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Hypothesis of path integral duality. I. Quantum gravitational corrections to the propagator
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The action for a relativistic free particle of massreceives a contributior- mR(x,y) from a path of length
R(x,y) connecting the events andy'. Using this action in a path integral, one can obtain the Feynman
propagator for a spinless particle of mamssn any background spacetime. If one of the effects of quantizing
gravity is to introduce a minimum length scdle in the spacetime, then one would expect the segments of
paths with lengths less thadn to be suppressed in the path integral. Assuming that the path integral amplitude
is invariant under the “duality” transformatioR—>L§/R, one can calculate the modified Feynman propaga-
tor in an arbitrary background spacetime. It turns out that the key feature of this modification is the following:
The proper distanceA(x)? between two events, which are infinitesimally separated, is replacéckby L2 ;
that is, the spacetime behaves as though it has a “zero-point lengthp ofrhis equivalence suggests a deep
relationship between introducing a “zero-point length” to the spacetime and postulating invariance of path
integral amplitudes under duality transformations. In Schwinger's proper time description of the propagator,
the weightage for a path with proper tinsebecomean(s+ L%/s) rather than asns. As to be expected, the
ultraviolet behavior of the theory is improved significantly and divergences will disappear if this modification
is taken into account. Implications of this result are discuske0556-282(198)03810-1

PACS numbdrs): 04.60—m, 11.25.Sq

I. INTRODUCTION AND SUMMARY from a path integral descriptiorwill contain information
about the quantum mechanical propertiespof

It has been conjectured for a long time that the spacetime To the extent we can ignore the gravitational coupling, we
structure at very small scalgslose toLp=(G#/c®)¥?will  can have a free scalar field in flat spacetime and the evalua-
be drastically affected by quantum gravitational effects.tion of G is trivial. At the next level, if we treat the back-
Since any quantum field has virtual excitations of arbitraryground spacetime as curved but classical, one can ignore the
high energy—which probe arbitrary small scales—it followssum over metrics in Eq(1) and construct the propagator
that the conventional quantum field theory can only be arG.(x,y|g) in a given background metrig;,. We do not
approximate description, valid at energies far smaller thamave a closed form for this in an arbitrary background be-
Planck energies. The “correct” description of nature has tocause the partial differential equation Gk (x,y|g) has no
take into account the quantum nature of the spacetime geongtosed form solution in an arbitrary background. What is
etry and should reduce to the conventional description at lownore importantsuch a propagator cannot be trusted when
energies. Can we say anything about the kind of modifica¢x—y)2<|2 since the quantum gravitational fluctuations of
tions quantum gravitational effects will introduce into the the background geometry cannot be ignored at these scales
description of other quantum fields? | investigate some asand our approximation of working with a fixed background
pects of this question in this paper. gix breaks down. We need to know how the quantum fluc-

Let us focus attention on a scalar fieldx) of massm in tuations of the metric affect the propagat®k(x,y|g) at
a D-dimensional Euclidean spacetime. Eventually we are inthese scales.
terested(probably in the case ofD=4 Lorentzian space-  This is quite a different question from the one usually
time, which can be achieved by suitable analytic continuazddressed on the subject of quantum fields in curved space-
tion. Since all matter generates and couples to gravity, thergme in which one worries how the quantum nature of the
is no such thlng as feescalar fleld, at the |ea.3t, one should scalar field affects the background geome([‘fback reac-
grant the fact that the scalar field is COUpled to its own Self'tion”)_ Such an issue can be tack|ed, for examp|e' by inte-
gravity. So, in general, the actiof[ ¢,g;c] describing the  grating oute in Eq. (1) and obtaining an effective action for
system will be a functional of botly(x) and the metric  gravity, say. In contrast, we are interested in how the quan-

gik(X) of the spacetime. The full quantum field theory of tym fluctuations ofy;, affect the quantum propagator for the

such a system will be based on a formal path integral such a%-alar field. Formally, if we Writgik=Ek+ hic whereak is

the, average, large scale spacetime metric lapdare the
G=> exp—A[g,¢]). (1)  small scale quantum fluctuations, then we are interested in
9.4 the effect of summing over the fluctuatiohg in Eqg. (1) to
get low-energy quantum theory for the scalar field in the
background metrig;, . The resulting propagat@r(x,y|g),
for example, can be thought of as the one found by averaging

Ge(x,y|g) over the quantum fluctuations @y aroundg; .
*Email address: paddyiucaa.ernet.in In particular,g;, could just be a flat spacetime metrig, .

The Feynman propagat@g(x,y) for the scalar fieldand
higher-ordem-point functions, all of which can be obtained
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Even in this case, we expect the quantum fluctuations ofvhereP(h) is the amplitude for a fluctuatiam, , which will
gravity to modify the propagator fox( y)?< L,ZJ [or,inmo-  depend on the “correct” theory of gravity. We are interested
mentum space, forp?+m?)L5>1]. The concept of a free in knowing the modified form of the propagator.

quantum field is an approximate, lower-energy, notion and Itis, of course, impossible to “derive” the correct propa-
we do have to change it fox¢y)2<L2. (In fact, even the gator which takes into account quantum fluctuations of a
description in terms of a field may be inadequate at shorfnetric. To do so, one needs a workable model for quantum
distances and we may need string theory or models based @favity which will give usP(h). Since we do not have this,
Ashtekar variableg Can we capture the key effects, quantumthe best one can do is to take hints from various models for
gravitational fluctuations, by invoking some general prin-quantum gravity and come up with an ansgé2. This is
ciple? what | propose to do along the following lines.

