
PHYSICAL REVIEW D 15 MAY 1998VOLUME 57, NUMBER 10
Rotating topological black holes
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A class of metrics solving Einstein’s equations with a negative cosmological constant and representing
rotating, topological black holes is presented. All such solutions are in the Petrov type-D class, and can be
obtained from the most general metric known in this class by acting with suitably chosen discrete groups of
isometries. First, by analytical continuation of the Kerr–de Sitter metric, a solution describing uncharged,
rotating black holes whose event horizon is a Riemann surface of arbitrary genusg.1, is obtained. Then a
solution representing a rotating, uncharged toroidal black hole is also presented. The higher genus black holes
appear to be quite exotic objects; they lack global axial symmetry and have an intricate causal structure. The
toroidal black holes appear to be simpler; they have rotational symmetry and the amount of rotation they can
have is bounded by some power of the mass.
@S0556-2821~98!00312-9#

PACS number~s!: 04.20.Gz, 04.70.Bw
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I. INTRODUCTION

In the past months there has been an increasing intere
black holes whose event horizons have a nontrivial topol
@1–3#. The solutions can be obtained with the least expens
modification of general relativity: the introduction of a neg
tive cosmological constant. This is sufficient to avoid a fe
classic theorems forbidding nonspherical black holes@4–6#,
and comes as a happy surprise. Charged versions of t
black holes were presented in@2#; they can form by gravita-
tional collapse@7,8# of certain matter configurations, and a
together form a sequence of thermodynamically well
haved objects, obeying the well known entropy-area l
@3,9#.

Up to now no rotating generalization of higher genus
lutions has been known. Holst and Peldan recently sho
that there does not exist any~311!-dimensional generaliza
tion of the rotating Banados-Teitelboim-Zanelli~BTZ! black
hole @10#. Therefore, if we are looking for a rotating gene
alization of the topological black holes, we have to consi
spacetimes with a nonconstant curvature. On the other h
a charged rotating toroidal solution with a black hole int
pretation has been presented by Lemos and Zanchin@11#,
following previous work on cylindrically symmetric solu
tions of Einstein’s equations@12–18#.

In this paper a rotating generalization of higher gen
black holes together with another toroidal rotating solut
will be presented. We do not present unique results,
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apart from noticing that there is more than one nonisome
tori generating black holes, we satisfy ourselves with a d
cussion of some of the relevant properties they have.

We begin in Sec. II with the spacetime metric for th
genusg.1 solution and give a proof that it solves Einstein
field equations with a negativeL term.

In Sec. III we determine the black hole interpretation
the metric, and we consider in which sense mass and ang
momentum are defined and conserved. We shall give a
tailed description of the rather intricate causal structure
the related Penrose-Carter diagrams, but we do not dis
whether the black holes can result from gravitational c
lapse.

In Sec. IV we describe the rotating toroidal black hole
metric, together with an account of its main features, inclu
ing the causal structure and the causal diagrams.

In this paper we shall use the curvature conventions of
Hawking-Ellis book@19# and employ Planck’s dimensionles
units.

II. SPACETIME METRIC FOR G>1 ROTATING BLACK
HOLES

We begin by recalling the uncharged topological bla
holes discussed in@2,3#. The metric appropriate for genu
g.1 reads

ds252V~r !dt21V~r !21dr21r 2~du21sinh2udf2!
~1!

with the lapse functionV(r ) given by

V~r !5212
Lr 2

3
2

2h

r
, ~2!
6127 © 1998 The American Physical Society
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whereh is the mass parameter andL523l 22 the cosmo-
logical constant. One notices that the (u,f) sector of the
metric describes the two-dimensional noncompact sp
with constant, negative curvature. As is well known, this
the universal covering space for all Riemannian surfa
with genusg.1. Therefore, in order to get a compact eve
horizon, suitable identifications in the (u,f) sector have to
be carried out, corresponding to the choice of some disc
group of isometries acting on hyperbolic 2-space prope
discontinuously. After this has been done, the metric~1! will
describe higher genus black holes. Theg51 case, with a
toroidal event horizon, is given by the metric

ds252V~r !dt21V~r !21dr21r 2ds2 ~3!

with the lapse functionV(r ) given by

V~r !52
Lr 2

3
2

2h

r
~4!

and ds2 is the line element of a flat torus. Its conform
structure is completely determined by a complex param
in the upper complex half plane,t, which is known as the
Teichmüller parameter. A representative for the flat tor
metric can then be written in the form

ds25utu2dx21dy212 Retdx dy. ~5!

It is quite trivial to show that all such solutions have inde
a black hole interpretation, with various horizons located
roots of the algebraic equationV(r )50, providedh is larger
than some critical value depending onL. It can also be
shown that for all genus, a ground state can be defined r
tive to which the Arnowitt-Deser-Misner~ADM ! mass is a
positive, concave function@3# of the black hole’s tempera
ture as defined by its surface gravity@20#, and that the en-
tropy obeys the area law@9,3#.

We now determine at least one class of rotating gene
zations of the above solutions starting with the higher ge
case, namely wheng.1. The toroidal rotating black hole
will be described last. The metric~1! looks very similar to
the Schwarzschild–de Sitter metric@21–23#

ds252S 12
Lr 2

3
2

2h

r Ddt21S 12
Lr 2

3
2

2h

r D 21

dr2

1r 2~du21sin2udf2!. ~6!

