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Imprint of gravitational waves in models dominated by a dynamical cosmic scalar field
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An alternative to the standard cold dark matter model has been recently proposed in which a significant
fraction of the energy density of the universe is due to a dynamical scalar @ldvfiose effective equation
of state differs from that of matter, radiation or cosmological constat [n this paper, we determine how the
Q component modifies the primordial inflation gravitational wdiensor metrig contribution to the cosmic
microwave background anisotropy and, thereby, one of the key tests of infleBi0556-282(98)06110-4

PACS numbe(s): 98.80.Cq, 95.35:d, 98.65.Dx, 98.70.Vc

. INTRODUCTION r,~7(1—ng).

A Key p.red|ct|on of |anat!opgry cosmqlogy is a nearly The transfer from primordial to present-day spectra is made
scale-invariant spectrum of initial fluctuations composed of

. . o simple by the absence of a late-time, integrated Sachs-Wolfe
energy densityscalar metrig[1-4] and gravitational wave (ISW) effect for the scalar perturbations. In scenarios for
(tensor metrig [5-7] perturbations. The two components

Lo o which the time variation of the scalar and tensor perturbation
leave imprints on the cosmic microwave backgrot@¥B)  5njitudes generates substantial CMB anisotropy due to the
anisotropy that are potentially detectable and distinguishablgg\y effect. the ratia , is modified, as occurs for open CDM

The spectrum of each component is characterized by a SPeEr5] and cosmological constatCDM [16,17.
tral index (n) which determines how the perturbation ampli- - The purpose of this paper is to discuss the gravitational
tude varies with wavelength. Each spectrum is also predicte@jave contribution to the CMB anisotropy in a new class of
to be nearly scale invariant; using the standard notationgosmological models where a significant fraction of the en-
convention, this corresponds toy~1 for the scalar metric  ergy density of the universe takes the form of a cosmic scalar
fluctuations andcht~0 for the tensor metric fluctuations. The fjg|d (Q) with an equation of state different from that of
spectral indices and the ratio of tensor to scalar amplitudegatter, radiation or cosmological constd4a8]. The scalar
on any given scale are determined by the equation of statgeld component of the cosmic fluid has been dubbed “quin-
during inflation or, equivalently, the inflaton potential. A pre- tessence” and cosmological models based on a combination
diction of inflation is a simple relation betweew,ny, and  of quintessence and cold dark matter components are known
the ratio of tensor to scalar amplitudes that applies to nearlys QCDM models. While there have been other, detailed
all inﬂationary mOdelig] Unlike other features of inﬂation, studies of the CMB anisotropy Spectrum in CDM-based sce-
such as flatness or a nearly Harrison-Zel'dovich spectra, thgarios in which a substantial fraction of the cosmological
predicted relation between the spectral indices and amplienergy density is in the form of a scalar fi¢lb], none have
tudes was unanticipated prior to the development of the inexamined the behavior of tensor, gravitational wave pertur-
flationary model and is, in this sense, a unique stamp Opations. In a recent papéi8] (henceforth, referred to as
inflation. paper ), we computed the background evolution, the CMB
It is hoped that forthcoming measurements of CMB an-power spectrum, and the mass spectrum for QCDM models.
isotropy [9,10], complemented by measurements of CMB e showed that certain models of this type result in a sig-
polarization[11], can be used to detect a tensor componenkjficantly better fit than SCDM to the CMB temperature
and to test the inflationary scenario. The CMB temperaturgyower spectrum, the mass power spectrum, early structure
anisotropy power spectrum can be expressed in multipolermation, and distant supernovae and gravitational lens
momentsC,, where eaclC, can be divided into a sum of count measurements. In paper | we restricted our attention to
independent tensoi{”) and scalar /) subcomponents. the case of strictly scale-invariamtd=1) spectra of purely
While the individual tensor and scalar contribution to thescalar metric perturbations. In the present paper, we discuss
temperature anisotropy cannot be observed independentliiow the tensor contribution to the CMB anisotropy is modi-
the presence of a strong tensor component may be measurged by the presence of@ component. We compute the full,

through corre]ations of polarization and tempergt[&é— scalar plus tensor CMB power spectrum for QCDM models
13]. The amplitude of these correlations, characterized by theased on inflationary initial conditions and determine how
ratio of tensor-to-scalar multipole moments=C{"/C®,  the relation between primordial spectral indices and ampli-

can be used to test the inflationary scenario. However, theudes predicted by inflation is modified in QCDM models.
moments do not depend on the primordial relation betweeiThe result is a generalization of a key test of inflationary
spectral indices and amplitudes alone. The power spectrurosmology.

