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Rotating topological black holes
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A class of metrics solving Einstein’s equations with a negative cosmological constant and representing
rotating, topological black holes is presented. All such solutions are in the PetroDtytess, and can be
obtained from the most general metric known in this class by acting with suitably chosen discrete groups of
isometries. First, by analytical continuation of the Kerr—de Sitter metric, a solution describing uncharged,
rotating black holes whose event horizon is a Riemann surface of arbitrary genlsis obtained. Then a
solution representing a rotating, uncharged toroidal black hole is also presented. The higher genus black holes
appear to be quite exotic objects; they lack global axial symmetry and have an intricate causal structure. The
toroidal black holes appear to be simpler; they have rotational symmetry and the amount of rotation they can
have is bounded by some power of the mass.
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[. INTRODUCTION apart from noticing that there is more than one nonisometric
tori generating black holes, we satisfy ourselves with a dis-
In the past months there has been an increasing interest fussion of some of the reI.evant pr0perti§s they h_ave.
black holes whose event horizons have a nontrivial topology We begin in Sec. Il with the spacetime metric for the
[1-3]. The solutions can be obtained with the least expensiv@enusg>1 solution and give a proof that it solves Einstein’s
modification of general relativity: the introduction of a nega- field equations with a negativé term. _ _
tive cosmological constant. This is sufficient to avoid a few In Sec. lll we determine the black hole interpretation of
classic theorems forbidding nonspherical black h#esg], ~ the metric, and we consider in which sense mass and angular
and comes as a happy surprise. Charged versions of the§¥omentum are defined and conserved. We shall give a de-
black holes were presented|i2]; they can form by gravita- tailed description of the rather intricate causal structure and
tional collapse7,8] of certain matter configurations, and all the related Penrose-Carter diagrams, but we do not discuss
together form a sequence of thermodynamica”y well be_Whether the black holes can result from graV|tat|0na| col-

haved objects, obeying the well known entropy-area lawapse. _ _ _
[3,9]. In Sec. IV we describe the rotating toroidal black hole’s

Up to now no rotating generalization of higher genus S0_.metric, together with an account of its ma?n features, includ-
lutions has been known. Holst and Peldan recently showetd the causal structure and the causal diagrams.
that there does not exist arig+1)-dimensional generaliza- In t'hIS paper we shall use the curvature conventions of the
tion of the rotating Banados-Teitelboim-ZandlTZ) black ~Hawking-Ellis book{ 19] and employ Planck’s dimensionless
hole [10]. Therefore, if we are looking for a rotating gener- Units.
alization of the topological black holes, we have to consider
spacetimes with a nonconstant curvature. On the other handll. SPACETIME METRIC FOR G>1 ROTATING BLACK
a charged rotating toroidal solution with a black hole inter- HOLES
pretation has been presented by Lemos and Zandtiih
following previous work on cylindrically symmetric solu-
tions of Einstein’s equationsl2—-1§.

In this paper a rotating generalization of higher genu
black holes together with another toroidal rotating solution  gq2— —v/(r)dt2+V/(r)~1dr2+r2(d 6>+ sintfd ¢?)
will be presented. We do not present unique results, and (1)

We begin by recalling the uncharged topological black
holes discussed if2,3]. The metric appropriate for genus
5‘g>1 reads

with the lapse functio’/(r) given by
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where 7 is the mass parameter ad= — 3| 2 the cosmo- Ar?

logical constant. One notices that the, ¢) sector of the Ar=(r’+a?)| 1- T) —2qr,
metric describes the two-dimensional noncompact space

with constant, negative curvature. As is well known, this is Aa2

the universal covering space for all Riemannian surfaces Ay=1+—— cos,

with genusg>1. Therefore, in order to get a compact event 3

horizon, suitable identifications in theéd () sector have to )

be carried out, corresponding to the choice of some discrete o1+ Aa® ®)
group of isometries acting on hyperbolic 2-space properly - 3’

discontinuously. After this has been done, the mdttjowill
describe higher genus black holes. Tipe 1 case, with a anda is the rotational parameter.
toroidal event horizon, is given by the metric Now we note that Eq1) can be obtained from Eg@6) by
the analytical continuation
ds®=—V(r)dt>+V(r) " tdr?+r2do? (3

it T .
with the lapse functiorV(r) given by It, 1=1Ir, 616, ¢—¢,

Ar2 277 77—’_i77: (9)
vin=- 27 @

3 r thereby changing also the sign &f(this may be interpreted

and do? is the line element of a flat torus. Its conformal &S @n analytical continuation, tpo , o

structure is completely determined by a complex parametey 1 herefore we are led to apply the analytical continuation

in the upper complex half plane, which is known as the _{9) also to Kerr_—de Sitter spacetm(n_é), additionally replac-

Teichmilller parameter. A representative for the flat torusN9 @ by ia. This leads to the metric

metric can then be written in the form _ _ —_

ds?=p%(A; Mdr+ A, 1de%) +p 2E 2,

X[adt—(r2+a?)d¢]%sintte

It is quite trivial to show that all such solutions have indeed —p 25 2A [dt+a sinlfedb]? (10)

a black hole interpretation, with various horizons located at . ' '

roots of the alggbraic equati()t(r)=_0, provideds is larger  \yhere now

than some critical value depending a@n It can also be

shown that for all genus, a ground state can be defined rela- p?=r?+a’costt,

tive to which the Arnowitt-Deser-MisnegfADM) mass is a

positive, concave functiof3] of the black hole’'s tempera-

ture as defined by its surface grav(t®0], and that the en- A,=(r’+a?)

tropy obeys the area la§®,3].

