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Relativistic Zel’dovich approximation in a spherically symmetric model
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We compare relativistic approximation methods, which describe gravitational instability in the expanding
universe, in a spherically symmetric model. Linear perturbation theory, second-order perturbation theory, the
relativistic Zel’dovich approximation, and the relativistic post-Zel’dovich approximation are considered and
compared with the Lemaıˆtre-Tolman-Bondi solution in order to examine the accuracy of these approximations.
We consider some cases of inhomogeneous matter distribution while the homogeneous top-hat model has been
usually taken in the previous Newtonian works. It is found that the Zel’dovich-type approximations are
generally more accurate than the conventional perturbation theories in the weakly nonlinear regime. The
applicable range of the Zel’dovich-type approximations is also discussed.@S0556-2821~98!04010-7#

PACS number~s!: 98.80.Hw, 04.25.Nx
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I. INTRODUCTION

Structure formation in the universe is an important su
ject of research in cosmology. A standard view of the str
ture formation is that density fluctuations with small amp
tudes in the early universe have grown to be a variety
cosmic structures due to gravitational instability. The grow
of the density fluctuations has been thoroughly investiga
by linear perturbation theory of the Friedmann-Lemaıˆtre-
Robertson-Walker~FLRW! universe within both the New
tonian theory and general relativity@1#. Relativistic linear
perturbation theory was first derived by Lifshitz@2#. Such
relativistic treatments are indispensable when we cons
large-scale fluctuations. In his theory, however, there
mains a gauge problem that unphysical perturbations are
cluded in the solutions. This problem was carefully stud
later by Press and Vishniac@3#. Also developed was the
gauge-invariant formulation@4#, which gives a conceptually
straightforward way for dealing with cosmological perturb
tion.

It is true that the linear theories play an important role
the study of gravitational instability, but they are valid on
in the region where density contrastd[(r2rb)/rb is much
smaller than unity. (r is energy density of the perturbe
FLRW universe andrb is that of the background FLRW
universe.! As d grows to be comparable to unity, nonline
effects become essential and we need some kind of nonli
approximation. Tomita@5# developed second-order perturb
tion theory by extending Lifshitz’s work to study the nonlin
ear effect of gravitational instability for the matte
dominated universe. His approach, however, still depend
the assumption ofd being small. An approximation schem
without the assumption was proposed by Zel’dovich@6#
within the Newtonian framework. This scheme is known
the Zel’dovich approximation, which is now widely applie
to the problems of large-scale structure formation. It h
570556-2821/98/57~10!/6094~10!/$15.00
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been shown that the Zel’dovich approximation can be
garded as a subclass of the first-order solutions in Lagran
perturbation theory@7#. Then higher-order extension of th
Zel’dovich approximation, say, the post-Zel’dovich approx
mation~and post-post-Zel’dovich approximation and so o!,
is straightforwardly derived via the higher-order Lagrangi
approach@8–10#. Relativistic versions of the Zel’dovich ap
proximation have also been studied for the last few years
several authors@11–14#. Here we will focus on our tetrad
based approach, whose correspondence to the orig
Zel’dovich approximation is made clear in Ref.@12# and ex-
tension to second order is presented in Ref.@13#.

One of the remarkably advantageous points of
Zel’dovich-type approximations, both the original Newto
ian one and the relativistic version, is that they include ex
solutions when the deviation from the background FLR
universe is locally one dimensional. These exact soluti
are known as Zel’dovich solutions@6,15# in the Newtonian
case and~some class of! Szekeres solutions@16,17# in the
general relativistic case, respectively. For this reason,
Zel’dovich-type approximations are presumably accurate
description of nearly one-dimensional collapse. It is n
clear, however, whether they also give high accuracy in
case of non-one-dimensional collapse. In the Newton
framework, it has been investigated by using spherical m
els: The so-called top-hat collapse model@18#, the top-hat
void model @19#, and some more general cases@10#. ~See
also Ref.@20# for review.! In addition, there is also a recen
work @21# in which homogeneous spheroidal models are c
sidered. An interesting implication is obtained in it: As th
deviation of the models from the spherical symmetry b
comes larger, the accuracy of the Zel’dovich-type appro
mations increases while the conventional~Eulerian! approxi-
mations have the opposite tendency. It indicates that
Zel’dovich-type approximations may be the least accurate
the exactly spherical case. Then, considering the sphe
6094 © 1998 The American Physical Society
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case may tell us the lowest accuracy of the Zel’dovich-ty
approximations.