~HereL.0).
For the latter, it is well known that a generalization to t

rotating case exists, namely the Kerr–de Sitter spacet
@21–23#, which describes rotating black holes in an asym
totically de Sitter space. Its metric reads, in Boyer-Lindqu
type coordinates,

ds25r2~D r
21dr21Du

21du2!1r22J22Du

3@adt2~r 21a2!df#2sin2u

2r22J22D r@dt2a sin2udf#2, ~7!

where

r25r 21a2cos2u,
ce
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D r5~r 21a2!S 12
Lr 2

3 D22hr ,

Du511
La2

3
cos2u,

J511
La2

3
, ~8!

anda is the rotational parameter.
Now we note that Eq.~1! can be obtained from Eq.~6! by

the analytical continuation

t→ i t , r→ ir , u→ iu, f→f,

h→2 ih, ~9!

thereby changing also the sign ofL ~this may be interpreted
as an analytical continuation, too!.

Therefore we are led to apply the analytical continuat
~9! also to Kerr–de Sitter spacetime~7!, additionally replac-
ing a by ia. This leads to the metric

ds25r2~D r
21dr21Du

21du2!1r22J22Du

3@adt2~r 21a2!df#2sinh2u

2r22J22D r@dt1a sinh2udf#2, ~10!

where now

r25r 21a2cosh2u,

D r5~r 21a2!S 212
Lr 2

3 D22hr ,

Du512
La2

3
cosh2u,

J512
La2

3
, ~11!

andL,0.
One observes that Eq.~10! describes a spacetime whic

reduces, in the limita50, to the static topological black
holes ~1!. For our further purpose it is convenient to wri
Eq. ~10! in the form

ds252
r2DuD r

J2S2
dt21

r2

D r
dr21

r2

Du
du2

1
S2 sinh2u

J2r2
@df2vdt#2, ~12!

where we introduced

S25~r 21a2!2Du2a2sinh2uD r ~13!

and the angular velocity
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v5
a@~r 21a2!Du1D r #

S2
. ~14!

Next we show how to compactify the (u,f) sector into a
Riemann surface while preserving the differentiability of t
metric. The timelike 3-surfaces at fixed coordinate radiur
are foliated by surfaces at fixed coordinate timet into a
family of spacelike 2-surfaces, and we would like these to
Riemann surfaces with genusg.1. The metric induced on
such surfaces is

ds25
r2

Du
du21

S2sinh2u

J2r2
df2. ~15!

Note that the Gaussian curvature of this metric is no lon
constant, as it was in the casea50.

In order to get a Euclidean metric we have to require t
S2.0. This is the case for everyr PR, u>0, if 2al22(a2

1 l 2),h,al22(a21 l 2) @or for every r>0, u>0, if h
.2al22(a21 l 2)#. Outside the prescribedh interval, the
metric may become singular or may change the signatur

The compactification is now performed in the same w
as for a Riemann surface of constant curvature~i.e., for a
50; in this case see e.g.@24#!. That is, we have to identify
opposite sides of a properly chosen regular geodesic 4g-gon
centered at the originu50. The geodesics have to be com
puted from the metric~15!, and therefore they are differen
from those in the case of constant curvature. The size of
4g-gon is determined by the requirement that the sum of
polygon angles be equal to 2p @24#, in order to avoid conical
singularities. Indeed, the local version of the Gauss-Bon
theorem yields

E
B
K dA52p2(

i 51

4g

~p2b i !, ~16!

whereB is the interior of the geodesic polygon,K the Gauss-
ian curvature of the (u,f) surface,dA the area element o
the metric~15!, andb i the i th polygon angle.~Of course, the
b i are all equal, as the polygon is regular.! From Eq.~16! we
see that the requirement( ib i52p fixes the size ofB. Equa-
tion ~16! then gives

E
B
K dA52p~222g!, ~17!

which is the Gauss-Bonnet theorem for a Riemann surfac
genusg. A priori, it is not obvious that a polygon which
satisfies Eq.~17! with g.1 really exists. Therefore let u
sketch a short existence proof. If the polygon is very sm
the sum of the interior angles is larger than 2p, since the
metric ~15! approaches a flat metric foru→0. On the other
hand, enlarging the polygon, the sum of the angles decre
until it is zero at a certain limit.@This is the limit when the
polygon vertices lie on the border of the Poincare´ disk on
which Eq. ~15! can also be defined by a proper coordina
transformation. The geodesics meet this border orthogon
and therefore the angle sum is zero.# As ( ib i is a continuous
function of the distance of the vertices from the originu
50, we deduce that the desired polygon indeed exists.
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The next question which arises is that of the different
bility of the metric after the compactification. Identifyin
geodesics assures that the metric is inC1. ~Use ‘‘Fermi co-
ordinates’’ @25# in neighborhoods of the geodesics whic
have to be identified. In these coordinates one has on
geodesicss i j 5d i j and s i j ,k50.! As the second derivative
of the metric are bounded, the metric is even inC1,a ~which
means that the first derivatives are Hoelder continuous w
exponenta). Now we note that one obtains the Gaussi
curvatureK by applying a quasilinear elliptic operatorL of
second order to the metrics,

K5L@s#. ~18!