We now determine at least one class of rotating generali-
zations of the above solutions starting with the higher genus
case, namely wheg>1. The toroidal rotating black hole
will be described last. The metrid) looks very similar to

do?=|7)%dx?+dy?+ 2 Re rdx dy. 5

Ar?
_1_T —277r,

2

Aa
Aaz 1- ? COSH’@,

the Schwarzschild—de Sitter metfizl—23 Aa?
A 2 2 A 2 2 -1 E =1- T ' (11)
A= —Tr——”>d€ (1—%——") dr?
r r andA <0.
+r2(d6?+sintod¢?). (6) One observes that Eq10) describes a spacetime which
reduces, in the limita=0, to the static topological black
(Here A>0). holes (1). For our further purpose it is convenient to write

For the latter, it is well known that a generalization to the EQ. (10) in the form
rotating case exists, namely the Kerr—de Sitter spacetime
[21-23, which describes rotating black holes in an asymp- P?A A, p? p?
totically de Sitter space. Its metric reads, in Boyer-Lindquist- ds’=— =252 dt*+ A—dr2+A—d02
type coordinates, = ' o

_ _ o 2 sintt 6
ds?=p?(A; Ydr2+ A, 1d6?) +p 2224, +2_52'”2 [dé— wdt]? 12
x[adt—(r2+a?)d¢]%sirte =P
—p 2E72A,[dt—a sirfod ]2 7) where we introduced
where 32=(r2+a?)?A ,—a’sintt oA, (13

p?=r2+a’coge, and the angular velocity
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a[(r2+a2)A,+A, ] _ .The next ques.tion which arises is th_at qf the diffe.re.ntia-
w= > ) (14 bility of the metric after the compactification. Identifying
3 geodesics assures that the metric i<Cth (Use “Fermi co-

how h iV th . ordinates” [25] in neighborhoods of the geodesics which
Next we show how to compactify thef(¢) sector into @  pave 1o pe identified. In these coordinates one has on the

Riemann surface while preserving the differentiability of thegeodesicarij =8, and oy ,=0) As the second derivatives

metric. The timelike 3-surfaces at fixed coordinate radius of the metric are bounded, the metric is evercih® (which

are foliated by surfaces at fixed coordinate timénto & 1 aans that the first derivatives are Hoelder continuous with
family of spacelike 2-surfaces, and we would like these to beexponenta) Now we note that one obtains the Gaussian

R|err:1annf surfaces with gengs>1. The metric induced on ¢,y atyrek by applying a quasilinear elliptic operatorof
such surtaces 1S second order to the metrig,

p? >2sint? 0
do?=-—d6*+———— d¢°. (15 K=L[o]. (18)
A@ EZPZ
Note that the Gaussian curvature of this metric is no longek can be written as
constant, as it was in the caae=0.
In order to get a Euclidean metric we have to require that
32>0. This is the case for evenye R, =0, if —al ?%(a® L= Z ag(x,d' )P, (19
+12)< p<al 2(a%?+1?) [or for every r=0, #=0, if 5 p=2
>—al"?(a%?+1?)]. Outside the prescribed interval, the
metric may become singular or may change the signature. Wherex stands for the coordinates on the surfageis a
The compactification is now performed in the same waymulti-index, the coefficients,; are matrices, anti<1. We
as for a Riemann surface of constant curvatiire, for a now express the zeroth and first derivatives of the metric in
=0; in this case see e.f4]). That is, we have to identify aB(x,a'o) as functions of the coordinates This makes the
opposite sides of a proper|y chosen regu|ar geode‘ygdh operatorL linear with coefficients inC%®. As the Gaussian
centered at the origi#=0. The geodesics have to be com- curvature is also inC%* on the compactified surface, we
puted from the metri¢15), and therefore they are different conclude from the regularity theorem for solutions of linear
from those in the case of constant curvature. The size of thelliptic equations[26,27 that the metrico is (at least in
4g-gon is determined by the requirement that the sum of th&>*.

polygon angles be equal tar2[24], in order to avoid conical As we have now compactified the,(#) sector to a Rie-
singularities. Indeed, the local version of the Gauss-Bonnelann surfaceSy, the topology of the manifold is that of
theorem yields ReXSy.

