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A Lorentz covariant quantization of membrane dynamics is defined, which also leaves unbroken the full
three dimensional diffeomorphism invariance of the membrane. This makes it possible to understand the
reductions to string theory directly in terms of the Poisson brackets and constraints of the theories. Two
approaches to the covariant quantization are studied, Dirac quantization and a quantization based on matrices,
which play a role in recent work ot theory. In both approaches the dynamics is generated by a Hamiltonian
constraint, which means that all physical states are “zero energy.” A covariant matrix formulation may be
defined, but it is not known if the full diffeomorphism invariance of the membrane may be consistently
imposed. The problem is the non-area-preserving diffeomorphisms: they are realized nonlinearly in the clas-
sical theory, but in the quantum theory they do not seem to have a consistent implementation for finite N.
Finally, an approach to a genuinely background independent formulation of matrix dynamics is briefly de-
scribed.[S0556-282098)00306-3

PACS numbsg(s): 04.60.Ds, 04.50:h, 04.65+e

I. INTRODUCTION of the membrane dynamics that has both manifest Lorentz
covariance and complete invariance under the diffeomor-

This paper studies the quantization of a theory of the emphism group of the membrarid=or completeness we include
beddings of membranes i dimensional spacetime, using also the coupling to the three form fiekd,;, .
methods that preserve the manifest Lorentz invariance of the Beginning with this classical formalism, which is set out
theory. This problem is of interest first of all because thein the next section, we then study two different approaches to
guantum theory of the super-membrane ir-Il0dimensions the quantization: Dirac quantization and quantization in
[1] is intimately associated with current attempts to constructerms of matrices as in the light cone gauge fixed theory.
M theory, which is a conjectured non-perturbative formula- One limitation of the present study is that most of the
tion of string theory[2]. The quantum theory of the super- results reported below hold for any dimensidn and we
membrane in the light cone gauge is knoj@h. This gauge have not so far completed the extension to the supermem-
fixed version of the theory is elegantly described in terms obrane. The extension to the 4Q dimensional supermem-

a theory ofNXN matrices. One of the issues the presentbrane is expected to be straightforward, and will be carried
paper attempts to answer is whether there is a covariamtut elsewhere. While we expect further insight from this ex-
guantization of the membrane that is also expressed in terntension, several of the results already found do apply directly
of matrices. to the 106+1 dimensional supermembrane and are of imme-

This is an important question because the same matridiate relevance to the question of the Lorentz covariant form
guantum theory has been conjectured to give a description aff M theory. Among them are:

M theory in the infinite momentum franjd]. This conjec- The dynamics is given in terms of a Hamiltonian con-
ture is motivated by another intriguing fact, which is that thestraint, which is similar to the Hamiltonian of the light-cone
same matrix quantum theory can be obtained as the dimemrauge fixed formalism, except that dlimatrices are present
sional reduction of supersymmetric quantum mechanics tand the Lorentz metric ties up the indices, as a result of the
zero spatial dimensions. manifest Lorentz covariance.

It is of great interest to know to what extent this triple  There are two important consequences of the fact that the
correspondence, between the supermembrane, the reductidgpnamics is given by a constraint. The first is that all states
of supersymmetric quantum mechanics antltheory is re- are zero energy and the second is that as a consequence
stricted only to the light cone gauge and the infinite momenphysical states are expected to be nonrenormalizable in the
tum frame, or has a larger range of validity. To answer thisnaive inner product. A new inner product on physical states
question we need formulations of these theories which arewust be chosen. This has implications for the construction
Lorentz covariant. and interpretation of zero energy stafes.

In the present paper we study these problems by making a A Lorentz covariant quantization in terms of matrices is
canonical quantization of membrane dynamics which is Lorgiven at a formal leve{which means that the limll—« is
entz covariant in the background spacetime. This turns out taot understoodin Sec. VI. There are two more matrices in
be straightforward, so long as no gauge conditions are fixethe Lorentz covariant formulation than in the light cone
on the membrane itself. This leads to a canonical formulation

