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Massless Gupta-Bleuler vacuum on the„111…-dimensional de Sitter space-time
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We construct a causal, de Sitter, and conformally covariant massless free quantum field on the~111!-
dimensional de Sitter space-time admitting a de Sitter invariant vacuum in an indefinite inner product space.
The field is defined rigorously as an operator-valued distribution and is covariant in the usual strong sense:
VI g

21w(x)VI g5w(g•x) for any g in the de Sitter group, whereVI is a unitary representation of the de Sitter
group on the space of states. We use the formalism of Gupta-Bleuler triplets which also allows for an explicit
description of the gauge degree of freedom. As a consequence the model does not suffer from infrared
divergences, contrary to what happened in previous treatments of this problem. The causality and the covari-
ance of the theory are assured thanks to a suitable choice of the space of solutions of the classical field
equation. We show that, although the field itself is not observable~it is gauge dependent!, the stress tensor and
the energy-momentum vector are. The energy operatorP0 is positive in all physical states, and vanishes in the
vacuum. In addition, the field is conformally covariant and the model does not exhibit a conformal anomaly in
the trace of the energy-momentum tensor.@S0556-2821~98!00212-4#

PACS number~s!: 04.62.1v, 03.70.1k
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I. INTRODUCTION

In this paper we construct a new massless free quan
field on the~111!-dimensional de Sitter space-time, tran
forming correctly under isometries, conformal transform
tions, and gauge transformations, which is free of conform
anomalies, and which admits a de Sitter invariant vacuu

The massless free field on the~111!-dimensional de Sit-
ter space-time is of interest partially because the difficul
encountered in its construction are similar to those that
has when considering the~113!-dimensional minimally
coupled field@1–4# and the spin 2 field. It is well-known tha
a straightforward quantization of the classical massless
field in two-dimensional space-time leads to an infrared
vergence in the case of the Minkowski space-time. It is th
sometimes claimed that to avoid the divergence, the Lore
symmetry must be broken@5#. A similar problem is known to
occur in ~311!-dimensional de Sitter space-time, whe
Allen has proven the nonexistence of a de Sitter covar
Fock vacuum for the massless minimally coupled field@1#,
which is also infrared divergent. Allen’s result easily hol
in 111 dimensions as well. To circumvent this problem, t
covariance condition is often weakened one way or anot
some authors studied vacua invariant under a subgroup o
de Sitter group only~spontaneous symmetry breaking!, oth-
ers choose to restrict the field to a subset of the de S
space-time, or consider invariance under the Lie algebr
the de Sitter group rather than under the full group act
~see@2,6,7# and references therein!. Kirsten and Garriga@3#
have proposed an alternative vacuum, in which certain t
point functions are de Sitter covariant, and grow linearly

*Email address: debievre@gat.univ-lille1.fr
†Email address: renaud@ccr.jussieu.fr
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the proper time between the points. They exploit the obs
vation that the free field equation admits a zero-freque
mode. We show below that this vacuum is not invariant
the usual strong sense.

Remarking that the classical free massless field in 111
dimensions is in addition to de Sitter, also gauge covaria
we show here that a rather straightforward application of
Gupta-Bleuler formalism, known to be well adapted to tre
models with gauge symmetries, permits one to avoid
symmetry breaking altogether: the field we construct tra
forms correctly under de Sitter, conformal, and gauge tra
formations and acts on a state space containing a vac
invariant under all of them. It is free of infrared divergenc
In addition, a consequence of our construction is an au
matic renormalization of the stress tensor which makes
so-called conformal anomaly disappear from the trace of
energy-momentum tensor.

Our construction is of the Gupta-Bleuler type, and t
field acts on a space of states having the structure of a F
space but containing both positive and negative norm v
tors. To assure a reasonable interpretation of the theory
therefore need to select the subspace of physical states
do this, we recall that since de Sitter space-time is not
tionary, there isa priori no natural time coordinate on it an
hence no natural notion of ‘‘positive frequency.’’ We neve
theless select the physical states by demanding that the
positive frequencies with respect to the conformal time on
Sitter space-time. This choice, whilead hoc, is justified by
the fact that the resulting theory has all the properties
might require from a free field on a space-time with hi
symmetry, as we now further explain.

First of all, it turns out that all physical states have po
tive norms, as required for a reasonable quantum mechan
interpretation of the model~even though it is not true that a
positive norm states are physical!.
6230 © 1998 The American Physical Society
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57 6231MASSLESS GUPTA-BLEULER VACUUM ON THE~111!- . . .
Second, the fieldw we construct here is causal and it
convariant in the usual strong sense: there is a unitary re
sentationVI of the de Sitter group on the space of states a
VI g

21w(x)VI g5w(g•x) for any g in the de Sitter group~Sec.
V!. This implies in particular that the field is defined on t
whole space-time.

Third, there is a one-parameter group of unitariesU(l)
acting on the state space, that implement the gauge tran
mations:

U~2l!w~x!U~l!5w~x!1l. ~1!

Fourth, the gauge degree of freedom entails a notion
physical equivalence between states: basically, two st
differing by a state containing ‘‘gauge states’’ are physica
equivalent. The space of physical states contains a ve
invariant under the action of the de Sitter group, which
unique up to physical equivalence. We call it the Gup
Bleuler vacuum. The vacuum is gauge-invariant in the se
that a gauge transformation transforms the vacuum int
physically equivalent state. Observables are those s
adjoint operators having expectation values that are ga
independent~Sec. VI!. With these definitions, it turns ou
that the field itself is not an observable: this is as expec
and can be seen by calculating the mean value of Eq.~1! in
the vacuum. The components of the energy-momentum
sor on the other hand are observables. Furthermore, in
of the fact that the operatorT00(x) is not positively definite
as an operator on the full space of states, we show tha
expected value ofT00(x) between excited physical states
the form uk1

n1 . . . kj
nj& is given by

^k1
n1 . . . kj

nj uT00~x!uk1
n1 . . . kj

nj&5
1

2p (
i 51

j

ni uki u,

which is clearly positive. This assures a reasonable phys
interpretation of the model.

The results of this paper show that Allen’s result does
imply that a fully invariant vacuum for the free massle
field does not exist on~111!-dimensional de Sitter space
time. There indeed does not exist an invariant Fock vacu
state in the usual sense, i.e., a vacuum belonging to a F
space constructed over aHilbert space. We do however con
struct an invariant vacuum in a Fock space constructed o
an indefinite inner product space that we referred to a
Gupta-Bleuler vacuum above. In view of the obvious gau
invariance of the field equation, this is really not too surpr
ing: the Gupta-Bleuler formalism was invented to avoid Lo
entz symmetry breaking through gauge fixing. As we sh
show, our construction is quite easy to implement: it is
matter of adapting the Gupta-Bleuler quantization of the f
electromagnetic field@8#.

