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Covariant quantization of membrane dynamics
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A Lorentz covariant quantization of membrane dynamics is defined, which also leaves unbroken the full
three dimensional diffeomorphism invariance of the membrane. This makes it possible to understand the
reductions to string theory directly in terms of the Poisson brackets and constraints of the theories. Two
approaches to the covariant quantization are studied, Dirac quantization and a quantization based on matrices,
which play a role in recent work onM theory. In both approaches the dynamics is generated by a Hamiltonian
constraint, which means that all physical states are ‘‘zero energy.’’ A covariant matrix formulation may be
defined, but it is not known if the full diffeomorphism invariance of the membrane may be consistently
imposed. The problem is the non-area-preserving diffeomorphisms: they are realized nonlinearly in the clas-
sical theory, but in the quantum theory they do not seem to have a consistent implementation for finite N.
Finally, an approach to a genuinely background independent formulation of matrix dynamics is briefly de-
scribed.@S0556-2821~98!00306-3#

PACS number~s!: 04.60.Ds, 04.50.1h, 04.65.1e
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I. INTRODUCTION

This paper studies the quantization of a theory of the e
beddings of membranes ind dimensional spacetime, usin
methods that preserve the manifest Lorentz invariance of
theory. This problem is of interest first of all because t
quantum theory of the super-membrane in 1011 dimensions
@1# is intimately associated with current attempts to constr
M theory, which is a conjectured non-perturbative formu
tion of string theory@2#. The quantum theory of the supe
membrane in the light cone gauge is known@3#. This gauge
fixed version of the theory is elegantly described in terms
a theory ofN3N matrices. One of the issues the prese
paper attempts to answer is whether there is a covar
quantization of the membrane that is also expressed in te
of matrices.

This is an important question because the same ma
quantum theory has been conjectured to give a descriptio
M theory in the infinite momentum frame@4#. This conjec-
ture is motivated by another intriguing fact, which is that t
same matrix quantum theory can be obtained as the dim
sional reduction of supersymmetric quantum mechanics
zero spatial dimensions.

It is of great interest to know to what extent this trip
correspondence, between the supermembrane, the redu
of supersymmetric quantum mechanics andM theory is re-
stricted only to the light cone gauge and the infinite mom
tum frame, or has a larger range of validity. To answer t
question we need formulations of these theories which
Lorentz covariant.

In the present paper we study these problems by maki
canonical quantization of membrane dynamics which is L
entz covariant in the background spacetime. This turns ou
be straightforward, so long as no gauge conditions are fi
on the membrane itself. This leads to a canonical formula
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of the membrane dynamics that has both manifest Lore
covariance and complete invariance under the diffeom
phism group of the membrane.1 For completeness we includ
also the coupling to the three form fieldAabg .

Beginning with this classical formalism, which is set o
in the next section, we then study two different approache
the quantization: Dirac quantization and quantization
terms of matrices as in the light cone gauge fixed theory

One limitation of the present study is that most of t
results reported below hold for any dimensiond, and we
have not so far completed the extension to the superm
brane. The extension to the 1011 dimensional supermem
brane is expected to be straightforward, and will be carr
out elsewhere. While we expect further insight from this e
tension, several of the results already found do apply dire
to the 1011 dimensional supermembrane and are of imm
diate relevance to the question of the Lorentz covariant fo
of M theory. Among them are:

The dynamics is given in terms of a Hamiltonian co
straint, which is similar to the Hamiltonian of the light-con
gauge fixed formalism, except that alld matrices are presen
and the Lorentz metric ties up the indices, as a result of
manifest Lorentz covariance.