This formalism has been sketched, but less completeljslin
*Email address: smolin@phys.psu.edu ’These are discussed in the light-cone gauge fixed thedi§]in
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57 COVARIANT QUANTIZATION OF MEMBRANE DYNAMICS 6217
gauge fixed formalism, but these are balanced by two new
sets of constraints. One is the Hamiltonian constraint, the S= fM\/—_QH' eJMA- €y
other is a set of the two dimensional diffeomorphism group
of the constant time surfaces of the membrane that is brOkeHeregz(degij) whereg;; is the induced metric given in
in the light-cone gauge fixed formalism. These are the areasrms of the embedding coordinats&(t, o) by
non-preserving diffeomorphisms. If the theory is going to be
formulated in terms of matrices these must be realized non- 9ij = i X“IXP .. (2
linearly. | show that this can be done at the classical level,
which tells us how to do it formally in the quantum theory. Here 7,4 is the Minkowski metric of thed dimensional
But whether it can actually be done depends on issues dfackground spacetime, so that3=0,...d—1 and the
regularization and operator ordering that have not yet beethree coordinates of the worldsheet, 1=0,1,2 are bro-
resolved. It is likely that these gauge symmetries can only b&en down intoo®=r ando”®, A=1,2. 7*# will be used
consistently imposed in th8l—o limit. This is the main  to raise and lower spacetime indices.
difficulty that must be solved if there is to be a Lorentz The action can then be written as
covariant formulation in terms of matrices. il

It has been known for sometime that there is a limit in 1o .
which the membrane theory reduces to the string thEoky S= fM §X XBGaB(X)“LefMA ©)
| show in Sec. Ill that this can be understood completely at
the level of the phase space and constraints of the canonicghere G,p is a metric on the configuration space of the

theory. . . _ _ embeddings<“(o?), which is given by
In the special case of 21 dimensions we can find an
exact physical state of the theory, which is an analogue of Gup= Naph—2Nap (4)

the Chern-Simons staf8] that plays an important role in

guantum gravityf8—10]. | show in Sec. V how this may be whereh= naﬂhaﬁ andh,,z is the useful quantity
interpreted as a semiclassical state associated to a certain

class of solutions. This provides further evidence for the hop={(Xa , X,){Xz,X?) (5)

physical character of zero-energy states that are non-

normalizable under the naive inner prodéict. where(X, ,X,) denotes the “manifold Poisson bracket,”
Before closing the Introduction we should remark that no

Lorentz covariant theory can be more than a step on the road Xy, X,)=€*BapX, X, . (6)

to the true, nonperturbative form g¥1 theory. Whatever it
is, we know thatM theory cannot have its most fundamental This of course has nothing to do with the phase space Pois-
formulation in terms of fields, strings, membranes or any-son bracket we will shortly introduce.
thing else moving in a classical spacetime manifold. This is We may note that the action is in the Barbour-Bertotti
so becauseM theory must be a nonperturbative theory of form [11] which shows that there is no intrinsic preferred
quantum gravity and in any such theory the geometry ofime variable on the membrane. It also gives us an interpre-
spacetime must emerge from a more fundamental quantufidtion of the theory. We assume the topology of the mem-
system that is not dependent on any background spacetinfane is fixed to b& xR, with X a compact two manifold.
for its description. Such a theory may have gauge invari-Then the configuration spaceof the membrane consists of
ances such as diffeomorphism invariance or some extensidhe embeddings of the two manifold into d dimensional
of it; what it cannot have is any global symmetries that de-Minkowski spacetime. In coordinates this is givenX$( o).
pend on the geometry of fixed background metrics. C is an infinite dimensional manifold that has on it an indefi-
Thus, the key question inM theory is to find its nite metric given by G(8;X* 8,XP)= [5G ,z81X*5,X~.
background-independent, nonperturbative formulation. Infhen the actior(3) tells us that wher®,;,=0 the histories
Sec. VIl a few steps towards such a theory is taken. | shovef the membrane trace out timelike geodesic&of
that there are Lagrangian and Hamiltonian formulations of This Barbour-Bertotti form also tells us how to construct
matrix dynamics in which the global symmetries are re-the unconstrained Hamiltonian formulation, following the
placed by a matrix valued extension of diffeomorphism in-procedure used for that theofyl2]. Without doing any
variance. The relationship of this theory tof theory is, gauge fixing we proceed directly to find the canonical
however, unknown. momenta

S 1 :
Po(0)= = =G X +eAp (X X7). (7)

