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Stability of relativistic neutron stars in binary orbit
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We analyze the stability of relativistic, quasi-equilibrium binary neutron stars in synchronized circular orbit.
We explore stability against radial collapse to black holes prior to merger, and against orbital plunge. We apply
theorems based on turning points along uniformly rotating sequences of constant angular momentum and rest
mass to locate the onset of secular instabilities. We find that inspiraling binary neutron stars are stable against
radial collapse to black holes all the way down to the innermost stable circular orbit.@S0556-2821~98!02212-7#

PACS number~s!: 04.40.Dg, 04.20.Ex, 04.25.Dm, 97.60.Jd
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The two-body problem is one of the outstanding, u
solved problems in classical general relativity. Howev
neutron star binary systems are known to exist even wi
our own galaxy@1#. Binary systems are among the mo
promising sources for gravitational wave detectors now
der construction, such as the Laser Interferometric Grav
tional Wave Observatory~LIGO!, VIRGO and GEO. This
has motivated an intense theoretical effort to predict
gravitational waveform emitted during the inspiral and co
lescence of two neutron stars.

Fully general relativistic treatments of the problem a
complicated by the nonlinearity of Einstein’s equations a
the need for very large computational resources. Rece
Wilson and Mathews@2# reported preliminary results ob
tained with a relativistic numerical evolution code. Their d
namical calculations suggest that the neutron stars may
lapse to black holes before their orbit becomes unstable
the stars plunge. Their results are in disagreement with
dictions of Newtonian@3#, post-Newtonian~PN! @4–6#, per-
turbation @7#, and analytic ‘‘local-asymptotic-rest-frame
@8,9# calculations, all of which show that tidal fields stabiliz
neutron stars against radial collapse.

In a recent paper, we presented quasi-equilibrium, po
tropic models of fully relativistic, equal mass neutron s
binaries in synchronized circular orbits@10#. In Newtonian
gravity, strict equilibrium exists for two stars in circular o
bit. In general relativity, because of the emission of grav
tional waves, binaries cannot be in strict equilibrium. Ho
ever, outside of the innermost stable circular orbit~ISCO!,
the time scale for orbital decay by radiation is much long
than the orbital period, so that the binary can be conside
to be in ‘‘quasi-equilibrium.’’ This fact allows us to neglec
both gravitational waves and wave-induced deviations fr
a circular orbit to a very good approximation. A detaile
discussion of our approximations and numerical method
be presented in a forthcoming paper@11#.

In @10#, we focused on the construction of quas
equilibrium models, but did not discuss their stability. W
found that the maximum allowed mass slightlyincreasesas
the separation of the stars decreases. Here, we constru
quences of constant angular momentum and sequence
constant rest mass, which then allows us to apply rigor
570556-2821/98/57~10!/6181~4!/$15.00
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theorems based on turning-points along the sequences t
cate the onset of secular instabilities. While we apply th
theorems to our recent numerical results@10#, the arguments
presented in this paper are independent of our numer
method and can be applied to any sequence of qu
equilibrium neutron star binaries in synchronized orbit. W
find that such binaries are stable against radial collaps
black holes until they encounter orbital instability at th
ISCO.

Applying turning-point methods to binaries in corotatio
allows us to detectsecular instabilities. The separation a
which simultaneous extrema exist in the mass-energy and
angular momentum curves marks the point along an ev
tionary sequence at which the binary becomes unstable in
presence of some dissipative mechanism. This instabilit
distinct from dynamical instability, which arises indepen
dently of any dissipation and grows on a dynamical tim
scale. Gravitational radiation can drive the secular instabi
@12#, which is expected to occur before~i.e. at larger separa
tion than! the onset of a dynamical instability@3,13#. It is
therefore anticipated that it is the secular instabilities t
limit the range of stable configurations.

Because of finite numerical resources, we cannot c
struct models of very large separation. We therefore obse
the increase of the maximum mass only for separati
smaller than about 4 stellar radii. However, even at this se
ration, tidal effects are still fairly small. Moreover, PN ca
culations, which are valid for larger separations, suggest
the maximum mass should also increase monotonically w
decreasing separation@4,6#. We will therefore assume tha
the maximum allowed mass monotonically increases as
separation decreases.

