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Two boosted black holes in asymptotically de Sitter space-time:
Relation between mass and apparent horizon formation
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We study the apparent horizon for two boosted black holes in asymptotically de Sitter space-time by solving
the initial data on a space with punctures. We show that the apparent horizon enclosing both black holes is not
formed if the conserved mass of the system~Abbott-Deser mass! is larger than a critical mass. The black hole
with too large an AD mass therefore cannot be formed in asymptotically de Sitter space-time even though each
black hole has any inward momentum. We also discuss the dynamical meaning of the AD mass by examining
the electric part of the Weyl tensor~the tidal force! for various initial data.@S0556-2821~98!04810-3#

PACS number~s!: 04.20.Ex, 04.25.Dm, 04.70.Bw, 98.80.Hw
fa
g

is

s
o

pi
tie
og
al

we
ps

ir
o

on

th

th
t
p
no
re

yd
e
er
sy

e
ent

the
tter
the
ic
re-
is

tion
ere

the
If
at
a

ur-
re-
as
an

s-
ck
s-
ith
nt
in-
a-
oes
le is

is
of
I. INTRODUCTION

The inflationary universe scenario is one of the most
vorable models to explain the present isotropy and homo
neity of the Universe@1#. The basic idea of this scenario
that the potential energy of a scalar field, which behaves
an effective cosmological constant, dominates and cause
de Sitter–like rapid cosmic expansion in the early stage
the Universe. Then it seems likely that due to this ra
cosmic expansion the initial anisotropy and inhomogenei
might be stretched out and the universe becomes hom
neous and isotropic. Such a picture is based on the so-c
cosmic no hair conjecture~CNHC! which states that ‘‘all’’
space-times with a cosmological constantL approach de Sit-
ter space-time asymptotically@2#. Of course, the CNHC is
not always true without any additional conditions since
know that some inhomogeneities can gravitationally colla
into black holes in space-time withL. Hence the dynamics
of the inhomogeneities is an important issue to acqu
physical insight into the present homogeneity and isotropy
the Universe and there is much research on this problem@3#.

Recently, we have studied numerically apparent horiz
in the initial data in asymptotically de Sitter space-time@4–
6#. The results suggest that there is an upper limit on
gravitational mass, the Abbott-Deser~AD! mass @7# of a
black hole. The AD mass is the corresponding notion to
Arnowitt-Deser-Misner~ADM ! mass in asymptotically fla
space-time. Hence large inhomogeneities may not colla
into a black hole and, furthermore, large black holes may
collide in asymptotically de Sitter space-time. The same
sult was obtained by the analysis of the Oppenheimer-Sn
model with L @8#. Further, dynamical simulations for th
Brill waves in asymptotically de Sitter space-time were p
formed and revealed the same results as the spherically
570556-2821/98/57~10!/6119~8!/$15.00
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metric dust collapse@9#. It was also shown that under som
conditions there is an upper limit on the area of the ev
horizon in asymptotically de Sitter space-time@10#. Since, as
in the case of asymptotically flat space-time, the area of
black hole does not decrease in asymptotically de Si
space-time, the black holes with too large a total area of
event horizons may not collide and not merge if the cosm
censorship hypothesis holds. We note, however, that the
lation between the AD mass and event horizon formation
not yet clear in asymptotically de Sitter space-time.

Although the above analysis shows some clear rela
between the AD mass and apparent horizon formation, th
still remain some unanalyzed effects, one of which is
initial motion of a black hole in two-black-hole system.
two black holes have inward velocity, we may expect th
those black holes might collide each other and will form
single black hole. Then, in this paper, we shall make a f
ther study of the AD mass in a two-black-hole system. P
vious work on the two-Einstein-Rosen bridge system w
focused only on the cases with no relative velocity other th
the uniform background cosmic expansion@5#. Hence, in or-
der to see the effect of the relative velocity, we shall inve
tigate the axisymmetric initial data of two nonspinning bla
holes with finite velocity in addition to the background co
mic expansion. We solve the initial data on a space w
punctures following@11#. Then we search for the appare
horizon enclosing both black holes in order to get some
sight into the dynamics of the inhomogeneities in the infl
tionary universe. We find that such an apparent horizon d
not appear no matter how close together each black ho
and how fast it moves when the AD mass of this system
larger than a critical value which agrees with that
Schwarzschild–de Sitter space-time@12#.

