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Two boosted black holes in asymptotically de Sitter space-time:
Relation between mass and apparent horizon formation
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We study the apparent horizon for two boosted black holes in asymptotically de Sitter space-time by solving
the initial data on a space with punctures. We show that the apparent horizon enclosing both black holes is not
formed if the conserved mass of the syst@bbott-Deser magss larger than a critical mass. The black hole
with too large an AD mass therefore cannot be formed in asymptotically de Sitter space-time even though each
black hole has any inward momentum. We also discuss the dynamical meaning of the AD mass by examining
the electric part of the Weyl tenséthe tidal force for various initial data] S0556-282(198)04810-3

PACS numbg(s): 04.20.Ex, 04.25.Dm, 04.70.Bw, 98.80.Hw

I. INTRODUCTION metric dust collaps@9]. It was also shown that under some
conditions there is an upper limit on the area of the event
The inflationary universe scenario is one of the most fa-orizon in asymptotically de Sitter space-tifdd]. Since, as
vorable models to explain the present isotropy and homogen the case of asymptotically flat space-time, the area of the
neity of the Universd1]. The basic idea of this scenario is black hole does not decrease in asymptotically de Sitter
that the potential energy of a scalar field, which behaves aspace-time, the black holes with too large a total area of the
an effective cosmological constant, dominates and causes tlewent horizons may not collide and not merge if the cosmic
de Sitter—like rapid cosmic expansion in the early stage otensorship hypothesis holds. We note, however, that the re-
the Universe. Then it seems likely that due to this rapidlation between the AD mass and event horizon formation is
cosmic expansion the initial anisotropy and inhomogeneitiesiot yet clear in asymptotically de Sitter space-time.
might be stretched out and the universe becomes homoge- Although the above analysis shows some clear relation
neous and isotropic. Such a picture is based on the so-calldbtween the AD mass and apparent horizon formation, there
cosmic no hair conjectur&CNHC) which states that “all”  still remain some unanalyzed effects, one of which is the
space-times with a cosmological constAnapproach de Sit- initial motion of a black hole in two-black-hole system. If
ter space-time asymptoticalli2]. Of course, the CNHC is two black holes have inward velocity, we may expect that
not always true without any additional conditions since wethose black holes might collide each other and will form a
know that some inhomogeneities can gravitationally collapseingle black hole. Then, in this paper, we shall make a fur-
into black holes in space-time with. Hence the dynamics ther study of the AD mass in a two-black-hole system. Pre-
of the inhomogeneities is an important issue to acquirevious work on the two-Einstein-Rosen bridge system was
physical insight into the present homogeneity and isotropy ofocused only on the cases with no relative velocity other than
the Universe and there is much research on this probBdm the uniform background cosmic expansi@&j}. Hence, in or-
Recently, we have studied numerically apparent horizonsler to see the effect of the relative velocity, we shall inves-
in the initial data in asymptotically de Sitter space-tide-  tigate the axisymmetric initial data of two nonspinning black
6]. The results suggest that there is an upper limit on thdioles with finite velocity in addition to the background cos-
gravitational mass, the Abbott-DeséhD) mass[7] of a  mic expansion. We solve the initial data on a space with
black hole. The AD mass is the corresponding notion to thgunctures following/11]. Then we search for the apparent
Arnowitt-Deser-Misner(ADM) mass in asymptotically flat horizon enclosing both black holes in order to get some in-
space-time. Hence large inhomogeneities may not collapsgight into the dynamics of the inhomogeneities in the infla-
into a black hole and, furthermore, large black holes may notionary universe. We find that such an apparent horizon does
collide in asymptotically de Sitter space-time. The same renot appear no matter how close together each black hole is
sult was obtained by the analysis of the Oppenheimer-Snydemd how fast it moves when the AD mass of this system is
model with A [8]. Further, dynamical simulations for the larger than a critical value which agrees with that of
Brill waves in asymptotically de Sitter space-time were per-Schwarzschild—de Sitter space-tifrk2].
formed and revealed the same results as the spherically sym- It is worth noting that as pointed out in R¢1L3], the AD
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mass can vanish and furthermore can be negative even if In order to solve Eq(2.1), we follow the York's confor-
inhomogeneities satisfy energy conditions. In this article, wemal prescriptiorj15] and assume the conformally flat metric:
shall explicitly show this fact in the case of the initial data o