To address this question, it is convenient to write The strongest hint is the existence of the length
Ge(x,y|g) in an alternative form. We know that the propa- =(G7%/c®)™2, which is expected to play a vital role in the
gator in a given background metric can be expressed in twoultimate” theory of quantum gravity. Simple thought ex-
equivalent forms as periments indicate that it is not possible to devise experimen-

tal procedures which will measure lengths with an accuracy
greater than abou?(Lp) [2]. This result suggests that one
f Dx could think of the Planck length as some kind of “zero-point
length” of spacetime. In some simple models of quantum
17+ .. gravity, L% does arise as a mean square fluctuation to space-
xexp{ - Zfo gix' xkd 77) .

Gr(xylg)= 2, e—mR(x,w:f dre- "
paths 0

(2)  time intervals, due to quantum fluctuations of the mesic
In more sophisticated approaches, such as models based on
) ) string theory or Ashtekar variables, similar results arise in
In the first form, R(x,y|g)is the proper length of a path gpe guise or the othésee e.g.[4,5,7,9—12). The existence
connecting the events andy, calculated with the back- o 5 fundamental length implies that processes involving en-
ground metriog;, and the sum is over all paths. The action g(gies higher than Planck energies will be suppressed and the
MR has a square root in it but can be evaluated by standargiiraviolet behavior of the theory will be improved. All sen-
lattice techniquesgsee the next sectignlt |s.also p_ossmle to  giple models for quantum gravity provide some mechanism
show by these methods that the result is equivalent to thg,r good ultraviolet behavior, essentially through the exis-
second expression. This expression, which is originally dugence of a fundamental length scale. One direct consequence
to Schwinger, has a simple physical interpretation. By resyf sych an improved behavior will be that the Feynman
caling the time variable fromy to s=m» and7 to 7'=m7  yropagatofin momentum spagawill acquire a damping fac-
we can change the factor expi’7) to exp(-m7’) and the  tor for energies larger than the Planck energy.
path integral kernel to If the ultimate theory of quantum gravity has a fundamen-
tal length scale built into it, then it seems worthwhile to use
o mif- .. this principle as the starting point to obtain a glimpse of the
KOy, |g)=f Dx exp( B Zfo gix'x'd S) - modifications introduced by quantum gravity effects at lower
energies, provided we can introduce the quantum gravity ef-
This kernel can be thought of as the probability amplitudefeCts.throqgh so.me.povx_/erfu'l, general principle.
for a particle to propagate from to y in a proper time \.N'th th|s.mot|vat|on n mmd,'llet us ask hOW. the propa-
interval 7’ in a given background spacetime. The amplitudeﬁqi"r?tgl azrgfgtgg% tC?eur:gtEetom%tﬂESagetgrenrs ?;]('Sé%at;“enda'
for propagation with energk (in the rest framgis given by weightage given for a path of lengf is expt-mR) which

the Fourier transform dk(x,y, 7’'|g) in the time variabler’, . . _ . .
with respect toE in Lorentzian space; in the Euclidean is a monotonically decreasing function &f. The emstencg
. f a fundamental length  would suggest that paths with

space, it will be a Laplace transform. Setting the energy i ; . :
the rest frame equal tm we obtain the expression in E@). engthR<Lp should be suppressed n .the path integral. Th|§
an, of course, be done in several different ways by arbi-

(The physical interpretation of these expressions and theffd" o S
relationship to Jacobi action, etc., are explored in detail intrarlly mpdlfqug the expression In Eq2). In'ord‘(‘ar to make
Ref. [1]). a sp'ecmc ch0|ce | shall invoke thg foIIowmg principle of
The above expressions assume that we have a classié%]l'a“ty'” : W!” postulate that the weightage given foga path
background spacetime with a given, fixed, metric. As weShould be invariant under the transformatigt— L5/ R.
said before, such a description is bound to break down wherince the original path integral has the factor eaép(R), we
(x—y)2<L,%. More generally, Egs(2), and (3) sum over have to mtrod_uce the additional factor exp(Ls/R). We
paths which probe arbitrarily small scales at which the metri¢herefore modify Eq(2) to
fluctuations are likely to be large. These fluctuations will
affef:t th('a propagat_oGF(x,y|g) and will modify it. If we GF(X,Y|9)=E ex;{—m
again writeg;, as @jx+h;) and average over the fluctua-
tions h;., then the effective propagator will be

L?
+_
RT*R

. 5

I will take this to be the basic postulate arising from the
“correct” theory of quantum gravity. It may be noted that