Let us recall that in electrodynamics the Gupta-Bleu
triplet Vg,V,V8 is defined as follows@9,10#. The spaceVg
is the space of scalar photon states or ‘‘gauge states,’’
spaceV is the space of positive frequency solutions of t
field equation verifying the Lorentz condition, andV8 is the
space of all positive frequency solutions of the field eq
tion, containing nonphysical states. The Klein-Gordon in
product defines an indefinite inner product onV8 that is
Poincare´ and locally and conformally invariant. All three o
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these spaces carry representations of the Poincare´ group but
Vg and V are not covariantly complemented. The quotie
spaceV/Vg of states up to a gauge transformation is t
space of physical one-photon states. The quantized field
on the Fock space built onV8, which is not a Hilbert space
but an indefinite inner product space.

The same scheme will appear in our construction. T
Lagrangian

L5Augugmn]mf]nf̄

of the free massless field is invariant when adding tof a
constant function. As a consequence, in the ‘‘one-part
sector’’ of the field the space of gauge states is simply
space of constant functions writtenN in the following: The
analogue of the spaceV above, writtenK and called the
physical one-particle space in the following, is a space
positive frequency solutions of the field equation equipp
with the degenerate~but positive! Klein-Gordon inner prod-
uct. It was studied in@11# and will be described in detai
below. It is the principal ingredient of the construction. T
role of the spaceV8 is played by a larger space of solution
described below as well, and for which we writeH: H is
called the total space and it is a Krein space@12# when
equipped with the Klein-Gordon inner product. Let us rec
that a Krein space is the orthogonal sum of a Hilbert sp
and an anti-Hilbert space~with a negative definite inne
product!. Hence, the Klein-Gordon inner product onH is
nondegenerate, but not positively definite. As usual in
Gupta-Bleuler model, the quantum field is written on a Fo
space built onH. We do insist on the fact that all of thes
spaces carry representations of the de Sitter group and
the construction of the field is completely covariant as a
sult of this and of the nondegeneracy of the inner product
H. Again, this is not in contradiction with the result of Alle
@1# becauseH is not a Hilbert space.

All of these properties are not restricted to the~111!-
dimensional massless field. In a future work@4# it will be
proved that a similar construction yields similar propert
for the minimally coupled massless field on the~113!-
dimensional de Sitter space-time.

We would like to add one more comment. One mig
object that there is no reason to insist on the correct tra
formation properties of the field, since it is unobservab
anyway and since, at any rate, most space-times do not
much symmetry to begin with. We feel this is not justifie
for two reasons.

First, one could conceivably construct a field that does
transform correctly but gives rise to observables that
transform correctly: this does not seem so easy to implem
and it is certainly not what one does for the electromagn
vector potential and field.

Second, the~111!-dimensional equation is conformall
invariant, and this invariance is important since it surviv
for the free massless field on all two-dimensional spa
times.

In our construction, the first two spaces~N,K! are in ad-
dition invariant under the conformal group and we obtain
conformal invariance of the field from this. Davies and Fu
ing @13# have studied a vacuum for the massless free qu
tum field on arbitrary~111!-dimensional space-times. A
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6232 57S. DE BIÈVRE AND J. RENAUD
they point out, their treatment is incomplete on the de Si
space-time, since they neglect the zero-frequency mode
they suggest that once quantized, this mode does not con
ute substantially to the energy-momentum tensor. We sh
in Sec. III that the neglect of the zero-frequency mode is
source of two other problems: the field constructed
Davies and Fulling is neither causal, nor de Sitter, or con
mally covariant. This is not too surprising, in view of Allen
result @1#. On the contrary, our construction is conforma
covariant, and the expected value of all components of
stress-energy tensor vanish in the Gupta-Bleuler vacu
and hence there is no conformal anomaly in the trace of
energy-momentum tensor.

One might actually argue that the conformal anomaly
pearing in the trace of the energy momentum tensor in
field of Davies and Fulling and others is a result of the f
that their constructions break the conformal invariance fr
the outset.

The rest of this paper is organized as follows. In Sec
we recall some elementary facts about the~111!-
dimensional de Sitter space-time and fix the notations
Sec. III we present the standard approach to free field qu
tization on curved space-times in order to show how
breaks down for the free massless field on the~111!-
dimensional de Sitter space-time. In Sec. IV we build
quantum field and we discuss its invariance in Sec. V.
Sec. VI we compute the stress tensor. Some elementary
about indefinite inner product Fock spaces are recalled in
Appendix.

II. THE de SITTER UNIVERSE AND THE MASSLESS
FIELD EQUATION

The ~111!-dimensional de Sitter universe can be realiz
as the submanifoldM of R3 defined by

~y1!22~y2!22~y3!2521,

with the metricds25(dy1)22(dy2)22(dy3)2. The follow-
ing ‘‘conformal’’ coordinates will be useful for our pur
poses:

5
y15tan r,

y25
sin a

cosr
, aPR/2pZ, rP] 2p/2,p/2[,

y35
cosa

cosr
.

In these coordinates the metric readsds25cos22r(2dr2

1da2). Note that the coordinater is timelike anda is space-
like. Let G be the connected component of the isome
group containing the identity: this is the so-called de Sit
group,G5SO0(1,2), of the de Sitter universe which is ge
erated by the three infinitesimal generators:

X2,35
]

]a
, X1,352sin a sin r

]

]a
1cosa cosr

]

]r
,

X2,152cosa sin r
]

]a
2sin a cosr

]

]r
.
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The G-invariant measure readsdm5drda/cos2r. The
Laplace-Beltrami operator is

52
1

Ag
~]nAggnm]m!5cos2rS ]2

]r22
]2

]a2D .

Recall that the de Sitter universe is not stationary sinc
does not allow for a timelike Killing vector field. Some au
thors nevertheless refer to the generatorX̂5 iX1,3 @14# as the
Hamiltonian and one can see that it contracts to the us
Hamiltonian of the Minkowski plane when the curvatu
tends to 0. Since this vector field is not everywhere timel
it can, however, not be used to define a separation into p
tive and negative frequency solutions of the field equatio

To deal with the problems surrounding conformal inva
ance it is helpful to recall that the de Sitter universe can
realized as a dense open subset of the torusS13S1, the
compactified space-time, which is a homogeneous space
the conformal group SO0(2,2)/$6Id%ªGc . The point
(u1,u2)PS13S1 is identified with the point~r,a! by the
formulas u«5r2«a. Converselyr[(u11u2)/2 with r
P] 2p/2, p/2[ and a5r2u1. The generators of the con
formal group action are obtained by adjoining the followin
ones toX2,3, X1,3, X2,1:

X2,052cosa cosr
]

]a
1sin a sin r

]

]r
, X1,0

52
]

]r
, X3,05sin a cosr

]

]a
1cosa sin r

]

]r
.

