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Massless Gupta-Bleuler vacuum on th€1+1)-dimensional de Sitter space-time
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We construct a causal, de Sitter, and conformally covariant massless free quantum field (b e
dimensional de Sitter space-time admitting a de Sitter invariant vacuum in an indefinite inner product space.
The field is defined rigorously as an operator-valued distribution and is covariant in the usual strong sense:
\_/§1<p(x)\_/g=<p(g-x) for any g in the de Sitter group, wher¥ is a unitary representation of the de Sitter
group on the space of states. We use the formalism of Gupta-Bleuler triplets which also allows for an explicit
description of the gauge degree of freedom. As a consequence the model does not suffer from infrared
divergences, contrary to what happened in previous treatments of this problem. The causality and the covari-
ance of the theory are assured thanks to a suitable choice of the space of solutions of the classical field
equation. We show that, although the field itself is not obsenvhie gauge dependenthe stress tensor and
the energy-momentum vector are. The energy opeRgas positive in all physical states, and vanishes in the
vacuum. In addition, the field is conformally covariant and the model does not exhibit a conformal anomaly in
the trace of the energy-momentum teng&0556-282(98)00212-4

PACS numbefs): 04.62:+v, 03.70+k

[. INTRODUCTION the proper time between the points. They exploit the obser-
vation that the free field equation admits a zero-frequency
In this paper we construct a new massless free quantummode. We show below that this vacuum is not invariant in
field on the(1+1)-dimensional de Sitter space-time, trans-the usual strong sense.
forming correctly under isometries, conformal transforma- Remarking that the classical free massless field 1 1
tions, and gauge transformations, which is free of conformatlimensions is in addition to de Sitter, also gauge covariant,
anomalies, and which admits a de Sitter invariant vacuum. we show here that a rather straightforward application of the
The massless free field on tiie+1)-dimensional de Sit- Gupta-Bleuler formalism, known to be well adapted to treat
ter space-time is of interest partially because the difficultiesnodels with gauge symmetries, permits one to avoid the
encountered in its construction are similar to those that ongymmetry breaking altogether: the field we construct trans-
has when considering thél+3)-dimensional minimally forms correctly under de Sitter, conformal, and gauge trans-
coupled field 1-4] and the spin 2 field. It is well-known that formations and acts on a state space containing a vacuum
a straightforward quantization of the classical massless fremvariant under all of them. It is free of infrared divergence.
field in two-dimensional space-time leads to an infrared diin addition, a consequence of our construction is an auto-
vergence in the case of the Minkowski space-time. It is themmatic renormalization of the stress tensor which makes the
sometimes claimed that to avoid the divergence, the Lorentgo-called conformal anomaly disappear from the trace of the
symmetry must be brokdis]. A similar problem is knownto energy-momentum tensor.
occur in (3+1)-dimensional de Sitter space-time, where Our construction is of the Gupta-Bleuler type, and the
Allen has proven the nonexistence of a de Sitter covariantield acts on a space of states having the structure of a Fock
Fock vacuum for the massless minimally coupled figldf  space but containing both positive and negative norm vec-
which is also infrared divergent. Allen’s result easily holdstors. To assure a reasonable interpretation of the theory, we
in 1+1 dimensions as well. To circumvent this problem, thetherefore need to select the subspace of physical states. To
covariance condition is often weakened one way or anothedo this, we recall that since de Sitter space-time is not sta-
some authors studied vacua invariant under a subgroup of thinary, there is priori no natural time coordinate on it and
de Sitter group onlyspontaneous symmetry breakingth-  hence no natural notion of “positive frequency.” We never-
ers choose to restrict the field to a subset of the de Sittetheless select the physical states by demanding that they be
space-time, or consider invariance under the Lie algebra gfositive frequencies with respect to the conformal time on de
the de Sitter group rather than under the full group actiorSitter space-time. This choice, whital hog is justified by
(see[2,6,7] and references thergirKirsten and Garrigd3]  the fact that the resulting theory has all the properties one
have proposed an alternative vacuum, in which certain twomight require from a free field on a space-time with high
point functions are de Sitter covariant, and grow linearly insymmetry, as we now further explain.
First of all, it turns out that all physical states have posi-
tive norms, as required for a reasonable quantum mechanical
*Email address: debievre@gat.univ-lillel.fr interpretation of the modékeven though it is not true that all
"Email address: renaud@ccr.jussieu.fr positive norm states are physital
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Second, the field> we construct here is causal and it is these spaces carry representations of the Poirgrang but
convariant in the usual strong sense: there is a unitary repré/, andV are not covariantly complemented. The quotient
sentationV of the de Sitter group on the space of states andpaceV/V, of states up to a gauge transformation is the

\_/glcp(x)\_/g= ¢o(g-x) for anyg in the de Sitter grougSec.  space of physical one-photon states. The quantized field acts
V). This implies in particular that the field is defined on the on the Fock space built ov’, which is not a Hilbert space,

whole space-time. but an indefinite inner product space.

Third, there is a one-parameter group of unitati&s\) The same scheme will appear in our construction. The
acting on the state space, that implement the gauge transfdragrangian
mations:

L= my b b
U(=N)@()UN)=g(x)+X. 1 glg"*a, 40,4

Fourth, the gauge degree of freedom entails a notion o?f the free maSSIGSS field is invariant V\_/hen ac‘i‘dlnqut(m .
constant function. As a consequence, in the “one-particle

physical equivalence between states: basically, two states . , L
differing by a state containing “gauge states” are physicallyseCtor of the field the space (.)f gauge states is s!mply the
equivalent. The space of physical states contains a vectoPace of constant functions Wmteﬁ.'n the following: The
invariant under the action of the de Sitter group, which isanalogue of the spacd above, writien and called the

unique up to physical equivalence. We call it the Gupta_physical one-particle space in the following, is a space of