Finally, we remark that Eq(10) is a limit case of the

metric of Plebanski and Demiansk28], which is the most
JBK dA:ZW—Zl (m=Bi), (16)  general known Petrov type-D solution of the source-free
Einstein-Maxwell equations with cosmological constant. In

whereB is the interior of the geodesic polygd,the Gauss- the case of zero electric and magnetic charge it reads
ian curvature of the 4, ¢) surface,dA the area element of

49

the metric(15), andg; theith polygon angle(Of course, the 1 J p2+ g2
B; are all equal, as the polygon is reguldfrom Eq.(16) we ds’= 21 5 dp’+ S (dr+ g°do)?
see that the requiremeBt 3, = 2 fixes the size oB. Equa- (1-pa) pe+q
tion (16) then gives 2, 2
p=+q L
7 do?— o 2(dT— pzda)z], (20
f K dA=2m(2-2g), (17) p=Ta
B

L . here the structure functions are given b
which is the Gauss-Bonnet theorem for a Riemann surface o\?’ g y

genusg. A priori, it is not obvious that a polygon which

satisfies Eq(17) with g>1 really exists. Therefore let us | ﬁ 2 3, | ﬁ_ ) 4
sketch a short existence proof. If the polygon is very small, _< 6 * 7) T2npepTt2ypTE 6 7P
the sum of the interior angles is larger tham,2since the

metric (15) approaches a flat metric f@— 0. On the other A A

hand, enlarging the polygon, the sum of the angles decreases g:( - —+y|-2n9+eq?-2ngt+| — = — y) q’.
until it is zero at a certain limit[This is the limit when the 6 6

polygon vertices lie on the border of the Poincaisk on (21)
which Eq.(15) can also be defined by a proper coordinate

transformation. The geodesics meet this border orthogonally is the cosmological constang,andn are the mass and nut
and therefore the angle sum is zérs =; B; is a continuous  parameters, respectively, aadaind y are further real param-
function of the distance of the vertices from the origin  eters.(For details cf[28].) Rescaling the coordinates and the
=0, we deduce that the desired polygon indeed exists.  constants according to
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p—L 'p, g—L 1q, r—L7, o—L30, function of several complex variables, they must vanish con-
cerning all (generally complex remaining values of
n—L 3y, e—L 2% n—L 3n, (t,r,6,¢,7n,a,A), provided they belong to the same domain

of analyticity of the previously considered real values. In
particular, we can pick out the set of values determining the

y—L 5 A=A (22) " metric(10) as final values. Notice that these values belong to
the same analyticity domain of the values determining the
and taking the limit ag. —, one obtains Kerr—de Sitter metric because one can easily find piecewise
smooth trajectories in the spa€é, connecting Kerr—de Sit-
p2+q? ) P ot s p2+q? ) ter parameters to parameters appearing in the métfy
ds?= 7 dp +p2+q2(dr+q do)“+ dq and skipping all singularities.
Ill. SOME PROPERTIES OF G>1 ROTATING BLACK
- ———(d7—p’do)?, 23 HOLES
pe+q
We shall briefly discuss now the black hole interpretation
where now of the proposed solutions and some of their physical proper-
A ties, starting with the casg>1.
P=y+2np—ep’——=p*,
3 A. Curvature
A Let us begin by looking at the curvature of the spacetime
L=vy—27q+eq>— §q4. (24 metric (10). The only nonvanishing complex tetrad compo-
nent of the Weyl tensor is given by
Setting now . 27 5
—a¢ ¢ > (r+ia cosh#)?’
q=r, p=acoshf, r=——, o= 25
(TheW;, i=0,...,4, are thetandard complex tetrad com-
Aa? ) ponents describing the conformal curvature. For details, cf.
e=—1-——, y=-a% n=0, (25 [28,29.) For =0 the Weyl tensor vanishes and, sirRge

=Ag;j, our manifold is a space of constant curvatuke,

one gets our solutiofL0). As we said, the metri¢10) tuns = —1~ 2, i.e., a quotient space of the universal covering of

out to be a limit case of the more general soluti@) of anti—de Sitter space. This situation is comparable to that of

Einstein’s equation. This formally shows that E(0)  the Kerr metric, which, for vanishing mass parameter, is sim-

should solve Einstein's field equations with cosmologicalPly the Minkowsky metric written in oblate spheroidal coor-

constant, i.e., the analytical continuatit®) of the Kerr—de  dinates.

Sitter metric should yield again a solution. Anyhow, one One further observes thak, is always nonsingular, in

could doubt the procedure as it involves an infinite limit of particular the curvature singularity in Kerr—de Sitter space at

some parameters in the initial solution of Einstein’s equa“=0, i.e.,r=0,6=m/2 vanishes after the analytical con-

tions. Therefore, let us sketch a short independent proof dinuation, asr®+a” costé is always positive. Hence the

the fact that Eq(10) still satisfies Einstein’s equations. manifold may be extended to values'0, and closed time-
Generally speaking, all functions which appear in the leftlike curves will always be present. This is similar to the BTZ

hand side of Einstein’s equations containing the cosmologiblack hole[30], where no curvature singularity occuisee

cal constant are polynomial in metric tensor componentsalso [31] for an exhaustive determination of {21)-black

components of the inverse metric tensor and derivatives dfoles and their topology On the other hand, all nonrotating

metric tensor components. Considering all these functions agplutions with,# 0 found so far have curvature singularities

independent variables, the left-hand sitlelS) of Einstein’s  at the origin, but do not violate the strong causality condi-

equations defines analytic functions in these variables. Let ugon.

