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Static axially symmetric Einstein-Yang-Mills-dilaton solutions. II. Black hole solutions

Burkhard Kleihaus and Jutta Kunz
Fachbereich Physik, Universita¨t Oldenburg, Postfach 2503 D-26111 Oldenburg, Germany

~Received 22 December 1997; published 4 May 1998!

We discuss the new class of static axially symmetric black hole solutions obtained recently in Einstein-
Yang-Mills and Einstein-Yang-Mills-dilaton theory. These black hole solutions are asymptotically flat and they
possess a regular event horizon. The event horizon is almost spherically symmetric with a slight elongation
along the symmetry axis. The energy density of the matter fields is angle-dependent at the horizon. The static
axially symmetric black hole solutions satisfy a simple relation between mass, dilaton charge, entropy and
temperature. The black hole solutions are characterized by two integers, the winding numbern and the node
numberk of the purely magnetic gauge field. With increasing node number the magnetically neutral black hole
solutions form sequences tending to limiting solutions with magnetic chargen, corresponding to Einstein-
Maxwell-dilaton black hole solutions for finite dilaton coupling constant and to Reissner-Nordstro”m black hole
solutions for vanishing dilaton coupling constant.@S0556-2821~98!01312-5#

PACS number~s!: 04.20.Jb, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

The ‘‘no hair’’ conjecture for black holes states that bla
holes are completely characterized by their massM , their
chargeQ and their angular momentumJ. This conjecture
presents a generalization of rigorous results obtained for
lar fields coupled to gravity@1# as well as for Einstein-
Maxwell ~EM! theory @2#. In EM theory, the unique family
of stationary Kerr-Newman black holes with nontrivial va
ues of M , Q, and J contains the stationary Kerr blac
holes for Q50, the static Reissner-Nordstro”m black holes
for J50 and the static Schwarzschild black holes forJ5Q
50. Notably, the static black hole solutions in EM theory a
spherically symmetric, and the stationary black hole so
tions are axially symmetric.

In recent years counterexamples to the ‘‘no hair’’ conje
ture were established in various theories with non-Abel
fields, including Einstein-Yang-Mills ~EYM! theory,
Einstein-Yang-Mills-dilaton ~EYMD! theory, Einstein-
Yang-Mills-Higgs ~EYMH! theory, and Einstein-Skyrme
~ES! theory @3#. Possessing non-trivial matter fields outsi
their regular event horizon, these non-Abelian black hole
lutions are no more completely determined by their glo
charges. And they hold more surprises. There are static b
hole solutions with only axial symmetry@4#, static black hole
solutions with only discrete symmetries@5#, and there are
non-static non-rotational black hole solutions@6#. Unlike the
static spherically symmetric@3# and axially symmetric static
black hole solutions@4#, many of the new types of non
Abelian black hole solutions are only perturbative solutio
@5–7#.

The static axially symmetric black hole solutions in EY
and EYMD theory@4# have many properties in common wit
the globally regular static axially symmetric solutions co
structed previously@8,9#. Representing generalizations of th
static spherically symmetric globally regular and black h
solutions @10–12#, these static axially symmetric solution
are characterized by two integers. These are the node nu
570556-2821/98/57~10!/6138~20!/$15.00
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k of the gauge field functions and the winding numbern with
respect to the azimuthal anglef. While f covers the full
trigonometric circle once, the fields windn times around.
The static spherically symmetric solutions have windi
numbern51. Winding numbern.1 leads to axially sym-
metric solutions.

The static axially symmetric EYM and EYMD black hol
solutions @4# are asymptotically flat and possess a regu
event horizon. The event horizon of these solutions reside
a surface of constant isotropic radial coordinate. The ene
density of the matter fields is not constant at the horizon
angle-dependent. Outside their regular event horizon,
static axially symmetric black hole solutions possess n
trivial magnetic gauge field configurations, but they carry
global magnetic charge. For fixed winding numbern and
increasing node numberk the solutions form sequence
tending to limiting solutions. These limiting solutions a
spherically symmetric and Abelian, representing Einste
Maxwell-dilaton ~EMD! @13# and Reissner-Nordstro”m ~RN!
black hole solutions for EYMD and EYM theory, respe
tively @8,4,9#, which carry magnetic chargen.

Having given a brief account of the properties of the
static axially symmetric black hole solutions in@4#, we here
present these solutions in detail. The paper thus repres
the second paper of our sequel on static axially symme
EYMD solutions, following@9#, where a detailed presenta
tion of the globally regular solutions was given. In Sec. II
this paper we recall the action, we present the static axi
symmetric ansatz in isotropic coordinates and we discuss
boundary conditions. Introducing temperature and entropy
the black hole solutions, we derive a relation between th
thermodynamic quantities and the mass and the dila
charge. In Sec. III we recall the static spherically symme
black hole solutions and present them in isotropic coor
nates. In Sec. IV we present the static axially symme
black hole solutions, discuss their properties, and analyze
properties of their event horizon. We show that the
quences of neutral non-Abelian solutions tend to limiti
6138 © 1998 The American Physical Society
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57 6139STATIC AXIALLY SYMMETRIC . . . . II . . . .
charged Abelian solutions. We present our conclusions
Sec. V. In Appendix A we present the expansion of the fu
tions at the horizon, and we show that the Kretschmann
lar is finite there. In Appendix B we discuss the final choi
of functions for the numerical integration.

II. STATIC AXIALLY SYMMETRIC ANSATZ

We consider the SU~2! Einstein-Yang-Mills-dilaton ac-
tion

S5E S R

16pG
1LM DA2gd4x ~1!

with the matter Lagrangian

LM52
1

2
]mF]mF2e2kF

1

2
Tr~FmnFmn!, ~2!

the field strength tensor

Fmn5]mAn2]nAm1 ie@Am ,An#, ~3!

the gauge field

Am5
1

2
taAm

a , ~4!

the dilaton fieldF, and the Yang-Mills and dilaton couplin
constantse andk, respectively.

Variation of the action~1! with respect to the metricgmn

leads to the Einstein equations, variation with respect to
gauge fieldAm and the dilaton fieldF leads to the matte
field equations@9#.

A. Static axially symmetric ansatz

As for the globally regular static axially symmetric sol
tions @8,9#, we adopt isotropic coordinates to construct t
static axially symmetric black hole solutions. In terms of t
coordinatesr , u andf the isotropic metric reads

ds252 f dt21
m

f
dr21

mr2

f
du21

lr 2 sin2u

f
df2, ~5!

where the metric functionsf , m and l are only functions of
the coordinates r and u. Regularity on the z-axis
(z5r cosu) requires@14#

muu505 l uu50 . ~6!