For a given equation of state, cold equal mass binary n
tron stars in synchronized circular orbit form a tw
parameter family, just like single, uniformly rotating stars.
our numerical code we adopt the central density and rela
separation to uniquely specify a particular configuration.
lemma by Friedman, Ipser and Sorkin@13#, originally de-
rived for single, uniformly rotating stars, can therefore
adapted to corotating binaries:

Lemma. Consider a two-parameter family of equal ma
binary stars in synchronized circular orbits based on an eq
6181 © 1998 The American Physical Society
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6182 57BAUMGARTE, COOK, SCHEEL, SHAPIRO, AND TEUKOLSKY
tion of state of the formP5P(r0). Suppose that along
continuous sequence of models labeled by a parametl

there is a pointl0 at which bothṀ0[dM0 /dl andJ̇ vanish

and whered(V̇ J̇1ṁṀ0)/dlÞ0. Then the part of the se

quence for which (V̇ J̇1ṁṀ0).0 is unstable forl nearl0.
HereP is the pressure,r0 the rest-mass density,J andM0

are the angular momentum and rest~baryon! mass of one of
the two stars,V is the angular velocity andm is the chemical
potential. We will later useM for the total mass-energy o
one of the two stars@that is half the total Arnowitt-Deser
Misner ~ADM ! mass of the spacetime#. The proof of the
lemma follows directly from theorem 1 of@14#. In practice it
is more useful to apply the following related theorem, whi
is an immediate consequence of the lemma@13#:

Theorem 1.Consider a continuous sequence of eq
mass binary stars in synchronized circular orbit based on
equation of state of the formP5P(r0). Suppose that the
total angular momentum is constant along the sequence,

that there is a pointl0 where Ṁ050 @and wherem.0,

d(ṁṀ0)/dlÞ0#. Then the part of the sequence for whic
ṁṀ0.0 is unstable forl nearl0.

We can now apply this theorem to our numerical mode
In these models the matter obeys a polytropic equation
state,P5Kr0

111/n , whereK is constant andn is the poly-
tropic index. Note that physical dimensions enter the pr
lem only throughK. It is therefore convenient to adopt ge
ometrized units with G[c[1 and introduce the
dimensionless quantities r̄ 05Knr0, M̄ 05K2n/2M0,
M̄ 5K2n/2M and J̄ 5K2nJ ~see@15#!. Numerical values in
cgs units can easily be obtained by inserting appropriate
ues forn andK, and restoringG andc.

In Fig. 1 we plotM̄ 0 as a function of the central densi
r̄ c for n51. The dotted lines are curves of constant relat
separationzA5r in /r out. Here r in is the inner ~coordinate!
distance between the two stars, as measured between th
closest points along the axis, andr out is the outer distance, a
measured between the most distant points along the axis
stars in contactzA50, and for infinitely separated star
zA51. The lowest dotted line in Fig. 1 is for stars at a se
ration zA50.3, and the highest curve is for stars in conta
We expect that the Oppenheimer-Volkoff curve for infinite
separated stars lies below all these lines@16#, such that the
equilibrium mass supported by a given central density mo
tonically increases with decreasing separation.

Evolutionary inspiral sequences conserve the rest m
M̄ 0 and therefore follow horizontal lines in Fig. 1. Th
shows, for example, that the central densityr̄ 0 decreases a
the two stars approach each other.

The solid lines in Fig. 1 are contours of constant to
angular momentumJ̄ . The angular momentum of infinitel
separated binaries is infinite, and decreases for approac
binaries. There is a critical angular momentumJ̄ crit, for
which the contours form a saddle point~point A!. This criti-
cal angular momentum and the critical massM̄ 0

crit at the
saddle point take values which, like the maximum mass
nonrotating isolated stars, depend only on the polytropic
dex. Forn51 we findJ̄ crit.0.05 andM̄ 0

crit.0.179@16#. The
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saddle point divides the turning points of the contours in
two separate classes: one for contoursJ̄ , J̄ crit and one for
J̄ . J̄ crit. We will identify the former with the instability at th
ISCO, and the latter with a radial instability of supramass
stars at large separations.

