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Hypothesis of path integral duality. I. Quantum gravitational corrections to the propagator

T. Padmanabhan*
IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
~Received 18 March 1997; published 9 April 1998!

The action for a relativistic free particle of massm receives a contribution2mR(x,y) from a path of length
R(x,y) connecting the eventsxi and yi . Using this action in a path integral, one can obtain the Feynman
propagator for a spinless particle of massm in any background spacetime. If one of the effects of quantizing
gravity is to introduce a minimum length scaleLP in the spacetime, then one would expect the segments of
paths with lengths less thanLP to be suppressed in the path integral. Assuming that the path integral amplitude
is invariant under the ‘‘duality’’ transformationR→LP

2 /R, one can calculate the modified Feynman propaga-
tor in an arbitrary background spacetime. It turns out that the key feature of this modification is the following:
The proper distance (Dx)2 between two events, which are infinitesimally separated, is replaced byDx21LP

2 ;
that is, the spacetime behaves as though it has a ‘‘zero-point length’’ ofLP . This equivalence suggests a deep
relationship between introducing a ‘‘zero-point length’’ to the spacetime and postulating invariance of path
integral amplitudes under duality transformations. In Schwinger’s proper time description of the propagator,
the weightage for a path with proper times becomesm(s1LP

2 /s) rather than asms. As to be expected, the
ultraviolet behavior of the theory is improved significantly and divergences will disappear if this modification
is taken into account. Implications of this result are discussed.@S0556-2821~98!03810-7#

PACS number~s!: 04.60.2m, 11.25.Sq
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I. INTRODUCTION AND SUMMARY

It has been conjectured for a long time that the spacet
structure at very small scales@close toLP[(G\/c3)1/2# will
be drastically affected by quantum gravitational effec
Since any quantum field has virtual excitations of arbitra
high energy—which probe arbitrary small scales—it follow
that the conventional quantum field theory can only be
approximate description, valid at energies far smaller th
Planck energies. The ‘‘correct’’ description of nature has
take into account the quantum nature of the spacetime ge
etry and should reduce to the conventional description at
energies. Can we say anything about the kind of modifi
tions quantum gravitational effects will introduce into th
description of other quantum fields? I investigate some
pects of this question in this paper.

Let us focus attention on a scalar fieldf(x) of massm in
a D-dimensional Euclidean spacetime. Eventually we are
terested~probably! in the case ofD54 Lorentzian space
time, which can be achieved by suitable analytic contin
tion. Since all matter generates and couples to gravity, th
is no such thing as afreescalar field; at the least, one shou
grant the fact that the scalar field is coupled to its own s
gravity. So, in general, the actionA@f,gik# describing the
system will be a functional of bothf(x) and the metric
gik(x) of the spacetime. The full quantum field theory
such a system will be based on a formal path integral suc

G5(
g,f

exp~2A@g,f#!. ~1!

The Feynman propagatorGF(x,y) for the scalar field~and
higher-ordern-point functions, all of which can be obtaine
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570556-2821/98/57~10!/6206~10!/$15.00
e

.
y

n
n

o
m-
w
-

s-

-

-
re

f-

as

from a path integral description! will contain information
about the quantum mechanical properties off.

To the extent we can ignore the gravitational coupling,
can have a free scalar field in flat spacetime and the eva
tion of G is trivial. At the next level, if we treat the back
ground spacetime as curved but classical, one can ignore
sum over metrics in Eq.~1! and construct the propagato
GF(x,yug) in a given background metricgik . We do not
have a closed form for this in an arbitrary background b
cause the partial differential equation forGF(x,yug) has no
closed form solution in an arbitrary background. What
more important,such a propagator cannot be trusted whe
(x2y)2,LP

2 since the quantum gravitational fluctuations
the background geometry cannot be ignored at these sc
and our approximation of working with a fixed backgroun
gik breaks down. We need to know how the quantum flu
tuations of the metric affect the propagatorGF(x,yug) at
these scales.

This is quite a different question from the one usua
addressed on the subject of quantum fields in curved sp
time in which one worries how the quantum nature of t
scalar field affects the background geometry~‘‘back reac-
tion’’ !. Such an issue can be tackled, for example, by in
grating outf in Eq. ~1! and obtaining an effective action fo
gravity, say. In contrast, we are interested in how the qu
tum fluctuations ofgik affect the quantum propagator for th
scalar field. Formally, if we writegik5ḡik1hik , whereḡik is
the, average, large scale spacetime metric andhik are the
small scale quantum fluctuations, then we are intereste
the effect of summing over the fluctuationshik in Eq. ~1! to
get low-energy quantum theory for the scalar field in t
background metricgik . The resulting propagatorGF(x,yuḡ),
for example, can be thought of as the one found by averag
GF(x,yug) over the quantum fluctuations ingik aroundḡik .
In particular,ḡik could just be a flat spacetime metrich ik .
6206 © 1998 The American Physical Society
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57 6207HYPOTHESIS OF PATH INTEGRAL DUALITY. I. . . .
Even in this case, we expect the quantum fluctuations
gravity to modify the propagator for (x2y)2,Lp

2 @or, in mo-
mentum space, for (p21m2)Lp

2.1]. The concept of a free
quantum field is an approximate, lower-energy, notion a
we do have to change it for (x2y)2,L2. ~In fact, even the
description in terms of a field may be inadequate at sh
distances and we may need string theory or models base
Ashtekar variables.! Can we capture the key effects, quantu
gravitational fluctuations, by invoking some general pr
ciple?