Again, we consider a purely magnetic gauge field,A0
50, and choose for the gauge field the ansatz@15–17,8,4,9#
in
-
a-

e

Amdxm5
1

2er
$tf

n @H1dr1~12H2!rdu#

2n@t r
nH31tu

n~12H4!#r sin udf%, ~7!

where the symbolst r
n , tu

n andtf
n denote the dot products o

the Cartesian vector of Pauli matrices,tW5(tx ,ty ,tz), with
the spatial unit vectors

eW r
n5~sin u cosnf,sin u sin nf,cosu!,

eW u
n5~cosu cosnf,cosu sin nf,2sin u!,

eWf
n 5~2sin nf,cosnf,0!, ~8!

respectively. Since the fields windn times around, while the
azimuthal anglef covers the full trigonometric circle once
we refer to the integern as the winding number of the solu
tions. The four gauge field functionsHi and the dilaton func-
tion F depend only on the coordinatesr andu. The spheri-
cally symmetric ansatz@12# is recovered forn51 andH1
5H350, H25H45w(r) andF5F(r ).

The ansatz~7! is axially symmetric in the sense, that
rotation around thez-axis can be compensated by a gau
rotation. Besides being axially symmetric the ansatz resp
the discrete mirror symmetryMxz^ C, where the first factor
represents reflection through thexz-plane and the secon
factor denotes charge conjugation@18,16,19#.

The ansatz is form-invariant under the Abelian gau
transformation@18,16,17#

U5expS i

2
tf

n G~r ,u! D . ~9!

The functionsH1 andH2 transform inhomogeneously unde
this gauge transformation

H1→H12r ] rG,

H2→H21]uG, ~10!

like a two-dimensional gauge field. The functionsH3 andH4
combine to form a scalar doublet, (H31ctgu,H4). We
choose the same gauge condition as previou
@18,16,17,8,4,9#:

r ] rH12]uH250. ~11!

With the ansatz~5!–~7! and the gauge condition~11! we
obtain the set of EYMD field equations, given in@9#.

The energy density of the matter fieldse52T0
052LM

reads
2T0
05

f

2mF ~] rF!21
1

r 2
~]uF!2G1e2kF

f 2

2e2r 4m
H 1

m
~r ] rH21]uH1!21

n2

l
$~r ] rH32H1H4!21@r ] rH41H1~H31ctgu!#2

1~]uH3211ctguH31H2H4!21@]uH41ctgu~H42H2!2H2H3#2%J . ~12!



ar
im

b
f
a
ta
th
le
h

ns

e
s
t
t

nd

r

or
d
g
al
e
s

o

ies.
are

e

of

f

the
ave
er

n

ate

6140 57BURKHARD KLEIHAUS AND JUTTA KUNZ
Here the first gauge field term derives fromFru , the second
and third derive fromFrf and the fourth and fifth fromFuf .
As seen from Eq.~12!, regularity on thez-axis requires

H2uu505H4uu50 . ~13!

B. Boundary conditions

To obtain asymptotically flat solutions with a regul
event horizon and with the proper symmetries, we must
pose the appropriate boundary conditions, the boundaries
ing the horizon and radial infinity, thez-axis and, because o
parity reflection symmetry, ther-axis. The presence of
regular event horizon is the essential new feature of the s
axially symmetric black hole solutions, as compared to
globally regular solutions. We therefore begin with a detai
discussion of the boundary conditions at the horizon. T
boundary conditions at infinity and along ther- and the
z-axis agree with those of the globally regular solutio
@8,9#. They are only briefly recalled for completeness.

Boundary conditions at the horizon.The event horizon of
the static black hole solutions is characterized bygtt52 f
50, grr is finite at the horizon in isotropic coordinates. W
impose that the horizon of the black hole solutions reside
a surface of constantr , r 5r H @20#. This ansatz for the even
horizon is justifieda posteriori, since it leads to consisten
solutions, possessing a regular event horizon.

Requiring the horizon to be regular, we obtain the bou
ary conditions at the horizonr 5r H . The metric functions
must satisfy

f ur 5r H
5mur 5r H

5 l ur 5r H
50, ~14!

and the dilaton function

] rFur 5r H
50. ~15!

The conditions for the gauge field functions are

~]uH11r ] rH2!ur 5r H
50,

~r ] rH32H1H4!ur 5r H
50,

@r ] rH41H1~H31ctgu!#ur 5r H
50, ~16!

which imply, Fru50 andFrf50, respectively.
Thus the equations of motion yield only three bounda

conditions for the four gauge field functionsHi ; one gauge
field boundary condition is left indeterminate. However, f
the black hole solutions precisely one free boundary con
tion at the horizon is necessary to completely fix the gau
The reason is, that in contrast to the case of the glob
regular solutions@8#, for the black hole solutions the gaug
condition ~11! still allows non-trivial gauge transformation
satisfying

r 2] r
2G1r ] rG1]u

2G50. ~17!

To fix the gauge, we have implemented various gauge c
ditions at the horizon, such as

~] rH1!ur 5r H
50, ~18!
-
e-
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or

~]uH1!ur 5r H
50, ~19!

obtaining the same results for the gauge invariant quantit
The expansions of the functions at the regular horizon

given in Appendix A 1.
Boundary conditions at infinity.At infinity ( r 5`) we

require the boundary conditions@8,4,9#

f ur 5`5mur 5`5 l ur 5`51, ~20!

Fur 5`50, ~21!

@since any finite value of the dilaton field at infinity can b
transformed to zero viaF→F2F(`), r→re2kF(`)]
and

H2ur 5`5H4ur 5`561, H1ur 5`5H3ur 5`50, ~22!

to obtain magnetically neutral solutions. The expansion
the functions at infinity is given in@9#.

The node numberk is defined by the number of nodes o
the gauge field functionsH2 and H4 @9#. Because of the
symmetry with respect to the transformationHi→2Hi , we
can choose these gauge field functions to be positive at
horizon. Solutions with an even number of nodes then h
H2(`)5H4(`)51, whereas solutions with an odd numb
of nodes haveH2(`)5H4(`)521.

Boundary conditions along the axes.The symmetries de-
termine the boundary conditions along ther-axis and the
z-axis @8,4,9#:

]u f uu505]umuu505]ul uu5050,

]u f uu5p/25]umuu5p/25]ul uu5p/250,
~23!

]uFuu5050,

]uFuu5p/250, ~24!

and

H1uu505H3uu5050,

]uH2uu505]uH4uu5050,

H1uu5p/25H3uu5p/250,

]uH2uu5p/25]uH4uu5p/250. ~25!

In addition, regularity on thez-axis requires condition~6! for
the metric functions to be satisfied~see Appendix B! and
condition ~13! for the gauge field functions. The expansio
of the functions on the positivez-axis is given in@9#.

C. Dimensionless quantities

As previously, we introduce the dimensionless coordin
x,

x5
e

A4pG
r , ~26!
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the dimensionless dilaton functionw,

w5A4pGF, ~27!

and the dimensionless dilaton coupling constantg,

g5
1

A4pG
k. ~28!

The dilaton coupling constantg represents a parameter; fo
g51 contact with the low energy effective action of strin
theory is made, whereas in the limitg→0 the dilaton de-
couples and EYM theory is obtained.