containing two black holes. So a question arises: “Is a gravi- dI*=y*(R,2)f;;dx'dx, (2.4
tational field produced when the AD mass vanishes?” Then, . ) .

in order to see the dynamical meaning of the AD mass, ngherefij |s_the flat Euclidean metric. We set the trace part of
investigate the asymptotic behavior of the electric part of théhe extrinsic curvatur& to

Weyl tensor which corresponds to the tidal force. In contrast K= —3H 2.5
with asymptotically flat space-time, the tidal force comes B ' '
f“’”? the anlsotropl_c V?'Oc'ty as well as the_AD mass. InNote that the conditiori2.5) turns out to be the Friedmann
particular, the contribution from the anisotropic velocity be- o o .

comes the leading term in the asymptotic region when th&duation @/a)”=H< for the scale factor in the homoge-
conserved momentum does not vanish. When the AD madi€0us and isotropic universe. Hence, the condit@®) is
vanishes, the tidal force is produced solely by the anisotropitedarded as the assumption of a uniformly expanding back-
momentum. However, even if the dynamical effects of the9round universe.

anisotropic velocity on the large scale inhomogeneities might Then Egs.(2.1) and(2.2) become

be important, the apparent horizon formation is essentially
determined by the AD mass and furthermore the critical Z¢=——K§R}¢_7—2WFH¢_3, (2.6)
mass coincides with that of Schwarzschild—de Sitter space- 8

time. This fact suggests that the final state of nonrotating o _

gravitational collapse in asymptotically de Sitter space-time DjK{=87-rJi, 2.7
might be Schwarzschild—de Sitter space-time if naked singu-

larities are not formed. Hence, it seems that the inhomogewhereK;; =K;; #2, pp=puy®, J;=3;y° D, is the covariant

neities with too large an AD mass cannot collapse into &erivative with respect to the flat metrfg;, andA is the
single black hole. Laplacian operator of flat space. The traceless part of the

init-i;rllIZzﬂgpo?‘rt\l/ioorrr(}]aa;slzesdw?; ﬁ?;ggsm?mseﬁél:r’] \g’g Fr)r:ets(iggxtrinsic curvatureRij is decomposed into the transverse
YmPIOoti, o celess part and the longitudinal traceless part

cally de Sitter space-time and search for the apparent hori-
zon, numerically. In Sec. lll, we investigate the electric part
of the Weyl tensor of the conformally flat initial data and
discuss the effect of the AD mass and the linear momentury i,

on the electric part of the Weyl tensor. Then Sec. IV is de-

voted to a discussion. We adopt unitsct G=1. Our no- o 2

tations follow those of Misner, Thorne, and WheeliTW) (LW);j=D;W;+D;W;— §fij D,W. (2.9
[14].

As for the transverse traceless part of the extrinsic curvature,
II. INITIAL DATA FOR TWO BOOSTED MASSES we assumeK[;'=0. Restricting to the vacuum case, i.e.,
IN ASYMPTOTICALLY de SITTER SPACE-TIME a:'j:o, Eq.(2.7) becomes