It is worth noting that as pointed out in Ref.@13#, the AD
6119 © 1998 The American Physical Society
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mass can vanish and furthermore can be negative eve
inhomogeneities satisfy energy conditions. In this article,
shall explicitly show this fact in the case of the initial da
containing two black holes. So a question arises: ‘‘Is a gra
tational field produced when the AD mass vanishes?’’ Th
in order to see the dynamical meaning of the AD mass,
investigate the asymptotic behavior of the electric part of
Weyl tensor which corresponds to the tidal force. In contr
with asymptotically flat space-time, the tidal force com
from the anisotropic velocity as well as the AD mass.
particular, the contribution from the anisotropic velocity b
comes the leading term in the asymptotic region when
conserved momentum does not vanish. When the AD m
vanishes, the tidal force is produced solely by the anisotro
momentum. However, even if the dynamical effects of
anisotropic velocity on the large scale inhomogeneities m
be important, the apparent horizon formation is essenti
determined by the AD mass and furthermore the criti
mass coincides with that of Schwarzschild–de Sitter spa
time. This fact suggests that the final state of nonrotat
gravitational collapse in asymptotically de Sitter space-ti
might be Schwarzschild–de Sitter space-time if naked sin
larities are not formed. Hence, it seems that the inhomo
neities with too large an AD mass cannot collapse into
single black hole.

This paper is organized as follows. In Sec. II, we pres
initial data of two masses with linear momenta in asympto
cally de Sitter space-time and search for the apparent h
zon, numerically. In Sec. III, we investigate the electric p
of the Weyl tensor of the conformally flat initial data an
discuss the effect of the AD mass and the linear momen
on the electric part of the Weyl tensor. Then Sec. IV is d
voted to a discussion. We adopt units ofc5G51. Our no-
tations follow those of Misner, Thorne, and Wheeler~MTW!
@14#.

II. INITIAL DATA FOR TWO BOOSTED MASSES
IN ASYMPTOTICALLY de SITTER SPACE-TIME

A. Setting up initial data

In order to obtain initial data, we have to solve the Ham
tonian and momentum constraints:

~3!R2K̂ i
j K̂ j

i 1
2

3
K256H2116prH , ~2.1!

D j S K̂ i
j2

2

3
d i

jK D58pJi , ~2.2!

with

H[AL

3
, ~2.3!

where (3)R is the Ricci scalar of three-space.K̂ i
j andK are

the traceless part and the trace of the extrinsic curvatur
three-space, respectively.D j is the covariant derivative with
respect to the intrinsic metric of three-space.rH andJi are,
respectively, the energy density and the momentum den
of the matter fluid measured by the normal line observer
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In order to solve Eq.~2.1!, we follow the York’s confor-
mal prescription@15# and assume the conformally flat metri

dl25c4~R,z! f i j dxidxj , ~2.4!

wheref i j is the flat Euclidean metric. We set the trace part
the extrinsic curvatureK to

K523H. ~2.5!

Note that the condition~2.5! turns out to be the Friedman
equation (ȧ/a)25H2 for the scale factora in the homoge-
neous and isotropic universe. Hence, the condition~2.5! is
regarded as the assumption of a uniformly expanding ba
ground universe.

Then Eqs.~2.1! and ~2.2! become

D̃c52
1

8
K̃ i

j K̃ j
i c2722pr̃Hc23, ~2.6!

D̃ j K̃ i
j58p J̃ i , ~2.7!

whereK̃ i j 5K̂ i j c
2, r̃H5rHc8, J̃ i5Jic

6, D̃ i is the covariant
derivative with respect to the flat metricf i j , and D̃ is the
Laplacian operator of flat space. The traceless part of
extrinsic curvatureK̃ i j is decomposed into the transver
traceless part and the longitudinal traceless part

K̃ i j 5K̃ i j
TT1~ L̃ W̃! i j , ~2.8!

with

~ L̃ W̃! i j [D̃ iW̃j1D̃ jW̃i2
2

3
f i j D̃ lW̃

l . ~2.9!