The dimensionless massm is related to the massM via

m5
eG

A4pG
M . ~29!

D. Mass, temperature and entropy

The massM of the black hole solutions can be obtain
directly from the total energy-momentum ‘‘tensor’’tmn of
matter and gravitation@21#

M5E t00d3r . ~30!

As shown in@9#, the dimensionless massm is then deter-
mined by the derivative of the metric functionf at infinity

m5
1

2
lim
x→`

x2]xf . ~31!

The zeroth law of black hole physics states that the s
face gravityksg is constant at the horizon of the black ho
solutions; here@22,5#

ksg
2 52~1/4!gttgi j ~] igtt!~] jgtt!. ~32!

To evaluateksg, we need to consider the metric functions
the horizon. Expanding the equations in the vicinity of t
horizon in powers of the dimensionless coordinatex
2xH)/xH , we observe that the metric functions are quadra
in x2xH ,

f ~x,u!5 f 2~u!S x2xH

xH
D 2S 12

x2xH

xH
D1OS x2xH

xH
D 4

,

~33!

m~x,u!5m2~u!S x2xH

xH
D 2S 123

x2xH

xH
D1OS x2xH

xH
D 4

,

~34!

and likewise Eq.~34! for l (x,u) ~see Appendix A 1!. Since
the temperatureT is proportional to the surface gravityksg
@22#,

T5ksg/~2p!, ~35!

we obtain, for the dimensionless temperature,
r-

t

c

T5
f 2~u!

2pxHAm2~u!
. ~36!

To show that the temperatureT of the static axially symmet-
ric black hole solutions is indeed constant at the horizon,
employ the expansion of the metric functions~33! and ~34!
in the ru component of the Einstein equations at the horiz
This yields the crucial relation between the expansion co
ficients f 2(u) andm2(u):

05
]um2

m2
22

]u f 2

f 2
. ~37!

The dimensionless areaA of the event horizon of the
black hole solutions is given by

A52pE
0

p

du sin u
Al 2m2

f 2
xH

2 . ~38!

The entropyS is proportional to the areaA @22#,

S5
A

4
, ~39!

leading to the dimensionless product

TS5
xH

4 E
0

p

du sin uAl 2. ~40!

Having defined temperature and entropy, we now deriv
second expression for the mass@22#. As shown before@9#,
the equations of motion yield

1

8pG
]m~A2g]mlnf !52A2g~2T0

02Tm
m!. ~41!

Integrating both sides overr , u andf from the horizon to
infinity, we obtain

1

4GE
0

p

du sin uF r 2Al
] r f

f GU
r H

`

52E
0

2pE
0

pE
r H

`

dfdudrA2g~2T0
02Tm

m!5Mo . ~42!

Changing to dimensionless coordinates, we express the
hand side~LHS! with help of the dimensionless massm and
the product of temperature and entropyTS, obtaining

m5mo12TS, ~43!

with mo5(e/A4pG)GMo , in agreement with the genera
mass formula for static black hole solutions@22#.

Considering the dilaton field equation in the form@9#

1

k
]m~A2g]mF!5

1

8pG
]m~A2g]mlnf !, ~44!

it is straightforward to derive a relation between mass them
and the dilaton chargeD:
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6142 57BURKHARD KLEIHAUS AND JUTTA KUNZ
D5 lim
x→`

x2]xw. ~45!

We replace the left-hand side~LHS! of Eq. ~41! by the LHS
of Eq. ~44! and integrate as above. Recalling the bound
condition] rFur 5r H

50 and changing to dimensionless coo
dinates, we obtain

D5gmo5g~m22TS!, ~46!

where the second equality follows from Eq.~43!.
Previously we obtained for static spherically symmet

black holes the relation@23#

D5gS m2
mS

TS
TD , ~47!

wheremS5 x̃H/2 andTS51/(4p x̃H) represent the Schwarzs
child mass and the Schwarzschild temperature of a b
hole with horizonx̃H in Schwarzschild-like coordinates. Th
relation represents a special case of the more general rel
~46!, since for a spherical black holeA54p x̃ H

2 .

III. SPHERICALLY SYMMETRIC SOLUTIONS

The static spherically symmetric EYM and EYMD solu
tions were obtained previously in Schwarzschild-like coor
nates with metric@10,12,23#

ds252A2Ndt21
1

N
d r̃ 21 r̃ 2~du21sin2udf2! ~48!

and metric functionsA( r̃ ) andN( r̃ ),

N~ r̃ !512
2m̃~ r̃ !

r̃
. ~49!

We here briefly present the spherical solutions in isotro
coordinates. We exhibit the coordinate transformation
tween the radial coordinatesr and r̃ , and we discuss the
limiting solutions.

A. Coordinate transformation

The static spherically symmetric isotropic metric reads

ds252 f dt21
m

f
@dr21r 2~du21sin2udf2!#. ~50!

The coordinatesr and r̃ are related by

dr

r
5

1

AN~ r̃ !

d r̃

r̃
. ~51!

Changing to dimensionless coordinatesx and x̃ , the co-
ordinate functionx( x̃ ) must be obtained numerically from
Eq. ~51!, since the functionN( x̃ ) of the non-Abelian solu-
tions is only known numerically. To avoid the divergence
1/N( x̃ ) at the horizon in the numerical integration, we intr
duce the functionD( x̃ ):
y

k

ion

-

c
-

f

D~ x̃ !5
1

AN~ x̃ !
2

1

cANS~ x̃ !
, ~52!

where

c25 x̃
dN

d x̃
U

x̃5 x̃H

~53!

andNS is the Schwarzschild metric function

NS~ x̃ !512
x̃H

x̃
. ~54!

After replacing on the RHS of Eq.~51! 1/AN by 1/cANS
1D, we integrate the first term analytically and the fini
D-term numerically. This yields the coordinate transform
tion

x5S 2A x̃ ~ x̃2 x̃H!12 x̃2 x̃H

4
D 1/c

expF E
x̃H

x̃ D~ x̃ 8!

x̃ 8
d x̃8G ,

~55!

where

xH5S x̃H

4
D 1/c

~56!

is determined by the asymptotic requirement,x/ x̃→1. For
the Schwarzschild solutionc51, andxH5 x̃H/4.

Figure 1 demonstrates the coordinate transformation
the static spherically symmetric EYMD solutions wit
xH50.02, g51 and k5124. Figures 2~a!, 2~b! show the
metric functions f and m, and Figs. 3~a!, 3~b! show the
gauge field functionw and the dilaton functionw.

FIG. 1. The coordinate transformation between the isotropic

ordinatex and the Schwarzschild-like coordinatex̃ is shown for the
static spherically symmetric solutions (n51) of EYMD theory with
g51 andk5123. Also shown is the coordinate transformation f
the limiting EMD solution.
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Figure 4 demonstrates the coordinate transformation
the static spherically symmetric EYM solutions wi
xH50.02 andk5124. Figs. 5~a!, 5~b! show the metric
functions f andm.

