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Evolution of the Bianchi type I, Bianchi type Ill, and the Kantowski-Sachs universe:
Isotropization and inflation
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We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi type |, a Bianchi
type lll, and a Kantowski-Sachs universe. After analyzing the inherent properties of the system of differential
equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential
potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that
for the Bianchi type | case isotropy can be reached without inflation and we find new critical points which lead
to new exact solutions. On the other hand, we recover the result of Burd and Barrow, that if inflation occurs,
then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are
confirmed.[S0556-282(98)03510-3

PACS numbg(s): 98.80.Cq, 98.80.Hw

[. INTRODUCTION In addition to the Bianchi-type metrics, the Kantowski-
Sachs model also describes a spatially homogeneous uni-
Inflation, first introduced by Guthl], was introduced in verse. This model with a perfect fluid description of matter
the standard cosmological model to solve the homogeneitygnd with or without a cosmological constant has been studied
isotropy, and horizon problems. The latter is well explainedby a number of authorf9,10,11,12,18 They found an an-
due to the fact that inflation is characterized by an exponenisotropic asymptotical behavior of the model. Burd and Bar-
tial or power-law expansion of the universe and at the sameow [14] analyzed this system with a real scalar field having
time a quasiconstant behavior of the Hubble horizon. an exponential potential as a source. Among others, they
On the other hand, the homogeneity and isotropy probfound an anisotropic asymptotical behavior or that inflation
lems are in fact not well explained because from the start thean occur depending on the value of the coupling constant
homogeneous and isotropic Friedman-Léneaimetric is  entering in the definition of the potential. The exponential
used. To really solve the problem one should start with arpotential is motivated by the fact that it can be obtained, for
arbitrary metric and show that inflation takes place and thaexample, by dimensional reduction of more fundamental
the universe evolves towards a Friedman-Léreametric.  theories[15] or in conformal equivalent theories of gravity
The problem of the onset of inflation was considered numeriwhose Lagrangian is an arbitrary analytic function of the
cally for spherical inhomogeneous cosmolodi@s3] and a  scalar curvatur¢l6,17,1§.
seminumerical analysis was done for inhomogeneous, quasi- In this work, we will consider a real scalar field with a
isotropic universe$4] using the long-wavelength iteration convex positive potential, but not necessarily with a local
schemd5,6]. They showed that a large initial inhomogeneity minimum, in a Bianchi type I, a Bianchi type Ill, and a
suppresses the inflation stage. Because of the analytical dikantowski-Sachs model. These three model are in fact very
ficulties of the task, one can, as a first step, consider only alosely related since it will be shown in Sec. Il that the
homogeneous but anisotropic metric and try to solve the isotdifferential equations describing the evolution of the models
ropy problem. are the same and that only the constraint equations differ. In
This task was first undertaken by Collins and HawKii§  Sec. 1l we study the inherent properties of the differential
who showed that, within the Bianchi-type universe filled by equations and we recover in the case of a local minimum of
matter satisfying the dominant energy condition and positivéhe potential a result of Heuslé8]. We also show why the
pressure criterion, the isotropy problem can only be solvedolution of the dynamical system must be studied for a po-
for types |, V, VIl,, and VII,. They showed also that only a tential having a vanishing potential at infinity. Section 1V is
subclass of vanishing measure in the space of all homogelevoted to the special case of an exponential potential. The
neous initial conditions can approach isotropy. result obtained will be compared with the analysis done in
With the presence of an inflationary stage, when theRef.[14]. In Sec. V the numerical integration of the system
dominant energy condition is violated, there was hope tds done, and in Sec. VI the results will be summarized.
obtain a cosmic no-hair theorem. The study done by Heusler
[8] showed that there is no no-hair theorem for a real scalar II. BASIC EQUATIONS
field having a convex positive potential with a vanishing
local minimum in a Bianchi-type universe. In fact, isotropy = We consider a scalar field with a convex positive potential
can only be approached if the underlying Lie group of theV in a homogeneous universe having the following metric:
Bianchi-type metric is compatible with a Friedman-Létre
model. ds?=g,,,0"0"=— 66"+ 5,60/, (1)
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where

P°=dt, #*=a(t)dr, 6?°=b(t)dd, 6>=b(t)f(F)dde,
with f(9)=13, f(J)=sinh@) or f(I)=sin(¥). We have,
respectively, a Bianchi type(Bl), a Bianchi type IlI(BIll),
and a Kantowski-Sach&S) metric.

