PHYSICAL REVIEW D VOLUME 57, NUMBER 10 15 MAY 1998

Static axially symmetric Einstein-Yang-Mills-dilaton solutions. 1l. Black hole solutions
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We discuss the new class of static axially symmetric black hole solutions obtained recently in Einstein-
Yang-Mills and Einstein-Yang-Mills-dilaton theory. These black hole solutions are asymptotically flat and they
possess a regular event horizon. The event horizon is almost spherically symmetric with a slight elongation
along the symmetry axis. The energy density of the matter fields is angle-dependent at the horizon. The static
axially symmetric black hole solutions satisfy a simple relation between mass, dilaton charge, entropy and
temperature. The black hole solutions are characterized by two integers, the winding muarizbthe node
numberk of the purely magnetic gauge field. With increasing node number the magnetically neutral black hole
solutions form sequences tending to limiting solutions with magnetic charg®rresponding to Einstein-
Maxwell-dilaton black hole solutions for finite dilaton coupling constant and to Reissner-Nardstagk hole
solutions for vanishing dilaton coupling constaf#0556-282(198)01312-3

PACS numbd(s): 04.20.Jb, 04.40.Nr, 04.70.Bw

I. INTRODUCTION k of the gauge field functions and the winding numbaewith
respect to the azimuthal angte. While ¢ covers the full

The “no hair” conjecture for black holes states that black trigonometric circle once, the fields wina times around.
holes are completely characterized by their mikstheir  The static spherically symmetric solutions have winding
chargeQ and their angular momentud This conjecture numbern=1. Winding numbem>1 leads to axially sym-
presents a generalization of rigorous results obtained for scanetric solutions.
lar fields coupled to gravitfl] as well as for Einstein- The static axially symmetric EYM and EYMD black hole
Maxwell (EM) theory[2]. In EM theory, the unique family solutions[4] are asymptotically flat and possess a regular
of stationary Kerr-Newman black holes with nontrivial val- event horizon. The event horizon of these solutions resides at
ues of M, Q, andJ contains the stationary Kerr black a surface of constant isotropic radial coordinate. The energy
holes forQ=0, the static Reissner-Nordétnoblack holes density of the matter fields is not constant at the horizon but
for J=0 and the static Schwarzschild black holes JorQ angle-dependent. Outside their regular event horizon, the
=0. Notably, the static black hole solutions in EM theory arestatic axially symmetric black hole solutions possess non-
spherically symmetric, and the stationary black hole solutrivial magnetic gauge field configurations, but they carry no
tions are axially symmetric. global magnetic charge. For fixed winding numberand

In recent years counterexamples to the “no hair” conjec-increasing node numbek the solutions form sequences,
ture were established in various theories with non-Abeliartending to limiting solutions. These limiting solutions are
fields, including Einstein-Yang-Mills (EYM) theory, spherically symmetric and Abelian, representing Einstein-
Einstein-Yang-Mills-dilaton (EYMD) theory, Einstein- Maxwell-dilaton(EMD) [13] and Reissner-Nordstno (RN)
Yang-Mills-Higgs (EYMH) theory, and Einstein-Skyrme black hole solutions for EYMD and EYM theory, respec-
(ES theory[3]. Possessing non-trivial matter fields outsidetively [8,4,9], which carry magnetic charge
their regular event horizon, these non-Abelian black hole so- Having given a brief account of the properties of these
lutions are no more completely determined by their globalstatic axially symmetric black hole solutions [i4], we here
charges. And they hold more surprises. There are static blagkresent these solutions in detail. The paper thus represents
hole solutions with only axial symmetfy], static black hole the second paper of our sequel on static axially symmetric
solutions with only discrete symmetri¢5], and there are EYMD solutions, following[9], where a detailed presenta-
non-static non-rotational black hole solutiditg. Unlike the  tion of the globally regular solutions was given. In Sec. Il of
static spherically symmetrig3] and axially symmetric static this paper we recall the action, we present the static axially
black hole solutiond4], many of the new types of non- symmetric ansatz in isotropic coordinates and we discuss the
Abelian black hole solutions are only perturbative solutionsboundary conditions. Introducing temperature and entropy of
[5-7]. the black hole solutions, we derive a relation between these

The static axially symmetric black hole solutions in EYM thermodynamic quantities and the mass and the dilaton
and EYMD theony4] have many properties in common with charge. In Sec. Il we recall the static spherically symmetric
the globally regular static axially symmetric solutions con-black hole solutions and present them in isotropic coordi-
structed previously8,9]. Representing generalizations of the nates. In Sec. IV we present the static axially symmetric
static spherically symmetric globally regular and black holeblack hole solutions, discuss their properties, and analyze the
solutions[10-17, these static axially symmetric solutions properties of their event horizon. We show that the se-
are characterized by two integers. These are the node numbguences of neutral non-Abelian solutions tend to limiting
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charged Abelian solutions. We present our conclusions in 1

Sec. V. In Appendix A we present the expansion of the func- Ade"=2—m{Tg[H1dr+ (1—Hy)rd o]

tions at the horizon, and we show that the Kretschmann sca-

lar is finite there. In Appendix B we discuss the final choice —n[ 7 Hz+ 75(1—Hy)]r sin 6d¢}, ©)

of functions for the numerical integration.
where the symbols;’, ; andry denote the dot products of

Il. STATIC AXIALLY SYMMETRIC ANSATZ the Cartesian vector of Pauli matricefy,(rx,ry,rz), with

We consider the S(2) Einstein-Yang-Mills-dilaton ac- the spatial unit vectors

tion
s/

with the matter Lagrangian

é[‘=(sin 6 cosng,sin @ sinn¢,cosf),

R

- _ 4
167TG+LM>\/ gd*x (1)

é';=(cos¢9 cosng¢,cosd sinng,—sin 6),

el =(—sinn¢,cosn,0), (8)

B " 2 v respectively. Since the fields windtimes around, while the
Lm=~— 5‘9#@3 D—e ETr(FwF ), 2 azimuthal anglep covers the full trigonometric circle once,
we refer to the integem as the winding number of the solu-
the field strength tensor tions. The four gauge field functiot$; and the dilaton func-
tion & depend only on the coordinatesand 6. The spheri-
F,=d,A,—dA, +ie[A, A,] 3) cally symmetric ansatfl12] is recovered fom=1 andH;
prooRw TR g =H3=0, H,=H,=w(r) and®=d(r).
the gauge field The ansatz7) is axially symmetric in the sense, that a
rotation around the-axis can be compensated by a gauge
rotation. Besides being axially symmetric the ansatz respects
the discrete mirror symmetiyl,,® C, where the first factor
represents reflection through the-plane and the second
the dilaton field®, and the Yang-Mills and dilaton coupling factor denotes charge conjugatif8,16,19.
constants and «, respectively. The ansatz is form-invariant under the Abelian gauge
Variation of the actior(1) with respect to the metrig#”  transformatior(18,16,17
leads to the Einstein equations, variation with respect to the

