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Evolution of the Bianchi type I, Bianchi type III, and the Kantowski-Sachs universe:
Isotropization and inflation
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We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi type I, a Bianchi
type III, and a Kantowski-Sachs universe. After analyzing the inherent properties of the system of differential
equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential
potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that
for the Bianchi type I case isotropy can be reached without inflation and we find new critical points which lead
to new exact solutions. On the other hand, we recover the result of Burd and Barrow, that if inflation occurs,
then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are
confirmed.@S0556-2821~98!03510-3#

PACS number~s!: 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

Inflation, first introduced by Guth@1#, was introduced in
the standard cosmological model to solve the homogene
isotropy, and horizon problems. The latter is well explain
due to the fact that inflation is characterized by an expon
tial or power-law expansion of the universe and at the sa
time a quasiconstant behavior of the Hubble horizon.

On the other hand, the homogeneity and isotropy pr
lems are in fact not well explained because from the start
homogeneous and isotropic Friedman-Lemaıˆtre metric is
used. To really solve the problem one should start with
arbitrary metric and show that inflation takes place and t
the universe evolves towards a Friedman-Lemaıˆtre metric.
The problem of the onset of inflation was considered num
cally for spherical inhomogeneous cosmologies@2,3# and a
seminumerical analysis was done for inhomogeneous, qu
isotropic universes@4# using the long-wavelength iteratio
scheme@5,6#. They showed that a large initial inhomogene
suppresses the inflation stage. Because of the analytica
ficulties of the task, one can, as a first step, consider on
homogeneous but anisotropic metric and try to solve the i
ropy problem.

This task was first undertaken by Collins and Hawking@7#
who showed that, within the Bianchi-type universe filled
matter satisfying the dominant energy condition and posi
pressure criterion, the isotropy problem can only be sol
for types I, V, VIIo , and VIIh . They showed also that only
subclass of vanishing measure in the space of all homo
neous initial conditions can approach isotropy.

With the presence of an inflationary stage, when
dominant energy condition is violated, there was hope
obtain a cosmic no-hair theorem. The study done by Heu
@8# showed that there is no no-hair theorem for a real sc
field having a convex positive potential with a vanishi
local minimum in a Bianchi-type universe. In fact, isotrop
can only be approached if the underlying Lie group of t
Bianchi-type metric is compatible with a Friedman-Lemaıˆtre
model.
570556-2821/98/57~10!/6065~10!/$15.00
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In addition to the Bianchi-type metrics, the Kantowsk
Sachs model also describes a spatially homogeneous
verse. This model with a perfect fluid description of mat
and with or without a cosmological constant has been stud
by a number of authors@9,10,11,12,13#. They found an an-
isotropic asymptotical behavior of the model. Burd and B
row @14# analyzed this system with a real scalar field havi
an exponential potential as a source. Among others, t
found an anisotropic asymptotical behavior or that inflati
can occur depending on the value of the coupling cons
entering in the definition of the potential. The exponent
potential is motivated by the fact that it can be obtained,
example, by dimensional reduction of more fundamen
theories@15# or in conformal equivalent theories of gravit
whose Lagrangian is an arbitrary analytic function of t
scalar curvature@16,17,18#.

In this work, we will consider a real scalar field with
convex positive potential, but not necessarily with a loc
minimum, in a Bianchi type I, a Bianchi type III, and
Kantowski-Sachs model. These three model are in fact v
closely related since it will be shown in Sec. II that th
differential equations describing the evolution of the mod
are the same and that only the constraint equations diffe
Sec. III we study the inherent properties of the different
equations and we recover in the case of a local minimum
the potential a result of Heusler@8#. We also show why the
solution of the dynamical system must be studied for a
tential having a vanishing potential at infinity. Section IV
devoted to the special case of an exponential potential.
result obtained will be compared with the analysis done
Ref. @14#. In Sec. V the numerical integration of the syste
is done, and in Sec. VI the results will be summarized.