The conformally coupled field equation reads

f50, ~2!

which becomes inu« coordinates:]2f/]u1]u250, the so-
lutions of which are the functionsf 1(u1)1 f 2(u2). Note
that the conformal Killing vector fieldX1,0 is clearly timelike
everywhere, and we will use it below to select positive fr
quency solutions. Note also that the lightlike coordina
(u1,u2)PS13S1 allow us to see the commutative decom
position Gc5SO0(2,2)/$6Id%5SO0~1,2!3SO0~1,2! by de-
fining, for «56;

Y0
«5 1

2 ~X3,21«X0,1!, Y1
«5 1

2 ~X1,21«X0,3!,

Y2
«5 1

2 ~X1,31«X2,0!. ~3!

Straightforward computation gives

Y0
«5«]u«, Y1

«52« sin u«]u«, Y2
«5cosu«]u«.

Hence the group is decomposed in the commutative di
product of two copies of SO0(1,2), each of them acting on
only one coordinate. Note that the de Sitter group SO0~1,2!5
G is not one of these factors but is generated by the se
diagonal elements of the product, as can be easily seen
Eq. ~3! becauseX3,25Y0

11Y0
2 , etc.

This space-time is globally hyperbolic, hence the s
called commutatorG̃ 5Gadv2Gret is uniquely defined@15#.
Let us recall that these propagators are defined

xG
adv(x,y)5 xG

ret(x,y)52d(x,y) and for fixed y the
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support inx of Gadv ~resp.Gret! lies in the past~resp. future!

cone ofy. This commutatorG̃ (x,y) is equal to11/2 whenx
is in the future cone ofy, 21/2 whenx is in the past cone o
y, and 0 elsewhere. The Klein-Gordon inner product
tween solutions of Eq.~2! is defined by

^f,c&5 i E
r50

f~a,r!]Jrc~a,r!da ~4!

when it makes sense. This inner product is invaria
^Vgf,Vgc&5^f,c& whereV is the regular representation o
the de Sitter group:Vgc(x)5c(g21x) for any gPG andx
PM . This is linked to the commutator by

f~x!5 i E
r50

2 iG̃ „x,~a,r!…]Jrf~a,r!da

for ~at least! any smooth solution of the field equation wi
compact support.

We shall finally also use the invariant inner product
L2(M ) denoted by parentheses:

~ f ,g!5E f ~x!g~x!dm~x!, ~5!

wheredm(x)5drda/cos2r is the invariant measure.

III. DESCRIPTION OF THE PROBLEM

In this section we explain how the difficulty in quantizin
the massless field onM arise.

We first recall the canonical quantization of the boso
scalar Klein-Gordon fieldw(x),

~ 1m2!w~x!50, ~6!

on a globally hyperbolic space-timeM . To construct the
quantum field one looks for a set of modesfk , solutions to
Eq. ~6! satisfying the following properties. Firstly,

^fk ,f l&5dk,l , ^fk ,f l&50, ~7!

where ^•,•& denotes the Klein-Gordon inner product. Se
ondly, thefk and thefk are requested to span the space
smooth solutions to Eq.~6!. Given suchfk , one considers
the Hilbert spaceS they span and the corresponding boso
Fock spaceSI . The field is then defined by

w~x!5(
k

fk~x!ak1(
k

fk~x!ak
† , ~8!

where theak and theak
† are the usual annihilation and cre

ation operators of the modefk . Note that this construction
depends crucially on the choice made for thefk or, more
precisely, on the spaceS they span. To make sure this yield
a physically acceptable theory, one normally requires the
lowing additional properties ofw(x). First, w needs to be
causal: actually,@w(x),w(x8)# is required to equal the com
mutator function2 iG̃ (x,x8) on M to ensure that the fiel
satisfies the correct equal time commutation relations with
conjugate momentum. Next, ifM is stationary, one impose
a positive frequency requirement, which restricts the poss
-

t:

c

-
f

c

l-

ts

le

choices for thefk . In addition, one wishes all the symme
tries of the classical equation~6! to survive in the quantized
theory. This means that one expects the Fock spaceSI to
carry a unitary representationVI of the isometry group ofM
~and of all other symmetries of the theory!, and that one
requires the field to transform correctly@meaning
VI g

21w(x)VI g5w(g•x)#, and the vacuum to be invariant. Fo
what follows it is of importance to recall that,in the above
setting, it is sufficient to require the invariance of the sol
tion spaceS under the natural representation of the isome
group ~which extends in the obvious way to the full Foc
space! to obtain the correct transformation properties of t
field.

To see this, it is convenient to smear the field with a r
test functionf PC0

`(M ):

w~ f !5E f ~x!w~x!dm~x!

5(
k
E fk~x! f ~x!dm~x!ak

1(
k
E fk~x! f ~x!dm~x!ak

†

5(
k

~fk, f !ak1(
k

~fk , f !ak
† ,

where the parentheses designate theL2 inner product~5!. As
pointed out in the Appendix,ak5a(fk) and ak

†5a†(fk)
wherea anda† are, respectively, antilinear and linear in th
argumentfk . Hence we can rewrite the smeared field in t
following manner:

w~ f !5(
k

~fk, f !a~fk!1(
k

~fk , f !a†~fk!

5aS (
k

~fk , f !fkD 1a†S (
k

~fk , f !fkD .

Defining

p~ f !5(
k

~fk , f !fkPS, ~9!

we have

w~ f !5a„p~ f !…1a†
„p~ f !…. ~10!

Let us now considerp, which is a vector valued distribution
taking values in the spaceS generated by the modes. Its ro
is to associate to a test functionf an element of the physica
one-particle space, so that we can consider the assoc
annihilation and creation operators. Note thatp( f ) in Eq.
~9! is theuniquevector inS for which

^p~ f !,c&5~ f ,c!, ;cPS, ~11!

where we refer to Eqs.~4! and ~5! for the definitions of the
two inner products, both invariant under isometries. O
concludes immediately from Eq.~11! and the nondegenerac
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6234 57S. DE BIÈVRE AND J. RENAUD
condition ~7! that, if S is invariant under the action of th
isometry group, thenVgp( f )Vg215p(Vgf ) and as a result
w(x) also transforms correctly~see also Sec. V for more
details!.