There are two important consequences of the fact that
dynamics is given by a constraint. The first is that all sta
are zero energy and the second is that as a consequ
physical states are expected to be nonrenormalizable in
naive inner product. A new inner product on physical sta
must be chosen. This has implications for the construct
and interpretation of zero energy states.2

A Lorentz covariant quantization in terms of matrices
given at a formal level~which means that the limitN→` is
not understood! in Sec. VI. There are two more matrices
the Lorentz covariant formulation than in the light con

1This formalism has been sketched, but less completely, in@5#.
2These are discussed in the light-cone gauge fixed theory in@6#.
6216 © 1998 The American Physical Society
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57 6217COVARIANT QUANTIZATION OF MEMBRANE DYNAMICS
gauge fixed formalism, but these are balanced by two n
sets of constraints. One is the Hamiltonian constraint,
other is a set of the two dimensional diffeomorphism gro
of the constant time surfaces of the membrane that is bro
in the light-cone gauge fixed formalism. These are the a
non-preserving diffeomorphisms. If the theory is going to
formulated in terms of matrices these must be realized n
linearly. I show that this can be done at the classical le
which tells us how to do it formally in the quantum theor
But whether it can actually be done depends on issue
regularization and operator ordering that have not yet b
resolved. It is likely that these gauge symmetries can only
consistently imposed in theN→` limit. This is the main
difficulty that must be solved if there is to be a Loren
covariant formulation in terms of matrices.

It has been known for sometime that there is a limit
which the membrane theory reduces to the string theory@7#.
I show in Sec. III that this can be understood completely
the level of the phase space and constraints of the cano
theory.

In the special case of 211 dimensions we can find a
exact physical state of the theory, which is an analogue
the Chern-Simons state@8# that plays an important role in
quantum gravity@8–10#. I show in Sec. V how this may be
interpreted as a semiclassical state associated to a ce
class of solutions. This provides further evidence for
physical character of zero-energy states that are n
normalizable under the naive inner product.3

Before closing the Introduction we should remark that
Lorentz covariant theory can be more than a step on the
to the true, nonperturbative form ofM theory. Whatever it
is, we know thatM theory cannot have its most fundamen
formulation in terms of fields, strings, membranes or a
thing else moving in a classical spacetime manifold. This
so becauseM theory must be a nonperturbative theory
quantum gravity and in any such theory the geometry
spacetime must emerge from a more fundamental quan
system that is not dependent on any background space
for its description. Such a theory may have gauge inv
ances such as diffeomorphism invariance or some exten
of it; what it cannot have is any global symmetries that d
pend on the geometry of fixed background metrics.

Thus, the key question inM theory is to find its
background-independent, nonperturbative formulation.
Sec. VII a few steps towards such a theory is taken. I sh
that there are Lagrangian and Hamiltonian formulations
matrix dynamics in which the global symmetries are
placed by a matrix valued extension of diffeomorphism
variance. The relationship of this theory toM theory is,
however, unknown.

II. HAMILTONIAN REDUCTION
WITHOUT GAUGE FIXING

We begin with the action for a 211 dimensional mem-
braneM embedded ind dimensional Minkowski spacetim
in interaction with a three form fieldAabg :

3A similar state is studied in the 7 dimensional theory in@3#.
w
e
p
en
a-
e
n-
l,

of
n
e

t
cal

of

ain
e
n-

ad

l
-
s

f
m
e

i-
on
-

n
w
f
-
-

S5E
M

A2g1eE
M

A. ~1!

Here g5(detgi j ) where gi j is the induced metric given in
terms of the embedding coordinatesXa(t,sA) by

gi j 5] iX
a] jX

bhab . ~2!

Here hab is the Minkowski metric of thed dimensional
background spacetime, so thata,b50, . . . ,d21 and the
three coordinates of the worldsheet,s i , i 50,1,2 are bro-
ken down intos05t andsA, A51,2. hab will be used
to raise and lower spacetime indices.

The action can then be written as

S5E
M
A1

2
ẊaẊbGab~X!1eE

M
A ~3!

where Gab is a metric on the configuration space of th
embeddingsXa(sA), which is given by

Gab5habh22hab ~4!

whereh5habhab andhab is the useful quantity

hab5^Xa ,Xg&^Xb ,Xg& ~5!

where^Xa ,Xg& denotes the ‘‘manifold Poisson bracket,’’

^Xa ,Xg&5eAB]AXa]BXg . ~6!