To address this question, it is convenient to wr
GF(x,yug) in an alternative form. We know that the prop
gator in a given background metric can be expressed in
equivalent forms as

GF~x,yug!5 (
paths

e2mR~x,y!5E
0

`

dte2m2tE Dx

3expS 2
1

4E0

t

gikẋi ẋkdh D . ~2!

In the first form,R(x,yug)is the proper length of a pat
connecting the eventsx and y, calculated with the back
ground metricgik , and the sum is over all paths. The acti
mR has a square root in it but can be evaluated by stand
lattice techniques~see the next section!. It is also possible to
show by these methods that the result is equivalent to
second expression. This expression, which is originally
to Schwinger, has a simple physical interpretation. By r
caling the time variable fromh to s[mh andt to t8[mt
we can change the factor exp(2m2t) to exp(2mt8) and the
path integral kernel to

K~x,y,t8ug![E Dx expS 2
m

4 E0

t8
gikẋi ẋkdsD . ~3!

This kernel can be thought of as the probability amplitu
for a particle to propagate fromx to y in a proper time
interval t8 in a given background spacetime. The amplitu
for propagation with energyE ~in the rest frame! is given by
the Fourier transform ofK(x,y,t8ug) in the time variablet8,
with respect toE in Lorentzian space; in the Euclidea
space, it will be a Laplace transform. Setting the energy
the rest frame equal tom we obtain the expression in Eq.~2!.
~The physical interpretation of these expressions and t
relationship to Jacobi action, etc., are explored in detai
Ref. @1#!.

The above expressions assume that we have a clas
background spacetime with a given, fixed, metric. As
said before, such a description is bound to break down w
(x2y)2,LP

2 . More generally, Eqs.~2!, and ~3! sum over
paths which probe arbitrarily small scales at which the me
fluctuations are likely to be large. These fluctuations w
affect the propagatorGF(x,yug) and will modify it. If we
again writegik as (ḡik1hik) and average over the fluctua
tions hik , then the effective propagator will be

GF~x,yuḡ![(
h

GF~x,yuḡ1h!P~h!, ~4!
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whereP(h) is the amplitude for a fluctuationhik , which will
depend on the ‘‘correct’’ theory of gravity. We are interest
in knowing the modified form of the propagator.

It is, of course, impossible to ‘‘derive’’ the correct propa
gator which takes into account quantum fluctuations o
metric. To do so, one needs a workable model for quan
gravity which will give usP(h). Since we do not have this
the best one can do is to take hints from various models
quantum gravity and come up with an ansatz@6#. This is
what I propose to do along the following lines.

The strongest hint is the existence of the lengthLP
[(G\/c3)1/2, which is expected to play a vital role in th
‘‘ultimate’’ theory of quantum gravity. Simple thought ex
periments indicate that it is not possible to devise experim
tal procedures which will measure lengths with an accur
greater than aboutO(LP) @2#. This result suggests that on
could think of the Planck length as some kind of ‘‘zero-po
length’’ of spacetime. In some simple models of quantu
gravity, LP

2 does arise as a mean square fluctuation to sp
time intervals, due to quantum fluctuations of the metric@3#.
In more sophisticated approaches, such as models base
string theory or Ashtekar variables, similar results arise
one guise or the other~see e.g.,@4,5,7,9–12#!. The existence
of a fundamental length implies that processes involving
ergies higher than Planck energies will be suppressed and
ultraviolet behavior of the theory will be improved. All sen
sible models for quantum gravity provide some mechan
for good ultraviolet behavior, essentially through the ex
tence of a fundamental length scale. One direct consequ
of such an improved behavior will be that the Feynm
propagator~in momentum space! will acquire a damping fac-
tor for energies larger than the Planck energy.

If the ultimate theory of quantum gravity has a fundame
tal length scale built into it, then it seems worthwhile to u
this principle as the starting point to obtain a glimpse of t
modifications introduced by quantum gravity effects at low
energies, provided we can introduce the quantum gravity
fects through some powerful, general principle.

With this motivation in mind, let us ask how the prop
gation amplitude could be modified if there exists a fund
mental zero-point length to the spacetime. In Eq.~2!, the
weightage given for a path of lengthR is exp(2mR) which
is a monotonically decreasing function ofR. The existence
of a fundamental lengthLP would suggest that paths wit
lengthR!LP should be suppressed in the path integral. T
can, of course, be done in several different ways by a
trarily modifying the expression in Eq.~2!. In order to make
a specific choice I shall invoke the following ‘‘principle o
duality.’’ I will postulate that the weightage given for a pa
should be invariant under the transformationR→LP

2 /R.
Since the original path integral has the factor exp(2mR), we
have to introduce the additional factor exp(2mLP

2/R). We
therefore modify Eq.~2! to

GF~x,yug!5( expF2mSR1
LP

2

R D G . ~5!

I will take this to be the basic postulate arising from t
‘‘correct’’ theory of quantum gravity. It may be noted tha
the ‘‘principle of duality’’ invoked here is similar to tha
which arises in string theories@7,9–12#. ~It should, however,
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6208 57T. PADMANABHAN
be stressed that the principle of duality used in string theo
is not identical to this postulate, and nor is our postul
derivable from string theory. In the strict sense, the duality
the string theory operates in the internal space.! In fact we
may think of Eq.~5! as a result of performing the averagin
on the right-hand side of Eq.~4!. Since I do not knowP(h),
this result is a postulate at present. It is also the simp
realization of duality for a free particle; we have demand
that the existence of a weightage factor exp(2ml) necessarily
require the existence of another factor exp(2mLP

2/l). We
shall now study the consequences of the modifications
have introduced.