The action is given by

J

whereg is the determinant of the metric ard is the dual
basis of6*. By varying the action with respect to the metric,
we get the Einstein equations

R

S= 167G

+ % eweuvw)) V=g d*,

1.
2HaHb+Hﬁ+F=8wG(§<p2+V(cp)>, 3
: , Kk 1.,
2Hp+3H+ 2 =87G| — 5 "+ V() |, 4
: : 2 2 1 2

Hat Hp+ Ha+ HaHy+ H=87G| — 5 ¢®+V(e) |,

(5)
with

LlE b 1% )
a_ay b By - ?W ()

For the BI, BIll and KS cases, we get, respectivedy; 0,
-1,1.

The Klein-Gordon equation is obtained by varying the

action with respect to the scalar field. We get
. .oav
<p+(Ha+2Hb)(p+@=0. (7)

In the following we will express every quantity in units of
the Planck massn,=1/y87G. This can be achieved by

setting 87G=1 in the Einstein equations. The system is

fully determined by the independent equatidBs (4), and
(7). One can easily show that Eg) follows from the others.

This is a reflection of the Bianchi identities. After some al-

gebraic manipulations, these equations can be written as a
of four first-order differential equations, which akeinde-
pendent, and a constrairiq. (3)] which is conserved in the
evolution.

This set of equations can also be written as a function o

the expansion raté and the shear tensor,, of the hyper-
surface of constant tim&,. We get, for the first-order equa-
tions,

;9= - 02—20'2+V(g0)— 1//2,

3 ®)

1 1
=—— 0*—0oc+—0o?
3v3 V3

SAMUEL BYLAND AND DAVID SCIALOM

FIG. 1. Region of the space with coordinatesd,z, ) where
the solutions lie as function &f. The solutions for the Bl case are
restricted in a submanifold of codimension 1, the “light cone.”

+i V( )+1 2) (9)
e 5 ¥
=y, (10
- dv
b —01/1—@, (11

where =30 ,,0*"=(J1/3)(H,—Hp) and 6=H,+2H,.
¢ is defined by Eq(10). As for the constraint equation, it
reads

1 2 k — 2 1 2
§0+F_0— +V((,D)+§(ﬂ. (12
The solutions of Eqs8)—(11) do not depend on the type of
the homogeneous model considered. Since(Eg). is con-
served, we have to specify the homogeneous model only in
the initial conditions. In the four-dimensional space with co-
ordinates ¢, c,z=+V, ) the Bl solutions are on the “light
cone,” the Blll ones are in it, and the KS solutions remain
outside the light conésee Fig. 1
The advantage of taking these geometrical meaningful
Lfantities is obvious: the shear tensor expresses the
Irection-dependent deviation from the global expansion.
Henceo measures the anisotropy. As a criterium of isotro-
pization, we will not use the vanishing of (as in[19]), but
f stronger conditiof7,14], which is

o
——0 ast—oo, (13

0

In this paper, we want to analyze the evolution of an expand-
ing universe. Hence we will restrict ourselves to positive
values of f. We want to know under which conditions the
isotropization of this model is generic and when inflation
occurs. In some cases, general properties of the solutions can
be found by just analyzing the differential equations.
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Ill. INHERENT PROPERTIES
OF THE DYNAMICAL SYSTEM
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0..=/3V,.