X (o) g

The elementary Poisson brackets are

Il. HAMILTONIAN REDUCTION
WITHOUT GAUGE FIXING

We begin with the action for a-21 dimensional mem-
braneM embedded ird dimensional Minkowski spacetime

in interaction with a three form field& {XQ(TJA)’pﬁ( T"’A’)}: 52(""7’)5; @)

aBy-

3A similar state is studied in the 7 dimensional theoryf3h “We use signaturg-————- - -,
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We find immediately three primary constraints, which follow Finally, it is convenient to densitize the constra{d#) to
only from the definition of the moment&@). The diffeomor- make the constraint polynomial, which gives us
phism constraints are

=~ 1
DA(O-):(aAXa)pa_eAay§<X71X6>:0 (9) HO:hHOZEpanaﬁpB_h' (20)
and it is easy to see that acting on the embedding coordinates
X“(o0) they generate Difif). Then there is the Hamiltonian lIl. RELATION OF THE MEMBRANE TO STRING
constraint THEORY AT THE CLASSICAL LEVEL

It is easy to demonstrate within the canonical framework
that string theory may be recovered from a particular limit of
membrane theory. Let us consider a membrane whose spatial
—1=0 (100 sections have topolog®!x S with coordinatess on the
first St and a periodic coordinatee[ —1,1] on the second
S, which satisfiesfdp=1. We then take an ansatz for an
evolution of a membrane iB® dimensional spacetime of the
form

1
H(o)= EGflaﬁ(pa— €Ay X" X)) (P 8Ag,(X?, X))

whereG~**# is the inverse 05,4, i.e.,G™**#G,= &5 It
is straightforward to verify that the vanishing of these con-
straints follows from the definition of,, .

G~ 1*8 may be constructed as a power series as

1 ohaB X 7,0,p0)=2%1,0)+ epW*(7,0). (21
G‘laﬁzﬁ n*P+ e (11

What we are doing is reducing the embeddings of the mem-
However, the nonlinear terms actually do not affect the evoPraneM to the embedding of a worldshegtdefined by the

lution on the constraint surface because condition e=0. Z“ is the embedding coordinate of the
worldsheet and it antiv* are then fields on the worldsheet.
h“ﬁpﬁ=2det(q)qAC(an“)Dc. (12 In the limit e—0 the membrane goes over into the world-

. ] ) ] ] sheet; we want to see if the dynamics of the membrane goes

Here g, is the two dimensional induced metric ande-  over into bosonic string theory in the same limit. To accom-
fined bygap=daX,dsX". [Note thath=;det(q) is negative  pjish this we need a condition on th&* so that they are
as the induced metric has Minkowskian signaturehis  restricted by thez®. To see what it should be we look at the
means that action for the membrane in the presence of the an&ity

_ AB and in limit of smalle. We have, foll ,J,K= 7,0 coordinates

H=Hot DaR™ Do (13 on the worldsheet,

where we have thus a new linear combination of constraints

N det(g;;) = e*(det(q;;) W,W*—2det(q;;) g (W, Z)

n
Ho=5Pa—7Pp~1 (14 X (W ZP))+0(€%) (22
and whereq,; is the induced metric 0. (This should be distin-
guished fromqag, the induced metric on the constant time
AB_Z AB surfaces of the membrane, which we call®d Hence we
RE=Ra97+ - (19 see that the conditions we require are
Thus, on the diffeomorphism constraint surfddg=0 we W, W*=1W,9,Z2*=W,3,Z2%=0 (23
have
H~H,. (16) so that
It is easy to verify that these constraints close to give an det(g;j) = e*det(q;;) + O(€). (24
algebra very like the(2+1)-dimensional Arnowitt-Deser-
Misner (ADM) algebra, Given theZ%(r,o0) this gives three equations at each point
(7,0) to determine the thre®&/“(r,0). Once we have done
{D(v),D(w)}=D([v,w]) (17)  this we have that

with D(v)=[sv"D,. We also have

H gmembrane. ef drdo/—det(q,;) = eSVaMPY Z%).