To do this we need to evaluate the path integral in Eq.~5!.
It turns out that this can indeed be done~see Sec. III! and the
result is quite simple to state:

GF~x,yug!5( expF2mSR1
LP

2

R D G
5E

0

`

dt expS 2m2t2
Lp

2

t DK~x,x8,tuḡ!. ~6!

Our modification merely changes the weightage given t
path of proper timet from exp(2m2t) to exp(2m2t2LP

2/t)
in Schwinger’s prescription.

This result has an interesting interpretation. It is w
known that the kernelK(x,y;tug) has a DeWitt-Schwinge
expansion of the form

K~x,y;tuḡ!5S 1

4pt D D/2

expS 2
~x2y!2

4t D @11•••#, ~7!

where the ellipsis represents metric-dependent correcti
Using Eqs.~7! in Eq. ~6! we can write our propagator as

GF~x,yuḡ!5E
0

`

dte2m2tS 1

4pt D D/2

expS 2
~x2y!214Lp

2

4t D
3@11•••#. ~8!

Thus the net effect of our modification is to add a ‘‘zer
point length’’ 4Lp

2 to (x2y)2 in the exponential, thereby
modifying the leading singular factor.The postulate of dual-
ity used in the path integral is identical to the postulate
such a zero-point length. This is one of the key results of thi
paper and—as far as I can see—this connection is far f
obvious.

In the case of flat background spacetime, the terms in
cated by the ellipsis vanish and the propagator is given

GF~x!5S 1

4p D D/2E
0

` ds

sD/2
expS 2m2s2

1

4s
~x21 l 2! D ,

~9!

where we have sety50, t5ms and definedl[2L. To see
the effect of our new term, we may Fourier transform th
expression with respect tox, giving

G̃~p!5E
0

`

ds expS 2~p21m2!s2
l 2

4sD . ~10!
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When l 50, this gives the conventional Feynman propaga
in Fourier space (p21m2)21. WhenlÞ0 the integration can
be performed to give

G̃~p!5K1~ lAp21m2!
l

Ap21m2
, ~11!

whereK1(z) is the modified Bessel function. The limitin
forms of this expression are

Ĝ~p!→H ~p21m2!21 ~ for lAp21m2!1!,

exp~2 lAp21m2!

l 1/2~p21m2!3/4 ~ for lAp21m2@1!,

~12!

which clearly shows the suppression of energies higher t
Planck energies.

The rest of the paper is organized as follows. In Sec. I
illustrate how the path integral can be rigorously defin
using aD-dimensional lattice and limiting procedure. Th
‘‘warm-up’’ exercise shows how the standard result~2!
arises and sets the stage for the main analysis of the pape
Sec. III, I evaluate the modified path integral using the sa
technique and obtain Eq.~6!. Some of the implications are
discussed in Sec. V.

II. WARM-UP: FEYNMAN PROPAGATOR FROM SUM
OVER PATHS

A. Rigorous evaluation of the path integral

In defining the path integral in nonrelativistic quantu
mechanics, we discretize the time axis, define the path i
gral with a nonzero spacinge, and finally take the limit ofe
going to zero. To define the path integral inD dimensions
we can use a similar procedure. We will work in Euclide
space and introduce a cubic lattice with spacinge. The path
integral will be defined on the lattice and then we will ta
the limit of e→0. To obtain a finite value in the limit ofe
→0 we have to choose the measure and the mass param
m, which varies in a specific fashion withe. This can be
done fairly easily and the final expression will agree with t
standard Feynman propagator for a free scalar field. The
culation proceeds as follows.

We will work directly in Euclidean space ofD dimen-
sions. In this section we are primarily interested in the iss
of principle, regarding the measure for the path integral, a
will consider the path integral for a free particle. We have
therefore, evaluate

GE~x2,x1;m0!5 (
all x~ t !

exp$2m l@x~ t !#% ~13!

in the Euclidean sector, wherel is

l ~x2,x1!5E
0

1

dsUS dx

dsD
2U1/2

~14!

and is just the length of the curvex(s), connectingx(0)
5x1 andx(1)5x2.

This quantity can be defined through the following lim
ing procedure: Consider a lattice of points in
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57 6209HYPOTHESIS OF PATH INTEGRAL DUALITY. I. . . .
D-dimensional lattice with a uniform lattice spacing ofe.
We will work outGE in the lattice and will then take the limi
of e→0 with a suitable measureM (e). To obtain a finite
result, it is also necessary to treatm ~which is the only pa-
rameter in the problem! as a functionm(e) of the lattice
spacing where the functional form is to be chosen in suc
way to ensure finiteness of the continuum result. We w
reserve the symbolm for the value of this function in the
continuum limit. Thus we will define the path integral resu
as a limit:

G~x2,x1;m!5 lim
e→0

@M ~e!G„x2,x1;m~e!…#, ~15!

where the functionsM (e) andm(e) are to be chosen so as
ensure finiteness. The rationale for this expression ar
from the following point of view: We treat the continuum
space as a limit of a lattice with the lattice spacinge going to
zero. We now construct a sequence of path integrals par
etrized by the spacinge by choosing certain functionsm(e)
andM (e) and define the continuum path integral as the lim
of this sequence. We shall show later that this limit exi
only if m(e).(ln 2D)/e and M (e).(2D)21e2(D22) near
e.0. The form ofm(e),M (e) for e far away from zero, of
course, makes no difference to the result we are after.

