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We compare relativistic approximation methods, which describe gravitational instability in the expanding
universe, in a spherically symmetric model. Linear perturbation theory, second-order perturbation theory, the
relativistic Zel'dovich approximation, and the relativistic post-Zel'dovich approximation are considered and
compared with the Lemtte-Tolman-Bondi solution in order to examine the accuracy of these approximations.

We consider some cases of inhomogeneous matter distribution while the homogeneous top-hat model has been
usually taken in the previous Newtonian works. It is found that the Zel'dovich-type approximations are
generally more accurate than the conventional perturbation theories in the weakly nonlinear regime. The
applicable range of the Zel'dovich-type approximations is also discufSe856-282(198)04010-7

PACS numbd(s): 98.80.Hw, 04.25.Nx

I. INTRODUCTION been shown that the Zel'dovich approximation can be re-
garded as a subclass of the first-order solutions in Lagrangian
Structure formation in the universe is an important sub-perturbation theory7]. Then higher-order extension of the
ject of research in cosmology. A standard view of the strucZel'dovich approximation, say, the post-Zel'dovich approxi-
ture formation is that density fluctuations with small ampli- mation (and post-post-Zel'dovich approximation and sg,on
tudes in the early universe have grown to be a variety ofs straightforwardly derived via the higher-order Lagrangian
cosmic structures due to gravitational instability. The growthapproach8—10]. Relativistic versions of the Zel'dovich ap-
of the density fluctuations has been thoroughly investigateghroximation have also been studied for the last few years by
by linear perturbation theory of the Friedmann-Lére several author§l1—14. Here we will focus on our tetrad-
Robertson-Walke{FLRW) universe within both the New- based approach, whose correspondence to the original
tonian theory and general relativifyl]. Relativistic linear  Zel'dovich approximation is made clear in Rgt2] and ex-
perturbation theory was first derived by Lifshif2]. Such tension to second order is presented in R&8].
relativistic treatments are indispensable when we consider One of the remarkably advantageous points of the
large-scale fluctuations. In his theory, however, there reZel'dovich-type approximations, both the original Newton-
mains a gauge problem that unphysical perturbations are inan one and the relativistic version, is that they include exact
cluded in the solutions. This problem was carefully studiedsolutions when the deviation from the background FLRW
later by Press and Vishnig@]. Also developed was the universe is locally one dimensional. These exact solutions
gauge-invariant formulatiop4], which gives a conceptually are known as Zel'dovich solutior{$,15] in the Newtonian
straightforward way for dealing with cosmological perturba-case andsome class ¢fSzekeres solutiongl6,17] in the
tion. general relativistic case, respectively. For this reason, the
It is true that the linear theories play an important role inZel'dovich-type approximations are presumably accurate in
the study of gravitational instability, but they are valid only description of nearly one-dimensional collapse. It is not
in the region where density contra®t (p— py)/py, is much  clear, however, whether they also give high accuracy in the
smaller than unity. § is energy density of the perturbed case of non-one-dimensional collapse. In the Newtonian
FLRW universe andpy, is that of the background FLRW framework, it has been investigated by using spherical mod-
universe). As & grows to be comparable to unity, nonlinear els: The so-called top-hat collapse mo{i&8], the top-hat
effects become essential and we need some kind of nonlineainid model[19], and some more general cadd®)]. (See
approximation. Tomitd5] developed second-order perturba- also Ref.[20] for review,) In addition, there is also a recent
tion theory by extending Lifshitz’s work to study the nonlin- work[21] in which homogeneous spheroidal models are con-
ear effect of gravitational instability for the matter- sidered. An interesting implication is obtained in it: As the
dominated universe. His approach, however, still depends odeviation of the models from the spherical symmetry be-
the assumption ob being small. An approximation scheme comes larger, the accuracy of the Zel'dovich-type approxi-
without the assumption was proposed by Zel'dovi®i] = mations increases while the conventioffalilerian approxi-
within the Newtonian framework. This scheme is known asmations have the opposite tendency. It indicates that the
the Zel'dovich approximation, which is now widely applied Zel'dovich-type approximations may be the least accurate in
to the problems of large-scale structure formation. It haghe exactly spherical case. Then, considering the spherical
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case may tfall us the lowest accuracy of the Zel'dovich-type ')’ianizgij _ ( 1+ 20 q,) i Jr2tz/e,\1,‘ij +2t71q)|ij ,
approximations.