Bleuler vacuum. The vacuum is gauge-invariant in the sensgos't've frequency solutions of the field equation equipped

that a gauge transformation transforms the vacuum into g"th the degenerattut positivg Klein-Gordon inner prod-

physically equivalent state. Observables are those se;g:t' It was studied irf11] and will be described in detail

adjoint operators having expectation values that are gau elow. It is the prin.cipal ingredient of the construction._ The
independentSec. V). With these definitions, it turns out ole O.f the spac/” is played by a 'afg.er space Qf solut_lons,
that the field itself is not an observable: this is as expectegeﬁcgbtid tieloYv as Well,ngni(: {grawlzlrceri]nwse Z[vgf v?/{heli
and can be seen by calculating the mean value of(Bgn calle € tolal space a : P

the vacuum. The components of the energy-momentum te 2quipped ‘.N'th the K_Iem-Gordon inner product. L?t us recall
sor on the other hand are observables. Furthermore, in spi agna:jt aarlfrsmi-Sl-ipi?t::;tlssth;cg/:/ti?r?g;nr?; Setjt??/eOf dzfﬁzltzezarfgfce
of the fact that the operatdry(x) is not positively definite roduc). Hence, the EIein—Gordon ir?ner roduct 6 is

as an operator on the full space of states, we show that t ) ’ P

expected value of oo(x) between excited physical states of nondegenerate, but not positively .def'f“te- .AS usual in a
n nos Gupta-Bleuler model, the quantum field is written on a Fock
the form|k* .. -k;") is given by

space built orf{. We do insist on the fact that all of these
L spaces carry representations of the de Sitter group and that
ny n; ny niy _ the construction of the field is completely covariant as a re-
(ky* - 'ki]lTOO(XHkl . 'ki]>_ 2 .21 nilkil, sult of this and of the nondegeneracy of the inner product on
‘H. Again, this is not in contradiction with the result of Allen
which is clearly positive. This assures a reasonable physicéll] because is not a Hilbert space.
interpretation of the model. All of these properties are not restricted to ttier1)-

The results of this paper show that Allen’s result does notlimensional massless field. In a future wd# it will be
imply that a fully invariant vacuum for the free masslessproved that a similar construction yields similar properties
field does not exist orfl+1)-dimensional de Sitter space- for the minimally coupled massless field on tiig+3)-
time. There indeed does not exist an invariant Fock vacuundimensional de Sitter space-time.
state in the usual sense, i.e., a vacuum belonging to a Fock We would like to add one more comment. One might
space constructed overtilbert space. We do however con- object that there is no reason to insist on the correct trans-
struct an invariant vacuum in a Fock space constructed ovdormation properties of the field, since it is unobservable
an indefinite inner product space that we referred to as anyway and since, at any rate, most space-times do not have
Gupta-Bleuler vacuum above. In view of the obvious gaugemuch symmetry to begin with. We feel this is not justified
invariance of the field equation, this is really not too surpris-for two reasons.
ing: the Gupta-Bleuler formalism was invented to avoid Lor-  First, one could conceivably construct a field that does not
entz symmetry breaking through gauge fixing. As we shaltransform correctly but gives rise to observables that do
show, our construction is quite easy to implement: it is atransform correctly: this does not seem so easy to implement
matter of adapting the Gupta-Bleuler quantization of the freeand it is certainly not what one does for the electromagnetic
electromagnetic field8]. vector potential and field.

Let us recall that in electrodynamics the Gupta-Bleuler Second, the(1+1)-dimensional equation is conformally
triplet VCVCV' is defined as follow$9,10]. The space/ invariant, and this invariance is important since it survives
is the space of scalar photon states or “gauge states,” thtor the free massless field on all two-dimensional space-
spaceV is the space of positive frequency solutions of thetimes.
field equation verifying the Lorentz condition, aid is the In our construction, the first two spacé¥’,K) are in ad-
space of all positive frequency solutions of the field equa-dition invariant under the conformal group and we obtain the
tion, containing nonphysical states. The Klein-Gordon innerconformal invariance of the field from this. Davies and Full-
product defines an indefinite inner product ®h that is  ing [13] have studied a vacuum for the massless free quan-
Poincareand locally and conformally invariant. All three of tum field on arbitrary(1+1)-dimensional space-times. As
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they point out, their treatment is incomplete on the de SitteiThe G-invariant measure readslu=dpda/cosp. The
space-time, since they neglect the zero-frequency mode, butplace-Beltrami operator is

they suggest that once quantized, this mode does not contrib-

ute substantially to the energy-momentum tensor. We show 1 P &
in Sec. Il that the neglect of the zero-frequency mode is the u=- % (aV@g”ﬂaﬂ)=co§p(W— a2
source of two other problems: the field constructed by 9

Davies and Fulling is neither causal, nor de Sitter, or confor- - Reca| that the de Sitter universe is not stationary since it
mally covariant. This is not too surprising, in view of Allen’s 4ges not allow for a timelike Killing vector field. Some au-

result_[l]. On the contrary, our construction is conformally thors nevertheless refer to the generateriX, 5 [14] as the
covariant, and the expected value of all components of th'1:5|amiltonian and one can see that it contracts to the usual

stress-energy tensor vanish in the Gupta-Bleuler VaCuuMya miltonian of the Minkowski plane when the curvature

and hence there is no conformal anomaly in the trace of thf’ends to 0. Since this vector field is not everywhere timelike
energy-momentum tensor.

o iaht actuall that th ‘ | | it can, however, not be used to define a separation into posi-
ne mignt actually argue that the conformal anomaly aby;e ang negative frequency solutions of the field equation.

pearing in the trace of the energy momentum tensor in the To deal with the problems surrounding conformal invari-

field of Davies and Fulling and others is a result of the faCtance it is helpful to recall that the de Sitter universe can be

that their constructions break the conformal invariance fro"}ealized as a dense open subset of the t®txs! the

the outset. o i D
. . . compactified space-time, which is a homogeneous space for
The rest of this paper is organized as follows. In Sec. “the conformal group S2,2)/+1d}=G.. The point

we recall some elementary facts about tH&+1)- 4 =y gy gl s identified with the point(p,a) by the
dimensional de Sitter space-time and fix the notations. | ormulas u*=p—za. Converselyp=(u®+u-)/2 with
Sec. Il we present the standard approach to free field quan- p ) yp P

[— = —_— + -
tization on curved space-times in order to show how itfe] 7/2’ /2] a_nda p bu N T(;‘eb ger&_er_at_ors ?}f t?e” con
breaks down for the free massless field on 1Hie-1)- ormal group action are obtained by adjoining the following

dimensional de Sitter space-time. In Sec. IV we build the®""¢> X235 X3 Xa1!