consider Kerr—de Sitter spacetime defined above. Then the

metric, its inverse and its derivatives define locally analytic B. Singularity structure and horizons

functions of the (generally complex variables

t,r,0,¢,n,a,A. We conclude that the LHS of Einstein’s

equations defines analytic functions dfr( 8, ¢, n,a,A) in

open connected domains away from singularities corre-

sponding to zeros oA, and the determinant of the analyti- (r2+a?)

cally continued metric[g=—E ~*(r?+a2co6)?]. More-

over, we know that, for real values of,(,6,¢,7,a,A), A

>0, these functions vanish because the Kerr—de Sitter mefFhere are several cases, in all of whish is positive forr

ric is a solution of Einstein’s equations. Hence, due to thesmaller than the left most zero or larger than the right most

theorem of unigueness of the analytical continuation of azero. Here are the various cases.

The metric (10) becomes singular af,=0. With A
= — 3|2 this equation reads

r2
|—2—1)—277r=0. (27)
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+00

—00
FIG. 2. =0 Penrose-Carter diagram for the-1 black hole in
one extreme case where andr . coincide[case(iii,b), r_=r_
=:ro). The infinities are not joined together. The patch repeats
itself infinitely in the horizontal and the vertical direction.
. . 1 2_ o2\ — 1 2_.2\2 2,2
FIG. 1. #=0 Penrose-Carter diagram for tge-1 black hole in R.= 6(' —a )+g\/(| —a“)*—127a%,

the case wherd, has one positive roat, and one negative root

r_, and for the toroidal black hole in the case whé&rehas two

distinct positive roots _ andr . . For the latter, a timelike double R 2 2 1 —7 s

ring singularity occurs at=0, P=0. The lines at = =« represent N==" 312 (I°-a )ii\/(l —af) -12/%ac.
the spatial infinity which is asymptotically AdS and thus timelike. (28)
These lines are infinitely far from internal points of the manifold
when the distance is measured along geodesics. The intersecti
between horizons and lines= = represent the timelike and light- /... - . _
like future (or pasj for the stationary regions confining with @); (b) for =7, A, has two positive zeros, =R, and

=+, These intersections represent also the spatial infinity for thd ++~ T+ an_d a negative ZErD_ . Atr=r. the graph of
internal regions bounded by horizons. In all cases, these interseé—,r versusr is tangent to the axis andA, does not change

tions are infinitely far from internal points when the distance isSIgN (+ is @ second order zeyowhereas at=r. , andr

measured along corresponding geodesics. The lines-at. are =, A, changes sign from negative to positive values

future and past event horizons respectively for regions confining?nd from positive to negative values respectively,r as-

with r = =0 and Cauchy horizons for Cauchy surfaces belonging tocreases. These are first order zeros. The causal structure is

the internal diamond-shaped globally hyperbolic regions. The patcishown in Fig. 2;(c) for n_<n<n., A, has three positive

repeats itself infinitely in the vertical direction. zerosr_, r,, r., and one negative zerno_ _ whereA,

changes sign. These zeros are first order; the causal structure

(i) If 1?<a?(7+43) and R there is only one posi- is shown in Fig. 3y(d) in the casep= 5_ one obtains again

tive solutionr ;. of Eq. (27) and only one negative solution two positive rootsr_ andr,.,=R_>r_, and a negative

r_. Forr>r . andr<r_, A, is positive and, is spacelike. rootr__. At r_ andr__, which are first order roots\,

Forr_<r<r,, d, becomes timeliker_ andr, are first changes sign from to + and from+ to — respectively,

order zeros. The causal structure on the axis is given in Figvhereas at , ., which is a second order roa, does not

1. change sign. For the corresponding Penrose-Carter diagram
(i) If 1?2=a%(7+43) and (@ #n#*7n, mo=(4l/  see Fig. 4; ande) for < 7_ we get again the same behav-

3)(263—45)"2>0, then the solutions behave as in céise  ior as in(i).

(b) »=— 7y, then there is a first order root. for r<0 and (iv) If 12>a2(7+4/3) and >0 the discussion of the

a third order rootr, =[(12—a?)/6]Y? for r>0 and A, roots is symmetric to that for the ca¢é), considering the

changes sign by crossing the roots, &)dy= 7, then there  symmetry of Eg.(27) under the combined inversion

is a first order root, for r>0 and a third order root _ ——r, n— — 5. In this case one has in general one positive

=—[(12—a?)/6]*? for r<0. Again A, changes sign cross- first order zero and up to three negative zeros. All zeros of

ing the roots. The Penrose-Carter diagrams in the cdges A, in the examined cases are merely coordinate singularities,

and(c) are also given by Fig. 1. similar to the Schwarzschild case. They represent horizons,
(i) If 12>a2(7+4+/3) and <0 we have again several as the normals to the constanand constant surfaces be-

subcases. Let come null wherr is a root ofA,=0. The pair of outermost

Rote thaty_ <7, <0).(a) for 0=7n> 7, A, behaves as in
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We remark that there is an extreme ch@gd)] which for
a—0 gives the naked singularity discussed 2;3], but for
a>0 still represents a black hole. Hence the nonrotating na-
ked singularity is unstable, as it turns into a black hole by an
infinitesimal addition of angular momentum. This seems to
lend some support to the cosmic censorship conjecture.