The class for J̄ , J̄ crit exists for all rest massesM̄ 0

,M̄ 0
crit and ends at the saddle point A. The physical int

pretation of these turning points can be understood by
lowing an evolutionary sequence for a coalescing binary
fixed rest mass, which starts at a large separation, e.g
point F. It evolves along a horizontal line, and initially bo
the angular momentum and the central density decrease
the separation. At point E, however, the angular moment
goes through a minimum. According to the relation@18#

dM5VdJ1mdM0 , ~1!

this minimum has to coincide with an extremum in the to
mass-energyM̄ . This extremum is well understood in New
tonian gravity~e.g. @3#!, PN theory~e.g. @19#!, and general
relativity @10#, and marks the onset of an orbital instability
the ISCO. Note that this orbital instability is the first inst
bility that these binaries encounter during inspiral.

For J̄ . J̄ crit we find a second class of turning points. Th
class starts at point B in Fig. 1 and ends at the maximum
the Oppenheimer-Volkoff~OV! curve for isolated, nonrotat
ing stars@16,17#. The maximum on this limiting curve mark
the onset of radial instability for isolated, nonrotating sta
and defines their maximum allowed rest massM̄ 0

max. By

FIG. 1. Contours of constant angular momentum in a rest-m
versus central density diagram. The dotted lines are sequenc
constant relative separationzA , ranging from 0.3~bottom curve! to
0 ~touching stars, top curve!. The thin solid lines are contours o

constant angular momentum, ranging fromJ̄ 150.049 to J̄ 2

50.0498 in increments of 0.0001. In the inset we also show c

tours for J̄ 50.04955 and 0.049575. The thick solid lines mark t
onset of secular instabilities~see text!.
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57 6183STABILITY OF RELATIVISTIC NEUTRON STARS IN . . .
continuity, this class thus marks the onset of radial instabi
for supramassive sequences, consisting of stars with
massesM̄ 0

max,M̄ 0,M̄ 0
crit . Consider, for example, a bina

somewhere on the line between points C and D. Follow
the inspiral of these stars, they will eventually encounter
ISCO at point C. If we could reverse the inspiral and follo
an evolutionary sequence towards larger separations,
stars eventually have to become unstable and collaps
black holes, since their masses cannot be supported wh
isolation. This will happen at turning point D.

Note that so far we have only located turning points
contours of constant angular momentum. In order to mee
the conditions of theorem 1 and rigorously establish the
set of a secular instability, we also need to examine
chemical potentialm. The chemical potential is not normall
evaluated by a code that constructs equilibrium models~al-
though it could be!. Accordingly, it is useful to apply a dif-
ferent version of the theorem that does not refer tom:

Theorem 2. Consider a continuous sequence of eq
mass binary stars in synchronized circular orbit based on
equation of state of the formP5P(r0). Suppose that the res
massM0 is constant along the sequence, and that there
point l0 where Ṁ50 @and whereV.0, d(V̇Ṁ )/dlÞ0#.
Then the part of the sequence for whichV̇Ṁ.0 is unstable
for l nearl0.

The proof follows from the lemma together with relatio
~1! ~see also@20#!. Note that according to Eq.~1! the extrema
in theorems 1 and 2 have to coincide.

In Fig. 2 we plot contours of constant rest massM̄ 0 in an
M̄ versusr̄ c diagram. In this plot the contours describe se
lar evolutionary sequences. The contours again have
qualitatively different classes of extrema. One class is co

FIG. 2. Contours of constant rest mass in a mass-energy ve
central density diagram. The dotted lines are sequences of con
relative separationzA , ranging from 0.3~bottom curve! to 0 ~stars
in contact, top curve!. The thin solid lines are contours of consta

rest mass, ranging fromM̄ 050.176 to 0.1794 in increments o
0.0002. The thick solid lines mark the onset of secular instabili
~see text!.
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posed of minima of the total energy~e.g., point C!, and the
other is composed of maxima~point D!. The former can
again be associated with the onset of an orbital instability
the ISCO, while the latter marks the onset of radial instab
ity of supramassive sequences at large separations. Both
trema end at the critical contourM̄ 0

crit , above which the con
tours are monotonically decreasing for increasingrc . The
value of M̄ 0

crit agrees with the height of the saddle point
and point B in Fig. 1. All extrema in Figs. 1 and 2 agree
within a few percent, which is a measure of the accuracy
our numerical code.