In general relativity, an exact solution of the spherically u. =0 2.3
symmetric dust model is known as the LétmaiTolman- N '
Bondi (LTB_) solution[22]. It_ is, t_herefo_re, of interest to test P —t2/3‘lf|k 1l
the Zel'dovich-type approximations with the exact solutions O LS
to examine accuracy of the approximations. It is also instruc;,
tive to clarify the differences between conventional perturbas;
tion theories and Zel'dovich-type approximations by impos

ing spherical symmetry and comparing them with the exac epresents spatial component of the four-velocity of the mat-

solutions. ter. The subscript (1) denotes the first-order perturbation

"? this paper, we compare relat|V|lst|c. approximations SUdbuantlty We will not consider the contribution of the decay-
as linear perturbation theory by Lifshi{2], second-order ing mode, which is proportional to 2, later on

perturbation theory by Tomitgb], the relativistic Zel'dovich Tomita [5] developed a second-order perturbation theory

approximation by Kasai12], and the relativistic post- by extending Lifshitz’'s work. He obtained the following

Zel d.OV'Ch approximation by_R_u_set al. [.1.3] with t_he LTB second-order perturbative solutions from the first-order sca-
solution. We consider some initial conditions which have anar mode solutions

inhomogeneous matter distribution, not a homogeneous one
similar to the top-hat model adopted in the Newtonian
works. It will be shown that the Zel'dovich-type approxima—

where ¥ =¥ (x) and ®=®(x) are spatial arbitrary func-
tions of first-order smallnes$,denotes the covariant deriva-
Fve associated with the background three-mekjc andu’

—(1+ v+ P w? )k,J

tions are more useful than the conventional ones in the qua- th2/3( P, — ANy A — 20PN, 4 Laplkp K )
sinonlinear regime in each case. i ] li Al
weﬂs“jrr?rlﬁgrgethtﬁep?g;i\l/?sgi follows. In the next_ sectlon,_ n %t4/3{19q’\ikw|k'_12\lf“\(klp\ij

perturbation theories men
tioned above. In Sec. lll, the LTB solution is introduced and +3[(\If|l‘(k)2—lpll‘(/\lfl|/k]kij},
the relation to the relativistic perturbation theories is consid-
ered. The main results of this paper are shown in the Sec. IV. uil):o, ui(z)zo, (2.4
Section V contains a summary of our results and discussions.

Throughout this paper, units are chosen so that. In- S+ 82)= —t2’3\lf|k + §t2/3(\p|k\p|k+ prxplrk)

dicesu,v, ..., runfrom 0 to 3 and,j, ..., runfrom 1 to
3. + 3t 5(wik )2+ 2wlowii,

The subscript (2) represents the second-order perturbation.
Il. RELATIVISTIC PERTURBATION THEORIES Here we neglected the second-order tensor mode, which is
induced by the first-order scalar mode and does not appear in

In this section, we summarize general relativistic pertur ‘the spherical case.

bation theories which describe gravitational instability in the
matter-dominated FLRW universe. We assume that the back-
ground is the Einstein—de Sitter spacetime, whose line ele-
ment is In this subsection, we review a relativistic version of the

Zel'dovich approximation developed by (42,13. (Con-
] cerning the relationship to the Newtonian Zel'dovich ap-

ds*= —dt?+a%(t)(dR?+ R?d 6%+ R?sir? 6d ¢°) proximation and the details, see REf2], in particular, Sec.
E—dt2+a2(t)kijdxidxj, 2.1) IC.) The irrotational dust model is assumed and then we

can take the comoving synchronous coordinate

B. Zel'dovich-type approximations in general relativity

— 2 . i j
where a(t)=t%? is the scale factor. The background four- ds’= —dt*+g;dx'dx 2.9

velocity and enetgy density of the matter arg=(1,0,0,0)  yjth the four-velocityu”=(1,0,0,0). Thanks to this choice
andpp= 1/(67wGt?), respectively. Density contragtshown ¢ e gauge, the energy equatian,T*",=0 with T#*
later is defined ag=(p—py)/p,, Wherep is energy density =diag p,0,0,0, which becomes v
of the perturbed FLRW universe. B

p+pK.=0 (2.6)

A. Conventional linear and second-order theories . .
is formally solved in the form

Lifshitz [2] pioneered the linear perturbation of the

FLRW universe in the synchronous gauge \/de(gij(tin X)]
o p=p(tin X)—Fm—m—="- 2.7
ds?=—dt?+g;;dx dx. (2.2 vdefg;;(t,x)]

Here the overdot denotegdt, and K' is the extrinsic cur-
In his theory, the scalar-mode solutions for pressureless maVature whose expression in the present gaugeKi is
ter (dus) are =3g' g,k Introducing the triad
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gij :az(t)é(k)(/)e(ik)e(j/), (28)
Eq. (2.7) is rewritten as

defe!(tin,%)]

P el (1] 29

We obtain perturbative solutions for the triaﬁ;f) regard-
less of the energy densify up to second order in the fol-
lowing form [13]:

eV =k+EV +6, (2.10
where k{7 is the background triad defined b;

= 5(k)(/)k( k), andEY) and &(”? are the first-order and
the second- order solutlons given by

10 i

) =K (123l + 143l (2.19)

Here¥ =¥ (x) is the same function as the one used in Egs.

