PHYSICAL REVIEW D VOLUME 57, NUMBER 10 15 MAY 1998

Stability of relativistic neutron stars in binary orbit
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We analyze the stability of relativistic, quasi-equilibrium binary neutron stars in synchronized circular orbit.
We explore stability against radial collapse to black holes prior to merger, and against orbital plunge. We apply
theorems based on turning points along uniformly rotating sequences of constant angular momentum and rest
mass to locate the onset of secular instabilities. We find that inspiraling binary neutron stars are stable against
radial collapse to black holes all the way down to the innermost stable circular[@®856-282(98)02212-1

PACS numbg(s): 04.40.Dg, 04.20.Ex, 04.25.Dm, 97.60.Jd

The two-body problem is one of the outstanding, un-theorems based on turning-points along the sequences to lo-
solved problems in classical general relativity. However,cate the onset of secular instabilities. While we apply these
neutron star binary systems are known to exist even withirtheorems to our recent numerical resit6], the arguments
our own galaxy[1]. Binary systems are among the most presented in this paper are independent of our numerical
promising sources for gravitational wave detectors now unmethod and can be applied to any sequence of quasi-
der construction, such as the Laser Interferometric Gravitaequilibrium neutron star binaries in synchronized orbit. We
tional Wave ObservatoryLIGO), VIRGO and GEO. This find that such binaries are stable against radial collapse to
has motivated an intense theoretical effort to predict théblack holes until they encounter orbital instability at the
gravitational waveform emitted during the inspiral and coa-ISCO.
lescence of two neutron stars. Applying turning-point methods to binaries in corotation

Fully general relativistic treatments of the problem areallows us to detecsecular instabilities. The separation at
complicated by the nonlinearity of Einstein’s equations andwhich simultaneous extrema exist in the mass-energy and the
the need for very large computational resources. Recentgngular momentum curves marks the point along an evolu-
Wilson and Mathewd?2] reported preliminary results ob- tionary sequence at which the binary becomes unstable in the
tained with a relativistic numerical evolution code. Their dy- presence of some dissipative mechanism. This instability is
namical calculations suggest that the neutron stars may cotlistinct from dynamical instability, which arises indepen-
lapse to black holes before their orbit becomes unstable ardently of any dissipation and grows on a dynamical time
the stars plunge. Their results are in disagreement with prescale. Gravitational radiation can drive the secular instability
dictions of Newtoniari 3], post-Newtoniar(PN) [4-6], per-  [12], which is expected to occur befofee. at larger separa-
turbation [7], and analytic ‘“local-asymptotic-rest-frame” tion than the onset of a dynamical instabilify3,13]. It is
[8,9] calculations, all of which show that tidal fields stabilize therefore anticipated that it is the secular instabilities that
neutron stars against radial collapse. limit the range of stable configurations.

In a recent paper, we presented quasi-equilibrium, poly- Because of finite numerical resources, we cannot con-
tropic models of fully relativistic, equal mass neutron starstruct models of very large separation. We therefore observe
binaries in synchronized circular orbif40]. In Newtonian the increase of the maximum mass only for separations
gravity, strict equilibrium exists for two stars in circular or- smaller than about 4 stellar radii. However, even at this sepa-
bit. In general relativity, because of the emission of gravita+ation, tidal effects are still fairly small. Moreover, PN cal-
tional waves, binaries cannot be in strict equilibrium. How- culations, which are valid for larger separations, suggest that
ever, outside of the innermost stable circular ofb®CO), the maximum mass should also increase monotonically with
the time scale for orbital decay by radiation is much longerdecreasing separatidd,6]. We will therefore assume that
than the orbital period, so that the binary can be considerethe maximum allowed mass monotonically increases as the
to be in “quasi-equilibrium.” This fact allows us to neglect separation decreases.
both gravitational waves and wave-induced deviations from For a given equation of state, cold equal mass binary neu-
a circular orbit to a very good approximation. A detailedtron stars in synchronized circular orbit form a two-
discussion of our approximations and numerical method willparameter family, just like single, uniformly rotating stars. In
be presented in a forthcoming papéd]. our numerical code we adopt the central density and relative