B. Limiting solutions

For fixed dilaton coupling constant and horizon, the
quences of neutral static spherically symmetric EYMD bla
hole solutions converge to limiting solutions@23#. These lim-
iting solutions are EMD black hole solutions@13# with the
same dilaton coupling constant, the same horizon and ch
P51 @23#.

We now consider the limiting EMD solution forg51 and
a general chargeP. Defining @13#

X15A x̃ H
2 12P2, X25

2P2

X1
, ~57!

and

X5
X21A4 x̃ 21X2

2

2
, ~58!

i.e., XH5X1 , the coordinate transformation for the limitin
EMD solution reads

FIG. 2. ~a! The metric functionf is shown for the static spheri
cally symmetric solutions (n51) of EYMD theory withg51 and
k5123. Also shown is the metric function of the limiting EMD
solution.~b! Same as~a! for the metric functionm.
r

-
k

ge

x5
2A~X2X2!~X2X1!12X2~X21X1!

4
, ~59!

with

xH5
X12X2

4
. ~60!

FIG. 3. ~a! Same as Fig. 2~a! for the gauge field functionw, for
k5124. ~b! Same as Fig. 2~a! for the dilaton functionw.

FIG. 4. The coordinate transformation between the isotropic

ordinatex and the Schwarzschild-like coordinatex̃ is shown for the
static spherically symmetric solutions (n51) of EYM theory with
k5123. Also shown is the coordinate transformation for the lim
iting RN solution.
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6144 57BURKHARD KLEIHAUS AND JUTTA KUNZ
The metric functions of the limiting solution read in isotrop
coordinates

f `5
~12xH /x!2

@112~xH /x!A111/2~P/xH!21~xH /x!2#
~61!

and

m`5F12S xH

x D 2G2

. ~62!

The dilaton function of the limiting solution reads

e2w`5
~11xH /x!2

@112~xH /x!A111/2~P/xH!21~xH /x!2#
. ~63!

The gauge field function of the limiting solution is trivia
w`50. For P51 andxH50.02 the coordinate transforma
tion for the limiting solution is shown in Fig. 1, the metr
functions of the limiting solution are shown in Figs. 2 an
the dilaton function in Fig. 3. For the horizonxH50.02 the
convergence is rapid. The solution withk53 is already very
close to the limiting solution, and the solution withk54 is
almost indistinguishable, for all functions except for t
gauge field functionw. This function approaches its limiting
function w`50 non-uniformly, since the boundary cond

FIG. 5. ~a! The metric functionf is shown for the static spheri
cally symmetric solutions (n51) of EYM theory with k5122.
Also shown is the metric function of the limiting RN solution.~b!
Same as~a! for the metric functionm for k5123.
tions requirew(`)Þ0. A detailed discussion on the conve
gence of these solutions is given in@23#.

We now turn to the limiting solutions of the the sequenc
of static spherically symmetric EYM black hole solutions.
Schwarzschild-like coordinates, the limiting solution of th
sequence with fixed horizonx̃H , is a RN solution with the
same horizon and with chargeP51, if x̃H.1 @24,23#. If
x̃H,1, the limiting solution consists of two parts, an exteri
part covering the interval 1, x̃,`, which represents the
exterior of an extremal RN solution with massm51, horizon
x̃H51 and chargeP51, and an oscillating interior part cov
ering the intervalx̃H, x̃,1 @24,23,25#. In isotropic coordi-
nates with fixed horizonxH , the limiting solution corre-
sponds to the exterior of a RN solution with the sam
horizon and with chargeP51.

The coordinate transformation for the limiting RN sol
tion reads

x5
A x̃ 222m x̃1P21 x̃2m

2
~64!

with

m5
x̃ H

2 1P2

2 x̃H

. ~65!

The metric functions are given by

f `5
@12~xH /x!2#2

@112~xH /x!A111/4~P/xH!21~xH /x!2#2
~66!

and

m`5F12S xH

x D 2G2

, ~67!

i.e., m` is identical for the EMD and RN solutions. Again
the gauge field function of the limiting solution is trivia
w`50. For P51 andxH50.02 the coordinate transforma
tion of the limiting solution is shown in Fig. 4 and the metr
functions in Figs. 5.

C. Limit xH˜0

Let us now consider the limitxH→0 for the black hole
solutions. In this limit the solutions tend towards the cor
sponding globally regular solutions@11,12,23#. For several
quantities of interest, however, the limitxH→0 is not
smooth. For instance, the energy density of the matter fie
of the black hole solutions approaches the energy densit
the globally regular solutions with a discontinuity at the o
gin. The reason is that the magnetic field of the black h
solutions is purely radial at the horizon

BW 5BreW r , ~68!

with Br5Fuf , because the boundary conditions~16! require

Bu50, Bf50, ~69!
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with Bu52Frf andBf5Fru , whereas the magnetic field o
the globally regular solutions has non-vanishingBu at the
origin. We demonstrate this discontinuous behavior of
energy density of the matter fields in Figs. 6~a!, 6~b! for the
EYMD (g51) solutions with k51 and 2 and xH
50.001, 0.01, 0.1 and 1.

We finally consider the Kretschmann scalarK,

K5RmnabRmnab . ~70!

An analytical expression forK is given in Appendix A 2. We
showK in Fig. 7 for the same set of EYMD solutions. Agai
the limit xH→0 is not smooth. However, as required for
regular horizon,K is finite at the horizon for finitexH .

IV. AXIALLY SYMMETRIC SOLUTIONS

Subject to the above boundary conditions, we solve
equations for the static axially symmetric black hole so
tions numerically. We employ the same numerical algorit
@26# as for the static axially symmetric globally regular s
lutions @8,4,9#. To map spatial infinity to the finite valuex̄
51, we here employ the radial coordinate

FIG. 6. ~a! The energy densitye52T0
0 is shown for the static

spherically symmetric black hole solutions (n51) of EYMD theory
with g51 and k51 and the horizon radiixH51, 0.1, 0.01 and
0.001, as well as for the corresponding globally regular solution.~b!
Same as~a! for k52.
e

e
-

x̄512
xH

x
. ~71!

The equations are then discretized on a non-equidistant
in x̄ and u, where typical grids used have sizes 150330,
covering the integration region 0< x̄<1, 0<u<p/2. The nu-
merical error for the functions is estimated to be on the or
of 1023.

The solutions depend on two continuous parameters,
‘‘isotropic radius’’ xH of the horizon and the dilaton cou
pling constantg, as well as on two integers, the windin
numbern and the node numberk.