A. Setting up initial data

In order to obtain initial data, we have to solve the Hamil- AW, +

tonian and momentum constraints:

o 2 The analytic monopole solution fok' is given by[16]
GR- K{K;+§K2=6H2+ 16mpy, (2.1 d P g Y
—_ 1 S
W'=—3—r(7P'+n'Pknk), (2.11)
L2
D,—(K{——é{K):sti, (2.2) o _ _
3 wheren'=x'/r. P' is the linear momentum defined by
with 1 _ o
P'=ox 35 Kld?S;, (2.12
8w
A
H= \ﬁ 2.3 . .
3 whered-S; is the area element of the sphere in the confor-

mal flat space. Just for simplicity, we consider only the ini-
where ®)R is the Ricci scalar of three-spadé) andK are tial data of two black holes with equal mass and equal mag-
the traceless part and the trace of the extrinsic curvature dfitude of momentum. Since Ed2.10 is linear, we can
three-space, respectivel, is the covariant derivative with €asily find the extrinsic curvature for the two-black-hole sys-
respect to the intrinsic metric of three-spapg.andJ; are, €M with linear momenta by superposition as
respectively, the energy density and the momentum density - ) L vi=)
of the matter fluid measured by the normal line observer. Kij=Kjj "+ Kj; 7, (2.13
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WhereKi(ji) comes from each hole located at (&;@&). Then believed to agree with the marginally outer trapped surface

K®)ii is given as by the proof in Ref[17]. However, the proof is correct only
if the apparent horizon is smooth and hence, exactly speak-
L3 BV N ing, the apparent horizon might not agree with the margin-
K“)”=2—2[P(*)'n(*>J+P<*“n(*>' ally outer trapped surfacgl8]. In the situation considered
M= here, however, we find a smooth apparent horizon and hence
— (fil - (D) pkp(£)] (2.14 we may regard the outer marginally trapped surface as the
ke b ' apparent horizon.
wheren™®)" and P(*)' are defined by Let s* be the outward-pointing spacelike unit normal&o
and n# be the unit normal to a time slice; théfi can be
1 written asl#=n#+s* and thus
n*i=—(x,y,zxa), (2.15 , o
M. :DiSI+KijSISJ_K:0 (222
P()i=(0,0+P), (2.1  onsS. For conformally flat spac€.4), Eq.(2.22) is rewritten
as
with r.=\x*+y%+(z¥a)% Substituting K;; obtained ,
above into Eq(2.6), we get the equation for the conformal _ r E+ 4@+ t0
factor . We rewrite the conformal factor followingL1], T A oo\ 27 "o " co
Mo = My 1 3 o
¢:?+2r—+UE;+U- (2.17 -r2 F+4%)—2r—4r2ﬁ +Kj;s's'=K=0,
+ - ¥
where My is a constant. Then the Hamiltonian constraint (2.23

becomes ) . I '
where sufficeg, # denote those partial derivatives. To find

~ 1 an apparent horizon, we solve E.23 as a two-point
Au=-— §H7K3K}(1+ au)~7. (218  boundary value problem with boundary conditians=0 at
0= 0,7/2 following Sasakiet al.[19]. This method was also

It should be noted that the coefficient in E@.18 is no  used recently by Cookt al.[20].
longer singular as opposed to EQ.6) because the mono- Like asymptotically flat space-time, when an apparent ho-

pole terms are subtracted by E8.17). The conformal factor rizon forms, there always exists an event horizon enclosing it
# (or u) is obtained by solving iteratively Eq2.189 by a " asymptotically de Sitter space-time if there is no naked

finite difference method typically with 200200 grid num- singularity and the null convergence condition is satisfied
bers in cylindrical R,Z) coordinates. The boundary condi- [21]- Hence, by investigating the existence of the apparent
tions are given by horizon in various initial data, we obtain some insight into

the evolution of inhomogeneities.
M As in the case of asymptotically flat space-time, when the
Y—1+ 5 for r=\x°+y*+z°-+w, (219 separationa between each black hole is short enough, an
apparent horizon encompassing both black holes appears
(see Fig. 1L The existence of such an apparent horizon

