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Instability of cosmological event horizons of nonstatic global cosmic strings.
II. Perturbations of gravitational waves and massless scalar fields
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The stability of the cosmological event horizons~CEHs! of a class of nonstatic global cosmic strings is
studied against perturbations of gravitational waves and massless scalar fields. It is found that the perturbations
of gravitational waves always turn the CEHs into nonscalar weak spacetime curvature singularities, while the
ones of massless scalar fields turn the CEHs either into nonscalar weak singularities or into scalar ones
depending on the particular cases considered. The perturbations of test massless scalar fields are also studied,
and it is found that they do not always give the correct prediction.@S0556-2821~98!07208-7#

PACS number~s!: 98.80.Cq, 04.20.Jb, 04.40.Nr
rl

er
th
at
n

he
ly

gs
s
us
h
th

s
vi
ws
le
e
s
re
ke
a

s
k
ri

he
o

ull

e
ults

a-

nd

ore

er-

ns
und
I. INTRODUCTION

Cosmic strings which may have been formed in the ea
Universe have been studied extensively@1#, since the pio-
neering work of Kibble@2#. Recently, Banerjeeet al. @4# and
Gregory@5# studied nonstatic global strings, and some int
esting results were found. In particular, Gregory showed
the spacetime singularities usually appearing in the st
case @3# can be replaced by cosmological event horizo
~CEH’s!. This result is very important, as it may make t
structure formation scenario of cosmic strings more like
and may open a new avenue to the study of global strin

However, our recent studies@6# showed that these CEH
in general were not stable to the perturbations of null d
fluid, and always turned into spacetime singularities. T
singularities are strong in the sense that the distortion of
test particles diverges logarithmically.

In this paper, we shall study the stability of the CEH
against perturbations of massless scalar fields and gra
tional waves. Specifically, the paper is organized as follo
in Sec. II we consider the perturbations of a test mass
scalar field, while in Secs. III and VI, we consider th
‘‘physical’’ perturbations of gravitational waves and mas
less scalar fields, respectively. The word ‘‘physical’’ he
means that the back reaction of the perturbations is ta
into account. The paper is closed by Sec. V, where our m
conclusions are derived.

The main purpose of studying perturbations of test ma
less scalar fields is to generalize the Helliwell-Konkows
~HK! conjecture about the stability of quasiregular singula
ties @7# to the stability of CEHs. As a matter of fact, in@6#
which will be referred to as paper I, it was shown that t
conjecture works well and gives the correct predictions ab
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the stability of the CEHs, as far as the perturbations of n
dust fluid are concerned.

The notations used in this paper will closely follow th
ones used in paper I, and to avoid of repeating, some res
given there will be directly used without any further expl
nations.

II. THE PERTURBATIONS
OF TEST MASSLESS SCALAR FIELDS

By requiring that the string have fixed proper width a
that the spacetime have boost symmetry in the (t,z) plane,
Gregory managed to show that the spacetime for a U~1! glo-
bal string~vortex! is given by the metric@5#

ds25e2A~r !dt22dr22e2[A~r !1b~ t !]dz22C2~r !du2.
~2.1!

For the cases whereb(t)5 ln@cosh(bt)#,1bt,2bt, with b be-
ing a positive constant, the metric coefficients inside the c
of a string have the asymptotic behavior

eA~r !;b~r 02r !, C~r !;C01O~r 02r !2, ~2.2!

as r→r 0
2 , where C0 is a constant„cf. Eq. ~3.14! in

Ref. @5#…. It was shown that in all the three cases the hyp
surfacer 5r 0 represent a conelike CEH@5,6#.

To study the stability of these CEHs against perturbatio
of massless scalar fields and gravitational waves, it is fo
convenient to introduce two null coordinates,u and v, via
the relations

u5
t1R

A2
, v5

t2R

A2
, ~2.3!

where
6089 © 1998 The American Physical Society
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R[E e2A~r !dr52
1

b
ln@b~r 02r !#. ~2.4!

In terms ofu andv, the Gregory solutions can be cast
the form

ds252e2M ~0!dudv2e2U~0!@eV~0!dz21e2V~0!du2#,
~2.5!

whereM (0)5A2b(u2v), and

U ~0!55
2 lnFcoshS b

A2
~u1v !D G

1
b

A2
~u2v !2 lnC0 , b~ t !5 ln@cosh~bt !#,

2A2bv2 lnC0 , b~ t !5bt,

A2bu2 lnC0 , b~ t !52bt.
~2.6!