A. Energy density and horizon

We begin our discussion of the static axially symmet
black hole solutions by considering the energy density of
matter fields. As an example we show in Figs. 8 the ene
density of the matter fields for the black hole solution w
xH51, g51, n52 and k51. Figure 8~a! shows a three-
dimensional plot of the energy density as a function of
coordinatesr5x sinu and z5x cosu together with a con-
tour plot, and Figs. 8~b!–8~e! show surfaces of constant en
ergy density. For small values ofe the energy density ap
pears ellipsoidal, being flatter at the poles than in
equatorial plane. With increasing values ofe a toruslike
shape appears with two additional ellipsoids covering
poles. The ellipsoids covering the poles persist up to
largest values of the energy density, showing that the m
mum of the energy density resides at the poles. Furtherm
these black hole solutions have the remarkable property,
the energy density is not constant at the horizon but an
dependent.

The static axially symmetric black hole solutions are se
consistent solutions arising from the interplay of gravity w
the non-Abelian gauge fields. In isotropic coordinates
horizon of the static axially symmetric black hole solutio
resides at a surface of constant radial coordinatex, x5xH .
Since the energy density of the matter fields of the sta
axially symmetric black hole solutions is angle-dependen
the horizon, this suggests that the horizon is deformed.

FIG. 7. The Kretschmann scalar is shown for the static sph
cally symmetric black hole solutions (n51) of EYMD theory with
g51 andk51 and the horizon radiixH51, 0.1, 0.01 and 0.001, a
well as for the corresponding globally regular solution.
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FIG. 8. ~a! The energy densitye52T0
0 is shown for the static axially symmetric black hole solution of EYMD theory withg51, n

52 andk51 and the horizon radiusxH51 in a three-dimensional plot and a contour plot with axesr andz. ~b!–~e! Surfaces of constan
energy densitye52T0

0 are shown for the solution of~a!.
t
er,

he
in-

lly
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therefore measure the circumference of the horizon along
equator,Le ,

Le5E
0

2p

dfAl

f
x sin uU

x5xH ,u5p/2

52pxHAl 2

f 2
U

u5p/2

,

~72!

and the circumference of the horizon along the poles,Lp ,

Lp52E
0

p

duAm

f
xU

x5xH ,f5const

52xHE
0

p

duAm2~u!

f 2~u!
.

~73!
heA spherical horizon would requireLe5Lp . For the static
axially symmetric black hole solutions we observe, howev

Lp.Le . ~74!

Thus the horizon itself possesses only axial symmetry. T
deviation from spherical symmetry is small, though. For
stance for the solution of Figs. 8 we findLe /Lp50.998.

B. xH dependence of the solutions

Let us now study the dependence of the static axia
symmetric solutions on the isotropic black hole horizon
dius xH . To be specific, we consider black hole solutio
with g51, n52 andk51, the parameters also employed
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the solution shown in Figs. 8. In Fig. 9 the energy density
the matter fields is shown for several black hole solutio
with values of the isotropic black hole horizon radiusxH
50.01, 0.1, 1 and 10, as well as for the globally regu
solution. As noted above, for larger values ofxH the global
maximum of the energy density of the black hole solutio
resides on thez-axis at the horizon, while a local maximum
is located on ther-axis away from the horizon. With de
creasingxH , the maximum on ther-axis away from the
horizon increases and becomes the global maximum, w
the maximum on thez-axis at the horizon diminishes. At th
same time, a pronounced minimum develops on ther-axis at
the horizon, aggravating the angle-dependence of the en
density at the horizon.

With decreasingxH the energy density of the matter field
of the black hole solutions tends increasingly towards
energy density of the globally regular solution, which po
sesses a toroidal shape because of the strong global m
mum on ther-axis @8,4,9#. However, the limitxH→0 is not
smooth, as already observed in Sec. III for the static sph
cally symmetric solutions. The reason is, that the magn
field of the black hole solutions is purely radial at the ho
zon, while the magnetic field of the globally regular sol
tions also has non-vanishingBu at the origin. In the static
axially symmetric solutions, bothBr and Bu are angle-
dependent. For the globally regular solutions the contri
tions from both Br and Bu precisely add to an angle
independent density at the origin. In contrast, the black h
solutions possess an angle-dependent density at the hor

In Figs. 10–12 we show the functions of the black ho
solutions withn52, k51, g51 and xH50.01, 0.1, 1 and
10 for three angles. Figure 10 show the metric functio
Figs. 11 show the gauge field functions, and Fig. 12 sho
the dilaton function. For small values ofxH , the angle-
dependence of the metric functions is strongest arounx
51. With increasingxH , the angle-dependence decreas
strongly, and the metric becomes increasingly spherical
the same time, with increasingxH the matter fields becom
less important. This is seen for instance in Fig. 13, where

FIG. 9. The energy densitye52T0
0 is shown as a function o

the dimensionless coordinatex for the anglesu50, u5p/4 andu
5p/2 for the EYMD black hole solutions withg51, winding num-
ber n52, node numberk51 and horizon radiixH50.01, xH

50.1, xH51, andxH510, as well as for the corresponding global
regular solution.
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present relation~43!, m5mo12TS ~with mo5D/g), and ob-
serve thatmo@2TS for small xH , whereasmo!2TS for
large xH . Considering the gauge field functions, we rec
that for the globally regular solutions the functionsH2 and
H4 have preciselyk nodes, the functionH1 hask21 non-
trivial nodes, and the functionH3 has one non-trivial node
@9#. For the black hole solutions we observe accordingly t
H1 has no node and thatH2 and H4 each have one node
However, we observe two non-trivial nodes for the functi
H3 of the black hole solutions of Fig. 11~c!, which may be
due to the choice of gauge. We note that the gauge fi
functions of Figs. 11 are obtained with gauge condition~19!.

FIG. 10. ~a! Same as Fig. 9 for the metric functionf . ~b! Same
as Fig. 9 for the metric functionm. ~c! Same as Fig. 9 for the metric
function l .



6148 57BURKHARD KLEIHAUS AND JUTTA KUNZ
FIG. 11. ~a! Same as Fig. 9 for the gauge field functionH1. ~b! Same as Fig. 9 for the gauge field functionH2 for horizon radii
xH50.1, xH51, andxH510. ~c! Same as Fig. 9 for the gauge field functionH3. ~d! Same as~b! for the gauge field functionH4.
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With increasingxH the gauge field functions retain a consi
erable angle-dependence. They approach a limiting sh
shifting towards larger values ofx. The dilaton function is
slightly angle-dependent at the horizon, as seen in Fig.
Analogously to the metric functions, for small values ofxH
the angle-dependence of the dilaton function is strong
aroundx51. With increasingxH the angle-dependence d
creases strongly, and at the same time the magnitude o

FIG. 12. Same as Fig. 9 for the dilaton functionw.
e,

2.

st

he

dilaton function diminishes strongly.
In Fig. 14 we exhibit the Kretschmann scalar for the

solutions. With decreasingxH the Kretschmann scalar of th
black hole solutions tends to the Kretschmann scalar of
globally regular solution except close to the horizon, wher
increases dramatically. For finitexH , however, the

FIG. 13. The dimensionless massm is shown as a function of
the horizon radiusxH for the EYMD black hole solutions withg
51, winding numbern52, node numberk51. Also shown are
2TS andD/g.
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Kretschmann scalar remains finite at the horizon, indicat
that the black hole solutions indeed possess a regular h
zon, as required~see Appendix A 2!.