It is well known that the above picture tends to bre
down in the presence of gauge invariance, and in partic
whenm50 in Eq. ~6!. Allen @1# has indeed proved that o
the ~311!-dimensional de Sitter space-time no de Sitter
variant quantum field of the above type can exist whenm
50. In particular, the theory obtained by takingm→0 in a
massive theory is infrared divergent and this phenomeno
interpreted as symmetry breaking. The same divergence
pears in 111 dimensions@7#. What we show in this paper i
that a causal, gauge, and conformally covariant quan
field of the Gupta-Bleuler type can nevertheless be c
structed by dropping the positivity requirement in Eq.~7!.

Before doing this, we start by following the above cano
cal approach in order to pin down precisely where it bre
down. AlthoughM does not allow a global timelike Killing
field, X̂052 iX1,0 is a global timelikeconformalKilling field
and we choose the modesfk to be positive frequency fo
X̂0 , i.e., simultaneous solutions toX̂0f5vf, v>0, and Eq.
~6! with m50. They are easily seen to be given by

f0~a,r!5
1

A4p
,

fk~a,r!5
e2 i ukur1 ika

A4puku
for any kPZ\$0%, ~12!

with v5uku. The sign ofk distinguishes the right-moving
modes (k.0) and the left-moving modes (k,0). We have,
for k,l PZ\$0%,

^fk ,f l&5dk,l , ^fk ,f l&50, ~13!

but, for all l PZ, including l 50,

^f0 ,f l&505^f0 ,f l&, ~14!

which means the inner product is now degenerate, in con
to Eq. ~7!. This suggests droppingf0 and constructing the
field as in Eq.~8! with only thefk , kÞ0. This is precisely
the field considered in@13# and leads to two problems a
least. A simple computation shows that this field is n
causal and does not transform correctly under the de S
group SO0(1,2)5G. This is due to the fact that the spac
spanned by thefk for kÞ0 is not invariant under the d
Sitter group. For instance, a direct computation give
(2X2,11 iX1,3)f15f0 . Let us recall that the infrared prob
lem on ~111!-dimensional Minkowski space-time is due
the existence of solutions of arbitrary small frequencies. O
could think that this problem, and the symmetry break
associated with it, will disappear on the de Sitter space-t
because the frequencies are now discretized since the s
time is spatially compact. But this is not quite true in t
sense that, as we have just seen, the covariance of the th
forces one to include the null frequency solution itself in t
normal mode decomposition of the field. This is of course
perfect agreement with Allen’s result cited above.
ar
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At this point, wishing to recover an invariant theory, on
is naturally lead to reincludef0 , to consider the positive
semidefinite inner product spaceK spanned by thefk , and
to construct the fieldw as in Eq.~8! on the Fock spaceKI .
This still makes sense, in spite of the degeneracy of the in
product. Since, as is shown in Sec. IV,K is invariant under
both SO0(1,2) and the conformal group, one would expe
the resulting field to be SO0(1,2) and conformally covariant
i.e., VI g

21w(x)VI g5w(g•x) for any g in the de Sitter group,
where VI is the natural representation of this group on t
Fock space.This turns out to be wrong: in spite of the fa
that the spaceK generated by the modes in Eq.~12! is closed
under the action of the group, the field is not covariant as
consequence of the degeneracy of the inner product onK.
The reason is that the basis~12! is not orthonormal and as
result the corresponding distributionp, as defined in Eq.~9!,
does not verify Eq.~11! anymore, so the reasoning leading
the invariance of the field no longer holds up. It turns out th
the distributionp is indeednot covariant: p does not inter-
twine the ~regular! representations of the group onC0

`(M )
and K. Direct computation shows for example th
X̂1,3p( f )Þp(X̂1,3f ) where X̂1,352 iX1,3. Note that, if the
inner product is nondegenerate, one can definep equally
well through Eqs.~9! and ~11!, the two being equivalent. In
contrast, since the Klein-Gordon inner product is degene
onK, there no longer exists ap( f ) satisfying Eq.~11!, as is
easily seen. We note in passing that the degeneracy of
inner product is directly related to the indecomposability
the representation of SO0(2,1) onK ~see Sec. IV!. To sum-
marize, in order to construct a covariant quantum fie
theory via Eq. (8), it seems one must have a nondegene
inner product; it is in particular not enough to have a rep
resentation of the de Sitter group on the Fock space wh
the field operators act to guarantee the covariance of
field.

Incidentally, one could try to ignore this invariance pro
lem and carry on with the above field. But one then notic
that the commutator built with this field is still not causal,
the theory remains at any rate unacceptable.

At this point, one should notice that the modesfk do not
form a complete set in the sense specified above; since
field equation admits a so-called zero-frequency mode,

cp5
1

A4p
~12 ir!,

verifying ^cp ,cp&51. One might think our troubles com
from ignoring this mode and it seems natural to consider
complete set of modesfk ,cp , with kÞ0 @which satisfy Eq.
~7!# and to construct the corresponding field that we den
by wp for reasons explained in Sec. V:

wp~x!5 (
kÞ0

fk~x!ak1 (
kÞ0

fk~x!ak
†1apcp~x!1ap

†cp~x!.

Introducing Qp5(ap1ap
†)/& and Pp52 i (ap2ap

†)/&,
one sees@Qp ,Pp#5 i , and the field can be rewritten
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wp~x!5 (
kÞ0

fk~x!ak1 (
kÞ0

fk~x!ak
†

1
1

A2p
~Qp1Ppr!. ~15!

This field acts on the Fock space overHp5Kp% Ccp , where
Ccp is the one-dimensional space spanned bycp andKp is
the Hilbert space generated by thefk’s for kÞ0. It is causal,
but not covariant, since it is easy to see~Sec. IV! thatHp is
not an invariant space of solutions to the field equation.

This is exactly the field considered in@5,3#, except that in
these papers it is made to act on the direct product of
Fock space overK8 with the Fock space overCcp . It cannot
be covariant for the same reason. Nevertheless, treating
~311!-dimensional case, Kirsten and Garrida have foun
state for it, which we will denote byu0p& in the following,
distinct from the Fock vacuum, and which is covariant in
weak sense. It is characterized byaku0p&505Ppu0p&. As an
eigenvector of the ‘‘momentum’’ operatorPp it is of course
not normalizable, but it is chosen to minimize the ener
operator which contains, in addition to the usualak

†ak terms,
a term proportional toPp

2. Kirsten and Garriga comput
^0pu@w(x)2w(y)#2u0p& and find, after point splitting renor
malization, that it depends only on the proper distance
tweenx andy. In this sense, they say their state is ‘‘inva
ant.’’ Our analysis in the next section will show that in th
111 dimension it cannot be invariant in the stronger~and
usual! sense recalled above. It will be proved in@4# that the
same feature appears in the 113 dimension. As we show in
the rest of this paper, the problems of the above fields ca
solved at once by enlarging the space of states into an in
nite but nondegenerate inner product spaceH ~called the
total space! containing nonphysical states as well asK and
Hp .

