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Imprint of gravitational waves in models dominated by a dynamical cosmic scalar field

R. R. Caldwell and Paul J. Steinhardt
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 7 October 1997; published 17 April 1998!

An alternative to the standard cold dark matter model has been recently proposed in which a significant
fraction of the energy density of the universe is due to a dynamical scalar field (Q) whose effective equation
of state differs from that of matter, radiation or cosmological constant (L). In this paper, we determine how the
Q component modifies the primordial inflation gravitational wave~tensor metric! contribution to the cosmic
microwave background anisotropy and, thereby, one of the key tests of inflation.@S0556-2821~98!06110-4#

PACS number~s!: 98.80.Cq, 95.35.1d, 98.65.Dx, 98.70.Vc
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I. INTRODUCTION

A key prediction of inflationary cosmology is a near
scale-invariant spectrum of initial fluctuations composed
energy density~scalar metric! @1–4# and gravitational wave
~tensor metric! @5–7# perturbations. The two componen
leave imprints on the cosmic microwave background~CMB!
anisotropy that are potentially detectable and distinguisha
The spectrum of each component is characterized by a s
tral index (n) which determines how the perturbation amp
tude varies with wavelength. Each spectrum is also predic
to be nearly scale invariant; using the standard notatio
convention, this corresponds tonS'1 for the scalar metric
fluctuations andnT'0 for the tensor metric fluctuations. Th
spectral indices and the ratio of tensor to scalar amplitu
on any given scale are determined by the equation of s
during inflation or, equivalently, the inflaton potential. A pr
diction of inflation is a simple relation betweennS ,nT , and
the ratio of tensor to scalar amplitudes that applies to ne
all inflationary models@8#. Unlike other features of inflation
such as flatness or a nearly Harrison-Zel’dovich spectra,
predicted relation between the spectral indices and am
tudes was unanticipated prior to the development of the
flationary model and is, in this sense, a unique stamp
inflation.

It is hoped that forthcoming measurements of CMB a
isotropy @9,10#, complemented by measurements of CM
polarization@11#, can be used to detect a tensor compon
and to test the inflationary scenario. The CMB temperat
anisotropy power spectrum can be expressed in multip
momentsCl , where eachCl can be divided into a sum o
independent tensor (Cl

(T)) and scalar (Cl
(S)) subcomponents

While the individual tensor and scalar contribution to t
temperature anisotropy cannot be observed independe
the presence of a strong tensor component may be meas
through correlations of polarization and temperature@11–
13#. The amplitude of these correlations, characterized by
ratio of tensor-to-scalar multipole momentsr l [Cl

(T)/Cl
(S) ,

can be used to test the inflationary scenario. However,
moments do not depend on the primordial relation betw
spectral indices and amplitudes alone. The power spect
also depends on the evolutionary history since inflat
ended. For example, in the standard cold dark ma
~SCDM! model in whichVm51, the inflationary prediction
@8,14# is well known to be
570556-2821/98/57~10!/6057~8!/$15.00
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r 2'7~12nS!.

The transfer from primordial to present-day spectra is m
simple by the absence of a late-time, integrated Sachs-W
~ISW! effect for the scalar perturbations. In scenarios
which the time variation of the scalar and tensor perturbat
amplitudes generates substantial CMB anisotropy due to
ISW effect, the ratior l is modified, as occurs for open CDM
@15# and cosmological constantLCDM @16,17#.

The purpose of this paper is to discuss the gravitatio
wave contribution to the CMB anisotropy in a new class
cosmological models where a significant fraction of the e
ergy density of the universe takes the form of a cosmic sc
field (Q) with an equation of state different from that o
matter, radiation or cosmological constant@18#. The scalar
field component of the cosmic fluid has been dubbed ‘‘qu
tessence’’ and cosmological models based on a combina
of quintessence and cold dark matter components are kn
as QCDM models. While there have been other, deta
studies of the CMB anisotropy spectrum in CDM-based s
narios in which a substantial fraction of the cosmologic
energy density is in the form of a scalar field@19#, none have
examined the behavior of tensor, gravitational wave per
bations. In a recent paper@18# ~henceforth, referred to a
paper I!, we computed the background evolution, the CM
power spectrum, and the mass spectrum for QCDM mod
We showed that certain models of this type result in a s
nificantly better fit than SCDM to the CMB temperatu
power spectrum, the mass power spectrum, early struc
formation, and distant supernovae and gravitational l
count measurements. In paper I we restricted our attentio
the case of strictly scale-invariant (nS51) spectra of purely
scalar metric perturbations. In the present paper, we dis
how the tensor contribution to the CMB anisotropy is mo
fied by the presence of aQ component. We compute the ful
scalar plus tensor CMB power spectrum for QCDM mod
based on inflationary initial conditions and determine h
the relation between primordial spectral indices and am
tudes predicted by inflation is modified in QCDM mode
The result is a generalization of a key test of inflationa
cosmology.