(2.3 and (2.4), and 1//1 1// (x) and (p] (p](X) are qua-
dratic quantities of¥’, ertten as

" 2yl 5 —g)(\w“ +wliw), (212
iT9 ki~ g li i/ :

i _3 k2 . Ik il
o=l (V1) ol v ),
2.13

Note that we removed a remaining gauge freedom in th

linear level to derive the above solutioisee Appendix A of

5
Osec= — RVl + SRV I+ 6w Wl

—t4/3[5(\1" AREPALALA] (2.17

lin and sec denote the linear and the second-order perturba-
tion theories. Expanding Eq$2.14 and (2.15 under the
condition ||¥||<1 (where ||¥|| denotes an appropriate
norm of a functionV), Egs.(2.16 and (2.17) can also be
obtained, respectively. In this sense, ZA and PZA are exten-
sions of lin and sec ths| ~

Ill. SPHERICALLY SYMMETRIC MODEL

In this section, we consider the spherically symmetric
model of gravitational instability in the FLRW universe.
There exists an exact solution known as the LTB solution,
which includes three arbitrary functions, in the spherically
symmetric cas¢22]. Here we make clear the relations be-
tween the arbitrary functions included in the LTB solution
and the ones which appears in the approximation methods
mentioned in the Sec. Il. The line element of the LTB solu-
tion is

rrZ
ds’=—dt’+ md R?+r2(d@%+sirfed¢?), (3.1

where ()=4d/JR andf=f(R) is an arbitrary function which
is related to initial velocity of dustt =r(t,R) satisfies the
following differential equation:

'r2=¥R)+f(R) (3.2

with an arbitrary functior=(R), which represents initial dis-
ribution of matter. Equatiori3.2) can be integrated as fol-
OWS:

(i) f>0:

Ref.[13].) And we again neglected contributions of the de-

caying scalar mode and the tensor mode. We find that the

solution (2.10 is consistent in the metric level with Egs. F F

(2.3 and (2.4 [13]. | r=gg(cosm—1), t=to(R)=—75(sinhm = 7),
Relativistic Zel'dovich and post-Zel'dovich approxima- (3.3

tions are obtained by substituting EQ.10 into Eq. (2.9):

2ol
Ssa=| det 8"+ ——L
A ( { Py

(i) f<0:
-1, (2.14

F
r=_—2f(1—cosn), t—to(R)= (n—singy),

| | | 2(_1:)3/2
t2/3\1"ij+t2/3¢'j+t4’3c,o'j )—1_1 (3.9
1+ 3% (i) f=0:

5PZA: ( de{ 5‘] +

(2.19
13

[t—to(R)]??, (3.5

ZA and PZA denote the Zel'dovich and the post-Zel'dovich r:(j
approximations.

~ Aswas written previously, the results of the conventionalwhereto(R) is an integration constant. The above caées

linear and second-order theories are (i), and (iii) may be called “open,” “closed,” and “flat,”

respectively, as in the FLRW universe. In these three cases,

Oiin= _IZ/S‘I’“\(k: (216 the density reads
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!

20
87Gp=——. (3.6) Yre= 14 5 W+ 20707+ 2t 1,
r'r

20

Apparently the LTB solution includes the three arbitrary veo=R3 1+ E\If+2t2’3klf’R*1+ 2t1<I>’R1).
functionsf(R), F(R), andty(R). But the dynamical degrees (3.19)
of freedom are actually 2 because there remains the freedom '
of the choice of the radial coordinak: Comparing Eqs(3.10 and (3.11), we find the following