quantum field and we discuss its invariance in Sec. V. In P P
Sec. VI we compute the stress tensor. Some elementary facts X, ;= —cosa cosp Ja +sina sinp P X10
: P :

about indefinite inner product Fock spaces are recalled in the @
Appendix. 9 9
=——, X30=Sina cosp — +CcoSa sSinp —.
ap 3,0 a P oa o p ap
II. THE de SITTER UNIVERSE AND THE MASSLESS
FIELD EQUATION The conformally coupled field equation reads
The (1+1)-dimensional de Sitter universe can be realized 0,=0, )

as the submanifold! of R® defined by
12 - 30 which becomes i coordinatess?¢/du” gu™ =0, the so-
(Y =(y) = (y)°=-1, lutions of which are the function§, (u*)+f_(u~). Note
. ] that the conformal Killing vector fiel&X, o is clearly timelike
with the metricds’= (dy')?—(dy?)?~ (dy®)®. The follow-  everywhere, and we will use it below to select positive fre-
ing “conformal” coordinates will be useful for our pur- quency solutions. Note also that the lightlike coordinates

poses: (ut,u)eStx St allow us to see the commutative decom-
1 position G.=SQy(2,2){=1d}=S0Oy(1,2XSQy(1,2) by de-
y =tanp, fining, for =+
SIN «
2__ 7 _ & &
Y =Cospr €Wz, pel-ml2mi2, Yi=1(Xat8X0p), Yi=1(XyoteXoa),
yazcosa Y5=3(X13tXp0). (©)
cosp’

Straightforward computation gives

In these coordinates the metric reads’=cos %p(—dp?
+da?). Note that the coordinateis timelike anda is space-
like. Let G be the connected component of the ISOMeYionce the group is decomposed in the commutative direct

group containing the identity: this is the so-called de Sitter ; :
group,G=SQy(1,2), of the de Sitter universe which is gen- product of two copies of S{@1,2), each of them acting on

TR ) only one coordinate. Note that the de Sitter group(@Q)=
erated by the three infinitesimal generators: G is not one of these factors but is generated by the set of
3 3 diagonal elements of the product, as can be easily seen from
X13=—Sina sinp — +cosa cosp —, Eq. (3) becauseX; =Y, +Y, , etc.
da ap This space-time_is globally hyperbolic, hence the so-
; J called commutatos = G2~ G'® is uniquely defined15].
__ 0 7 Let us recall that these propagators are defined by
Xz1=—COSa sinp o —sina cosp 7 . 0,G2M(x,y) =00,G™(x,y) = — 8(x,y) and for fixedy the

Yo=¢€dys, Yi=—¢ Sinu®dye, Y5=COSU®ds.

X 0
23 ha’
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support inx of G2 (resp.G™) lies in the pastresp. futurg¢  choices for theg, . In addition, one wishes all the symme-

cone ofy. This commutatoG (x,y) is equal to+ 1/2 whenx tries of the classical equatig®) to survive in the quantized
is in the future cone oy, —1/2 whenx is in the past cone of theory. This means that one expects the Fock siace

y, and O elsewhere. The Klein-Gordon inner product be &Y @ unitary representation of the isometry group oM

tween solutions of Eq(2) is defined by (and of all other symmetries of the thepnand that one
requires the field to transform correcthfmeaning
) - . \_/glgo(x)\_/gzw(gx)], and the vacuum to be invariant. For
<¢v’/’>:'f _0¢(aip)‘9p‘/’(“-l))d“ (4 what follows it is of importance to recall thah the above
- setting it is sufficient to require the invariance of the solu-
when it makes sense. This inner product is invarianttion spaceS under the natural representation of the isometry
(Vg Vgth)={ b, ) whereV is the regular representation of 9roup (which _extends in the obvious way to the full Fock
the de Sitter groupVyy(x) = (g~ x) for anyge G andx §pac€e to obtain the correct transformation properties of the

e M. This is linked to the commutator by field. o _ _ _
To see this, it is convenient to smear the field with a real

d)(x):if O_ia(xy(a,P))3p¢(a,p)da test functionf e Cj(M):
p=

o(f )=f f(X)e(x)du(x)

for (at least any smooth solution of the field equation with
compact support.

We shall finally also use the invariant inner product on .
L?(M) denoted by parentheses: _; J AT (x)du(x)a
(1.9)= | Tg00du. ® +3 [ @o0t0du0oal

wheredu(x) =dpda/cosp is the invariant measure.

=2 (dfact X (é.f)af,
lll. DESCRIPTION OF THE PROBLEM k k

In this section we explain how the difficulty in quantizing where the parentheses designatelthénner products). As

the massless field oMl arise. pointed out in the Appendixa,=a(¢,) and alza*(qbk)
We first recall the canonical quantization of the bosonicwherea anda' are, respectively, antilinear and linear in the
scalar Klein-Gordon fieldp(x), argumentg, . Hence we can rewrite the smeared field in the

following manner:
(0 +m?)(x)=0,

on a globally hyperbolic space-timel. To construct the o(f ):; (b f )a(d)k)"'; (. T)al ()
guantum field one looks for a set of modgg, solutions to
Eq. (6) satisfying the following properties. Firstly,

(b, d)=bc1, (b, )=0, (7)

where (-,-) denotes the Klein-Gordon inner product. Sec-Defining

ondly, the ¢, and the¢, are requested to span the space of

smooth solutions to E¢6). Given suchgy, one considers p(fF)=> (dp,f Ve, 9)
the Hilbert spacé they span and the corresponding bosonic k

Fock spaceS. The field is then defined by

=a +af

§<@ka

k

> (b f )¢k)-

we have
<p(x)=; ¢>k(x)ak+2k P(xaf, ) o(f )=a(p(f )+al(p(f ). (10)

Let us now considep, which is a vector valued distribution
taking values in the spacggenerated by the modes. Its role

is to associate to a test functidran element of the physical
one-particle space, so that we can consider the associated
annihilation and creation operators. Note tipgf ) in Eq.

(9) is theuniquevector inS for which

where thea, and thea] are the usual annihilation and cre-
ation operators of the modg, . Note that this construction
depends crucially on the choice made for g or, more
precisely, on the spacgthey span. To make sure this yields
a physically acceptable theory, one normally requires the fol
lowing additional properties of(x). First, ¢ needs to be
causal: actually, ¢(x),#(x")] is required to equal the com- (p(F ), ) =(f,9), Vyes, (11)
mutator function—iG (x,x’) on M to ensure that the field

satisfies the correct equal time commutation relations with itsvhere we refer to Eqg4) and (5) for the definitions of the
conjugate momentum. Next, M is stationary, one imposes two inner products, both invariant under isometries. One
a positive frequency requirement, which restricts the possibleoncludes immediately from E¢lL1) and the nondegeneracy
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condition (7) that, if S is invariant under the action of the At this point, wishing to recover an invariant theory, one
isometry group, theWyp(f )V4-1=p(V4f ) and as aresult, is naturally lead to reinclude,, to consider the positive
¢(x) also transforms correctlysee also Sec. V for more semidefinite inner product spaée spanned by theb,, and
detaily. to construct the fieldp as in Eq.(8) on the Fock spac&.