II. BASIC EQUATIONS

We consider a scalar field with a convex positive poten
V in a homogeneous universe having the following metri

ds25gmnumun52u0u01d i j u
iu j , ~1!
6065 © 1998 The American Physical Society
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where

u05dt, u15a~ t !dr, u25b~ t !dq, u35b~ t ! f ~q!df,

with f (q)5q, f (q)5sinh(q) or f (q)5sin(q). We have,
respectively, a Bianchi type I~BI!, a Bianchi type III~BIII !,
and a Kantowski-Sachs~KS! metric.

The action is given by

S5E S 2
R

16pG
1

1

2
emwem1V~w! DA2g d4x, ~2!

whereg is the determinant of the metric andem is the dual
basis ofum. By varying the action with respect to the metri
we get the Einstein equations

2HaHb1Hb
21

k

b2 58pGS 1

2
ẇ21V~w! D , ~3!

2Ḣb13Hb
21

k

b2 58pGS 2
1

2
ẇ21V~w! D , ~4!

Ḣa1Ḣb1Ha
21HaHb1Hb

258pGS 2
1

2
ẇ21V~w! D ,

~5!

with

Ha5
ȧ

a
, Hb5

ḃ

b
, k52

1

f

d2f

dq2 . ~6!

For the BI, BIII and KS cases, we get, respectively,k50,
21,1.

The Klein-Gordon equation is obtained by varying t
action with respect to the scalar field. We get

ẅ1~Ha12Hb!ẇ1
dV

dw
50. ~7!

In the following we will express every quantity in units o
the Planck massmp51/A8pG. This can be achieved b
setting 8pG51 in the Einstein equations. The system
fully determined by the independent equations~3!, ~4!, and
~7!. One can easily show that Eq.~5! follows from the others.
This is a reflection of the Bianchi identities. After some a
gebraic manipulations, these equations can be written as
of four first-order differential equations, which arek inde-
pendent, and a constraint@Eq. ~3!# which is conserved in the
evolution.

This set of equations can also be written as a function
the expansion rateu and the shear tensorsmn of the hyper-
surface of constant time,S. We get, for the first-order equa
tions,

u̇52
1

3
u222s21V~w!2c2, ~8!

ṡ52
1

3)
u22us1

1

)
s2
set

f

1
1

)
S V~w!1

1

2
c2D , ~9!

ẇ5c, ~10!

ċ52uc2
dV

dw
, ~11!

where s5 1
2 smnsmn5(A1/3)(Ha2Hb) and u5Ha12Hb .

c is defined by Eq.~10!. As for the constraint equation, i
reads

1

3
u21

k

b2 5s21V~w!1
1

2
c2. ~12!

The solutions of Eqs.~8!–~11! do not depend on the type o
the homogeneous model considered. Since Eq.~12! is con-
served, we have to specify the homogeneous model onl
the initial conditions. In the four-dimensional space with c
ordinates (u,s,z5AV,c) the BI solutions are on the ‘‘light
cone,’’ the BIII ones are in it, and the KS solutions rema
outside the light cone~see Fig. 1!.

The advantage of taking these geometrical meaning
quantities is obvious: the shear tensor expresses
direction-dependent deviation from the global expansi
Hences measures the anisotropy. As a criterium of isotr
pization, we will not use the vanishing ofs ~as in@19#!, but
a stronger condition@7,14#, which is

s

u
→0 as t→`. ~13!

In this paper, we want to analyze the evolution of an expa
ing universe. Hence we will restrict ourselves to positi
values ofu. We want to know under which conditions th
isotropization of this model is generic and when inflati
occurs. In some cases, general properties of the solutions
be found by just analyzing the differential equations.

FIG. 1. Region of the space with coordinates (u,s,z,c) where
the solutions lie as function ofk. The solutions for the BI case ar
restricted in a submanifold of codimension 1, the ‘‘light cone.’’
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III. INHERENT PROPERTIES
OF THE DYNAMICAL SYSTEM

This section generalizes, in some respect, a result
tained by Heusler@8#. In the BI (k50) and BIII (k51) case,
the asymptotic behavior of the solutions can be obtained
rectly by the study of Eqs.~8!–~12!. Since we are intereste
in the evolution of an expanding universe, we suppose thu
is positive or equal to zero at some timet0 . We also restrict
ourselves to positive and convex functionV. From Eqs.~8!
and ~12!, we get the following inequality relation (k<0):

u̇<V2
1

3
u2<0. ~14!