The LTB solution is some extension of the FLRW solu- relations:
tion and is often used as a model of an inhomogeneous uni-
verse(see Ref[17] for a review, and this solution can be 40 20 3
reduced to the FLRW solution. By choosirig=0 andt, F(1)=2—7\PR3, fu=g ¥R, t0(1)=—§<b’R‘1.
=0 (and F=%R?3 for convenience we easily find thatr (3.12
=a(t)R and the LTB solution is reduced to the spatially flat ’
FLRW solution(2.1). Furthermore, we can represent this so-

lution by the form of the flat FLRW solution with its pertur- dtoth . dd . q tvely. i
bations and see that the arbitrary functions in the LTB solyf€spond to the growing and decaying modes, respectively, in
e linear level. We choosg(R) =0 hereafter because con-

tion correspond to those in linear perturbation theory. To see .~ ' ; .
tributions of the decaying mode are not taken into account

this, we consider a spherical linear perturbation of the spa;
tially flat FLRW solution. Substituting throughout. Moreover, we know th&t, andf ;) are related

to each other by the functio¥. This is because we elimi-
nated a residual gauge freedom and thus fixed the gauge
condition completely in the previous section. This fixing cor-
f=fu), to=tow), F= §R3+ Fa), r=aRtrqy, responds to determination of the choice of the radial coordi-
(3.7 nateR in the spherical case.
To see the relation between the LTB solution and the
second-order perturbation, we introduigg), F ), andr )
into Eg. (3.2, the linearized equation far;, can be ob- so that
tained, where the quantities with subscript (1) are treated as
a linear perturbation. Solving this equation, we obtain

This tells us that the arbitrary functiori$¢R) andty(R) cor-

20 4 . 40,

3 9
r(1)=aR ZF<1)R73+ Z)tsz(l)Riz‘i‘tilB ’ (38)

r=aR+r)+r(y, (3.13
_ _ _ _ and make calculations in the same way. Hige, F(,), and
whereB=B(R) is an integration constant. Actualg is re- r 2) should be regarded &B(|v? andr ) is obtained by
lated totg(;) by B=—3to(y). It is easily seen by choosing solving Eq.(3.2) perturbatively. Then we obtain the part of
f=0 and using Eq(3.5), which reads O(||¥]|?) in yrg and y4,. Comparing these/rg and 7y,
with the solution of the second-order thed®:4), we find

3 2
r(l):aR _F(l)R_g__t_ltoj_ . (39) _400 253 _100 122 ,
4 3 1) Fo=523V°R%  fo=g (V?RE-2VV'R).

243
(3.19
Then we can write the “linearized LTB metric” in terms of

f1y, tory, andFqy as follows: On the other hand, the LTB solution as an exact model is
obtained by choosing

3 4 40 400
'YRR:1+_(F1R_2),_fl — 3+_ 3+_ 2p3
5> (F) B F=gR+ = VR 52 W2R?, (3.15

+ 3t2’3(f<l)Fr1)'— Z—lrl(to 1HR)’ 20 100
3 ( f= 5 WRE G (V2RE-2UV'R).  (3.10

3 . 9 L, 4 From Eq. (3.6), the density contrast of the LTB solution
'}/00:R2 1+ EF(]‘)R 3+ Etygf(l)R 2_ §t lto(l) . I’eadS
(3.10
S —3t2F/ 1 3.19
On the other hand, the solution of linear the¢?yd) gives LB 4 2 '
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Let us turn our attention to the approximation methods. If

- +t4/3 \I,/r2+ g)\l,nq,/R—l_l_ %W/2R—2
we impose¥ =¥ (R), Egs.(2.16), (2.17), (2.14), and(2.15 7 7 '
become
(3.19
Sin=—t2%¥"+2¥'R™Y, (3.18
Sse= — 12X W+ 2W 'R {23y g1\ —2 {23y | -1
5 R T ) TS
— 2l 12 " rp—1 +3 9
+35t V246V (P +2¥'R™Y)] (3.20
Spza=| 1+ (289 /R-14 $423(p /2 4Py /R 1)~ g)t‘”‘?'\lf’zR‘21+(10/9)‘1’_2
tZIS\PH_ §t2/3(3‘l"2+ 4\1,\1,//)_ %t4/3\P/R71(2\I,u_\P/ Rfl) -1
X | 1+ —-1. (3.21
1+2¢

The peculiar velocity, which represents the deviation of mo- o3 _,. 10, .
tion of the dust shell from the Hubble expansion and is de- dza=—t“(¥"+2¥'R™ ")+ 9t (P +2¥'R™Y

fined byv=r —Hr (whereH=a/a is the Hubble parameter
is written as + (P24 29" P 'R+ 3W 2R 2) + O(||¥||3),

4.