&_u :a_u =0. (2.20 means the merging of two black holes and we shall search
IR[po 921, for such an apparent horizon in an asymptotically de Sitter
. . S _ space.
Note that M, agrees withM in the limit P'—0. By virtue In order to control the strength of the inhomogeneities, we

of the time slicing condition(2.5), Fhe _boundary cond_ition vary a, P, and M. However, these parameters are not
(2.19 guarantees that the space-time is an asymptotically dgsnserved quantities of this system. In asymptotically de Sit-
Sitter one. In practice, however, numerical solutions covege, space-time, there are ten conserved quantities associated
only a finite region. We therefore use the Robin boundaryyith ten Killing vectors of background de Sitter space-time.
condition at the outer boundary: In the initial data considered here, only the AD mass associ-
ated with the timelike Killing vector of background de Sitter

M_ 1—_u (2.21  Space-time is the nontrivial conserved Killing quantity.
ar r (Conserved total linear and angular momenta vanish here.
Hence, we utilize the AD mass as a measure characterizing
B. Finding apparent horizons the strength of inhomogeneities in additionaand P.

. . _— In general, in conformally flat initial data with the time
Now we search for apparent horizons in the initial dat licing condition Eq(2.5), the AD massVl »p, is expressed as
prescribed above. A marginally trapped surface is a cIosZ?7 13 '

two-surfaceS where the expansio® of future-directed out- ’

going null vectord* normal to it vanishe§l17]. The appar- Map=M+AM, (2.24
ent horizon is defined as the outer boundary of a connected

component of the trapped region. The apparent horizon isith
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Here the surface integral is taken over an infinitely large i o "
sphere and€' =(x,y,z) is the conformal Killing vector or- 0.01 - N ——P/Mg=-5 || |
thogonal to the sphere. Althougl agrees with the defini- I R v
tion of the ADM mass and is non-negativeM can be nega- i /d’ ----P/Mg=+5 .
tive. For example, for the initial data that we consider, we /s b
obtain, from Eq.(2.14 using the Gauss’s theorem in the —/ T
I’egIOI’] RB_{tWO pOInté, 0 v b by by by I
0 0.2 0.4 0.6 0.8 1
H+ . . (b) MAD/Mc

AM= —
8w R3—{two pointg

(2.27)

wheredy is the volume element in the conformal space an
we have made use of Eq2.7) and the conformal Killing

equation C€);;=0. ThereforeM 4 can be negative foP
<0 (inward velocity if

M <2Ha|P|. (2.29

We shall numerically investigate the critical separatign

FIG. 2. The relation between the critical separatigriH ~* and
AD massM ,p . (a) is the case withP|/M,=1. The white square is
for the case witlP>0 and the black square corresponds to that of

db<o. (b) is the same a&) but with|P|/My=5. The critical value

looks slightly shifted upwardby 0.7%) due to a numerical error.

However, in the case dfl \p=M_, Schwarzschild—de Sitter
space-time contains no black hole. As a test of our numerical
code, we searched for an apparent horizon withO and
P=0, which corresponds to Schwarzschild—de Sitter space

such that the apparent horizon surrounding black holes dig¥ith Map=2Mg. FOrM,p/M>1.007, an apparent horizon

appears fora>a,. In Fig. 2, we displaya,/H ! with re-
spect toM pp normalized byM . which is defined by

1

M= ——.
¢ 2T

(2.29

is not found. Therefore, our numerical code has an accuracy
of less than 0.7%.

In Fig. 2(a), we set|P|/M, equal to 1. The white square
shows that ofP>0 while the black square corresponds to
that of P<0. Figure 2b) is the same but fofP|/My=5. In
the asymptotically flat case, the critical separatanwith
fixed P/M ,p is proportional toM ,p and increases mono-

In fact, M. is the critical mass of Schwarzschild—de Sittertonically with increasingM ,p which coincides with the
space-time. Schwarzschild—de Sitter space-time is characte®&DM mass, since there is no physical scale excepMaqg, .

ized byM 5p, and wherM ,p <M, it contains a black hole.