L can be written as

L5 (
b<2

ab~x,] ls!]b, ~19!

where x stands for the coordinates on the surface,b is a
multi-index, the coefficientsab are matrices, andl<1. We
now express the zeroth and first derivatives of the metric
ab(x,] ls) as functions of the coordinatesx. This makes the
operatorL linear with coefficients inC0,a. As the Gaussian
curvature is also inC0,a on the compactified surface, w
conclude from the regularity theorem for solutions of line
elliptic equations@26,27# that the metrics is ~at least! in
C2,a.

As we have now compactified the (u,f) sector to a Rie-
mann surfaceSg , the topology of the manifold is that o
R23Sg .

Finally, we remark that Eq.~10! is a limit case of the
metric of Plebanski and Demianski@28#, which is the most
general known Petrov type-D solution of the source-fr
Einstein-Maxwell equations with cosmological constant.
the case of zero electric and magnetic charge it reads

ds25
1

~12pq!2H p21q2

P dp21
P

p21q2
~dt1q2ds!2

1
p21q2

L dq22
L

p21q2
~dt2p2ds!2J , ~20!

where the structure functions are given by

P5S 2
L

6
1g D12np2ep212hp31S 2

L

6
2g D p4,

L5S 2
L

6
1g D22hq1eq222nq31S 2

L

6
2g Dq4.

~21!

L is the cosmological constant,h andn are the mass and nu
parameters, respectively, ande andg are further real param
eters.~For details cf.@28#.! Rescaling the coordinates and th
constants according to
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p→L21p, q→L21q, t→Lt, s→L3s,

h→L23h, e→L22e, n→L23n,

g→L24g1
L

6
, L→L ~22!

and taking the limit asL→`, one obtains

ds25
p21q2

P dp21
P

p21q2
~dt1q2ds!21

p21q2

L dq2

2
L

p21q2
~dt2p2ds!2, ~23!

where now

P5g12np2ep22
L

3
p4,

L5g22hq1eq22
L

3
q4. ~24!

Setting now

q5r , p5a coshu, t5
t2af

J
, s52

f

aJ
,

e5212
La2

3
, g52a2, n50, ~25!

one gets our solution~10!. As we said, the metric~10! turns
out to be a limit case of the more general solution~20! of
Einstein’s equation. This formally shows that Eq.~10!
should solve Einstein’s field equations with cosmologi
constant, i.e., the analytical continuation~9! of the Kerr–de
Sitter metric should yield again a solution. Anyhow, o
could doubt the procedure as it involves an infinite limit
some parameters in the initial solution of Einstein’s eq
tions. Therefore, let us sketch a short independent proo
the fact that Eq.~10! still satisfies Einstein’s equations.

Generally speaking, all functions which appear in the l
hand side of Einstein’s equations containing the cosmolo
cal constant are polynomial in metric tensor compone
components of the inverse metric tensor and derivative
metric tensor components. Considering all these function
independent variables, the left-hand side~LHS! of Einstein’s
equations defines analytic functions in these variables. Le
consider Kerr–de Sitter spacetime defined above. Then
metric, its inverse and its derivatives define locally analy
functions of the ~generally complex! variables
t,r ,u,f,h,a,L. We conclude that the LHS of Einstein’
equations defines analytic functions of (t,r ,u,f,h,a,L) in
open connected domains away from singularities co
sponding to zeros ofD r and the determinant of the analyt
cally continued metric@g52J24(r 21a2cos2u)2#. More-
over, we know that, for real values of (t,r ,u,f,h,a,L), L
.0, these functions vanish because the Kerr–de Sitter m
ric is a solution of Einstein’s equations. Hence, due to
theorem of uniqueness of the analytical continuation o
l

-
of

t
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of
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us
he
c

-

t-
e
a

function of several complex variables, they must vanish c
cerning all ~generally complex! remaining values of
(t,r ,u,f,h,a,L), provided they belong to the same doma
of analyticity of the previously considered real values.
particular, we can pick out the set of values determining
metric ~10! as final values. Notice that these values belong
the same analyticity domain of the values determining
Kerr–de Sitter metric because one can easily find piecew
smooth trajectories in the spaceC7, connecting Kerr–de Sit-
ter parameters to parameters appearing in the metric~10!,
and skipping all singularities.

III. SOME PROPERTIES OF G>1 ROTATING BLACK
HOLES

We shall briefly discuss now the black hole interpretati
of the proposed solutions and some of their physical prop
ties, starting with the caseg.1.

A. Curvature

Let us begin by looking at the curvature of the spaceti
metric ~10!. The only nonvanishing complex tetrad comp
nent of the Weyl tensor is given by

C252
2h

~r 1 ia coshu!2
. ~26!

~The C i , i 50, . . . ,4, are thestandard complex tetrad com
ponents describing the conformal curvature. For details,
@28,29#.! For h50 the Weyl tensor vanishes and, sinceRi j
5Lgi j , our manifold is a space of constant curvature,k
52 l 22, i.e., a quotient space of the universal covering
anti–de Sitter space. This situation is comparable to tha
the Kerr metric, which, for vanishing mass parameter, is s
ply the Minkowsky metric written in oblate spheroidal coo
dinates.