The organization of this paper is as follows. In Sec. II w
briefly review the predictions of inflation for the spectrum
initial tensor and scalar perturbations and the resultant c
tributions to the CMB anisotropy. In Sec. III we discuss ho
6057 © 1998 The American Physical Society
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the computation of the tensor contribution is modified
QCDM models.~The computation of the scalar spectrum h
been described in paper I.! We then present the compute
tensor contribution to the CMB power spectrum for QCD
models and compare with an SCDM model. In Sec. IV
present our key result, the generalization of the inflation
relation between spectral index and amplitude for QCD
models.

II. REVIEW OF INFLATIONARY PREDICTIONS
FOR THE SCDM MODEL

Inflation predicts a nearly scale-invariant power spectr
of energy density~scalar metric! and gravitational wave~ten-
sor metric! fluctuations. For both subcomponents, the pow
spectrum as a function of Fourier modek can be expressed t
lowest order in terms of the Hubble constant and its ti
derivatives evaluated when the Fourier modek was stretched
beyond the horizon during inflation, atk5aH. Herea is the
Friedmann-Robertson-Walker scale factor andH5H(f) is
the Hubble parameter, which depends on the expecta
value of the inflaton fieldf. Expanding around some give
wave numberk0, the power spectrum can be parametrized
spectral amplitudesA(S,T) and spectral indicesn(S,T) :

PS~k!5AS
2S k

k0
D nS21

54S H2

mp
2uH8u

D 2U
k5aH

, ~2.1!

PT~k!5AT
2S k

k0
D nT

5
16

p S H

mp
D 2U

k5aH

, ~2.2!

whereH85dH/df andmp is the Planck mass.
A signature of inflation is the series of relations betwe

spectral indices and amplitudes@8#. The tensor spectral inde
H(f) and the power spectrum amplitudes obey the rela
@8,14#

nT52
mp

2

2pS H8

H D 2

52
1

8

AT
2

AS
2

. ~2.3!

The ratio of power spectrum amplitudes can be related to
ratio of tensor-to-scalar contributions to the CMB anisotro
quadrupole moment

r 2[
C2

~T!

C2
~S!

'27nT . ~2.4!

We will comment on the coefficient below. The scalar sp
tral index satisfies a more complicated relation

nS215nT2
mp

2

2pS H8

H D 8
. ~2.5!

However, for all but an exceptional set of inflaton potentia
the Hubble parameter evolves so slowly during inflation t
the second term is negligible andnS21'nT . In this case,

r 2'7~12nS!. ~2.6!
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Hence, the relations arise because all parameters assoc
with the perturbation spectrum are ultimately determin
only by H and its derivatives during inflation.

The coefficient in Eqs.~2.4! and ~2.6! is crucial for the
purposes of this paper. In the SCDM model, the coefficien
set largely by the Sachs-Wolfe effect, the variation of t
gravitational potential on the surface of last scattering, wh
is only very weakly dependent on model parameters suc
the Hubble constant or the baryon density. Hence, Eq.~2.6!
has been presented in the literature@8,14# as a robust predic-
tion of inflation. However, this prediction is validonly if
Vm51. In models in which the matter density is less th
unity, such as the QCDM models considered in this pape
models with a cosmological constant, there is a large, in
grated Sachs-Wolfe contribution to the large angle CMB
isotropy, which changes the predicted relationship betw
the spectral indices and the tensor-to-scalar ratio. Beca
the integrated Sachs-Wolfe effect depends on the time va
tion of the gravitational potential along the line-of-site to t
last scattering surface, the amplitude of the effect is sensi
to the present value ofVm512VQ , the equation of statew,
and the variation ofw with time. Consequently, the coeffi
cient in Eq.~2.6! is modified by a model-dependent functio
~Sec. IV!, the central result of this paper.