Ge(xylo =" Ge(x.yla+h)Ph), 4 the “principle of duality” invoked here is similar to that
F(x.Y]g) ; r(xylg+hP(h) @ which arises in string theorig¢g,9—14. (It should, however,
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be stressed that the principle of duality used in string theorieg§vhenl =0, this gives the conventional Feynman propagator
is not identical to this postulate, and nor is our postulaten Fourier space®+ m?) 1. Whenl #0 the integration can
derivable from string theory. In the strict sense, the duality inbe performed to give

the string theory operates in the internal sppte.fact we

may think of Eq.(5) as a result of performing the averaging ~ I

on the right-hand side of E@4). Since | do not knowP(h), G(p)=Ky(lyp=+m )\/?mz’ (1D

this result is a postulate at present. It is also the simplest P

realization of duality for a free particle; we have demandedyhereK,(z) is the modified Bessel function. The limiting
that the existence of a weightage factor expi(l) necessarily  forms of this expression are

require the existence of another factor exp(LE,/I). We

shall now study the consequences of the modifications we (p?+m?) 1 (for 1{p?+m?<1),
have introduced. A 2 2
. . . G —IJp+

To do this we need to evaluate the path integral in(&g. (P)= eXB(Z 5 P 5 274) (for | \/p2+ m?>1),
It turns out that this can indeed be dadisee Sec. I)land the I74(p=+m°)
result is quite simple to state: (12)

L2 which clearly shows the suppression of energies higher than
_ Lp Planck energies.
Ge(X, = expg — — . .
F(x¥l9) E F{ R } The rest of the paper is organized as follows. In Sec. Il, |

L2 illustrate how the path integral can be rigorously defined

f dr exp( m2r— p)K(x NG r|g) (6) using aD-dimensional lattice and limiting procedure. This
“warm-up” exercise shows how the standard res(®)
arises and sets the stage for the main analysis of the paper. In

Our modification merely changes the weightage glven to &ec. lll, | evaluate the modified path integral using the same
path of proper timer from exp(n?7) to expnmPr— Lp/r) technlque and obtain E@6). Some of the implications are
in Schwinger’s prescription. discussed in Sec. V.
This result has an interesting interpretation. It is well
known that the kerneK(x,y;7/g) has a DeWitt-Schwinger || WARM-UP: FEYNMAN PROPAGATOR FROM SUM
expansion of the form OVER PATHS
o 1 \bR2 (X—Y) A. Rigorous evaluation of the path integral
K(x y;7-|g)=( ) € F{ 4r )[1+ 1@ In defining the path integral in nonrelativistic quantum

mechanics, we discretize the time axis, define the path inte-
where the ellipsis represents metric-dependent correctiongral with a nonzero spacing and finally take the limit of
Using Eqgs.(7) in Eq. (6) we can write our propagator as going to zero. To define the path integral in dimensions
we can use a similar procedure. We will work in Euclidean
S D/2 (x—y)2+4L§ space and introduce a cubic lattice with spacinghe path
= fo dre dnr) R T T integral will be defined on the lattice and then we will take
the limit of e—0. To obtain a finite value in the limit of
X[1+---]. (8) —0 we have to choose the measure and the mass parameter
m, which varies in a specific fashion with. This can be
Thus the net effect of our modification is to add a “zero- done fairly easily and the final expression will agree with the
point length” 4L2 to (x—y)? in the exponential, thereby standard Feynman propagator for a free scalar field. The cal-
modifying the Ieadlng singular factofhe postulate of dual- culation proceeds as follows.
ity used in the path integral is identical to the postulate of We will work directly in Euclidean space dd dimen-
such a zero-point lengtiThis is one of the key results of this sions. In this section we are primarily interested in the issues
paper and—as far as | can see—this connection is far frorof principle, regarding the measure for the path integral, and
obvious. will consider the path integral for a free particle. We have to,
In the case of flat background spacetime, the terms inditherefore, evaluate
cated by the ellipsis vanish and the propagator is given by
1\P2r=ds R
GF(X)_(E) Jo ST/Zexy{ m-s E(X +19) 1,

gE<x2,x1;Mo>=a”Ex(t) exp{—m I[x(t)]} (13)

in the Euclidean sector, whetds

© 1 dx\ 2|12
where we have set=0, 7=msand defined=2L. To see |(X2,X1)—f ds (ds (14
the effect of our new term, we may Fourier transform this
expression with respect g giving and is just the length of the curve(s), connectingx(0)
. 2 =X, andx(1)=x,.
G(p)=| ds exp( —(p2+m?)s— 4_)' (10  This quantlty_ can be defined through the following limit-
0 S ing procedure: Consider a lattice of points in a
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D-dimensional lattice with a uniform lattice spacing ef 1 1 1 \N