In general relativity, an exact solution of the spherica
symmetric dust model is known as the Lemaıˆtre-Tolman-
Bondi ~LTB! solution@22#. It is, therefore, of interest to tes
the Zel’dovich-type approximations with the exact solutio
to examine accuracy of the approximations. It is also instr
tive to clarify the differences between conventional pertur
tion theories and Zel’dovich-type approximations by impo
ing spherical symmetry and comparing them with the ex
solutions.

In this paper, we compare relativistic approximations su
as linear perturbation theory by Lifshitz@2#, second-order
perturbation theory by Tomita@5#, the relativistic Zel’dovich
approximation by Kasai@12#, and the relativistic post-
Zel’dovich approximation by Russet al. @13# with the LTB
solution. We consider some initial conditions which have
inhomogeneous matter distribution, not a homogeneous
similar to the top-hat model adopted in the Newtoni
works. It will be shown that the Zel’dovich-type approxim
tions are more useful than the conventional ones in the q
sinonlinear regime in each case.

The plan of this paper is as follows. In the next sectio
we summarize the relativistic perturbation theories m
tioned above. In Sec. III, the LTB solution is introduced a
the relation to the relativistic perturbation theories is cons
ered. The main results of this paper are shown in the Sec
Section V contains a summary of our results and discussi

Throughout this paper, units are chosen so thatc51. In-
dicesm,n, . . . , runfrom 0 to 3 andi , j , . . . , runfrom 1 to
3.

II. RELATIVISTIC PERTURBATION THEORIES

In this section, we summarize general relativistic pert
bation theories which describe gravitational instability in t
matter-dominated FLRW universe. We assume that the b
ground is the Einstein–de Sitter spacetime, whose line
ment is

ds252dt21a2~ t !~dR21R2du21R2sin2udf2!

[2dt21a2~ t !ki j dxidxj , ~2.1!

where a(t)5t2/3 is the scale factor. The background fou
velocity and energy density of the matter areub

m5(1,0,0,0)
andrb51/(6pGt2), respectively. Density contrastd shown
later is defined asd[(r2rb)/rb , wherer is energy density
of the perturbed FLRW universe.

A. Conventional linear and second-order theories

Lifshitz @2# pioneered the linear perturbation of th
FLRW universe in the synchronous gauge

ds252dt21gi j dxidxj . ~2.2!

In his theory, the scalar-mode solutions for pressureless m
ter ~dust! are
e

-
-
-
t

h

n
ne

a-

,
-

-
V.
s.

-

k-
e-

at-

g i j [a22gi j 5~ 11 20
9 C!ki j 12t2/3C u i j 12t21F u i j ,

u~1!
i 50, ~2.3!

d~1!52t2/3C uk
uk 2t21F uk

uk ,

where C5C(x) and F5F(x) are spatial arbitrary func-
tions of first-order smallness,u denotes the covariant deriva
tive associated with the background three-metricki j , andui

represents spatial component of the four-velocity of the m
ter. The subscript (1) denotes the first-order perturbat
quantity. We will not consider the contribution of the deca
ing mode, which is proportional tot21, later on.

Tomita @5# developed a second-order perturbation the
by extending Lifshitz’s work. He obtained the followin
second-order perturbative solutions from the first-order s
lar mode solutions

g i j 5~ 11 20
9 C1 100

81 C2!ki j

1t2/3~ 2C u i j 2
40
9 C u iC u j2

20
9 CC u i j 1

10
9 C ukC ukki j !

1 1
7 t4/3$19C u ikC u j

uk 212C uk
uk C u i j

13@~C uk
uk !22C ul

uk C uk
ul #ki j %,

u~1!
i 50, u~2!

i 50, ~2.4!

d~1!1d~2!52t2/3C uk
uk 1 5

9 t2/3~C ukC uk16CC uk
uk !

1 1
7 t4/3@5~C uk

uk !212C ul
uk C uk

ul #.

The subscript (2) represents the second-order perturba
Here we neglected the second-order tensor mode, whic
induced by the first-order scalar mode and does not appe
the spherical case.

B. Zel’dovich-type approximations in general relativity

In this subsection, we review a relativistic version of t
Zel’dovich approximation developed by us@12,13#. ~Con-
cerning the relationship to the Newtonian Zel’dovich a
proximation and the details, see Ref.@12#, in particular, Sec.
III C.! The irrotational dust model is assumed and then
can take the comoving synchronous coordinate

ds252dt21gi j dxidxj ~2.5!

with the four-velocityum5(1,0,0,0). Thanks to this choic
of the gauge, the energy equationumT ;n

mn 50 with Tmn

5diag@r,0,0,0#, which becomes

ṙ1rK i
i 50 ~2.6!

is formally solved in the form

r5r~ t in ,x!
Adet@gi j ~ t in ,x!#

Adet@gi j ~ t,x!#
. ~2.7!