2
U|inZUZA=§tl/3‘I", (322 itis found that ZA includes second-ord@nd highey terms
partially in the expression of the density contrast. Thus we
> 10 can expect thaﬁZA is as accurate a$sec at late time.
Vse= Upza= o tH3W + —t13(W'2R— 4P ) In order to investigate the relative accuracy of the ap-
3 27 proximations quantitatively, we compare the LTB solution
4 and the approximations by using some specific initial condi-
——tP’'2R 1, (3.23 tions. Here initial conditions can be completely fixed by giv-
7 ing an initial density profiles,,(R). For simplicity, we as-
) o ) ~ sume thats;,(R) is a first-order quantity. Then the arbitrary
The abov_e expressions are S|m|_lar to_ those in the l_\Iewtonlaﬂmction V¥ is determined by the relation
case, which are, for example, given in the Appendix of Ref.

[10]. Note that j,=v za andvsec=vpza beCaUsE, in the met- Sinlt=1, = — (V" +2¥'R™ 1 =§(R) 4.2
ric level, the Zel'dovich-type approximations coincide with
the conventional ones. with normalizationt;,= 1. (t;, may be regarded as the decou-

Now the density contrast and the peculiar velocity of thePling time in the history of the expanding univejs&qua-
LTB solution and the approximations are written in terms oftion (4.2) is solved to determine the functiol with the
only the function®. The function¥ should be determined boundary condition(R=0)=0 and¥’'(R=0)=0.

from initial conditions so that the regularity conditionsRat Here we consider the following two cases:
=0,i.e.,(R=0)=0 and¥’'(R=0)=0 are satisfied. Then R R

the peculiar velocity aR=0 is always zero both in the LTB Sn(R)=€| 1+ = exp( - (4.9
solution and the approximation. Moreover¥f is taken so Ro Ro

that ¥ «R? nearR=0, the peculiar velocity neaR=0 is

. and
proportional toR, v=R.

(o5
Sn(R)=¢€l 1+ =——| =] |exg — =/, (4.9
Ro
where e is a small constant|€|<1) which represents am-
Let us proceed with a comparison of the LTB solution andplitude of an initial density perturbation, af} is a comov-
the approximations. As mentioned in Sec.dhy and dpz5  ing scale of the fluctuations. The former case can be regarded
include 6y, and és, respectively, when the density contrast as smoothing out the top-hat model while in the latter case, if
is small. As for the peculiar velocity, ZA and PZA are coin- €<0, the neighborhood oR=0 is the underdense region
cident with lin and sec, respectively. Moreover, expanding(void) and the outside is overdense, and then the shell cross-
the density contrast of ZA in the following form: ing will occur. (If €>0, the latter case also shows a similar

IV. COMPARISON OF LTB SOLUTION
AND APPROXIMATIONS
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behavior to the top-hat model, as does the former)drer
both of the cases, we can evaluateat the center of the
fluctuations R=0) from the LTB solution and the approxi-
mation methods in the following form;

8 APP (R=0)

08
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LTB — /A
LIN - - g

SEC - -~ / ‘
ZA ——

9 (n—siny)?
_u_ for >0,
5 (Re0) 2 (1—cosp)®
LrelR=U)=
9 (n—sinhgy)?
_u_ , for €<0,
2 (coshy—1)3
(4.5
with
g —673/2(7]—5“’]77) for E>0,
20 V5 '
t:
9 /3
—\/=(— €)%Y sinhm— for €<O0,
55\ g(— € sinhy— 1), €
and
Siin(R=0) = et?3, (4.6)
17
0sed R=0)= et?*+ Z52t4/31 4.7
€ -3
5ZA(R=O)=(1—§t2’3) -1, (4.8
€ 62 -3
0V | 1 Z+23_ =_:4i3 _
Spza(R=0) (1 3t 5t ) 4.9

PZA —-

06 % 1

04 4 -

density contrast of approximations
AN

0 I 1 1 1 1 | I L L
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

density contrast of LTB solution 6LTB R=0)

FIG. 1. Density contrasé at R=0 calculated from approxima-
tion methods as a function af 1g(R=0) for e>0. §;4(R=0)
catches up withs;.{ R=0) at 6, 1g(R=0)~0.5.

=3(37/2)?#/5~1.7 (p=2). This pole corresponds to the
crunching time atR=0, and the singularity occurs at this
time.