One further observes thatC2 is always nonsingular, in
particular the curvature singularity in Kerr–de Sitter space
r250, i.e., r 50,u5p/2 vanishes after the analytical con
tinuation, asr 21a2 cosh2u is always positive. Hence the
manifold may be extended to valuesr ,0, and closed time-
like curves will always be present. This is similar to the BT
black hole@30#, where no curvature singularity occurs~see
also @31# for an exhaustive determination of (211)-black
holes and their topology!. On the other hand, all nonrotatin
solutions withhÞ0 found so far have curvature singularitie
at the origin, but do not violate the strong causality con
tion.

B. Singularity structure and horizons

The metric ~10! becomes singular atD r50. With L
523l 22 this equation reads

~r 21a2!S r 2

l 2
21D 22hr 50. ~27!

There are several cases, in all of whichD r is positive forr
smaller than the left most zero or larger than the right m
zero. Here are the various cases.
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~i! If l 2,a2(714A3) andhPR there is only one posi-
tive solutionr 1 of Eq. ~27! and only one negative solutio
r 2 . For r .r 1 andr ,r 2 , D r is positive and] r is spacelike.
For r 2,r ,r 1 , ] r becomes timelike.r 2 and r 1 are first
order zeros. The causal structure on the axis is given in
1.

~ii ! If l 25a2(714A3) and ~a! hÞ6h0, h05(4l /
3)(26A3245)1/2.0, then the solutions behave as in case~i!,
~b! h52h0, then there is a first order rootr 2 for r ,0 and
a third order root r 15@( l 22a2)/6#1/2 for r .0 and D r
changes sign by crossing the roots, and~c! h5h0, then there
is a first order rootr 1 for r .0 and a third order rootr 2

52@( l 22a2)/6#1/2 for r ,0. Again D r changes sign cross
ing the roots. The Penrose-Carter diagrams in the case~b!
and ~c! are also given by Fig. 1.

~iii ! If l 2.a2(714A3) andh<0 we have again severa
subcases. Let

FIG. 1. u50 Penrose-Carter diagram for theg.1 black hole in
the case whereD r has one positive rootr 1 and one negative roo
r 2 , and for the toroidal black hole in the case whereD r has two
distinct positive rootsr 2 and r 1 . For the latter, a timelike double
ring singularity occurs atr 50, P50. The lines atr 56` represent
the spatial infinity which is asymptotically AdS and thus timelik
These lines are infinitely far from internal points of the manifo
when the distance is measured along geodesics. The interse
between horizons and linesr 56` represent the timelike and light
like future ~or past! for the stationary regions confining withr
56`. These intersections represent also the spatial infinity for
internal regions bounded by horizons. In all cases, these inter
tions are infinitely far from internal points when the distance
measured along corresponding geodesics. The lines atr 5r 6 are
future and past event horizons respectively for regions confin
with r 56` and Cauchy horizons for Cauchy surfaces belonging
the internal diamond-shaped globally hyperbolic regions. The pa
repeats itself infinitely in the vertical direction.
g.

R65A1

6
~ l 22a2!7

1

6
A~ l 22a2!2212l 2a2,

h652
2R6

3l 2 F ~ l 22a2!6
1

2
A~ l 22a2!2212l 2a2G .

~28!

~Note thath2,h1,0). ~a! for 0>h.h1 D r behaves as in
~i!; ~b! for h5h1 , D r has two positive zerosr 15R1 and
r 11.r 1 and a negative zeror 22 . At r 5r 1 the graph of
D r versusr is tangent to ther axis andD r does not change
sign (r 1 is a second order zero!, whereas atr 5r 11 and r
5r 22 , D r changes sign from negative to positive valu
and from positive to negative values respectively, asr in-
creases. These are first order zeros. The causal structu
shown in Fig. 2;~c! for h2,h,h1 , D r has three positive
zerosr 2 , r 1 , r 11 and one negative zeror 22 where D r
changes sign. These zeros are first order; the causal stru
is shown in Fig. 3;~d! in the caseh5h2 one obtains again
two positive rootsr 2 and r 115R2.r 2 , and a negative
root r 22 . At r 2 and r 22 , which are first order roots,D r
changes sign from2 to 1 and from1 to 2 respectively,
whereas atr 11 , which is a second order root,D r does not
change sign. For the corresponding Penrose-Carter diag
see Fig. 4; and~e! for h,h2 we get again the same beha
ior as in ~i!.

~iv! If l 2.a2(714A3) and h.0 the discussion of the
roots is symmetric to that for the case~iii !, considering the
symmetry of Eq. ~27! under the combined inversionr
→2r , h→2h. In this case one has in general one posit
first order zero and up to three negative zeros. All zeros
D r in the examined cases are merely coordinate singulari
similar to the Schwarzschild case. They represent horizo
as the normals to the constantt and constantr surfaces be-
come null whenr is a root ofD r50. The pair of outermost

ion

e
c-

g
o
h

FIG. 2. u50 Penrose-Carter diagram for theg.1 black hole in
one extreme case wherer 2 and r 1 coincide@case~iii,b!, r 25r 1

5:r 0#. The infinities are not joined together. The patch repe
itself infinitely in the horizontal and the vertical direction.
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6132 57D. KLEMM, V. MORETTI, AND L. VANZO
horizonsr H @e.g.,r H5r 11 and r H5r 22 in case~iii,d!# are
also event horizons as the Killing trajectories in the exter
stationary domains never intersect the surfacesr 5r H . The
future parts of these event horizons are the boundary of
causal past of all timelike inextendible geodesics contai
in the respective stationary regions which reach the fut
timelike infinity ~see the Penrose-Carter diagrams!.