III. TENSOR CONTRIBUTION TO THE CMB
ANISOTROPY IN QCDM MODELS

In this section we discuss the QCDM models for whi
we have computed the gravitational wave contribution to
CMB anisotropy. We present the equations necessary
evolve the background and tensor perturbations. We disc
the properties of theQ matter and their dependence on t
effective potential forQ, V(Q), and identify two broad cat-
egories of models. This classification simplifies our surv
in the following section, of the imprint of gravitationa
waves in QCDM models. Finally, we present some sam
results of our computation of the tensor contribution to t
CMB anisotropy spectrum.

A. Background equations

The QCDM models are constructed from spatially fl
Friedmann-Robertson-Walker~FRW! space-times containing
baryons, cold dark matter, neutrinos, radiation and a cos
scalar field orQ component. The space-time metric is give
by ds252dt21a2(t)dxW2, where a is the expansion scale
factor andt is the cosmological time. The background equ
tion of motion, the energy density, and the pressure for thQ
matter are

Q̈13HQ̇52
]V

]Q
, ~3.1!

rQ5 1
2 Q̇21V, pQ5 1

2 Q̇22V, ~3.2!

where the overdot represents]/]t. Hence, the relations in
Eqs. ~3.1!,~3.2! supplement the usual background equatio
to specify the evolution of all components of the cosmolo
cal fluid.
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FIG. 1. For the monotonic class of QCDM models discussed in the text, the evolution of the equation of state,w, and energy densityVQ

are shown in the left and right panels. The examples shown are for exponential, quartic, and quadratic potentials which reachw(t0)5
21/3 andVQ50.6 by the present day. Constant equation of state modelsw520.55 chosen, according to the expression forweff , to mimic
the monotonic exponential potential, andw520.66 for the quartic and quadratic potentials are also shown for comparison. In both p
the w520.55 case is the upper, solid, black curve.
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B. Gravitational wave equations

Fluctuations about the background space-time can be
resented in the synchronous gauge, where the linear
space-time metric is

ds252dt21a2~ t !~g i j 1hi j !dxidxj . ~3.3!

Here,g i j is the unperturbed spatial metric andhi j 5hi j
S1hi j

T

is the metric perturbation, which includes scalar (S) and ten-
sor (T) perturbations. The equations of motion for the sca
perturbations and the fluctuations in theQ component have
been described elsewhere@20#. The transverse, traceles
gauge constraints and equations of motion of the grav
tional wave perturbation are

¹̃ ihT
i j 5g i j hT

i j 50, F ]2

]t2 13H
]

]t
2

1

a2¹̃m¹̃mGhTi
j50,

~3.4!

where¹̃ j denotes the covariant derivative with respect to
spatial metricg i j . Because we have modeled theQ matter as
a scalar field in a regime in which only the linearized flu
tuations to first order are important, the explicit form of t
equation of motion for the tensor perturbations is unchang
there are no additional inhomogeneous tensor fields or an
tropic tensor sources~as would occur if theQ component
were modeled as a tangled web of nonintercommuting c
mic strings@21#, for example!. Hence, the only effect on th
evolution of the gravitational wave amplitude is through t
background expansion. It is then straightforward to adopt
p-
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e
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standard algorithms for evolving the Boltzmann equatio
with tensor fluctuations for the problem at hand. We ha
modified a series of standard Boltzmann CMB codes ba
on the synchronous gauge, maintaining a fixed relations
between the initial amplitudes of the scalar and tensor po
spectra, for the computations described below@22–24#.

C. Classification of QCDM models

The CMB anisotropy spectrum, both scalar and ten
subcomponents, is sensitive to the detailed time evolution
the Hubble parameterH since last scattering. In the case
the QCDM models, these subcomponents are affected by
time evolution of the equation of state of theQ component
w[pQ /rQ which in turn reflects the form of the potentia
V(Q). We find that for a wide range of potentials, howeve
there are two broad categories by which we may classify
behavior of the models. Hence, we will focus our attenti
on representative models from each of these categories.