It is well known that the above picture tends to breakThis still makes sense, in spite of the degeneracy of the inner
down in the presence of gauge invariance, and in particulgproduct. Since, as is shown in Sec. IX,is invariant under
whenm=0 in Eq. (6). Allen [1] has indeed proved that on both SQ(1,2) and the conformal group, one would expect
the (3+1)-dimensional de Sitter space-time no de Sitter co-the resulting field to be S1,2) and conformally covariant,
variant quantum field of the above type can exist when i.e., \_/glgp(x)\_/g=<p(g-x) for any g in the de Sitter group,
=0. In particular, the theory obtained by taking—0 in a  whereV is the natural representation of this group on the
massive theory is infrared divergent and this phenomenon iBock spaceThis turns out to be wrong: in spite of the fact
interpreted as symmetry breaking. The same divergence aghat the spacéC generated by the modes in E42) is closed
pears in 31 dimensiong7]. What we show in this paper is under the action of the group, the field is not covariant as a
that a causal, gauge, and conformally covariant quanturgonsequence of the degeneracy of the inner producon
field of the Gupta-Bleuler type can nevertheless be conThe reason is that the bagik?) is not orthonormal and as a
structed by dropping the positivity requirement in Eg). result the corresponding distributigny as defined in Eq9),

Before doing this, we start by following the above canoni-does not verify Eq(11) anymore, so the reasoning leading to
cal approach in order to pin down precisely where it breakshe invariance of the field no longer holds up. It turns out that
down. AlthoughM does not allow a global timelike Killing the distributionp is indeednot covariant p does not inter-
field, Xo= —iX is a global timelikeconformalKilling field twine the (regulay representations of the group @f§(M)
and we choose the modef to be positive frequency for and K. Direct computation shows for example that
Xo, I.€., simultaneous solutions ¥y¢=w ¢, ©=0, and Eq. X, p(f ) #p(Xysf ) whereX; 3= —iX; 3. Note that, if the
(6) with m=0. They are easily seen to be given by inner product is nondegenerate, one can definequally

well through Egs(9) and (11), the two being equivalent. In
1 contrast, since the Klein-Gordon inner product is degenerate
bola,p)= \/:W on K, there no longer exists@(f ) satisfying Eq(11), as is
easily seen. We note in passing that the degeneracy of the
inner product is directly related to the indecomposability of

~

—ilK|p+ika >
dla,p)= e T " for any ke 7\{0} (120  the representation of $(,1) onK (see Sec. IY. To sum-
' Vam|K| ' marize, in order to construct a covariant quantum field

theory via Eg. (8), it seems one must have a nondegenerate
with w=|k|. The sign ofk distinguishes the right-moving inner product; it is in particular not enough to have a rep-
modes k>0) and the left-moving modek{0). We have, resentation of the de Sitter group on the Fock space where

for k,1 e 2\{0}, the field operators act to guarantee the covariance of the
field.
(b, d1)="06k1, (dx.¢)=0, (13 Incidentally, one could try to ignore this invariance prob-
lem and carry on with the above field. But one then notices
but, for alll € Z, includingl =0, that the commutator built with this field is still not causal, so
o the theory remains at any rate unacceptable.
(o, d))=0={(cpg, ), (14 At this point, one should notice that the modgsdo not

form a complete set in the sense specified above; since the
which means the inner product is now degenerate, in contrasgie|d equation admits a so-called zero-frequency mode,
to Eq. (7). This suggests dropping, and constructing the
field as in Eq.(8) with only the ¢, k#0. This is precisely
the field considered ih13] and leads to two problems at i
least. A simple computation shows that this field is not ’/’p:\/ﬁ(l_'/’)’
causal and does not transform correctly under the de Sitter
group SQ(1,2)=G. This is due to the fact that the space
spanned by thepy for k#0 is not invariant under the de verifying (y,,4,)=1. One might think our troubles come
Sitter group. For instance, a direct computation gives from ignoring this mode and it seems natural to consider the
(—X21+iX19 ¢1=¢o. Let us recall that the infrared prob- complete set of modedy, ¢, with k#0 [which satisfy Eq.
lem on (1+1)-dimensional Minkowski space-time is due to (7)] and to construct the corresponding field that we denote
the existence of solutions of arbitrary small frequencies. Ongy ¢, for reasons explained in Sec. V:
could think that this problem, and the symmetry breaking
associated with it, will disappear on the de Sitter space-time
because the frequencies are now discretized since the space- ,_, - + +——
time is spatially compact. But this is not quite true in the gDP(X)_I#O ¢k(X)ak+g,o dr(X)a+apip(X) +apipp(X).
sense that, as we have just seen, the covariance of the theory
forces one to include the null frequency solution itself in the
normal mode decomposition of the field. This is of course inIntroducing Q,=(a,+ a;g)/\/? and P,= —i(ap—a;r,)/\/i,
perfect agreement with Allen’s result cited above. one see$Q,,P,]=i, and the field can be rewritten
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_ _ ‘ . 1 . e—iku+
0= 2 dX)act 2 $lxa GolU" W)= = BT U= e when k>0,
1
+ = (Qu+Pop). (15) ~ilku~
N AL € when k<0,

Pi(u ,Uf)zm

This field acts on the Fock space ovég= K@ Ci, , where which is the same as E¢L2). Then we have

Ci is the one-dimensional space spanned/gyand i, is
the Hilbert space generated by titg's for k# 0. It is causal,
but not covariant, since it is easy to s@&ec. IV) that™,, is
not an invariant space of solutions to the field equation.
This is exactly the field considered [iB,3], except that in
these papers it is made to act on the direct product of th
Fock space ovefC’ with the Fock space oveéiy, . It cannot
be covariant for the same reason. Nevertheless, treating t