{Ho(N),Ho(M)}:L(MﬁAN—NﬁAM)TquABDB (25
(18

and SWe employ, inconsistently, the convention that density weights

are marked with a tilde. Note that the restriction?ef to the trans-
{D(v),Ho(N)}=Ho(L,(N)). (19 verse coordinates is minus the usual light cone gauge Hamiltonian.
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This correspondence goes through in the equations of motiostudy how the non-area preserving diffeomorphisms act on
as well. To show this we look at the definition of the mo- the embedding coordinates and momenta.

menta for the membran@), which gives us To do this we split the vector fields® into the area pre-
w2 serving and area-non-preserving part, each of which is given
_ E('?az ) 784 0(e) (26) by a scalar field. We call therm andn for area preserving
©Jdet(q) Tab and non-area preserving. The decomposition is

On the other hand, the definition of the momentum of the N AB
string (in the presence of the momentum constraint, v :Tf dga+q~"dgn. (33
9,2%9,2,=0) is q

ay2 We have
por= L), 28 @7
“ Jdet(q) ¥ L,\a=da\au”= JqV2n (34)
Thus, we have where
S (7. 0) = lim = ¢ d (7,0,p) (28) 2_ 1 AB
Po'(no)=lime ¢ dppa(m.p). L (39
From the densitized Hamiltonian constraii@0), we have,  showing that parametrizes the area preserving subgroup of
for the potential energy of the membrane, Diff( X)), which we call Diffg(S) while n parametrizes the
92 coset Diff()/Diff g(2).
c , . .
vme”e<xa,xﬁ><xa,xﬁ’>= T((?UZ“)2+O(63). (29) The fctlon of the area prgservmg part deflnes a vector
ol densitya”= e*Bgza whose action on functions is embedded

o ] _in the Poisson algebra of functions
Thus, the Hamiltonian constraint of the membrane theory is

of the form aropd=(¢,a). (36)

Ho=€*H>""9+0(€%) (30 Thus, the mapp:a”—a of divergence free vector fields to
scalars defines an embedding of the Lie algebra of area pre-
serving diffeomorphisms into the Poisson algebr&.ogiven

1 by (,). It is this Poisson algebra which is mapped to SI)J(
HS‘r‘“‘?’:Epf;”pz”n“BwL(&UZ“)(&UZ“) Nap- (31  in the limit N—o in the quantization of the membrane in
which the embedding coordinat&$(r,o,p) are mapped to
matricesX§' [3].
What about the non-area preserving part? This is given
also by functions, but the action does not map linearly into
D(v)=f do fﬁ ,dpv”padaX(a,p) the Poisson algebra di. However, we can find a nonlinear
S realization of the generators of Di()/Diff 5(X) on the
_ Ef dov?psa, (o) = eD(v?)%N9.  (32) embedding coordinates” an_q their conjugate mome.n'ﬁaa.
@ If we consider the undensitized non-area preserving vector

where

Similarly, we have, for the diffeomorphism constraints,

)

fie
Thus, we have shown that there is a limit in which a sector of

the membrane theory goes over into the bosonic theory. NA=q”Bogn, (37)
IV. REALIZATION OF THE TWO DIMENSIONAL then using the definition of the induced metric we have, for
DIFFEOMORPHISMS any functionf and densityw on 3,

One goal of the present work is to construct a quantization (£,X9)(N,X,)
of the Lorentz covariant Hamiltonian dynamics described ENf:m (39
here in terms of a matrix representation similar to that used wrty '
in the light-cone gauge fixed formalism. The main obstacle (n,X,)
to doing this is that it is only the subgroup of the two dimen- Lyo=da(oN?) :<;‘, i ,xa> . (39
sional diffeomorphism group that preserve the area element (X X )(XH,X)

of the induced metric that are represented in the matrix for- _

malism by SUN) transformations, in the limit of largl. ~ These equations apply, in particular to & andp,, (which
This is fine for the light-cone gauge fixed formalism, becausds, of course, a density ol.) The first gives a nonlinear
there the full diffeomorphism group & has been broken realization of Diff,(%)/Diff( X):

down to the area preserving ong3]. But if we want to 8 v

quantize the covariant formalism we have to represent all of Ly XP (X2, XN N, X

Diff(X). In order to understand how to do this we must first :<XM X XH XY (40)
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The second gives the transformation of the momenta where

(n,Xg)