From Egs.(4.5-(4.9), we can also evaluate accuracy of
the approximations quantitatively at the turnaround time
=1 [et?3=3(97%/2)Y310~1.1], though it is not drawn in
Fig. 1. Here the turnaround time is characterizedriy0,

These expressions do not depend on the details of initidi€-, the maximum expansion. Physically speaking, the den-
density profiles. It is of essence in the calculation that

sity fluctuation begins to collapse due to gravitational insta-
bility, overcoming the cosmic expansion at the turnaround

=¢€ nearR=0, ande>0 ande<0 correspond td <0 and

f>0 atR=0, respectively. The above results are described

in Figs. 1 and 2, where Eq#4.5—(4.9) are plotted as func-

tions of ,1g(R=0). Figure 1, which represents the collapse
case, tells us that ZA is more accurate than lin and PZA is

more accurate than sec in d|g(R=0)>0 regions[Fig-
ure 1 shows only the region of<04,1g(R=0)<1, but the

tendency shown in Fig. 1 does not change in denser region =
S.1s(R=0)>1]. We also find that ZA becomes more accu-

rate than sec at late time wheéqyg is larger than about 0.5.
This is understood by comparing E@..7) and the expanded
form of Eq. (4.9):

(4.10

2
S57a(R=0)=et?3+ 3 P+ 0(€%).

[This form is also obtained from Ed4.1).] We see from
Egs. (4.7) and (4.10 that 5,4 is smaller thandy at early
time (et?*<1) due to the lack of the terms @(€?). In this
senseg,, is less accurate thaf,.whenet?*<1. However,
due to the existence of the singularityea?®>=3 in 8,5, Sz
becomes more accurate thag at late time. This existence
of the singularity
asymptotic behavior 06, . Indeed, the exact solutiof| g
for €>0 in Eq. (4.5 has a pole of order 3 aet??®

in 6,5 essentially determines the

0 ! T T T \‘ T T T T T
! \
! |
= | J
T H \
3 02 | \\ . _
B H \ ,I
E | \ K
H N Ry 4
! NPt
S 4
g -04 - ! /’ N
= | 4
<] ' 4
g ‘- 7
: l. W/
g l V4
£ ael : / i
§ 0.6 | Yy f /
z \ 7
2 ol —
5 \ v / LTB
® N~ s/ LIN
- // SEC - -
. ZA -
08 i . PZA —- 1
/ .
7/
7
d
/
7
e
1 Gd 1 1 ! 1 l 1 I 1 ]
1 09 -08 -07 06 -05 -04 03 -02 -0t 0
density contrast of LTB solution 3 —_

FIG. 2. Same as in Fig. 1, but fe<O.
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time. At the turnaround timeg, g becomes 4.6. To this
S8 Oliny Osecr Oza, and dpza grow to about 23, 43, 60,
and 84%, respectively. It is natural thét,, is more accu-
rate thand,, from the view point of the singularity at the
crunching time.8pz4 also has a pole of order 3 at??
=(4/133-7)/2~2.3. This crunching time is nearer to the
real crunching time~-1.7 than that of5,, .

From Fig. 2, which denotes the void case, we find that
PZA gives the best fit at early time befofg;g=— 0.7 while
ZA works best at late time whe# 15 is smaller than about
—0.7. At late time, PZA gives bad results. It is due to dif-
ference of the signature between the first-or¢ert?/3
>0) and the second-orddr€’t¥321<0) terms whene
<0. The same feature also appears in sec but at an earlier
time. However, in PZA, this difference is more serious than
in sec. In secfs..grows ase’t*321<0, while in PZA, the
difference of the signature make%z, diverge at a finite
time et?3=(7+ \/133)/2. This divergence is an apparent one
which is caused by the formalization of PZA. Indeed, we can
easily see from Eq4.5) that the exact solutiod, tg has no
pole int>0 (i.e., there is no singularifyand approaches to
—1 as~t~ 1. Though there is no singular point &,, except 0
t=o, §), takes a value smaller and smaller without limit as
the time increases because there is no physics to stop this .o
decrease of the energy density in this order. Then, éaly
predicts the true asymptotic value éfwithout growth and 01
apparent singularities. But,, approaches-1 ast™2. This
difference is also seen in Fig. 2. In the Newtonian case,
detailed discussions on the void can be seen in[R6f. Our
relativistic results up to now are quite similar to Newtonian
ones, which are given in Refg10,18,19.