1
Au=5 A, (4

gauge fieldA, and the dilaton fieldP leads to the matter i
field equationg9]. U= ex;{z Tl (1, 0)) . (9)
A. Static axially symmetric ansatz The functionsH, andH,, transform inhomogeneously under

As for the globally regular static axially symmetric solu- this gauge transformation
tions [8,9], we adopt isotropic coordinates to construct the

static axially symmetric black hole solutions. In terms of the Hi—Hy=ro T
coordinates, 6 and ¢ the isotropic metric reads Hy—sHyt 3,1, (10)
m mr? Ir2 sirf6 like a two-dimensional gauge field. The functiddg andH
_fAt24 424 o gp2 2V 2 : gandar,
ds’=—fdt*+ f dre+ f dos+ f d¢®, (5 combine to form a scalar doubletH§+ctgd,H,). We

choose the same gauge condition as previously
where the metric functions, m and! are only functions of [18,16,17,8,4,9
the coordinatesr and 6. Regularity on the z-axis

(z=r cosé) requires[14] roH;—dyH,=0. (13)
Mlo—o0=1]y—0- (6) With the ansatZ5)—(7) and the gauge conditiofil) we

obtain the set of EYMD field equations, given[if).
Again, we consider a purely magnetic gauge fielg, The energy density of the matter fieldss — T3=—L,,

=0, and choose for the gauge field the an$48-17,8,4,9 reads

2

0 f 2P f 1 2 n2 2 2
_TOZ_ +e oo —(I’ﬁer-l—é’ng) +—{(ro7rH3—H1H4) +|:I’o"rH4+Hl(H3+Ctgt9)]
2e%r*m(m |

(9, D)%+ i(a d)?
2m r r2 0

+(dgH3— 1+ ctghH 3+ HoH )%+ [ dgH 4+ ctgd(H,— Hy) —HoH5 12 (12)
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Here the first gauge field term derives frd¥p,, the second or
and third derive fronF, , and the fourth and fifth fronf .
As seen from Eq(12), regularity on thez-axis requires (dgHD)]r=r,=0, (19

Halp=0=H4ls=0- (13)  obtaining the same results for the gauge invariant quantities.
The expansions of the functions at the regular horizon are
given in Appendix A 1.
Boundary conditions at infinityAt infinity (r=o) we
To obtain asymptotically flat solutions with a regular require the boundary conditiori8,4,9]
event horizon and with the proper symmetries, we must im-

B. Boundary conditions

pose the appropriate boundary conditions, the boundaries be- flico=M|—u=I|—=1, (20)
ing the horizon and radial infinity, the-axis and, because of
parity reflection symmetry, the-axis. The presence of a ®[,-..=0, (21)

regular event horizon is the essential new feature of the static . . i i o

axially symmetric black hole solutions, as compared to theSiNce any finite value of the dilaton field at mfm_ﬂ}xpz:;;n be

globally regular solutions. We therefore begin with a detailedransformed to zero viab—®—d(x»), r—re ]

discussion of the boundary conditions at the horizon. Thé

boundary conditions at infinity and along the and the H —H —+1 H —H —0. (22

z-axis agree with those of the globally regular solutions dlr===Halr=o=21, Hifr—=Hsl-.=0, (22

[8,9]. They are only briefly recalled for completeness. to obtain magnetically neutral solutions. The expansion of
Boundary conditions at the horizoimhe event horizon of the functions at |nf|n|ty is given ||ﬁ9:|

the static black hole solutions is characterizeddyy= — f The node numbek is defined by the number of nodes of

=0, g, is finite at the horizon in isotropic coordinates. We the gauge field function$i, and H, [9]. Because of the

impose that the horizon of the black hole solutions resides afymmetry with respect to the transformatibin— —H; , we

a surface of constamt r=ry,[20]. This ansatz for the event can choose these gauge field functions to be positive at the

horizon is justifieda posteriorj since it leads to consistent horizon. Solutions with an even number of nodes then have

solutions, possessing a regular event horizon. H,(oe) =H,() =1, whereas solutions with an odd number
Requiring the horizon to be regular, we obtain the boundof nodes haved ,(e) =H () = — 1.
ary Cond'itions at the hori20n=rH . The metric functions Boundary conditions a|ong the axeékhe Symmetries de-
must satisfy termine the boundary conditions along tpheaxis and the
z-axis[8,4,9:
f|r=rH:m|r=rH:||r=rH:ou (14 [ ]

94f|g=0=3gM|g=0=4l| 9=0=0,
and the dilaton function

9f] 9= mi2= 9 gM| g= 2= gl | p= 712=0,

9 ®|, -, =0. (15) (23)
The conditions for the gauge field functions are 3¢®P|9=0=0,
(dgH1+ 19 Ho)| =, =0, 3g®| p= mp=0, (24
(rdHz—HiH4)| =1, =0, and

[£ 07 Ha Hy(Hsctgh) |, =0, a6 Palo=o=Hslo-0=0.
dH | g-0=3gH4l -0=0,
which imply, F,,=0 andF,,=0, respectively. Halo=0=gHals-0
Thus the equations of motion yield only three boundary
conditions for the four gauge field functiold ; one gauge
field boundary condition is left indeterminate. However, for AgH | = mip= dgH 4 g= o=0. (25
the black hole solutions precisely one free boundary condi-
tion at the horizon is necessary to completely fix the gaugeln addition, regularity on the-axis requires conditio(6) for
The reason is, that in contrast to the case of the globalljhe metric functions to be satisfigdee Appendix B and
regular solutiong8], for the black hole solutions the gauge condition (13) for the gauge field functions. The expansion
condition (11) still allows non-trivial gauge transformations of the functions on the positive-axis is given in[9].
satisfying

H1l = m2=Hal p= z2=0,

0.2 ’ C. Dimensionless quantities
r<dgfI' +ro,I'+ 95 =0. (17) _ _ : . .
As previously, we introduce the dimensionless coordinate
To fix the gauge, we have implemented various gauge conX,
ditions at the horizon, such as