Here the overdot denotes]/]t, andK j
i is the extrinsic cur-

vature, whose expression in the present gauge isK j
i

5 1
2 gikġjk. Introducing the triad
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gi j 5a2~ t !d~k!~ l !e i
~k!e j

~ l !, ~2.8!

Eq. ~2.7! is rewritten as

r5rb

det@e i
~ l !~ t in ,x!#

det@e i
~ l !~ t,x!#

. ~2.9!

We obtain perturbative solutions for the triade i
(l ) regard-

less of the energy densityr up to second order in the fol
lowing form @13#:

e i
~ l !5k i

~ l !1E i
~ l !1« i

~ l ! , ~2.10!

where k i
(l ) is the background triad defined byki j

5d (k)(l )k i
(k)k j

(l ) , and E i
(l ) and « i

(l ) are the first-order and
the second-order solutions given by

E i
~ l !5k j

~ l !S 10

9
Cd i

j 1t2/3C u i

u j D ,

« i
~ l !5k j

~ l !~ t2/3c i
j 1t4/3w i

j !. ~2.11!

HereC5C(x) is the same function as the one used in E
~2.3! and ~2.4!, and c j

i 5c j
i (x) and w j

i 5w j
i (x) are qua-

dratic quantities ofC, written as

c j
i 5

5

9
C ukC ukd j

i 2
20

9
~CC u j

u i 1C u iC u j !, ~2.12!

w j
i 5

3

14
@~C uk

uk !22C ul
uk C uk

ul #d j
i2

6

7
~C uk

uk C u j
u i 2C uk

u i C u j
uk !.

~2.13!

Note that we removed a remaining gauge freedom in
linear level to derive the above solution.~See Appendix A of
Ref. @13#.! And we again neglected contributions of the d
caying scalar mode and the tensor mode. We find that
solution ~2.10! is consistent in the metric level with Eqs
~2.3! and ~2.4! @13#.

Relativistic Zel’dovich and post-Zel’dovich approxima
tions are obtained by substituting Eq.~2.10! into Eq. ~2.9!:

dZA5S detFd j
i 1

t2/3C u j
u i

11 10
9 C

G D 21

21, ~2.14!

dPZA5S detFd j
i 1

t2/3C u j
u i 1t2/3c j

i 1t4/3w j
i

11 10
9 C

G D 21

21.

~2.15!

ZA and PZA denote the Zel’dovich and the post-Zel’dovi
approximations.

As was written previously, the results of the convention
linear and second-order theories are

d lin52t2/3C uk
uk , ~2.16!
.

e

-
e

l

dsec52t2/3C uk
uk 1

5

9
t2/3~C ukC uk16CC uk

uk !

1
1

7
t4/3@5~C uk

uk !212C ul
uk C uk

ul #. ~2.17!

lin and sec denote the linear and the second-order pertu
tion theories. Expanding Eqs.~2.14! and ~2.15! under the
condition uuCuu!1 ~where uuCuu denotes an appropriat
norm of a functionC), Eqs. ~2.16! and ~2.17! can also be
obtained, respectively. In this sense, ZA and PZA are ext
sions of lin and sec toudu;1.

III. SPHERICALLY SYMMETRIC MODEL

In this section, we consider the spherically symmet
model of gravitational instability in the FLRW universe
There exists an exact solution known as the LTB soluti
which includes three arbitrary functions, in the spherica
symmetric case@22#. Here we make clear the relations b
tween the arbitrary functions included in the LTB solutio
and the ones which appears in the approximation meth
mentioned in the Sec. II. The line element of the LTB so
tion is

ds252dt21
r 82

11 f
dR21r 2~du21sin2udf2!, ~3.1!

where (8)[]/]R and f 5 f (R) is an arbitrary function which
is related to initial velocity of dust.r 5r (t,R) satisfies the
following differential equation:

ṙ 25
F~R!

r
1 f ~R! ~3.2!

with an arbitrary functionF(R), which represents initial dis-
tribution of matter. Equation~3.2! can be integrated as fol
lows:

~i! f .0:

r 5
F

2 f
~coshh21!, t2t0~R!5

F

2 f 3/2
~sinhh2h!,

~3.3!

~ii ! f ,0:

r 5
F

22 f
~12cosh!, t2t0~R!5

F

2~2 f !3/2
~h2sinh!,

~3.4!