IV. THE QUANTUM FIELD ON „111…-DIMENSIONAL
de SITTER SPACE-TIME

We begin with the construction of the spaceK of physical
one-particle states. First, recall from Sec. II that the de Si
space-timeM can be realized as an open dense subset o
torusS13S1 and that the conformally coupled~5minimally
coupled! equation is

4 cos2S u11u2

2 D ]u1]u2c50, u«PS1.

Any smoothsolution of this equation on the torus rea
f (u1,u2)5 f 1(u1)1 f 2(u2), the decomposition is no
unique because of the presence of the constant functions
define

K5H (
kPZ

ckfk , with (
kPZ

ucku2,`J ,

where
e

the
a

y

e-

be
fi-

r
he

e

f0~u1,u2!5
1

A4p
, fk~u1,u2!5

e2 iku1

A4pk
when k.0,

fk~u1,u2!5
e2 i ukuu2

A4puku
when k,0,

which is the same as Eq.~12!. Then we have

^f0 ,fk&50;kPZ, ^fk ,f l&5dkl;k,l PZ\$0%.

K is a space of~conformal! positive frequency solutions o
the wave equation onS13S1. It contains all smooth solu-
tions onS13S1. Crucial for what follows is the fact, proved
in @11#, thatK is invariant under the left regular represent
tion of the conformal groupGc5SO0(2,2)/$6Id%, which
also preserves the above positive semidefinite Klein-Gor
inner product onK. This representation was studied in det
in @11# and we recall its essential features here. DefiningN
5KùK'5Cf0 , one easily sees thatN is an invariant sub-
space ofK, which is not orthogonally and not invariantl
complemented: the representation is therefore indecom
able. The Hilbert spaceB5:K/N carries a unitary represen
tation of SO0(2,2)/$6Id%5SO0~1,2!3SO0~1,2! which is the
direct sum of two irreducible unitary representatio
SO0(1,2). It is proved in@11# that each of these represent
tions of SO0(1,2) is the first term of the discrete series
representations of this group.

Let us finally recall that the generator of~conformal! time
translations is X1,052]r52]u12]u2, so that iX1,0fk
5ukufk ; hence the operatoriX1,0 induces an operator onB
with a positive spectrum. Thinking ofiX1,0 as a~conformal!
Hamiltonian, this is the spectral condition satisfied by t
one-particle physical states, a direct consequence of
choice of positive frequency solutions in the construction
K.

Now we have to defineH, the third term of the Gupta-
Bleuler triplet, which will contain nonphysical modes. W
first recall from the previous section that thefk do not form
a complete set of modes onM . Indeed, the field equation ha
an obvious solutioncs on de Sitter space-time, defined by

cs~a,r!52
2ir

A4p
,

which is of norm zero:̂ cs ,cs&50:cs is a zero-frequency
mode @13,5,3#. This solution does not extend to a smoo
solution onS13S1, though, and, as a matter of fact,cs does
not belong toK1K̄, where K̄ is the set of the complex
conjugates of the elements ofK:cs is in this sense not a
superposition of the modesfk . To see this, one can, fo
example, remark that̂cs ,f0&51Þ0, which is impossible
for elements ofK1K̄. We will show how the Gupta-Bleule
formalism allows a very natural quantization of this mod
together with the others, different from the one of@13,5,3#
that we reviewed in the previous section.

We now define the total spaceH by

H5~K1K̄! % Ccs ,
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whereK̄ is the set of the complex conjugates of the eleme
of K.

Note that the first sum is not a direct sum becausef0

PKùK̄ . Recalling thatN5Cf0 we obtain our Gupta
Bleuler triplet N,K,H. Note thatH contains negative
norm states~for example, the elements ofK̄ !, and it cannot
be the space of physical states that we have just identifie
K. Note nevertheless that the negative norm states are in
pensable as intermediate objects to assure the covarianc
the gauge covariance of the theory. As shown in Sec.
below, these states also play a role in the renormaliza
procedure but their use does not imply the appearanc
negative energy: the mean value ofP0 on physical states is
always positive.

We shall now prove thatH is a Krein space containingK
as a closed subset. To that end, considercp5f01(cs/2)
and cn5f02(cs/2)5c̄ p , andKp5$(kÞ0ckfk ;(kÞ0ucku2

,`% and Hp5Ccp%Kp , and alsoHn5Ccn% K̄ p . The
equality

H5Hp%Hn , ~16!

realizesH as a direct sum of a Hilbert space and an an
Hilbert space which indeed proves thatH is a Krein space.
Note that neitherHp norHn carries a representation of the d
Sitter group, so the previous decomposition is not covari
This can be seen from the fact that the action of SO0(1,2) on
cp generatesK̄ as well asK, whereK̄ is the set of complex
conjugates ofK which is a space of negative frequency s
lutions @for instance (X1,31 iX2,1)cp52 i (f11f21)/2#.
Moreover, one can prove thatK is a closed subspace ofH by
remarking thatK5(K̄ )'. Note thatcp is not a physical state
(cp¹K) in spite of the fact that̂cp ,cp&.0: the condition
of positivity of the inner product is not a sufficient conditio
for selecting physical states.

We are now ready to define the~unsmeared! massless
quantum field as follows. Following Mincev@16# ~see Ap-
pendix!, one can build the Fock spaceHI over the Krein
spaceH. We then define the quantum fieldw onHI by

w~x!5 (
kÞ0

fk~x!ak2 (
kÞ0

fk~x!bk1f0~x!as1cs~x!a0

1 (
kÞ0

fk~x!ak
†2 (

kÞ0
fk~x!bk

†1f0~x!as
†2cs~x!a0

† ,

~17!

where, a05a(f0), a0
†5a†(f0), as5a(cs), as

†5a†(cs),
bk5a(fk), and bk

†5a†(fk) ~see Appendix!. The nonvan-
ishing commutation relations between these operators ar
kÞ0:

@ak ,ak
†#51, @bk ,bk

†#521,

@as ,a0
†#51, @a0 ,as

†#51. ~18!

Note the minus sign which follows from the formula
@a(f),a†(f8)#5^f,f8& and ^fk,fk&521. Note also that
this field is clearly real as the sum of an operator and
conjugate. For later use, we remark that it can be rewritte
follows:
ts

as
is-
and
I
n
of

-

t.