This of course has nothing to do with the phase space P
son bracket we will shortly introduce.

We may note that the action is in the Barbour-Berto
form @11# which shows that there is no intrinsic preferre
time variable on the membrane. It also gives us an interp
tation of the theory. We assume the topology of the me
brane is fixed to beS3R, with S a compact two manifold.
Then the configuration spaceC of the membrane consists o
the embeddings of the two manifoldS into d dimensional
Minkowski spacetime. In coordinates this is given byXa(s).
C is an infinite dimensional manifold that has on it an inde
nite metric given by G(d1Xa,d2Xb)5*SGabd1Xad2Xb.
Then the action~3! tells us that whenAabg50 the histories
of the membrane trace out timelike geodesics ofG.

This Barbour-Bertotti form also tells us how to constru
the unconstrained Hamiltonian formulation, following th
procedure used for that theory@12#. Without doing any
gauge fixing we proceed directly to find the canonic
momenta;4

pa~s!5
]S

]Ẋa~s!
5

1

A2g
GabẊb1eAabg^Xb,Xg&. ~7!

The elementary Poisson brackets are

$Xa~t,sA!,pb~t,sA8!%5d2~s,s8!db
a . ~8!

4We use signature12222•••.
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We find immediately three primary constraints, which follo
only from the definition of the momenta~7!. The diffeomor-
phism constraints are

DA~s!5~]Axa!pa2eAagd^X
g,Xd&50 ~9!

and it is easy to see that acting on the embedding coordin
Xa(s) they generate Diff(S). Then there is the Hamiltonian
constraint

H~s!5
1

2
G21ab~pa2eAagd^X

g,Xd&!~pb2eAbrs^Xr,Xs&!

2150 ~10!

whereG21ab is the inverse ofGab , i.e.,G21abGbg5dg
a . It

is straightforward to verify that the vanishing of these co
straints follows from the definition ofpa .

G21ab may be constructed as a power series as

G21ab5
1

hS hab1
2hab

h
1••• D . ~11!

However, the nonlinear terms actually do not affect the e
lution on the constraint surface because

habpb52det~q!qAC~]Axa!DC . ~12!

Here qAB is the two dimensional induced metric onS de-
fined byqAB5]AXa]BXa. @Note thath5 1

2 det(q) is negative
as the induced metric has Minkowskian signature.# This
means that

H5H01DARABDB ~13!

where we have thus a new linear combination of constra

H05
1

2
pa

hab

h
pb21 ~14!

and

RAB5
2

h
qqAB1•••. ~15!

Thus, on the diffeomorphism constraint surfaceDA50 we
have

H'H0 . ~16!

It is easy to verify that these constraints close to give
algebra very like the~211!-dimensional Arnowitt-Deser-
Misner ~ADM ! algebra,

$D~v !,D~w!%5D~@v,w# ! ~17!

with D(v)5*SvADA . We also have

$H0~N!,H0~M !%5E
S
~M]AN2N]AM !

H0

h
qqABDB

~18!

and

$D~v !,H0~N!%5H0„Lv~N!…. ~19!
tes

-

-

ts

n

Finally, it is convenient to densitize the constraint~14! to
make the constraint polynomial, which gives us5

H̃̃05hH05
1

2
pahabpb2h. ~20!

III. RELATION OF THE MEMBRANE TO STRING
THEORY AT THE CLASSICAL LEVEL

It is easy to demonstrate within the canonical framewo
that string theory may be recovered from a particular limit
membrane theory. Let us consider a membrane whose sp
sections have topologyS13S1 with coordinatess on the
first S1 and a periodic coordinaterP@21,1# on the second
S1, which satisfiesrdr51. We then take an ansatz for a
evolution of a membrane inD dimensional spacetime of th
form

Xa~t,s,r!5Za~t,s!1erWa~t,s!. ~21!