~iii ! f 50:

r 5S 9F

4 D 1/3

@ t2t0~R!#2/3, ~3.5!

wheret0(R) is an integration constant. The above cases~i!,
~ii !, and~iii ! may be called ‘‘open,’’ ‘‘closed,’’ and ‘‘flat,’’
respectively, as in the FLRW universe. In these three ca
the density reads
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8pGr5
F8

r 8r 2
. ~3.6!

Apparently the LTB solution includes the three arbitra
functionsf (R), F(R), andt0(R). But the dynamical degree
of freedom are actually 2 because there remains the free
of the choice of the radial coordinateR.

The LTB solution is some extension of the FLRW sol
tion and is often used as a model of an inhomogeneous
verse~see Ref.@17# for a review!, and this solution can be
reduced to the FLRW solution. By choosingf 50 and t0
50 ~and F5 4

9 R3 for convenience!, we easily find thatr
5a(t)R and the LTB solution is reduced to the spatially fl
FLRW solution~2.1!. Furthermore, we can represent this s
lution by the form of the flat FLRW solution with its pertur
bations and see that the arbitrary functions in the LTB so
tion correspond to those in linear perturbation theory. To
this, we consider a spherical linear perturbation of the s
tially flat FLRW solution. Substituting

f 5 f ~1! , t05t0~1! , F5
4

9
R31F ~1! , r 5aR1r ~1! ,

~3.7!

into Eq. ~3.2!, the linearized equation forr (1) can be ob-
tained, where the quantities with subscript (1) are treate
a linear perturbation. Solving this equation, we obtain

r ~1!5aRS 3

4
F ~1!R

231
9

20
t2/3f ~1!R

221t21BD , ~3.8!

whereB5B(R) is an integration constant. ActuallyB is re-
lated to t0(1) by B52 2

3 t0(1) . It is easily seen by choosin
f 50 and using Eq.~3.5!, which reads

r ~1!5aRS 3

4
F ~1!R

232
2

3
t21t0~1!D . ~3.9!

Then we can write the ‘‘linearized LTB metric’’ in terms o
f (1) , t0(1) , andF (1) as follows:

gRR511
3

2
~F ~1!R

22!82 f ~1!

1
9

10
t2/3~ f ~1!R

21!82
4

3
t21~ t0~1!R!8,

guu5R2S 11
3

2
F ~1!R

231
9

10
t2/3f ~1!R

222
4

3
t21t0~1!D .

~3.10!

On the other hand, the solution of linear theory~2.3! gives
m

i-

-

-
e

a-

as

gRR511
20

9
C12t2/3C912t21F9,

guu5R2S 11
20

9
C12t2/3C8R2112t21F8R21D .

~3.11!

Comparing Eqs.~3.10! and ~3.11!, we find the following
relations:

F ~1!5
40

27
CR3, f ~1!5

20

9
C8R, t0~1!52

3

2
F8R21.

~3.12!

This tells us that the arbitrary functionsf (R) andt0(R) cor-
respond to the growing and decaying modes, respectively
the linear level. We chooset0(R)50 hereafter because con
tributions of the decaying mode are not taken into acco
throughout. Moreover, we know thatF (1) and f (1) are related
to each other by the functionC. This is because we elimi
nated a residual gauge freedom and thus fixed the ga
condition completely in the previous section. This fixing co
responds to determination of the choice of the radial coo
nateR in the spherical case.

To see the relation between the LTB solution and
second-order perturbation, we introducef (2) , F (2) , andr (2)
so that

f 5
20

9
C8R1 f ~2! , F5

4

9
R31

40

27
CR31F ~2! ,

r 5aR1r ~1!1r ~2! , ~3.13!

and make calculations in the same way. Heref (2) , F (2) , and
r (2) should be regarded asO(uuCuu2) andr (2) is obtained by
solving Eq.~3.2! perturbatively. Then we obtain the part o
O(uuCuu2) in gRR and guu . Comparing thesegRR and guu
with the solution of the second-order theory~2.4!, we find

F ~2!5
400

243
C2R3, f ~2!5

100

81
~C82R222CC8R!.

~3.14!

On the other hand, the LTB solution as an exact mode
obtained by choosing

F5
4

9
R31

40

27
CR31

400

243
C2R3, ~3.15!

f 5
20

9
C8R1

100

81
~C82R222CC8R!. ~3.16!

From Eq. ~3.6!, the density contrast of the LTB solutio
reads

dLTB5
3

4

t2F8

r 8r 2
21. ~3.17!
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Let us turn our attention to the approximation methods
we imposeC5C(R), Eqs.~2.16!, ~2.17!, ~2.14!, and~2.15!
become

d lin52t2/3~C912C8R21!, ~3.18!

dsec52t2/3~C912C8R21!