In order to verify the assumptions in theorem 2, we ha
to make sure that the extrema of the constant rest mass
tours do not coincide with an extremum of the angular v
locity. In Fig. 3 we show the two contours connecting poin
E,F, and C,D, together with corresponding plots ofV̄ .

The minima at E and C can by analyzed very easily. U
ing the central density as the parameterl, all the assump-
tions,Ṁ50, V.0 andd(V̇Ṁ )/dlÞ0, are satisfied, and we
conclude that the configurations to the left of the minima,
which V̇Ṁ.0, are unstable. These minima mark the on
of a secular instability close to the ISCO.

The maximum at D is a little less obvious from our n
merical data, since it occurs very close to a minimum inV̄ .
However, the offset is measurable and larger than our
merical error, and we consistently find this offset. In ad
tion, we know that supramassive stars must become unst
when moved out from finite separation to infinite separati
We therefore conclude that the extrema inM̄ and V̄ are
indeed distinct, so that we can apply theorem 2. This es
lishes the onset of a secular radial instability for the maxi
on the thick line extending downward from point B in Fig
1 and 2.

We conclude that all binary configurations in the ar
under the thick solid lines and dashes in Figs. 1 and 2
stable. This area can be subdivided into a normal and a

us
ant

s

FIG. 3. Contours of constant rest mass. The top panels show
contours from Fig. 2, and the bottom panels show the correspon
angular velocities.
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6184 57BAUMGARTE, COOK, SCHEEL, SHAPIRO, AND TEUKOLSKY
pramassive region. All sequences with rest masses below

maximum allowed rest massM̄ 0
max of an isolated, nonrotating

star are normal sequences. These sequences start at
separation~e.g., F! and end at the ISCO~e.g. E!. In addition
to these normal sequences, there are supramassive sequ

with rest masses betweenM̄ 0
max and M̄ 0

crit . Evolutionary
curves for these sequences connect a radial instabilit
large separation~e.g. D! with an orbital instability at the
ISCO ~e.g. C!. We conclude thatall normal binary neutron
stars in synchronized orbit, with rest masses below the m
mum for isolated, nonrotating configurations, are secula
stable against radial collapse to black holes down to t
ISCO.At the ISCO they encounter a secular orbital instab
ity.

Supramassive stars are unstable to collapse at large s
ration, but if formed at finite separation, remain stable
they inspiral down to the ISCO. Supramassive stars co
arise in principle if a rapidly rotating, supermassive co
were to undergo bifurcation at a finite radius. Alternative
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they could arise if two spinning neutron stars become bo
in a binary or if two neutron stars accrete matter while in
binary.

The secular instability evolves on the same time scale
the inspiral, since both are driven by gravitational radiati
@3,12#. Orbital plunge will occur at the onset of dynamic
instability, which defines the true ISCO. Moreover, realis
binaries are more likely to be closer to irrotational~circula-
tion 50) than corotational@21#. For such systems, howeve
the location of the dynamical instability is quite close to t
onset of the secular instability, both in Newtonian theory@3#
and in PN theory@6#. The onset of the dynamical instabilit
is at slightly smaller separation.

The fact that dynamical instabilities typically arise
smaller separation than secular instabilities, together with
absence of a secular instability against radial collapse, u
the ISCO, suggests that a dynamical instability against ra
collapse may also be absent in normal binary neutron st

This work was supported by NSF Grant AST 96-185
and NASA Grant NAG 5-3420 at Illinois, and NSF Gra
PHY 94-08378 at Cornell.
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