Using the last inequality relation and again Eqs.~8!,~12!, it is
easy to obtain

u̇1u253V2
k

b2 >0. ~15!

SettingV5ab2, which is positive, we can write

u5
V̇
V . ~16!

By hypothesis,V̇ is positive att0 . Substituting Eq.~16! in
Eq. ~15!, we have thatV̇/V>0. Therefore,V̇ can only in-
crease with time andu will remain positive aftert0 . We have
shown thatu is a positive, monotonic decreasing functio
and, thus, we must have

u̇→0 and u→u`>0 as t→`. ~17!

This function converges towards the critical valueu` . It is
also easy to get

u̇5
k

b223s22
3

2
c2<0. ~18!

Since the left-hand side~LHS! of the inequality is a sum o
negative terms, we have that each of them must vanisht
→`. Using this fact in the constraint equation, we obtain

u→A3V as t→`. ~19!

Equation~11! describes a damped harmonic oscillator, a
so we know that the system must ‘‘land’’ at the minimum
the potentialV0 and thus
b-

i-

s

d

u`5A3V0. ~20!

For an exponential potential, the only minimum is at infini
and its value is zero. Let us summarize the results by
following theorem.

Theorem 3.1.Let bek50 or k521 ~Bianchi type I and
Bianchi type III cases!. If at a given timet0 we have an
expanding universe, that is,u(t0)>0, then~i! u̇(t)<0, u(t)
>0 for all t>t0 , ~ii ! s(t), c(t), k/b(t)2→0 for t→`, and
~iii ! u→A3V0, whereV0 is the minimum of the potentia
and in particularu→0 for an exponentially potential~i.e.,
V5V0e2lw! for t→`.

This theorem restates proposition 1 in@8# except than it
can now also be applied for a convex potentialV having its
minimum at infinity. If V0.0, we can use the known resu
that the BI and BIII universes converge exponentially to t
isotropic de Sitter universe@20#. If V050 at some finite
value w0 , then we only have isotropization in the BI cas
@8#.

The above theorem gives no answer on isotropization
an exponential potential in a BI or a BIII model. Indeed,u
ands vanish together. In this case, the asymptotic solutio
of the dynamical system@Eqs. ~8!–~11!# must be found to
know under which conditions isotropy and/or inflation c
occur. Since the equations of the dynamical system do
depend onk, the KS case will also be solved. This syste
has been actually studied in a paper of Burd and Barr
@14#. However, their analysis of the system was not co
plete. Their analysis covers a part of the phase space o
Indeed, only two of the critical points were found and som
conclusions turn out to be incorrect.

In the next section, the analysis of the exponential pot
tial case will be done in detail and we will compare o
results with Ref.@14#.

IV. STUDY OF THE DYNAMICAL SYSTEM
WITH AN EXPONENTIAL POTENTIAL

A. Singular points

For a qualitative discussion of the system of different
equations~8!–~11!, we have to determine the asymptotic b
havior near the critical points. The usual methods of treat
the problem rapidly turn out to be inadequate for th
case: the singular points are highly nonhyperbolic so t
the linearization or even the transformation to a normal fo
leads nowhere. Usually, the constraint equation can be u
as a Ljapunov function. But in this case, Eq.~12! has no
TABLE I. Summary of results for isolated critical points.

l

P1 P2 P3

Type Is In St Type Is In St Type Is In St

l50 BIII 2 2 2 BI 1 e ↑ KS 2 e 2

0,l,& BIII 2 2 2 BI 1 p ↑ KS 2 p 2

l5& BIII 2 2 2 BI 1 2 † BI 1 2 †
&,l,A6 BIII 2 2 2 BI 1 2 † BIII 2 2 ↑
l5A6 BIII 2 2 2 BI 1 2 ? BIII 2 2 ↑
l.A6 BIII 2 2 2 not defined BIII 2 2 ↑
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TABLE II. Summary of results for critical points inS.

l

P: (S0,0,P0)PS

P0 S0 Type Is In St

P056A2/3 S050 BI 1 2 ↓S

l,A6 2A2/3,P0,A2/3 S0Þ0 BI 2 2 ↓S

P052A2/3 S050 BI 1 2 ↓S

l5A6 2A2/3,P0,A2/3 S0Þ0 BI 2 2 ↓S

P05A2/3 S050 BI 1 2 ?