In a lattice with spacing ofe, Eq. ~13! can be evaluated in
a straightforward manner. Because of the translation inv
ance of the problem,GE can only depend onx22x1; so we
can setx150 and callx25eR whereR is a D-dimensional
vector with integral components:R5(n1 ,n2 ,n3 ,...,nD). Let
C(N,R) be the number of paths of lengthNe connecting the
origin to the lattice pointeR. Since all the paths contribute
term @exp2m(e)(Ne)# to Eq. ~15!, we get

GE~R;e!5 (
N50

`

C~N;R!exp@2m~e!Ne#. ~16!

The generating function determining C(N;R)
5C(N;n1 ,n2 ,...,nD) can be calculated easily by the follow
ing arguments: Consider any particular path connecting
origin to the lattice pointR. Suppose that this path takesr 1
steps towards positive direction~‘‘right’’ ! in the first axis
and l 1 steps towards negative direction~‘‘left’’ ! in the first
axis. Thenn15r 12 l 1; similarly ni5r i2 l i . The number of
paths with a specified number of (r i ,l i) for i 51,. . . ,D is just
the number of ways of ordering the steps, specified by
integers (r 1 ,...,r D ,l 1 ,...,l D) with (r i1( l i5N. This is
given by the coefficient of the polynomial expansion

~x11x21•••1xD1y11y21•••1yD!N

5( Q~N;r i ,l i !x1
r 1•••xD

r Dy1
l 1•••yD

l D. ~17!

In our problem, we allow (r i ,l i) also to vary, keepingr i
2 l i5ni fixed for eachi . The number of paths with this
property is clearly given by using the above expression w
yi5(1/xi). Then we get
a
ll

es

m-

t
s

i-

e

e

h

S x11x21•••1xD1
1

x1
1

1

x2
1•••1

1

xD
D N

5( C~N;n1 ,n2 ,...,nD!x1
n1•••xD

nD. ~18!

The expansion of the left-hand side gives the genera
function for C(N;R). For further manipulation, it is conve
nient to setx15eik1, x25eik2,...,xD5eikD. Then we can
write

FN[@eik11eik21•••1eikD1e2 ik11•••1e2 ikD#N

5(
R

C~N;R!eik–R ~19!

Therefore,

(
R

eik–RGE~R;e!5 (
N50

`

(
R

C~N;R!eik–Rexp@2m~e!Ne#

5 (
N50

`

e2m~e!eNFN5 (
N50

`

@Fe2m~e!e#N

5@12Fe2m~e!e#21. ~20!

Inverting the Fourier transform, we have

GE~R;e!5E dDk

~2p!D

e2 ik–R

~12e2m~e!eF !

5E dDk

~2p!D

e2 ik–R

S 122e2m~e!e(
j 51

D

coskj D . ~21!

Converting to the physical length scalesx5eR and p
5e21k we get

GE~x;e!5E eDdDp

~2p!D

e2 ip–x

S 122e2m~e!e(
j 51

D

cospje D . ~22!

We are now ready to take the limit of the zero lattice sp
ing. As e→0, the denominator of the integrand becomes

122e2em~e!S D2
1

2
e2upu2D

5122De2em~e!1e2e2em~e!upu2

5e2e2em~e!F upu21
122De2em~e!

e2e2em~e! G , ~23!

so that we will get, for smalle,

GE~x;e!.E dDp

~2p!D

A~e!e2 ip–x

upu21B~e!
, ~24!

where
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6210 57T. PADMANABHAN
A~e!5eD22eem~e!, B~e!5
1

e2 @eem~e!22D#. ~25!

@The convergence of the integral over allp should be inter-
preted in a distributional sense as we have used a Ta
expansion of the denominator of Eq.~22!.# The continuum
theory has to be defined in the limit ofe→0 with some
measureM (e); that is, we want to obtain

GE~x;m!ucontinuum5 lim
e→0

$M ~e!GE~x;e!%. ~26!

The choice of the measure is dictated by the requirement
the right-hand side should be finite in this limit. We no
demand

lim
e→0

F 1

e2 ~eem~e!22D !G5m2 ~27!

and

lim
e→0

@M ~e!eD22eem~e!#51. ~28!

The first condition implies that, neare'0,

m~e!'
ln 2D

e
1

m2

2D
e'

ln 2D

e
. ~29!

Using this in the second condition~28!, we can determine the
measure as

M ~e!5
1

2D

1

eD22
. ~30!

With this choice, we get

GE~x;m![ lim
e→0
GE~x;e!M ~e!5E dDp

~2p!D

e2 ip–x

upu21m2
,

~31!

which is the standard Feynman propagator. This anal
gives a rigorous meaning to the nonquadratic path inte
with a square root and also illustrates the role played by
choice of the measure. In the continuum limit, we have o
one length scalem21; this fact suggests that the right-han
side of Eq.~27! should scale asm2. Setting the proportion-
ality constant to unity should be thought of a~partial! choice
of measure. Similarly,M (e) can be multiplied by any finite
quantity. The choice in Eq.~28! should also be considered a
part of the definition of measure.