In all cases discussed above, the outermost zeros repre-
sent event horizons. Their Gaussian curvature is given by

2,2
pra’
K=— 5| (b4~ 4aZcosit6)| (r3+a?)A,+ —— sint?g
PH |
a’p

+ costfé

, (29

I 2

where the indeX indicates that the corresponding quantities
are to be evaluated on the event horizgn K is no more
constant as in the nonrotating case, because the horizon has
been warped by the rotation.

FIG. 3. #=0 Penrose-Carter diagram for tge-1 black hole in
the case wherd, has four distinct real roots_ _, r_, r ,r .
The infinitiesr = + o andr = —« are not joined together. The patch At least for > _a|*2(a2+|2), the positive event hori-
repeats itself infinitely in the horizontal and the vertical direction. zon (as well as any =const>0 surface rotates relative to
the stationary frame at infinity, wherg is timelike, with

horizonsry [e.g.,ry=r,, andry=r__ in case(iiid)] are . oiar velocitvQw = w(r 6). where  is given by E
also event horizons as the Killing trajectories in the exterior(lg which yie%s =0, 0), @S9 y =4

stationary domains never intersect the surfacesy . The

C. Angular velocity and surface gravity

future parts of these event horizons are the boundary of the a
causal past of all timelike inextendible geodesics contained QH=2—2. (30
in the respective stationary regions which reach the future rp+a

timelike infinity (see the Penrose-Carter diagrams . - . L
However, the resulting causal structure is rather intricatelNotice thatw(r, §) is just given byd¢/dt along timelike

We notice the complete absence of metric singularities at Fajectories with fixed values for and 6, t being propor-

=0. This allows one to consider the coordinaten the t|on_al to__the  proper t|me' 4 gccordmg t(,) t
complete range £ =, +%) as we did above. =(E3/pyVA,A,) 7. These are trajectories of corotating ob-
servers.

There also exists a dragging effect at infinity, asis
nonvanishing there, its value beifily,=a/(a2+1?).

The surface gravity is another important property of the
event horizon. It is normally defined in terms of the null,
future pointing generators of the horizon, using

15V 2= kl?,  12= g+ Qyd. (31)

However, although in the present cagestill is a global
Killing field, the vectord,, is only a local Killing field, be-
cause of the procedure used to buildgy This agrees with
the known result that Riemann surfaces wgth 1 admit no
global Killing fields, nor even global conformal Killing
fields. Nevertheless, the surface gravity can still be defined
as the acceleration per unit coordinate time which is neces-
sary to hold in place a corotating partidiiee., one at some
fixed r and #) near the event horizon. Such a particle will
move on the trajectories considered above, whare
=dd¢/dt. These trajectories are integral curves of the vector

FIG. 4. =0 Penrose-Carter diagram for the-1 black hole in ~ field U=N _1((7t+ wdy), which is timelike everywhere in the
the other extreme case where, andr. coincide[case(iii,d)]. r>0 exterior domain bounded by the outermost event hori-
Now it is no longer possible to cover the plane with the elementaryzOn. Notice thaiNu is a timelike Killing field and thus the
patches in a usual manner. Therefore one has to make some ide@Xterior domain is stationary. The functid¥ normalizing
tifications as indicated by the arrows. The patch as well as thdéhe four-velocity is the lapse function of the foliation deter-
identifications repeat themselves infinitely in the vertical direction.mined by the Killing coordinate timg, and is
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p2A A, quasilocal conserved charges. These may be obtained as fol-
N2= Tl (32) lows. One considers a spacetime enclosed into a timelike

g% three-boundanB, which is assumed to be orthogonal to a
family of spatial slices;, foliating spacetime. The slices
Yoliate the boundary into a family of 2-surfac&=3,NB

By computing the four-acceleration, one obtains in this wa

1 212 (which need not be connectednd these will have outward
K= [3ri+(a2—l2)rH+— _ pointing spacelike normals ik, denotedé? and future
2(a2+I2)(rﬁ+a2)[ MH pointing normals inB, denotedu®. The validity of vacuum

(33 Einstein’s equations in the inner region, with or without cos-

o _ _mological constant, then implies alomgy the usual diffeo-
Remarkably, this is constant over the event horizon even iBorphism constraint of general relativity:

the absence of a true rotational symmetry. In view of this last

fact, the meaning of the surface gravity as the quantum tem- D,(®3°—bh3b@)=0, 0=07%, (36)
perature of the black hole remains a little bit obscure. The

fact is that, although one can define a conserved mass byhereb,, is the boundary three-metri®), the associated
using the time translation symmetry of the metric, one can€ovariant derivative along, and® ., its extrinsic curvature.
not define a strictly conserved angular momentum, but only & now the boundary three-metric admits a Killing vecttt,
conserved angular momentum with respect to a specighen contracting Eq(36) with K, and integrating oveB
choice of the observers at infinity. Hence the status of thérom By, to B, one obtains the conservation la@x(t;)
cations. As we will see, the situation will be rather different

for toroidal black holes, which behave quite similarly to the 1 b

Kerr solution. This also suggests that higher genus rotating Qk(t)=~— QJB[G)ab_bab@]KaU Vo (37)
black holes may be a kind of stable soliton solution in !