We will work out Gg in the lattice and will then take the limit Xyt Xph o Xph S S oA S

of e—0 with a suitable measurbl!(€). To obtain a finite o2 P

result, it is also necessary to traat(which is the only pa- n n

rameter in the probleinas a functionu(€) of the lattice =2 C(Ning, Ny, Mp) Xy X, (18)
spacing where the functional form is to be chosen in such a

way to ensure finiteness of the continuum result. We willThe expansion of the left-hand side gives the generating
reserve the symbah for the value of this function in the function for C(N;R). For further manipulation, it is conve-
continuum limit. Thus we will define the path integral result nient to setx;=e'k1, x,=e'*2,... xp=€'*>. Then we can

as a limit: write

. EN=[elk1t glkz ... 1 @ik —iky 1 ... 1 a—ikpN
G(%o xa;m) = MM (G006 Xz u(€)],  (15) [efrretzt - refore Tt te ]

e—0

=§R) C(N:R)ekR (19)

where the function$/ (e) andu(€) are to be chosen so as to

ensure finiteness. The rationale for this expression ariseBherefore,

from the following point of view: We treat the continuum .

space as a limit of a lattice with the lattice spacingoing to iR N s iKeR

zero. We now construct a sequence of path integrals paramER e gE(R'e)—NE:O ER: C(N;R)e™ " exd — u(€)Ne]
etrized by the spacing by choosing certain functiong(e)

andM () and define the continuum path integral as the limit “ °°

of this sequence. We shall show later that this limit exists =D e MINEN= 3 [Fe ueN
only if u(€)=(In 2D)/e and M(e)=(2D) e~ ®~2) near N=0 N=0

e=0. The form ofu(e),M(€) for e far away from zero, of =[1-Fe #9~1 (20)

course, makes no difference to the result we are after.
In a lattice with spacing o€, Eq.(13) can be evaluated in Inverting the Fourier transform, we have
a straightforward manner. Because of the translation invari-

ance of the problemgg can only depend om,—X;; SO we S d%k e kR
can setx; =0 and callx,= eR whereR is a D-dimensional Ge(Rie)= (2m)P (1—e HO<F)
vector with integral component®=(n,n,,ns,...,Np). Let
C(N,R) be the number of paths of lengthe connecting the dPk e ikR
origin to the lattice poinkR. Since all the paths contribute a = f PR 5 (21)
term [ exp—u(€)(Ne)] to Eqg. (15), we get (27) (1—2e‘“<5>62 coskj)
i=1
Ge(Rie)= D C(N:R)ex{] — u(e)Nel. (16) Corlvlerting to the physical length scales=eR and p
N=0 =¢e ~k we get
] ) o EDde e—ip~X

The generating function determining C(N;R) QE(X;G)ZJ . 5 (22)
=C(N;ny,n,,...,np) can be calculated easily by the follow- (2m) 1- 26 (O
ing arguments: Consider any particular path connecting the € = CoP;e

origin to the lattice poinR. Suppose that this path takes

steps towards positive directioffright” ) in the first axis We are now ready to take the limit of the zero lattice spac-
andl; steps towards negative directigfieft” ) in the first  ing. As e—0, the denominator of the integrand becomes
axis. Thenn;=r,—14; similarly nj=r;—1;. The number of

paths with a specified number af;(l;) fori=1,...D is just —eu(e) 21 12

the number of ways of ordering the steps, specified by theé ~2€ D— 5 €p|

integers (1,..../p,l1,....lp) with Zr;+2I;=N. This is

given by the coefficient of the polynomial expansion =1-2De 94 2= nla)|p|2
1-2De #(©
(Xy+Xo+ -+ Xp Y+ Yot - +yp)N = e2em()| |p|2+ i-ebe 7 1 29
GZe—s,u(s)
= e 1% e x Dyl Lyl
2 QNI IXgh XY Y- (9 so that we will get, for smalk,
D —ip-
In our problem, we allow r;,l;) also to vary, keeping; G (X.e):J' d”p A(e)e P (24)
—I;=n; fixed for eachi. The number of paths with this B (2m)° |p|?+B(e)’

property is clearly given by using the above expression with
yi=(1/x;). Then we get where
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1 = dr
A(e)=€P %9, B(e)=—[e*9-2D]. (25 Ge(x;m)= >, exp(—mR)zf e
€ 0 (47T7')D/2
[The convergence of the integral over plishould be inter- wexd — @ (33
preted in a distributional sense as we have used a Taylor € 47 )"

expansion of the denominator of E@2).] The continuum
theory has to be defined in the limit @f—~0 with some Part of the integrand can be expressed as an ordinary qua-

measureM (¢); that is, we want to obtain dratic path integral:
: ) = |i : 1(7...
gE(X1m)|contmuum ilir:){M(e)gE(X, 5)} (26) K(X,y;T)Ef Dx ex;{ _ Zf X'XidS)
0
The choice of the measure is dictated by the requirement that 1 \b~2 (x—y)?
the right-hand side should be finite in this limit. We now =\ 277 ;| (34)
demand
where we have shifted the origin yo Using this in Eq(33),
lim —12(e5“(5>—2D)}:m2 @n We get the final result, quoted in E@):
e—0
2, exd —mR(xy)]
and
. o en(en » 1(r. .
I'n:)[M(E)ED Zenl9]=1. (28) =J dre‘szf Dx exp( - Zj Xix'ds). (35)
€~ 0 0