-

for

s
as

w~x!5wp~x!1wn~x!, ~19!

where

wp~x!5 (
kÞ0

fk~x!ak1 (
kÞ0

fk~x!ak
†

1
1

A2p
~Qp1Ppr!, ~20!

and

wn~x!52 (
kÞ0

fk~x!bk2 (
kÞ0

fk~x!bk
†

1
1

A2p
~Qn1Pnr!, ~21!

with

Qn52
1

&
~an1an

†!, Qp5
1

&
~ap1ap

†!,

Pn52
i

&
~an2an

†!, Pp52
i

&
~ap2ap

†!.

We claim that this field is covariant in the strong sens
conformally covariant and causal. Moreover the stress te
sor is an observable and the energy operator P0 has positive
expectation values in all physical states.

In order to prove these claims, we proceed as in Eqs.~10!,
~11! to introduce the smeared field, which is easier to wo
with. For any test functionf PC0

`(M ), we definep( f ) as the
only element ofH verifying

^p~ f !,c&5~ f ,c!, ;cPH.

Unlike on K, this definition makes sense onH, since the
Klein-Gordon inner product is nondegenerate on it. As is
case for any distribution, one can prefer the unsmeared f
which readŝ p(x),c&5c(x). The nondegeneracy of the in
ner product inH is of course crucial in this definition. Let u
remark that the range ofp is a dense subset ofH because
„Ran(p)…'5$0%. It is actually a covariant vector-valued dis
tribution verifying the field equation. It can be expanded
the basis, and in the unsmeared form, it reads

p~x!5 (
kÞ0

fk~x!fk2 (
kÞ0

fk~x!fk

1f0~x!cs2cs~x!f0 , ~22!

5 (
kÞ0

fk~x!fk2 (
kÞ0

fk~x!fk

1cp~x!cp2cn~x!cn . ~23!

Then, using Eqs.~17! and ~22! one can readily verify that

w~x!5a„p~x!…1a†
„p~x!….
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In smeared form this reads

w~ f !5a„p~ f !…1a†
„p~ f !…,

which is well defined on a suitable domainHI 0 of HI ~HI 0 is
the set of finite length elements ofHI !. We note in passing
that the definition of the field does not depend on the mo
but on the spaceH they generate, the modes being only
tool for computation.

To establish the causality of the field, we computeW, the
kernel ofp, defined formally by

p~ f !~x8!5E W~x8,x! f ~x!dm~x!,

where dm is the invariant measure. As a consequence
have

^p~ f 1!,p~ f 2!&5„f 1 ,p~ f 2!…

5E E f̄ 1~x8!W~x8,x! f 2~x!dm~x!dm~x8!,

that is to say in the unsmeared form

W~x,x8!5^p~x!,p~x8!&. ~24!

From Eqs.~22!, ~23!, and~24! one obtains

W~x,x8!5 (
kÞ0

fk~x!fk~x8!2cs~x8!1cs~x!

2 (
kÞ0

fk~x!fk~x8!

5 (
kÞ0

fk~x!fk~x8!1cp~x!cp~x8!

2cn~x!cn~x8!2 (
kÞ0

fk~x!fk~x8!. ~25!

Explicit computation gives

W~x,x8!52 iG̃~x,x8!,

where we recover the commutator defined in Sec. II. T
vector-valued distributionp is therefore just the kernel of th
natural commutator2 iG̃.

The causality of this field now follows immediately from
this definition and from the formula@a(f),a†(f8)#
5^f,f8&:

@w~x!,w~x8!#52i Im^p~x!,p~x8!&

52i Im W~x,x8!

522iG̃~x,x8!.

We conclude the field is causal becauseG̃ vanishes whenx
andx8 are spacelike separated.

Before studying the invariance of the field in the ne
section, we make an additional remark. Introducing the B
s

e

e

t
-

goliubov transformationAk5ak2bk
† andAp5a01as/22a0

†

1as
†/2. The above formula can be rearranged to read

w~x!5 (
kÞ0

fk~x!Ak1 (
kÞ0

fk~x!Ak
†1cp~x!Ap

1cp~x!Ap
† , ~26!

with @Ak ,Ak
†#5@Ap ,Ap

†#52; note however thatAku0&Þ0.
This suggests that, after all, a Hilbert space Fock vacu
u08& could be introduced. This vacuum verifyingAku08&
50 would, via Eq.~26!, lead to a field on a Hilbert space
but the invariance of the theory would be broken, as
plained in Sec. III.

V. COVARIANCE

A. de Sitter covariance

The invariance of the total spaceH by the de Sitter group
G can be proved in the following way. ForX belonging to
the above basis of the Lie algebra ofG, one can calculate
c5exp(uX)cs2cs. It is enough to prove thatcPK1K̄ .
One can do that by remarking thatc can be extended in aC`

function on the whole torus. As a result its Fourier coef
cients are rapidly decreasing andcPK1K̄ .

We now remark thatp intertwines the regular represent
tion V of the de Sitter group~see p. 11! on C0

`(M ) andH,
actually for allcPH we have

Vgp5pVg , ~27!

for any g in the de Sitter group. Indeed we have

^Vgp~ f !,c&5^p~ f !,Vg
21c&

5~ f ,Vg
21c!

5~Vgf ,c!

5^p~Vgf !,c&.

The representationV of the de Sitter group extends to
representationVI of the same group onHI 0 and

VI gw~ f !VI g
215a„Vgp~ f !…1a†

„Vgp~ f !…

5a„p~Vgf !…1a†
„p~Vgf !…

5w~Vgf !.

Remark:To the decomposition~16! corresponds to the
decomposition

p5pp1pn ~28!

in a natural way. The expression~25! yields the correspond
ing decomposition ofW: the kernelW decomposes intoW
5Wp2Wn where these kernels are of a positive type. E
plicitly, using the previous basis one obtains



6238 57S. DE BIÈVRE AND J. RENAUD
4pWp~x,x8!52 log@122 cos~a2a8!e2 i ~r2r8!1e22i ~r2r8!#2 i ~r2r8!1~11rr8!

5~11rr8!2 ln 22 lnucos~a2a8!2cos~r2r8!u22ipG̃~x,x8!,
nd
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where log is the principal determination of the logarithm a
ln is the Neperian logarithm. The decomposition~19! of the
field is then obtained viawp5a„pp(x)…1a†

„pp(x)… andwn
5a„pn(x)…1a†

„pn(x)…. This field has been already dis
cussed in Sec. III. One could be tempted to considerwp as
the physical part of the field which has as Wightman fun
tion the functionWp defined above. But, once again, th
object is not covariant becauseWp is not. So all attempts to
restore positivity of the inner product seem doomed to f
ure, in agreement of course with Allen’s result.

B. Conformal covariance

Let us recall that the conformal group isGc
5SO0(2,2)/$6Id%. One would like to obtain a propert
which reads formally

w~g21
•x!5VI gw~x!VI g

21 for any gPGc .