In [10], we focused on the construction of quasi- separation to uniquely specify a particular configuration. A
equilibrium models, but did not discuss their stability. Welemma by Friedman, Ipser and Sorkih3], originally de-
found that the maximum allowed mass slighithcreasesas  rived for single, uniformly rotating stars, can therefore be
the separation of the stars decreases. Here, we construct selapted to corotating binaries:
quences of constant angular momentum and sequences of Lemma Consider a two-parameter family of equal mass
constant rest mass, which then allows us to apply rigoroubinary stars in synchronized circular orbits based on an equa-
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tion of state of the formP=P(py). Suppose that along a L L L L L IR L L
continuous sequence of models labeled by a parameter -

there is a poink 4 at which bothM y=dM,/d\ andJ vanish
and whered(QJ+ uMg)/d\#0. Then the part of the se-

quence for which QJ+ «M;) >0 is unstable fon near\. 0.18
HereP is the pressurey, the rest-mass density,andM

are the angular momentum and résaryor) mass of one of

the two stars() is the angular velocity and is the chemical

potential. We will later useM for the total mass-energy of =

one of the two star§that is half the total Arnowitt-Deser-

Misner (ADM) mass of the spacetirheThe proof of the

lemma follows directly from theorem 1 ¢14]. In practice it ;

is more useful to apply the following related theorem, which 0.175 &

is an immediate consequence of the lenh3: Iy
Theorem 1.Consider a continuous sequence of equal i '

mass binary stars in synchronized circular orbit based on ar '

equation of state of the forn®=P(p,). Suppose that the A L ,0,3, | lo,’?’.5. . (.),4. |

total angular momentum is constant along the sequence, an 013 04 05

that there is a poinh, where M,=0 [and whereu>0, o,
M . Then th f th for which
d(Mo)/dr#0] en the part of the sequence for whic FIG. 1. Contours of constant angular momentum in a rest-mass

uMo>0 is unstable fop\_ neario. . versus central density diagram. The dotted lines are sequences of
We can now apply this theorem to our numerical models constant relative separatian , ranging from 0.3bottom curvé to

In these mOPfJ/S the matter obeys a pontrqplc equation of) (touching stars, top curyeThe thin solid lines are contours of

state,P=Kpy™ ", whereK is constant andh is the poly-  constant angular momentum, ranging frody=0.049 to J,

tropic index. Note that physical dimensions enter the prob=—0,0498 in increments of 0.0001. In the inset we also show con-

lem only throughK. It is therefore convenient to adopt ge- s forJ =0.04955 and 0.049575. The thick solid lines mark the

ometrized units with G=c=1 and introduce the gnget of secular instabilitiesee text

dimensionless  quantities po=K"po, M=K "2M,,

M=K "M andJ=K "J (see[15]). Numerical values in saddle point divides the turning points of the contours into
cgs units can easily be obtained by inserting appropriate vatwo separate classes: one for contodirs J¢t and one for
ues forn andK, and restorings andc. J>J%" We will identify the former with the instability at the
__InFig. 1 we plotM as a function of the central density ISCO, and the latter with a radial instability of supramassive
p.for n=1. The dotted lines are curves of constant relativestars at large sepirati_ons. -
separationza=riy/ro,. Hereri, is the inner(coordinate The class forJ<J® exists for all rest masseM
distance b_etween the two s_tars, as measured b(_atween the thf“ and ends at the saddle point A. The physical inter-
closest points along the axis, ang, is the outer distance, as pretation of these turning points can be understood by fol-
measured between the most distant points along the axis. F§yying an evolutionary sequence for a coalescing binary of
stars in contacz,=0, and for infinitely separated stars fixaq rest mass, which starts at a large separation, e.g., at
zp=1. The lowest dotted line in Fig. 1 is for stars at a sepaygint F. It evolves along a horizontal line, and initially both
ration z,=0.3, and the highest curve is for stars in contactthe angular momentum and the central density decrease with
We expect that the Oppenheimer-Volkoff curve for infinitely {he separation. At point E, however, the angular momentum