The first condition implies that, near<0, B. Physical interpretation
In2D m? In 2D The above analysis relates a nonquadratic path integral
+ DT e (29 (containing a square ropto a standard quadratic path inte-
gral. This result has a simple physical interpretation, which is
worth emphasizing. Consider the standard path integral ker-
nel K(x,y,7) in quantum mechanics, defined through the

(€)=~

Using this in the second conditi@d@8), we can determine the

measure as S\ .
Hamiltonian form of the action:
1 1 i [t .
M(&)=35 o2 (30 K(xyt)=2 > ex —f dt'[p-x—H(p.x)]|, (36
€ 0 ) o
With this choice, we get with H=0. From the principles of quantum mechanics, we

would expect the Fourier transform

. . . B de efip~x B
GE(X,m)=I|ng(X,€)M(€)_j WW, B(X,y,E)EJO K(X,y,,E)elEtdt (37)

(31

e—0

to give the amplitude for the particle to propagate frgro
with energyE. [Only t=0 is relevant in the Fourier trans-
rm (37), sinceK is taken to vanish fot<0.] But the
ajectory of a classical particle with fixed energy can be
escribed using the Jacobi action

which is the standard Feynman propagator. This analysi
gives a rigorous meaning to the nonquadratic path integr
with a square root and also illustrates the role played by thtf‘Ar
choice of the measure. In the continuum limit, we have onlyd
one length scalen™!; this fact suggests that the right-hand
side of Eq.(27) should scale am?. Setting the proportion- t .
ality constant to unity should be thought ofartial) choice AJacobFJ dt’ vV2my(E—V)|x|2. (38)
of measure. SimilarlyM (e) can be multiplied by any finite 0
quantity. The choice in Eq28) should also be considered as
part of the definition of measure.

To connect this expression with Schwinger’s proper time

t -
representation is easy. By writingp(>+ m?) ~! as > exr{ [ fodt’ V2my(E—V)|x|?

paths

We will therefore expect the relation

1
|p?+m?

=fmdr e (m*+pf) (32) =B(xy;E)
dt ¢ fDx ex iJ = MgX —V)dt'
and doing the integration over, we get 0 02 °

(39
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to hold, thereby expressing a square root path integral 150
terms of a quadratic path integral. Takimyg=(m/2), V

=0, E=m, and switching to the Euclidean sector gives the o iEt
result . K(x,y;t)e='dt=B(x,y;E)

> exp[—mR(x,y)]=th e”"ff Dx
0

paths
m (t.
X ex ——f x2dt'|, (40
4)o

which is the same as E@2) after the rescaling=mr and
continuing to the Euclidean sector. The choiceEsf mc?
shows that the energy of the patrticle in the rest frame is on p?
the mass shell. O\ otV — E) 2 exr{ f A(t)

To prove the resul{39), we need the following path in-
tegral identities: (48)

5(f(t))=% exp( i f dt)\(t)f(t)) ,

2
;—m+V(x)—E)

:;Epg

><exp(ij dtp-x|.

We now express the delta functional using E4fl):

(47)

—+V(x) E}dt)

(41) Then
B(x,y;E)=2> > exp’( f dt)\(t)[V(X)—E])
X N(1)

(42) x>, exp’(fdt
b

:exp( i J dt[—4ab]1’2> .

(43

w2
% exp(if dt[p->'<+a(t)p2])=exli(fdt4:(t) !

[{ Jdt()\(t) (t)+ (t))
A(t)

The first result is merely the definition of the delta func-
tional; the second and third can be obtained in the Euclidean

A(D) D
px+ S _p

:2 exp( fdt)\ (DOIV(X) - E])

xexp{ fdtsz)

sector by standard time slicing techniques and can be ana- _ '{f _
lytically continued. They are direct generalizations of the Zx %) e i | diMOIVO)—E]
corresponding results of ordinary integralEquation(43) is

the generalization of the ordinary integral m .,

|

=> exp(if dtv2m(E-V)|x|?].

am*
deex;{ ax’— ) \[exp([ 4ab]¥?) (44

with appropriate definition of the measure.

Introducing into the integrand of E¢36) the “expansion  In arriving at the second equality, we have used @8) and
of unity” in the form: in arriving at the last equality we have used E43). This

proves the result quoted above.