However, the resulting causal structure is rather intrica
We notice the complete absence of metric singularitiesr
50. This allows one to consider the coordinater in the
complete range (2`,1`) as we did above.

FIG. 3. u50 Penrose-Carter diagram for theg.1 black hole in
the case whereD r has four distinct real rootsr 22 , r 2 , r 1 , r 11 .
The infinitiesr 51` andr 52` are not joined together. The patc
repeats itself infinitely in the horizontal and the vertical directio

FIG. 4. u50 Penrose-Carter diagram for theg.1 black hole in
the other extreme case wherer 11 and r 1 coincide @case~iii,d!#.
Now it is no longer possible to cover the plane with the element
patches in a usual manner. Therefore one has to make some
tifications as indicated by the arrows. The patch as well as
identifications repeat themselves infinitely in the vertical directi
r

he
d
e

.

We remark that there is an extreme case@~iii,d!# which for
a→0 gives the naked singularity discussed in@2,3#, but for
a.0 still represents a black hole. Hence the nonrotating
ked singularity is unstable, as it turns into a black hole by
infinitesimal addition of angular momentum. This seems
lend some support to the cosmic censorship conjecture.

In all cases discussed above, the outermost zeros re
sent event horizons. Their Gaussian curvature is given b

K52
1

rH
6 F ~rH

2 24a2cosh2u!S ~r H
2 1a2!Du1

rH
2 a2

l 2
sinh2u D

1
4a2rH

4

l 2
cosh2uG , ~29!

where the indexH indicates that the corresponding quantiti
are to be evaluated on the event horizonr H . K is no more
constant as in the nonrotating case, because the horizon
been warped by the rotation.

C. Angular velocity and surface gravity

At least for h.2al22(a21 l 2), the positive event hori-
zon ~as well as anyr 5const.0 surface! rotates relative to
the stationary frame at infinity, where] t is timelike, with
angular velocityVH5v(r H ,u), where v is given by Eq.
~14!, which yields

VH5
a

r H
2 1a2

. ~30!

Notice thatv(r ,u) is just given bydf/dt along timelike
trajectories with fixed values forr and u, t being propor-
tional to the proper time t according to t
5(JS/rADuD r)t. These are trajectories of corotating o
servers.

There also exists a dragging effect at infinity, asv is
nonvanishing there, its value beingV`5a/(a21 l 2).

The surface gravityk is another important property of th
event horizon. It is normally defined in terms of the nu
future pointing generators of the horizon, using

l c¹cl
a5k l a, l a5] t1VH]f. ~31!

However, although in the present case] t still is a global
Killing field, the vector]f is only a local Killing field, be-
cause of the procedure used to build upSg . This agrees with
the known result that Riemann surfaces withg.1 admit no
global Killing fields, nor even global conformal Killing
fields. Nevertheless, the surface gravity can still be defi
as the acceleration per unit coordinate time which is nec
sary to hold in place a corotating particle~i.e., one at some
fixed r and u) near the event horizon. Such a particle w
move on the trajectories considered above, wherev
5df/dt. These trajectories are integral curves of the vec
field u5N21(] t1v]f), which is timelike everywhere in the
r .0 exterior domain bounded by the outermost event h
zon. Notice thatNu is a timelike Killing field and thus the
exterior domain is stationary. The functionN normalizing
the four-velocity is the lapse function of the foliation dete
mined by the Killing coordinate timet, and is

y
en-
e
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N25
r2DuD r

J2S2
. ~32!

By computing the four-acceleration, one obtains in this w

k5
1

2~a21 l 2!~r H
2 1a2!

F3r H
3 1~a22 l 2!r H1

a2l 2

r H
G .

~33!

Remarkably, this is constant over the event horizon eve
the absence of a true rotational symmetry. In view of this l
fact, the meaning of the surface gravity as the quantum t
perature of the black hole remains a little bit obscure. T
fact is that, although one can define a conserved mas
using the time translation symmetry of the metric, one c
not define a strictly conserved angular momentum, but on
conserved angular momentum with respect to a spe
choice of the observers at infinity. Hence the status of
first law for such black holes certainly needs further clar
cations. As we will see, the situation will be rather differe
for toroidal black holes, which behave quite similarly to t
Kerr solution. This also suggests that higher genus rota
black holes may be a kind of stable soliton solution
anti–de Sitter gravity.

From the metric~10! we may read off

gtt5
a2Dusinh2u2D r

r2J2
. ~34!

From this expression, one recognizes thatgtt may change
sign within all regions whereD r.0. For that reason one
cannot define ‘‘static’’ comoving observers with the coord
natest,r ,u,f near the outermost horizons but only ‘‘non
static’’ corotating observers as we did above. Anyhow,gtt
,0 for ur u sufficiently large. The surface wheregtt50 inside
any region whereD r.0 is one of the boundaries of an e
goregion in which both] t and] r are spacelike. This is there
fore a stationary limit surface, locally determined by

a2Dusinh2u5D r . ~35!