What we are doing is reducing the embeddings of the me
braneM to the embedding of a worldsheetS defined by the
condition e50. Za is the embedding coordinate of th
worldsheet and it andWa are then fields on the worldshee
In the limit e→0 the membrane goes over into the worl
sheet; we want to see if the dynamics of the membrane g
over into bosonic string theory in the same limit. To acco
plish this we need a condition on theWa so that they are
restricted by theZa. To see what it should be we look at th
action for the membrane in the presence of the ansatz~21!
and in limit of smalle. We have, forI ,J,K5t,s coordinates
on the worldsheet,

det~gi j !5e2
„det~qIJ!WaWa22det~qIJ!qKL~Wa]KZa!

3~Wb]LZb!…1O~e3! ~22!

whereqIJ is the induced metric onS. ~This should be distin-
guished fromqAB , the induced metric on the constant tim
surfaces of the membrane, which we calledS.! Hence we
see that the conditions we require are

WaWa51,Wa]sZa5Wa]tZ
a50 ~23!

so that

det~gi j !5e2det~qIJ!1O~e3!. ~24!

Given theZa(t,s) this gives three equations at each po
(t,s) to determine the threeWa(t,s). Once we have done
this we have that

Smembrane5eE dtdsA2det~qIJ!5eSNambu~Za!.

~25!

5We employ, inconsistently, the convention that density weig

are marked with a tilde. Note that the restriction ofH5 0 to the trans-
verse coordinates is minus the usual light cone gauge Hamilton
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This correspondence goes through in the equations of mo
as well. To show this we look at the definition of the m
menta for the membrane~7!, which gives us

pa5e
~]sZa!2

Adet~q!
habŻb1O~e! ~26!

On the other hand, the definition of the momentum of
string ~in the presence of the momentum constrai
]tZ

a]sZa50) is

pa
str5

~]sZa!2

Adet~q!
habŻb. ~27!

Thus, we have

pa
str~t,s!5 lim

e→0

1

e R
S1

drpa~t,s,r!. ~28!

From the densitized Hamiltonian constraint~20!, we have,
for the potential energy of the membrane,

Vmem5^Xa ,Xb&^Xa,Xb&5
2e2

l pl
2 ~]sZa!21O~e3!. ~29!

Thus, the Hamiltonian constraint of the membrane theor
of the form

H̃̃05e2Hstring1O~e3! ~30!

where

Hstring5
1

2
pa

strpb
strhab1~]sZa!~]sZa!hab . ~31!

Similarly, we have, for the diffeomorphism constraints,

D~v !5E ds R
S1

drvApa]AXa~s,r!

5eE dsvspa
str]sZa~s!5eD~vs!string. ~32!

Thus, we have shown that there is a limit in which a secto
the membrane theory goes over into the bosonic theory.

IV. REALIZATION OF THE TWO DIMENSIONAL
DIFFEOMORPHISMS

One goal of the present work is to construct a quantiza
of the Lorentz covariant Hamiltonian dynamics describ
here in terms of a matrix representation similar to that u
in the light-cone gauge fixed formalism. The main obsta
to doing this is that it is only the subgroup of the two dime
sional diffeomorphism group that preserve the area elem
of the induced metric that are represented in the matrix
malism by SU(N) transformations, in the limit of largeN.
This is fine for the light-cone gauge fixed formalism, becau
there the full diffeomorphism group ofS has been broken
down to the area preserving ones@3#. But if we want to
quantize the covariant formalism we have to represent a
Diff( S). In order to understand how to do this we must fi
on

e
,

is

f

n
d
d
e
-
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e

f
t

study how the non-area preserving diffeomorphisms act
the embedding coordinates and momenta.