The two categories correspond to cases wherew increases
monotonically versus cases wherew has begun to oscillate
about an asymptotic value by the present epoch. In ei
case, the initial value of the scalar fieldQ is assumed to be
set at a particular value by some conditions~e.g., inflation! in
the early universe. So long asV9(Q)!H2, Q remains

fixed because the Hubble red shift term (3HQ̇) dominates
the equation of motion. Consequently, the energy densit
nearly constant during the early history of the universe
that w'21. OnceH reduces sufficiently thatQ begins to
evolve down the potential, the balance of kinetic and pot
FIG. 2. For the oscillatory class of QCDM models discussed in the text, the evolution of the equation of statew and energy densityVQ

are shown in the left and right panels, for oscillatory quadratic and overshooting exponential potentials. In each case,VQ'0.2 at the present
day.
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FIG. 3. The CMB anisotropy spectrum, decomposed into the scalar and tensor subcomponents, for a tilted SCDM model an
QCDM model with a constant equation of statew521/3 andVQ50.7. In each case,nS50.9, and the relationship between the primord
power spectra as predicted by inflation has been maintained.
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tial energy inQ changes andw begins to grow. Depending
on V(Q) and the initial conditions,w may continue to grow
up to the present epoch or it may begin to oscillate aro
some asymptotic value. The first possibility corresponds
the ‘‘monotonic’’ class of models. Here we find that th
imprint of Q on the CMB anisotropy and the mass pow
spectrum is well approximated by the result obtained ifw is
held constant at roughly the mean value during the pe
whenVQ is non-negligible. We have found that the expre
sion

weff5E da w~a!VQ~a!/E da VQ~a! ~3.5!

provides a reasonable value for the effectivew. To convert
from a general potentialV(Q) with monotonic behavior,
Eqs.~3.1!,~3.2! must be used in Eq.~3.5!. In Fig. 1 we show
two examples where we compare the evolution of the eq
tion of state and energy density of a model with monoto
cally increasingw to a constantw model wherew is chosen
according to Eq.~3.5!. One can see that while the equation
state as function ofz is very different, the evolution of the
energy density is very similar. Later, in Fig. 6, we show th
the CMB anisotropy spectra are similar as well. The osci
tory class of models corresponds to cases whereQ evolves to
a point in its potential wherew begins to oscillate around
some asymptotic value. One example is a potential in wh
Q evolves towards, and then begins to oscillate abou
minimum of V(Q) before the present epoch. Correspon
ingly, w begins to oscillate around a mean value determi
by the shape of the potential, e.g.,w→0 for a quadratic
potential (V}Q2), w→1/3 for a quartic potential (V
d
o

r

d
-

a-
-

f

t
-

h
a
-
d

}Q4). See Fig. 2. Another example is an exponential pot
tial of the form V5m4exp(2bQ); as the potential energy
begins to dominate the universe, the equation of state
overshoots, then relaxes towardsw→(b2/24p)21 for b
<A48p. We will use this exponential example to represe
the oscillatory-w category.

Note that a given potential can belong to either the mo
tonic or oscillatory class depending on parameters and
initial conditions for Q. Namely, for some choices of th
initial value of Q, w may have begun to oscillate aroun
its asymptotic value by the present epoch. For other choi
Q may not have evolved so far by the present epoch anw
has been increasing monotonically. For example, while
exponential potential is illustrated both in Fig. 1~under
monotonic! and Fig. 2 ~under oscillatory!, different initial
conditions, and values ofm andb, have been selected in th
two cases.

D. Scalar and tensor anisotropy spectra in QCDM models

We have computed the CMB anisotropy spectrum due
the scalar and tensor subcomponents for a number of QC
models, which we now present. Figure 3 shows the full CM
power spectrum predicted by inflation for tilted SCDM and
QCDM model with a constantw521/3 equation of state
and VQ50.7, each withnS50.9. In both panels the tota
spectrum is broken down into scalar and tensor compone
It it noticeable that in the range 2<l <10 the fractional
contribution of the tensor spectrum to the total power is d
ferent in the two models.

Figure 4 indicates how theQ component changes th
shape of the tensor subcomponent of the power spect
BE-

FIG. 4. The tensor subcomponent of the CMB anisotropy spectrum for a series of three QCDM models withVQ50.5 andnS50.9. In the

left panel, the tensor quadrupoles have been artificially set toC2
(T)51 in order to compare the shapes. In the right panel, the CO

normalized amplitudes have been restored.
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FIG. 5. The tensor subcomponent of the CMB anisotropy spectrum for a pair of QCDM models withw521/2, and tilted SCDM, all with
nS50.9. In the left panel, the tensor quadrupoles have been artificially set toC2

(T)51 in order to compare the shapes. In the right panel,
COBE-normalized amplitudes have been restored.
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depending onw for a set of constant equation of state mo
els. The tensor power spectra in the first panel have b
artificially normalized toC2

(T)51 to compare the shape
demonstrating that the shape is not strongly affected by
change inw. In the second panel, the curves have been pr
erly normalized with respect to COBE. Here we see that
main difference is in the overall amplitude; for increasingw,
the fractional contribution of the tensor spectrum decrea
In Fig. 5, a similar set of panels demonstrates the effec
changes inVQ on the tensor subcomponent. While the sha
is not strongly affected, we see that for increasingVQ , the
fractional contribution of the tensor spectrum decreases.

