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Instability of cosmological event horizons of nonstatic global cosmic strings.
II. Perturbations of gravitational waves and massless scalar fields
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The stability of the cosmological event horizoGEHS of a class of nonstatic global cosmic strings is
studied against perturbations of gravitational waves and massless scalar fields. It is found that the perturbations
of gravitational waves always turn the CEHs into nonscalar weak spacetime curvature singularities, while the
ones of massless scalar fields turn the CEHs either into nonscalar weak singularities or into scalar ones
depending on the particular cases considered. The perturbations of test massless scalar fields are also studied,
and it is found that they do not always give the correct predic{i60556-282(198)07208-1

PACS numbegps): 98.80.Cq, 04.20.Jb, 04.40.Nr

[. INTRODUCTION the stability of the CEHs, as far as the perturbations of null
dust fluid are concerned.

Cosmic strings which may have been formed in the early The notations used in this paper will closely follow the
Universe have been studied extensivgly, since the pio- ones used in paper |, and to avoid of repeating, some results
neering work of Kibblg2]. Recently, Banerjeet al.[4] and givc_en there will be directly used without any further expla-
Gregory[5] studied nonstatic global strings, and some inter-nations.
esting results were found. In particular, Gregory showed that
the spacetime singularities usually appearing in the static Il. THE PERTURBATIONS
case[3] can be replaced by cosmological event horizons OF TEST MASSLESS SCALAR FIELDS
(CEH’s). This result is very important, as it may make the
structure formation scenario of cosmic strings more likely,
and may open a new avenue to the study of global strings.

However, our recent studi¢é] showed that these CEHs
in general were not stable to the perturbations of null dus
fluid, and always turned into spacetime singularities. The
singularities are strong in the sense that the distortion of the
test particles diverges logarithmically.

In this paper, we shall study the stability of the CEHs .
against perturbations of massless scalar fields and gravitg-Or the cases Wheh(t):ln[COSh@)]’JFB.t'._Bt’ W'th B be-
tional waves. Specifically, the paper is organized as follows!"d @ pqsmve constant, the m‘?t”c coefflClents inside the core
in Sec. Il we consider the perturbations of a test massles%f a string have the asymptotic behavior
scalar field, while in Secs. lll and VI, we consider the
“physical” perturbations of gravitational waves and mass-
less scalar fields, respectively. The word “physical” here
means that the back reaction of the perturbations is takeds r—ry , where Cy is a constant(cf. Eq. (3.14 in
into account. The paper is closed by Sec. V, where our maifef. [5]). It was shown that in all the three cases the hyper-
conclusions are derived. surfacer =r represent a conelike CEF5,6].

The main purpose of studying perturbations of test mass- To study the stability of these CEHs against perturbations
less scalar fields is to generalize the Helliwell-Konkowskiof massless scalar fields and gravitational waves, it is found
(HK) conjecture about the stability of quasiregular singulari-convenient to introduce two null coordinates,andv, via
ties[7] to the stability of CEHs. As a matter of fact, j6]  the relations
which will be referred to as paper I, it was shown that the
conjecture works well and gives the correct predictions about t+R t—R 03

u=——, v=——, .

V2 V2

By requiring that the string have fixed proper width and
that the spacetime have boost symmetry in the)(plane,
Gregory managed to show that the spacetime fofH Ylo-
pal string(vorteX is given by the metri¢5]

=M dt?— dr?— e2lAN+1g 22— C2(r)d 62,
2.1

A~ B(ro—r), C(r)~Co+0(ro—r)2 (2.2
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1 Whenb(t)=In[cosh@t)], Eq. (2.7) has the general solu-
REJ e Adr=— E'”[ﬁ(ro—f)]- (24  tions
. . b eB(ufv)/\s‘?
In terms ofu andv, the Gregory solutions can be cast in H(u v)=2 n
the form ! n [(anev‘?ﬂu_i_ 2)(ane* V2Bv _ 2)]1/2’