In general the EYM solutions are very similar to th
EYMD solutions. We therefore do not exhibit these here. F
instance, the energy density of the matter fields and the m
ric functionsf andm for the EYM black hole solutions with
n52, k51 andxH50.02, 0.1, 0.5 and 1 are shown in@4#.

Let us now inspect the metric functions at the horiz
more closely. In Figs. 15~a!–15~c! we exhibit the expansion
coefficientsf 2(u), m2(u) and l 2(u) of the metric functions
for the above set of EYMD solutions. With increasingxH the
angle-dependence of the expansion coefficients first
creases and then decreases again. The shape of the ho
changes withxH in a similar way. This is seen in Fig. 16
where the ratio of the circumference at the equator and
circumference at the poles,Le /Lp , is shown as a function o
the mass for the EYMD (g51) and EYM black hole solu-
tions with n52 andk51. The maximal deformation of the
horizon occurs for an isotropic horizon radius ofxH50.295
for g51 andxH50.195 for g50. For g50, the maximal
deformation of the horizon is greater than forg51. Figure
17 shows the area of the horizon as a function of the mass
the corresponding solutions. For comparison, the area
spherical horizon with circumferenceLe is also shown, de-
viating only little from the area of the deformed horizon.

Figure 18 shows the inverse temperature as a functio
the mass for the static axially symmetric EYMD (g51) and
EYM black hole solutions withn52 andk51. These curves
are very similar to those of the corresponding static sph
cally symmetric black hole solutions@23#. Table I presents
the dimensionless mass, temperature, entropy and dil
charge as well as the ratioLe /Lp of the above set of static
axially symmetric black hole solutions of EYMD theory (g
51).

C. Winding number dependence

To illustrate the winding number dependence of the bla
hole solutions we show in Figs. 19 the solutions withn

FIG. 14. The Kretschmann scalar is shown as a function of
dimensionless coordinatex for the anglesu50, u5p/4 and u
5p/2 for the EYMD black hole solutions withg51, winding num-
ber n52, node numberk51 and the horizon radiixH51, 0.1, and
0.01, as well as for the corresponding globally regular solution
g
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54, k51, g51 and xH50.01, 0.1, 1 and 10 for three
angles. In Fig. 19~a! we see the energy density of the matt
fields. We recall, that with increasing winding numbern the
maximum on ther-axis of the energy density of the globall
regular solutions shifts outward and decreases in height@9#.
As compared to then52 black hole solutions, shown in Fig

e

FIG. 15. ~a! The normalized expansion coefficientf 2 of the
metric function f is shown as a function of the angleu for the
EYMD black hole solutions withg51, winding numbern52,
node numberk51 and the horizon radiixH510, 1, 0.1, and 0.01.
~b! Same as~a! for the expansion coefficientm2 of the metric func-
tion m. ~c! Same as~a! for the expansion coefficientl 2 of the metric
function l .
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9, we here observe that with decreasingxH the globally regu-
lar solution is approached faster for the greater winding nu
ber n54, while with increasingxH the angle-dependence o
the energy density of the black hole solutions remains str
ger. Most strikingly, however, we observe, that the glo
maximum always resides on ther-axis. The maximum on
the z-axis remains a local one also for largexH .

In Figs. 19~b!–19~d! we show the metric functionf , the
gauge field functionH2 and the dilaton functionw, respec-
tively. For the globally regular solutions the angl
dependence of the metric and matter functions increa
strongly withn and the location of the biggest angular spl
ting moves further outward. This dependence is reflecte
the black hole solutions. In particular we observe, that w
increasingn the angular dependence remains stronger
largerxH .

Let us now turn to the shape of the horizon. As forn
52, with increasingxH the ratio of the circumference at th
equator and the circumference at the poles,Le /Lp , first de-
creases and then increases again. In Fig. 20 the ratioLe /Lp is
shown as a function of the mass for the EYMD (g51) and
EYM black hole solutions withn54 andk51. The maximal

FIG. 16. The ratioLe /Lp of the circumference of the horizo
along the equatorLe to the circumference of the horizon along th
polesLp is shown as a function of the dimensionless massm for the
black hole solutions with winding numbern52 and node numbe
k51 of EYMD theory withg51 and EYM theory.

FIG. 17. Same as Fig. 16 for the areaA of the horizon.
-
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deformation of the horizon occurs for an isotropic horiz
radius ofxH50.95 forg51 andxH50.65 forg50. Again,
for g50 the maximal deformation of the horizon is great
than forg51, but forn54 it is smaller than forn52. Table
I presents the ratioLe /Lp as well as the dimensionless mas

TABLE I. The dimensionless massm, the temperatureT, the
entropyS, the dilaton chargeD and the ratioLe /Lp of the EYMD
black hole solutions with node numberk51 and winding number
n52, k51 andn54, as well ask52 andn52 are shown for the
values of the horizon radiusxH50.01, 0.1, 1 and 10.

EYMD(g51)
xH k51,n52 k51,n54 k52,n52

m

0.01 0.9766 1.6227 1.2762
0.1 1.1183 1.7700 1.4081
1. 2.5649 3.2193 2.5649
10 20.079 20.244 20.079

T

0.01 0.583 0.989 0.230
0.1 0.727 0.076 0.039
1. 0.016 0.013 0.016
10. 0.002 0.002 0.002

S

0.01 0.014 0.012 0.033
0.1 1.167 1.116 2.243
1. 62.47 71.25 62.47
10. 5045. 5081. 5045.

D

0.01 0.9609 1.6063 1.2619
0.1 0.9487 1.6011 1.2319
1. 0.6022 1.3188 0.6023
10. 0.0836 0.2682 0.0836

Le /Lp

0.01 0.9999 1.0000 0.9993
0.1 0.9974 0.9997 0.9910
1. 0.9980 0.9968 0.9980
10. 1.0000 0.9998 1.0000

FIG. 18. Same as Fig. 16 for the inverse temperatureb5T21.
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FIG. 19. ~a! The energy densitye52T0
0 is shown as a function of the dimensionless coordinatex for the anglesu50, u5p/4 and

u5p/2 for the EYMD black hole solutions withg51, winding numbern54, node numberk51 and horizon radiixH50.1, xH51, and
xH510, as well as for the corresponding globally regular solution.~b! Same as~a! for the metric functionf . ~c! Same as~a! for the gauge
field functionH2. ~d! Same as~a! for the dilaton functionw.
t
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temperature, entropy and dilaton charge for the above se
static axially symmetric black hole solutions of EYM
theory (g51).