(20

This section generalizes, in some respect, a result ob=or an exponential potential, the only minimum is at infinity

tained by Heusl€ef8]. In the Bl (k=0) and Blll (k=1) case,

and its value is zero. Let us summarize the results by the

the asymptotic behavior of the solutions can be obtained difollowing theorem.

rectly by the study of Eq98)—(12). Since we are interested

Theorem 3.1Let bek=0 or k=—1 (Bianchi type | and

in the evolution of an expanding universe, we supposeghat Bianchi type Il cases If at a given timet, we have an

is positive or equal to zero at some timme We also restrict
ourselves to positive and convex functivh From Eqgs.(8)
and(12), we get the following inequality relatiork&0):

: 1
o<V-— 3 62<0. (14)

Using the last inequality relation and again E@,(12), it is
easy to obtain

- k
0+ 6°=3V— 52=0. (15)
SettingV=ab?, which is positive, we can write
0= v 16
=5 (16

By hypothesis,i/ is positive att,. Substituting Eq(16) in
Eqg. (15, we have thaty/V=0. Therefore,V can only in-
crease with time and will remain positive aftet,. We have

expanding universe, that i8(ty) =0, then(i) 6(t)<0, 6(t)
=0 for all t=tg, (i) o(t), ¥(t), k/b(t)2—0 fort—c, and
(i) 6—3V,, whereV, is the minimum of the potential
and in particularé—0 for an exponentially potentidi.e.,
V=Vye ) for t—ox.

This theorem restates proposition 1[8] except than it
can now also be applied for a convex potentiahaving its
minimum at infinity. If V;>0, we can use the known result
that the Bl and BIIl universes converge exponentially to the
isotropic de Sitter universg20]. If V=0 at some finite
value ¢q, then we only have isotropization in the BI case
[8].

The above theorem gives no answer on isotropization for
an exponential potential in a Bl or a Blll model. Indeed,
and o vanish together. In this case, the asymptotic solutions
of the dynamical systerfiEgs. (8)—(11)] must be found to
know under which conditions isotropy and/or inflation can
occur. Since the equations of the dynamical system do not
depend ork, the KS case will also be solved. This system
has been actually studied in a paper of Burd and Barrow
[14]. However, their analysis of the system was not com-

shown thaté is a positive, monotonic decreasing function plete. Their analysis covers a part of the phase space only.

and, thus, we must have

9—0 and 00— 0,=0 ast—oo, (17
This function converges towards the critical val@e. It is
also easy to get

k

p 2 3 2
0= F—Sa 3 Ye=<0. (18

Since the left-hand sidéLHS) of the inequality is a sum of
negative terms, we have that each of them must vanigh as

Indeed, only two of the critical points were found and some
conclusions turn out to be incorrect.

In the next section, the analysis of the exponential poten-
tial case will be done in detail and we will compare our
results with Ref[14].

IV. STUDY OF THE DYNAMICAL SYSTEM
WITH AN EXPONENTIAL POTENTIAL

A. Singular points
For a qualitative discussion of the system of differential

— . Using this fact in the constraint equation, we obtain equationg8)—(11), we have to determine the asymptotic be-

60—+\3V ast—o, (19

havior near the critical points. The usual methods of treating
the problem rapidly turn out to be inadequate for this
case: the singular points are highly nonhyperbolic so that

Equation(11) describes a damped harmonic oscillator, andthe linearization or even the transformation to a normal form
so we know that the system must “land” at the minimum of leads nowhere. Usually, the constraint equation can be used

the potentialV, and thus

as a Ljapunov function. But in this case, E§2) has no

TABLE |. Summary of results for isolated critical points.

Py P, P3
A Type Is In St Type Is In St Type Is In St
A=0 Blll - - - BI + e 1 KS - e -
0<\A<V2 BlII - - - BI + p 1 KS - p -
A=V2 BlII - - - BI + - t BI + - t
v2<a<.6 Bl - - - BI + - t Bl - - 1
A=16 BlII - - - BI + - ? BlII - - 0
A>\6 Bl - - - not defined BIIL  — - 7
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TABLE Il. Summary of results for critical points i&.