As for the transverse traceless part of the extrinsic curvat
we assumeK̃ i j

TT50. Restricting to the vacuum case, i.e

r H̃5Jĩ50, Eq. ~2.7! becomes

D̃W̃i1
1

3
D̃ i D̃

jW̃j50. ~2.10!

The analytic monopole solution forW̃i is given by@16#

W̃i52
1

3r
~7Pi1ni Pknk!, ~2.11!

whereni5xi /r . Pi is the linear momentum defined by

Pi5
1

8p R K̃ i j d2S̃j , ~2.12!

whered2S̃i is the area element of the sphere in the conf
mal flat space. Just for simplicity, we consider only the i
tial data of two black holes with equal mass and equal m
nitude of momentum. Since Eq.~2.10! is linear, we can
easily find the extrinsic curvature for the two-black-hole sy
tem with linear momenta by superposition as

K̃ i j 5Ki j
~1 !1Ki j

~2 ! , ~2.13!
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57 6121TWO BOOSTED BLACK HOLES IN ASYMPTOTICALLY . . .
whereKi j
(6) comes from each hole located at (0,0,6a). Then

K (6) i j is given as

K ~6 !i j 5
3

2r 6
2 @P~6 !in~6 ! j1P~6 ! jn~6 !i

2~ f i j 2n~6 !in~6 ! j !P~6 !knk
~6 !#, ~2.14!

wheren(6) i andP(6) i are defined by

n~6 !i5
1

r 6

~x,y,z7a!, ~2.15!

P~6 !i5~0,0,6P!, ~2.16!

with r 65Ax21y21(z7a)2. Substituting K̃ i j obtained
above into Eq.~2.6!, we get the equation for the conform
factor c. We rewrite the conformal factor following@11#,

c5
M0

2r 1

1
M0

2r 2

1u[
1

a
1u, ~2.17!

where M0 is a constant. Then the Hamiltonian constra
becomes

D̃u52
1

8
a7K̃ i

j K̃ j
i ~11au!27. ~2.18!

It should be noted that the coefficient in Eq.~2.18! is no
longer singular as opposed to Eq.~2.6! because the mono
pole terms are subtracted by Eq.~2.17!. The conformal factor
c ~or u) is obtained by solving iteratively Eq.~2.18! by a
finite difference method typically with 2003200 grid num-
bers in cylindrical (R,z) coordinates. The boundary cond
tions are given by

c→11
M

2r
for r[Ax21y21z2→1`, ~2.19!

]u

]RU
R50

5
]u

]z U
z50

50. ~2.20!

Note that 2M0 agrees withM in the limit Pi→0. By virtue
of the time slicing condition~2.5!, the boundary condition
~2.19! guarantees that the space-time is an asymptotically
Sitter one. In practice, however, numerical solutions co
only a finite region. We therefore use the Robin bound
condition at the outer boundary:

]u

]r
5

12u

r
. ~2.21!

B. Finding apparent horizons

Now we search for apparent horizons in the initial da
prescribed above. A marginally trapped surface is a clo
two-surfaceS where the expansionQ of future-directed out-
going null vectorsl m normal to it vanishes@17#. The appar-
ent horizon is defined as the outer boundary of a conne
component of the trapped region. The apparent horizo
t

e
r
y

d

ed
is

believed to agree with the marginally outer trapped surf
by the proof in Ref.@17#. However, the proof is correct only
if the apparent horizon is smooth and hence, exactly spe
ing, the apparent horizon might not agree with the marg
ally outer trapped surface@18#. In the situation considered
here, however, we find a smooth apparent horizon and he
we may regard the outer marginally trapped surface as
apparent horizon.

Let sm be the outward-pointing spacelike unit normal toS
and nm be the unit normal to a time slice; thenl m can be
written asl m5nm1sm and thus

Q5Dis
i1Ki j s

isj2K50 ~2.22!

on S. For conformally flat space~2.4!, Eq. ~2.22! is rewritten
as

Q52
r

c2~r 21r u
2!3/2F r uu1S r u

3

r 2
1r uD S 4

cu

c
1cotu D

2r u
2S 3

r
14

c r

c D22r 24r 2
c r

c
G1Ki j s

isj2K50,

~2.23!

where sufficesr ,u denote those partial derivatives. To fin
an apparent horizon, we solve Eq.~2.23! as a two-point
boundary value problem with boundary conditionsr u50 at
u50,p/2 following Sasakiet al. @19#. This method was also
used recently by Cooket al. @20#.