The remaining boundaries of this ergoregion are event h
zons located at roots ofD r . These are general features
rotating black hole metrics. Furthermore, similarly to t
Kerr solution, the event horizon and the surrounding stati
ary limit surface meet atu50, where they are smoothl
tangent to each other providedD r vanishes in a first-orde
zero.

D. Mass and angular momentum

The two conserved charges which are associated wi
rotating self-gravitating system are the mass and the ang
momentum.

One approach to a general and sensible definition of c
served charges associated to a given spacetime, is the ca
cal Arnowitt-Deser-Misner~ADM ! analysis appropriately
extended to include non-asymptotically flat solutions. T
led to the introduction of the more general concept
quasilocal energy @32# for a spatially bounded self
gravitating system, and more generally, to various ot
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quasilocal conserved charges. These may be obtained a
lows. One considers a spacetime enclosed into a time
three-boundaryB, which is assumed to be orthogonal to
family of spatial slices,S t , foliating spacetime. The slice
foliate the boundary into a family of 2-surfacesBt5S tùB
~which need not be connected!, and these will have outward
pointing spacelike normals inS t , denotedja, and future
pointing normals inB, denotedua. The validity of vacuum
Einstein’s equations in the inner region, with or without co
mological constant, then implies alongB the usual diffeo-
morphism constraint of general relativity:

Da~Qab2babQ!50, Q5Q a
a , ~36!

where bab is the boundary three-metric,Da the associated
covariant derivative alongB, andQab its extrinsic curvature.
If now the boundary three-metric admits a Killing vectorKa,
then contracting Eq.~36! with Ka and integrating overB
from Bt1

to Bt2
one obtains the conservation lawQK(t1)

5QK(t2), where the conserved charge is

QK~ t !52
1

8pEBt

@Qab2babQ#KaubAs. ~37!

The quasilocal mass is then defined to be the charge as
ated with the time evolution vector field of the foliationS t ,
when this is a symmetry of the boundary geometry. T
field will be Ka5Nua1Va, with lapse functionN and the
shift vectorVa constrained to be tangent toB. In this way the
time evolution of the three-geometry onS t induces a well
defined time evolution of the two-geometry ofBt along B.
The quasilocal energy is defined for observers which tra
orthogonally toBt in B, i.e., for Ka5ua and is, from Eq.
~37!,

E~Bt!52
1

8pEBt

@Qabu
aub1Q#As. ~38!

It can be shown thatE(Bt) is minus the rate of change of th
on-shell gravitational action per unit ofproper timealong the
timelike boundaryB @32#, a fact which motivates the defini
tion. However, asua is not in general a symmetry of th
boundary, the quasilocal energy in not conserved, e.g., gr
tational waves may escape from the region of interest, an
can also be negative~binding energy, cf.@33#!. In our non-
asymptotically flat context, where the lapse function diverg
at infinity, one can define the quasilocal energy by measu
the rate of change of the action per unit ofcoordinate time.
Then one usesKa5Nua and the energy is as in Eq.~38! but
with a further factorN under the integral, so we denote it b
EN(Bt). Similarly, the angular momentum will be the charg
associated to a rotational symmetry, generated by a spac
Killing field K̃a.

It is very important that York and Brown’s quasiloca
charges be functions of the canonical data alone. If ba
ground subtractions were necessary, these ought to be ch
appropriately to achieve this requirement. The quasilo
mass can also be arrived at by a careful handling of
boundary terms in the Hamiltonian for general relativit
Then one arrives at the equivalent expression for the m
@32,34,35#, as measured from infinity:



u
a

at

an

tr
e

er
in
as
e
pa
he
le

c-

n
t
c

m

en
e-

ll

i

th
u

k
this
sm
n

e

de
an
is-

be
g
ible
me,
ins
in-
hm

id-
en-
le
on-

re-

ki-

me

6134 57D. KLEMM, V. MORETTI, AND L. VANZO
M52
1

8pESg~R!
@N~Q̃2Q̃0!216p„PabV

ajb

2~PabV
ajb! u0…#As d2x, ~39!

where quantities with a subscript 0 denote background s
tractions, chosen so thatM is a function of the canonical dat
alone@32#, and the limitR→` is understood.

In our case,Sg(R) is an asymptotic Riemann surface
r 5R embedded in at5const slice, with outward pointing

normalja and extrinsic curvatureQ̃, Pab is the momentum
canonically conjugate to the metric induced on the slice,
(N,Va) are the lapse function and the shift vector of thet
5const foliation.

The charge associated to a rotational Killing symme
generated byK̃a can also be written as a function of th
canonical data, and is

J522E
Sg

@PabK̃
ajb2~PabK̃

ajb! u0#As d2x. ~40!

Unlike the case of nonrotating topological black holes, wh
a natural choice for the background can be made, no dist
tive background metric has been found in the present c
The best we are able to do is to define the mass relativ
some other solution with the same topology and rotation
rameter. In spite of the dragging effect at infinity and t
intricate form of the metric, what we get is the very simp
result

M5
h2h0

4pJ~r H
2 1a2!

AH , ~41!

whereAH is the horizon area.h can be expressed as a fun
tion of the outermost horizon locationr H , by using
D r(r H ,h)50. Thush really is related to the Hamiltonian
mass, albeit in a relative sense. The quasilocal energy is
equal to the quasilocal mass and is not even equal to
mass in the limitR→`, a consequence of the dragging effe
at infinity. Indeed, we obtain the trivial result thatE(R)
2E0(R)50, if the background has the same rotation para
eter but differenth. Thus all solutions with equala have the
same quasilocal energy.