P: (S5,0Pp) e
A Po Sy Type Is In St
Po=*+2/3 $,=0 BI + - s
A< 6 —\213<Py<\2/3 Sp#0 BI - - s
Po=—12/3 S=0 BI + - s
A=16 —\2I3<Py< /213 So# BI - - s
Po=1+/2/3 S=0 =] + - ?
Po=— 273 $=0 BI + - s
—2I3<Py<2/\ Sp#0 BI - - s
A> 6 Po=2/\ Sp#0 BI - - ?
2IN<Py<+2/3 S#0 BI - — —
Po=12/3 S=0 BI + - -
isolated root and therefore is of no help. There is no other 1 2 1 1 1
obvious candidates for a Ljapunov function. = 35+ P+ — U2+ — P?+2S3-S12
The problems originate from the fact that there are only 3v3 v3 V3 2v3
guadratic terms on the right-hand side of E¢8)—(11). LS (24)
There is a standard procedure for such systems: one has to '
“divide” all variables but one by the remaining variable and
rewrite thg system in _terms of these_ new \{ariable's.' of U'=U E_E P+ 252 U2+ P2|. (25)
course, this transformation is only nonsingular if the divisor 3 2
does not vanish in the whole region of definition. In Ref.
[14], the remaining variable was chosen to e V(®P), 2
which does not vanish in finite regions of the phase space. P'=-3 P+\U2+2S°P—U?P+P3, (26)
Here we prefer to distinguish the variabtesince it will
allow us to find additional critical pointén finite regions of and the constraint equation is
phase spageThis transformation is well defined outside the Int equation |
origin.
Defining the variables, U, andP by 52+U2+% P24+ %: % (27)

o=S6, z=U6H, y¢y=Po (22
and the timer by
d 1d -
E_ - 5 a, ( )
the differential equation&8)—(11) transform into
1
0'=0 —§—252+U2—P2 , (23)

A=0.5,60=—0.5,9 >0

20

A=1.0,00=0.3,19 <0

L L L

100 150 200

.......

250

t

A prime means the derivative with respectitdrhe dynami-
cal system defined by Eq&4)—(26), which are independent
of 6, will be referenced from now on by the tdg).

For the Bianchi type | casek&0), Eq.(27) describes the
surface of an ellipsoid, sayE, which separates the
Kantowski-Sachsinside from the Bianchi type Ill(outside
solutions. The Bianchi type | modek€ 0) has to be treated
carefully because in this case the system can only evolve on
a two-dimensional submanifold/ in the space of the vari-
ables G,U,P), defined by

0.4

0.2

o-t

02

-0.4

FIG. 2. Evolution of Kantowski-Sachs solutions witk<v2.
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® S U=0, 352+ P?=1
20 | 2
ol - ~-i'~"3'—"*------v with Se[—+1/3,y1/3]. (32
» 2ok ‘\‘ “\.\ Comparing these critical points with the results of Burd and

! Barrow[14], one easily verifies th&, andP5 correspond to
-40 - \ L their critical points(1V) and(lll), whereasP; and the points
t of X have no counterpart in their paper. Using the variables
L in Ref.[14], P, andX can be found as critical points lying at
_ infinity in their phase space.

To be sure that there are no additional critical points at
infinity in our coordinate system either, we first introduce

FIG. 3. The corresponding phase portraits for the KS case Witﬁpherlcal coordinates
A<V2.

1
\
60 } '
'

-80 ku L L L L L L L

S=r sin?¥, U=r cose cosd, P=r sing cosd
(33

and then map the points at infinity € ) to the surface of a
unit sphere by the transformations

w=f"1({3}) with f(S,U,P)=S>+U?+3P? (28

It may happen thadV coincides with the stable manifold of a

critical point which is unstable with respect to the whole _ T _dr
. e r—p= , dr—dy= . (34
system(*). In this case the point is nevertheless stable for the r+1 1-p
Bianchi type | metric. L _ )
We will concentrate on determining the asymptotic be-At infinity (p=1) we thus find
havior of this reduced systend.is then given by a simple dp
integration of Eq(23). After a short calculation we find for an- 2—cog 9(1+2cog o), (35
the system(*) three discrete critical points and a one- 1
parameter family of critical points: de A 52 cod ot gir?
E_E COS ¢ COoSU(2 Ccos p+Sirr @),
1
P,: S=———, U=0, P=0, (29 (36
2V3
dd cosd
—= (2—cog 9+cog ¢ cos I
P2 S: O, U=