Like asymptotically flat space-time, when an apparent
rizon forms, there always exists an event horizon enclosin
in asymptotically de Sitter space-time if there is no nak
singularity and the null convergence condition is satisfi
@21#. Hence, by investigating the existence of the appar
horizon in various initial data, we obtain some insight in
the evolution of inhomogeneities.

As in the case of asymptotically flat space-time, when
separationa between each black hole is short enough,
apparent horizon encompassing both black holes app
~see Fig. 1!. The existence of such an apparent horiz
means the merging of two black holes and we shall sea
for such an apparent horizon in an asymptotically de Si
space.

In order to control the strength of the inhomogeneities,
vary a, Pi

6 , and M0. However, these parameters are n
conserved quantities of this system. In asymptotically de
ter space-time, there are ten conserved quantities assoc
with ten Killing vectors of background de Sitter space-tim
In the initial data considered here, only the AD mass ass
ated with the timelike Killing vector of background de Sitt
space-time is the nontrivial conserved Killing quantit
~Conserved total linear and angular momenta vanish he!
Hence, we utilize the AD mass as a measure characteri
the strength of inhomogeneities in addition toa andP.

In general, in conformally flat initial data with the tim
slicing condition Eq.~2.5!, the AD massMAD is expressed as
@7,13#

MAD5M1DM , ~2.24!

with
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M[2
1

2p R d2S̃i f
i j ] jc, ~2.25!

DM[
H

8p R d2S̃i K̃ j
i j̃ j . ~2.26!

Here the surface integral is taken over an infinitely lar
sphere andj̃ i5(x,y,z) is the conformal Killing vector or-
thogonal to the sphere. AlthoughM agrees with the defini-
tion of the ADM mass and is non-negative,DM can be nega-
tive. For example, for the initial data that we consider,
obtain, from Eq.~2.14! using the Gauss’s theorem in th
regionR32$two points%,

DM5
H

8pER32$two points%
d ṽ D̃ i~K̃ j

i j̃ j !12HaP52HaP,

~2.27!

whered ṽ is the volume element in the conformal space a
we have made use of Eq.~2.7! and the conformal Killing
equation (L̃ j̃ ) i j 50. Therefore,MAD can be negative forP
,0 ~inward velocity! if

M,2HauPu. ~2.28!

We shall numerically investigate the critical separationac
such that the apparent horizon surrounding black holes
appears fora.ac . In Fig. 2, we displayac /H21 with re-
spect toMAD normalized byMc which is defined by

Mc[
1

A27H
. ~2.29!

In fact, Mc is the critical mass of Schwarzschild–de Sitt
space-time. Schwarzschild–de Sitter space-time is chara
ized byMAD , and whenMAD,Mc , it contains a black hole

FIG. 1. The shapes of apparent horizons near critical separa
for P/M0525 andH/2M050,0.1,0.15 from outside to inside.
e

d

s-

er-

However, in the case ofMAD>Mc , Schwarzschild–de Sitte
space-time contains no black hole. As a test of our numer
code, we searched for an apparent horizon witha50 and
P50, which corresponds to Schwarzschild–de Sitter sp
with MAD52M0. For MAD /Mc.1.007, an apparent horizo
is not found. Therefore, our numerical code has an accur
of less than 0.7%.