anti—de Sitter gravity. The quasilocal mass is then defined to be the charge associ-
From the metriq10) we may read off ated with the time evolution vector field of the foliatic
or when this is a symmetry of the boundary geometry. This
_aAsintfo—A, (34  field will be K*=Nu+V2, with lapse functionN and the
G p?E? ' shift vectorV? constrained to be tangent B In this way the
time evolution of the three-geometry &y induces a well
From this expression, one recognizes thatmay change defined time evolution of the two-geometry Bf along B.
sign within all regions where\,>0. For that reason one The quasilocal energy is defined for observers which travel
cannot define “static” comoving observers with the coordi- orthogonally toB; in B, i.e., for K2=u? and is, from Eq.
natest,r,6,¢ near the outermost horizons but only “non- (37),
static” corotating observers as we did above. Anyhayy,
<0 for|r| sufficiently large. The surface whegg =0 inside
any region whered,>0 is one of the boundaries of an er-
goregion in which bothy, andd, are spacelike. This is there-
fore a stationary limit surface, locally determined by It can be shown thadE(5;) is minus the rate of change of the
or on-shell gravitational action per unit pfoper timealong the
a?Agsintfo=A, . (35  timelike boundaryB [32], a fact which motivates the defini-
- . . . tion. However, asu? is not in general a symmetry of the
The remaining boundaries of this ergoregion are event hor'boundary, the quasilocal energy in not conserved, e.g., gravi-
zons located at roots Oif - These are gener.al .features of tational waves may escape from the region of interest, and it
rotating b'lack hole metncg. Furthermore, S|m|lgrly to t_hecan also be negativébinding energy, cf[33]). In our non-
Kerr solution, the event horizon and the surrounding stationz o mytotically flat context, where the lapse function diverges
ary limit surface meet at=0, where they are smoothly 5 infinity, one can define the quasilocal energy by measuring
tangent to each other providei vanishes in a first-order ¢ rate of change of the action per unitafordinate time
Z€ro. Then one useK?=Nu? and the energy is as in E(8) but
with a further factoN under the integral, so we denote it by
D. Mass and angular momentum En(B;). Similarly, the angular momentum will be the charge

The two conserved charges which are associated with @Ssociated to a rotational symmetry, generated by a spacelike
rotating self-gravitating system are the mass and the angulailling field K2,
momentum. It is very important that York and Brown’s quasilocal

One approach to a general and sensible definition of coreharges be functions of the canonical data alone. If back-
served charges associated to a given spacetime, is the canogieund subtractions were necessary, these ought to be chosen
cal Arnowitt-Deser-Misner(ADM) analysis appropriately appropriately to achieve this requirement. The quasilocal
extended to include non-asymptotically flat solutions. Thismass can also be arrived at by a careful handling of the
led to the introduction of the more general concept ofboundary terms in the Hamiltonian for general relativity.
quasilocal energy[32] for a spatially bounded self- Then one arrives at the equivalent expression for the mass
gravitating system, and more generally, to various othef32,34,33, as measured from infinity:

1
E(Bt)=—aj8[abuaub+®]\/;. (38)
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1 to these facts, the “first law” and the full subject of black

M=-5- [N(®—0) — 16m(PopV2E° hole thermodynamics needs further clarifications here. In this
So(R) connection, one should use a kind of quasilocal formalism
_(pabvagb)‘o)]\/; d2x, (39) for black hole thermodynamics, along the lines of Brown

et al. [36] for asymptotically anti—de Sitter black holes.

where quantities with a subscript 0 denote background sub- One may note, among other things, tdatO for the lo-
tractions, chosen so thit is a function of the canonical data cally anti—de Sitter solution corresponding tp=0, in
alone[32], and the limitR— is understood. agreement with Holst's and Peldan’s theorgh®]. Physi-

In our caseSy(R) is an asymptotic Riemann surface at cally', in this caseQ_Hzﬂx and the hori_zo_n_does not rotate
r=R embedded in d=const slice, with outward pointing relative to the stationary observers at infinity.

