Eqs.~6.7!

and Eqs.~6.8!, respectively, gives (f abc)
256 (g1

21g2
2), and

thus the dimensionally reduced action~6.25! exactly repro-
duces the bosonic part of the action of theN54 supergravity
in Eq. ~2.1!—up to an overall factor. Similarly, the choic
~6.9! leads to the truncated model considered above.

4. The fermions.Consider the supersymmetry transform
tions for the spinor fields in ten dimensions~for a purely
bosonic background!:

dĉP5D̂P ê1
1

48
e2f̂ ~ Ĝ P

MNQ19 dP
M ĜNQ!ê ĤMNQ ,

dx̂5
i

A2
~]Qf̂ ! ĜQ ê1

i

12A2
e2f̂ ĜMNQ ê ĤMNQ .

~6.26!

Here the D510 Dirac matrices satisfyĜMĜN1ĜNĜM

52 ĝMN , one hasĜM . . . Q5Ĝ [ M . . . ĜQ] . In order to de-
scend to four dimensions, we first notice that for the bosi
background defined by Eqs.~6.10! and ~6.19! the vector
fields coming from the vielbein and those from the two-for
are identified, while the 36 scalar fields are truncated.
this to be consistent with supersymmetry, the fermio
fields which are in the same supermultiplets should also
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truncated simultaneously. In complete analogy with the c
of toroidal compactification one must set:

ĉa2
i

2A2
Ĝa x̂[0. ~6.27!

In order to be consistent with the reduction procedure,
variation of the above should remain zero. This implies t
a Killing spinor h exists such that

Dmh2
gs

4A2
Gmh50, ~6.28!

wheregs5g1 for m51,2,3, andgs5g2 for m54,5,6. The
dependence of the spinors on internal coordinatesz is factor-
ized through theh dependence:

e ~x,z!5e ~x! h~z!. ~6.29!

The next step is to represent theD510 32-component
Majorana-Weyl spinors in the form

ĉa5S ca

2 ig5 ca
D , x̂5S x

ig5 x
D , ê5S e

2 ig5 e D ,

~6.30!

where e[e I with I51,2,3,4 ande I’s are four-componen
spinors; similarly forca andx. The Dirac matrices are cho
sen to be

Ĝm5gm
^ 1, Ĝ1 a5g5^ S 0 T~1! a

T~1! a 0 D ,

Ĝ2 a5g5^ S 2T~2! a 0

0 T~2! a
D , ~6.31!

whereT(s) a are defined by Eq.~3.5!. Finally, let us introduce
the following linear combinations:

cm5e2
3
4 f S e m

a ca2
3i

2A2
gm x D , ~6.32!

and rescale

x→22 e2
3
4 x. ~6.33!

The straightforward application of all the above definitio
allows one to verify that the relation between the variatio
dcm and dx of the spinors defined by Eqs.~6.30!, ~6.32!,
~6.33! and e in Eq. ~6.30! coincides with theD54 super-
symmetry transformation rules in Eq.~2.2! up to the Dirac
conjugation. This completes the compactification proced

VII. LIFTING THE SOLUTIONS TO TEN DIMENSIONS

The results of the previous section imply that any solut
of the gauged supergravity model in four dimensions giv
in terms of the metricgmn , gauge fieldsAm

(s) a , the axiona
and the dilatonf, can be lifted to ten dimensions as a so
tion of the N51 supergravity. The ten-dimensional metr
the vielbein and the dilatonf̂ are then given by Eqs.~6.10!–
e

e
t

s

e.

n
n

-

~6.12!, where the functionsU m
a are defined by either Eq

~6.7! for the SU~2!3SU~2! gauge group or by Eq.~6.9! when
the symmetry is SU~2!3@U(1)#3. If the gauge group is
@U(1)#6 one hasU m

a 5dm
a . The vielbein projections of the

three-form are given by Eqs.~6.19!, from where the two-
form components can be obtained.

Let us now apply these formulas to the family of solutio
obtained in Sec. V. ChoosingAm

(2) a5g250 andg151, the
lifted solutions can be represented as follows. The metric
the dilaton are

ĝMN52e2f̂ g̃MN , f̂52
f~r!

2
, ~7.1!

where the metric in the string frame,g̃MN , is specified by the
line element

d s̃25dt22dr22R2~r! dV2
22QaQa2~dz4!2

2~dz5!22~dz6!2. ~7.2!

HeredV2
2 is the standard metric on unit 2-sphere,

Qa[Aa2ua5Am
a dxm2u i

a dzi , ~7.3!

whereua are the Maurer-Cartan forms onS3 parametrized by
$zi%5$z1,z2,z3%:

dua1
1

2
eabc ub`uc50. ~7.4!

If Ta are the SU~2! group generators,@Ta ,Tb#5 i eabcTc,
then the gauge field is given by

A[TaAa[TaAm
a dxm

5w~r! $2T2 du1T1 sin u dw%1T3 cosu dw. ~7.5!

The non-vanishing vielbein projections of the antisymmet
tensor field are

Ĥaba52
1

2A2
e2

3
4 f Fab

a , Ĥabc5
1

2A2
e2

3
4 f eabc ,

~7.6!

whereFab
a are the tetrad projections of the gauge field ten

corresponding to the gauge field~7.5! for the tetradea speci-
fied by the four-dimensional part of the string metric~7.2!.
These can be read off from

1

2
TaFab

a ea`eb52T2

w8

R
e1`e21T1

w8

R
e1`e3

1T3

w221

R2
e2`e3. ~7.7!