D. Node number dependence

To illustrate the node number dependence of the bl
hole solutions we show in Figs. 21 the solutions withn
52, k52, g51 and the same set of radiixH as above. The
energy density of the matter fields is shown in Fig. 21~a!. We
recall that the maximum of the energy density of the globa
regular solutions is located on ther-axis. With increasing
node numberk it shifts inward and increases strongly
height@9#. For the black hole solutions we observe that w
decreasingxH the globally regular solution is approache
more slowly for greater node numberk, while with increas-
ing xH the angle-dependence of the energy density of
black hole solutions diminishes faster. In particular, for lar
xH the maximum on thez-axis becomes the global max
mum, while the maximum on ther-axis disappears.

In Figs. 21~b!–21~d! we show the metric functionf , the
gauge field functionH2 and the dilaton functionw, respec-
tively. We recall, that for the globally regular solutions th
location of the biggest angular splitting moves inward withk
while its size stays roughly constant for most functions@9#.
of

k

y

e
e

FIG. 20. The ratioLe /Lp of the circumference of the horizon
along the equatorLe to the circumference of the horizon along th
polesLp is shown as a function of the dimensionless massm for the
black hole solutions with winding numbern54 and node number
k51 of EYMD theory withg51 and EYM theory.
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FIG. 21. ~a! The energy densitye52T0
0 is shown as a function of the dimensionless coordinatex for the anglesu50, u5p/4 andu

5p/2 for the EYMD black hole solutions withg51, winding numbern52, node numberk52 and horizon radiixH50.01, xH50.1, xH

51, andxH510, as well as for the corresponding globally regular solution.~b! Same as~a! for the metric functionf . ~c! Same as~a! for the
gauge field functionH2. ~d! Same as~a! for the dilaton functionw.
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For the black hole solutions we here observe, that as c
pared to thek51 solutions, shown in Figs. 10–12, the a
gular dependence of the metric and dilaton functions dim
ishes faster with increasingxH .

Table I again shows the dimensionless mass, tempera
entropy and dilaton charge as well as the ratioLe /Lp for the
above set of static axially symmetric black hole solutions
EYMD theory (g51).

E. Limiting solutions

For fixedn, g andxH and increasingk, the static axially
symmetric black hole solutions form sequences, tending
limiting solutions. Whereas the solutions of the sequen
are magnetically neutral, axially symmetric and non-Abeli
the limiting solutions possess magnetic chargen and they are
spherically symmetric and Abelian. For finiteg the limiting
solutions are EMD black hole solutions@13#, while for g
50 the limiting solutions are Reissner-Nordstro”m solutions
@4,9#. The convergence of the global properties is seen
instance in Table I of@4#.

To illustrate the convergence of the metric and ma
functions, we exhibit in Figs. 22~a!–22~c! the EYMD solu-
-

-

re,

f

to
s
,

r

r

tions for n52, g51 and xH51 as an example. With in-
creasingk, the metric functions converge rapidly to the me
ric functions of the limiting EMD solution. In Fig. 22~a! this
is seen for the metric functionf . With increasingk, the
gauge field functions tend to their~vanishing! limiting func-
tions in an exponentially increasing interval, but because
the boundary conditions the convergence is not uniform
H2 and H4. This is illustrated in Fig. 22~b! for the gauge
field function H2. The dilaton function shown in Fig. 22~c!
again converges rapidly and uniformly.

V. CONCLUSIONS

We have constructed numerically a new class of bla
hole solutions in EYM and EYMD theory@4#. These black
hole solutions are asymptotically flat, static and posses
regular event horizon. However, they are not spherica
symmetric but only axially symmetric with angle-depende
fields at the horizon.

The event horizon of the static axially symmetric bla
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FIG. 22. ~a! The difference of the metric functionf k and the
metric functionf ` of the limiting solution is shown as a function o
the dimensionless coordinatex for the anglesu50, u5p/4 and
u5p/2 for the EYMD black hole solutions withg51, horizon
radiusxH51, winding numbern52, and node numbersk5123.
~b! The gauge field functionH2 is shown as a function of the
dimensionless coordinatex for the anglesu50, u5p/4 and u
5p/2 for the EYMD black hole solutions withg51, horizon ra-
dius xH51, winding numbern52, and node numbersk5123.
Also shown is the gauge field function of the limiting EMD sol
tion. ~c! Same as~b! for the dilaton functionw.
hole solutions resides at a surface of constant isotropic ra
coordinate,x5xH . However, the horizon is not spherica
Evaluating the circumference of the horizon along the eq
tor Le and the circumference of the horizon along the po
Lp , we observe that the ratioLe /Lp is slightly smaller than
one, i.e., the horizon is slightly elongated along the symm
try axis, the maximal elongation occurring for small valu
of xH .

Like their globally regular counterparts, the static axia
symmetric black hole solutions are characterized by two
tegers, the winding numbern.1 and the node numberk of
the purely magnetic gauge field. Whereas the energy den
of the globally regular solutions has a toruslike shape, du
a strong peak on ther-axis away from the origin@8#, the
energy density of the black hole solutions has a more co
plicated shape, depending on the winding numbern, the
node numberk and the horizon radiusxH .

The static spherically symmetric EYM and EYMD blac
hole solutions are unstable@27,12#, and there is all reason to
believe, that the static axially symmetric black hole solutio
are unstable, too. But we expect analogous black hole s
tions in EYMH theory @5,28# and ES theory@29#, corre-
sponding to black holes inside axially symmetric multimon
poles and multiskyrmions, respectively, and forn52 these
static axially symmetric solutions should be stable@5,28,29#.
In contrast, stable black hole solutions with higher magne
charges~EYMH! or higher baryon numbers~ES! should not
correspond to static axially symmetric solutions withn.2.
Instead these stable black hole solutions should exhibit o
discrete crystal-like symmetries@5,28,29#. We expect analo-
gous but unstable black hole solutions with crystal-like sy
metries also in EYM and EYMD theory.
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APPENDIX A

1. Expansion at the horizon

Here we present the expansion of the functions of
static axially symmetric black hole solutions at the horiz
xH in powers ofd,

d5
x

xH
21. ~A1!

The expansion of the functions at the horizon can be
tained from the regularity conditions imposed on the Einst
equations and the matter field equations:
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sin2u

2cotu~2H20H301H40,u!D 1~H11,u2H20,uu!G1O~d3!,

H3~d,u!5H302
d2

8 F S 4gw0,u12
f 2,u

f 2
2

l 2,u

l 2
D ~12H40H201H30,u1cotuH30!12cotuH20~H202H40!12H30,uu24H20H40,u

22S H30

sin2u
2cotuH30,uD 22H30H20

2 22H40~2H111H20,u!G1O~d3!,

H4~d,u!5H402
d2

8 F S 4gw0,u12
f 2,u

f 2
2

l 2,u

l 2
D @H40,u1H30H202cotu~H202H40!#1H20~4H30,u12!12@H30~2H111H20,u!