P052A2/3 S050 BI 1 2 ↓S

2A2/3,P0,2/l S0Þ0 BI 2 2 ↓S

l.A6 P052/l S0Þ0 BI 2 2 ?

2/l,P0,A2/3 S0Þ0 BI 2 2 2

P05A2/3 S050 BI 1 2 2
he
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as
d
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o

ef
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e

t

on
isolated root and therefore is of no help. There is no ot
obvious candidates for a Ljapunov function.

The problems originate from the fact that there are o
quadratic terms on the right-hand side of Eqs.~8!–~11!.
There is a standard procedure for such systems: one h
‘‘divide’’ all variables but one by the remaining variable an
rewrite the system in terms of these new variables.
course, this transformation is only nonsingular if the divis
does not vanish in the whole region of definition. In R
@14#, the remaining variable was chosen to bey5V(F),
which does not vanish in finite regions of the phase spa
Here we prefer to distinguish the variableu since it will
allow us to find additional critical points~in finite regions of
phase space!. This transformation is well defined outside th
origin.

Defining the variablesS, U, andP by

s5Su, z5Uu, c5Pu ~21!

and the timet by

d

dt
5

1

u

d

dt
, ~22!

the differential equations~8!–~11! transform into

u85uS 2
1

3
22S21U22P2D , ~23!
r

y

to

f
r
.

e.

S852
1

3)
2

2

3
S1

1

)
S21

1

)
U21

1

2)
P212S32SU2

1SP2, ~24!

U85US 1

3
2

l

2
P12S22U21P2D , ~25!

P852
2

3
P1lU212S2P2U2P1P3, ~26!

and the constraint equation is

S21U21
1

2
P21

k

b2 5
1

3
. ~27!

A prime means the derivative with respect tot. The dynami-
cal system defined by Eqs.~24!–~26!, which are independen
of u, will be referenced from now on by the tag~* !.

For the Bianchi type I case (k50), Eq.~27! describes the
surface of an ellipsoid, say,E, which separates the
Kantowski-Sachs~inside! from the Bianchi type III~outside!
solutions. The Bianchi type I model (k50) has to be treated
carefully because in this case the system can only evolve
a two-dimensional submanifoldW in the space of the vari-
ables (S,U,P), defined by
FIG. 2. Evolution of Kantowski-Sachs solutions withl,&.
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W5 f 21~$ 1
3 %! with f ~S,U,P!5S21U21 1

2 P2. ~28!

It may happen thatW coincides with the stable manifold of
critical point which is unstable with respect to the who
system~* !. In this case the point is nevertheless stable for
Bianchi type I metric.

We will concentrate on determining the asymptotic b
havior of this reduced system.u is then given by a simple
integration of Eq.~23!. After a short calculation we find fo
the system~* ! three discrete critical points and a on
parameter family of critical points:

P1 : S52
1

2)
, U50, P50, ~29!

P2 : S50, U5A62l2

18
,

P5
l

3
for l<A6, ~30!

P3 : S5
1

2)

22l2

l211
, U5

Al212

&~l211!
,

P5
l

l211
, ~31!

FIG. 3. The corresponding phase portraits for the KS case w
l,&.
e

-

S: U50, 3S21
3

2
P251

with SP@2A1/3,A1/3#. ~32!

Comparing these critical points with the results of Burd a
Barrow@14#, one easily verifies thatP2 andP3 correspond to
their critical points~IV ! and~III !, whereasP1 and the points
of S have no counterpart in their paper. Using the variab
in Ref. @14#, P1 andS can be found as critical points lying a
infinity in their phase space.

To be sure that there are no additional critical points
infinity in our coordinate system either, we first introdu
spherical coordinates

S5r sin q, U5r cosw cosq, P5r sin w cosq
~33!

and then map the points at infinity (r 5`) to the surface of a
unit sphere by the transformations

r→r5
r

r 11
, dt→dh5

dt

12r
. ~34!