Note that in paper I, the perturbations were considered
both regionsr<r 0 andr>r 0. However, as shown there, th
conclusions obtained in these two regions are the sa
Thus, without loss of generality, in the rest of the paper,
shall restrict ourselves only to the regionr<r 0. Then, the
Klein-Gordon equationf,mf,ngmn50 takes the form

2f ,uv2U ~0!,vf ,u2U ~0!,uf ,v50, ~2.7!

where (),x[]()/]x.
To study the above equation, let us first consider the c

b(t)51bt. In this case, it can be shown that Eq.~2.7! has
the general solution

f~u,v !5F~u!e~au2bv !/A21G~v !, @b~ t !51bt#,
~2.8!

whereF(u) and G(u) are arbitrary functions of their indi
cated arguments. To have the perturbation be finite initia
(t52`), we require that the two arbitrary functions be
nite as t→2` and a>b. Then, the trace of the energy
momentum tensor~EMT! Tmn for the test massless scal
field is given by

T5Tl
l52f ,mf ,ngmn

522FF8~u!1
aF~u!

A2
Ge[au1b~2u23v !]/A2

3FG8~v !2
bF~u!

A2
e~au2bv !/A2G , ~2.9!

which diverges asr→r 0
2 , where a prime denotes the ord

nary derivative with respect to their indicated argumen
Therefore, when the back reaction of the perturbations
taken into account, we would expect that the CEH will
turned into scalar curvature singularity, provided that the H
conjecture continuously holds for CEHs@7#.

Similarly, it can be shown that the same conclusion is a
true for the caseb(t)52bt.
in

e.
e

se

y

.
is

o

Whenb(t)5 ln@cosh(bt)#, Eq. ~2.7! has the general solu
tions

f~u,v !5(
n

bneb~u2v !/A2

@~aneA2bu12!~ane2A2bv22!#1/2
,

~2.10!

where$bn% and$an% are integration constants. Projecting th
corresponding EMT onto the parallel propagated orthogo
~PPON! frame defined by Eqs.~A3! and~A4! in paper I, we
find that the nonvanishing components are given by

T~0!~0!5T~1!~1!5C1
2 f ,u

2 1C2
2 f ,v

2 ,

T~0!~1!5C1
2 f ,u

2 2C2
2 f ,v

2 ,

T~2!~2!5T~3!~3!5e2bRf ,uf ,v , ~2.11!

where

C6[
1

A2b2~r 02r !2
$E6e@E22b2~r 02r !2#1/2%,

f ,u5A2b (
n51

`
bnebR@aneb~R2t !22#

@an
2e2bR24ansinhbtebR24#3/2

,

f ,v5A2b (
n51

`
bnebR@aneb~R1t !22#

@an
2e2bR24ansinhbtebR24#3/2

,

~2.12!

whereE is a constant. From the above expressions we
see that, ast→2`, these tetrad components vanish, and
R→1`(r→r 0), the componentsT(0)(0) , T(1)(1) , and
T(0)(1) become unbounded, whileT(2)(2) andT(3)(3) remain
finite. Thus, after the back reaction of the perturbations
the massless scalar field is taken into account, we wo
expect that the CEH is turned into a spacetime curvat
singularity. However, unlike the last two cases, the nature
the singularity should be a nonscalar one, since now all
scalars built fromTmn are finite, for example,

T5Tl
l52

1

2
e2bRf ,uf ,v;const,

TldTld5
1

4
e4bRf ,u

2 f ,v
2 ;const, ~2.13!

as R→1`. To verify whether or not the above analys
gives the correct prediction for the stability of the CEHs,
us turn to consider real perturbations, that is, taking the b
reaction of the perturbations into account.

III. PERTURBATIONS OF GRAVITATIONAL WAVES

In paper I, it was noted that, although the study of test n
dust fluid and the one of real null dust fluid all gave the sa
results on the instability of the CEHs, the cause of the ins
bility was different. For the real perturbations, it was caus
by the nonlinear interaction of gravitational waves, rath
than what the study of the test particles indicated that t
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should be caused by the back reaction of perturbation
null dust fluids. Thus, to study the role that gravitation
waves can play, we devote this section to perturbations
pure gravitational waves. These perturbations are always
pected to exist, since at the time when the strings w
formed, the temperature of the Universe was very high,
the spacetime was filled with gravitational and particle rad
tion @1#.