In Fig. 2~a!, we setuPu/M0 equal to 1. The white squar
shows that ofP.0 while the black square corresponds
that of P,0. Figure 2~b! is the same but foruPu/M055. In
the asymptotically flat case, the critical separationac with
fixed P/MAD is proportional toMAD and increases mono
tonically with increasingMAD which coincides with the
ADM mass, since there is no physical scale except forMAD .
This behavior means that largerMAD produces larger gravity

ns

FIG. 2. The relation between the critical separationac /H21 and
AD massMAD . ~a! is the case withuPu/M051. The white square is
for the case withP.0 and the black square corresponds to that
P,0. ~b! is the same as~a! but with uPu/M055. The critical value
looks slightly shifted upward~by 0.7%) due to a numerical error.
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57 6123TWO BOOSTED BLACK HOLES IN ASYMPTOTICALLY . . .
and therefore an apparent horizon is formed even if the s
rationa is large. On the other hand, as shown in Fig. 2, in
case of asymptotically de Sitter space-time, the critical se
ration ac is not proportional toMAD . There is a maximum
value nearMAD.0.7Mc and then the critical separationac
decreases with increasingMAD . Further, we find that when
an apparent horizon forms the inequality~2.28! is not satis-
fied; that is, MAD is strictly positive. Therefore, we ma
conclude as far as we have examined that ifMAD,0 no
apparent horizon encompassing both black holes appea

In Fig. 3,ac /MAD as a function ofH/Hc is shown, where
Hc[1/A27M . We find that ac /MAD drops sharply nea
H/Hc.1. Further, there does not appear the apparent h
zon enclosing both black holes for alla whenMAD.Mc ~or
HAD.Hc) within our numerical accuracy. This behavior e
sentially coincides with the two-Einstein-Rosen-bridge s
tem investigated in Ref.@5#. When there is a positive cosmo

FIG. 3. The relation between the critical separationac /MAD and
cosmological constantH/Hc5AL/Lc.
a-
e
a-

.

ri-

-

logical constant, it is impossible for two black holes wi
largeMAD to coalesce and to form a single black hole.

III. AD MASS AND LINEAR MOMENTUM AS A SOURCE
OF GRAVITY

In the previous section, we have adopted the AD mas
a measure of inhomogeneities and shown its relation to
parent horizon formation. However, the AD mass can van
and could be negative even if the inhomogeneities due
ordinary matter fields exist. Then, we cannot conclude, o
from the condition that the AD mass vanish, that such
space-time is de Sitter.

In order to show thatMAD can be negative, let us focus o
conformally flat space. Then, we will first rewriteDM as

DM5
H

8pE F j̃ i D̃ j K̃ i
j1

1

2
K̃ i j ~ L̃ j̃ ! i j Gd ṽ 5HE j̃ i J̃ id ṽ ,

~3.1!

where the first equality comes from the Gauss’s theorem
in the second one use has been made of the momentum
straint ~2.2! and the conformal Killing equation (L̃ j̃ ) i j 50.
From Eq.~3.1!, we can see that whenj iJi is negative,DM is
also negative. Hence, in contrast with the ADM mass in
ymptotically flat space-time,MAD is reduced by the implod-
ing motion of matter fields. Furthermore, in this case,MAD
can be negative since it is possible to consider arbitrary la
H or, in other words, the support of the integrand in Eq.~3.1!
can be arbitrary large.

Here we shall estimate the condition to makeMAD nega-
tive. Assuming the dominant energy conditionrH
>(JiJ

i)1/2, we obtain

uDM u.HL3u J̃ r uV&HL3 r̃ HV, ~3.2!

whereL andV are, respectively, the length scale and volum
scale of the region in which inhomogeneities exist. On
other hand, from Eqs.~2.6! and ~2.25!, we obtain

M5E S r̃ Hc231
1

16p
K̃ i

j K̃ j
i c27Dd ṽ * r̃ HV. ~3.3!

From the above equation, we find the condition ofM
,uDM u to be

L*H21. ~3.4!

Hence, in order thatMAD be negative, the size of the inho
mogeneities should be larger than the cosmological hori
scale.

In the case of asymptotically flat space-time, the AD
mass is the conserved energy. Furthermore, it can be a so
of gravity ~tidal force! and therefore it is called thegravita-
tional mass. As mentioned, the AD mass is also a conserv
quantity and has a meaning of energy in asymptotically
Sitter space-time. However, a question arises here: Does
AD mass produce the gravitational field in the same man
as the ADM mass in asymptotically flat space-time? In or
to answer this question, by analyzing the conformally fl
initial data, we shall investigate the asymptotic behavior
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the electric part of the Weyl tensor which corresponds to
tidal force for a timelike geodesic normal to the spacel
hypersurface considered here. Here we shall consider t
cases, i.e., initial data in a spherical symmetric space~A!,
with a spherical source with a linear momentum~B!, and
with two boosted masses of which the total momentum v
ishes~C!. To obtain the ‘‘physical‘‘ components, we intro
duce an orthonormal triad of basis vectorse(a)

i as

e~r !
i 5

1

c2r
~x,y,z!, ~3.5!

e~u!
i 5

1

c2rAx21y2
~xz,yz,2x22y2!, ~3.6!

e~w!
i 5

1

c2Ax21y2
~2y,x,0!. ~3.7!