At infinity ( r51) we thus find

dr

dh
522cos2 q~112 cos2 w!, ~35!

dw

dh
5

l

2
cosw cosq~2 cos2 w1sin2 w!,

~36!

dq

dh
5

cosq

2)
~22cos2 q1cos2 w cos2 q

2)l sin w cos2 w sin q cosq!. ~37!

For a critical point at infinity, expressions~35!–~37! have to
vanish simultaneously, which is easily seen to be impossi
Therefore, the pointsP1 , P2 , P3 and the points ofS are
really the only critical points of the system~* !.

It is worthwhile to note that the critical points correspon
to exact solutions of our original system@Eqs. ~8!–~11!#.
Indeed, if we consider the pullback of a critical poi
(Sk ,Uk ,Pk) of ~* ! for a nonconstant potential (l.0), the
volume expansionu is given by

th
FIG. 4. Evolution of a Kantowski-Sachs solution withl.&.
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FIG. 5. Evolution of Bianchi type III solutions withl,&.
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with Ak521/322S21U22P2u(S,U,P)5(Sk ,Uk ,Pk) , and as a

function of the original timet, we obtain the following exac
solutions:

u52
1

Akt
, s52

Sk

Akt
, c52

Pk

Akt
, V~F!5

Uk
2

Ak
2t2 .

~39!

The stability analysis of the critical points will give the st
bility of the above exact solutions.

B. Stability analysis of the singular points

1. Critical point P1

The linearization of ~* ! around the critical point
P1 :(S,U,P)5@2(2))21,0,0# is diagonal and has eigen
values«S,P521/2 and«U51/2. SoP1 is unstable both to
the future and to the past. Starting aroundP1 , the critical
point can never be reached by any solutions of the dynam
system.

Using Eq.~39!, the critical pointP1 will correspond to the
unstable solution

u5
2

t
, s52

1

)t
, c50, V~F!50. ~40!

2. Critical point P2

In P2 the linearization of~* ! has the eigenvalues«15
211l2/6 ~twice! and «2522/31l2/3, and so the critical
point is asymptotically stable@with respect to all the system
~* ! and for t→`# as long asl,& and unstable for&
,l,A6.

Since P2 lies on the ellipsoid which separates the K
from the BIII domain, its neighborhood intersects all thr
types of universe. More precisely, starting from a pointP,
nearP2 , defined by

S5dS, U5A62l2

18
1dU, P5

l

3
1dP, ~41!

the constraints equation~27! expanded to first order tells u
to which universeP belongs since we have

A2~62l2!

9
dU1

l

3
dP52

k

b2 . ~42!
al

Depending from which point we start the integration, t
solution can be in either type of universe.

As mentioned earlier, the Bianchi type I (k50) metric
has to be considered very carefully because the syste
constrained by Eq.~27! to the two-dimensional submanifol
W. The tangential space toW in the pointP2 is given by

TP2
W5$XPR3:X'“ f ~P2!%. ~43!

But “ f (P2)5„0,A2(62l2)/3,l/3… is an eigenvector for the
eigenvalue«2 , and soTP2

W coincides with the eigenspac

to the eigenvalue«1 . That is,W is the stable submanifold
throughP2 for l,A6 and consequentlyP2 is in this entire
range an asymptotically stable critical point for Bianchi ty
I solutions, contrary to the Bianchi type III and Kantowsk
Sachs solutions. This particular behavior for the BI case w
overseen in Ref.@14#.

For the special valuesl5& and l5A6, at least one
eigenvalue vanishes and the linearization does not con
enough information to determine the stability ofP2 . By pro-
jecting the system~* ! on a center manifold throughP2
@21,22#, we find thatP2 is unstable forl5&. In the case
l5A6 the center manifold is two dimensional and therefo
the stability analysis is much more difficult. We did not fin
the asymptotical properties of the solutions around this s
gular point for this value ofl.

The critical pointP2 transforms back to the exact solutio

u5
6

l2t
, s50, c5

2

lt
, V~F!5

2~62l2!

l4t2 . ~44!

FIG. 6. The corresponding phase portraits for the BIII case w
l,&.
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FIG. 7. Evolution of Bianchi type III solutions withl.&.
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For l,& this solution violates the dominant energy con
tion (c22V,0) and thus inflation occurs. This can be d
rectly seen since from the above equation we obtain

a5a0t2/l2
. ~45!