Figures 3a) and 4a) give the density contrast as a func-
tion of R/IR, whene=1.0x10"2 andt=2.0x 10*, ande=
—1.0x10 % andt=23.7x 10* with the initial density profile
(4.3), respectively. These two figures show that difference
between the LTB solution and the approximations is the larg-
est atR=0 in the former case. Hence, it is sufficient to 04k
consider the difference &=0 when we examine the accu-
racy of the approximations in the former caged). 045 | 4

We also see the evolution of the peculiar velocity with the
initial density profile(4.3) in Figs. 3b) and 4b). Here we 05 ' ' ' '
consider the peculiar velocity normalized by the Hubble flow
Hr. It will be convenient to use it to see the deviation of the (©) R/R,
model from the FLRW universe in the metric level. For ex-
ample, the normalized peculiar velocityHr=—1 at the
turnaround time. Figures(B) and 4b) show the normalized
peculiar velocity corresponding to Figs(aB and 4a). Al-
though these figures show that the normalized peculiar ve-
locity v/Hr is not zero aR=0, we must note that this is due difference atR=0 when we examine the accuracy of the
to our normalization. As mentioned in the last section, theapproximations in the former cag€.3), as mentioned above.
peculiar velocity must behave asR nearR=0. On the On the other hand, for the initial density profile given by
other handHr also behaves as R nearR=0. Hence our Eqg. (4.4), it cannot be said that the largest deviation of the
normalized peculiar velocity does not vanishRat 0 due to  approximations from the LTB solution occursR&0. Fig-
the normalization. It is also noted that the peculiar velocityures %a) and &a) are for this initial profile where=—1.0
obtained from the Zel'dovich-type approximations is the X102 and t=2.0x10°, and e=—1.0x10 2 and t=3.0
same as the one obtained from the conventional approximax 10°, respectively. For this initial density profile, the shell-
tions as mentioned in the previous section. Furthermore, werossing singularity will occur. The tendency of the occur-
find from Figs. 3b) and 4b) that the deviation from the ring of shell crossing can be seen from the peculiar velocity
FLRW universe is maximum ne&=0 for the initial profile in Figs. §b) and Gb), where the profile of the normalized
(4.3). This also shows that it is sufficient to consider thepeculiar velocities for this case are drawn. In Figurgs) 5

)

density contrast

v/Hr

-0.15 -

0.2

-0.26 -

03

LIN, ZA - - -
SEC, PZA - -

nhormalized peculiar velocity

-0.35

FIG. 3. (a) Profile of density contrast whens,,=e(1
+ RIRy)exp(—R/Ry) andt=2.0x 10" with e=1.0x10" 2. (b) Pro-
file of normalized peculiar velocity corresponding (8.
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FIG. 4. (a8 Same as in Fig. @), but for the void case. We FIG. E (@) Profile of density contrast Wheﬁin=e[l-i:?|:\’/RO
choosee= —1.0x 103 andt=23.7x 10%. (b) Profile of normalized  — (R/Ro)*]exp(-R/IRy) andt=2.0x 10° with e=—1.0x10">. (b)
peculiar velocity corresponding 1@). Profile of normalized peculiar velocity corresponding(@n

and @b), there exists @ =0 point atR/R,~ 2.5. This point, C(9FN B,
which is denoted byR=R.#0 hereafter, is a boundary fe=\ 7|
where the universe is locally “open”f¢>0) and “closed”

(f<0), and thenf=0 at the point. The peculiar velocity in

the void regionR<R, is positive, while that in the closed (Subscriptc denotes value aR=R..) Differentiating Eq.
regionR>R; is negative. Then we can expect that the shell(3.2 with respect toR and using Eq(4.11), we obtain the
crossing of the dust matter will form &= R, within a finite ~ €quation forr . Integrating this equation, one finds

time.

Indeed, one can see from Eq8.2) and (3.5 that the . o3
shell crossing, which is characterized by a finite radius at r’=3F°( 4 ) 2, 2
which r’ vanishes[23], will occur at the radiusR=R;. € 4 \9F, 5
From Eq.(3.5), which is the solution whefi=0, we know (4.12

(4.12)

4 1/3
C
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' ' ' ' ' ' tions are not necessarily inaccurate even when the shell
crossing is occurring. Let us consider the reason here. In fact,
the deviation from the background Hubble expansion is lo-
cally one dimensional at the point. The definition of “locally
one-dimensional deviation” we adopt here is that two of the
eigenvalues of the peculiar deformation tensdr=K',
—Hé8' =39y are zero[24]. According to the definition,
let us show the local one dimensionalityR#= R.# 0. From
Egs.(3.1) and (4.1)),

r'. a

R — —_—
VRIR:RC—r, 370,

density contrast O

c

re a
V09|R=RC:V‘@>|R=RC:r—— 30 vielr-r,=0.
C
(4.13

; Sincev'j is diagonal in the spherical case, this means that
L : : ; s : the deviation atR=R; is locally one dimensional. It is
known that the Zel'dovich-type approximations become ex-
@ R/R, act when the deviation is locally one dimensioft2,24. In
this argument, the origiR=0 must be excluded because all
components of the peculiar velocity vanish at the origin.
Thus we can lead a significant consequence that, at the points
where f=0, the Zel'dovich-type approximations coincide
with the exact LTB solution, i.e.,

v/Hr

Ot8=0za=0pza aNd v 1g=Vza=Vpza=0.