1
5

9
t2/3@C8216C~C912C8R21!#
o
de

nia
e
-
th

he
o

nd

st
n-
in
f
1t4/3S C921

20

7
C9C8R211

24

7
C82R22D ,

~3.19!

dZA5S 11
t2/3C8R21

11 10
9 C D 22S 11

t2/3C9

11 10
9 C D 21

21,

~3.20!
dPZA5S 11 t2/3C8R211 5
9 t2/3~C8224CC8R21!2 3

7 D t4/3C82R2211~10/9!C22

3S 11
t2/3C92 5

9 t2/3~3C8214CC9!2 3
7 t4/3C8R21~2C92C8R21!

11 10
9 C

D 21

21. ~3.21!
we

p-
n
di-
v-

y

u-

-

rded
, if

n
oss-
ar
The peculiar velocity, which represents the deviation of m
tion of the dust shell from the Hubble expansion and is
fined byv[ ṙ 2Hr ~whereH[ȧ/a is the Hubble parameter!
is written as

v lin5vZA5
2

3
t1/3C8, ~3.22!

vsec5vPZA5
2

3
t1/3C81

10

27
t1/3~C82R24CC8!

2
4

7
tC82R21. ~3.23!

The above expressions are similar to those in the Newto
case, which are, for example, given in the Appendix of R
@10#. Note thatv lin5vZA andvsec5vPZA because, in the met
ric level, the Zel’dovich-type approximations coincide wi
the conventional ones.

Now the density contrast and the peculiar velocity of t
LTB solution and the approximations are written in terms
only the functionC. The functionC should be determined
from initial conditions so that the regularity conditions atR
50, i.e.,C(R50)50 andC8(R50)50 are satisfied. Then
the peculiar velocity atR50 is always zero both in the LTB
solution and the approximation. Moreover, ifC is taken so
that C}R2 near R50, the peculiar velocity nearR50 is
proportional toR, v}R.

IV. COMPARISON OF LTB SOLUTION
AND APPROXIMATIONS

Let us proceed with a comparison of the LTB solution a
the approximations. As mentioned in Sec. II,dZA and dPZA
included lin anddsec, respectively, when the density contra
is small. As for the peculiar velocity, ZA and PZA are coi
cident with lin and sec, respectively. Moreover, expand
the density contrast of ZA in the following form:
-
-

n
f.

f

g

dZA.2t2/3~C912C8R21!1
10

9
t2/3C~C912C8R21!

1t4/3~C9212C9C8R2113C82R22!1O~ uuCuu3!,

~4.1!

it is found that ZA includes second-order~and higher! terms
partially in the expression of the density contrast. Thus
can expect thatdZA is as accurate asdsec at late time.

In order to investigate the relative accuracy of the a
proximations quantitatively, we compare the LTB solutio
and the approximations by using some specific initial con
tions. Here initial conditions can be completely fixed by gi
ing an initial density profiled in(R). For simplicity, we as-
sume thatd in(R) is a first-order quantity. Then the arbitrar
function C is determined by the relation

d linu t5t in
52~C912C8R21!5d in~R! ~4.2!

with normalizationt in51. (t in may be regarded as the deco
pling time in the history of the expanding universe.! Equa-
tion ~4.2! is solved to determine the functionC with the
boundary conditionsC(R50)50 andC8(R50)50.

Here we consider the following two cases:

d in~R!5eS 11
R

R0
DexpS 2

R

R0
D ~4.3!

and

d in~R!5eF11
R

R0
2S R

R0
D 2GexpS 2

R

R0
D , ~4.4!

wheree is a small constant (ueu!1) which represents am
plitude of an initial density perturbation, andR0 is a comov-
ing scale of the fluctuations. The former case can be rega
as smoothing out the top-hat model while in the latter case
e,0, the neighborhood ofR50 is the underdense regio
~void! and the outside is overdense, and then the shell cr
ing will occur. ~If e.0, the latter case also shows a simil
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behavior to the top-hat model, as does the former one.! For
both of the cases, we can evaluated at the center of the
fluctuations (R50) from the LTB solution and the approx
mation methods in the following form:

dLTB~R50!55
9

2

~h2sinh!2

~12cosh!3
21, for e.0,

9

2

~h2sinhh!2

~coshh21!3
21, for e,0,

~4.5!

with

t55
9

20
A3

5
e23/2~h2sinh!, for e.0,

9

20
A3

5
~2e!23/2~sinhh2h!, for e,0,

and

d lin~R50!5et2/3, ~4.6!

dsec~R50!5et2/31
17

21
e2t4/3, ~4.7!

dZA~R50!5S 12
e

3
t2/3D 23

21, ~4.8!

dPZA~R50!5S 12
e

3
t2/32

e2

21
t4/3D 23

21. ~4.9!