To do this we split the vector fieldsvA into the area pre-
serving and area-non-preserving part, each of which is gi
by a scalar field. We call thema andn for area preserving
and non-area preserving. The decomposition is

vA5
1

Aq
eAB]Ba1qAB]Bn. ~33!

We have

LvAq5]AAqvA5Aq¹2n ~34!

where

¹25
1

Aq
]AAqqAB]B ~35!

showing thata parametrizes the area preserving subgroup
Diff( S), which we call DiffAq(S) while n parametrizes the
coset Diff(S)/Diff Aq(S).

The action of the area preserving part defines a ve
densityãA5eAB]Ba whose action on functions is embedde
in the Poisson algebra of functions

ãA]Af5^f,a&. ~36!

Thus, the mapf: ãA→a of divergence free vector fields t
scalars defines an embedding of the Lie algebra of area
serving diffeomorphisms into the Poisson algebra onS given
by ^,&. It is this Poisson algebra which is mapped to SU(N)
in the limit N→` in the quantization of the membrane
which the embedding coordinatesXa(t,s,r) are mapped to
matricesXJ

aI @3#.
What about the non-area preserving part? This is gi

also by functions, but the action does not map linearly in
the Poisson algebra onS. However, we can find a nonlinea
realization of the generators of Diff(S)/Diff Aq(S) on the
embedding coordinatesXa and their conjugate momentap̃a .
If we consider the undensitized non-area preserving ve
field,

NA5qAB]Bn, ~37!

then using the definition of the induced metric we have,
any functionf and densityṽ on S,

LNf 5
^ f ,Xa&^n,Xa&

^Xm ,Xn&^X
m,Xn&

~38!

LNṽ5]A~ṽNA!5 K ṽ
^n,Xa&

^Xm ,Xn&^X
m,Xn&

,XaL . ~39!

These equations apply, in particular to theXa and p̃a ~which
is, of course, a density onS.! The first gives a nonlinea
realization of Diffq(S)/Diff( S):

LNXb5
^Xb,Xa&^n,Xa&

^Xm ,Xn&^X
m,Xn&

. ~40!
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The second gives the transformation of the momenta

LNp̃a5]A~ p̃aNA!5 K p̃a

^n,Xb&

^Xm ,Xn&^X
m,Xn&

,XbL . ~41!

As these are diffeomorphisms, by~19! they must leave the
constraint surfaceH050 invariant. Thus, the theory hastwo
gauge invariances, each given by a mapping of Diff(S) into
the algebra of functions onS. The first is the linear action
~36! of the area preserving transformations. The second is
nonlinear representation of Diff(S)/Diff Aq(S) which is
given by~40! and~41!. Both must be represented in a qua
tization of the covariant theory.

V. DIRAC QUANTIZATION

We can now discuss the quantization of the membr
theory. I will discuss briefly two methods of quantizatio
We start with Dirac quantization. This is straightforward, b
makes so far no connection with the matrix models. We
find one interesting result which is that in the particular ca
of 211 dimensions we can find an exact physical state
describes the reduction of the membrane to the string. A
describing this we will turn to the question of the existen
of a matrix representation of the covariant membrane.

Under the procedure of Dirac quantization one beg
with some kinematical hilbert spaceHkin and establishes th
canonical commutation relations associated to the Pois
brackets~8!. The natural representation to use is the confi
ration space representationC@Xa#, where the kinematica
configuration spaceCkin consists of mapsXa(s,r):S→MN

from the two surfaceS to N dimensional Minkowski space
time. The operator assignments are the natural ones in w

paC5ı\
dC

dXa . ~42!

On this we impose first the diffeomorphism constraints~9! in
the form

D̂~v !C@Xa#5E
S
~LVXb!

dC

Xb @Xa#. ~43!

This is solved in general by the requirement that

C@Xa#5C@fsXa# ~44!

wherefPDiff( S) so that the states become functionals
Cdi f f eo5Ckin/Diff( S). The problem is then to invent a regu
larization so that the solutions to

H~N!C50 ~45!

can be extracted. Once this is done a physical inner pro
is to be picked on the space of solutions to both sets
constraints.