(HD)|r=r,=0, (18) X=—==" (26)
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the dimensionless dilaton functiap, F.00
_ 2(6) (36)
e=\4m7GP, (27 2mXyVmy( 6)
and the dimensionless dilaton coupling constant To show that the temperatufieof the static axially symmet-
ric black hole solutions is indeed constant at the horizon, we
1 employ the expansion of the metric functiof®3) and (34)
y= K. (28)  inther 6 component of the Einstein equations at the horizon.
4mG This yields the crucial relation between the expansion coef-
] ) ficientsf,(0) andm,(6):
The dilaton coupling constant represents a parameter; for
y=1 contact with the low energy effective action of string oMy dpf5
theory is made, whereas in the limjt—0 the dilaton de- 0= m, 2%, (37
couples and EYM theory is obtained.
The dimensionless mags is related to the masil via The dimensionless areA of the event horizon of the
black hole solutions is given by
eG
n= M. (29 - -m
47G A:gwf dé sin 0 ]f %2, (39)
0 2
D. Mass, temperature and entropy The entropyS is proportional to the area [22],
The masaM of the black hole solutions can be obtained
directly from the total energy-momentum “tensor*” of A
S S=—, (39
matter and gravitatioh21] 4
M :f 29043 (30) leading to the dimensionless product
Xy [ ™ .
As shown in[9], the dimensionless mags is then deter- TS= Zfo do sin 6\1. (40)

mined by the derivative of the metric functidnat infinity

Having defined temperature and entropy, we now derive a
_ llim ¥29.f 31) second expression for the md2]. As shown beford 9],
K=3 X the equations of motion yield

X— 00

. 1
The zeroth law of black hole physics states that the sur- g (J=aoMnf) = —V—a(2T =T ™). 41
face gravityxy is constant at the horizon of the black hole g7G nlV 0 ) 9(2To—T,0) “y

solutions; herg22,5] ) ) ]
Integrating both sides over, 6 and ¢ from the horizon to

ko=~ (U489 (3,90)(4G). (39  infinity, we obtain
To evaluatexgy, we need to consider the metric functions atif”da sin 6 rz\/fif} )
the horizon. Expanding the equations in the vicinity of the4G Jo f ;
horizon in powers of the dimensionless coordinate ( ;
—Xu)/Xy, We observe that the metric functions are quadratic 2m ([
in X“ZX“ q =—f f f dedgdry—g(2T§-TH=M,. (42
H» 0o Jo Jry
F(x,0)=F,(6) X—Xu| 2 1— X~ Xu 40 X=Xy * Changing to dimensionless coordinates, we express the left-
' 2 XH XH Xy |’ hand sidgLHS) with help of the dimensionless magsand
(33)  the product of temperature and entrop$, obtaining
X—Xy\? X—X X=Xy =t 2TS, (43
m(x,0)=m2(0)( “) (1—3 Hl o 220 poHo
Xu Xu XH

(34) with w,=(e/y47G)GM,, in agreement with the general
mass formula for static black hole solutiof#2].
and likewise Eq(34) for I(x,6) (see Appendix A 1 Since Considering the dilaton field equation in the fof8i
'Ehe]temperaturé' is proportional to the surface gravitysg 1 1
22], _ - —
—a,( J—gord) =5 V—ga*Inf), (44)

T= kgl (2), (35

it is straightforward to derive a relation between massgthe
we obtain, for the dimensionless temperature, and the dilaton chargB:
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D = lim x%dy¢. (45) n=1, y=1, 2,=0.02
X0 2
—.46 //
We replace the left-hand sideHS) of Eq. (41) by the LHS o
of Eq. (44) and integrate as above. Recalling the boundary s |
condition 0r(1>|r=rH=0 and changing to dimensionless coor- %3 P
. : N~ —1.75 ~1.50 k=1
dinates, we obtain 2 k=1
S k=2
s L~ ETs
D=vypo=y(n—2T9), (46) = or el k=8
where the second equality follows from E43). | === // =
Previously we obtained for static spherically symmetric | __.- -
black holes the relatiof23] —1 ' : '
-2 —7 0 1 2
log.o(x)

D=7(M—%T), 47

FIG. 1. The coordinate transformation between the isotropic co-
WhereMS:}'H/z andTg= 1/(47-5("_') represent the Schwarzs- ordinatex and the Schwarzschild-like coordinateis shown for the
child mass and the Schwarzschild temperature of a blacgtatic spherically symmetric solutions+£ 1) of EYMD theory with

hole with horizorix, in Schwarzschild-like coordinates. This 7 - a1dk=1~3. Also shown is the coordinate transformation for
. . .the limiting EMD solution.
relation represents a special case of the more general relation

(46), since for a spherical black hoke=47x 3.

— 1 1
A(x)= - : (52)
Ill. SPHERICALLY SYMMETRIC SOLUTIONS \/N(’)Z) C\/NS(’)Z)
The static spherically symmetric EYM and EYMD solu-
tions were obtained previously in Schwarzschild-like coordi-where
nates with metri¢10,12,23
1 _ , ~dN
ds?=—APNdf*+ SdT 2+ T X(d6?+sirodg?) (48 Rl (53
X:XH
and metric functionA(r) andN(r), andNg is the Schwarzschild metric function
~ 2m(T) _
N(ry=1—- ——. (49 - XH
r Ng(X)=1— =. (54

X
We here briefly present the spherical solutions in isotropic
coordinates. We exhibit the coordinate transformation beagter replacing on the RHS of Eq51) 1/yN by 1/cyNg
tween the radial coordinatasand r, and we discuss the +A, we integrate the first term analytically and the finite
limiting solutions. A-term numerically. This yields the coordinate transforma-
tion
A. Coordinate transformation

—~— ~ ~ ~ \ 1/ ~
The static spherically symmetric isotropic metric reads « 2VX(X—Xy)+2Xx— xH) Cex;{ f; A(x") d?’]

4 X X
m H
ds?=—fdt®+ T[o|r2+r2(o|02+sin2¢9o|</>2)]. (50) (55
The coordinates andT are related by where

d 1 df Xu|

r r H
—= —_—. (51 Xp= ( T) (56)
r N(T) T

Changing to dimensionless coordinatesind X, the co- is determined by the asymptotic requirgmed&—d. For
the Schwarzschild solutioo=1, andxy= x /4.

ordinate functionx(x) must be obtained numerically from ; . .
(x) y Figure 1 demonstrates the coordinate transformation for

Eq. (51), since the functioN(x) of the non-Abelian solu- he static spherically symmetric EYMD solutions with
tions is only known numerically. To avoid the divergence Ofo=0.02 y=1 andk=1—4. Figures 2a), 2(b) show the

1/N() at the horizon in the numerical integration, we intro- metric functionsf and m, and Figs. 8), 3(b) show the
duce the functiom (X): gauge field functiorw and the dilaton functiorp.
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7.0

003

~ 0.5

n=7, y=1, xz=0.02

7.0

£ 0.5F

log.(x)

FIG. 2. (a) The metric functionf is shown for the static spheri-

cally symmetric solutions(=1) of EYMD

theory with y=1 and

k=1-3. Also shown is the metric function of the limiting EMD
solution. (b) Same aga) for the metric functiorm.