But several difficulties appear when dealing with such a f
mula. First,K is closed under the action of the conform
group but this is not the case forH and the formula can mak
sense only when taking expectation values between phy
states. Second, the space of test functions is not inva
under the conformal group. Third, when smearing the dis
butions, one uses a measure which is not conformally inv
ant and one has to be careful when dealing with the actio
the conformal group on distributions.

Let f PC0
`(M ) andgPGc ; we say thatf andg are com-

patible if and only if there existsXPso(2,2) such thatg
5expX and expuX•x belongs toM for all uP@0,1# and for
all x in the support off . For f andg compatible we define a
test functionṼgf PC0

`(M ) by

E c~x!~Ṽgf !~x!dm~x!5E c~g•x! f ~x!dm~x!,

for any locally integrable functionc. Note that, thanks to the
compatibility condition, the right hand side makes sense.
~local! representationṼ is not the regular one because t
measure is not conformally invariant. An explicit comput
tion of the representationṼ allows one to identify it with the
limit ( s51) of the complementary series of representatio
of SO0(2,1) denotedV0,1 in @17#. Let KI 0 be the subspace o
HI 0 generated~as a tensor algebra! by K. The representation
V of the conformal group onK extends to a representationVI
of the same group onKI 0 . Then for anyf PC0

`(M ) and g
PGc compatible and for anyc1 ,c2PKI 0 one has

^c1uw~Ṽgf !uc2&5^VI g
21c1uw~ f !uVI g

21c2&.

More shortly, one can say thatw(g21
•x)5VI gw(x)VI g

21 on
KI 0 .

Sketch of the proof:As for covariance, one can prov
easily thatXp5pX for any XPso(2,2) @note that although
-

-

-

al
nt
i-
i-
of

e

-

s

H is not invariant underGc , it is invariant under so~2,2!#.
The standard computation on creators and annihilators sh
that @X,w( f )#5w(X f ). Then puttingX̂52 iX one obtains

@X̂,w~ f !#52 iw~X f !,

which integrates into the desired formula.

C. Gauge covariance

Let us recall that the classical gauge change is in
context given byf(x)→f(x)1l. At the quantum level we
define the gauge change by

U~l!5e2 ilwS~ iApf0!,

where we definewS(f)5a(f)1a†(f). From the well-
known formula~18!

eiwS~c!wS~c8!e2 iwS~c!5wS~c8!12 Im^c8,c&,

we obtain

U~2l!w~ f !U~l!5w~ f !12l Im^p~ f !,iApf0&Id

5w~ f !1lA4p Im~ f ,if0!Id

5w~ f !1lA4p~ f ,f0!Id.

That is to say the gauge transformation is given by

w~ f !→w~ f !1lA4p~ f ,f0!Id,

or in the unsmeared form (f 5dx):

w~x!→w~x!1lId.

VI. THE STRESS-TENSOR AND OTHER OBSERVABLES

Having shown that the field we constructed is causal a
has all the covariance properties of the classical field, we
now turn to an investigation of the physical content of t
theory.

We denote byNI , KI , andHI the Fock spaces built onN,
K, H and byN= the subspace ofKI orthogonal toKI :

CPN= iff CPKI and ^C,F&50;FPKI . ~29!

To interpret the theory, we define its physical states and
observables.

First, the physical states are defined to be the elemen
KI . Note that the spaceN= is strictly greater thanNI , for in-
stancef0^ f11f1^ f0 belongs toN= but not toNI . We say
that two physical states are physically equivalent if they d
fer by an element ofN= . It is clear from the definition of
U(l) that a gauge transformation maps a physical state
an equivalent state. As a consequence, the inner productKI
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is gauge-independent. We have just defined the sec
quantified Gupta-Bleuler triplet:

N= ,KI ,HI .

Remark (quasiuniqueness of the vacuum): The space of de
Sitter invariant states ofHI isNI 0 the subspace of finite lengt
elements ofNI . This space is infinitely dimensional, henc
the Fock vacuum is not the only de Sitter invariant sta
Nevertheless one can see easily that all these states are p
cally equivalent to an element of the one-dimensional sp
generated by the vacuum state. In this sense we can say
the vacuum is unique.

As we have said before, in the Gupta-Bleuler triplets t
minology, observables are defined by the property that t
do not ‘‘see’’ the gauge states, as a consequence whenC and
C8 are equivalent physical states~elements ofKI such that
C2C8 belongs toN= !, we must have

^CuAuC&5^C8uAuC8&,

for any observableA. Hence the field itself is not an observ
able as can be seen in the formula~17! because of the ap
pearance ofas

† and as . Nevertheless the operators]mw no
longer contain those terms@sincef0(x) is constant#, and the
physically interesting observables are built with them.

The fact thatw is not an observable implies that the d
ferent two-point functions are gauge-dependent~except for
W which is defined independently of the field and whic
being a commutator, is gauge-invariant!. As an example, the
symmetric two-point functionG(1) is not expected to have
great meaning in our construction and a straightforw
computation indeed shows that it vanishes:

G~1!~x,x8!5^0u@w~x!,w~x8!#1u0&52 ReW~x,x8!50.

This shows of course that it is de Sitter covariant, be it in
trivial way.

We will now deal with some observables and show t
the ‘‘negative frequency part’’ of the field will realize
renormalization allowing a trivial computation of the me
values of the components of the stress tensor. At the clas
level, the stress tensor is given by (n225m5j5s50),

Tmn5]mf]nf2 1
2 gmngrs]rf]sf,

see for instance@19#. Hence

T005T115
1
2 @~]rf!21~]af!2#,

and

T015T105]rf]af.

Using ¹mTm
n50 one defines the Hamiltonian and mome

tum operators

P05E
r50

T00da,

P152E
r50

T01da. ~30!
d-

.
ysi-
ce
hat

-
y

,

d

a

t

cal

-

Using Eq.~17! one can readily quantize this expression in

P05
1

2 (
kÞ0

uku~akak
†1ak

†ak!1 1
2 (

kÞ0
uku~bkbk

†1bk
†bk!

2 (
kÞ0

ukuakbk2 (
kÞ0

ukuak
†bk

†1~a0a0
†1a0

†a0!

2a0a02a0
†a0

† .

In this expression the usual renormalization~normal order-
ing! is now useless becauseakak

†1ak
†ak1bkbk

†1bk
†bk

52(ak
†ak1bk

†bk), see Eq.~18!. Hence one obtains

P05 (
kÞ0

ukuak
†ak1 (

kÞ0
ukubk

†bk2 (
kÞ0

ukuakbk

2 (
kÞ0

ukuak
†bk

†1 1
2 P2,

whereP5Pp1Pn . Then if C is a physical state (CPKI 0)
one obtains

^CuP0uC&5^Cu(
kÞ0

ukuak
†akuC&, ~31!

which is reassuringly positive, even though the operatorP0
contains negative definite terms.