In paper I, it was already observed that, even for pur
scalar metric fluctuations, the CMB power spectrum at la
angular scales~low l ) in QCDM models exhibits unusua
features that do not occur in SCDM or other conventio
models. This is owing to a combination of the modificati
of cosmic expansion caused byQ ~that is, an integrated
Sachs-Wolfe effect! and the direct effect of fluctuations inQ.
Adding a tensor component can add to further features at
l .

IV. GENERALIZATION OF THE INFLATIONARY
PREDICTION FOR QCDM MODELS

We have discussed in Sec. III how a very large class
QCDM models can be divided into two categories:~1! mod-
els in whichw is constant or monotonically increasing an
-
en

e
p-
e

s.
f

e

y
e

l

w

f

~2! models in whichw overshoots and then approaches
oscillates about an asymptotic value. We have computed
scalar and tensor components of the CMB anisotropy
representative models of each type for a wide range of
rameters. We have used the numerical results to obta
revision of the inflationary relation between spectral amp
tudes and spectral indices.

Our results are expressed in terms of an empirical rela
between the scalar spectral indexnS and the ratiosr 2

[C2
(T)/C2

(S) and r 10[C10
(T)/C10

(S) . The quadrupole is a con
ventional choice; we have also chosenl 510 becauseC10 is
only weakly dependent on the cosmological model~com-
pared toC2) when the predicted spectra are COBE norm
ized, and so our relations can be applied more simply. Th
differences between QCDM and SCDM results have b
expressed in terms of correction factorsf 2 and f 10 multiply-
ing the known SCDM relations@8,14#

r 2'@7~12nS!#3 f 2~VQ ,nS ,w!,
~4.1!

r 10'@4.8~12nS!#3 f 10~VQ ,nS ,w!.

We have not included the higher order corrections, such
those proportional todnS /dlnk, which are negligibly small
for most models@25#. The functionsf 2,10 are defined in the
following subsections. In all cases,f→1 as VQ→0. The
dependence on cosmological parametersh,Vb is very weak
onential,
relative to
ty
dels by a
lid,
FIG. 6. In the first panel, the CMB anisotropy spectra are shown for same QCDM models as presented in Fig. 1, with exp
quartic, and quadratic potentials, relative to the case of a constant equation of state. The exponential potential spectrum is shown
w520.55. The quartic and quadratic potential spectra are shown relative tow520.66. The light dotted lines show the 68% probabili
region due to cosmic variance. That the ratios are close to unity demonstrates the quality of the approximation of monotonic mo
constant, effectivew. In the second panel, the tensor-to-scalar ratior l 5Cl

(T)/Cl
(S) is shown for the same set of models. The lower, so

black curve, which lies closer to the exponential potential curve, represents thew520.55 case. In these models, the tilt isns50.9, and the
tensor component has been included.
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FIG. 7. The ratiosr 2 andr 10 for a series of QCDM models with constant equation of statew and spectral indexnS50.9, as a function
of VQ .
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~which is why the relations are considered to be mod
independent tests of inflation! and has been ignored.

A. Monotonic evolution of w

Models in whichw evolves monotonically leave an im
print on the CMB that is well-approximated by the consta
w models in whichw is set to the average value durin
which VQ is non-negligible. As a demonstration, in Fig.
we compare the CMB spectra for several QCDM mode
specified by a particular form of the potential, with consta
effective w models. The ratiosr 2 and r 10 for the constant
equation of state models are shown in Fig. 7 for the c
nS50.9. Based on plots of this sort for a range ofnS , we
have obtained the following correction factors for QCD
models. For strictly constantw models, empirical fits are
valid to within 10% for 21<w<0, 0.7<nS<1, and
0<VQ<0.7:

f 25F11
10

9
~12nS!~21w!VQ

2 G~12VQ /x!g2~VQ /x!,

g2~y!520.2112.35y21.03y2,

x5
8

5F11
2

3
~11w!2

2

3
~11w!10G21

, ~4.2!

f 105F11
1

10
~12nS!@~817w!VQ

2 13#G
3~12VQ /x!g10~VQ /x!,

g10~y!50.1810.84y2,
l-

t

,
,

e

x5
3

4F12
2

3
w1

5

3
w22

1

2
~11w!5G . ~4.3!