also depends on the evolutionary history since inflation The organization of this paper is as follows. In Sec. Il we
ended. For example, in the standard cold dark mattebriefly review the predictions of inflation for the spectrum of
(SCDM) model in whichQ,=1, the inflationary prediction initial tensor and scalar perturbations and the resultant con-
[8,14] is well known to be tributions to the CMB anisotropy. In Sec. Il we discuss how
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the computation of the tensor contribution is modified inHence, the relations arise because all parameters associated
QCDM models(The computation of the scalar spectrum haswith the perturbation spectrum are ultimately determined
been described in papern We then present the computed only by H and its derivatives during inflation.

tensor contribution to the CMB power spectrum for QCDM  The coefficient in Eqs(2.4) and (2.6) is crucial for the
models and compare with an SCDM model. In Sec. IV wepurposes of this paper. In the SCDM model, the coefficient is
present our key result, the generalization of the inflationanset largely by the Sachs-Wolfe effect, the variation of the
relation between spectral index and amplitude for QCDMgravitational potential on the surface of last scattering, which

models. is only very weakly dependent on model parameters such as
the Hubble constant or the baryon density. Hence,(E®)
Il. REVIEW OF INELATIONARY PREDICTIONS has been presented in the literat{8¢l4] as a robust predic-
FOR THE SCDM MODEL tion of inflation. However, this prediction is validnly if

On=1. In models in which the matter density is less than

Inflation predicts a nearly scale-invariant power spectrununity, such as the QCDM models considered in this paper or
of energy densityscalar metritand gravitational wavéten-  models with a cosmological constant, there is a large, inte-
sor metrig fluctuations. For both subcomponents, the powergrated Sachs-Wolfe contribution to the large angle CMB an-
spectrum as a function of Fourier mokiean be expressed to isotropy, which changes the predicted relationship between
lowest order in terms of the Hubble constant and its timethe spectral indices and the tensor-to-scalar ratio. Because
derivatives evaluated when the Fourier médeas stretched the integrated Sachs-Wolfe effect depends on the time varia-
beyond the horizon during inflation, kt=aH. Herea is the  tion of the gravitational potential along the line-of-site to the
Friedmann-Robertson-Walker scale factor ahekH(¢) is  last scattering surface, the amplitude of the effect is sensitive
the Hubble parameter, which depends on the expectatiot the present value & ,,=1-, the equation of state,
value of the inflaton fieldp. Expanding around some given and the variation ofv with time. Consequently, the coeffi-
wave numbek,, the power spectrum can be parametrized bycient in Eq.(2.6) is modified by a model-dependent function

spectral amplitude#\s 1) and spectral indicess 1) : (Sec. IV), the central result of this paper.
K\ Ns—1 H2 \2
_ a2l & _ lll. TENSOR CONTRIBUTION TO THE CMB
Ps(k) AS( ) 4| — , (2D
Ko mplH 1) ANISOTROPY IN QCDM MODELS

In this section we discuss the QCDM models for which
we have computed the gravitational wave contribution to the
CMB anisotropy. We present the equations necessary to
evolve the background and tensor perturbations. We discuss
whereH’ =dH/d¢ andm, is the Planck mass. the properties of th&@ matter and their dependence on the

A signature of inflation is the series of relations between€ffective potential forQ, V(Q), and identify two broad cat-
spectral indices and amplitudgg. The tensor spectral index €gories of models. This classification simplifies our survey,

H(¢) and the power spectrum amplitudes obey the relatiod the _foIIowing section, o]‘ the imprint of gravitational
[8,14] waves in QCDM models. Finally, we present some sample

results of our computation of the tensor contribution to the
CMB anisotropy spectrum.