= = = Pizpaifa <XB’X)/>' (47)
LrPa=da(PaNY) = Pagg—y sy X7 ) (4D P
MY 1

An analogue of the Chern-Simons state for quantum gravity
As these are diffeomorphisms, k§%9) they must leave the [8] can be construct using

constraint surfac{,=0 invariant. Thus, the theory h&so 1

gauge invariances, 1_aach given by a mgpping _of IEi)‘f{nt_o Y[X]= _f eaﬁyX”‘(Xﬁ,Xy) (48)

the algebra of functions oR. The first is the linear action 3)s

(36) of the area preserving transformations. The second is the

nonlinear representation of DIff()/Diff 5(X) which is SO that

given by(40) and(41). Both must be represented in a quan- 5y

tization of the covariant theory. = Eaﬁ'y<xﬁr X7). (49)

V. DIRAC QUANTIZATION . .
Q If we define the “Chern-Simons state” by

We can now discuss the quantization of the membrane
theory. | will discuss briefly two methods of quantization. VX=X (50)
We start with Dirac quantization. This is straightforward, but
makes so far no connection with the matrix models. We ddt follows directly that
find one interesting result which is that in the particular case .
of 2+1 dimensions we can find an exact physical state that P, ¥cd X*]=0. (51
describes the reduction of the membrane to the string. After , i ) i i .
describing this we will turn to the question of the existence>NCe this state is manifestly invariant under Df(this is a
of a matrix representation of the covariant membrane. well defined physical state. _ _
Under the procedure of Dirac quantization one begins |t May be objected that the state is not-normalizable.
with some kinematical hilbert spadeé<™ and establishes the However, this is only the case in a naive Fock inner product,

canonical commutation relations associated to the Poissoff?ich might be established on the kinematical state space

Kin Thic nhieeti : :
brackets8). The natural representation to use is the configu/t - 1NiS objection rules out the consideration of an analo-

ration space representatiof[X“], where the kinematical 90US State in the case of Yang-Mills theory. However, this
configuration space®™™ consists of mapX“(e,p):3—MN objection does not hold in the case of theories whose dynam-

from the two surfac& to N dimensional Minkowski space- ics is governed by constraints, because physical states,

time. The operator assignments are the natural ones in whi(ﬁ’]e'ng Zero energy states Of_ the H?‘m"t_"”"?“’“s”a'_”tar_e
expected to be non-normalizable in this kinematical inner

product. The inner product on physical states must be con-

(42 structed on the space of solutions to the constraints. Since we

do not have a full space of physical states we are not yet in a

On this we impose first the diffeomorphism constraifisin position to do this,_on_the other_ hand, at the present stage
the form there can be no objection to taking the std#tgd X“] to be

physical as a working hypothesis and seeing where it leads.

R SU We may note that in the case of quantum gravity there are

D(v)‘I’[X“]=f (ﬁvxﬁ)ﬁ[xa]- (43)  good arguments that the analogous state is in fact the full

* nonperturbative vacuum state for the theory in the presence

of a cosmological constant. In this case both the exact Planck

scale description and semiclassical limit are understood. For

WX = W[ pOX"] (44) ~ small cosmological constant the state has a semiclassical in-

terpretation which describes fluctuations around de Sitter

where ¢ e Diff( ) so that the states become functionals onspacetimé¢8,10], while the exact description of the state is as
cdiffeo= ckin/piff( 3)). The problem is then to invent a regu- the Kauffman invariant of quantum spin networks at level

v=i# oy
pa =1 5xuz'

This is solved in general by the requirement that

larization so that the solutions to k=6m/G?A [13].
In fact the Chern-Simons state in the present context must
H(N)PT=0 (45 also have a semiclassical interpretation, since it is of the

o o form of a WKB state. To find that interpretation we note that
can be extracted. Once this is done a physical inner produgteatingY[ X*] as a Hamilton Jacobi function we have
is to be picked on the space of solutions to both sets of

constraints. Y

In particular cases some exact solutions can be found. For Pa="xa™ €ap(XFX). (52)
example, for the case =3 we can split the Hamiltonian
into self-dual and anti-self-dual parts We may note that this satisfies the classical Hamiltonian and
momentum constraints. To find the velocities we may use the
H —Ep*era (46) time defined by the densitized Hamiltonian constra2@),
2@ so that
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v = B\ Equivalently, up to an SW) transformation these can be
Xa={Xa Hot =Pa= €ap,{X5X7). 53 replaced by a corresponding set of double commutator trans-
formations:

The state(50) then is a semiclassical state that describes
fluctuations around the solutions to this equation.