normal £ and extrinsic curvatur®, P, is the momentum
canonically conjugate to the metric induced on the slice, and V- THE ROTATING TOROIDAL BLACK HOLE
(N, V) are the lapse function and the shift vector of the  \ye discuss now another black hole solution in anti—de
= const foliation. , , . Sitter gravity which represents a rotating torus hidden by an
The charge associated to a rotational Killing symmetryeyent horizon. The first solution of this kind has been dis-
generated byK? can also be written as a function of the covered by Lemos and Zanchiil] by compactifying a
canonical data, and is charged open black string. This is a solution that can be
obtained from the nonrotating toroidal metric by mixing
_ Tash Tash 2 time-angle variables into new ones. This is not a permissible
J= 2Lg[PabK €= (PaR*¢)jo]Nor . (40 coordinate transformation in the large, as angles, unlike time,
are periodic variables. This is why the solutions one obtains
Unlike the case of nonrotating topological black holes, whereare globally different, as clearly shown by Stachel while in-
a natural choice for the background can be made, no distinaestigating the gravitational analogue of the Aharanov-Bohm
tive background metric has been found in the present caseffect[37].
The best we are able to do is to define the mass relative to The metric we shall present cannot be obtained by forbid-
some other solution with the same topology and rotation paden coordinate mixing, but it can be obtained from the gen-
rameter. In spite of the dragging effect at infinity and theeral Petrov typdd solution already presented by a simple
intricate form of the metric, what we get is the very simple choice of parameters. By requiring the existence of the non-

result rotating solution(which we know to exigtand the time in-
version symmetryt— —t, ¢— — ¢, we get the following
7= 7o metric tensor:
M= 5 2 (42)
AmE(rgtad) 2 2 2
2412 P 42, P 2, > 2
, ) ds?=—N2dt?+ — dr?+ — dP?+ — (d¢—w dt)?,
where Ay is the horizon areay can be expressed as a func- A Ap p?
tion of the outermost horizon locatiomy, by using (43

A.(ry,n)=0. Thus 7 really is related to the Hamiltonian
mass, albeit in a relative sense. The quasilocal energy is n#there P is a periodic variable with some period, ¢ is
equal to the quasilocal mass and is not even equal to th@nother angular variable with periodr2and
mass in the limiR— o0, a consequence of the dragging effect
at infinity. Indeed, we obtain the trivial result th&(R) P a® _,
—Eo(R)=0, if the background has the same rotation param- p=ro+aPs,  Ap=1+ 1z P%, (44)
eter but differenty. Thus all solutions with equal have the
same quasilocal energy.

Concerning the angular momentum we are in a different
position, since there is no global rotational Killing symme-

try. However, the vectoK=&¢, although it is not a Killing

Ar=a?-2mr+172r%, 32=r%Ap—a%P%A,. (45

Finally, the angular velocity and the lapse are given by, re-

. spectively
vector, obeys locally the conditio¥i Ky =0 and is there-
fore a kind of approximate symmetry, we could say a locally AP24+r2A, p2ApA
exact symmetry. We may try to compudeusing Eq.(40) w= 'T , 2= 52 4 (46)

with 'IZ=5¢. Then one finds thal is already finite without

B ‘:,72 -
any subtraction and we gét=="“»a I, where the integral The solution is obtained as a limit case of the Plebanski-

3 Demianski metric by setting=0, y=a? and rescalingp
I= 8—f sink?6 dé do¢ (42 =aP (this last to have the limia—0).
s The metric induced on the spacelike two-surfaces at some

. . constantr andt is then
has to be performed over a fundamental domain of the Rie-

mann surface, (we were unable to do this, howeyeT his 22P24 12 52
is weakly conserved in the sense that it depends on the do?= dpP2+ ®2. (47)
choice of a spatial slice in the three-boundary at infinity. Due Ap a?P2+r?
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As long as>2>0, this is a well defined metric on a cylinder,
but as it stands it cannot be defined on the torus which one
gets identifying some value oP, say P=T/2, with P T+
=—T/2. This is because the components of the metric are
even, rational functions d? but have unequal derivatives at
+T/2. Thus we need to covesx St with four coordinate
patches, and sé&?=\ sin ¢ in a neighborhood of#=0 and
0= and P=\ cos# in a neighborhood of=7/2 and @
=3m/2, where is a constant needed to match the length of Ty
the circle to the chosen valde On the overlap cogis aC”
function of sind and vice versa, so now the metric is well
defined and smooth on a torus.

Even on the cylinder, the metr{d3) represents a rotating T+
cylindrical black hole not isometric to the one discussed by
Lemos[11,18 or Santog17], which are stationary generali-
zations of the general static cylindrical solution found by
Linet [16]. Thus in this case we have not a unique solution,
but rather a many-parameter family of stationary, locally
static metrics. This was to be expected as whenever the first
Betti number of a static manifold is nonvanishing, there ex-
ists in general a many-parameter family of locally static, sta-
tionary solutions of Einstein’s equations, a fact which can be
regarded as a gravitational analogue of the Aharanov-Bohm T+
effect[37].