Using Eq.~2.5!, the triad components of the electric part
the Weyl tensor in the vacuum region are written as

E~a!~b![C~a!m~b!ntmtn5 ~3!R~a!~b!23HK̂ ~a!~b!2K̂ ~a!
i K̂ ~b!i ,

~3.8!

wheretm is the unit vector normal to the hypersurface.
Since we consider the conformally flat initial data, t

asymptotic behavior of the metric is given by Eq.~2.19!.
Hence the triad components of the Ricci tensor(3)R(a)(b) of
three-space asymptotically behave as

~3!R~r !~r !→2
2M

r 3
, ~3.9!

~3!R~u!~u!→
M

r 3
, ~3.10!

~3!R~w!~w!→
M

r 3
, ~3.11!

and the other components are of orderO(r 24). Thus the
traceless part of the extrinsic curvatureK̂ i j gives rise to the
difference among the various conformally flat initial data.

A. Spherically symmetric initial data

In a spherically symmetric space, Eq.~2.7! is easily inte-
grated as

K̃ ~r !~r !522K̃ ~u!~u!522K̃ ~w!~w!→
SJ

r 3
, for r→1`,

~3.12!

where
e

ee

-

SJ[8pE
0

1`

r 83 J̃ rdr8, ~3.13!

and other components ofK̃ (a)(b) vanish. Then, it is easily
seen that forr→1`, E(a)(b) behaves as

E~r !~r !522E~u!~u!522E~w!~w!→2
2M

r 3
2HK̃ ~r !~r !

52
2

r 3 S M1
H

8p R K̃ i
j j̃ id S̃j D52

2MAD

r 3
,

~3.14!

and other components areO(r 24). Equation~3.14! shows
that MAD produces the tidal force by the same way as
ADM mass in asymptotically flat space-time.

B. A Spherical source with linear momentum

The solution of the momentum constraint~2.7! for a
single black hole located at the origin is obtained by keep
only K (1) i j nonzero witha50 in Eq. ~2.13!. Then P is a
conserved linear momentum associated with the translati
Killing vector of background de Sitter space-time. Then t
asymptotic behavior of the extrinsic curvature is given by

K̃ ~r !~r !→
3

r 2
Pcosu, ~3.15!

K̃ ~u!~u!5K̃ ~w!~w!→2
3

2r 2
Pcosu, ~3.16!

and the other components vanish. We can easily verify
in this caseMAD coincides withM considering Eqs.~2.24!–
~2.26!. However, the asymptotic behavior ofE(a)(b) is dif-
ferent from the asymptotically flat case,

E~r !~r !→2
2MAD

r 3
2

3H

r 2
Pcosu, ~3.17!

E~u!~u!5E~w!~w!→2
MAD

r 3
2

3H

2r 2
Pcosu, ~3.18!

and other components vanish.MAD produces the tidal force
by the same manner as asymptotically flat space-time. H
ever, in the limit ofr→`, the leading term ofE(a)(b) comes
from the linear momentumP and depends on the polar ang
u.1 The relative strength between the tidal force due to
momentum P and that due to MAD is given by
Hr 3uPu/MAD . Hence, in order for the tidal force due to th
linear momentum to dominate, the cosmological const

1This effect can be regarded as a kinematical effect due to ta
the comoving coordinate system. In fact, the linear momentum
be eliminated by a coordinate transformation. We note, howe
that the dipole term in the tidal force for a test particle cannot
eliminated by the coordinate transformation@22#.
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should satisfyuPu/MAD*1 if the inhomogeneity distribute
within a region smaller than the cosmological horizon sca
On the other hand, if the inhomogeneity distributes over
cosmological horizon scale and there is a coherent implod
motion in addition to the translational motion, theMAD can
vanish. In such a case, the effect of the linear momentum
the tidal force also dominates. It should be noted that
tidal force is produced by the linear momentum of a ma
field even ifMAD vanishes.