18 ’ —V3X\ sin ¢ cos ¢ sin ¥ cos ). (37)

\ For a critical point at infinity, expressiorni85)—(37) have to
P=2= for A<y, (30) vanish S|multaneo_usly, which is easily seen to be impossible.
3 Therefore, the point$;, P,, P5; and the points of are

really the only critical points of the syste(n).

It is worthwhile to note that the critical points correspond
_\2 2
Py: S= izz_)‘ U= )\—+2 to exact solutions of our original systefigs. (8)—(11)].
2v3 A+1 V2(N2+1) Indeed, if we consider the pullback of a critical point
(S¢,Uy,Py) of (x) for a nonconstant potentiah(-0), the
A volume expansior is given by
P=——, 31
A+1 @D 6= e, (39
25 |
A=2,00=—0.3,9<0 01 b
2F 015 |
0-t ot .l
1.5 |
025 |
1k . , , N , -0.3 - " N , , N
0 2+107 as107 6»107 8+107 1+108 0 24107 4x107 6+107 8+107 1+108

t

FIG. 4. Evolution of a Kantowski-Sachs solution with>v2.



6070

A=0.5,00=—0.4,19 <0

20

A=1,00=0,30>0

A

A=1.2,00=0.3 200 >0

L
200 300 400 500

t

FIG. 5. Evolution of Bianchi

with Ay=—1/3-28+U*~P?(5y,p)=(s U, Py @Nd as a

function of the original time, we obtain the following exact
solutions:

The stability analysis of the critical points will give the sta-
bility of the above exact solutions.

B. Stability analysis of the singular points
1. Critical point P,

The linearization of (*) around the critical point
P,:(S,U,P)=[—(2v3)1,0,0] is diagonal and has eigen-
valuesegp=—1/2 andey=1/2. SoP, is unstable both to
the future and to the past. Starting arouRg, the critical

SAMUEL BYLAND AND DAVID SCIALOM

02 I

ot |

-0.4 F

type Il solutions with <v?2.

Depending from which point we start the integration, the
solution can be in either type of universe.

As mentioned earlier, the Bianchi type k£€£0) metric
has to be considered very carefully because the system is
constrained by Eq27) to the two-dimensional submanifold
W. The tangential space W in the pointP, is given by

Tp, W={XeRXLVFf(P,)}. (43)

But Vf(P,)=(0,y2(6—\?%)/3\/3) is an eigenvector for the
eigenvalues,, and soTp W coincides with the eigenspace

to the eigenvalue,. That is,W is the stable submanifold
throughP, for A< /6 and consequentlf, is in this entire
range an asymptotically stable critical point for Bianchi type
| solutions, contrary to the Bianchi type Il and Kantowski-
Sachs solutions. This particular behavior for the Bl case was
overseen in Ref 14].

For the special valuea=v2 and A= /6, at least one

point can never be reached by any solutions of the dynamicadigenvalue vanishes and the linearization does not contain

system.
Using Eq.(39), the critical pointP; will correspond to the
unstable solution

=0, V(¥)=0.
A Y (®)

(40)

2. Critical point P,

In P, the linearization of(*) has the eigenvalues;=
—14+\?/6 (twice) and e,= —2/3+\?/3, and so the critical
point is asymptotically stablpvith respect to all the system
(*) and for 7—o0] as long as\<v2 and unstable fow?2
<A< /6.