separated stars lies below all these lif€], such that the  goes through a minimum. According to the relatids]
equilibrium mass supported by a given central density mono-

tonically increases with decreasing separation. dM=QdJ+ udM 1)
Evolutionary inspiral sequences conserve the rest mass 0
M, and therefore follow horizontal lines in Fig. 1. This

shows, for example, that the central dens,;deecreases as

the two stars approach each other. ; .
. T tonian gravity(e.g.[3]), PN theory(e.g.[19]), and general

The solid lines in Fig. 1 are contours of constant total g|a4ivity [10], and marks the onset of an orbital instability at
angular momentund. The angular momentum of infinitely the 1SCO. Note that this orbital instability is the first insta-
separated binaries is infinite, and decreases for approachingity that these binaries encounter during inspiral.
binaries. There is a critical angular momentutf™, for For J>J% we find a second class of turning points. This
which the contours form a saddle poibint A). This criti-  class starts at point B in Fig. 1 and ends at the maximum of
cal angular momentum and the critical mam‘l%" at the the Oppenheimer-VolkofOV) curve for isolated, nonrotat-
saddle point take values which, like the maximum mass ofng starg16,17. The maximum on this limiting curve marks
nonrotating isolated stars, depend only on the polytropic inthe onset of radial instability for isolated, nonrotating stars,

dex. Forn=1 we findJ®"=0.05 andV {"=0.179[16]. The and defines their maximum allowed rest mad$'®. By

this minimum has to coincide with an extremum in the total
mass-energW . This extremum is well understood in New-
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FIG. 2. Contours of constant rest mass in a mass-energy versus FIG. 3. Contours of constant rest mass. The top panels show two
central density diagram. The dotted lines are sequences of consta#ntours from Fig. 2, and the bottom panels show the corresponding
relative separatiom,, ranging from 0.3(bottom curvg to O (stars  angular velocities.

in contact, top curve The thin solid lines are contours of constant . .

I ing from~=0.176 to 0.1794 in i s of posed of minima of the total enerdg.g., point @, and the
rest mass, ranging fromito=u. 00 N Increments ot qginer is composed of maximgooint D). The former can
0.0002. The thick solid lines mark the onset of secular instabilities . . . L -
(see text again be assquated with the onset of an orbital |_nst.ab|I|ty.at

the ISCO, while the latter marks the onset of radial instabil-

continuity, this class thus marks the onset of radial instability®y Of Supramassive sequences at large separations. Both ex-

for supramassive sequences, consisting of stars with resFema end at the critical contodw Cf't, above which the con-
massesM T®< M <M &™. Consider, for example, a binary tours are monotonically decreasing for increasing The
somewhere on the line between points C and D. Following/alue of M " agrees with the height of the saddle point A
the inspiral of these stars, they will eventually encounter theéind point B in Fig. 1. All extrema in Figs. 1 and 2 agree to
ISCO at point C. If we could reverse the inspiral and follow within a few percent, which is a measure of the accuracy of
an evolutionary sequence towards larger separations, th@ur numerical code.
stars eventually have to become unstable and collapse to In order to verify the assumptions in theorem 2, we have
black holes, since their masses cannot be supported when i@ make sure that the extrema of the constant rest mass con-
isolation. This will happen at turning point D. tours do not coincide with an extremum of the angular ve-
Note that so far we have only located turning points oflocity. In Fig. 3 we show the two contours connecting points
contours of constant angular momentum. In order to meet al,F, and C,D, together with corresponding plots(bf
the conditions of theorem 1 and rigorously establish the on- The minima at E and C can by analyzed very easily. Us-
set of a secular instability, we also need to examine théng the central density as the paramexerall the assump-
chemical potential.. The chemical potentla_l is not normally tions,M=0, >0 andd(Ql\'/I)/d)w&O, are satisfied, and we
evaluated by a code that constructs equilibrium modals  oncjyde that the configurations to the left of the minima, for

;ngrﬂhvgrg?our:do%héiﬁggdrleng);hgtIcs:jouessewoltt?e?spg a dif- which QM >0, are unstable. These minima mark the onset
® Iof a secular instability close to the ISCO.