C. Initial data for two black holes with linear momenta

In contrast with the previous case, the total linear mom
tum vanishes in the case of the initial data obtained in S
II. From Eqs.~2.9! and ~2.11!, the asymptotic behavior o
K̃ (a)(b) is

K̃ ~r !~r !→
6

r 3
aP~cos2u11!, ~3.19!

K̃ ~u!~u!→2
3

2r 3
aP~cos2u13!, ~3.20!

K̃ ~w!~w!→2
3

2r 3
aP~3cos2u11!, ~3.21!

and the other components areO(r 24). HenceMAD is given
by

MAD5M12HaP, ~3.22!

and for r→1`, E(a)(b) is given as

E~r !~r !→2
2MAD

r 3
2

6

r 3
HaP~3cos2u11!,

~3.23!

E~u!~u!→
MAD

r 3
1

1

2r 3
HaP~3cos2u15!, ~3.24!

E~w!~w!→
MAD

r 3
1

1

2r 3
HaP~9cos2u21!, ~3.25!

and the other components are of orderO(r 24). Equations
~3.23!–~3.25! mean that when the motion of the inhomog
neities is not isotropic the tidal force depends on their dir
tions even if the total momentum vanishes. It is worthy
notice that even ifMAD vanishes, the tidal force is indee
produced by the anisotropic motion of a matter field as
Sec. III B.

IV. DISCUSSION

We have numerically obtained initial data of two boost
black holes in asymptotically de Sitter space-time. We h
.
e
g

n
e
r

-
c.

-

n

e

searched for an apparent horizon enclosing both black h
and have shown the relation between apparent horizon
mation and the AD massMAD . Interestingly, whenMAD is
larger than the critical massMc of Schwarzschild–de Sitte
space-time, the apparent horizon enclosing both black h
does not appear for any separationa between each black
hole and for any momentum. This result is the same as
in the analysis of the Einstein-Rosen bridge system@5#.

Furthermore, in order to understand the dynamical me
ing of MAD , we have examined the asymptotic behavior
the electric part of the Weyl tensorE(a)(b) , which corre-
sponds to the tidal force, in three cases of initial data
asymptotically de Sitter space-time. In the spherically sy
metric case,MAD produces the tidal force by the same w
as asymptotically flat space-time, i.e.,MAD /r 3. However, in
the case of the initial data of a spherical source with lin
momentum, the behavior of the tidal force is very differe
from the asymptotically flat case. In this case, althoughMAD
produces a part of the tidal force in the same way as asy
totically flat space-time, the leading term ofE(a)(b) is pro-
portional to r 22, which comes from the linear momentum
and depends on the direction. In the case of the initial d
obtained in Sec. II, i.e., two boosted black holes,MAD also
produces the tidal force in the same way as the above
amples but the contribution of the relative velocity produc
the anisotropic dependence of the tidal force on the po
angleu. However, in contrast with a spherical source w
linear momentum, both contributions fromMAD and linear
momenta on the tidal force have the same asymptotic be
ior r 23 since the total momentum vanishes.

From these results, it seems that the anisotropic velocit
important for the dynamics of inhomogeneities in a sc
comparable to the cosmological horizon scale. On the o
hand, in the analysis of initial data, we have seen that ap
ent horizon formation crucially depends on whether the A
mass is larger thanMc or not. This fact does not depend o
the anisotropic velocity and suggests that the final state
nonrotating gravitational collapse in asymptotically de Sit
space-time is Schwarzschild–de Sitter space-time if cos
censorship holds. Inhomogeneities with too large anMAD
cannot collapse into a black hole again if the cosmic cens
ship holds.

If there exists a positive cosmological constant, lar
scale nonspherical gravitational collapse may be very dif
ent from that of asymptotically flat space-time due to t
different behavior ofE(a)(b) . In order to investigate such a
effect on the dynamics of the inhomogeneities, we need
solve the Einstein equation numerically and follow the tim
evolution.
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