These expressions do not depend on the details of in
density profiles. It is of essence in the calculation thatd in
.e nearR50, ande.0 ande,0 correspond tof ,0 and
f .0 at R50, respectively. The above results are describ
in Figs. 1 and 2, where Eqs.~4.5!–~4.9! are plotted as func-
tions ofdLTB(R50). Figure 1, which represents the collap
case, tells us that ZA is more accurate than lin and PZA
more accurate than sec in alldLTB(R50).0 regions.@Fig-
ure 1 shows only the region of 0,dLTB(R50),1, but the
tendency shown in Fig. 1 does not change in denser re
dLTB(R50).1#. We also find that ZA becomes more acc
rate than sec at late time whendLTB is larger than about 0.5
This is understood by comparing Eq.~4.7! and the expanded
form of Eq. ~4.8!:

dZA~R50!.et2/31
2

3
e2t4/31O~e3!. ~4.10!

@This form is also obtained from Eq.~4.1!.# We see from
Eqs. ~4.7! and ~4.10! that dZA is smaller thandsec at early
time (et2/3!1) due to the lack of the terms inO(e2). In this
sense,dZA is less accurate thandsecwhenet2/3!1. However,
due to the existence of the singularity atet2/353 in dZA , dZA
becomes more accurate thandsec at late time. This existence
of the singularity in dZA essentially determines th
asymptotic behavior ofdZA . Indeed, the exact solutiondLTB
for e.0 in Eq. ~4.5! has a pole of order 3 atet2/3
al

d

is

on

53(3p/2)2/3/5;1.7 (h52p). This pole corresponds to th
crunching time atR50, and the singularity occurs at thi
time.

From Eqs.~4.5!–~4.9!, we can also evaluate accuracy
the approximations quantitatively at the turnaround timeh
5p @et2/353(9p2/2)1/3/10;1.1#, though it is not drawn in
Fig. 1. Here the turnaround time is characterized byṙ 50,
i.e., the maximum expansion. Physically speaking, the d
sity fluctuation begins to collapse due to gravitational ins
bility, overcoming the cosmic expansion at the turnarou

FIG. 1. Density contrastd at R50 calculated from approxima
tion methods as a function ofdLTB(R50) for e.0. dZA(R50)
catches up withdsec(R50) at dLTB(R50);0.5.

FIG. 2. Same as in Fig. 1, but fore,0.
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time. At the turnaround time,dLTB becomes 4.6. To this
dLTB , d lin , dsec, dZA , and dPZA grow to about 23, 43, 60
and 84%, respectively. It is natural thatdPZA is more accu-
rate thandZA from the view point of the singularity at th
crunching time.dPZA also has a pole of order 3 atet2/3

5(A13327)/2;2.3. This crunching time is nearer to th
real crunching time;1.7 than that ofdZA .

From Fig. 2, which denotes the void case, we find t
PZA gives the best fit at early time beforedLTB.20.7 while
ZA works best at late time whendLTB is smaller than abou
20.7. At late time, PZA gives bad results. It is due to d
ference of the signature between the first-order~2et2/3/3
.0) and the second-order~2e2t4/3/21,0) terms whene
,0. The same feature also appears in sec but at an ea
time. However, in PZA, this difference is more serious th
in sec. In sec,dsec grows ase2t4/3/21,0, while in PZA, the
difference of the signature makesdPZA diverge at a finite
time et2/35(71A133)/2. This divergence is an apparent o
which is caused by the formalization of PZA. Indeed, we c
easily see from Eq.~4.5! that the exact solutiondLTB has no
pole in t.0 ~i.e., there is no singularity! and approaches to
21 as;t21. Though there is no singular point ind lin except
t5`, d lin takes a value smaller and smaller without limit
the time increases because there is no physics to stop
decrease of the energy density in this order. Then, onlydZA
predicts the true asymptotic value ofd without growth and
apparent singularities. ButdZA approaches21 ast22. This
difference is also seen in Fig. 2. In the Newtonian ca
detailed discussions on the void can be seen in Ref.@19#. Our
relativistic results up to now are quite similar to Newtoni
ones, which are given in Refs.@10,18,19#.

Figures 3~a! and 4~a! give the density contrast as a fun
tion of R/R0 whene51.031023 and t52.03104, ande5
21.031023 and t53.73104 with the initial density profile
~4.3!, respectively. These two figures show that differen
between the LTB solution and the approximations is the la
est at R50 in the former case. Hence, it is sufficient
consider the difference atR50 when we examine the accu
racy of the approximations in the former case~4.3!.