Figure 4 demonstrates the coordinate transformation for
the static spherically symmetric EYM solutions with with
Xp=0.02 andk=1-4. Figs. %a), 5(b) show the metric

functionsf andm.

B. Limiting solutions

For fixed dilaton coupling constant and horizon, the se-
guences of neutral static spherically symmetric EYMD black
hole solutions converge to limiting solutiof&3]. These lim-
iting solutions are EMD black hole solutio&3] with the —~
same dilaton coupling constant, the same horizon and charge

P=1[23].
We now consider the limiting EMD
a general chargP. Defining[13]

X, =X Z4+2P?,

and

« X_ 44X 2+ X2

2

EMD solution reads

X_:

solution for=1 and E

2p2
X,

(57)

, (58)

6143

log.o(x)

2J(X=X ) (X=X, )+2X—(X_+X,)
X= f

FIG. 3. (a) Same as Fig. () for the gauge field functiow, for
k=1-4. (b) Same as Fig. @) for the dilaton functionep.

7] (59
X+ _X_
n:I} ’)/:0, acH=04 02
2 02 I |
1k _
.0t
—1.75 -1.50 k=1
= k=2
Op == T k=3 7
,,"/’/ —Oo
—7 . | 1
_2 —1 0 7 <
log.o(x)

FIG. 4. The coordinate transformation between the isotropic co-
ordinatex and the Schwarzschild-like coordinateis shown for the

. ' _ o static spherically symmetric solutiona£{ 1) of EYM theory with
i.e., Xy=X,, the coordinate transformation for the limiting k=1-3. Also shown is the coordinate transformation for the lim-
iting RN solution.
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n=1, y=0, 24=0.02 tions requirew(«)#0. A detailed discussion on the conver-
100 s - gence of these solutions is given[i3].
We now turn to the limiting solutions of the the sequences
of static spherically symmetric EYM black hole solutions. In
Schwarzschild-like coordinates, the limiting solution of the
s sequence with fixed horizory, is a RN solution with the
“~ 0.5+ i same horizon and with charge=1, if x,;>1 [24,23. If
Xp<1, the limiting solution consists of two parts, an exterior
part covering the interval € X<, which represents the
exterior of an extremal RN solution with mags=1, horizon
0.0 Xy=1 and charg®=1, and an oscillating interior part cov-
-2 2 ering the intervalx ;<X <1 [24,23,25. In isotropic coordi-
(a) nates with fixed horizorky, the limiting solution corre-
sponds to the exterior of a RN solution with the same
horizon and with charg@=1.
1.0 The coordinate transformation for the limiting RN solu-
tion reads
= =, ~
VX =2uX+P+Xx—
X= - 3 - (64)
£ 05) .
with
X3+ P?
0.0 2XH
-2 2 . . .
The metric functions are given by
(b) log.(x)
_ 272
FIG. 5. (@) The metric functionf is shown for the static spheri- f.= (17 X7 (66)
cally symmetric solutionsr(=1) of EYM theory with k=1-2. [142(xy/X) 1+ LAPIxy) %+ (Xp /%) ?]?
Also shown is the metric function of the limiting RN solutiofi)
Same aga) for the metric functiorm for k=1—3. and
The metric functions of the limiting solution read in isotropic Xy 21?
coordinates m.=1={> | (67)
(1—xyx/x)? . N, . .
f.= (62) i.e., m, is identical for the EMD and RN solutions. Again,
[142(Xxy/X)V1+ L2(P/xy)%+ (X /x)?] the gauge field function of the limiting solution is trivial,
w,=0. For P=1 andxy=0.02 the coordinate transforma-
and tion of the limiting solution is shown in Fig. 4 and the metric
X1 2]2 functions in Figs. 5.
mm=[1—<?> (62
C. Limit x,—0
The dilaton function of the limiting solution reads Let us now consider the limix,—0 for the black hole
14 x/x)2 solutions. In this limit the solutions tend towards the corre-
@2 = (1+X4/x) . (63 sponding globally regular solutiorfd41,12,23. For several
[1+2(Xp/X) 1+ 1/2(PIxp) %+ (Xu/%)?] quantities of interest, however, the limiy—O0 is not

smooth. For instance, the energy density of the matter fields
The gauge field function of the limiting solution is trivial, of the black hole solutions approaches the energy density of
w,,=0. ForP=1 andx;=0.02 the coordinate transforma- the globally regular solutions with a discontinuity at the ori-
tion for the limiting solution is shown in Fig. 1, the metric gin. The reason is that the magnetic field of the black hole
functions of the limiting solution are shown in Figs. 2 and solutions is purely radial at the horizon
the dilaton function in Fig. 3. For the horizog,=0.02 the
convergence is rapid. The solution witk 3 is already very B=B,e,, (68)
close to the limiting solution, and the solution witl+4 is
almost indistinguishable, for all functions except for thewith B,=F,,, because the boundary conditidii$) require
gauge field functiorw. This function approaches its limiting
function w,,=0 non-uniformly, since the boundary condi- By=0, B,=0, (69
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' ' ' 10 F~
1) e— -
(e - 5 [
S 1k —
[}
B xS
Joat zy=1 < or
s zy=.1 3
L =3 zg=o1 5L
2y=007
T e
_5 ) ) ) - 7 0 1 I L
_3 _2 —1 0 1 -3 -2 —17 0 1
(@) log.(z) logo()

FIG. 7. The Kretschmann scalar is shown for the static spheri-
. cally symmetric black hole solutionsi& 1) of EYMD theory with
v=1 andk=1 and the horizon radiky=1, 0.1, 0.01 and 0.001, as
well as for the corresponding globally regular solution.

k=2, n=1, y=1

— XH
x=1-~". (72)

log,o(— Too)

The equations are then discretized on a non-equidistant grid
in x and 6, where typical grids used have sizes ¥3ED,

covering the integration regionOx<1, 0<#</2. The nu-
merical error for the functions is estimated to be on the order
of 1073,
(b) log.(z) ~ The solutions depend on two continuous parameters, the
“isotropic radius” xy of the horizon and the dilaton cou-
FIG. 6. () The energy densitg=—T§ is shown for the static pling constanty, as well as on two integers, the winding
spherically symmetric black hole solutions£€1) of EYMD theory  numbern and the node numbéx;
with y=1 andk=1 and the horizon radiky=1, 0.1, 0.01 and
0.001, as well as for the corresponding globally regular solutimn.
Same aga) for k=2.