(2.10

(2.5  where{b,} and{a,} are integration constants. Projecting the
corresponding EMT onto the parallel propagated orthogonal
whereM )= \28(u—v), and (PPON frame defined by EqgA3) and(A4) in paper |, we
find that the nonvanishing components are given by

ds’=2e Modudy —e Yo[eVodZ+e Vode?],

y
B
—1In COSV(E(U“’U) T(O)(O):T(l)(l):Cigb’zu"_cz_(ﬁ‘zv,
_ 2 42 ~2 42
U= +%(U—v)—|nC0, b(t)=In[cosh Bt)], Tow=Ci¢y—C2e,,
J2Bv—InC b(t)= Bt T22=Te@ =" b b, .11
_ v—InCy, _at,
{ J2Bu—InCy, b(t)=— Bt. where
(2.6 1
Co= = {Ex B~ %(ro— 1)1,

Note that in paper I, the perturbations were considered in
both regiong <r, andr=r,. However, as shown there, the
conclusions obtained in these two regions are the same. *
Thus, with.out loss of generality, in the rest of the paper, we ¢ = \/E,BZ 2 28R - R A3
shall restrict ourselves only to the regiorsr,. Then, the n=1[a;e”’"—4a,sinhBte”" — 4]
Klein-Gordon equationp, ,¢,,9*"=0 takes the form

V2B2(ro—r)?

b,e’Na,ef R~V —2]

- b,efRa,ef RtV —-2]
2¢ =Y Pu—Y0)u®,=0, (2.7) (b‘”_\/i'gnzl [a2e?PR— 4a,sinhBtefR— 4132’

where ()=d()/dx. (2.12

To study the above equation, let us first consider the casghereE is a constant. From the above expressions we can
b(t)=+ pt. In this case, it can be shown that B§.7) has  geq that, as— — oo, these tetrad components vanish, and as
the general solution R—+(r—ro), the componentsTg)o), Tz, and
T(0)(1) become unbounded, whil€);) and T 33y remain
finite. Thus, after the back reaction of the perturbations of
the massless scalar field is taken into account, we would
whereF (u) and G(u) are arbitrary functions of their indi- expect that the CEH is turned into a spacetime curvature

cated arguments. To have the perturbation be finite initiallys'ngu.lar'ty' However, unlike the last two cases, the nature of
(t=—), we require that the two arbitrary functions be fi- the singularity should be a nonscalar one, since now all the

nite ast— —o and &= B. Then, the trace of the energy- scalars built froniT ,,, are finite, for example,
momentum tenso(EMT) T,, for the test massless scalar

$(u,v)=F(W)e ™ "2+ Gv), [b(t)=+pt],
(2.9

) S 1
field is given by T=T\= —EGZBR¢,U¢,U~COHSL
T=TN=—¢,.0,8"" .
F(u) ATy ;=5 €*R 7,87, ~ const, (2.13
=—2 F’(U)'f' aT e[au+ﬁ(2u—3v)]/\e“§
2

as R— +=. To verify whether or not the above analysis
gives the correct prediction for the stability of the CEHSs, let

, (2.9  usturn to consider real perturbations, that is, taking the back
reaction of the perturbations into account.

G'(0)— BF(u) alau—po)\Z

2

which diverges as—r, , where a prime denotes the ordi-  pERTURBATIONS OF GRAVITATIONAL WAVES
nary derivative with respect to their indicated arguments.

Therefore, when the back reaction of the perturbations is In paper I, it was noted that, although the study of test null
taken into account, we would expect that the CEH will bedust fluid and the one of real null dust fluid all gave the same
turned into scalar curvature singularity, provided that the HKresults on the instability of the CEHs, the cause of the insta-
conjecture continuously holds for CEHE]. bility was different. For the real perturbations, it was caused

Similarly, it can be shown that the same conclusion is alsdy the nonlinear interaction of gravitational waves, rather
true for the casdé(t) = — Bt. than what the study of the test particles indicated that they