Theorem 2 Consider a continuous sequence of equa The maximum at D is a little less obvious from our nu-
mass binary stars in synchronized circular orbit based on an ' . ) - ~
equation of state of the forfA=P(p,). Suppose that the rest merical data, since it occurs very close to a minimundlin
massM is constant along the sequence, and that there is §OWever, the offset is measurable and larger than our nu-

. Tl - merical error, and we consistently find this offset. In addi-
point Ao where M =0 [and where2>0, d(QM)/dr#0]. tion, we know that supramassive stars must become unstable

Then the part of the sequence for whiotM >0 is unstable \yhen moved out from finite separation to infinite separation.

for_lz\hnear)\?.f I f the | togeth ith relati We therefore conclude that the extremaNh and Q are
1 € pr??ﬁzg] O\I<lvst r?rr]nt € ergmatoglyze 1etrhW| tre aton i, deed distinct, so that we can apply theorem 2. This estab-
(1) (see als ). Note that according to Eq1) the extrema lishes the onset of a secular radial instability for the maxima

N theo'rems 1 and 2 have to coincide. — on the thick line extending downward from point B in Figs.
In Fig. 2 we plot contours of constant rest maéég inan 1 gnd 2.

M versusp . diagram. In this plot the contours describe secu- We conclude that all binary configurations in the area

lar evolutionary sequences. The contours again have twonder the thick solid lines and dashes in Figs. 1 and 2 are

qualitatively different classes of extrema. One class is comstable. This area can be subdivided into a normal and a su-
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pramassive region. All sequences with rest masses below thkey could arise if two spinning neutron stars become bound

maximum allowed rest mass T of an isolated, nonrotating in a binary or if two neutron stars accrete matter while in a
' . binary.
r are normal nces. Th n r fini . o .
star are normal sequences ese sequences start at teThe secular instability evolves on the same time scale as

separatior(e.g., § and end at the ISCCe.g. B. In addition  he ingpiral, since both are driven by gravitational radiation
to these normal sequences, there are supramassive sequernges?]. Orbital plunge will occur at the onset of dynamical

with rest masses betweeM T and M S™. Evolutionary instability, which defines the true ISCO. Moreover, realistic
curves for these sequences connect a radial instability Egmarles aLe more likely to be closer tﬁ |rrotat|omari]rcula-
large separationie.g. D with an orbital instability at the tion =0) than corotationg|21]. For such systems, however,

. the location of the dynamical instability is quite close to the
ISCO (e.g. O. We conclude thaall normal binary neutron et of the secular instability, both in Newtonian thei@y

stars in synchronized orbit, with rest masses below the maxiyng in PN theonf6]. The onset of the dynamical instability
mum for isolated, nonrotating configurations, are secularlyjs at slightly smaller separation.

stable against radial collapse to black holes down to the The fact that dynamical instabilities typically arise at
ISCO.At the ISCO they encounter a secular orbital instabil-smaller separation than secular instabilities, together with the
ity. absence of a secular instability against radial collapse, up to
Supramassive stars are unstable to collapse at large seghe ISCO, suggests that a dynamical instability against radial
ration, but if formed at finite separation, remain stable asollapse may also be absent in normal binary neutron stars.

they inspiral down to the ISCO. Supramassive stars could This work was supported by NSF Grant AST 96-18524

arise in principle if a rapidly rotating, supermassive coreand NASA Grant NAG 5-3420 at lllinois, and NSF Grant
were to undergo bifurcation at a finite radius. Alternatively, PHY 94-08378 at Cornell.
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