In particular cases some exact solutions can be found.
example, for the case ofN53 we can split the Hamiltonian
into self-dual and anti-self-dual parts

H05
1

2
Pa

2P1a ~46!
he

-

e
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o
e
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s
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-

ch

ct
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where

Pa
65pa6eabg^Xb,Xg&. ~47!

An analogue of the Chern-Simons state for quantum gra
@8# can be construct using

Y@Xa#5
1

3ES
eabgXa^Xb,Xg& ~48!

so that

dY

dXa 5eabg^Xb,Xg&. ~49!

If we define the ‘‘Chern-Simons state’’ by

CCS@Xa#5eıY@Xa# ~50!

it follows directly that

Pa
1CCS@Xa#50. ~51!

Since this state is manifestly invariant under Diff(S) this is a
well defined physical state.

It may be objected that the state is not-normalizab
However, this is only the case in a naive Fock inner produ
which might be established on the kinematical state sp
Hkin. This objection rules out the consideration of an ana
gous state in the case of Yang-Mills theory. However, t
objection does not hold in the case of theories whose dyn
ics is governed by constraints, becauseall physical states,
being zero energy states of the Hamiltonianconstraint are
expected to be non-normalizable in this kinematical inn
product. The inner product on physical states must be c
structed on the space of solutions to the constraints. Since
do not have a full space of physical states we are not yet
position to do this, on the other hand, at the present st
there can be no objection to taking the stateCCS@Xa# to be
physical as a working hypothesis and seeing where it lea
We may note that in the case of quantum gravity there
good arguments that the analogous state is in fact the
nonperturbative vacuum state for the theory in the prese
of a cosmological constant. In this case both the exact Pla
scale description and semiclassical limit are understood.
small cosmological constant the state has a semiclassica
terpretation which describes fluctuations around de Si
spacetime@8,10#, while the exact description of the state is
the Kauffman invariant of quantum spin networks at lev
k56p/G2L @13#.

In fact the Chern-Simons state in the present context m
also have a semiclassical interpretation, since it is of
form of a WKB state. To find that interpretation we note th
treatingY@Xa# as a Hamilton Jacobi function we have

pa5
]Y

]Xa 5eabg^Xb,Xg&. ~52!

We may note that this satisfies the classical Hamiltonian
momentum constraints. To find the velocities we may use
time defined by the densitized Hamiltonian constraint~20!,
so that
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Ẋa5$Xa ,H̃̃0%5pa5eabg^Xb,Xg&. ~53!

The state~50! then is a semiclassical state that describ
fluctuations around the solutions to this equation.

We may note that a similar state can be constructed
seven dimensions using the octonions@3#, by replacingeabg
in ~50! by the structure constants for the seven imagin
octonions. In fact, the octonions can be used to give a c
pact expression to M~atrix! theory, which will be described
in @14#.

VI. IS THERE A MATRIX FORMULATION
OF THE COVARIANT THEORY?

It would be very convenient if the regularization of th
light cone gauge fixed theory in terms ofN3N Hermitian
matrices could be carried out as well for the covariant v
sion of the theory. To investigate this we may consider sta
of the form C@X̂a# where theX̂a are d N3N Hermitian
matrices ind dimensional spacetime. The momentap̃a are
then represented as]/]X̂a. The algebra of functions onS
under ^,& is then taken over to the matrix algebra, so th

^Xa,Xb&→@X̂a,X̂b#. The area element preserving subgro
of the diffeomorphism group DiffAq(S) then map to the
group SU(N), which becomes the gauge group.