X
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should be caused by the back reaction of perturbations of
null dust fluids. Thus, to study the role that gravitational
waves can play, we devote this section to perturbations of 5%a’ (u)%eM

pure gravitational waves. These perturbations are always ex- :TB“L sla(u)+b(v)]}. 3.9
pected to exist, since at the time when the strings were

formed, the temperature of the Universe was very high, anghe reason to project the Weyl tensor to the null tetrad is that
t_he spacetime was filled with gravitational and particle radiay,qw all the componentd , have their direct physical inter-
tion [1]. ) o pretations][9,10]: ¥ represents the transverse gravitational
To study the general perturbation of gravitational waves,4ye component along the null direction,, W, the
it is found difficult. In the following we shall study some g 10mb-like component, an®, the transverse gravita-
particular cases. This does not lose any generality, since {fyna1 wave component along the null directiop. Sincel
the CEHs are stable, they should be stable against any kirtq] ) defines the outgoingingoing null geodesics[llf,
of perturbations. Otherwise, they are not stable. Then, from[,é‘(q,A) now represents the outgoir@going cylindrical
[8] we can easily construct the following solutions to thegravitational wave component.
Einstein vacuum field equations: To use solution$3.2) as the perturbations of gravitational
waves to the Gregory solution, we have to recover them
under certain limits. To find such limits, let us study the three
cased(t)=In[cosh@t)], +pBt, —pBt separately.
(a) b(t)=pBt. In this case, if we choose

V,=—C,ns N“M’n*m’

d?=2e Mdudv—e Y(e¥dZ+e Vd#?), (3.1

where the metric coefficients are given by

M=—In[a’(u)b’(v)]—5[a(u)—b(v)] b(v)zcoe\@ﬁv, (36)
52
—Z[a(u)+b(v)]2+MC, and replace the null coordinata by u’, where du’

=e 2Audy, it can be shown that the solutions given by Eq.
(3.2 reduce to the corresponding Gregory solution, as

V=In[a(u)+b(v)]+ da(u)~b(v)]~2InC,, S,a(u’)—0. Submitting Eq(3.6) into Eqgs.(3.3) and (3.5),
we find that the Kretschmann scalar and thg’s are all
U= —In[a(u)+b(v)], (32 finites ast— —o, while near the CEH where—r, , the

) . Kretschmann scalaR and the component¥, and¥, are
wherea(u) andb(v) are arbitrary functions, and,Co, and  finite, but ¥, becomes infinite. It can be shown that now all

M. are constants. The corresponding Kretschmann scalar {fe fourteen scalars built from the Riemann tensor are finite

given by asr—r, . Therefore, the perturbations of the gravitational
. wByo waves in this case do not turn the CEH into a scalar singu-
R=RapyoR larity, although they do turn it into a nonscalar one. The
=6 12— 64 a(u)+b(v)]?] latter can be seen by considering the tidal forces, represented
by the tetrad components of the Riemann tensor in a free-
X @~ 2[8(a=b)+5%(@a+b)’/a-Mc] (3.3 faling frame (PPON. For example, the component
Ri)2)1)2) in theT PPON frame defined by EgeA3) and
Choosing the null tetrad (A4) in paper | diverges as
—\-2
|, =eM2s4, n,=eM2s Ru@m@ = =ro) 3.7
mﬂze’U’z[eV’zéfLJrie’V’zéﬁ], asr—r, . Therefore, the perturbations due to the gravita-

tional waves turn the CEHs into nonscalar curvature singu-
_ larities. However, different from the perturbations of null
m,=e Ye"?5 —ie V257], (3.4  dust fluids[6], now the singularity is weak in the sense that
the distortion, which is equal to the twice integral of the tidal
we find that the nonvanishing components of the Weyl tensoforces, is finite as—ry, ,
C.n\o are given by

\IIOZ_C#V}\5|MmV|)\m5 J f R(l)(z)(l)(z)deT—)(To_T)ln(TO—’T), (38)
5%’ (v)%eM :
:T{S_é[a(qu(v)]}' where 74 is a constant and chosen such that 7, asr
—TIg .