Pr(k)=A% : (2.2

k=aH

k\"" 16/ H 2
ko/ —w\my

2 1 A2 -
= §K§ (2.3
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" o

m2(H’
H

A. Background equations

The ratio of power spectrum amplitudes can be related to the The QCDM models are constructed from spatially flat,
ratio of tensor-to-scalar contributions to the CMB anisotropyFriedmann-Robertson-Walk&FRW) space-times containing

guadrupole moment baryons, cold dark matter, neutrinos, radiation and a cosmic
scalar field orQ component. The space-time metric is given
ci by ds?= —dt?+a?(t)dx?, wherea is the expansion scale
M= E“ —7ng. (2.4 factor andt is the cosmological time. The background equa-
2 tion of motion, the energy density, and the pressure fothe

. - matter are
We will comment on the coefficient below. The scalar spec-

tral index satisfies a more complicated relation . . v
Q+3HQ=——, (3.2
2 ’\ 1 aQ
mg(H
Nng—l=n{——|—| . (2.5
27\ H 12 _i1A~2

However, for all but an exceptional set of inflaton potentials,
the Hubble parameter evolves so slowly during inflation thatvhere the overdot represengsdt. Hence, the relations in
the second term is negligible amg—1~n+. In this case, Egs. (3.1),(3.2 supplement the usual background equations
to specify the evolution of all components of the cosmologi-
r,~7(1—ng). (2.6) cal fluid.
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FIG. 1. For the monotonic class of QCDM models discussed in the text, the evolution of the equation of, sdatéenergy densit{2q
are shown in the left and right panels. The examples shown are for exponential, quartic, and quadratic potentials whiettjeach
—1/3 and2=0.6 by the present day. Constant equation of state medels 0.55 chosen, according to the expressionigg, to mimic
the monotonic exponential potential, awd= —0.66 for the quartic and quadratic potentials are also shown for comparison. In both panels,
thew= —0.55 case is the upper, solid, black curve.

B. Gravitational wave equations standard algorithms for evolving the Boltzmann equations

Fluctuations about the background space-time can be reﬁf‘!ith _t_ensor fluptuations for the problem at hand. We have
resented in the synchronous gauge, where the linearizdgodified a series of standard Boltzmann CMB codes based

space-time metric is on the synchronous gauge, maintaining a fixed relationship
between the initial amplitudes of the scalar and tensor power
ds?=—dt?+a%(t)(y;;+h;;)dxdx. (3.3  spectra, for the computations described be[@&—24.

Here, y;; is the unperturbed spatial metric ahg=hg +hj; o
is the metric perturbation, which includes scal8) and ten- C. Classification of QCDM models
sor (T) perturbations. The equations of motion for the scalar The CMB anisotropy spectrum, both scalar and tensor
perturbations and the fluctuations in tecomponent have subcomponents, is sensitive to the detailed time evolution of
been described elsewhef@0]. The transverse, traceless the Hubble parametet since last scattering. In the case of
gauge constraints and equations of motion of the gravitathe QCDM models, these subcomponents are affected by the
tional wave perturbation are time evolution of the equation of state of tkle component
W=pgq/pg Which in turn reflects the form of the potential
V(Q). We find that for a wide range of potentials, however,
there are two broad categories by which we may classify the
(3.4  behavior of the models. Hence, we will focus our attention
on representative models from each of these categories.

whereV; denotes the covariant derivative with respect to the The two categories correspond to cases whemecreases
spatial metricy;; . Because we have modeled @ematter as monotonically Versus cases whesehas begun to oscnlat_e

a scalar field in a regime in which only the linearized fluc- 200ut an asymptotic value by the present epoch. In either
tuations to first order are important, the explicit form of the ¢@se, the initial value of the scalar fie@lis assumed to be
equation of motion for the tensor perturbations is unchanged®t at & particular value by some Cond't"ﬁ'a;g-' inflation in
there are no additional inhomogeneous tensor fields or aniséhe early universe. So long a¢’(Q)<H ,  Q remains
tropic tensor source@s would occur if theQ component fixed because the Hubble red shift termH®) dominates
were modeled as a tangled web of nonintercommuting coshe equation of motion. Consequently, the energy density is
mic strings[21], for example. Hence, the only effect on the nearly constant during the early history of the universe so
evolution of the gravitational wave amplitude is through thethatw= —1. OnceH reduces sufficiently tha® begins to
background expansion. It is then straightforward to adopt thevolve down the potential, the balance of kinetic and poten-
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FIG. 2. For the oscillatory class of QCDM models discussed in the text, the evolution of the equation uf atateenergy densitf)q
are shown in the left and right panels, for oscillatory quadratic and overshooting exponential potentials. In edeje&s2 at the present
day.
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FIG. 3. The CMB anisotropy spectrum, decomposed into the scalar and tensor subcomponents, for a tilted SCDM model and a tilted
QCDM model with a constant equation of state- —1/3 and()4=0.7. In each cas&s=0.9, and the relationship between the primordial
power spectra as predicted by inflation has been maintained.