This is sufficient for the light cone gauge theory, whe
the area element preserving diffeos are the only gauge s
metry, but will it work for the covariant formulation, wher
the gauge symmetry is expanded to the full 3 dimensio
diffeomorphism group of the membrane? To do this we m
implement on the SU(N) invariant functionals of the mem
brane two additional constraints, which are, formally, t
Hamiltonian constraint

Ĥ0C@X̂m#5F2
]2

]X̂a]X̂a

1@X̂a,X̂b#@X̂a ,X̂b#GC@X̂m#50

~54!

and the area nonpreserving part of the diffeomorphisms oS.
We may note that the counting is right; this formalism h
two more matrix degrees of freedom than the light co
gauged fixed theory, but these are balanced by two additi
matrix valued constraints. Presumably the Hamiltonian c
straint can be implemented, as it differs only by some si
from the Hamiltonian operator that has been studied in
light cone gauge fixed theory. The difficulty is with the r
maining non-area preserving diffeomorphisms; at present
author is unaware of any method for implementing them

To have a chance of succeeding we can multiply the v
tor field by h to get polynomial transformation laws.@This
step is implicit in writing the area preserving diffeomo
phisms in terms of SU(N) transformations, so we use it he
as well.# Using symmetric ordering to preserve the Hermit
ity of the matrices we find transformation laws of the form

dX̂m5@ n̂,X̂a#@X̂a ,X̂m#1@X̂a ,X̂m#@ n̂,X̂a# ~55!

d p̂a5†p̂a@ n̂,X̂m#,X̂n
‡1†@ n̂,X̂m# p̂a ,X̂n

‡. ~56!
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Equivalently, up to an SU(N) transformation these can b
replaced by a corresponding set of double commutator tra
formations:

dX̂m5†@ n̂,X̂a#,X̂m
‡X̂a1X̂a

†@ n̂,X̂a#,X̂m
‡. ~57!

Acting on quantum states these should generate the
straint,

D̂@ n̂#C@X̂r#5~†@ n̂,X̂a#,X̂m
‡X̂a1X̂a

†@ n̂,X̂a#,X̂m
‡!

dC@X̂r#

dX̂m
.

~58!

Unfortunately, at least for finiteN, these do not appear t
generate a symmetry of the Hamiltonian constraint~54!. It
seems likely that if these symmetries can be implemen
exactly, it will be only in theN→` limit.6 It is also possible
to speculate that this additional symmetry has something
do with the ‘‘hidden’’ symmetries in supergravity and strin
theory, however there is little more that can be said unles
way is found to implement them in the quantum theory.

VII. TOWARDS A GENUINELY NONPERTURBATIVE
FORM OF M THEORY

Before closing this paper, we turn briefly to the key pro
lem of finding a fundamental, background independent f
mulation ofM theory. Such a formulation may have n
dependence on a particular classical spacetime. Nor ca
have any global symmetries, as those arise in general r
tivity and other gravitational theories only as symmetries
particular solutions. A theory that has diffeomorphism i
variance, or some extension of it as the fundamental ga
symmetry cannot have any global symmetries associa
with particular spacetime manifolds.

This follows from general arguments about the role
diffeomorphism invariance in theories in which the spac
time geometry is a dynamical field. Other arguments, com
directly from string theory lead to the same conclusion. F
example,T duality and the other dualities tell us that strin
theories defined as expansions around different space
backgrounds are sometimes completely equivalent to e
other @15#. There are further arguments that these dualit
are to be considered to be gauge symmetries ofM theory. In
that case the gauge invariant description cannot be give
terms of fixed classical backgrounds.

Whatever else it has accomplished, the studies of non
turbative quantum gravity@16–18,22# and topological quan-
tum field theory, and their inter-relations@22# have shown us
that it is possible to construct background independent,
feomorphism invariant quantum field theories, even to
level of mathematical rigor reached by ordinary construct
quantum field theory@19#. This should give us the confi
dence to attempt the same forM theory.

One strategy to construct such a theory would be to c
struct a dynamics ofN3N matrices which has no globa

6Djordje Minic has kindly informed me that Hidetoshi Awata an
he have considered similar issues in the context of a covariant
grangian matrix theory.
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symmetries, but instead a group of gauge symmetries la
than SU(N). The simplest way to do this is to find an actio
which is a functional of a set of matrices that does not
pend on a background metric. This is easy to do, as
following example illustrates.