This behavior means that larger,p produces larger gravity
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L0 e e e s e s S e logical constant, it is impossible for two black holes with
i ] large M 5p to coalesce and to form a single black hole.
0.4 - ——P/M=-1 — lll. AD MASS AND LINEAR MOMENTUM AS A SOURCE
i ] OF GRAVITY
g -——-P/M,=+1 ]
SN . In the previous section, we have adopted the AD mass as
2 0.3 C T~ ] a measure of inhomogeneities and shown its relation to ap-
E - . parent horizon formation. However, the AD mass can vanish
o i ] and could be negative even if the inhomogeneities due to
02 - — ordinary matter fields exist. Then, we cannot conclude, only
i ] from the condition that the AD mass vanish, that such a
N 1 space-time is de Sitter.
01 F 4 In order to show thaM 5 can be negative, let us focus on
C ] conformally flat space. Then, we will first rewriteM as
ol v b b by L] H (|~~~ 1. ~ —— o~
0 02 04 06 08 1 AM=o— [leij"'EK”(Lf)ij dv=Hf §'J;dv,
(@) H/H, (3.9
O L L L where the first equality comes from the Gauss’s theorem and
- . in the second one use has been made of the momentum con-
i i straint(2.2 and the conformal Killing equationl(€);;=0.
0.4 |- —P/My=-5 ] From Eq.(3.1), we can see that whef\J; is negative AM is
= C__P/M,=+5 . also negative. Hence, in contrast with the ADM mass in as-
i ] ymptotically flat space-timéy 5p is reduced by the implod-
o 0.3 - — ing motion of matter fields. Furthermore, in this cabk,p
= i ] can be negative since it is possible to consider arbitrary large
} - 8 H or, in other words, the support of the integrand in E31)
0.2 - _' can be arbitrary large.
r § Here we shall estimate the condition to malg nega-
i ] tive. Assuming the dominant energy conditiopy
- 1 =(J;J)Y2 we obtain
0.1 -
C . |AM|=HLX|J,|V=SHLXp.V, (3.2
|
ol Lo b L 1L b whereL andV are, respectively, the length scale and volume
0 02 0.4 0.6 0.8 1 scale of the region in which inhomogeneities exist. On the
(b) H/H, other hand, from Eqg2.6) and (2.25), we obtain
FIG. 3. The relation between the critical separatiQiiM 5, and
cosmological constartl/H.=JA/A.. M:f (;Hd/3+ %’ngﬂjl{;? dEZFHV. (3.3

and therefore an apparent horizon is formed even if the sepg\;rfAmM |thtf) k;aebove equation, we find the condition Idf

rationa is large. On the other hand, as shown in Fig. 2, in the
case of asymptotically de Sitter space-time, the critical sepa- L=H"1 (3.4)

ration a; is not proportional taVl op. There is a maximum

value neaiM ,p=0.7M and then the critical separati@  Hence, in order thaM ,»p be negative, the size of the inho-
decreases with increasid ,p . Further, we find that when mogeneities should be larger than the cosmological horizon
an apparent horizon forms the inequali:28 is not satis-  gcale.

fied; that is,M,p is strictly positive. Therefore, we may  In the case of asymptotically flat space-time, the ADM
conclude as far as we have examined thaMifp<O no  mass is the conserved energy. Furthermore, it can be a source
apparent horizon encompassing both black holes appears. of gravity (tidal force and therefore it is called thgravita-