A. Energy density and horizon

We begin our discussion of the static axially symmetric
black hole solutions by considering the energy density of the

the globally regular solutions has non-vanishiBg at the matter fields. As an example we show in Figs. 8 the energy

origin. We demonstrate this discontinuous behavior of thé:iensity of the matter fields for the black hole solution with

energy density of the matter fields in Figga) 6(b) for the ~ *#=1 ¥=1,n=2 andk=1. Figure 8a) shows a three-
EYMD (y=1) solutions with k=1 and 2 and x, dimensional plot of the energy density as a function of the

—0.001, 0.01, 0.1 and 1. coordinateso=x_ sin # and z=x cos# together with a con-
tour plot, and Figs. &)—8(e) show surfaces of constant en-
ergy density. For small values ef the energy density ap-
pears ellipsoidal, being flatter at the poles than in the
K=R*“PR, 5. (700 equatorial plane. With increasing values efa toruslike
shape appears with two additional ellipsoids covering the
poles. The ellipsoids covering the poles persist up to the
largest values of the energy density, showing that the maxi-
mum of the energy density resides at the poles. Furthermore
these black hole solutions have the remarkable property, that
the energy density is not constant at the horizon but angle-
dependent.
IV. AXIALLY SYMMETRIC SOLUTIONS The static axially symmetric black hole solutions are self-
consistent solutions arising from the interplay of gravity with

Subject to the above boundary conditions, we solve theéhe non-Abelian gauge fields. In isotropic coordinates the
equations for the static axially symmetric black hole solu-horizon of the static axially symmetric black hole solutions
tions numerically. We employ the same numerical algorithmyesides at a surface of constant radial coordinatec=xy, .
[26] as for the static axially symmetric globally regular so- Since the energy density of the matter fields of the static
lutions [8,4,9]. To map spatial infinity to the finite value  axially symmetric black hole solutions is angle-dependent at
=1, we here employ the radial coordinate the horizon, this suggests that the horizon is deformed. We

with By=—F,, andB,=F,,, whereas the magnetic field of

We finally consider the Kretschmann scalar

An analytical expression fdf is given in Appendix A 2. We
showK in Fig. 7 for the same set of EYMD solutions. Again,
the limit x4,—0 is not smooth. However, as required for a
regular horizonK is finite at the horizon for finite .
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FIG. 8. (a) The energy densitg= —Tg is shown for the static axially symmetric black hole solution of EYMD theory withl, n
=2 andk=1 and the horizon radius,=1 in a three-dimensional plot and a contour plot with ageendz. (b)—(e) Surfaces of constant

energy densitye=—TJ are shown for the solution df).

therefore measure the circumference of the horizon along th& spherical horizon would requiré.=L.
axially symmetric black hole solutions we observe, however,

equator,L.,

2m |
Le=f do \ﬁx sin 6
0 f

o=ml2
(72)

I
=2’7TXH\/1:E
2

X=Xy ,0=m/2

and the circumference of the horizon along the padlgs,

B [m,(6)
2XHI de T,(0)

H »¢=const
(73

2| deé
0

For the static

Lp>Le. (74
Thus the horizon itself possesses only axial symmetry. The
deviation from spherical symmetry is small, though. For in-
stance for the solution of Figs. 8 we fihd /L ,=0.998.

B. xy dependence of the solutions

Let us now study the dependence of the static axially
symmetric solutions on the isotropic black hole horizon ra-
dius x,;. To be specific, we consider black hole solutions
with y=1,n=2 andk=1, the parameters also employed in
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FIG. 9. The energy density=—T{ is shown as a function of k=1, n=2, y=1 _
the dimensionless coordinaxefor the anglest=0, 6=7/4 and 6 0.00 ' ' ' // //’
= 7r/2 for the EYMD black hole solutions witk=1, winding num- /
ber n=2, node numberk=1 and horizon radiixy=0.01, x4 I/
=0.1, x4=1, andxy= 10, as well as for the corresponding globally £
regular solution. E __f&___;,.@mf: /

5 025+ Sl ,/ =0
the solution shown in Figs. 8. In Fig. 9 the energy density of % /’ / ! | 0=n/4.
the matter fields is shown for several black hole solutions, ™ / | | | g=r/2.
with values of the isotropic black hole horizon radiyg S - s
=0.01, 0.1, 1 and 10, as well as for the globally regular N / T / i f I {
solution. As noted above, for larger valuesxpf the global YN g |
maximum of the energy density of the black hole solutions ’ /
resides on the-axis at the horizon, while a local maximum (b)

is located on thep-axis away from the horizon. With de-
creasingxy, the maximum on the-axis away from the
horizon increases and becomes the global maximum, while 0.00
the maximum on the-axis at the horizon diminishes. At the
same time, a pronounced minimum develops onptfais at
the horizon, aggravating the angle-dependence of the energy
density at the horizon.
With decreasing, the energy density of the matter fields
of the black hole solutions tends increasingly towards the ,/
energy density of the globally regular solution, which pos- |
sesses a toroidal shape because of the strong global maxi- E / = (l
I
i

-0.25

1og.o(l)

mum on thep-axis[8,4,9. However, the limitxy,— 0 is not
smooth, as already observed in Sec. il for the static spheri-  _, - ® :' 8 .
cally symmetric solutions. The reason is, that the magnetic P 4 0 ; 2
field of the black hole solutions is purely radial at the hori- 0 10g.of %)
zon, while the magnetic field of the globally regular solu- "
tions also has non-vanishirig, at the origin. In the static FIG. 10. (a) Same as Fig. 9 for the metric functidn (b) Same
axially symmetric solutions, botiB, and B, are angle- as Fig. 9 for the metric functiom. (c) Same as Fig. 9 for the metric
dependent. For the globally regular solutions the contribufunction|.
tions from both B, and B, precisely add to an angle-
independent density at the origin. In contrast, the black holgresent relatiotd3), u= u,+2TS (with u,=D/vy), and ob-
solutions possess an angle-dependent density at the horizaerve thatu,>2TS for small X, whereasu,<2TS for

In Figs. 10—12 we show the functions of the black holelarge x,;. Considering the gauge field functions, we recall
solutions withn=2, k=1, y=1 andxy=0.01, 0.1, 1 and that for the globally regular solutions the functioHs and
10 for three angles. Figure 10 show the metric functionsH, have precisehk nodes, the functiond; hask—1 non-
Figs. 11 show the gauge field functions, and Fig. 12 showsrivial nodes, and the functiohl; has one non-trivial node
the dilaton function. For small values ofy, the angle- [9]. For the black hole solutions we observe accordingly that
dependence of the metric functions is strongest aroxind H; has no node and thai, and H, each have one node.
=1. With increasingxy, the angle-dependence decreasedHowever, we observe two non-trivial nodes for the function
strongly, and the metric becomes increasingly spherical. AH; of the black hole solutions of Fig. 1d), which may be
the same time, with increasing, the matter fields become due to the choice of gauge. We note that the gauge field
less important. This is seen for instance in Fig. 13, where wdunctions of Figs. 11 are obtained with gauge conditib9).

xy=10.
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FIG. 11. (a) Same as Fig. 9 for the gauge field functibn. (b) Same as Fig. 9 for the gauge field functibiy for horizon radii
xy=0.1, x4=1, andxy=10. (c) Same as Fig. 9 for the gauge field functidg. (d) Same agb) for the gauge field functioi ,.