tial energy inQ changes anev begins to grow. Depending =«Q%. See Fig. 2. Another example is an exponential poten-
on V(Q) and the initial conditionsw may continue to grow tial of the form V=m*exp(— BQ); as the potential energy
up to the present epoch or it may begin to oscillate aroundbegins to dominate the universe, the equation of state first
some asymptotic value. The first possibility corresponds tmvershoots, then relaxes towards— (8%/24xw)—1 for B
the “monotonic” class of models. Here we find that the <./487. We will use this exponential example to represent
imprint of Q on the CMB anisotropy and the mass powerthe oscillatoryw category.
spectrum is well approximated by the result obtained i Note that a given potential can belong to either the mono-
held constant at roughly the mean value during the periodonic or oscillatory class depending on parameters and the
when()q is non-negligible. We have found that the expres-initial conditions for Q. Namely, for some choices of the
sion initial value of Q, w may have begun to oscillate around
its asymptotic value by the present epoch. For other choices,
Weﬁ:f da W(a)QQ(a)/f da Qo(a) (3.5 Q may not have e_volved o) fa_r by the present epochvgmd
has been increasing monotonically. For example, while an

. . exponential potential is illustrated both in Fig. (inder
provides a reasonable value for the effectiveTo convert  monotoni¢ and Fig. 2(under oscillatory, different initial

from a general potentia/(Q) with monotonic behavior, conditions, and values of and 8, have been selected in the
Egs.(3.1),(3.2 must be used in Eq3.5). In Fig. 1 we show two cases.

two examples where we compare the evolution of the equa-

tion of state and energy density of a model with monotoni- ) ,

cally increasingw to a constantv model wherew is chosen D. Scalar and tensor anisotropy spectra in QCDM models
according to Eq(3.5). One can see that while the equation of We have computed the CMB anisotropy spectrum due to
state as function ot is very different, the evolution of the the scalar and tensor subcomponents for a number of QCDM
energy density is very similar. Later, in Fig. 6, we show thatmodels, which we now present. Figure 3 shows the full CMB
the CMB anisotropy spectra are similar as well. The oscillappower spectrum predicted by inflation for tiited SCDM and a
tory class of models corresponds to cases wkieevolvesto  QCDM model with a constamiv= —1/3 equation of state

a point in its potential wherev begins to oscillate around and (15=0.7, each withng=0.9. In both panels the total
some asymptotic value. One example is a potential in whictspectrum is broken down into scalar and tensor components.
Q evolves towards, and then begins to oscillate about, & it noticeable that in the range<2/<10 the fractional
minimum of V(Q) before the present epoch. Correspond-contribution of the tensor spectrum to the total power is dif-
ingly, w begins to oscillate around a mean value determinederent in the two models.

by the shape of the potential, e.gqv—0 for a quadratic Figure 4 indicates how th€ component changes the
potential V=Q?), w—1/3 for a quartic potential \ shape of the tensor subcomponent of the power spectrum
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FIG. 4. The tensor subcomponent of the CMB anisotropy spectrum for a series of three QCDM modélg withb andng=0.9. In the

left panel, the tensor quadrupoles have been artificially sér(szzl in order to compare the shapes. In the right panel, the COBE-
normalized amplitudes have been restored.
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FIG. 5. The tensor subcomponent of the CMB anisotropy spectrum for a pair of QCDM modeiswithl/2, and tilted SCDM, all with

ns=0.9. In the left panel, the tensor quadrupoles have been artificially @iﬁe 1 in order to compare the shapes. In the right panel, the
COBE-normalized amplitudes have been restored.

depending orw for a set of constant equation of state mod-(2) models in whichw overshoots and then approaches or
els. The tensor power spectra in the first panel have beeoscillates about an asymptotic value. We have computed the
artificially normalized toC{”=1 to compare the shapes, scalar and tensor components of the CMB anisotropy for
demonstrating that the shape is not strongly affected by theepresentative models of each type for a wide range of pa-
change inw. In the second panel, the curves have been proprameters. We have used the numerical results to obtain a
erly normalized with respect to COBE. Here we see that théevision of the inflationary relation between spectral ampli-
main difference is in the overall amplitude; for increasimg  tudes and spectral indices.