In Fig. 3,a./Map as a function oH/H, is shown, where  tional mass As mentioned, the AD mass is also a conserved
H.=1/J/27M. We find thata./Mp drops sharply near quantity and has a meaning of energy in asymptotically de
H/H.=1. Further, there does not appear the apparent horSitter space-time. However, a question arises here: Does the
zon enclosing both black holes for allwhenM ,p>M_. (or  AD mass produce the gravitational field in the same manner
Hap>H,) within our numerical accuracy. This behavior es- as the ADM mass in asymptotically flat space-time? In order
sentially coincides with the two-Einstein-Rosen-bridge systo answer this question, by analyzing the conformally flat
tem investigated in Ref5]. When there is a positive cosmo- initial data, we shall investigate the asymptotic behavior of
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the electric part of the Weyl tensor which corresponds to the
tidal force for a timelike geodesic normal to the spacelike
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+ o0 -
stswf r'3J.dr’, (3.13
0

hypersurface considered here. Here we shall consider three

cases, i.e., initial data in a spherical symmetric space
with a spherical source with a linear momentyB), and

with two boosted masses of which the total momentum van-

ishes(C). To obtain the “physical* components, we intro-
duce an orthonormal triad of basis vectet§) as

. 1
€)= 7 Y2, 3.5
[ 1 2_.,2
e(@)—m(xz,yz,—x -y, (3.6
, 1
€)= m(—y,x,m. (3.7

Using Eq.(2.5), the triad components of the electric part of

the Weyl tensor in the vacuum region are written as

— v_(3) _ Y, i O
E(1=Claupt"t"= PR s~ 3HK(a)p ~ KinKgi s

(3.8
wheret# is the unit vector normal to the hypersurface.

Since we consider the conformally flat initial data, the

asymptotic behavior of the metric is given by E@.19.
Hence the triad components of the Ricci ten&ﬁR(a)(ﬁ) of
three-space asymptotically behave as

2M

(S)R(r)(r)_’_ r_a (39)
M

(3)R(0)(€)—>r—3, (31@
M

3

( )R(<P)(<P)_)r_3' (3.11

and the other components are of ord@¢r ~4). Thus the

traceless part of the extrinsic curvatu%q gives rise to the
difference among the various conformally flat initial data.

A. Spherically symmetric initial data

In a spherically symmetric space, HQ.7) is easily inte-
grated as

~ ~ _ S,
Kiin==2K 0=~ 2K(g) ()~ X forr— +o,

(3.12

where

and other components ﬁ(a)(ﬁ) vanish. Then, it is easily
seen that for — +«, E.,5 behaves as

2M
Enin="2Ewwn="2Eup———3 "HKnmn
e 2Mp
— _ ] el _
=5 M+g fﬁKigdS,) R

(3.19

and other components a@(r~%). Equation(3.14 shows
that M 5p produces the tidal force by the same way as the
ADM mass in asymptotically flat space-time.

B. A Spherical source with linear momentum

The solution of the momentum constraif®.7) for a
single black hole located at the origin is obtained by keeping
only KM nonzero witha=0 in Eq.(2.13. ThenP is a
conserved linear momentum associated with the translational
Killing vector of background de Sitter space-time. Then the
asymptotic behavior of the extrinsic curvature is given by

3

- 3
Kioyo=Kpyo) =~ ?Pcose, (3.19

and the other components vanish. We can easily verify that
in this caseM 5p coincides withM considering Eqs(2.24—
(2.26.. However, the asymptotic behavior B, is dif-
ferent from the asymptotically flat case,

2M,p 3H
Enym—— r—3 - r—ZPCOSH, 3.19
Map 3H
B =Ewe== 5 ~ 55 Pcod, (3.18

and other components vanisé.,p produces the tidal force
by the same manner as asymptotically flat space-time. How-
ever, in the limit ofr —co, the leading term ok, comes
from the linear momentur® and depends on the polar angle
6.1 The relative strength between the tidal force due to the
momentum P and that due toMp,p is given by

Hr X |P|/Map. Hence, in order for the tidal force due to the
linear momentum to dominate, the cosmological constant