To connect this expression with Schwinger’s proper ti
representation is easy. By writing (upz21m2)21 as

1

upz21m2
5E

0

`

dt e2t~m21upz2! ~32!

and doing the integration overp, we get
or

at

is
al
e

y

e

GE~x;m!5( exp~2mR!5E
0

` dt

~4pt!D/2
e2m2t

3expS 2
ux2u
4t D . ~33!

Part of the integrand can be expressed as an ordinary
dratic path integral:

K~x,y;t![E Dx expS 2
1

4E0

t

ẋi ẋidsD
5S 1

4pt D D/2

expS 2
~x2y!2

4t D , ~34!

where we have shifted the origin toy. Using this in Eq.~33!,
we get the final result, quoted in Eq.~2!:

( exp@2mR~x,y!#

5E
0

`

dte2m2tE Dx expS 2
1

4E0

t

ẋi ẋ
idsD . ~35!

B. Physical interpretation

The above analysis relates a nonquadratic path inte
~containing a square root! to a standard quadratic path inte
gral. This result has a simple physical interpretation, which
worth emphasizing. Consider the standard path integral
nel K(x,y,t) in quantum mechanics, defined through t
Hamiltonian form of the action:

K~x,y,t !5(
x~ t !

(
p~ t !

expS i

\E0

t

dt8@p• ẋ2H~p,x!#G , ~36!

with H>0. From the principles of quantum mechanics, w
would expect the Fourier transform

B~x,y;E![E
0

`

K~x,y,;E!eiEtdt ~37!

to give the amplitude for the particle to propagate fromy to
x with energyE. @Only t>0 is relevant in the Fourier trans
form ~37!, since K is taken to vanish fort,0.] But the
trajectory of a classical particle with fixed energy can
described using the Jacobi action

AJacobi5E
0

t

dt8A2m0~E2V!uẋu2. ~38!

We will therefore expect the relation

(
paths

expS i E
0

t

dt8A2m0~E2V!uẋu2D
5B~x,y;E!

5E
0

`

dt eiEtE Dx expXi E
0

tS 1

2
m0ẋ22VDdt8C ~39!



l

he

o

-

c-
ea
an
he

rals
—
is
r-
d

z.,
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to hold, thereby expressing a square root path integra
terms of a quadratic path integral. Takingm05(m/2), V
50, E5m, and switching to the Euclidean sector gives t
result

(
paths

exp@2mR~x,y!#5E
0

`

dt eimtE Dx

3expF2
m

4 E0

t

ẋ2dt8G , ~40!

which is the same as Eq.~2! after the rescalingt5mt and
continuing to the Euclidean sector. The choice ofE5mc2

shows that the energy of the particle in the rest frame is
the mass shell.

To prove the result~39!, we need the following path in
tegral identities:

d„f ~ t !…5(
l~ t !

expS i E dtl~ t ! f ~ t ! D , ~41!

(
p

expS i E dt@p• ẋ1a~ t !p2# D5expi S E dt
ẋ2

4a~ t !
D ,

~42!

(
l~ t !

expF i E dtS l~ t !a~ t !1
b~ t !

l~ t ! D G5expS i E dt@24ab#1/2D .

~43!

The first result is merely the definition of the delta fun
tional; the second and third can be obtained in the Euclid
sector by standard time slicing techniques and can be
lytically continued. They are direct generalizations of t
corresponding results of ordinary integrals.„Equation~43! is
the generalization of the ordinary integral

E
0

`

dxexpS 2ax22
b

x2D5
1

2
Ap

a
exp~@24ab#1/2! ~44!

with appropriate definition of the measure.…

Introducing into the integrand of Eq.~36! the ‘‘expansion
of unity’’ in the form:

15E
0

`

dEd„E2H~p,x!…, ~45!

we get

K~x,y;t !5E
0

`

dE(
x

(
p

d„E2H~p,x!…

3expS i

\E0

t

dt8„p–ẋ2H~p,x!…D
5E

0

`

dE(
x

(
p

d~E2H !e2 iEt

3expS i E
0

t

dt8~p–ẋ! D . ~46!
in

n

n
a-

So

E
0

`

K~x,y;t !eiEtdt[B~x,y;E!

5(
x

(
p

dS p2

2m
1V~x!2ED

3expS i E dtp–ẋD . ~47!

We now express the delta functional using Eq.~41!:

dS p2

2m
1V~x!2ED5(

l~ t !
expS i E l~ t !F p2

2m
1V~x!2EGdtD .

~48!

Then

B~x,y;E!5(
x

(
l~ t !

expi S E dtl~ t !@V~x!2E# D
3(

p
expi S E dtFp–ẋ1

l~ t !

2m
p2G D

5(
x

(
l~ t !

expS i E dtl~ t !@V~x!2E# D
3expS i E dt

1

2

m

l~ t !
ẋ2D

5(
x

(
l~ t !

expS i E dtFl~ t !@V~x!2E#

1
m

2l~ t !
ẋ2G D

5(
x

expS i E dtA2m~E2V!uẋu2D . ~49!

In arriving at the second equality, we have used Eq.~42! and
in arriving at the last equality we have used Eq.~43!. This
proves the result quoted above.

To summarize, we have demonstrated how path integ
involving square roots can be given a rigorous definition
using a lattice regularization scheme—in Sec. II A. Th
definition of the path integral is given a more intuitive inte
pretation in Sec. II B. We shall now work out the modifie
path integral along the same lines.