For the asymptotically stable range~l,& for KS and BIII
andl,A6 for BI! of P2 , the solution is also asymptoticall
stable in the sense that solutions which start near it conv
to it.

3. Critical point P3

The eigenvalues of the linearization of~* ! in P3 are

«152
l212

2~l211!
, «2,3

5
2~l212!6A~1827l2!~l212!

4~l211!
. ~46!

For l,&, all eigenvalues are real, and«2 and «3 have
different signs; soP3 is unstable. Forl5&, P3 coincides
with P2 , and so we conclude as before that the critical po
is unstable. In the range&,l<A18/7, all eigenvalues are
real and negative, while, forl.A18/7, «2 and «3 become
complex with the same negative real part. SoP3 is asymp-
totically stable forl.&.

Again, we find the following exact solution after the pu
back ofP3 :

u5
2~l211!

l2t
, s5

22l2

)l2t
, c5

2

lt
,

V~F!5
2~l212!

l4t2 , ~47!

which is asymptotically stable forl.&.

4. Critical points of S

Since the critical points inS are on the ellipsoidE, we
find as before~Sec. IV B 2! that there are points belonging t
all three types of universe nearS.

For the linearization of~* ! around a pointPS5S0 , 0, P0
of S, we find the eigenvalues
ge

t

«150, «2512
l

2
P0 , «35

2

3
~21)S0!. ~48!

If P0.2/l, «2 and «3 have different signs and the critica
point is unstable both to the future and to the past.

If P0,2/l, «2 and «3 are both positive, and soPS is
unstable to the future. The stability fort→2` is determined
by the behavior of the system on a center manifold@21,22#. It
is easy to see thatS itself is a center manifold and that th
restriction of~* ! to S is just the trivial system

S850, U850, P850. ~49!

That means that, fort→2`, PS is an attractor. It is also
easy to see that, forl,A6, S as a whole is a past attracto
for ~* !. Indeed,«2 is then positive for all pointsPS .

The pullback of points out ofS gives an exact solution o
the form

u5
1

t
, s5

s0

t
, c5

c0

t
, V~F!50, ~50!

with the condition2
3 22s0

22c0
250.

C. Summary

The cases withl50 ~constant potential! can be treated
analogously. For the critical pointsP2 andP3 this has been
done by Burd and Barrow@14#, while for P1 and S the
results found are still valid since the asymptotic behav
does not depend onl.

FIG. 8. Corresponding phase portraits for the BIII case withl
.&.
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FIG. 9. Evolution of Bianchi type I solutions withl,A6.
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The results of this section are summarized in Table I~iso-
lated critical points! and Table II~family S!. They show for
every critical point the type of the corresponding exact so
tion ~BI, BIII, or KS!, its isotropization~Is! and inflation~In!
~e, exponential inflation;p, power-law inflation; or2, no
inflation!, and the stability~St! of the critical points~↑,
asymptotic future stable: †, asymptotic future stable for
anchi type I solutions and unstable otherwise;↓S , past con-
vergence toS; and2, unstable!.

From Table I, it follows that forl,& the unique asymp-
totical stable solution is represented by the pointP2 . This
solution describes an inflationary and isotropic universe.

For&,l,A6, isotropy can be reached without inflatio
if we restrict ourselves to the BI universe. This fact is co
patible with a Collins-Hawking result@7#, which states that
for ordinary matter, within the BI universe, isotropy can
reached without inflation. Indeed, for&,l,A6 the equa-
tion of state of the matter field corresponding to theP2 so-
lutions is given by

p5vr, ~51!

with vP] 21/3,1@ , and contains the ordinary matter ca
(0<v,1).

For l.A6, the unique asymptotical stable solution is re
resented by the pointP3 . This BIII solution describes an
anisotropic universe.

FIG. 10. Corresponding phase portraits for the BI case withl
,A6.
-

-

-

-

There is also a unique attractor in the past: theS mani-
fold. As a consequence, we must start the numerical inte
tion nearS to have all the history of the evolution of th
model.

The next section will be devoted to the numerical integ
tion.