It should be noted that in using the PPON frame defined
in paper | to obtain the above expressions, we have assumed
that the gravitational wave perturbations are weak, so the
. PPON frame of the perturbed solutions can be replaced by
_ o%e a’(u)b’(v) the one of nonperturbed solutions. This is the case when

' 8,a(u’) and its derivatives are all very small. In the follow-

1 _
V,=— ECM,M[I”n”I*n‘s—I”n”m”m‘s]

4
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ing, whenever we use this frame, we always assume that tHations are flat, and can be brought to the forms that the
corresponding conditions hold. corresponding Gregory solutions take by some coordinate

(b) b(t)=— Bt. In this case, to have the solutions given transformations. Once this is clear, we take the solutions
by Eg.(3.2) reduce to the corresponding Gregory solution, agjiven by Eg. (3.2 with §=0 as the vacuum solution
4,b(v)—0, we have to choose {Mg,Uq,Vg} of the Einstein field equations. Submitting

_ them into Eq.(4.1), we find
a(u)=Cqe 2Py, (3.9
M= (1+A*)Mgy+A%n2[a’ (u)b’(v)]
)\2
— 7In[a(u)+ b(v)],

Once this is done, it can be shown from E@&3) and (3.5

that now the CEH is also not stable and turned into a non-
scalar singularity in a manner quite similar to that in the last
case. In particular, the project of the Riemann tensor onto the

PPON frame defined in paper | diverges, for example, the V=In[a(u)+b(v)]—2InCy,
componenR(1)2)(1)(2) diverges exactly as that of E¢B.7),
while the twice integral of it is given by Eq3.8). Thus, the U=—In[a(u)+b(v)],

nonscalar singularity is also weak.

(c) b(t) =In[coshat]. In this case, it is easy to show that A
as 8—0, the solutions given by Eq3.2) reduce to the cor- ¢= E{In[a(u)+b(v)]—2lnco},
responding Gregory solution, provided that the functions

a(u) andb(v) are chosen such that 4.3

c c where for the casb(t) = + Bt, the functionb(v) is given by
a(u)= _Oe*v“iﬁu, b(v)= =0 ev2By. 3.10 Ea (3.6), while the fqnctiona(.u) i; arbitrary. For the case

2 2 b(t)=—Bt, the functiona(u) is given by Eq.(3.9), while
the function b(v) is arbitrary. For the caseb(t)
=In[cosh@t)], the two functionsa(u) andb(v) are all fixed
find that all of the fourteen scalars built from the Rieman”and[given(ggg/ Eq(3\.IX0).uTo ézonsi(dlgr the SE)UH),ItiOI’\S givI;n by
tensor are finite both at the initia=—c and asr—r, . Eq (4.3 as perturbations of the corresponding Gregory so-

Thus, similar to the last two cases, the perturbations of thg tions, we require that the constantthe arbitrary function
gravitational waves do not turn the CEH into a scalar singUy(y), and its derivatives in the cadg(t)=+gt, and the
Iar?ty. To see wheth.er or not t_hey produce non-scalar Si”guérbitrary functionb(v) and its derivatives in the cadxt)
larities, we can project the Riemann tensor onto the PPON. — Bt, are all small. In particular, when, a(u)—0, these
frame defined in paper I After dc_)lng so, we find that some ofg | ;tions reduce to the Gregory solution fift) = + At, and
the tetrad components indeed diverge, for example, the COMihen\, b(v)—0, they reduce to the Gregory solution for
ponentR1)2)(1)(2) diverges exactly as that given by Eq. b(t)=— gt

7 .

(3.7). From Eq.(4.3), we find that the corresponding physical

Therefore, in all the three cases the gravitational pe”“rEquantities are given by

bations turn the CEHSs into spacetime singularities, and the
singularities are nonscalar ones, and are weak in the sense

Inserting the above expressions into E(&3) and (3.5 we

that although the tidal forces diverge, the distortion is finite. T=T)=- ! —,
[a(u)+b(v)]2+)\ 12
IV. PERTURBATIONS OF MASSLESS SCALAR FIELD 5
3c
To study perturbations of massless scalar fields, we shall R= 5 ! 2
use a theorem given {1.2], which is described as follows: If AMla(u)+b(v)]
the solutions{Mg,U,,Vy} is a solution of the Einstein
vacuumfield equations for the metri3.1) then the solution c.b’(v)