1This effect can be regarded as a kinematical effect due to taking
the comoving coordinate system. In fact, the linear momentum can
be eliminated by a coordinate transformation. We note, however,
that the dipole term in the tidal force for a test particle cannot be
eliminated by the coordinate transformati@®].
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should satisfy|P|/M ,p=1 if the inhomogeneity distributes searched for an apparent horizon enclosing both black holes
within a region smaller than the cosmological horizon scaleand have shown the relation between apparent horizon for-
On the other hand, if the inhomogeneity distributes over thenation and the AD mashl . Interestingly, wherM »p is
cosmological horizon scale and there is a coherent implodingarger than the critical magdl, of Schwarzschild—de Sitter
motion in addition to the translational motion, tM\p can  space-time, the apparent horizon enclosing both black holes
vanish. In such a case, the effect of the linear momentum ofpes not appear for any separatianbetween each black

the tidal force also dominates. It should be noted that thgle and for any momentum. This result is the same as that
tidal force is produced by the linear momentum of a matter, he analysis of the Einstein-Rosen bridge sysf&in

field even ifMp vanishes. Furthermore, in order to understand the dynamical mean-
- o ing of M,p, we have examined the asymptotic behavior of
C. Initial data for two black holes with linear momenta the electric part of the Weyl tensd s, Which corre-

In contrast with the previous case, the total linear momensponds to the tidal force, in three cases of initial data in
tum vanishes in the case of the initial data obtained in Secsymptotically de Sitter space-time. In the spherically sym-
Il. From Egs.(2.9) and (2.11), the asymptotic behavior of metric caseM p produces the tidal force by the same way

as asymptotically flat space-time, i.81,.p/r3. However, in

the case of the initial data of a spherical source with linear

momentum, the behavior of the tidal force is very different
~ 6 from the asymptotically flat case. In this case, althoMblp

Kinmn— r—33P(00320+ 1), (319  produces a part of the tidal force in the same way as asymp-

totically flat space-time, the leading term Bf,)g is pro-
portional tor ~2, which comes from the linear momentum,

_ 3 and depends on the direction. In the case of the initial data

Koyo—— -zaP(cos2+3), (3.20  obtained in Sec. I, i.e., two boosted black holkk,p also

2r produces the tidal force in the same way as the above ex-
amples but the contribution of the relative velocity produces
3 the anisotropic dependence of the tidal force on the polar
= _> angle 6. However, in contrast with a spherical source with
Kieror= 2r3aP(300529+ b, 329 linear momentum, both contributions from ,p and linear
momenta on the tidal force have the same asymptotic behav-
and the other components aB&r ). HenceM ,p is given  ior 2 since the total momentum vanishes.

by From these results, it seems that the anisotropic velocity is

important for the dynamics of inhomogeneities in a scale

comparable to the cosmological horizon scale. On the other
hand, in the analysis of initial data, we have seen that appar-
and forr— +, E(,)g) is given as ent horizon formation crucially depends on whether the AD
mass is larger thaM ; or not. This fact does not depend on
the anisotropic velocity and suggests that the final state of
E L 2Map _ EHaP(Scos?ﬂJrl) nonrotating gravitational collapse in asymptotically de Sitter
() ;3 3 ’ space-time is Schwarzschild—de Sitter space-time if cosmic
(3.23  censorship holds. Inhomogeneities with too large Mipp
cannot collapse into a black hole again if the cosmic censor-
ship holds.

(3.24 If there exists a positive cosmological constant, large
scale nonspherical gravitational collapse may be very differ-
ent from that of asymptotically flat space-time due to the

M L different behavior oE s . In order to investigate such an

AD effect on the dynamics of the inhomogeneities, we need to

Ecore= ER FHaP(QcosZH—l), 329 Solve the Einstein equation numerically and follow the time

evolution.

Ky 18

Map 1
E(t‘})(ﬁ)_> r—3+ ?HaP(SCOSZ%— 5),

and the other components are of ord2fr ~*). Equations

(3.23—(3.25 mean that when the motion of the inhomoge-

neities is not isotropic the tidal force depends on their direc- ACKNOWLEDGMENTS
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