III. FEYNMAN PROPAGATOR WITH DUALITY
INVARIANT PATH INTEGRAL

We shall now turn to the main task of the paper, vi
evaluation of the modified path integral in Eq.~5!. It is easy
to see that the lattice version now becomes

G~R,e!5 (
N50

`

C~N,R!expF2m~e!eN2
l~e!

eN G , ~50!
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wherel(e) is a lattice parameter which will play the role o
(mLP

2 ) in the continuum limit. This replaces Eq.~17! of pre-
vious analysis. After evaluatingG(R,e), we multiply it by a
measureM(e) and take the limite→0. The functions
M(e), m(e), l(e) are to be chosen so that, in the continuu
limit, m corresponds to the massm and l to (mLp

2). Since
we expect the result to have the correct limit asLp→0, we
anticipate that the form ofm(e) will be as given by Eq.~30!.

To evaluate this path integral on the lattice we again be
with the generating function forC(N,R), given by Eq.~20!:

FN[(
R

C~N;R!eik•R5~eik11eik21•••1eikD1 e2 ik1

1e2 ik21•••1e2 ikD!N. ~51!

This now leads to the expression

(
R

eik•RG~R,e!5 (
N50

`

e2meN2~l/eN!(
R

C~N,R!eik•R

5 (
N50

`

e2N~me2 lnF !2~l/eN!. ~52!

Thus, our problem reduces to evaluating a sum of the fo

S~a,b![ (
n50

`

expS 2a2n2
b2

n D
5 (

n51

`

expS 2a2n2
b2

n D , ~53!

which is more complicated than the geometric progressio
Eq. ~21!. Fortunately this expression can be evaluated
some algebraic tricks~see the Appendix! and the answer is

S~a,b!5E
0

`qdq

2b2

J0~q!e2~a21q2/4b2!

@12e2~a21q2/4b2!#2

5
1

~12e2a2
!

2E
0

`

dq
J1~q!

@12e2~a21q2/4b2!#
, ~54!

whereJn(x) is a Bessel function of ordern. The first form of
the integral shows that the expression is well defined w
the second form has the advantage of separating out
b-independent part as the first term.@Note that the two sum-
mations in Eq.~53! will differ by unity if b50; the results in
Eq. ~54! will go over to the second summation in Eq.~53! if
the limit b→0 is taken.# In our case,b25(l/e) and a2

5me2 ln F: So we get

S~a,b!5E
0

`

qdqJ0~q!H e

2l

FexpS 2me2
q2e

4l D
F12FexpS 2me2

q2e

4l D G2J .

~55!

This gives
in

of
y

e
he

G~R!5E dDk

~2p!DE
0

`

qdqJ0~q!e2 ik–R

3H e

2l

FexpS 2me2
q2e

4l D
F12FexpS 2me2

q2e

4l D G2J . ~56!

Rescaling back tox5eR, p5e21k, we find

G~x!5E eDdDp

~2p!DE
0

`

qdqJ0~q!H e

2l

He2 ipx

~12H !2J , ~57!

with

H[Fexp~2ae![FexpH 2me2
q2

4

e

lJ ,

ae5m~e!e1
q2

4

e

l
. ~58!

This expression is dimensionless; we now take thee→0
limit, to get

12H5122e2ea(
i 51

D

cosepi'122e2eaFD2
1

2
e2p2G

5e2e2aeF p21
eae

e2
~122De2ae!G . ~59!

So we can write, retaining leading terms

G~x!>E eDdDp

~2p!DE
0

`

qdqJ0~q!e2 ip•xF eae

2le3

2D

~p21B!2G ,

~60!

whereB(e) is defined as

B5
1

e2 $eme1~q2/4!~e/l!22D%. ~61!

Consider now thee→0 limit of B; using Eq.~29!, we have
eme'2D1m2e2 for small e. So

B'
1

e2 $2D~e~q2/4!~e/l!21!1m2e2e~q2/4!~e/l!%. ~62!

For the first term to be finite at yjre→0 limit, we need the
small-e dependence to be of the form

expS q2e

4l D21'A1~q!e2. ~63!

This implies that

expS q2e

4l D'11A1e2'11
q2

4

e

l
, ~64!

giving
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B'
1

e2 $2DA1e21m2e2@11O~e2!•••#%

5~2DA11m2!. ~65!

Further, sinceA1(q)e25(q2/4)(e/l), we needl to scale as
l'(q2/4A1)(1/e) ase→0. Sincel(e) is to be independen
of q, we must haveA1(q)5(L22q2/2D) with L5const.
Then l(e)'(L2/4)(1/e)(2D) as e→0. We thus find that,
neare>0, we need

B>m21
q2

L2 , eae5emeeq2e/4l>2D, le3'
L2

4
e2.

~66!

Putting everything into Eq.~57!, we get

G~x!5E eDdDp

~2p!D e2 ip•xE
0

`qdqJ0~q!

L2e2

2~2D !2

~p21m21q2/L2!2

54eD22D2E dDp

~2p!D e2 ip•xE
0

` 2qJ0~q!L2dq

@L2~p21m2!1q2#2 .

~67!

We now choose the measureM (e) such that

lim
e→0

4eD22D2M ~e!51. ~68!

Then we get the final result

G~x!5E dDp

~2p!D e2 ip•xE
0

` 2qJ0~q!L2dq

@L2~p21m2!1q2#2 . ~69!