Vo= ; 2
(MV,U, ¢} ={Mg—Qg.Vg,Ug AVg/\2} (4.0 4a’(Wla(w+b(v)

is a solution of the Einstein-scalar field equatio@s,, V.- Cy
=¢ ,.b,=9,.,9 .92, where\ is a constant, and 2 12[a(u)+b(v)]2”2’2'
3
—\2 ’
Qq(uw) =A% 5Ug=In[2Ug Ug,[~Mg. (4.2 v, c,a’(u) 4.4

ab’ (v)[a(u)+b(v)]2 72’
For more details we refer readers[tt?]. , ,

In order to use this theorem, the conditibly Uy ,#0  wherec,=\?2""e"c1**")_ To study the asymptotic behav-
has to be true. However, from E(.6) we can see that this ior of these quantities, let us consider the three cases sepa-
is the case only fob(t)=In[cosh@t)]. To overcome this rately.
problem, we shall use the solutions given by Ej2) with (@ b(t)=pt. In this case, the function(u) is arbitrary
6=0 as the vacuum solutions for the cadd$) =+ gt. It but small, and the functioh(v) is given by Eq.(3.6), from
can be shown that in these two cases the corresponding sethich we find that
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b(v), b'(v)~pB(ro—r)e. (4.9 a(u), a'(u)~p(ro—rye #-0, (4.7)

- L i asr—r, . Substituting Eq(4.6) into Eq. (4.4 we find that

Submitting the above expression into B4.4), we find that 5 these quantities are finite s> —. That is, the space-

all these quantities are finite, except fr, which diverges  (ime js initially free of spacetime singularities. However, the

ase #'/(ro—r) both ast— —= and ag —r, . Note thatthe  combination of Eqs(4.4) and(4.7) shows that the spacetime

amplitude of the gravitational wave componetits and¥,  may be singular on the CEH=r,. A closer study shows

is not completely fixed. Thus, the divergence o¥, does  that this is indeed the case, and similar to the last case, the

not really mean that the spacetime is singular. To clarify thimature of singularity is a weak and nonscalar one.

point, let us first consider the fourteen scalars built from the (d) b(t) =In[cosh3t)]. In this case the two functioregu)

Riemann tensor, which are found finite for—c andr andb(v) are given by Eq(3.10. Combining this equation

=r,. Therefore, in this case the spacetime is free of scalawith Eq. (4.4 we find that all the quantities given by Eq.

curvature singularities both at the initial and on the CEH. To(4.4) are finite at the initial, and diverge as-r,. That is, in

see if there exist nonscalar singularities, let consider the tidghis case the CEH is turned into a scalar curvature singular-

forces. Projecting the corresponding Riemann tensor onto théy/-

PPON frame defined in paper I, we find that some of its

components are diverge, for example, the component V. CONCLUSIONS

Ray2)1)(2) diverges as Eq(3.7), while the corresponding The stability of the CEHs appearing in Gregory’s non-

distortion vanishes similar to that of E(B.8). Therefore, in  static global cosmic strind®] have been studied. It has been

this case the perturbations of the massless scalar field tughown that the gravitational wave perturbations always turn

the CEH into a weak and nonscalar spacetime singularity. the CEHs into nonscalar weak spacetime curvature singulari-
(b) b(t)=— Bt. In this case, the functiob(v) is arbitrary  ties, where “weak” means that although the tidal forces be-

and small, and the functioa(u) is given by Eq(3.8), from  come _unbounded, the distortion remains finite as these sin-

which we find that gularities approach. It has been also shown that the CEHs are

not stable against perturbations of massless scalar fields, and

are turned into nonscalar weak singularities for the cases

a(u), a’'(u)~pB(ro—rye P-o, (46 p(t)=+pt and into scalar ones for the cash(t)
=In[cosh@t)]. These results are not consistent with the ones
ast— —oo, and obtained by studying the perturbations of the test massless

scalar field. In particular, in the last case the latter predicted
that the singularity should be a nonscalar one. Thus, to gen-

1The amplitude of the two null vectol¢ andn® defined in Eq. eralize the HK conj_ecturé?_] to the study of the stability of
(3.4) are not completely fixed by the conditiond, =n*n,=0 and  CEHS, more labor is required.
nM,=1. In[10], it was shown that in general they take the form

I#=B&* andn*=Ad", whereAB=eM. Then, it was found that ACKNOWLEDGMENTS
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