(3+1)-dimensional case, Kirsten and Garrida have found ¢ L= :
also preserves the above positive semidefinite Klein-Gordon

state for it, which we will denote by0,) in the following, ! ; o .
distinct from the Fock vacuum, and vr\thich is covariant in a!""e’ product orK. This representation was studied in detail

weak sense. It is characterized &y0,)=0=P,[0,). As an 'E ’[Clml]lgn_d L}’VG‘ recall its galssentla![;;?t'ures here.' Dif'm'gg
eigenvector of the “momentum” operat®?, it is of course fI_C ¢%’. (r)]n_e eastl y ?ﬁes I IS ar& |nv?r_|an su t-I
not normalizable, but it is chosen to minimize the energyzgﬁ]cﬁe%er'n‘g d'lcthelsrgore(s)(ren;%%rr]\agt?grefr;?e '%‘g’gg%yos
operator which contains, in addition to the usa@ik terms, P S P ) lon | . : P

. 2 : able. The Hilbert spac8=:K/N carries a unitary represen-
a term proportional toP,*. Kirsten and Garriga compute

<op|[¢(x)_¢(y)]z|0p> and find, after point splitting renor- tation of SQ(2,2){=1d}=S0(1,2 XSOy(1,2) which is the

malization, that it depends only on the proper distance be(_jlrect sum of two irreducible unitary representations

wveen andy. n s sense, ey sayter st s “ivar (2 11 0.l L] it ech rese epreeenis
ant.” Our analysis in the next section will show that in the '

1+1 dimension it cannot be invariant in the strondgand representations of this group.

usua) sense recalled above. It will be proved[#] that the trarl;;tattjisorf\l;la:lgiecilI_tf;at:tfleageie&ratorg)ontfﬁ;:niilz tw(r;e
same feature appears in the-3 dimension. As We_show in — K|y : hence ﬂl}g Opeﬁatcib( u+indLLJJ(:,és o operathlfooﬂlf
the rest of this paper, the problems of the above fields can be. kK» = 1,0 E

solved at once by enlarging the space of states into an indefr-:'t?nﬁt pr?iSI::V?hsi'p?CtrtlfJ]m. Th|ntI:|r;g mrfé'i?iaz a(Ct?rgong) th
nite but nondegenerate inner product spa¢ecalled the amiftonian, this 1S the spectral co on satistied by the

total spacg containing nonphysical states as well dsand one- particle physical states, a o_lirect_ consequence .Of our
H choice of positive frequency solutions in the construction of
D

(b0, b)=0VkeZ, (i, d)=0Vk,IeZ\{0}.

K is a space ofconforma) positive frequency solutions of
gwe wave equation o' X St. It contains all smooth solu-
tions onS*x St. Crucial for what follows is the fact, proved
ﬂ% [11], that K is invariant under the left regular representa-
éion of the conformal groupG.=SQy(2,2)A+1d}, which

K.
Now we have to defing{, the third term of the Gupta-
IV. THE QUANTUM FIELD ON (1+1)-DIMENSIONAL Bleuler triplet, which will contain nonphysical modes. We
de SITTER SPACE-TIME first recall from the previous section that tk¢ do not form

o ) . a complete set of modes dn. Indeed, the field equation has
We begin with the construction of the spaCeof physical  apn gbvious solutions, on de Sitter space-time, defined by
one-particle states. First, recall from Sec. Il that the de Sitter

space-timeéM can be realized as an open dense subset of the

torusStx st and that the conformally couplee- minimally bl ,p)=— 2'_’3,
coupled equation is va
ut+u which is of norm zero{ s, ¥s)=0:45 is a zero-frequency
4co§< )au+ d,— =0, u®eS. mode[13,5,3. This solution does not extend to a smooth
2 solution onS*x S, though, and, as a matter of fagt, does

not belong toX+ K, where K is the set of the complex
Any smoothsolution of this equation on the torus readsconjugates of the elements &f: ¢ is in this sense not a
f(ut,u)=f_(u)+f_(u"), the decomposition is not superposition of the modes,. To see this, one can, for
unique because of the presence of the constant functions. Wexample, remark thati, o) =1+ 0, which is impossible
define for elements ofC+ K. We will show how the Gupta-Bleuler
formalism allows a very natural quantization of this mode,
together with the others, different from the one[&8,5,3
K={> ckd, With > |ci?<=t, that we reviewed in the previous section.
ke ke We now define the total spadé by

where H=(K+K)® s,
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V\;hltérefis the set of the complex conjugates of the elements @(X)= @p(X) + @n(X), (19
of K.
Note that the first sum is not a direct sum becasge where
e KNK. Recalling that V=C¢, we obtain our Gupta-
Bleuler triplet NCXCH. Note that’H contains negative X)= X)aw + dux)al
norm stategfor example, the elements &f), and it cannot @p(X) k#0 Plx)a k;o Plx)a
be the space of physical states that we have just identified as
K. Note nevertheless that the negative norm states are indis- N +p 20
pensable as intermediate objects to assure the covariance and o (QptPpp), (20
the gauge covariance of the theory. As shown in Sec. VI
below, these states also play a role in the renormalizatiogng
procedure but their use does not imply the appearance of
negative energy: the mean value Bf on physical states is —
always positive. en(X)=— 2 d(X)by— > di(x)by

: . - k=0 kZ0
We shall now prove thak{ is a Krein space containing

as a closed subset. To that end, consigge ¢o+ (1/5/2) 1
and v = do— (45/2)= ¥, and Kp={Zicx oGy ol ol * o (Qnt Pop), (21
<} and H,=Cy¢,®,, and alsoH,=Cy,®K,. The
equality with
H=Hy®Hp, (16)

1 1
_ t _ t
——— (a,+a), =— (a,+a)),
realizesH as a direct sum of a Hilbert space and an anti- n %) (@t an).  Qp %) (2p+ap)

Hilbert space which indeed proves thdtis a Krein space.
Note that neithef{, nor H, carries a representation of the de i i

Sitter group, so the previous decomposition is not covariant. Ph=——(ap—a,), Pp=——(ap— ag).
This can be seen from the fact that the action of&(2) on V2