Simpler and more precise expressions can be found fow
*21/3 models alone where the variation with parameter
more trivial~see Fig. 7!, but it is more useful to have a singl
fitting formula that extends all the way tow50. In the case
of LCDM, wherew521, the functionf 2 agrees with the
LCDM result @16,17#.

B. Oscillatory evolution of w

Models in whichw overshoots and then approaches
oscillates about an asymptotic value are well-represented
exponential potentials in whichV(Q) dominates the energy
density of the universe by the present epoch. The ratiosr 2
and r 10 for the exponential potential models are shown
Fig. 8. Empirical fits to the correction factors, for the sam
range of models and with the same accuracy as describe
the previous subsection, are given below:

f 25F11
10

9
~12nS!~21w!VQ

2 G~12VQ /x!g2~VQ /x!,

g2~y!520.2112.35y21.03y2, x512
3

5
w, ~4.4!

f 105F11
1

10
~12nS!@~817w!VQ

2 13#G
3~12VQ /x!g10~VQ /x!,
FIG. 8. The ratiosr 2 and r 10 for a series of monotonic exponential potential QCDM models with spectral indexnS50.9, as a function
of VQ . For these models, the equation of statew is time varying andw(t0) is the present value of the equation of state.
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g10~y!50.1810.84y2, x512
3

2
w. ~4.5!

In these expressions,w represents the present value of t
equation of statew5w(t0). In all cases, the initial condition
correspond tow→21. In the expressions above, the lim
w521 corresponds tow521 throughout, which coincides
with the standardLCDM result @16#. We note that these
equations do not apply to cases in which the oscillations
the Q matter are strong enough to leave a distinct featu
such as a sharp peak, in the large angle CMB spectrum.
scalar and tensor subcomponents for such a model de
sensitively on the detailed evolution of theQ component, so
that a general correction factor is not possible.

V. CONCLUSION

We have described how Boltzmann codes to compute
CMB anisotropy power spectrum and the mass power sp
trum in QCDM models can be simply modified to incorp
rate the contribution of tensor metric fluctuations, as p
dicted by inflationary cosmology. We have demonstra
that aQ component has two important effects on the ten
component. First, by modifying the expansion history of t
universe and, hence, producing an integrated Sachs-W
contribution, aQ component changes the shape of the ten
anisotropy power spectrum~see Fig. 3!. Secondly, since the
same effect modifies the scalar component, but by a diffe
factor, the ratio of tensor-to-scalar contributions to the CM
anisotropy is changed. The net result for any given tilt is
reduce the tensor contribution compared to SCDM wh
spectra are COBE normalized~see Fig. 4!. Since the mass
power spectrum is normalized by the scalar contribution
the CMB anisotropy, a consequence is that, for a given
including the tensor contribution does not reduce the CO
normalization of the mass power spectrum as much a
SCDM models.~However, as pointed out in paper I, th
shape of the mass power spectrum in QCDM is changed
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the small-scale power is reduced by other effects that do
occur in SCDM models.!

Finally, the inflationary relations linking the ratio o
tensor-to-scalar multipole moments to the tilt (nS) must be
modified. The most important results presented here are
generalized relations, shown in the previous section, betw
the tensor and scalar contributions to the CMB anisotro
spectrum in inflationary models in which the primordi
spectral indices are related bynS21'nT . These relations
provide the key test for inflation in future CMB anisotrop
and polarization measurements, now extended to incl
QCDM models. Assuming inflation is correct, the relatio
must be used in the fitting procedure to determine the Hub
parameter, baryon density, and other cosmic parameters
the CMB anisotropy@10#. To determine which relations to
use, one first looks for characteristic signatures of QCDM~or
alternative models! in the small scale anisotropy spectrum
Large angular scale anistropy is then studied to determine
tensor component. For a given value ofnS , we have shown
that in general the presence of aQ matter component lowers
the ratio r l for increasingVQ . This makes it somewha
more difficult to detect tensor perturbations in the CMB. F
SCDM models,r 2*0.14 is required to distinguish the grav
tational wave contribution above cosmic variance@9#, and a
similar result is needed for QCDM. This threshold occu
only for substantial tilts in QCDM models. Clearly, any pr
mordial signature in the large-angle CMB spectrum is a
obscured by the additional degrees of freedom introduce
the QCDM scenarios. The determination of cosmic para
eters from CMB anisotropy measurements in QCDM mo
els, including the effect of the new relations between spec
amplitudes and tilt, will be discussed quantitatively in
forthcoming publication.