1H40,uu2H40H20
2 #12

H202H40

sin2u
22cotu~2H112H40,u2H20H301H20,u!G1O~d3!,

w~d,u!5w02
d2

8 H 2w0,ucotu1w0,u

l 2,u

l 2
12w0,uu2

f 2

l 2

n2

xH
2

ge2gw0F4cotu@H30~H30,u11!2H20~H20H301H40,u!1H40H40,u#

12S ~H30
2 1H40

2 21!H20
2 12H20~H30H40,u2H40H30,u!1H30,u

2 12H30,u1H40,u
2 111

~H202H40!
2

sin2u
1

H30
2

sin2u

2~H30
2 1H40

2 !D G J 1O~d3! ~A2!

The expansion coefficientsf 2 , m2 , l 2 , H11, H20, H30, H40 and w0 are functions of the variableu. The expansion de-
pends on the gauge condition imposed on the gauge field functions at the horizon. For the expansion above we emp
gauge condition~19!, (]uH1)ux5xH

50.
The expansion of the functions at infinity is given in@9#.
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2. Kretschmann scalar

Here we derive the expression for the Kretschmann scalarK, Eq. ~70!, for the static axially symmetric black hole solution
and show that it is finite at the horizon.

The nonvanishing components of the Riemann tensor are

R0r0r5
f

4r 2F f ,u

f S m,u

m
2

f ,u

f D2r 2S f ,r

f

m,r

m
22

f ,r ,r

f D G52R0rr 052Rr00r5Rr0r0 ,

R0r0u52
f

4r F S 21r
m,r

m
2r

f ,r

f D f ,u

f
1r

f ,r

f

m,u

m
22r

f ,r ,u

f G52R0ru052Rr00u5Rr0u05R0u0r52R0ur052Ru00r5Ru0r0 ,

R0u0u5
f

4F r
f ,r

f S 22r
f ,r

f
1r

m,r

m D2
f ,u

f

m,u

m
12

f ,u,u

f G52R0uu052Ru00u5Ru0u0 ,

R0f0f52
f l

4m
sin2uF r

f ,r

f S r
f ,r

f
2r

l ,r

l
22D1

f ,u

f S f ,u

f
2

l ,u

l
22cotu D G52R0ff052Rf00f5Rf0f0 ,

Rruru52
m

2 f H r
m,r

m
2r

f ,r

f
1r 2S m,r ,r

m
2

f ,r ,r

f D1
m,u,u

m
2

f ,u,u

f
2F S r

m,r

m D 2

2S r
f ,r

f D 2G2F S m,u

m D 2

2S f ,u

f D 2G J
52Rruur52Rurr u5Rurur ,

Rrfrf52
l

4 f
sin2uF S l ,u

l
2

f ,u

f
12cotu D S m,u

m
2

f ,u

f D2S r
l ,r

l
2r

f ,r

f
12D S r

m,r

m
13r

f ,r

f D12S r 2
l ,r ,r

l
14r

l ,r

l
2r 2

f ,r ,r

f
12D

2S r
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l
2r
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f
12D 2G

52Rrffr52Rfrr f5Rfrfr ,

Rufuf52
l

4 f
r 2 sin2uF2cotuS 2
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l
2
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m
2
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l
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m
24r
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f
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m
r
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l
2r

f ,r

f
r
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l
2r

m,r

m
r

f ,r

f
1S r

f ,r

f D 2

12
l ,u,u

l
2S l ,u

l D 2

22
f ,u,u

f
12S f ,u

f D 2

2
m,u

m

l ,u

l
2

f ,u

f

l ,u

l
1

m,u

m

f ,u

f G
52Ruffu52Rfuuf5Rfufu ,

Rrfuf52
l

4 f
r sin2uH 2cotuS r

l ,r

l
2r

m,r

m D12S r
l ,r ,u

l
2r

f ,r ,u

f D2r
l ,r

l

l ,u

l
2F r

m,r

m S l ,u

l
2

f ,u

f D1
m,u

m S r
l ,r

l
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f ,r

f D G
22S m,u

m
2

f ,u

f D1r
f ,r

f

f ,u

f J
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q

The Kretschmann scalarK5RmnlrRmnlr is then given by

K54@~R0r0rg
00grr !21~R0u0ug00guu!21~R0f0fg00gff!2

1~Rrurugrr guu!21~Rrfrfgrr gff!21~Rufufguugff!2#

18@~R0r0ug00!21~Rrfufgff!2#grr guu.

In order to show that the Kretschmann scalar is finite at
horizon, we insert the expansion of the metric functions E
~33! and ~34! into the Riemann tensor. The term
e
s.

S r
f ,r

f

m,u

m
22r

f ,r ,u

f D
becomes

2r

r 2r H
S m2,u

m2
22

f 2,u

f 2
D ,

which does not diverge because of relation~37!. In terms like

S f ,r

f
2

m,r

m D



u

nt
u

av

.

.
ew
s

ed
en

on

ary

ith

6156 57BURKHARD KLEIHAUS AND JUTTA KUNZ
and

S f ,r ,r

f
2

m,r ,r

m D
the divergences cancel. Thus the Kretschmann scalar is
deed finite at the horizon.

APPENDIX B

Here we discuss our final choice of functions for the n
merical integration.

At the horizon the expansion coefficientsf 2(u), m2(u)
and l 2(u) are of particular interest, because they enter i
the expressions for the temperature, the area and the circ
ferences. In order to obtain these functions directly we h
introduced the new functionsf̄ ( x̄,u), m̄( x̄,u) and l̄ ( x̄,u),

f ~ x̄,u!5 x̄2 f̄ ~ x̄,u!, m~ x̄,u!5 x̄2m̄~ x̄,u!,

l ~ x̄,u!5 x̄2 l̄ ~ x̄,u!, ~B1!

where x̄5(12xH /x) is the compactified coordinate, Eq
~71!. The functionsf 2(u), m2(u) and l 2(u) are then given
by

f 2~u!5
1

xH
2

f̄ ~0,u!, m2~u!5
1

xH
2
m̄~0,u!,

l 2~u!5
1

xH
2

l̄ ~0,u!. ~B2!
v

in-

-

o
m-
e

In the limit x→` the variablex̄ approaches the value 1
Consequently, at infinity the boundary conditions for the n
functions f̄ , m̄ and l̄ coincide with the boundary condition
of the functionsf , m and l , respectively. At the horizon the
boundary conditions for the new functions can be obtain
from the expansion of the metric functions. They are giv
by

~ f̄ 2] x̄ f̄ !u x̄5050, ~m̄1] x̄m̄!u x̄5050, ~ l̄ 1] x̄ l̄ !u x̄5050.
~B3!

To satisfy the regularity condition~6! exactly in the nu-
merical calculations, we have introduced the functi
g( x̄,u),

g~ x̄,u!5
m̄~ x̄,u!

l̄ ~ x̄,u!
. ~B4!

On the symmetry axis this function satisfies the bound
condition

guu5051 ~B5!

and at the horizon

] x̄gu x̄5050. ~B6!

The numerical calculations were mostly performed w
the functionsf̄ ( x̄,u), g( x̄,u) and l̄ ( x̄,u).
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