the fractional contribution of the tensor spectrum decreases. Our results are expressed in terms of an empirical relation
In Fig. 5, a similar set of panels demonstrates the effect obetween the scalar spectral index and the ratiosr,
changes i on the tensor subcomponent. While the shape=C5”/C and r;,=C{{/C{3. The quadrupole is a con-

is not strongly affected, we see that for increasidg, the  ventional choice; we have also chosé€r 10 becaus€, is
fractional contribution of the tensor spectrum decreases. only weakly dependent on the cosmological mog=m-

In paper |, it was already observed that, even for purelypared toC,) when the predicted spectra are COBE normal-
scalar metric fluctuations, the CMB power spectrum at largézed, and so our relations can be applied more simply. These
angular scaleglow /) in QCDM models exhibits unusual differences between QCDM and SCDM results have been
features that do not occur in SCDM or other conventionalexpressed in terms of correction factdgsand f 1o multiply-
models. This is owing to a combination of the modificationing the known SCDM relationE3,14]
of cosmic expansion caused Y (that is, an integrated
Sachs-Wolfe effegtand the direct effect of fluctuations @. ro~[7(1—ng)]x f5(Qg,ng,w),
Adding a tensor component can add to further features at low
/.

(4.1

ro~[4.81—ng) | Xf1o(Qq,ng,wW).
IV. GENERALIZATION OF THE INFLATIONARY . . .
PREDICTION FOR We have not included the higher order corrections, such as

QCDM MODELS . . .
those proportional tang/dInk, which are negligibly small
We have discussed in Sec. Ill how a very large class ofor most modeld25]. The functionsf, ;o are defined in the
QCDM models can be divided into two categori€s: mod-  following subsections. In all case$;—~1 as{5—0. The
els in whichw is constant or monotonically increasing and dependence on cosmological parametel3, is very weak
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FIG. 6. In the first panel, the CMB anisotropy spectra are shown for same QCDM models as presented in Fig. 1, with exponential,
quartic, and quadratic potentials, relative to the case of a constant equation of state. The exponential potential spectrum is shown relative to
w=—0.55. The quartic and quadratic potential spectra are shown relatiwe=te 0.66. The light dotted lines show the 68% probability
region due to cosmic variance. That the ratios are close to unity demonstrates the quality of the approximation of monotonic models by a
constant, effectivav. In the second panel, the tensor-to-scalar ratie C(/T)/C(/s) is shown for the same set of models. The lower, solid,
black curve, which lies closer to the exponential potential curve, represents=the0.55 case. In these models, the tilnis=0.9, and the
tensor component has been included.
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FIG. 7. The ratiog, andr ,, for a series of QCDM models with constant equation of statend spectral inderg=0.9, as a function
of Qq.

(which is why the relations are considered to be model- 3 2

5 1
independent tests of inflatipmnd has been ignored. X=gll=gw+ §W2— 5(1+W)5 : (4.3

A. Monotonic evolution of w

) . . ) Simpler and more precise expressions can be foundvfor
‘Models in whichw evolves monotonically leave an im- ~ _'1/3 models alone where the variation with parameters is
print on the CMB that is well-approximated by the constantyqre rivial (see Fig. 7, but it is more useful to have a single

w models in whichw is set to the average value during fiting formula that extends all the way te=0. In the case
which Qg is non-negligible. As a demonstration, in Fig. 6 ¢ ACDM, wherew=—1, the functionf, agrees with the
we compare the CMB spectra for several QCDM models,y cpm result[16,17.

specified by a particular form of the potential, with constant,
effective w models. The ratios, andr, for the constant
equation of state models are shown in Fig. 7 for the case B. Oscillatory evolution of w

ns=0.9. Bgsed on plots 9f this sort.for a rangerj, we Models in whichw overshoots and then approaches or
have obtained t_he following correction factt_)r_s for_ QCDM (scillates about an asymptotic value are well-represented by
mo.dels. qu .St”Ctl% constarw models, emgmcgl fits are exponential potentials in whicki(Q) dominates the energy
valid to W't_h'n 10% for —1=<w=0, 0.7<ns=<1, and density of the universe by the present epoch. The ratjos
0<Qo=0.7: andr o for the exponential potential models are shown in
10 Fig. 8. Empirical fits to the correction factors, for the same
1+ 3(1—ns)(2+w)Qé}(1—QQ/x)92(“Q’X), range of models and with the same accuracy as described in
the previous subsection, are given below:

f2:

=—-0.21+2.35/— 1.03/2, 10
92(¥) ¥-10y 1+ 5(1-ng(2+W)03

f2: (1_QQ/X)g2(QQIX),

—81+21+ 21+ o 4.2
x=g 1+ 3(1+w)—z(1+w) : (4.2

3
g,(y)=—0.21+2.35/—1.03/2, x=1-gw, (4.4
i

1
0= 1+ E(l—ns)[(8+7w)ﬂé+ 3]

1
X (1—Qg/x)920 %M, f10=| 1+ 751 —ng)l(8+ W) Q4 +3]
— 2 Q
g19(y)=0.18+0.84/2, X (1= Qg /x)910% ™),
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FIG. 8. The ratiog, andr, for a series of monotonic exponential potential QCDM models with spectral indeX.9, as a function
of Qq. For these models, the equation of statés time varying andw(t,) is the present value of the equation of state.
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3 the small-scale power is reduced by other effects that do not
010(y)=0.18+0.84%, x=1— ZW. (4.5  occur in SCDM models.
Finally, the inflationary relations linking the ratio of
In these expressionsy represents the present value of thetensor-to-scalar multipole moments to the tiftsf must be
equation of statev=w(t,). In all cases, the initial conditions Mmodified. The most important results presented here are the
correspond tav— —1. In the expressions above, the limit generalized relations, shown in the previous section, between
w=—1 corresponds tw= — 1 throughout, which coincides the tensor and scalar contributions to the CMB anisotropy

with the standardACDM result[16]. We note that these SPectrum in inflationary models in which the primordial
equations do not apply to cases in which the oscillations irfPectral indices are related Ig—1~ny. These relations
the Q matter are strong enough to leave a distinct featureProvide the key test for inflation in future CMB anisotropy
such as a sharp peak, in the large angle CMB spectrum. THd polarization measurements, now extended to include

that a general correction factor is not possible. parameter, baryon density, and other cosmic parameters from

the CMB anisotropy10]. To determine which relations to
use, one first looks for characteristic signatures of QCOM
alternative modejsin the small scale anisotropy spectrum.
We have described how Boltzmann codes to compute thearge angular scale anistropy is then studied to determine the
CMB anisotropy power spectrum and the mass power spe¢ensor component. For a given valueref, we have shown
trum in QCDM models can be simply modified to incorpo- that in general the presence ofQamatter component lowers
rate the contribution of tensor metric fluctuations, as prethe ratior, for increasingQq. This makes it somewhat
dicted by inflationary cosmology. We have demonstratednore difficult to detect tensor perturbations in the CMB. For
that aQ component has two important effects on the tensolSCDM modelsy ,=0.14 is required to distinguish the gravi-
component. First, by modifying the expansion history of thetational wave contribution above cosmic variaheg¢ and a
universe and, hence, producing an integrated Sachs-Woltgmilar result is needed for QCDM. This threshold occurs
contribution, aQ component changes the shape of the tensoonly for substantial tilts in QCDM models. Clearly, any pri-
anisotropy power spectruiisee Fig. 3. Secondly, since the mordial signature in the large-angle CMB spectrum is also
same effect modifies the scalar component, but by a differerdbscured by the additional degrees of freedom introduced in
factor, the ratio of tensor-to-scalar contributions to the CMBthe QCDM scenarios. The determination of cosmic param-
anisotropy is changed. The net result for any given tilt is toeters from CMB anisotropy measurements in QCDM mod-
reduce the tensor contribution compared to SCDM wherels, including the effect of the new relations between spectral
spectra are COBE normalizedee Fig. 4 Since the mass amplitudes and tilt, will be discussed quantitatively in a
power spectrum is normalized by the scalar contribution tcforthcoming publication.
the CMB anisotropy, a consequence is that, for a given tilt,
includir_lg the tensor contribution does not reduce the COBE ACKNOWLEDGMENTS
normalization of the mass power spectrum as much as in
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