Note in particular that, ifC is a physical state, then
^CuP2uC&50, even thoughPuC&Þ0 and^0u0&51, some-
thing that is of course not possible in a Hilbert space. T
shows that the zero modes do not contribute to the energ
the physical states at all and should be compared with
approach of@3# recalled in Sec. III, where the vacuum is n
normalizable as the zero eigenvector ofPp .

Moreover if C2C8 belongs toN= , we have

^CuP0uC&5^C8uP0uC8&,

and P0 is therefore an observable. The same is true forP1
which has the explicit form

P15 (
kÞ0

kak
†ak1 (

kÞ0
kbk

†bk2 (
kÞ0

kakbk2 (
kÞ0

kak
†bk

† .

The stress tensor itself is an observable. In order to co
pute mean values we first compute^0u]mw(x)]nw(x)u0&.
The terms containinga0 ,as ,a0

† ,as
† do not contribute and we

obtain

^0u]mw~x!]nw~x!u0&5 (
kÞ0

]mfk~x!]nfk~x!

2 (
kÞ0

]mfk~x!]nfk~x!

52i Im (
kÞ0

]mfk~x!]nfk~x!

50.
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The cancellation is due to the unusual second term of
right hand side of the first line which comes from the ter
of the field containingbk and bk

† . As a consequence w
obtain

^0uTmn~x!u0&50,

and there is an automatic renormalization of the stress ten
Similarly we can compute the mean values of the str

tensor on physical states of the following type:

uk1
n1 . . . kj

nj&5
1

An1! . . . nj !
~ak1

† !n1 . . . ~akj

† !nj u0&.

The same cancellation holds and one obtains

^k1
n1 . . . kj

nj u]mw~x!]nw~x!uk1
n1 . . . kj

nj&

5
1

2p (
i 51

j

ni Re„]mfki
~x!]nfki

~x!….

As a consequence we obtain

^k1
n1 . . . kj

nj uT00~x!uk1
n1 . . . kj

nj&5
1

2p (
i 51

j

ni uki u, ~32!

in agreement with Eqs.~30! and ~31!, and once again no
infinite terms appears in this computation. Note that the f
mula ~32! shows that the use of negative norm solutions
the definition of the field does not yield negative energy.

As said before, the ‘‘negative norm part’’ of the fiel
allows a renormalization of the stress tensor. Indeed, no
finite term appears in the previous computation, and the c
formal anomaly also disappears. In order to better unders
this fact let us consider the ‘‘positive norm part’’ of the fiel

wp~x!5 (
kÞ0

fk~x!ak1cpap1 (
kÞ0

fk~x!ak
†1cpap

† ,

whereap5a(cp) andap
†5a†(cp). As explained in Sec. III,

this field is the two-dimensional analogue of the field defin
in ~3!. The mean value of the stress tensor of this field in
Gupta-Bleuler vacuum state is given by

^0uTmnu0&5 (
kÞ0

Tmn~fk ,fk!1Tmn~cp ,cp!.

Direct computation proves thatT0
0(cp ,cp)1T1

1(cp ,cp)50
and also thatT01(cp ,cp)5T10(cp ,cp)50. The other term
(kÞ0Tmn(fk ,fk) is exactly the quantity computed in a ge
eral setting in~13!, and this is where the conformal anoma
appears. Hence the absence of a conformal anomaly in
Gupta-Bleuler vacuum is due to cancellations between
positive norm and negative norm part of the field, and t
renormalization seems to be very different from the ot
ones which all present this anomaly. Of course, it is not v
surprising that our field which is conformally covariant in
rather strong sense does not present any conformal ano
which, after all, can appear only by breaking this conform
invariance.
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APPENDIX: THE FOCK SPACE

Let us recall that for any Hilbert spaceA one defines the
corresponding Fock spaceAI by

AI 5 %

n>0
Sn~A!,

where Sn(A) is the nth symmetrical tensor product ofA.
WhenA is realized as a spaceL2(Rd,dm), one can realize
Sn(A) as the space of square integrable symmetric functi
of n variables onRd. The one-dimensional spaceS0(A) is
written u0& and called the vacuum state. As is well-known t
creatorsak

† and annihilatorsak create and annihilate, respe
tively, the modefk . They can be realized on the Fock spa
in the following way. LetC be in Sn(A), we have

~akC!~x1 , . . . ,xn21!

5AnE fk~x!C~x,x1 , . . . ,xn21!dm~x!,

and

~ak
†C!~x1 , . . . ,xn11!5

1

An11
(
i 51

n

fk~xi !

3C~x1 , . . . ,x̌i , . . . ,xn11!,

wherex̌i means that this term is omitted. It is clear from th
definition that one can define the annihilator and creator
any elementf of A by

„a~f!C…~x1 , . . . ,xn21!5AnE f~x!C~x,x1 , . . . ,xn21!

3dm~x!,

and

„a†~f!C…~x1 , . . . ,xn11!5
1

An11
(
i 51

n

f~xi !

3C~x1 , . . . ,x̌i , . . . ,xn11!.

On can see easily thata is antilinear as a function off and
that a† is linear. Moreover one has

@a~f!,a†~f8!#5E f~x!f8~x!dm~x!.

This gives of course the usual commutation relations wh
applied to the modesfk .

Suppose now that we have a Krein spaceH equipped with
a nonpositive inner product^ , &. There is onH a ~nonunique!
Hilbert space structure. We can now define the Fock spacHI
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using this positive product and also define annihilators
creators using the nonpositive inner product. For instanc
^ , & is as in Eq.~2!, one has

„a~f!C…~x1 , . . . ,xn21!5AniE
r50

f~r,a!]Jr

3C„~r,a!,x1 , . . . ,xn21…da

for any square integrablen-symmetric functionC. The cre-
ator is also defined by

„a†~f!C…~x1 , . . . ,xn11!5
1

An11
(
i 51

n11

f~xi !

3C~x1 , . . . ,x̌i , . . . ,xn11!.
ys
d
if
These operators have very similar properties as the u
ones~see@16# for details!, in particular they are conjugate t
one of the other with respect tô, & and one has

@a~f!,a†~f!#5^f,f8&.

Note that any unitary~for the nonpositive inner product! op-
erator V on H yields a unitary operatorVI on HI , but this
operator is not always bounded~even though it is unitary!
and is defined on a dense subspace ofHI containingHI 0 , the
space of finite length elements. One can easily verify tha

VI a~f!VI 215a~Vf!,

and a similar equality holds fora† and for the so-called
Segal fieldwS(f)5a(f)1a†(f).
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