To study the general perturbation of gravitational wav
it is found difficult. In the following we shall study som
particular cases. This does not lose any generality, sinc
the CEHs are stable, they should be stable against any
of perturbations. Otherwise, they are not stable. Then, fr
@8# we can easily construct the following solutions to t
Einstein vacuum field equations:

ds252e2Mdudv2e2U~eVdz21e2Vdu2!, ~3.1!

where the metric coefficients are given by

M52 ln@a8~u!b8~v !#2d@a~u!2b~v !#

2
d2

4
@a~u!1b~v !#21Mc ,

V5 ln@a~u!1b~v !#1d@a~u!2b~v !#22lnC0 ,

U52 ln@a~u!1b~v !#, ~3.2!

wherea(u) andb(v) are arbitrary functions, andd,C0, and
Mc are constants. The corresponding Kretschmann scal
given by

R[RabgsRabgs

5d4@122d2@a~u!1b~v !#2#

3e22[d~a2b!1d2~a1b!2/42Mc] . ~3.3!

Choosing the null tetrad

l m5eM /2dm
u , nm5eM /2dm

v ,

mm5e2U/2@eV/2dm
z 1 ie2V/2dm

w#,

m̄m5e2U/2@eV/2dm
z 2 ie2V/2dm

w#, ~3.4!

we find that the nonvanishing components of the Weyl ten
Cmnls are given by

C052Cmnldl mmnl lmd

5
d2b8~v !2eM

4
$32d@a~u!1b~v !#%,

C252
1

2
Cmnld@ l mnnl lnd2 l mnnmlm̄d#

52
d2eM

4
a8~u!b8~v !,
of
l
of
x-

re
d
-

,

if
nd
m

is

r

C452Cmnld nmm̄nnlm̄d

5
d2a8~u!2eM

4
$31d@a~u!1b~v !#%. ~3.5!

The reason to project the Weyl tensor to the null tetrad is t
now all the componentsCA have their direct physical inter
pretations@9,10#: C0 represents the transverse gravitation
wave component along the null directionl m , C2 the
Coulomb-like component, andC4 the transverse gravita
tional wave component along the null directionnm . Sincel m
(nm) defines the outgoing~ingoing! null geodesics@11#,
C0 (C4) now represents the outgoing~ingoing! cylindrical
gravitational wave component.

To use solutions~3.2! as the perturbations of gravitationa
waves to the Gregory solution, we have to recover th
under certain limits. To find such limits, let us study the thr
casesb(t)5 ln@cosh(bt)#, 1bt, 2bt separately.

~a! b(t)5bt. In this case, if we choose

b~v !5C0eA2bv, ~3.6!

and replace the null coordinateu by u8, where du8
5e2A2budu, it can be shown that the solutions given by E
~3.2! reduce to the corresponding Gregory solution,
d,a(u8)→0. Submitting Eq.~3.6! into Eqs.~3.3! and ~3.5!,
we find that the Kretschmann scalar and theCA’s are all
finites ast→2`, while near the CEH wherer→r 0

2 , the
Kretschmann scalarR and the componentsC0 and C2 are
finite, butC4 becomes infinite. It can be shown that now a
the fourteen scalars built from the Riemann tensor are fi
as r→r 0

2 . Therefore, the perturbations of the gravitation
waves in this case do not turn the CEH into a scalar sin
larity, although they do turn it into a nonscalar one. T
latter can be seen by considering the tidal forces, represe
by the tetrad components of the Riemann tensor in a fr
falling frame ~PPON!. For example, the componen
R(1)(2)(1)(2) in the PPON frame defined by Eqs.~A3! and
~A4! in paper I diverges as

R~1!~2!~1!~2!→~r 2r 0
2!22, ~3.7!

as r→r 0
2 . Therefore, the perturbations due to the gravi

tional waves turn the CEHs into nonscalar curvature sin
larities. However, different from the perturbations of nu
dust fluids@6#, now the singularity is weak in the sense th
the distortion, which is equal to the twice integral of the tid
forces, is finite asr→r 0

2 ,

E E R~1!~2!~1!~2!dtdt→~t02t!ln~t02t!, ~3.8!

where t0 is a constant and chosen such thatt→t0 as r
→r 0

2 .
It should be noted that in using the PPON frame defin

in paper I to obtain the above expressions, we have assu
that the gravitational wave perturbations are weak, so
PPON frame of the perturbed solutions can be replaced
the one of nonperturbed solutions. This is the case w
d,a(u8) and its derivatives are all very small. In the follow
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ing, whenever we use this frame, we always assume tha
corresponding conditions hold.