We also see the evolution of the peculiar velocity with t
initial density profile~4.3! in Figs. 3~b! and 4~b!. Here we
consider the peculiar velocity normalized by the Hubble fl
Hr . It will be convenient to use it to see the deviation of t
model from the FLRW universe in the metric level. For e
ample, the normalized peculiar velocityv/Hr 521 at the
turnaround time. Figures 3~b! and 4~b! show the normalized
peculiar velocity corresponding to Figs. 3~a! and 4~a!. Al-
though these figures show that the normalized peculiar
locity v/Hr is not zero atR50, we must note that this is du
to our normalization. As mentioned in the last section,
peculiar velocity must behave as;R near R50. On the
other hand,Hr also behaves as;R nearR50. Hence our
normalized peculiar velocity does not vanish atR50 due to
the normalization. It is also noted that the peculiar veloc
obtained from the Zel’dovich-type approximations is t
same as the one obtained from the conventional approx
tions as mentioned in the previous section. Furthermore,
find from Figs. 3~b! and 4~b! that the deviation from the
FLRW universe is maximum nearR50 for the initial profile
~4.3!. This also shows that it is sufficient to consider t
t

lier
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,
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y
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e

difference atR50 when we examine the accuracy of th
approximations in the former case~4.3!, as mentioned above

On the other hand, for the initial density profile given b
Eq. ~4.4!, it cannot be said that the largest deviation of t
approximations from the LTB solution occurs atR50. Fig-
ures 5~a! and 6~a! are for this initial profile whene521.0
31023 and t52.03105, and e521.031023 and t53.0
3105, respectively. For this initial density profile, the she
crossing singularity will occur. The tendency of the occu
ring of shell crossing can be seen from the peculiar veloc
in Figs. 5~b! and 6~b!, where the profile of the normalize
peculiar velocities for this case are drawn. In Figures 5~b!

FIG. 3. ~a! Profile of density contrast whend in5e(1
1R/R0)exp(2R/R0) and t52.03104 with e51.031023. ~b! Pro-
file of normalized peculiar velocity corresponding to~a!.
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and 6~b!, there exists av50 point atR/R0;2.5. This point,
which is denoted byR5RcÞ0 hereafter, is a boundar
where the universe is locally ‘‘open’’ (f .0) and ‘‘closed’’
( f ,0), and thenf 50 at the point. The peculiar velocity in
the void regionR,Rc is positive, while that in the closed
regionR.Rc is negative. Then we can expect that the sh
crossing of the dust matter will form atR5Rc within a finite
time.

Indeed, one can see from Eqs.~3.2! and ~3.5! that the
shell crossing, which is characterized by a finite radius
which r 8 vanishes@23#, will occur at the radiusR5Rc .
From Eq.~3.5!, which is the solution whenf 50, we know

FIG. 4. ~a! Same as in Fig. 3~a!, but for the void case. We
choosee521.031023 and t53.73104. ~b! Profile of normalized
peculiar velocity corresponding to~a!.
ll

t

r c5S 9Fc

4 D 1/3

t2/3. ~4.11!

~Subscriptc denotes value atR5Rc.) Differentiating Eq.
~3.2! with respect toR and using Eq.~4.11!, we obtain the
equation forr c8 . Integrating this equation, one finds

r c85
3Fc8

4 S 4

9Fc
D 2/3

t2/31
3

5S 4

9Fc
D 1/3

f c8t
4/31Ct21/3,

~4.12!

FIG. 5. ~a! Profile of density contrast whend in5e@11R/R0

2(R/R0)2#exp(2R/R0) and t52.03105 with e521.031023. ~b!
Profile of normalized peculiar velocity corresponding to~a!.
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whereC is an integration constant and is not essential in
argument. Here,r 8 must be positive initially ifr is a mono-
tonically increasing function ofR, which it is in our case.
This means that the first term~cooperate with the third term!
in Eq. ~4.12! must dominate on the initial surface. Howeve
since f c8,0 at R5Rc , r c8 must vanish within a finite time
Hence, atR5Rc , the shell-crossing singularity will occur
~More generic arguments about the occurrence of sh
crossing singularity can be seen in Ref.@23# and the shell-
crossing may occur in the regionf ,0 at first!.