V. NUMERICAL RESULTS

In this section we will follow numerically the evolution o
the system~8!–~11!. We have seen in Sec. IV that the poin
of the surfaceS are the only past attractor of the system, a
so it seems obvious to study the development of soluti
starting near the corresponding exact solution

u5
1

t
, s5s0

1

t
, c5c0

1

t
, V~F!50, ~52!

with t→0 and with 3s0
213/2c0

251. Since these exact solu
tions are in the BI universe, the numerical solutions start
nearS can be in any three types of universe~e.g., BI, BIII, or
KS!.

To distinguish the different future attractors, it is conv
nient not to plot the variablesu and s themselves~they al-
ways vanish as 1/t!, but the quantitiesu•t and s•t, which
converge to constant values at the critical points.

FIG. 11. Inflation can only occur when the dominant ener
condition is violated, that is, when (c22V)t2 is negative. (c2

2V)t2 is plotted for the corresponding numerical solutions d
scribed by Figs. 9 and 10.
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FIG. 12. Evolution of a Bianchi type I solution withl.A6.
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A. Kantowski-Sachs solutions

For the initial asymptotic behavior

u~ t0!5
1

t0
, s~ t0!5

s01ds

t0
, u~ t0!5

du

t0
,

c~ t0!5
c01dc

t0
, ~53!

we will have a Kantowski-Sachs solutions if the followin
inequality is satisfied:

2s0ds1c0dc.0. ~54!

Figure 2 shows the results for some values ofl less then the
critical value&. The solution clearly converges towards t
exact solution corresponding to the critical pointP2 . The
corresponding phase portraits are given in Fig. 3.

The development of a solution withl.& is shown in
Fig. 4. The solution approaches again the~now unstable!
attractorP2 , is repelled, and finally converges towards t
exact solution corresponding to the attractorP3 .

B. Bianchi type III solutions

For a Bianchi type III solution of the form~53!, the inte-
gration constants have to satisfy the condition

2s0ds1c0dc,0. ~55!

The solutions withl,& ~Fig. 5! initially tend to the Bian-
chi type III solution corresponding toP1 . But since this is an
unstable attractor, the system finally evolves towards the
lution P2 . Figure 6 shows the corresponding phase portr
for these cases.

For l.& the system again approaches the unstableP1
solution in the beginning, is repelled, and converges towa
the P3 solution, which is the only attractor in this range
values~Fig. 7, phase portraits in Fig. 8!.

C. Bianchi type I solutions

For a Bianchi type I solution, the perturbations of t
initial state~53! have to satisfy the equation
o-
ts

s

2s0ds1c0dc50. ~56!

For Bianchi type I solutions, the exact solution corr
sponding toP2 is attractive not only forl,&, but for the
whole range for whichP2 is defined, that is, forl,A6 ~Fig.
9, phase portraits in Fig. 10!. The numerical calculation con
firms our analysis for&,l,A6: the solutions still isotro-
pize, but are no longer inflationary as one can see from
11 where we have plottedc22V(F), which violates the
dominant energy condition when negative.

For l.A6 we have again the solution toP3 as the only
attractor. An example for this case is shown in Fig. 12. T
system quickly evolves towards the now unstable solut
P2 , is repelled, and converges towards the solution toP3 .

VI. CONCLUSIONS

We have studied the Einstein-Klein-Gordon~EKG! equa-
tions for a convex positive potential in a Bianchi type I,
type Bianchi III, and a Kantowsky-Sachs universe.

After analyzing the inherent properties of the equations
was shown in Sec. III why a detailed analysis of the so
tions of the EKG equations was needed for a vanishing
tential at infinity. By taking an exponential potential (V
5V0e2lw), it was shown for which values ofl inflation
and/or isotropy were reached asymptotically. We recove
the results of Ref.@14#, but also found new asymptotica
behaviors and new exact solutions represented by the si
lar pointsP1 and the submanifoldS.

We also found that for some values ofl isotropy can be
reached without inflation in a Bianchi type I universe. B
when inflation occurs (l,&), then isotropy is always
reached. We also integrated the equations numerically to
tain the entire history of the evolution of the model. All th
founded asymptotical behaviors were confirmed numerica
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