We have thus successfully defined the path integral in
~5! using a lattice regularization procedure. Note that we n
needed three functionsM (e), m(e). and l(e). Of these,
M (e) andm(e) were required even in the standard free p
ticle case, discussed in Sec. II. In fact, we are using the s
functional form „M (e)}e22D,m(e)}e21

… for these func-
tions neare'0. The new entity needed now isl(e) which
should correspond to (mLp

2) in the continuum limit. This

function scales asl(e)}(L2/e) neare'0. At this stage we
can only say thatL}Lp ; the proportionality constant, a
usual, cannot be determined by considerations of meas
we shall say more about this later.

Our result can be recast in more useful forms. To be
with, the momentum space propagator is given by

G~p![E dDxG~x!eip•x5E
0

` 2qJ0~q!L2dq

@q21L2~p21m2!#2 .

~70!

Using the identity

E
0

`

dz
zJ0~z!

~z21Q2!2 5
K1~Q!

2Q
, ~71!

whereK1(Q) is the modified Bessel function, we get
q.
w

-
e

re;

n

G~p!5
L

Ap21m2
K1~LAp21m2!

5H ~p21m2!21 ~asL→0!,

e2LAp21m2

L1/2~p21m2!3/4
~asL→`!. ~72!

Clearly, the propagator reduces to the standard formp2

1m2)21 obtained earlier, whenL2(p21m2)→0. By setting
q5Ll we get

G~p!52E
0

` lJ0~Ll!dl

@l21p21m2#2 52
]

]m2E
0

` 2lJ0~Ll!dl

@l21p21m2#
.

~73!

Expressing the denominator using the identity~32!, and dif-
ferentiating with respect tom2, it is easy to show that

G~p!5E
0

`

2tdte2t~p21m2!W~L,t!, ~74!

where

W~L,t!5E
0

`

ldlJ0~Ll!e2tl2
5

1

2t
expS 2

L2

2t D , ~75!

with the last equality following from a standard identity r
lated to Bessel functions. Using this, we can write

G~p!5E
0

`

dt expF2t~p21m2!2
L2

4tG . ~76!

which has the same form as Eq.~10!. Fourier transforming
with respect top, we get the key result

G~x!5E
0

`

dtS 1

4pt D D/2

expF2tm22
x21L2

4t G
5E

0

`

dtexpS 2tm22
L2

4t DK~x;t!. ~77!

This is the result quoted in Eqs.~9! and ~6!, if we identify
L254Lp

2 . Our definition of the limiting procedure only
shows thatL}Lp . The actual proportionality constant de
pends on the definition of measure and we shall see in
next section whyL254Lp

2 is natural.

IV. GENERALIZATION TO CURVED SPACETIME

A rigorous way of evaluating Eq.~5!, viz., to define the
path integral on a lattice and use a limiting procedure, t
was done in the above for flat background spacetime. I
possible that this procedure can be generalized to cur
spacetime. Unfortunately, this procedure hides the extre
simplicity of the result in Eq.~77! and does not make trans
parent the origin of several intermediate results. Here, I s
follow a different and simpler route and rederive the resu
This rederivation suggests a generalization to curved sp
time.
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The key idea is that the new factor in the path integr
exp(2a2/R), can be expressed in terms of a factor li
exp(2b2R) by performing a Gaussian integral. The latt
factor, of course, can be evaluated in the path integral.
Gaussian integration will also produce aR1/2 factor in front
which needs to be taken care of by doing a two-dimensio
Gaussian integration and a differentiation. With such
ementary algebraic tricks, one can prove Eq.~77!.

We start with a slight generalization of Eq.~2!:

( e2~m1a!R5E
0

`

dtK~x8,x;tuḡ!exp@2m~m1a!t#.

~78!

This can be easily proved by the lattice techniques use
Sec. II. @See Eq.~27!; redefining the right-hand side to b
m(m1a) will lead to Eq. ~78!.# More precisely, this equa
tion defines the measure used on the left-hand side of
~78!. @This definition is nonstandard in the sense that
have replacedm by (m1a) in the functional on the left-
hand side but changedm2 to m(m1a) on the right-hand
side. But it is a perfectly valid definition for the measure.
fact we can define the right-hand side of Eq.~27! to be in
general of the formm2F(a/m) whereF is an arbitrary, di-
mensionless function. This is possible because we now h
two-dimensional constantsm and a.# We now introduce a
two real variables (k1 ,k2) with k2[k1

21k2
2 and set a

5k2/m to get

( expF2S m1
k2

mDRG5E
0

`

dtK~x8,x;tuḡ!

3exp@2~m21k2!t#. ~79!

Differentiating this equation with respect tok2 gives

( SRm e2~k2/m!RDe2mR5E
0

`

dt~te2k2t!e2m2tK~x8,x;t!.

~80!

Fourier transforming on the variables (k1 ,k2) with respect to
two new variables (l 1 ,l 2), we find

( E d2k

p

R
m

e2mRexpS ik• l2
k2

m
RD

5E
0

`

dtS E d2k

p
eik• l2k2tD te2m2tK ~81!

or, equivalently,

( expS 2mR2
ml2

4R D5E
0

`

dtKexpS 2m2t2
l 2

4t D .

~82!

Defining l 254Lp
2 , we get the final result
l,

e

al
l-

in

q.
e

ve

GF~x,yuḡ!5( exp2mSR1
Lp

2

R D
5E

0

`

dtK~x,x8,tuḡ!expF2S m2t1
Lp

2

t D G .
~83!