A theory depending ond, N3N matrices, Xa , a
51, . . . ,d that does not depend on a background metric
described by the action,

Sd5ea1 . . . adTr @Xa1
. . . Xad

#. ~59!

This vanishes trivially for evend, as a result of the Jacob
identity. This simple fact is analogous to the fact that in t
continuum

Scont
d 5E Tr @F`F . . . `F# ~60!

is a topological invariant, as the Bianchi identity reduces
the Jacobi identity of the matrices. But for oddd the action
Sd does not vanish. Instead, one has a kind of matrix a
logue of Chern-Simons theory. Interestingly, higher dime
sional Chern-Simon theories have local degrees of freed
@24,25#, and the structure of their constraints and equati
of motion can be intricate.

For oddd52n11 the equations of motion are

dS2n11

dXa
5eab1 . . . bd21Xb1

. . . Xbd21
50. ~61!

The solution spaces of these theories include the solu
spaces of the background dependent theories is w
@Xa ,Xb#50 for all a,b. At the same time, the global sym
metry of the background dependent matrix models,Xa→Xa8
5Xa1VaI , whereI is the identity matrix andVa’s are con-
stants, is replaced by agauge invariance

Xa→Xa85Xa1Va~X!I ~62!

where theVa(X) are nowfunctionson the space of matrices
To see this note that

dS2n115eab1 . . . b2nVaTr @Xb1
. . . Xb2n

#50. ~63!

We can see these features as well from the canonical
malism. We may introduce a continuous time by represnt
explicitly the time dimension. The 2n11 component we
represent as time, so we writeX2n115A0. We then have

S82n115E dseb1 . . . b2nVaTr @~D0Xb1
!Xb2

. . . Xb2n
#50.

~64!

The canonical momenta are

Pa5eab2 . . . b2n@Xb2
. . . Xb2n

#. ~65!

There is a gauge constraint,
er
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G5@Xa ,Pa#. ~66!

In addition, there are 2n constraints,

Da5Tr Pa50 ~67!

that follow from the vanishing ofS2n. These generate the 2n,
‘‘spatial’’ components of the gauge symmetry~62!.

More structure may be introduced by following the stra
egy of CDJ@20# and introducing Lagrange multipliers int
the action. This will be discussed elsewhere.

Of course, this is not the only possible approach to
background independent dynamics of matrices. The n
path integral formulations of spin network evolution may
interpreted as a dynamics for matrices, if the spin netwo
are taken to be not embedded in any background manif
as is advocated in@21#. A general formulation of background
independent theories of quantum geometry, which may h
some relevance to membrane dynamics is also propose
@22,23#. Of course, the relevance of any of these models
M theory remains to be shown.

VIII. CONCLUSIONS

Put briefly, we have made some progress towards a co
riant formulation of membrane dynamics. The crucial issu
left so far unsolved are

The choice of the physical inner product for the physic
states, which is unlikely to be the same as in the light-co
gauge fixed theory. This opens up the issue of the phys
interpretation of the quantum states of the membrane as
as the consistency of a non-perturbative quantization of
membrane in any dimensions.

The possibility of a matrix representation of the covaria
theory rests on the implementation of a nonlinear realizat
of the non-area preserving diffeomorphisms of the me
brane. This gauge symmetry, together with the Hamilton
constraint, is necessary to balance the increase in the num
of matrices fromd22 to d which moving from the light
cone gauge to a covariant formalism requires.

Further work in this subject will also include the exte
sion to the supermembrane, which will involve also the stu
of special dimensions such asd51011. But the results
found so far in this general study tell us what those m
specific studies will have to accomplish if there is to be
Lorentz covariant formulation ofM theory arising from the
dynamics of membranes.
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