We may note that a similar state can be constructed in
seven dimensions using the octoni¢B$ by replacinge.s,  Acting on quantum states these should generate the con-
in (50) by the structure constants for the seven imaginarysyraint,
octonions. In fact, the octonions can be used to give a com-

SXH =[N, X, ], X*IX*+ X[ n,X,],X*]. (57)

pact expression to katrix) theory, which will be described 5\1,[5(,)]
in [14]. DIn]WXP]= ([[N,X ], X¥IX*+ X[[n,X,],X*]) P
(58)

VI. IS THERE A MATRIX FORMULATION
OF THE COVARIANT THEORY? Unfortunately, at least for finitél, these do not appear to
It would be very convenient if the regularization of the 9enerate a symmetry of the Hamiltonian constras#). It
light cone gauge fixed theory in terms BN Hermitian ~ S€€mS likely that if these symmetries can be implemented
matrices could be carried out as well for the covariant ver€xactly, it will be only in theN— e limit.” It is also possible
sion of the theory. To investigate this we may consider stated? Sp_‘tar?‘#]at‘?‘ghﬁ this addltlotn_al symmetry hast som(;atrlmg to
4 Cu o o with the “hidden” symmetries in supergravity and string
of thg for_m\lf[_x ] where theX r_:lred NXN HeLm|t|an theory, however there is little more that can be said unless a
matrices ind dimensional spacetime. The momemia are  way is found to implement them in the quantum theory.
then represented a#dX“. The algebra of functions oB

under(,) is then taken over to the matrix algebra, so that,, TOWARDS A GENUINELY NONPERTURBATIVE

(X% XPy—[X* XP]. The area element preserving subgroup FORM OF M THEORY
of the diffeomorphism group Dif§(X) then map to the ] _ )
group SUQN), which becomes the gauge group. Before closing this paper, we turn briefly to the key prob-

This is sufficient for the light cone gauge theory, wherelem qf finding a fundamental, background independent for-
the area element preserving diffeos are the only gauge synfoulation of M theory. Such a formulation may have no
metry, but will it work for the covariant formulation, where dependence on a particular classical spacetime. Nor can it
the gauge symmetry is expanded to the full 3 dimensionafl@ve any global symmetries, as those arise in general rela-
diffeomorphism group of the membrane? To do this we mustiVity and other gravitational theories only as symmetries of
implement on the SWN) invariant functionals of the mem- particular solutions. A theory that has diffeomorphism in-
brane two additional constraints, which are, formally, theVariance, or some extension of it as the fundamental gauge

Hamiltonian constraint symmetry cannot have any global symmetries associated
with particular spacetime manifolds.
2 This follows from general arguments about the role of
HoW[XF] =] — —— +[>”(a,5<5][>”(a,g<ﬁ] W[X*]=0 diffeomorphism invariance in theories in which the space-
IX*IX,, time geometry is a dynamical field. Other arguments, coming

(549 directly from string theory lead to the same conclusion. For
example,T duality and the other dualities tell us that string

and the area nonpreserving part of the diffeomorphisn¥s.of theories defined as expansions around different spacetime
We may note that the counting is right; this formalism hasbackgrounds are sometimes completely equivalent to each
two more matrix degrees of freedom than the light coneother[15]. There are further arguments that these dualities
gauged fixed theory, but these are balanced by two addition&lre to be considered to be gauge symmetriesfotheory. In
matrix valued constraints. Presumably the Hamiltonian conthat case the gauge invariant description cannot be given in
straint can be implemented, as it differs only by some signéerms of fixed classical backgrounds.
from the Hamiltonian operator that has been studied in the Whatever else it has accomplished, the studies of nonper-
light cone gauge fixed theory. The difficulty is with the re- turbative quantum gravity16—18,22 and topological quan-
maining non-area preserving diffeomorphisms; at present thim field theory, and their inter-relatiofi22] have shown us
author is unaware of any method for implementing them. that it is possible to construct background independent, dif-