(4.19

Note that this consequence is not limited to the specific ini-
tial density profileg4.3) or (4.4).

Turning to Figs. $a) and Ga), we see that the coincidence
of the density contrast &/Ry;~2.5 (R=R;) contributes to
the accuracy of the Zel'dovich-type approximations, @l
and 5pza give a good fit aroundR/Ry~2.5. This is the rea-
son that the Zel'dovich-type approximations do not necessar-
ily give bad results even when the shell crossing is occurring.

normalized peculiar velocity

V. SUMMARY AND DISCUSSIONS

We have tested the relativistic perturbative approxima-

() R/Ro tions to gravitational instability with the LTB solution. It has

been shown that Zel'dovich-type approximations give higher

FIG. 6. (@) Same as in Fig. @), but fort=3.0x 1C°. (b) Profile  accuracy than the conventional ones in the quasinonlinear

of normalized peculiar velocity corresponding (&. regime| 5|~ 1 within general relativistic framework. Our re-
sults are partly similar to the Newtonian ones, but our con-

whereC is an integration constant and is not essential in ousijderation is more generic. Especially, we considered some
argument. Here;” must be positive initially ifr is a mono-  cases in which the matter distribution is inhomogeneous, and
tonically increasing function oR, which it is in our case. found that the Zel'dovich-type approximations are not nec-
This means that the first terfaooperate with the third tebrm  essarily inaccurate even when shell crossing occurs. Of
in Eq. (4.12 must dominate on the initial surface. However, course, the occurrence of the shell crossing shows the break
sincef <0 atR=R., r; must vanish within a finite time. down of our treatment. However, this is due to the failure of
Hence, atR=R., the shell-crossing singularity will occur. our description of the matter as dust rather than the failure of
(More generic arguments about the occurrence of shellZel'dovich-type approximations.
crossing singularity can be seen in Rg#3] and the shell- Indeed, one of the cases considered in the previous sec-
crossing may occur in the regidn<0 at firs). tion includes thef =0 point, where the universe is locally

It should be noted that in Figs.(&® and Ga), 5, and  “open” inside and is locally “closed” outside and shell
Spzp take the same value as that of the LTB solutiorRat crossing will occur at this radius. We have seen, in general,
=R; where the shell crossing will occur. Then we must sayat the f=0 points (except the originR=0), the deviation
that these figures show that the Zel'dovich-type approximafrom the FLRW model is locally one dimensional and the
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Zel'dovich-type approximations become exact. And in theapproximations tell us the crunching time as the singularity

neighborhood of the points, we can expect that then the density contrast, approximately. Furthermore, we have

Zel'dovich-type approximations are particularly accurate.also seen that PZA tells us this crunching time more accu-

The case considered here is exactly such an example. fately than ZA in our spherical model. Then we may be able

should be also noted that “one dimensionality” which to know the approximate turnaround time by the half of this

makes the Zel'dovich-type approximations exact means no¢runching time of PZA.

only globally plane symmetric but also locally one dimen- |t is said that the Zel'dovich approximation predicts pan-

sional: Such situations appear even in the spherically symcake formation in the gravitational collapse of di&} But it

metric model. is beyond the turnaround time that the pancake will be
To discuss the applicable range of the Zel'dovich-typeformed and thus the accuracy of the Zel'dovich approxima-

approximations, we reconsider the density contras®a0  tjon is not ensured at that time. If we try to examine the final

in the collapse case. At the turnaround time, the accuracy dftage of the collapse quantitatively, we will need to develop

the Zel'dovich-type approximations already begins to falla new approximation scheme which gives an accurate de-

down, i.e.,6pza is about 84% of5 15 and oz is about 60%.  scription even beyond the turnaround epoch.

Inaccuracy will be accelerated beyond the turnaround time.

In this sense, the turnaround epoch, when the peculiar veloc-

ity is as large as the Hubble expansion, is one of the criterion ACKNOWLEDGMENTS

of the applicable range of the Zel'dovich-type approxima-

tions. However, this criterion might not be practical, because We would like to thank T. Buchert for valuable com-

one cannot know the correct turnaround time in generalments. M.M. also thanks A. Hosoya for continuous encour-
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