With increasingxy, the gauge field functions retain a consid- dilaton function diminishes strongly.

erable angle-dependence. They approach a limiting shape, In Fig. 14 we exhibit the Kretschmann scalar for these
shifting towards larger values of. The dilaton function is ~ solutions. With decreasing, the Kretschmann scalar of the
slightly angle-dependent at the horizon, as seen in Fig. 1&lack hole solutions tends to the Kretschmann scalar of the
Analogously to the metric functions, for small valuesxgf ~ globally regular solution except close to the horizon, where it
the angle-dependence of the dilaton function is strongedncreases dramatically. For finitexy, however, the
aroundx=1. With increasingx, the angle-dependence de-

creases strongly, and at the same time the magnitude of the k=1, n=2, y=1

100. ' s
k=1, n=2, y=1 80. - //’ |
T T T T T P\ //
S g
60. 7 :
2 < Iz
N 401 ars
- glad D
S 3 o 2
20.1 T -
A — R S— N
0 1 2 3 4 5
Ty

FIG. 13. The dimensionless magsis shown as a function of
log,o(x) the horizon radius,, for the EYMD black hole solutions withy
=1, winding numbem=2, node numbek=1. Also shown are
FIG. 12. Same as Fig. 9 for the dilaton functign 2TSandD/y.
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FIG. 14. The Kretschmann scalar is shown as a function of the (ma(0) —mzl(e))/ m2(0)
dimensionless coordinate for the angles6=0, 6==/4 and 0 o) m— i e et e —
= /2 for the EYMD black hole solutions witly=1, winding num- -
bern=2, node numbek=1 and the horizon radi,=1, 0.1, and -

0.01, as well as for the corresponding globally regular solution.  _ o4 - CZ UL IR
' Tp=1
Kretschmann scalar remains finite at the horizon, indicating 2g=1.

that the black hole solutions indeed possess a regular hori- _ nopg+ 2a=79- i
zon, as requiredsee Appendix A 2

In general the EYM solutions are very similar to the
EYMD solutions. We therefore do not exhibit these here. For — 0072 F x=1, n=2 y=1 i
instance, the energy density of the matter fields and the met- . Tt
ric functionsf andm for the EYM black hole solutions with
n=2, k=1 andx4=0.02, 0.1, 0.5 and 1 are shown [i]. 0 ﬂg4 /2

Let us now inspect the metric functions at the horizon (o)
more closely. In Figs. 1®)—15c) we exhibit the expansion
coefficientsf,(68), my(6) andl,(6) of the metric functions
for the above set of EYMD solutions. With increasingthe
angle-dependence of the expansion coefficients first in- -
creases and then decreases again. The shape of the horizol T
changes withxy in a similar way. This is seen in Fig. 16, 003 e .
where the ratio of the circumference at the equator and the L
circumference at the polek,/L,, is shown as a function of =01 e
the mass for the EYMD ¢=1) and EYM black hole solu- 0021 2= 1 / I
tions withn=2 andk=1. The maximal deformation of the zy=1. .
horizon occurs for an isotropic horizon radius»qf=0.295 001 F
for y=1 andxy=0.195 for y=0. For y=0, the maximal T T T
deformation of the horizon is greater than fge=1. Figure ) e
17 shows the area of the horizon as a function of the mass for
the corresponding solutions. For comparison, the area of a 0 /4 /2
spherical horizon with circumferende, is also shown, de- (©) 6
viating only little from the area of the deformed horizon. FIG. 15 h lized _ fici f th
the mass for the static axially symmetric EYMB£ 1) and EYMD black hole solutions withy=1, winding nur’%bernzz
EYM black hole solutions witm=2 andk=1. These curves . " = 1 and the horizor?radii —10. 1. 0.1. and 0.01
are very Sim”"?“ to those of the (_:orresponding static SpheriZb) Same aga) for the expansion coefficigmn2 o,f tr,le .m,etric furllc-.
cally §ymm(_etr|c black hole solutior23]. Table | present_s tion m. (c) Same asa) for the expansion coefficiehj of the metric
the dimensionless mass, temperature, entropy and dilatq),.tion|.
charge as well as the ratlo, /L, of the above set of static
axially symmetric black hole solutions of EYMD theory (
=1).

(15(0)=15(8))/1,(0)

004 F k=1, n=2, y=17 LT

=4, k=1, y=1 and x4=0.01, 0.1, 1 and 10 for three
angles. In Fig. 1&) we see the energy density of the matter
fields. We recall, that with increasing winding humlrethe
maximum on thep-axis of the energy density of the globally
To illustrate the winding number dependence of the blackegular solutions shifts outward and decreases in h¢@jht
hole solutions we show in Figs. 19 the solutions with As compared to the=2 black hole solutions, shown in Fig.

C. Winding number dependence
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FIG. 16. The ratioL./L, of the circumference of the horizon FIG. 18. Same as Fig. 16 for the inverse temperagsel 1.
along the equatok . to the circumference of the horizon along the
polesL , is shown as a function of the dimensionless magder the
black hole solutions with winding number=2 and node number  geformation of the horizon occurs for an isotropic horizon
k=1 of EYMD theory withy=1 and EYM theory. radius ofx,=0.95 for y=1 andx,=0.65 for y=0. Again,
for y=0 the maximal deformation of the horizon is greater
) ) than fory=1, but forn=4 it is smaller than fon=2. Table
9, we here observe that with decreasingthe globally requ- | presents the ratia./L, as well as the dimensionless mass,
lar solution is approached faster for the greater winding num-
bern=4, while with increasing, the angle-dependence of TABLE |. The dimensionless mass, the temperaturd, the
the energy de_n_sity of the black hole solutions remains stronéntropys, the dilaton charg® and the r:altid_e/Lp of the E\’(MD
ger. Most strikingly, however, we observe, that the globalyjack hole solutions with node numbker=1 and winding number
maximum always resides on theaxis. The maximum on  n—5 k=1 andn=4, as well ak=2 andn=2 are shown for the