Since P, lies on the ellipsoid which separates the KS
from the BIll domain, its neighborhood intersects all three
types of universe. More precisely, starting from a pdmt
nearP,, defined by

S=6S u—\/G_)\ LsU. pen
I T o

=+ 6P,

. (4

the constraints equatiof27) expanded to first order tells us
to which universeP belongs since we have

2(6—\2) A
—g U+t

3 oP

(42

enough information to determine the stability®$. By pro-
jecting the system(*) on a center manifold througl®,
[21,22, we find thatP, is unstable forh=v2. In the case
A= /6 the center manifold is two dimensional and therefore
the stability analysis is much more difficult. We did not find
the asymptotical properties of the solutions around this sin-
gular point for this value of.

The critical pointP, transforms back to the exact solution

2(6—\?)

6
Nt VIR = a7

At

0

o=0, ¢=17, . (44

-20

-40

3

-60

FIG. 6. The corresponding phase portraits for the Blll case with
A<V2.
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A=2,00=0.1,1$9<0

25
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0.4

02

ot

800

FIG. 7. Evolution of Bianchi type Il solutions with >v2.

For A <v?2 this solution violates the dominant energy condi-
tion (¢?—V<0) and thus inflation occurs. This can be di-

rectly seen since from the above equation we obtain
a=agt?’. (45)

For the asymptotically stable range<v2 for KS and BlII
and\ < \/6 for BI) of P,, the solution is also asymptotically

=0,

2
5 Po. £3=3 (21V3S).  (48)

€1 g,=1—
If Po>2/\, e, and e; have different signs and the critical
point is unstable both to the future and to the past.

If Po<2/\, &, and g3 are both positive, and sBs is
unstable to the future. The stability fer» — is determined
by the behavior of the system on a center manifatt,22. It

stable in the sense that solutions which start near it converge easy to see tha itself is a center manifold and that the

to it.

3. Critical point Py
The eigenvalues of the linearization @f) in P5 are

A2+2

=T anrD) o2

= (\2+2)= (18- TN\P)(\*+2)
- 4(N%+1) '

(46)

For A<v2, all eigenvalues are real, arg, and £; have
different signs; sdP is unstable. FoOh =v2, P coincides

restriction of(*) to X is just the trivial system

S'=0, U'=0, P'=0. (49
That means that, for— —, Py is an attractor. It is also
easy to see that, for< /6, 3 as a whole is a past attractor
for (*). Indeed,e,, is then positive for all point®s .

The pullback of points out o gives an exact solution of
the form

o

yp=—, V(P®)=0, (50

with the conditionZ —2¢3— ¢3=0.

with P,, and so we conclude as before that the critical point

is unstable. In the rang <\ =< J18/7, all eigenvalues are
real and negative, while, fox>/18/7, ¢, and &3 become
complex with the same negative real part. Bois asymp-
totically stable forh >v2.

Again, we find the following exact solution after the pull-
back of P5:

_2(\*+1) _2-\? 2
Tz YT g T
2(\2+2)
V((P):W, (47)

which is asymptotically stable for>v2.

4. Critical points of X,

Since the critical points ir% are on the ellipsoid, we
find as befordSec. IV B 2 that there are points belonging to
all three types of universe near

For the linearization ofx) around a poinPs=S,, 0, Pq
of X, we find the eigenvalues

C. Summary

The cases withh =0 (constant potentialcan be treated
analogously. For the critical poinf3, and P5 this has been
done by Burd and BarroW14], while for P, and X the
results found are still valid since the asymptotic behavior
does not depend ok.

50 F

FIG. 8. Corresponding phase portraits for the BIll case with
>v2.
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r A=1,00=—0.5,0<0
0.2 |

0t ot 4
02 |

e - 04|
A=2,00=0.3,19<0
0 50 100 150 200 0 5 10 15 20

t t

FIG. 9. Evolution of Bianchi type | solutions with< /6.

The results of this section are summarized in Talied- There is also a unique attractor in the past: thenani-
lated critical pointsand Table Il(family X). They show for fold. As a consequence, we must start the numerical integra-
every critical point the type of the corresponding exact solution nears, to have all the history of the evolution of the
tion (BI, BIIl, or KS), its isotropization(ls) and inflation(In) model.