(49

To summarize, we have demonstrated how path integrals

1= fo dES(E—H(p,x)), (45) involving square roots can be given a rigorous definition—
using a lattice regularization scheme—in Sec. Il A. This
we get definition of the path integral is given a more intuitive inter-
pretation in Sec. Il B. We shall now work out the modified
o path integral along the same lines.
K(x,y;t)=f0 dE; % SE—H(p,x))
) Ill. FEYNMAN PROPAGATOR WITH DUALITY
It , : INVARIANT PATH INTEGRAL
xex%%f dt (p-x—H(p,x)))
0 We shall now turn to the main task of the paper, viz.,
® evaluation of the modified path integral in E&). It is easy
= fo dED, D, S(E—H)e Et to see that the lattice version now becomes
X p
[t : < (e)
><ex;<|f0dt’(p-x)). (46) Q(R,e)zNEO C(N,R)exp{ u(€)eN— W} (50
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wherel (¢€) is a lattice parameter which will play the role of dPk ,

(mL3) in the continuum limit. This replaces E€L7) of pre- G(R)= f mfo qdgd(g)e v R

vious analysis. After evaluatinG (R, €), we multiply it by a

measure M(e) and take the limite—0. The functions q%e

M(e), n(€), A(e€) are to be chosen so that, in the continuum Fex;{ ne— K)

limit, u corresponds to the mags and\ to (m Lf)). Since X o 2o T2 (- (56
we expect the result to have the correct limitlgs—0, we [1 Fexp( —pue— q_”

anticipate that the form g&(€) will be as given by Eq(30). 4N

To evaluate this path integral on the lattice we again begi

. _ _ _1 .
with the generating function fa€(N,R), given by Eq.(20): rhescallng back ta=eR, p=e 7k, we find

€ He '
FN= C(N;R)ek R=(ekitelos . elot e s =] )Df ada q)[ 2% (1—H)] 7
R
+ekaq ... peikp)N, (51  with
. ) e
This now leads to the expression HEFqu—ae)EFeXp{ e qZ X]
2 eik'Rg(R,E): E e—MeN—()\/EN)z C(N,R)eik'R q2 B
R N=0 R ae=pu(e)e+ — —. (58
4 )\
Z Neme=inE)= (e, (52 This expression is dimensionless; we now take &e0
limit, to get
Thus, our problem reduces to evaluating a sum of the form D 1
w b2 1-H=1-2e *> cosep;~1—2e D—Eezp2
i=1
S(a,b)=, ex n——) '
n=0 n
eae
» b2 =e’e” | p*+ —(1-2De ") |. (59)
-3 e p( a’n— F), (53 ¢
- So we can write, retaining leading terms
which is more complicated than the geometric progression of 2D
eas

Eqg. (21). Fortunately this expression can be evaluated by G(x)zf e-d”p

DD o
—ip-x
some algebraic trickésee the Appendjxand the answer is (2m)P Jo qdab(q)e o)\ &3 (p2+B)?

»qdg J e—(a2+ q2/4p?) 60
S(a,b)= %1 O(q)—(a2+q2/4b2) 2 0
0 [1—e ]

whereB(e) is defined as

1 © Jl(Q) B 1 e+ (@)
B - B=— {er<d —2D}. 61
= (1_6—32) jo d [1_e_(a2+q2/4b2)] ’ (54) 62 { } ( )

Consider now thes—>0 limit of B; using Eq.(29), we have

whereJ,(x) is a Bessel function of order. The first form of 2D+ m2e2 for small €. So

the integral shows that the expression is well defined whilé
the second form has the advantage of separating out the
b-independent part as the first terfilote that the two sum- B~ = {2D(el®/(eM) — 1) + m2e2e @M} (62)
mations in Eq(53) will differ by unity if b=0; the results in €
Eq. (54) will go over to the second summation in E&3) if
the limit b—0 is taken] In our case,b?=(\/€) and a?
=ue—InF: So we get

For the first term to be finite at yjg—O0 limit, we need the
small- dependence to be of the form

q’e ex;{q—ze —1~A(q)€? (63
Fexr(—,ue—ﬁ) 4N ! .
S(a,b)=f0 qdab(a@)q 5 92\ ]2~ This implies that
1-Fex ME_K
Te) _pinem1s &€ 64
(55) eX K ~1+A e~ ZK, ( )

This gives giving
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~ L 2pA 2+ m?e[ 1+ O(€?)- L
~ 212DAe"+ me] (€)1} G(p)= —— r K,(LpZ+m?)
=(2DA;+m?). (65) (p2+m?)~1 (asL—0),

; —LVp?+m?
Further, sinceA;(q) €2=(q%/4)(e/\), we need\ to scale as = e
A~ (g%/4A,)(1/e) ase—0. Since\(e) is to be independent
of g, we must haveA,(q)=(L 2g%/2D) with L=const.

Then \(e)~(L?%/4)(1/e)(2D) as e—0. We thus find that,

ﬁ (aSL—>OC)_ (72)
Ll 2(p2+ m2)34

neare=0, we need

2 q2 2elan 3 L2 2
B=m"+ —, e*=etel “*=2D, New= e,

L2’
(66)
Putting everything into Eq57), we get

2(2D)?
(p?+m?+q?/L?)?

~qd
G- [€£9P _Iproq ad(@)

(2 )D L262

_ 4.D-212 P _|p.xf°° 29Jy(q)L%dq
TP f(ZW)De o [L2(p?+m?)+q”]*
(67)

We now choose the measuw(e) such that

lim4eP~2D?M(e)=1. (69)

e—0

Then we get the final result

dD
G(x)= J' —(277?'3 e

ip~xJ'oo 2qJ5(q)L%dq 69

o [LA(p?+m?)+g”]*’

We have thus successfully defined the path integral in E

q.