Concerning the angular momentum we are in a differ
position, since there is no global rotational Killing symm
try. However, the vectorK̃5]f , although it is not a Killing
vector, obeys locally the condition¹ (aK̃b)50 and is there-
fore a kind of approximate symmetry, we could say a loca
exact symmetry. We may try to computeJ using Eq.~40!

with K̃5]f . Then one finds thatJ is already finite without
any subtraction and we getJ5J22ha I, where the integral

I5
3

8pESg

sinh3u du df ~42!

has to be performed over a fundamental domain of the R
mann surfaceSg ~we were unable to do this, however!. This
is weakly conserved in the sense that it depends on
choice of a spatial slice in the three-boundary at infinity. D
b-
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to these facts, the ‘‘first law’’ and the full subject of blac
hole thermodynamics needs further clarifications here. In
connection, one should use a kind of quasilocal formali
for black hole thermodynamics, along the lines of Brow
et al. @36# for asymptotically anti–de Sitter black holes.

One may note, among other things, thatJ50 for the lo-
cally anti–de Sitter solution corresponding toh50, in
agreement with Holst’s and Peldan’s theorem@10#. Physi-
cally, in this caseVH5V` and the horizon does not rotat
relative to the stationary observers at infinity.

IV. THE ROTATING TOROIDAL BLACK HOLE

We discuss now another black hole solution in anti–
Sitter gravity which represents a rotating torus hidden by
event horizon. The first solution of this kind has been d
covered by Lemos and Zanchin@11# by compactifying a
charged open black string. This is a solution that can
obtained from the nonrotating toroidal metric by mixin
time-angle variables into new ones. This is not a permiss
coordinate transformation in the large, as angles, unlike ti
are periodic variables. This is why the solutions one obta
are globally different, as clearly shown by Stachel while
vestigating the gravitational analogue of the Aharanov-Bo
effect @37#.

The metric we shall present cannot be obtained by forb
den coordinate mixing, but it can be obtained from the g
eral Petrov type-D solution already presented by a simp
choice of parameters. By requiring the existence of the n
rotating solution~which we know to exist! and the time in-
version symmetry,t→2t, f→2f, we get the following
metric tensor:

ds252N2dt21
r2

D r
dr21

r2

DP
dP21

S2

r2
~df2v dt!2,

~43!

where P is a periodic variable with some periodT, f is
another angular variable with period 2p and

r25r 21a2P2, DP511
a2

l 2
P4, ~44!

D r5a222mr1 l 22r 4, S25r 4DP2a2P4D r . ~45!

Finally, the angular velocity and the lapse are given by,
spectively

v5
D r P

21r 2DP

S2
a, N25

r2DPD r

S2
. ~46!

The solution is obtained as a limit case of the Plebans
Demianski metric by setting«50, g5a2 and rescalingp
5aP ~this last to have the limita→0).

The metric induced on the spacelike two-surfaces at so
constantr and t is then

ds25
a2P21r 2

DP
dP21

S2

a2P21r 2
df2. ~47!
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As long asS2.0, this is a well defined metric on a cylinde
but as it stands it cannot be defined on the torus which
gets identifying some value ofP, say P5T/2, with P
52T/2. This is because the components of the metric
even, rational functions ofP but have unequal derivatives a
6T/2. Thus we need to coverS13S1 with four coordinate
patches, and setP5l sinu in a neighborhood ofu50 and
u5p and P5l cosu in a neighborhood ofu5p/2 andu
53p/2, wherel is a constant needed to match the length
the circle to the chosen valueT. On the overlap cosu is aC`

function of sinu and vice versa, so now the metric is we
defined and smooth on a torus.

Even on the cylinder, the metric~43! represents a rotating
cylindrical black hole not isometric to the one discussed
Lemos@11,18# or Santos@17#, which are stationary general
zations of the general static cylindrical solution found
Linet @16#. Thus in this case we have not a unique soluti
but rather a many-parameter family of stationary, loca
static metrics. This was to be expected as whenever the
Betti number of a static manifold is nonvanishing, there e
ists in general a many-parameter family of locally static, s
tionary solutions of Einstein’s equations, a fact which can
regarded as a gravitational analogue of the Aharanov-Bo
effect @37#.

We shall study now the metric~43! for m.0. Notice the
symmetry under the combined inversionr→2r , m→2m.
The metric coefficients are functions of (r ,P) andP is iden-
tified independently off. Therefore the metric has a glob
rotational symmetry~unlike the higher genus solutions! and
is stationary. We shall consider mostly the regionr>0
which has a black hole interpretation and is the physica
relevant region for black holes forming by collapse. An
how, the metric~43! admits a sensible continuation tor ,0.

A. Singularity and horizons

The event horizons arise from the zeros ofD r . In the case
m.0 that we are considering, all zeros may appear in
region r>0 only ~see Fig. 1 for the causal structure in th
nonextreme case!. Considering the metric~43!, one finds that
there is a critical value,ac , for the rotation parametera,
such that fora.ac the solution is a naked singularity. Fo
0<a,ac there are two positive first order roots,r 1 andr 2

with r 1>r 2 , which coalesce at the second order rootr 1

5r 25(ml2/2)1/3 whena5ac . This critical value is

ac5A3~m/2!2/3l 1/3. ~48!