(e, exponential inflationp, power-law inflation; or—, no The next section will be devoted to the numerical integra-
inflation), and the stability(St) of the critical points(T, tion.
asymptotic future stable: T, asymptotic future stable for Bi-
anchi type | solutions and unstable otherwise; past con-
vergence ta&; and —, unstablg.

From Table I, it follows that foh <v2 the unique asymp- In this section we will follow numerically the evolution of
totical stable solution is represented by the pdmt This  the system(8)—(11). We have seen in Sec. IV that the points
solution describes an inflationary and isotropic universe. of the surface, are the only past attractor of the system, and

Forv2<\< /6, isotropy can be reached without inflation so it seems obvious to study the development of solutions
if we restrict ourselves to the Bl universe. This fact is com-starting near the corresponding exact solution
patible with a Collins-Hawking resu[t7], which states that
for ordinary matter, within the Bl universe, isotropy can be 1 1 1
reached without inflation. Indeed, fe2 <\ <6 the equa- 0=1, o0=0o7, ¥=¢o7, V(P)=0, (52
tion of state of the matter field corresponding to e so-
lutions is given by

V. NUMERICAL RESULTS

with t—0 and with 372+ 3/2y%=1. Since these exact solu-

p=wp, (51) tions are in the Bl universe, the numerical solutions starting
near can be in any three types of univergeg., BI, BIIl, or
KS).
with we]—1/3,1[, and contains the ordinary matter case To distinguish the different future attractors, it is conve-
(O=w<1). nient not to plot the variabled and o themselvedthey al-

For\> /6, the unique asymptotical stable solution is rep-ways vanish as 1), but the quantitieg)-t and o-t, which
resented by the poinP;. This BIIl solution describes an converge to constant values at the critical points.
anisotropic universe.

50 |- \
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(¥2—v)e? HI
<l
llj ol 'y 3 -6
A -6 ‘:L 1 I 1 I i
-50 - [y o 200 400 600 800 1000
R D ¢
-4 2 0 2 4 6
P FIG. 11. Inflation can only occur when the dominant energy

condition is violated, that is, whenyf—V)t? is negative. (/>
FIG. 10. Corresponding phase portraits for the Bl case with —V)t? is plotted for the corresponding numerical solutions de-
<6. scribed by Figs. 9 and 10.
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FIG. 12. Evolution of a Bianchi type | solution with> \/6.

A. Kantowski-Sachs solutions 20000+ hodhp=0. (56)
For the initial asymptotic behavior

Su For Bianchi type | solutions, the exact solution corre-
, Uty = T sponding toP,, is attractive not only foi <v?2, but for the
0 whole range for whictP, is defined, that is, fok < /6 (Fig.
9, phase portraits in Fig. 20The numerical calculation con-
_ ot oY firms our analysis for2 <A< \J6: the solutions still isotro-
Plto)=——, (53 - e -
0 pize, but are no longer inflationary as one can see from Fig.
11 where we have plotteg?—V(®), which violates the
we will have a Kantowski-Sachs solutions if the following dominant energy condition when negative.

oot 8o
to

1
0(tg)= %, o(ty)=

inequality is satisfied: For \>/6 we have again the solution 5 as the only
attractor. An example for this case is shown in Fig. 12. The
20000+ Yy dyp=>0. (54) system quickly evolves towards the now unstable solution

P, is repelled, and converges towards the solutio10

Figure 2 shows the results for some valuea ¢éss then the
critical valuev2. The solution clearly converges towards the
exact solution corresponding to the critical po. The
corresponding phase portraits are given in Fig. 3. We have studied the Einstein-Klein-Gord@KG) equa-

The development of a solution with>v2 is shown in  tions for a convex positive potential in a Bianchi type I, a
Fig. 4. The solution approaches again tm@w unstablg  type Bianchi lll, and a Kantowsky-Sachs universe.
attractorP,, is repelled, and finally converges towards the After analyzing the inherent properties of the equations, it
exact solution corresponding to the attradray. was shown in Sec. Ill why a detailed analysis of the solu-

tions of the EKG equations was needed for a vanishing po-
tential at infinity. By taking an exponential potentiaV/ (

B. Bianchi type Il solutions =V,e M%), it was shown for which values of inflation
and/or isotropy were reached asymptotically. We recovered
the results of Ref[14], but also found new asymptotical
behaviors and new exact solutions represented by the singu-
20080+ o dy<0. (55 lar pointsP; and the submanifold.