Clearly, the propagator reduces to the standard fqoi (
+m?)~1 obtained earlier, wheh?(p?+ m?)—0. By setting
g=L\ we get

o) [F ALY 9 (= 20Jo(LA)dA
(P=2] ZrpZrme = o) (N pPr
(73)

Expressing the denominator using the ident@g), and dif-
ferentiating with respect tm?, it is easy to show that

G(p):f ZTdTe_T(sz’mZ)W(L,T), (74)
0
where
> .1 L?
W(L,T):f NANIp(LAN)e" ™ =—exp — —|, (75
0 27 2T

with the last equality following from a standard identity re-
lated to Bessel functions. Using this, we can write

o0 L2
G(p)=Jo dr ex;{—r(p2+m2)—z : (76)

which has the same form as Ed.0). Fourier transforming
with respect tap, we get the key result

(5) using a lattice regularization procedure. Note that we now
needed three function®i(e), u(e). and A(e). Of these,

M (€) and w(€) were required even in the standard free par-
ticle case, discussed in Sec. Il. In fact, we are using the same
functional form (M (€)xe?> P, u(e)xe ) for these func-
tions neare~0. The new entity needed now i €) which
should correspond tonQL) in the continuum limit. This

function scales ax(€)« (L2/e) neare~0. At this stage we

can only say that.«L,; the proportionality constant, as

usual, cannot be determined by considerations of measursnoWs thaﬂ-“'— The actual proportionality constant de-
we shall say more about this later. pends on the deflnltlon of measure and we shall see in the

. 2_ 2
Our result can be recast in more useful forms. To begirf’€Xt section whyL.“=4L} is natural.
with, the momentum space propagator is given by

1 D/2 ) X2+ LZ
—| exp-—mm°—
T 471

G(x)= Jo dr 7
o L2

= — 2

J;) dTeX[< m P

This is the result quoted in Eq§9) and (6), if we identify
L= 4L2. Our definition of the limiting procedure only

K(x;7). (77)

IV. GENERALIZATION TO CURVED SPACETIME

5 _— 2qJo(q)L2dq . . . .
G(p)—J d®xG(x)e'P f 5 ——s. A rigorous way of evaluating Eq5), viz., to define the
[0+ L*(p*+m?)] path integral on a lattice and use a limiting procedure, this
(700 was done in the above for flat background spacetime. It is
) ) . possible that this procedure can be generalized to curved
Using the identity spacetime. Unfortunately, this procedure hides the extreme
simplicity of the result in Eq(77) and does not make trans-
fxdz Z5(2) _ Ki(Q) (71) parent the origin of several intermediate results. Here, | shall
o (ZZ+Q%*  2Q follow a different and simpler route and rederive the result.

whereK(Q) is the modified Bessel function, we get

This rederivation suggests a generalization to curved space-
time.
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The key idea is that the new factor in the path integral,
exp(—a?/R), can be expressed in terms of a factor like
exp(—b*R) by performing a Gaussian integral. The latter
factor, of course, can be evaluated in the path integral. The

Gaussian integration will also produceRd’? factor in front

which needs to be taken care of by doing a two-dimensional
Gaussian integration and a differentiation. With such el-

ementary algebraic tricks, one can prove Ef).
We start with a slight generalization of E@®):

> e (MreR= fxdrK(x’,x;7-|g_)exp[—m(m+a)r].
0
(78)

T. PADMANABHAN
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_ L2
Gr(x,ylg)=2 exp-m| R+
" - 2
=f dTK(X,X,,T|g)eX[{—(mZT+—p }
0 T
(83

The above approach gives a surprisingly quick derivation of
our result(77) provided we accept the definition of measure
in Eq. (78) and setL=2L,. The above analysis suggests a
possible way of interpreting the path integral duality in an
arbitrary curved background spacetime.

Given the kerneK(x,y;r@ for a particle to propagate
from x to y in proper timer (in some background metric

This can be easily proved by the lattice techniques used ia—ik), one would have originally evaluated the Feynman

Sec. Il.[See EQq.(27); redefining the right-hand side to be
m(m+ «) will lead to Eq.(78).] More precisely, this equa-

tion defines the measure used on the left-hand side of E
(78). [This definition is nonstandard in the sense that w

have replacedn by (m+ «) in the functional on the left-
hand side but changeah® to m(m+ a) on the right-hand

side. But it is a perfectly valid definition for the measure. In

fact we can define the right-hand side of Eg7) to be in
general of the fornm?F (a/m) whereF is an arbitrary, di-

propagator by giving a weightage expg?7) and integrating
over 7. The effect of our modification is to change this

%eightage to exp{mzr—Lf)/r). In deriving this result, we
®have not bothered to specify explicitly the measure in Eq.

(5). To this extent, the derivation is formal and not rigorous.