It should be noted that in Figs. 5~a! and 6~a!, dZA and
dPZA take the same value as that of the LTB solution atR
5Rc where the shell crossing will occur. Then we must s
that these figures show that the Zel’dovich-type approxim

FIG. 6. ~a! Same as in Fig. 5~a!, but for t53.03105. ~b! Profile
of normalized peculiar velocity corresponding to~a!.
r

ll-

y
-

tions are not necessarily inaccurate even when the s
crossing is occurring. Let us consider the reason here. In f
the deviation from the background Hubble expansion is
cally one dimensional at the point. The definition of ‘‘local
one-dimensional deviation’’ we adopt here is that two of t
eigenvalues of the peculiar deformation tensorV j

i [K j
i

2Hd j
i 5 1

2 g ikġ jk are zero@24#. According to the definition,
let us show the local one dimensionality atR5RcÞ0. From
Eqs.~3.1! and ~4.11!,

V R
R uR5Rc

5
ṙ c8

r c8
2

ȧ

a
Þ0,

V u
u uR5Rc

5V f
f uR5Rc

5
ṙ c

r c
2

ȧ

a
50; vLTBuR5Rc

50.

~4.13!

SinceV j
i is diagonal in the spherical case, this means t

the deviation atR5Rc is locally one dimensional. It is
known that the Zel’dovich-type approximations become e
act when the deviation is locally one dimensional@12,24#. In
this argument, the originR50 must be excluded because a
components of the peculiar velocity vanish at the orig
Thus we can lead a significant consequence that, at the p
where f 50, the Zel’dovich-type approximations coincid
with the exact LTB solution, i.e.,

dLTB5dZA5dPZA and vLTB5vZA5vPZA50.
~4.14!

Note that this consequence is not limited to the specific
tial density profiles~4.3! or ~4.4!.

Turning to Figs. 5~a! and 6~a!, we see that the coincidenc
of the density contrast atR/R0;2.5 (R5Rc) contributes to
the accuracy of the Zel’dovich-type approximations, anddZA
anddPZA give a good fit aroundR/R0;2.5. This is the rea-
son that the Zel’dovich-type approximations do not neces
ily give bad results even when the shell crossing is occurri

V. SUMMARY AND DISCUSSIONS

We have tested the relativistic perturbative approxim
tions to gravitational instability with the LTB solution. It ha
been shown that Zel’dovich-type approximations give high
accuracy than the conventional ones in the quasinonlin
regimeudu;1 within general relativistic framework. Our re
sults are partly similar to the Newtonian ones, but our co
sideration is more generic. Especially, we considered so
cases in which the matter distribution is inhomogeneous,
found that the Zel’dovich-type approximations are not ne
essarily inaccurate even when shell crossing occurs.
course, the occurrence of the shell crossing shows the b
down of our treatment. However, this is due to the failure
our description of the matter as dust rather than the failure
Zel’dovich-type approximations.

Indeed, one of the cases considered in the previous
tion includes thef 50 point, where the universe is locall
‘‘open’’ inside and is locally ‘‘closed’’ outside and she
crossing will occur at this radius. We have seen, in gene
at the f 50 points ~except the originR50), the deviation
from the FLRW model is locally one dimensional and t
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Zel’dovich-type approximations become exact. And in t
neighborhood of the points, we can expect that
Zel’dovich-type approximations are particularly accura
The case considered here is exactly such an exampl
should be also noted that ‘‘one dimensionality’’ whic
makes the Zel’dovich-type approximations exact means
only globally plane symmetric but also locally one dime
sional: Such situations appear even in the spherically s
metric model.

To discuss the applicable range of the Zel’dovich-ty
approximations, we reconsider the density contrast atR50
in the collapse case. At the turnaround time, the accurac
the Zel’dovich-type approximations already begins to f
down, i.e.,dPZA is about 84% ofdLTB anddZA is about 60%.
Inaccuracy will be accelerated beyond the turnaround ti
In this sense, the turnaround epoch, when the peculiar ve
ity is as large as the Hubble expansion, is one of the crite
of the applicable range of the Zel’dovich-type approxim
tions. However, this criterion might not be practical, becau
one cannot know the correct turnaround time in gene
while we have been able to find it from the exact solution
our case. Instead of the turnaround time, the Zel’dovich-t
se
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e

approximations tell us the crunching time as the singula
in the density contrast, approximately. Furthermore, we h
also seen that PZA tells us this crunching time more ac
rately than ZA in our spherical model. Then we may be a
to know the approximate turnaround time by the half of th
crunching time of PZA.

It is said that the Zel’dovich approximation predicts pa
cake formation in the gravitational collapse of dust@6#. But it
is beyond the turnaround time that the pancake will
formed and thus the accuracy of the Zel’dovich approxim
tion is not ensured at that time. If we try to examine the fin
stage of the collapse quantitatively, we will need to deve
a new approximation scheme which gives an accurate
scription even beyond the turnaround epoch.
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