ACKNOWLEDGMENTS

This research was supported by the Department of Ene
at Penn, Grant No. DE-FG02-95ER40893.
v.

ett.

ett.

ch
rly
@1# A. H. Guth and S.-Y. Pi, Phys. Rev. Lett.49, 1110~1982!.
@2# S. W. Hawking, Phys. Lett.115B, 295 ~1982!.
@3# A. A. Starobinskii, Phys. Lett.117B, 175 ~1982!.
@4# J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Re

28, 679 ~1983!.
@5# V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phy

Lett. 115B, 189 ~1982!.
@6# A. I. Starobinskii, Sov. Astron. Lett.11, 133 ~1985!.
@7# L. F. Abbott and M. Wise, Nucl. Phys.B244, 541 ~1984!.
@8# R. L. Davis, H. M. Hodges, G. F. Smoot, P. J. Steinhardt, a

M. S. Turner, Phys. Rev. Lett.69, 1856~1992!.
@9# L. Knox and M. S. Turner, Phys. Rev. Lett.73, 3347~1994!.

@10# G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N
Spergel, Phys. Rev. D54, 1332~1996!.

@11# David N. Spergel and Matias Zaldarriaga, Phys. Rev. Lett.79,
2180 ~1997!.

@12# U. Seljak and M. Zaldarriaga, Phys. Rev. Lett.78, 2054
~1997!.
D

d

@13# M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Re
Lett. 78, 2058~1997!.

@14# F. Lucchin, S. Matarrese, and S. Mollerach, Astrophys. J. L
401, 49 ~1992!; D. Salopek, Phys. Rev. Lett.69, 3602~1992!;
A. Liddle and D. Lyth, Phys. Lett. B291, 391~1992!; V. Sahni
and T. Souradeep, Mod. Phys. Lett. A7, 3541i ~1992!; J. E.
Lidsey and P. Coles, Mon. Not. R. Astron. Soc.258, 57P
~1992!; L. Krauss and M. White, Phys. Rev. Lett.69, 869
~1992!.

@15# Wayne Hu and Martin White, Astrophys. J. Lett.486, L1
~1997!.

@16# Lloyd Knox, Phys. Rev. D52, 4307~1995!.
@17# Michael S. Turner and Martin White, Phys. Rev. D53, 6822

~1996!.
@18# R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. L

80, 1586~1998!.
@19# Detailed calculations of the CMB anisotropy spectrum for su

scalar field cosmologies have been carried out by Kimbe



v.
s

ar
r
e

-
ur
ila
le

. J.

B

6064 57R. R. CALDWELL AND PAUL J. STEINHARDT
Coble, Scott Dodelson, and Joshua A. Frieman, Phys. Re
55, 1851 ~1997!; Pedro G. Ferreira and Michael Joyce, Phy
Rev. Lett.79, 4740~1997!; astro-ph/9711102.

@20# See paper I, and R. R. Caldwell, R. Dave, and P. J. Steinh
~work in progress!. In paper I, we noted that the CMB powe
spectrum is insensitive to the postinflationary spectrum of p
turbations generated in theQ matter. The important fluctua
tions in theQ matter arise in response to the growing pert
bations in the radiation and matter at late times. Sim
conclusions were reached by P. T. P. Viana and A. R. Lidd
D
.

dt

r-

-
r
,

Phys. Rev. D57, 674 ~1998!. The power spectrumPS in Eq.
~ 2.1! refers to the fluctuations in the radiation and matter.

@21# David N. Spergel and Ue-Li Pen, Astrophys. J.491, L67
~1997!.

@22# R. Crittenden, J. R. Bond, R. L. Davis, G. Efstathiou, and P
Steinhardt, Phys. Rev. Lett.71, 324 ~1993!.

@23# C.-P. Ma and E. Bertschinger, Astrophys. J.455, 7 ~1995!.
@24# U. Seljak and M. Zaldarriaga, astro-ph/9603033.
@25# L. Wang, V. Mukhanov, and P. J. Steinhardt, Phys. Lett.

414, 18 ~1997!.