the z-axis remains a local one also for largg. values of the horizon radiug;=0.01, 0.1, 1 and 10.
In Figs. 19b)-19d) we show the metric functiom, the
gauge field functiorH, and the dilaton functiorp, respec- EYMD(y=1)
tively. For the globally regular solutions the angle- xy k=1n=2 k=1n=4 k=2n=2
dependence of the metric and matter functions increases m
strongly withn and the location of the biggest angular split- . 0.9766 16227 12762
ting moves further outward. This dependence is reflected ig ; 11183 1.7700 1.4081
the black hole solutions. In particular we observe, that with; 25649 3.2193 25649
increasingn the angular dependence remains stronger for g 20.079 20.244 20.079
largerxy . T
Let us now turn to the shape of the horizon. As for
=2, with increasing«y the ratio of the circumference at the 0.01 0.583 0.989 0.230
equator and the circumference at the polegL ,, first de- 0.1 0.727 0.076 0.039
creases and then increases again. In Fig. 20 thelrgtio, is 1. 0.016 0.013 0.016
shown as a function of the mass for the EYMp=1) and  10. 0.002 0.002 0.002
EYM black hole solutions wittn=4 andk=1. The maximal S
0.01 0.014 0.012 0.033
1000. 0.1 1.167 1.116 2.243
1. 62.47 71.25 62.47
800. 1 10. 5045. 5081. 5045.
D
600. |
< 0.01 0.9609 1.6063 1.2619
200, F 0.1 0.9487 1.6011 1.2319
’ 1. 0.6022 1.3188 0.6023
10. 0.0836 0.2682 0.0836
200. Le/L,
0 0.01 0.9999 1.0000 0.9993
0 0.1 0.9974 0.9997 0.9910
1. 0.9980 0.9968 0.9980
10. 1.0000 0.9998 1.0000

FIG. 17. Same as Fig. 16 for the ardaof the horizon.
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FIG. 19. (a) The energy densitg= —Tg is shown as a function of the dimensionless coordixafer the angless=0, 6= =/4 and
6= /2 for the EYMD black hole solutions withy=1, winding numbem=4, node numbek=1 and horizon radik4=0.1, x4=1, and
xy=10, as well as for the corresponding globally regular solutiphSame aga) for the metric functionf. (c) Same aga) for the gauge

field functionH,. (d) Same aga) for the dilaton functione.

temperature, entropy and dilaton charge for the above set of
static axially symmetric black hole solutions of EYMD

theory (y=1).

D. Node number dependence

To illustrate the node number dependence of the black

hole solutions we show in Figs. 21 the solutions with
=2, k=2, y=1 and the same set of radij; as above. The
energy density of the matter fields is shown in Fig(@1We
recall that the maximum of the energy density of the globally 3™
regular solutions is located on theaxis. With increasing
node numberk it shifts inward and increases strongly in

height[9]. For the black hole solutions we observe that with
decreasingxy the globally regular solution is approached

more slowly for greater node numbky while with increas-

ing xy the angle-dependence of the energy density of the
black hole solutions diminishes faster. In particular, for large

Xy the maximum on the-axis becomes the global maxi-
mum, while the maximum on thg-axis disappears.

In Figs. 21b)-21(d) we show the metric functiom, the
gauge field functiorH, and the dilaton functiorp, respec-

while its size stays roughly constant for most functi¢@b

7.
998+
<, 996
~J
994
1992

0

4 8 12 16
7’

FIG. 20. The ratioL/L of the circumference of the horizon
along the equatok , to the circumference of the horizon along the
tively. We recall, that for the globally regular solutions the polesL, is shown as a function of the dimensionless mader the
location of the biggest angular splitting moves inward vkith  black hole solutions with winding number=4 and node number
k=1 of EYMD theory withy=1 and EYM theory.
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FIG. 21. () The energy densitg=—T§ is shown as a function of the dimensionless coordimater the angles#=0, 6=/4 and 6
= /2 for the EYMD black hole solutions withy=1, winding humbein=2, node numbek=2 and horizon radik,,=0.01, x4=0.1, x4
=1, andxy=10, as well as for the corresponding globally regular solutibhSame aga) for the metric functiorf. (c) Same aga) for the
gauge field functiorH,. (d) Same aga) for the dilaton functione.

For the black hole solutions we here observe, that as comions forn=2, y=1 andxy=1 as an example. With in-

pared to thek=1 solutions, shown in Figs. 10-12, the an- ¢reasingk, the metric functions converge rapidly to the met-

gular depende_ncg of the_ metric and dilaton functions diminyi. tynctions of the limiting EMD solution. In Fig. 23) this

|sh$st1)‘;alsrer W!th |chea§r|]rvga: ionl ¢ t is seen for the metric functiofi. With increasingk, the
avle [ again snows the dimensionless mass, temperatur auge field functions tend to thegiwanishing limiting func-

entropy and dilaton charge as well as the ratdl, for the tions in an exponentially increasing interval, but because of

above set of static axially symmetric black hole solutions of . . .
o the boundary conditions the convergence is not uniform for
EYMD theory (y=1).

H, and H,. This is illustrated in Fig. 2@) for the gauge
. . field functionH,. The dilaton function shown in Fig. 20
E. Limiting solutions . - .
again converges rapidly and uniformly.
For fixedn, y andxy and increasing, the static axially
symmetric black hole solutions form sequences, tending to
limiting solutions. Whereas the solutions of the sequences

are magnetically neutral, axially symmetric and non-Abelian, V. CONCLUSIONS
the limiting solutions possess magnetic chamgend they are
spherically symmetric and Abelian. For finitethe limiting We have constructed numerically a new class of black

solutions are EMD black hole solutioid3], while for v  hole solutions in EYM and EYMD theorj4]. These black

=0 the limiting solutions are Reissner-Nordsirgolutions hole solutions are asymptotically flat, static and possess a

[4,9]. The convergence of the global properties is seen foregular event horizon. However, they are not spherically

instance in Table | of4]. symmetric but only axially symmetric with angle-dependent
To illustrate the convergence of the metric and matteffields at the horizon.

functions, we exhibit in Figs. 23)—22c) the EYMD solu- The event horizon of the static axially symmetric black
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(©) log{x)

FIG. 22. (a) The difference of the metric functiofy and the
metric functionf., of the limiting solution is shown as a function of
the dimensionless coordinatefor the angles#=0, 6= =/4 and
6= /2 for the EYMD black hole solutions withy=1, horizon
radiusxy=1, winding numbem=2, and node numbeils=1- 3.
(b) The gauge field functiorH, is shown as a function of the
dimensionless coordinate for the anglesf=0, 6==/4 and 6
= 7r/2 for the EYMD black hole solutions witly=1, horizon ra-
dius x4=1, winding numbem=2, and node numberk=1-3.
Also shown is the gauge field function of the limiting EMD solu-
tion. (c) Same agb) for the dilaton functione.

hole solutions resides at a surface of constant isotropic radial
coordinate,x=x,;. However, the horizon is not spherical.
Evaluating the circumference of the horizon along the equa-
tor L, and the circumference of the horizon along the poles
Lo, we observe that the ratio. /L, is slightly smaller than
one, i.e., the horizon is slightly elongated along the symme-
try axis, the maximal elongation occurring for small values
of xy.