We also found that for some values Xfisotropy can be
reached without inflation in a Bianchi type | universe. But
chi type Il solution corresponding 18, . But since this is an \r/égi?leldnﬂ\?\}fgls%cﬁigr)fe;e‘c?t)r;etgggatli?)%tsr,onpgmgrigi\ll:/;ils ob-
unstable attractor, the system finally evolves towards the >%ain the entire history of the evolution of the model. All the

lution P . Figure 6 shows the corresponding phase portralt?ounded asymptotical behaviors were confirmed numerically.
for these cases.

For A>v2 the system again approaches the unstéhle
solution in the beginning, is repelled, and converges towards
the P4 solution, which is the only attractor in this range of ACKNOWLEDGMENTS
values(Fig. 7, phase portraits in Fig)8

VI. CONCLUSIONS

For a Bianchi type Il solution of the forn(b3), the inte-
gration constants have to satisfy the condition

The solutions withh <v2 (Fig. 5) initially tend to the Bian-

We thank N. Deruelle for very useful discussions and for
carefully reading the manuscript. We also thank N. Strau-
mann for attracting our attention to this problem. This work

For a Bianchi type | solution, the perturbations of thewas partially supported by the Swiss National Science Foun-
initial state(53) have to satisfy the equation dation.

C. Bianchi type | solutions



6074 SAMUEL BYLAND AND DAVID SCIALOM 57

[1] A. Guth, Phys. Rev. 23, 347(198)). [12] ©@. Grén, J. Math. Phys27, 1490(1986.
[2] D. S. Goldwirth and T. Piran, Phys. Rev. 4D, 3263(1989. [13] ©. Grin, Phys. Lett. A121, 217 (1987.
[3] D. S. Goldwirth and T. Piran, Phys. Rev. Le@4, 2852 [14] A. B. Burd and J. D. Barrow, Nucl. Phy8308 929 (1988.

(1990. [15] J. J. Halliwell, Phys. Lett. BL85, 341 (1987.
[4] N. Deruelle and D. S. Goldwirth, Phys. Rev. Bl, 1563  [16] B. Whitt, Phys. Lett.145B, 176 (1984.
(1995. [17] J. D. Barrow, Nucl. PhysB296, 697 (1988.
[5] V. A. Belinski, E. M. Lifscitz, and I. M. Khalatnikov, Sov. [18] G. V. Bicknell, J. Phys. A7, 1061(1974.
Phys. JETR35, 838(1972. ) [19] L. E. Mendes and A. B. Henrique, Phys. Lett. 354, 44
[6] G. L. Comer, N. Deruelle, D. Langlois, and J. Parry, Phys. (1991).
Rev. D49, 2759(1994. _ [20] R. M. Wald, Phys. Rev. [28, 2118(1983.
7] 2319783 Collins and S. W. Hawking, Astrophys. 180 317 [21] H. Amann,Gewdnliche Differentialgleichungefde Gruyter,
' Berlin, 1983.
[8] M. Heusler, Phys. Lett. 253 33 (1990. [22] D. K. Arrowsmith and C. M. PlaceAn Introduction to Dy-

[9] C. B. Callins, J. Math. Physl8, 2116(1977.
[10] D. Lorenz, J. Phys. A5, 2997(1982.
[11] E. Weber, J. Math. Phy®5, 3279(1984).

namical SystemgCambridge University Press, Cambridge,
England, 199§ p. 79.