We shall study now the metri@3) for m>0. Notice the
symmetry under the combined inversior> —r, m— —m.
The metric coefficients are functions of,P) andP is iden-
tified independently ots. Therefore the metric has a global
rotatlorlal symmetryunlike the_hlgher genus solutlohand ring singularity occurs at=0, P=0. The patch repeats itself infi-
is stationary. We shall consider mostly the regioe0 nitely in the vertical direction.
which has a black hole interpretation and is the physically
relevant region for black holes forming by collapse. Any-
how, the metrigq43) admits a sensible continuation te<0.

r =400

T+

FIG. 5. Penrose-Carter diagram for the toroidal black hole in the
extreme case wheme, andr_ coincide. Again, a timelike double

of r=0. Therefore the torus turns into a Lorentzian submani-
fold with ¢ becoming a timelike coordinate. Evidently there
are closed timelike curves around the origin. As we can see,
A. Singularity and horizons the situation is quite similar to the Kerr metric, except that

The event horizons arise from the zeros\of. In the case  the Euler characteristic of the horizon now vanishes. To
m>0 that we are considering, all zeros may appear in th&heck this, notice that the metric on the horizon is, locally,

regionr=0 only (see Fig. 1 for the causal structure in the

nonextreme cageConsidering the metri¢43), one finds that d 2_a2p2+r2+ dp2+ riAp 42 (50)

there is a critical valuea., for the rotation parameted, 7T AL a2pP?+r2 "

such that fora>a, the solution is a naked singularity. For

O=a<a, there are two positive first order roots, andr . Thjs metric can be written in conformally flat form by fac-

with Fe=r-, l‘j“fgh'Ch coalesce at the second order 1ot toring out thegp¢p component, which is smooth and positive.

=r_=(ml%/2)™ whena=a.. This critical value is The conformal metric has ,,=1 and it turns out to be flat.

Th | metric is th nformally fl n fin n

a,= \3(m/2) 2418 49) e actual metric is thus conformally flat and defined on a

compact domain. The scalar curvature of a conformally flat
manifold is a total divergence and vanishes when integrated
over a closed manifold. Therefore the Euler characteristic
vanishes and the horizon, which we assumed to be compact
and orientable, must be a torus. Furthermore, by rescaling
_ (49)  the metric with a constant paramejer we can see that the
I2r§r periods scale as2—2mu, T— uT. Therefore it is the ratio

of the periods that is conformally invariant. This ratio deter-
The surface gravity vanishes whas a; and the metric de- mines the conformal class of the torus and is the analogue of
scribes an extreme black halsee Fig. 5. Finally, there is a the more familiar Teichmiler parameter. Since all surfaces
curvature singularity ap?=0, namely atr=P=0. As a at constant take on the topology of a toru§,?, the topol-
point set at fixed time, this ig,q} x St, where{p,q} are the  ogy of the external regiofthe domain of outer communica-
two points on the torus at=0 which correspond t®=0, tion in Carter's languageis that of R?X 72, Finally, a few
and looks like a pair of disjoint ring singularities. Another comments on the presence of ergoregions are in order. Con-
point of interest is thag),,>0 and32<0 in a neighborhood sideration of the metri¢43) lead us to

The event horizon is located at the larger value and has
a surface gravity

3 2
2ri—ml
K= ——35>>5
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a2Ap—A and this also must be taken into account. All calculations
gtt:—zr. (51) done, we get a conserved madsand a conserved angular
momentumJ according to

From this expression, we see thlaf>0 within the regions

whereA,<0. Conversely, within regions whet, >0, out- M = m_T
side the external horizon in particulag,, may change its 27’
sign becoming positive fdr| sufficiently small and negative

for large|r|. In fact, as in the previously considered case,giving to a the expected meaning. A® is bounded from
ergotori appear within the regiors,>0. In particular, this  above bya,, in order for the solution to have a black hole
happens outside the outermost event horizon. Ergoregionghterpretation, we see that the angular momentum is bounded
where bothd, and g, are spacelike, are bounded by eventpy a powerM > of the mass.

horizons and the surfaces g=0, given by the implicit

J=Ma, (595

equation
V. CONCLUSION
4 2 . . .
|:,4:r —2mlr (52) We have presented a class of exact solutions of Einstein’s
a? ' equations with negative cosmological constant, having many

of the features which are characteristic of black holes. All
Differently from the previously examined class of topologi- these solutions are of Petrov-typeand the horizons, when
cal rotating black holes, surfaces@t=0 and horizons do they exist, have the topology of Riemann surfaces and there-
not meet in the case of a toroidal rotating black hole. Indeedfore they lack rotational symmetry for gengs>1. Among
surfaces ag,=0, in the region outside the external horizon the solutions there is also a toroidal black hole, still different
fill the interval[r,,r.] wherer . <r,=(2ml?>)*3andr,is  from the Lemos-Zanchin solution. The toroidal metric has an
the positive root of *—2ml?r —\%a*=0. (There is another exact rotational symmetry and a well-defined mass and an-
surface ag,, =0 for r<O0, filling the interval[r/,0] wherer,  gular momentum. From this perspective, it is more promis-
is the remaining negative solution of the above equation. ing as a thermodynamical object and one may hope to find

suitable generalizations of the “four laws of black hole me-

B. Mass and angular momentum chanics” [38]. Apart from this, the solutions seem to be in-

teresting in their own right; they have intriguing properties
and may provide further ground to test string theory ideas in
black hole physics and the character of singularities in gen-

A=27Tr2 (53) eral relativity.

With the given choice of the periodd (for P and 2 for
¢), we determine the area of the event horizon to be

and the angular velocity),,=ar 2. The Hamiltonian mass ACKNOWLEDGMENTS
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