V. CONCLUSIONS

One immediate consequence of this result is the interpre-

mensionless function. This is possible because we now havgtion in terms of the “zero-point length” mentioned in the

two-dimensional constant® and «.] We now introduce a
two real variables K;,k;) with k?=k?+k3 and seta
=k?/m to get

> ex;{—(m+%2

R}=fwdrK(x’,x;7|g_)
0

xexg —(m?+k?)7]. (79
Differentiating this equation with respect k3 gives
R —w@mr|amr_ [~ K27y o—m?
> —e (kMR | g=m zf dr(re ¥ e ™K (x',X; 7).
0
(80)

Fourier transforming on the variablels, (k,) with respect to
two new variablesl(,l,), we find

d’k R k?
_ T a—mR e —
E p me ex%lkl mR>
bl d%k
=f dTU—W e'k"—sz) e ™K (8D
0
or, equivalently,
ml? ® 12
_ L 2 —
> exg —mR 472) Jl) drKex;{ m?r 47).
(82

Defining12=4L}, we get the final result

Introduction. We know that the kerndd(x,y;r|g) has an

expansion of the form
D/2 2
(X=y)
exp{ i [1+---],

(84)

— 1
K(X,V;T|9)=(4—7TT

where the ellipsis represents metric-dependent corrections.
Using Eq.(84) in Eqg. (83) we can write our propagator as

D/2
ex

Thus the net effect of our modification is to add a “zero-
point length” 4L,2J to (x—y)? in the exponent, modifying the
leading singular behavior of the original propagator. In other
words, the modification of the path integral based on the
principle of duality leads to results which are identical to
adding a “zero-point length” in the spacetime interval

| wish to argue that the connection shown above is non-
trivial; | know of no simple way of guessing this result. The
standard Feynman propagator of quantum field theory can be
obtained either through a lattice regularization of a path in-
tegral or from Schwinger’'s proper time representation. By
adding a zero-point length in the Schwinger’s representation
we obtain a modified propagator. Alternatively, using the
principle of duality, we could modify the expression for the
path integral amplitude on the lattice and obtain—in the con-
tinuum limit—a modified propagator. Both these construc-
tions are designed to suppress energies larger than Planck
energiesHowever, there is absolutely no reason for these
two expressions to be identicalhe fact that they are iden-
tical suggests that the principle of duality is connected in

~ (x—y)%+ 4L,2)
47

_ » 1
— 7m27-
(;F(x,ylg)—f0 dre (—47”

X[1+---]. (85
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\/ﬁ"O 2.\/E

- dkxefnkxﬂkxx_

approach which introduces a minimum length scale in space- \/; — \/;
time (like in string model$ will lead to some kind of prin- )
ciple of duality. This conjecture seems to be true in conven- v J“’ dk e,n@wyy: J ﬂne,nkzﬂk.x
tional string theories though it must be noted that the term Y T '
duality is used in a somewhat different manner in string
theories(The concept of duality in string theory is reviewed
in several articles; see. e.g., Rdf8-12] and the references
cited therein. The closest to our approach seems to b& the
duality.) 42K %

The second obvious point, of course, is the improved ul- S(a,x) = j —— kx> e n@+k?) IX|=2b, (A3)
traviolet behavior in the theory which is studied in a forth- ™ n=1
coming papef14]. For example, this ultraviolet finiteness
allows a renormalization procedure to be carried out withouwith x=(x,y) being a two-dimensional vector. Now
the need for regularization in¢* theory and QED. Renor-
malized coupling constants now have no divergent pieces d
and depend on the Planck length. In this sense, the Planck E ne #=— ﬂ
length acts as a natural cutoff, as to be expected.

The third issue is related to anomalidgke the trace giving
anomaly in curved spacetime. The conventional calculations
do depend on the need to regularize the expressions in one o (a2+i2)
way or the othef{13]. With ultraviolet finiteness it is not gg x )_f_
clear whether the anomalies will survive or not. A detailed
calculation[14] shows that the trace anomaly, for example,
is finite and depends on the Planck length. 27d O e (@%+K9)

f f kd ke2|kbcos‘)

zero-point length. Alternatively, one may conjecture that anyex

some deep manner with the spacetime intervals having a ;{ b2

n

(A2)

So the sum we need is

(Ad)

1 ) e+
1-e ] (1—e ™72’

_(a +k2 )2 (|X|:2b)

There is another implication of this result which requires
study. To begin with a Planck length cutoff is equivalent to
changing the density of states at high energies. The number (A5)
of quantum states accessible to field theoretic systems bq_— do thed i . dth |
comes effectively finite. In the case of a black hole—for 0 do thed integration, we need the result
example—the number of microstates will be finite and will

2w
lead to a finite value for its entropy. This issue is under |:f doe'* = 2730( ). (AB)
investigation. 0
APPENDIX: EVALUATION OF THE SUM Using this we get

—(a%+k?)

We need to evaluate the sum o

a,b)= e,aZn, b2/n: e,aZn, b2/n b#0).
S( ) nzl I"IZO ( ) ochq Jo(q)e_(a2+ q2/4b2)

(Al) 0 W [1_e_(a2+ q2/4b2)]2' (A7)
To do this, we introduce two real variables,y) and write
b2=(x?+y?)/4. Then we have the identity This is the result quoted in the text.
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