Finally, for the sake of completeness, we write down t
functionsR(r), w(r) andf(r) in Eqs.~7.1!–~7.7!:
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R252 r cothr2
r2

sinh2 r
21, w56

r

sinh r
,

e2~f2f0!5
sinh r

2 R~r!
, ~7.8!

wheref0 is a free parameter.
One can verify that the lifted solutions given by Eq

~7.1!–~7.8! indeed fulfill the equations of motion of ten
dimensional supergravity:

¹̂M¹̂M f̂52
1

6
e22f̂ ĤMNPĤMNP, ~7.9!

¹̂M~e22f̂ ĤMNP!50, ~7.10!

R̂MN52 ]Mf̂ ]Nf̂1e22f̂ ĤM PQĤN
PQ

2
1

12
e22f̂ ĝMN ĤPQSĤ

PQS. ~7.11!

The direct verification is, however, rather difficult. Althoug
the dilaton equation can be checked straightforwardly,
ready for the antisymmetric tensor field the procedure
much more involved. The equations then split into thr
groups depending on values of the indicesN andP in ~7.10!.
Equations of the first group are satisfied by virtue of t
geometrical properties of the invariant formsua, whereas
equations of the second and the third groups eventually
duce to the Yang-Mills equations inD54. Finally, we have
had computer check the Einstein equations~7.11!.

Note that the gauge potentialA in Eq. ~7.5! can be arbi-
trarily gauge transformed, since any gauge transforma
can now be viewed as a diffeomorphism in ten dimension
is instructive to see how it works at the linearized lev
Consider an infinitesimal gauge transformation

A→A1dj1 i @j,A#, ~7.12!

wherej5Taja(x). Consider at the same time a diffeomo
phism

zi→zi1ua
i~z! ja~x!, ~7.13!

whereu i
aub

i5db
a , and the remaining seven coordinates a

intact. This causes a change in the Maurer-Cartan fo
u[Taua:

u→u1dj1 i @j,u#. ~7.14!

As a result one has

QaQa52 tr ~A2u!2→2 tr ~A2u1 i @j,A2u#!2

5QaQa1O~a2!. ~7.15!

The D510 metric therefore remains invariant, and the sa
can be shown to be true for the antisymmetric tensor fie
This shows that the effect of gauge transformations can
compensated by that of the diffeomorphisms.

Finally, let us describe some properties of the solutions
Eqs. ~7.1!–~7.8!. They preserve 1/4 of the supersymmetr
.

l-
s
e

e-

n
It
.

e
m

e
.
e

n
s

and differ essentially from all other known solutions of lea
ing order string theory@1# in that the gauge field, which now
appears as off-diagonal components of the metric, is n
Abelian. For this reason we call the solutions non-Abelia
Specifically, the gauge field in the metric combines with t
non-Abelian isometries of the internal space. At first glan
the solutions exhibit some similarities withp-branes in
D510. Herep53 because the expressions do not depend
three spatial coordinatesz4, z5, z6. However, the analogy is
incomplete, since there is no 5-form to couple to the 3-bra
In addition, the six-dimensional transverse space is not
ymptotically flat and topologically is R33S3, which spoils
the resemblance with an extended object moving through
ten-dimensional spacetime. Moreover, we cannot introd
the notion of mass of the brane per unit 3-volume.

One can regard the solutions as describing interpola
solitons@20#. The reason for this is the observation that f
small r one can choose the gauge where the gauge fi
vanishes in the limitr→0, and the geometry in string fram
is described by the standard metric onM73S3, whereM7

is seven-dimensional Minkowski spacetime. In the oppos
limit, r→`, introducing the radial coordinater̃ 5A2r, the
geometry is given by the metric onM43V 6. HereV 6 is a
manifold whose metric is a ‘‘warped’’ product of the sta
dard metric onS3 and that on the three-dimensional parab
loid:

ds25 r̃ 2~d r̃ 21dq21 sin2 q dw2!

1dab ~ua2d3
a cosq dw! ~ub2d3

b cosq dw!.

~7.16!

Note that this does not correspond to any known superg
ity vacuum.

Although we have not studied the issue ofa8 corrections
for our solutions, we expect them to get corrected. Th
corrections could probably be balanced by adding the t
dimensional Yang-Mills field@7#, however, the definite con
clusion cannot be reached without special analysis. This
sue is currently under investigation. Another interesti
problem to analyze is the study of dual partners to the so
tions found here.

VIII. SUMMARY

In this paper we have studied non-Abelian BPS solutio
in N54 gauged supergravity and leading order string theo
Our main motivation for this was to develop a systema
procedure for handling non-Abelian gauge fields in the c
text of supergravity models, a problem not well covered
the literature. The procedure we have employed is
straightforward component analysis of the equations for K
ing spinors. Although the procedure is rather involved~we
had to resort to computer calculations! it has given us a set o
the first integrals~4.15!–~4.18! for the field equations~2.14!
in the static, spherically symmetric, purely magnetic ca
with the gauge group SU~2!3@U(1)#3. These first order
Bogomol’nyi equations are considerably easier to solve t
the second order field equations, with the solutions given
Eqs.~5.7!, ~5.8!.

Having obtained the solutions, we show that theN54
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gauged supergravity in four dimensions can be obtained
compactification ofN51, D510 supergravity on the grou
manifold. This fact, although quite plausible, has not be
covered in the literature before. Applying a procedure
verse to dimensional reduction, we have lifted theD54 so-
lutions to ten dimensions, where they can be regarded
solutions to the leading order equations of motion of
string effective action.

We expect our results to be applicable in the followi
ways. First, we are currently investigating the properties
the solutions obtained above by performing the stabi
analysis in four dimensions and studying the issue of str
corrections and the duality transformations inD510. Second
and more important, we expect that our approach can
d,

n,
ia

n
-

as
e

f
y
g

e

applied to obtain more general solutions, also in the con
of other supergravity models. An interesting example wo
be N52 supergravity with non-Abelian matter in four d
mensions.
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