Like their globally regular counterparts, the static axially
symmetric black hole solutions are characterized by two in-
tegers, the winding number>1 and the node numbér of
the purely magnetic gauge field. Whereas the energy density
of the globally regular solutions has a toruslike shape, due to
a strong peak on thg-axis away from the origiri8], the
energy density of the black hole solutions has a more com-
plicated shape, depending on the winding numberthe
node numbek and the horizon radiugy.

The static spherically symmetric EYM and EYMD black
hole solutions are unstab]g7,17, and there is all reason to
believe, that the static axially symmetric black hole solutions
are unstable, too. But we expect analogous black hole solu-
tions in EYMH theory[5,28] and ES theonyf29], corre-
sponding to black holes inside axially symmetric multimono-
poles and multiskyrmions, respectively, and for 2 these
static axially symmetric solutions should be staleg28,29.

In contrast, stable black hole solutions with higher magnetic
chargeSEYMH) or higher baryon number&S) should not
correspond to static axially symmetric solutions with-2.
Instead these stable black hole solutions should exhibit only
discrete crystal-like symmetri¢$§,28,29. We expect analo-
gous but unstable black hole solutions with crystal-like sym-
metries also in EYM and EYMD theory.
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APPENDIX A
1. Expansion at the horizon
Here we present the expansion of the functions of the

static axially symmetric black hole solutions at the horizon
Xy in powers of§,

5= ——1. (A1)

The expansion of the functions at the horizon can be ob-
tained from the regularity conditions imposed on the Einstein
equations and the matter field equations:
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Sha)

2

©(6,0)=¢@o— gl 2@ ycoto+ @o,et +2¢0,09— L2 ye?790| 4cotf[ Hao(Hzgp+ 1) — Hag(HaoH 30+ Hagg) + HaoH a0,]
H

(Hzo_H4o)2+ HZo
sinfe sire

2| (H3o+Hio— 1) H30+ 2H o HagH 409~ HagH 30,) + Hgo,(ﬁ 2H304t H4210,0+ 1+

—(H50THZ0)

] +0(8°% (A2)

The expansion coefficients,, m,, I,, Hii, Hyy, Hag, Hao andgq are functions of the variablé. The expansion de-
pends on the gauge condition imposed on the gauge field functions at the horizon. For the expansion above we employed the
gauge conditior(19), (94H1)[x=x,=0

The expansion of the functions at infinity is given[®.
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2. Kretschmann scalar

Here we derive the expression for the Kretschmann ségl&g. (70), for the static axially symmetric black hole solutions
and show that it is finite at the horizon.
The nonvanishing components of the Riemann tensor are

Fifo[me To feme T,
Runga 7 7 7 2 | - Roro ~Raa =Rz,
0ro6 Ar f f f m f 0r 60 r000 ro60 060r 06r0 600r 60r0

+ F + ZT} =~ Rose0=~Rpoos=Raos0>

o mpom, f, of Mrr frr Moo Too m,r2 f,r2 m,oz f,02
Rrerﬁ—‘ﬁffﬁ‘f7+f<7‘7)+ m f |\"m "% ) T

—Rigor=—Rorr6=Roror

Rr¢,¢=—i—fsin20 (ll'—g—¥+2cotﬁ)<%—%)—(rlli—r]}—’rJrz)(r%JrSr% +2 r2|'|i+4rlli—r2f'fr’r+2
—(rlli—rff—’r+2 2}
= " Riggr=~Rerrg=Ryrgr,
Re¢9¢:_4|—fr2 Shy 2cot€(2ll’—0—%—¥ +2r|Tr+2r%—M%Jrr%rlli—rff—’rrlli—r%r%Jr(r%)z
et () el ) - Tt Rt Tl

=~Rpp30= ~Rp00s=Rpog0

I ) I m, o fro (I m.ly, f,u Mol |, fr
er,‘gd,——ﬂr S|n26{2cot6(r|——rﬁ)+2(rl——r f —rl—l—— TW l——T +F I’I——I’T
m, f, fofo
‘2<W‘ T) S
=~ Rig46= ~Reros=Rgrgo=Rogrs= ~Roger = ~Ryor s =Ryoer -
|
The Kretschmann scalaﬂ':RMpr““P is then given by fom, fro
"t m 2y )
K=4[(Ror0r9°%9" )%+ (Ros0s9°%9 %)+ ( Ro¢0¢goog¢¢)2 becomes
+(Rrar 09" %) 2+ (Regr g9 97 %+ (Rog0s9'9% %)% or (%_ 2)
+8[(R0r09900)2+(Rr¢0¢9¢¢)z]g"900- r—ryl mp fy )’

which does not diverge because of relati{8m). In terms like

In order to show that the Kretschmann scalar is finite at the
horizon, we insert the expansion of the metric functions Eqgs. (f,r m',)

(33) and(34) into the Riemann tensor. The term f m
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and

f,r,r m,r,r
f m

the divergences cancel. Thus the Kretschmann scalar is i
deed finite at the horizon.

APPENDIX B

Here we discuss our final choice of functions for the nu-

merical integration.
At the horizon the expansion coefficients(6), my(0)
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In the limit x— o the variablex approaches the value 1.
Consequently, at infinity the boundary conditions for the new
functionsf, mand! coincide with the boundary conditions
of the functionsf, m andl, respectively. At the horizon the

r5)_oundary conditions for the new functions can be obtained

rom the expansion of the metric functions. They are given
by

(f=x)x=0=0, (M+3dm)|5=o=0, (I+dx1)|

and|,(6) are of particular interest, because they enter into T0 satisfy the regularity conditiof6) exactly in the nu-
the expressions for the temperature, the area and the circufferical calculations, we have introduced the function
ferences. In order to obtain these functions directly we have(x, 6),

introduced the new function&(x, 8), m(x,6) and|(x,6),

f(x,0)=x%f(x,0), m(x,60)=x2m(x,6),

1(x,60)=x?1(x,6), (BD)
where x_:(l—xH/x) is the compactified coordinate, Eq.
(71). The functionsf,(6), my,(6) andl,(#) are then given
by

1 1
fZ( 0): —2f(0,0), m2( 0): —Zm(O,b’),
Xy XH

1__
12(6)=—51(0,6).
Xy

(B2)

m(x, )

g(x,6) (B4)

I(x,6)

On the symmetry axis this function satisfies the boundary
condition

glp-0=1 (B5)
and at the horizon

9x9]x=0=0. (B6)

The numerical calculations were mostly performed with
the functionsf(x, ), g(x,6) andl(x,#6).
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