~b! b(t)52bt. In this case, to have the solutions give
by Eq.~3.2! reduce to the corresponding Gregory solution,
d,b(v)→0, we have to choose

a~u!5C0e2A2bu. ~3.9!

Once this is done, it can be shown from Eqs.~3.3! and~3.5!
that now the CEH is also not stable and turned into a n
scalar singularity in a manner quite similar to that in the l
case. In particular, the project of the Riemann tensor onto
PPON frame defined in paper I diverges, for example,
componentR(1)(2)(1)(2) diverges exactly as that of Eq.~3.7!,
while the twice integral of it is given by Eq.~3.8!. Thus, the
nonscalar singularity is also weak.

~c! b(t)5 ln@coshbt#. In this case, it is easy to show th
asd→0, the solutions given by Eq.~3.2! reduce to the cor-
responding Gregory solution, provided that the functio
a(u) andb(v) are chosen such that

a~u!5
C0

2
e2A2bu, b~v !5

C0

2
eA2bv. ~3.10!

Inserting the above expressions into Eqs.~3.3! and ~3.5! we
find that all of the fourteen scalars built from the Riema
tensor are finite both at the initialt52` and asr→r 0

2 .
Thus, similar to the last two cases, the perturbations of
gravitational waves do not turn the CEH into a scalar sin
larity. To see whether or not they produce non-scalar sin
larities, we can project the Riemann tensor onto the PP
frame defined in paper I. After doing so, we find that some
the tetrad components indeed diverge, for example, the c
ponent R(1)(2)(1)(2) diverges exactly as that given by E
~3.7!.

Therefore, in all the three cases the gravitational per
bations turn the CEHs into spacetime singularities, and
singularities are nonscalar ones, and are weak in the s
that although the tidal forces diverge, the distortion is fin

IV. PERTURBATIONS OF MASSLESS SCALAR FIELD

To study perturbations of massless scalar fields, we s
use a theorem given in@12#, which is described as follows: I
the solutions$Mg ,Ug ,Vg% is a solution of the Einstein
vacuumfield equations for the metric~3.1! then the solution

$M ,V,U,f%5$Mg2Vg ,Vg ,Ug ,lVg /A2% ~4.1!

is a solution of the Einstein-scalar field equationsGmn

5f ,mf ,n2gmnf ,af ,a/2, wherel is a constant, and

Vg~u,v !5l2H 3

2
Ug2 lnu2Ug,uUg,vu2MgJ . ~4.2!

For more details we refer readers to@12#.
In order to use this theorem, the conditionUg,uUg,v5” 0

has to be true. However, from Eq.~2.6! we can see that this
is the case only forb(t)5 ln@cosh(bt)#. To overcome this
problem, we shall use the solutions given by Eq.~3.2! with
d50 as the vacuum solutions for the casesb(t)56bt. It
can be shown that in these two cases the corresponding
he
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lutions are flat, and can be brought to the forms that
corresponding Gregory solutions take by some coordin
transformations. Once this is clear, we take the soluti
given by Eq. ~3.2! with d50 as the vacuum solution
$Mg ,Ug ,Vg% of the Einstein field equations. Submittin
them into Eq.~4.1!, we find

M5~11l2!Mg1l2ln2ua8~u!b8~v !u

2
l2

2
ln@a~u!1b~v !#,

V5 ln@a~u!1b~v !#22lnC0 ,

U52 ln@a~u!1b~v !#,

f5
l

A2
$ ln@a~u!1b~v !#22lnC0%,

~4.3!

where for the caseb(t)51bt, the functionb(v) is given by
Eq. ~3.6!, while the functiona(u) is arbitrary. For the case
b(t)52bt, the functiona(u) is given by Eq.~3.9!, while
the function b(v) is arbitrary. For the caseb(t)
5 ln@cosh(bt)#, the two functionsa(u) andb(v) are all fixed
and given by Eq.~3.10!. To consider the solutions given b
Eq. ~4.3! as perturbations of the corresponding Gregory
lutions, we require that the constantl, the arbitrary function
a(u), and its derivatives in the caseb(t)51bt, and the
arbitrary functionb(v) and its derivatives in the caseb(t)
52bt, are all small. In particular, whenl, a(u)→0, these
solutions reduce to the Gregory solution forb(t)51bt, and
whenl, b(v)→0, they reduce to the Gregory solution fo
b(t)52bt.