To have a chance of Succeeding we can mu|tip|y the Vecteomorphism invariant quantum field theories, even to the
tor field by h to get polynomial transformation lawgThis  level of mathematical rigor reached by ordinary constructive
step is implicit in writing the area preserving diffeomor- quantum field theoryf19]. This should give us the confi-
phisms in terms of SW) transformations, so we use it here dence to attempt the same f8# theory.
as well] Using symmetric ordering to preserve the Hermitic- ~ One strategy to construct such a theory would be to con-
ity of the matrices we find transformation laws of the form struct a dynamics oNxXN matrices which has no global

y M — oy a v v, . "y oy a
ORE=[N XX KT+ [ X, X0, X7 (59 ®Djordje Minic has kindly informed me that Hidetoshi Awata and

R o R o he have considered similar issues in the context of a covariant La-
OPpo=[P[N, X, ], X ]+ [[N, X, ]pa, X"]. (56)  grangian matrix theory.
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symmetries, but instead a group of gauge symmetries larger G=[X,,II?3]. (66)
than SUN). The simplest way to do this is to find an action

which is a functional of a set of matrices that does not dedn addition, there are 12 constraints,

pend on a background metric. This is easy to do, as the a a

following example illustrates. DA=Trll*=0 (67)

_ 1A theg?'h;egoe:g';‘gt ggd,en dN(?nNa ?:éﬂcfsﬁﬁg,me?ric i S:[hat follow from the vanishing 08?". These generate the12
des’c.ri.b.e’d by the action P 9 ‘spatial” components of the gauge symmei§2).
y ' More structure may be introduced by following the strat-
Sh= e Tr[X, ... X, ]. (59 egy of CDJ[20] and introducing Lagrange multipliers into
1 d the action. This will be discussed elsewhere.

This vanishes trivially for ever, as a result of the Jacobi  Of course, this is not the only possible approach to a
identity. This simple fact is analogous to the fact that in theP@ckground independent dynamics of matrices. The new
continuum path integral formulations of spin network evolution may be

interpreted as a dynamics for matrices, if the spin networks
are taken to be not embedded in any background manifold,
Sgont:J Tr[FAF ... /AF] (60 asis advocated if21]. A general formulation of background
independent theories of quantum geometry, which may have
is a topological invariant, as the Bianchi identity reduces tosome relevance to membrane dynamics is also proposed in
the Jacobi identity of the matrices. But for oddhe action [22,23. Of course, the relevance of any of these models to
S does not vanish. Instead, one has a kind of matrix anaA theory remains to be shown.
logue of Chern-Simons theory. Interestingly, higher dimen-

sional Chern-Simon theories have local degrees of freedom VIIl. CONCLUSIONS
[24,25, and the structure of their constraints and equations .
of motion can be intricate. Put briefly, we have made some progress towards a cova-
For oddd=2n+1 the equations of motion are riant formulation of membrane dynamics. The crucial issues
left so far unsolved are
oSt The choice of the physical inner product for the physical
ox, € 4=1Xp, - - - Xp,_,=0. (61)  states, which is unlikely to be the same as in the light-cone

gauge fixed theory. This opens up the issue of the physical
The solution spaces of these theories include the solutioimterpretation of the quantum states of the membrane as well
spaces of the background dependent theories is whichs the consistency of a non-perturbative quantization of the
[X,,Xp]=0 for all a,b. At the same time, the global sym- membrane in any dimensions.

metry of the background dependent matrix modils, X, The possibility of a matrix representation of the covariant
=X,+V,l, wherel is the identity matrix and/,’s are con-  theory rests on the implementation of a nonlinear realization
stants, is rep]aced by@uge invariance of the non-area preserving diffeomorphisms of the mem-
brane. This gauge symmetry, together with the Hamiltonian

Xa— X{=Xa+ Va(X)| (62 constraint, is necessary to balance the increase in the number

) . of matrices fromd—2 to d which moving from the light
where the\/a(X) are nowfunctionson the space of matrices. cone gauge to a covariant formalism requires_
To see this note that Further work in this subject will also include the exten-
on+1_ _aby...by, _ sion to the supermembrane, which will involve also the study
OSTT =€ PV T [Xp, - Xp, ]=0. (63 of special dimensions such ak=10+1. But the results
We can see these features as well from the canonical fO}‘_ound so far in this general study tell us what those more
. —specific studies will have to accomplish if there is to be a
Y orentz covariant formulation aM theory arising from the

explicitly the time dimension. The r+1 component we dynamics of membranes

represent as time, so we wri¥s,, . 1 =A,. We then have
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