The event horizon is located at the larger valuer 1 , and has
a surface gravity

k5
2r 1

3 2ml2

l 2r 1
2

. ~49!

The surface gravity vanishes whena5ac and the metric de-
scribes an extreme black hole~see Fig. 5!. Finally, there is a
curvature singularity atr250, namely atr 5P50. As a
point set at fixed time, this is$p,q%3S1, where$p,q% are the
two points on the torus atr 50 which correspond toP50,
and looks like a pair of disjoint ring singularities. Anoth
point of interest is thatgtt.0 andS2,0 in a neighborhood
e

re

f

y

,

rst
-
-
e
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y

e

of r 50. Therefore the torus turns into a Lorentzian subma
fold with f becoming a timelike coordinate. Evidently the
are closed timelike curves around the origin. As we can s
the situation is quite similar to the Kerr metric, except th
the Euler characteristic of the horizon now vanishes.
check this, notice that the metric on the horizon is, locall

ds25
a2P21r 1

2

DP
dP21

r 1
4 DP

a2P21r 1
2

df2. ~50!

This metric can be written in conformally flat form by fac
toring out theff component, which is smooth and positiv
The conformal metric hassff51 and it turns out to be flat
The actual metric is thus conformally flat and defined on
compact domain. The scalar curvature of a conformally
manifold is a total divergence and vanishes when integra
over a closed manifold. Therefore the Euler characteri
vanishes and the horizon, which we assumed to be com
and orientable, must be a torus. Furthermore, by resca
the metric with a constant parameterm, we can see that the
periods scale as 2p→2pm, T→mT. Therefore it is the ratio
of the periods that is conformally invariant. This ratio dete
mines the conformal class of the torus and is the analogu
the more familiar Teichmu¨ller parameter. Since all surface
at constantr take on the topology of a torus,T 2, the topol-
ogy of the external region~the domain of outer communica
tion in Carter’s language! is that ofR23T 2. Finally, a few
comments on the presence of ergoregions are in order. C
sideration of the metric~43! lead us to

FIG. 5. Penrose-Carter diagram for the toroidal black hole in
extreme case wherer 1 and r 2 coincide. Again, a timelike double
ring singularity occurs atr 50, P50. The patch repeats itself infi
nitely in the vertical direction.
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gtt5
a2DP2D r

r2
. ~51!

From this expression, we see thatgtt.0 within the regions
whereD r,0. Conversely, within regions whereD r.0, out-
side the external horizon in particular,gtt may change its
sign becoming positive forur u sufficiently small and negative
for large ur u. In fact, as in the previously considered cas
ergotori appear within the regionsD r.0. In particular, this
happens outside the outermost event horizon. Ergoregi
where both] t and ] r are spacelike, are bounded by eve
horizons and the surfaces atgtt50, given by the implicit
equation

P45
r 422ml2r

a4
. ~52!

Differently from the previously examined class of topolog
cal rotating black holes, surfaces atgtt50 and horizons do
not meet in the case of a toroidal rotating black hole. Inde
surfaces atgtt50, in the region outside the external horizo
fill the interval @r m ,r e# wherer 1,r m5(2ml2)1/3 and r e is
the positive root ofr 422ml2r 2l4a450. ~There is another
surface atgtt50 for r ,0, filling the interval@r e8,0# wherer e8
is the remaining negative solution of the above equation!

B. Mass and angular momentum

With the given choice of the periods (T for P and 2p for
f), we determine the area of the event horizon to be

A52pTr1
2 ~53!

and the angular velocity,VH5ar1
22 . The Hamiltonian mass

of the given spacetime, relative to the background solut
with toroidal topology butm5a50, can be computed by
carefully handling the divergent terms appearing when
boundary of spacetime is pushed to spatial infinity. Also,
Killing observers at infinity relative to which the mass
measured have a residual,P-dependent angular velocity

V`5al22P2 ~54!
as

tt.
,

s,
t

d,

n

e
e

and this also must be taken into account. All calculatio
done, we get a conserved massM and a conserved angula
momentumJ according to

M5
mT

2p
, J5Ma, ~55!

giving to a the expected meaning. Asa is bounded from
above byac , in order for the solution to have a black ho
interpretation, we see that the angular momentum is boun
by a powerM5/3 of the mass.

V. CONCLUSION

We have presented a class of exact solutions of Einste
equations with negative cosmological constant, having m
of the features which are characteristic of black holes.
these solutions are of Petrov-typeD and the horizons, when
they exist, have the topology of Riemann surfaces and th
fore they lack rotational symmetry for genusg.1. Among
the solutions there is also a toroidal black hole, still differe
from the Lemos-Zanchin solution. The toroidal metric has
exact rotational symmetry and a well-defined mass and
gular momentum. From this perspective, it is more prom
ing as a thermodynamical object and one may hope to
suitable generalizations of the ‘‘four laws of black hole m
chanics’’ @38#. Apart from this, the solutions seem to be i
teresting in their own right; they have intriguing properti
and may provide further ground to test string theory ideas
black hole physics and the character of singularities in g
eral relativity.
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