¥, generatesC as well askC, whereKC is the set of complex
conjugates ofC which is a space of negative frequency so-

lutions [for instance ¥y s+ X2 hp=—i(bs+ ¢-1)/2]. oris an observable and the energy operatgrHas positive
Moreover, one can prove thitis a closed subspace &f by expectation values in all physical states

remarking tha_ﬂC= (}C)*. Note thaty, is not a physical_s_tate In order to prove these claims, we proceed as in Eq@,
(¢p & K) in spite of the fact thafys, ,4p)>0: the condition  (11) to introduce the smeared field, which is easier to work
of positivity of the inner product is not a sufficient condition \yitn For any test functiofi e C2(M), we definep(f ) as the

for selecting physical states. only element ofH verifyin
We are now ready to define th@nsmeared massless y fying

We claim that this field is covariant in the strong sense,
conformally covariant and causal. Moreover the stress ten-

guantum field as follows. Following Mincep 6] (see Ap- (p(f ), p)=(f,4h), VYyeH.
pendi¥, one can build the Fock spadg over the Krein
spaceH. We then define the quantum fieldon H by Unlike on I, this definition makes sense dd, since the

Klein-Gordon inner product is nondegenerate on it. As is the

case for any distribution, one can prefer the unsmeared form

which reads(p(x), #)= ¥(x). The nondegeneracy of the in-

ner product irH is of course crucial in this definition. Let us

e t_ t t_ t remark that the range qf is a dense subset 6 because

+k§0 P(X)a k;o St So(X)35~ ()30, (Ran(p))*={0}. It is actually a covariant vector-valued dis-

17 tribution verifying the field equation. It can be expanded in
the basis, and in the unsmeared form, it reads

where, ag=a(¢o), aj=a'(do), as=a(ys), al=a'(ys),

e(X)= 2, d(x)a,— go Db+ Bo(X)as+ th(X)2g

k#0

b=a(¢y), andbf=a'(¢) (see Appendix The nonvan- PO)= 2 A= 2 hlX) i

ishing commutation relations between these operators are for k#0 k#0

k#0: + o(X) ths— s(X) o, (22
[acaid=1, [by,bfl=-1, _ _
[ac,al]=1, [ag.al]l=1. (18) =k§0 ¢k(><)¢k—k§0 Bi(X) by

Note the minus sign which follows from the formulas +t//_p(X) lﬂp—%(x) . (23)

[a(#),aT(¢")]=(¢,¢') and( ¢y, #)=—1. Note also that

this field is clearly real as the sum of an operator and itsThen, using Eqs(17) and(22) one can readily verify that
conjugate. For later use, we remark that it can be rewritten as

follows: e(x)=a(p(x))+a’(p(x)).
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In smeared form this reads goliubov transformation\ = a,— b, and A p=aptay2— aj
+aT/2 The above formula can be rearranged to read
o(f )=a(p(f ))+a'(p(f)), g

which is well defined on a suitable domatty, of H (H, is e(X)= 2 d(X)A+ 2, zk(X)Al_" Yo(X)A,
the set of finite length elements &f). We note in passing k#0 k#0
that the definition of the field does not depend on the modes
but on the spacé{ they generate, the modes being only a
tool for computation.

To establish the causality of the field, we compWtgthe
kernel ofp, defined formally by

+ (XA (26)

with [Ay Al1=[A,.Al1=2; note however that]0)#0.
This suggests that after all, a Hilbert space Fock vacuum
|0’) could be introduced. This vacuum verifying,|0’)
=0 would, via Eq.(26), lead to a field on a Hilbert space,
p(f )(X')ZJ W(X",x)f(x)du(x), but the invariance of the theory would be broken, as ex-
plained in Sec. Il
wheredu is the invariant measure. As a consequence we

have V. COVARIANCE
(p(f1),p(f2))=(f1,p(f2)) A. de Sitter covariance
_ The invariance of the total spaéé by the de Sitter group
=J’ J’ f (XWX ) Fo(x)du(X)du(x"), G can be proved in the following way. Fot belonging to
the above basis of the Lie algebra @f one can calculate
that is to say in the unsmeared form Yy=exp@X)ys—is. It is enough to prove thatye K+ K.
One can do that by remarking th@tcan be extended in@&”
W(x,x")=(p(x),p(x")). (24 function on the whole torus. As a result its Fourier coeffi-

cients are rapidly decreasing agid= + K.
We now remark thap intertwines the regular representa-
tion V of the de Sitter grougsee p. 11 on Cy(M) andH,

From Egs.(22), (23), and(24) one obtains

W(X’X,):k;o D) DX ) = Ps(X") + Po(X) actually for ally e H we have
_ Vgp=pVy, (27

=2 A (X)) . .

k#0 for any g in the de Sitter group. Indeed we have

— -1

-3 B0 BX) + Io(X) dry(X') (Vgp(f ),y =(p(f ).V ¥

B B =(f.Vg'9)
— () n(X) = 2 A0 B(x). (29 —(Vyh )

Explicit computation gives =(p(V4f ), ).

W(x,X')==iG(x,x"), The representatiol’ of the de Sitter group extends to a

where we recover the commutator defined in Sec. Il. The fepresentatioly of the same group o/, and

vector-valued distributiop is therefore just the kernel of the

natural commutator-iG. Vge(f )Vgt=a(Vgp(f))+a’(Vgp(f ))
The causality of this field now follows immediately from
this definition and from the formulaa(¢),a’(¢’)] =a(p(Vyf ))+a’(p(Vyf )
=(¢.¢'):
=o(Vgf ).

[e(x),@(x")]=2i Im{p(x),p(x"))
_ Remark: To the decompositior{16) corresponds to the
=2i Im W(x,x") decomposition

=—2i§(x,x’). P=pp+tPn (28

We conclude the field is causal beca@Geranishes wherx in a natural way. The expressi@@5) yields the correspond-
andx’ are spacelike separated. ing decomposition ofV: the kernelW decomposes intdV

Before studying the invariance of the field in the next=W,—W, where these kernels are of a positive type. Ex-
section, we make an additional remark. Introducing the Boplicitly, using the previous basis one obtains
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4mW,(x,x")=—log[1—2 coga—a')e PP ) +e 2= —j(p—p")+(1+pp’)

=(1+pp")—In2—Injcoga—a’)—cod p—p')| - 2i TG(X,x"),

where log is the principal determination of the logarithm andH is not invariant undeG,, it is invariant under s@,2)].