The above approach gives a surprisingly quick derivation
our result~77! provided we accept the definition of measu
in Eq. ~78! and setL52Lp . The above analysis suggests
possible way of interpreting the path integral duality in
arbitrary curved background spacetime.

Given the kernelK(x,y;tuḡ) for a particle to propagate
from x to y in proper timet ~in some background metric
ḡik), one would have originally evaluated the Feynm
propagator by giving a weightage exp(2m2t) and integrating
over t. The effect of our modification is to change th
weightage to exp(2m2t2Lp

2/t). In deriving this result, we
have not bothered to specify explicitly the measure in E
~5!. To this extent, the derivation is formal and not rigorou

V. CONCLUSIONS

One immediate consequence of this result is the interp
tation in terms of the ‘‘zero-point length’’ mentioned in th
Introduction. We know that the kernelK(x,y;tug) has an
expansion of the form

K~x,y;tuḡ!5S 1

4pt D D/2

expS 2
~x2y!2

4t D @11•••#,

~84!

where the ellipsis represents metric-dependent correcti
Using Eq.~84! in Eq. ~83! we can write our propagator as

GF~x,yuḡ!5E
0

`

dte2m2tS 1

4pt D D/2

expS 2
~x2y!214Lp

2

4t D
3@11•••#. ~85!

Thus the net effect of our modification is to add a ‘‘zer
point length’’ 4Lp

2 to (x2y)2 in the exponent, modifying the
leading singular behavior of the original propagator. In oth
words, the modification of the path integral based on t
principle of duality leads to results which are identical
adding a ‘‘zero-point length’’ in the spacetime interval.

I wish to argue that the connection shown above is n
trivial; I know of no simple way of guessing this result. Th
standard Feynman propagator of quantum field theory ca
obtained either through a lattice regularization of a path
tegral or from Schwinger’s proper time representation.
adding a zero-point length in the Schwinger’s representa
we obtain a modified propagator. Alternatively, using t
principle of duality, we could modify the expression for th
path integral amplitude on the lattice and obtain—in the c
tinuum limit—a modified propagator. Both these constru
tions are designed to suppress energies larger than Pl
energies.However, there is absolutely no reason for the
two expressions to be identical. The fact that they are iden
tical suggests that the principle of duality is connected
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some deep manner with the spacetime intervals havin
zero-point length. Alternatively, one may conjecture that a
approach which introduces a minimum length scale in spa
time ~like in string models! will lead to some kind of prin-
ciple of duality. This conjecture seems to be true in conv
tional string theories though it must be noted that the te
duality is used in a somewhat different manner in str
theories.~The concept of duality in string theory is reviewe
in several articles; see. e.g., Refs.@7–12# and the reference
cited therein. The closest to our approach seems to be tT
duality.!

The second obvious point, of course, is the improved
traviolet behavior in the theory which is studied in a fort
coming paper@14#. For example, this ultraviolet finitenes
allows a renormalization procedure to be carried out with
the need for regularization inlf4 theory and QED. Renor
malized coupling constants now have no divergent pie
and depend on the Planck length. In this sense, the Pla
length acts as a natural cutoff, as to be expected.

The third issue is related to anomalies~like the trace
anomaly! in curved spacetime. The conventional calculatio
do depend on the need to regularize the expressions in
way or the other@13#. With ultraviolet finiteness it is not
clear whether the anomalies will survive or not. A detail
calculation@14# shows that the trace anomaly, for examp
is finite and depends on the Planck length.

There is another implication of this result which requir
study. To begin with a Planck length cutoff is equivalent
changing the density of states at high energies. The num
of quantum states accessible to field theoretic systems
comes effectively finite. In the case of a black hole—f
example—the number of microstates will be finite and w
lead to a finite value for its entropy. This issue is und
investigation.

APPENDIX: EVALUATION OF THE SUM

We need to evaluate the sum

S~a,b![ (
n51

`

e2a2n2 b2/n5 (
n50

`

e2a2n2 b2/n ~b5” 0!.

~A1!

To do this, we introduce two real variables (x,y) and write
b2[(x21y2)/4. Then we have the identity
a
y
e-

-

l-

t

s
ck

s
ne

,

er
e-

r
l
r

expS 2
b2

n
D 5

An

Ap
E

2`

`

dkxe
2nkx

2
1 ikxx

An

Ap

3E
2`

`

dkye
2nky

2
1 ikyy5E d2 k

p
ne2nk21 ik•x.

~A2!

So the sum we need is

S~a,x!5E d2 k

p
eik•x(

n51

`

ne2n~a21k2!, uxu52b, ~A3!

with x5(x,y) being a two-dimensional vector. Now

(
n50

`

ne2mn52
]

]mS 1

12e2mD 5
e2m

~12e2m!2
, ~A4!

giving

S~a,x!5E d2 k

p
eik•x

e2~a21k2!

~12e2~a21k2!!2
~ uxu52b!

5E
0

2pdu

p E
0

`

kdke2ikbcosu
e2~a21k2!

@12e2~a21k2!#2
.

~A5!

To do theu integration, we need the result

I 5E
0

2p

dueim cosu52pJ0~m!. ~A6!

Using this we get

S~a,b!52E
0

`

kdkJ0~2kb!
e2~a21k2!

@12e2~121k2!#2

5E
0

`qdq

2b2

J0~q!e2~a21 q2/4b2!

@12e2~a21 q2/4b2!#2
. ~A7!

This is the result quoted in the text.
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