From Eq.~4.3!, we find that the corresponding physic
quantities are given by

T5Tl
l52

c1

@a~u!1b~v !#21l2/2
,

R5
3c1

2

l2@a~u!1b~v !#l2/4
,

C05
c1b8~v !

4a8~u!@a~u!1b~v !#21l2/2
,

C25
c1

12@a~u!1b~v !#21l2/2
,

C45
c1a8~u!

4b8~v !@a~u!1b~v !#21l2/2
, ~4.4!

wherec15l22l2
eMc(11l2). To study the asymptotic behav

ior of these quantities, let us consider the three cases s
rately.

~a! b(t)5bt. In this case, the functiona(u) is arbitrary
but small, and the functionb(v) is given by Eq.~3.6!, from
which we find that
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b~v !, b8~v !;b~r 02r !ebt. ~4.5!

Submitting the above expression into Eq.~4.4!, we find that
all these quantities are finite, except forC4 which diverges
ase2bt/(r 02r ) both ast→2` and asr→r 0

2 . Note that the
amplitude of the gravitational wave componentsC0 andC4
is not completely fixed.1 Thus, the divergence ofC4 does
not really mean that the spacetime is singular. To clarify t
point, let us first consider the fourteen scalars built from
Riemann tensor, which are found finite fort52` and r
5r 0. Therefore, in this case the spacetime is free of sc
curvature singularities both at the initial and on the CEH.
see if there exist nonscalar singularities, let consider the t
forces. Projecting the corresponding Riemann tensor onto
PPON frame defined in paper I, we find that some of
components are diverge, for example, the compon
R(1)(2)(1)(2) diverges as Eq.~3.7!, while the corresponding
distortion vanishes similar to that of Eq.~3.8!. Therefore, in
this case the perturbations of the massless scalar field
the CEH into a weak and nonscalar spacetime singularit

~b! b(t)52bt. In this case, the functionb(v) is arbitrary
and small, and the functiona(u) is given by Eq.~3.8!, from
which we find that

a~u!, a8~u!;b~r 02r !e2bt→`, ~4.6!

as t→2`, and

1The amplitude of the two null vectorsl m andnm defined in Eq.
~3.4! are not completely fixed by the conditionsl ll l5nlnl50 and
nll l51. In @10#, it was shown that in general they take the for
l m5Bdv

m and nm5Adu
m , whereAB5eM. Then, it was found that

C05B2C0
(0) , C25ABC2

(0) , andC45A2C4
(0) , whereCA

(0)’s are
independent of the choice of the functionsA andB.
r
e,
.

s
e

ar
o
al
he
s
nt

rn

a~u!, a8~u!;b~r 02r !e2bt→0, ~4.7!

as r→r 0
2 . Substituting Eq.~4.6! into Eq. ~4.4! we find that

all these quantities are finite ast→2`. That is, the space
time is initially free of spacetime singularities. However, t
combination of Eqs.~4.4! and~4.7! shows that the spacetim
may be singular on the CEHr 5r 0. A closer study shows
that this is indeed the case, and similar to the last case,
nature of singularity is a weak and nonscalar one.

~d! b(t)5 ln@cosh(bt)#. In this case the two functionsa(u)
and b(v) are given by Eq.~3.10!. Combining this equation
with Eq. ~4.4! we find that all the quantities given by Eq
~4.4! are finite at the initial, and diverge asr→r 0. That is, in
this case the CEH is turned into a scalar curvature singu
ity.

V. CONCLUSIONS

The stability of the CEHs appearing in Gregory’s no
static global cosmic strings@5# have been studied. It has bee
shown that the gravitational wave perturbations always t
the CEHs into nonscalar weak spacetime curvature singu
ties, where ‘‘weak’’ means that although the tidal forces b
come unbounded, the distortion remains finite as these
gularities approach. It has been also shown that the CEHs
not stable against perturbations of massless scalar fields
are turned into nonscalar weak singularities for the ca
b(t)56bt and into scalar ones for the caseb(t)
5 ln@cosh(bt)#. These results are not consistent with the on
obtained by studying the perturbations of the test mass
scalar field. In particular, in the last case the latter predic
that the singularity should be a nonscalar one. Thus, to g
eralize the HK conjecture@7# to the study of the stability of
CEHs, more labor is required.
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