In is the Neperian logarithm. The decompositid®) of the  The standard computation on creators and annihilators shows
field is then obtained vigo,=a(py(x))+a'(pp(x)) and e, that[X,e(f )]=e(Xf ). Then puttingK=—iX one obtains
=a(p,(x))+a'(p,(x)). This field has been already dis- .

cussed in Sec. lll. One could be tempted to consigders [X,o(f )]=—ie(Xf),

the physical part of the field which has as Wightman func- =~ . )

tion the functionw, defined above. But, once again, this Which integrates into the desired formula.

object is not covariant becau¥é, is not. So all attempts to

restore positivity of the inner product seem doomed to fail- C. Gauge covariance
ure, in agreement of course with Allen’s result. Let us recall that the classical gauge change is in this
_ context given byp(x)— ¢(x) +\. At the quantum level we
B. Conformal covariance define the gauge change by

Let us recall that the conformal group G,
=SQy(2,2)f=1d}. One would like to obtain a property
which reads formally

U()\):e—ikzps(iv’?aﬁo)’

where we defineps(¢p)=a(¢)+a'(¢). From the well-
‘p(g—l.x):\_/g@(x)\_/gl for any ge G, . known formula(18)

i os(h) Na~les(¥) — ’ ’
But several difficulties appear when dealing with such a for- ¥ Wog(y)e s = og(y") + 21y i),
mula. First,K is closed under the action of the conformal
group but this is not the case faf and the formula can make

sense only when taking expectation values between physical U(=N)e(f YUN)=o(f )+2\ Im(p(f ),i \/;¢o>|d
states. Second, the space of test functions is not invariant

we obtain

und_er the conformal group. Thirc_l, w_hen smearing the _distri_- =o(f )+ N\ Im(f,i bo)ld
butions, one uses a measure which is not conformally invari-
ant and one has to be careful when dealing with the action of =(f )+ N Vam(f,¢o)ld.

the conformal group on distributions.

Let feCo(M) andge G.; we say thaf andg are com-  That is to say the gauge transformation is given by
patible if and only if there existX e so(2,2) such thag

=expX and expdX-x belongs toM for all #<[0,1] and for o(f )—o(f )+ Nvam(f,¢o)ld,
all x in the support of . Forf andg compatible we define a )
test functionVf cC2(M) by or in the unsmeared formf € 6,):

B e(X)— e(X)+AId.
f OOV, ) (X)d(x) = f (G- F0du(x),
VI. THE STRESS-TENSOR AND OTHER OBSERVABLES

for any locally integrable functiogl. Note that, thanks to the

compatibility condition, the right hand side makes sense. The Having shown that the field we constructed is causal and

(local) representation/ is not the regular one because the has all the covariance properties of the classical field, we can
now turn to an investigation of the physical content of the

measure is not conformally invariant. An explicit computa-
~ theory.

tion of the representatiod allows one to identify it with the We denote byV, K, and’H the Fock spaces built i’

limit (0=1) of the complementary series of representationgC d bvA th b of orth | tok:
of SOy(2,1) denotedv®!in [17]. Let K, be the subspace of , 1 and by )/ the subspace ot orthogonal tok:

‘Ho generatedas a tensor algebrdy K. The representation VeN iff WeK and(V,0)=0Vdeck. (29
V of the conformal group o extends to a representativh h

of the same group oi,. Then for anyfeC5(M) andg  To interpret the theory, we define its physical states and its

e G, compatible and for any,, i, € K, one has observables.
_ First, the physical states are defined to be the elements of
(1] @(Vqf )|z/;2)=(\_/§11,/x1|<p(f )|y51¢2>. K. Note that the spacd/ is strictly greater thanV, for in-

stancego® ¢+ $1® P belongs ta\V but not to V. We say
More shortly, one can say th@t(g‘1~x)=\_/g<,o(x)\_/g_1 on that two physical states are physically equivalent if they dif-
Ko. fer by an element ofV. It is clear from the definition of
Sketch of the proofAs for covariance, one can prove U(M) that a gauge transformation maps a physical state into
easily thatXp=pX for any X e so(2,2) [note that although an equivalent state. As a consequence, the inner prodi¢t of
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is gauge-independent. We have just defined the secondsing Eq.(17) one can readily quantize this expression into
quantified Gupta-Bleuler triplet:

1
NCKCH. Pozi > |Kl(aaf+ata)+3 > |k|(bgbl+biby)
= K#0 K#0
Remark (quasiuniqueness of the vacuufime space of de
Sitter invariant states o is \V the subspace of finite length — > |klagb— > |klafbl+ (agad+adag)
elements of\. This space is infinitely dimensional, hence k#0 k#0
the Fock vacuum is not the only de Sitter invariant state. —aoao—agag.

Nevertheless one can see easily that all these states are physi-

cally equivalent to an element of the one-dimensional spacg, s expression the usual renormalizatigrormal order-
generated by the vacuum state. In this sense we can say ﬂ]ﬁb) is now useless becausa.al+ajac+ b +biby

the vacuum is unique. ot + )
As we have said before, in the Gupta-Bleuler triplets ter-~ 22T bybi), see Eq(18). Hence one obtains

minology, observables are defined by the property that they
do not “see” the gauge states, as a consequence Whand Po= >, |Klajac+ > [klbib— >, |Kk|agby
¥’ are equivalent physical statéslements ofKC such that k#0 k=0 k#0
¥ -’ belongs taV), we must have
-3, IKlalb+ 3P
(VIA[W)=(V'|A[¥), k70

for any observablé. Hence the field itself is not an observ- whereP=P,+P,. Then if ¥ is a physical state¥ e K,)
able as can be seen in the form(l&) because of the ap- one obtains
pearance ohl andas. Nevertheless the operatofge no
longer contain those ternfisince ¢y(x) is constanf, and the
physically interesting observables are built with them.
The fact thate is not an observable implies that the dif-
ferent two-point functions are gauge-depend@xcept for \yhich is reassuringly positive, even though the oper&gr
W which is defined independently of the field and which, contains negative definite terms.
being a commutator, is gauge-invaripms an example, the  Note in particular that, if¥ is a physical state, then
symmetric two-point functiorG(*) is not expected to have (y|p2|y)=0, even thougtP|¥)+0 and(0|0)=1, some-
great meaning in our construction and a straightforwargning that is of course not possible in a Hilbert space. This
computation indeed shows that it vanishes: shows that the zero modes do not contribute to the energy of
, ) , the physical states at all and should be compared with the

G (x,x")=(0|[ ¢(x),(x")],+]0)=2 ReW(x,x")=0. approach of 3] recalled in Sec. Ill, where the vacuum is not
ormalizable as the zero eigenvectorRy.

Moreover if ¥ —¥' belongs taV, we have

<~1f|Po|\If>=<~P|k§0 |k|afay/¥), (3D

This shows of course that it is de Sitter covariant, be it in a"
trivial way.

We will now deal with some observables and show that
the “negative frequency part” of the field will realize a
renormalization allowing a trivial computation of the mean . .
values of the componen%s of the stressptensor. At the classicg[".j Po IS therefore_ an observable. The same is trueHpr
level, the stress tensor is given by-{2=m=¢=s=0), which has the explicit form

T o= 0ubd, b= 30,,9"" 9, b0, P1= 2, ka@ct 2 kbib— 2 kawbi— 2, kagby.
k#0 k#0 k#0 k#0

<‘I’|Po|‘P>:<‘l"|Po|‘l">,

see for instancgl9]. Hence
The stress tensor itself is an observable. In order to com-

Too=T11=3[(3,0)*+ (9ab)?], pute mean values we first compu|d,e(x)d,¢(x)|0).
q The terms containingy,as,a},a; do not contribute and we
an obtain
To1=T10=dppdad. o

0|9,0(X)d,e(x)|0)= d X)d X
Using V,,T#,=0 one defines the Hamiltonian and momen- (019,49 (x)2,¢(|0) K70 p X9y pi(x)
tum operators

= 2 3, ()3, hi(X)
k#0

POZJ =OT00dCY,
=2i Im X, d,¢(X)3, (%)
k#0

P1: - J TOlda. (30)
0 =0,
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(0T ,.(x)]0)=0,
APPENDIX: THE FOCK SPACE
and there is an automatic renormalization of the stress tensor. . .
Similarly we can compute the mean values of the stress Let us recall that for any Hilbert spacé one defines the

tensor on physical states of the following type: corresponding Fock spacé by

o 1 T T A= & S(A),
1 i\ — n ni n=
Kyt k) m(akl) 1...(akj) i|0). | |
where S,(A) is the nth symmetrical tensor product oA.
The same cancellation holds and one obtains When A is realized as a spade€?(R%,du), one can realize
S.(A) as the space of square integrable symmetric functions
(K1t K 3,0() 3,0 (X)|Ky* . . KT of n variables onRY. The one-dimensional spa&y(.A) is

written |0) and called the vacuum state. As is well-known the
1 EJ: — creatorsal and annihilators, create and annihilate, respec-
Toae RE(9,,¢x, (%) 3, (X)) tively, the modeg, . They can be realized on the Fock space
in the following way. Let¥ be in S,(.A), we have
As a consequence we obtain

, (W) (X1, -+ Xn-1)
n n; n n; 1 l
(K3t K| TooX)[K7E . .kjl)=zi21 nlkl, (32 :Jﬁf TV XXy -+ X)),

in agreement with Eqs(30) and (31), and once again no gngd
infinite terms appears in this computation. Note that the for-

mula (32) shows that the use of negative norm solutions in 1 n
the definition of the field does not yield negative energy. (@) (Xq, .. Xns1)= ——= > P(X))
As said before, the “negative norm part” of the field Vn+1li=1

allows a renormalization of the stress tensor. Indeed, no in-
finite term appears in the previous computation, and the con-

formal anomaly also disappears. In order to better understanv(\j/herei(- means that this term is omitted. It is clear from this
this fact let us consider the “positive norm part” of the field: ! X

definition that one can define the annihilator and creator of
any elementp of A by

XW(Xy,y v Xiy e e Xns1)s

ep(X)= 2 Pt Ypapt > di(X)al+ ypal,
k#0 k#0
@(P)¥)(xq, - -« Xn-1)= \/ﬁf X)W (X, X1, - - Xn—1)

wherea,=a(y,) andal=a'(y,). As explained in Sec. IIl,

this field is the two-dimensional analogue of the field defined Xdu(x),
in (3). The mean value of the stress tensor of this field in the
Gupta-Bleuler vacuum state is given by and
S, Tl i v L s
0|T,,|0)= T D)+ T (U, ). -
< | le > e ;/,V(d)k d)k) " (lr/lp lr/lp) (aT((j))\If)(xl, e 1Xn+l)_ ——] le ¢(Xi)
Direct computation proves tha'tg(gg&,w_p)ﬂi(%,w_p):o XWXy, ovo Xy e Xpaq).

and also thallo;(¢p , ¢0p) = T1o(¥p, ) =0. The other term

Sr0T Pk, Py is exactly the quantity computed in a gen- On can see easily that is antilinear as a function of and
eral setting in(13), and this is where the conformal anomaly thata' is linear. Moreover one has

appears. Hence the absence of a conformal anomaly in the

Gupta-Bleuler vacuum is due to cancellations between the [ 7=,

positive norm and negative norm part of the field, and this [a(¢).a'(¢ )]_j $(X) b’ (x)dpu(x).
renormalization seems to be very different from the other

ones which all present this anomaly. Of course, it is not veryThis gives of course the usual commutation relations when
surprising that our field which is conformally covariant in a applied to the modeg,, .

rather strong sense does not present any conformal anomaly Suppose now that we have a Krein spatequipped with
which, after all, can appear only by breaking this conformala nonpositive inner produ¢t, ). There is orf{ a (nonuniqué
invariance. Hilbert space structure. We can now define the Fock space
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using this positive product and also define annihilators and’hese operators have very similar properties as the usual
creators using the nonpositive inner product. For instance ibnes(see[16] for detailg, in particular they are conjugate to

(,)is as in Eq.(2), one has

@(A)W)(Xq, - .« Xq_1)=1/ni $p.a) J,

XV ((p,a),X1, ... Xp_1)da

for any square integrable-symmetric function¥’. The cre-
ator is also defined by

n+1
T - .
@"(A)P)(Xq, ... Xns1) N ; B(X)
XW(Xgy oo Xiy oo s Xns1)-

one of the other with respect tq ) and one has

[a(¢),a’($)]=(d. ).

Note that any unitaryfor the nonpositive inner prodycop-
eratorV on ‘H yields a unitary operato¥ on H, but this
operator is not always boundddven though it is unitagy
and is defined on a dense subspac@{afontainingX,, the
space of finite length elements. One can easily verify that

Va($)V 1=a(Ve),

and a similar equality holds foa' and for the so-called
Segal fieldps(p)=a(p) +a'(¢).
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