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Turning around the sphaleron bound: Electroweak baryogenesis
in an alternative post-inflationary cosmology
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The usual sphaleron bound and the statement of the impossibility of baryon production at a second order
phase transition or analytic cross-over are reformulated in the first part of the paper as requirements of the
expansion rate of the Universe at the electroweak scale. With an~exact or effective! additional contribution to
the energy density scaling as 1/a6, which dominates until just before nucleosynthesis, the observed baryon
asymmetry may be produced at the electroweak scale in simple extensions of the minimal standard model, even
in the case that the phase transition is not first order. We focus our attention on one such cosmology, in which
the Universe goes through a period termedkination in which its energy is dominated by the kinetic energy of
a scalar field. The required kinetic energy dominated modes can occur either as a field rolls down an expo-
nential~or steeper! potential, or in the oscillation of a field about the minimum of a steep power-law potential.
We implement in detail the former case with a single exponential field first driving inflation, and then rolling
into a kinetic energy dominated mode. Reheating is achieved using an alternative to the usual mechanism due
to Spokoiny, in which the Universe is ‘‘reheated’’ by particle creation in the expanding background. Density
perturbations of the magnitude required for structure formation may also be generated. We show that the
analogous model for the power-law potential cannot be consistently implemented. In models with inflation
driven by a second field and the usual mechanism of reheating~by decay of the inflaton! the required kinetic
energy dominated cosmology is viable in both types of potential.@S0556-2821~98!06610-7#

PACS number~s!: 98.80.Cq, 64.60.2i
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I. INTRODUCTION

Nucleosynthesis provides a role model for electrowe
baryogenesis to whose impressive heights it can still o
aspire. The great attraction of the idea that the baryon as
metry of the Universe~BAU! may have been created at th
electroweak epoch lies in the possibility that one day anab
initio calculation to rival that of nucleosynthesis may be p
sible, and that it will give a definitively positive or negativ
answer. Rather than simply providing an alternative to s
narios for baryon creation at the grand unified theory~GUT!
scale, it has the fundamental interest of relying on physic
a scale directly accessible to experiments. We can rea
cally hope to know the correct theory of physics at the el
troweak scale, in particular the structure of theCP violating
and symmetry breaking sectors. Just as in nucleosynthe
is then a question of putting this theory in an expand
universe and finding the output. Electroweak baryogen
however faces more substantial obstacles on the road
reliable calculation than did nucleosynthesis, e.g., the de
mination of the baryon asymmetry involves all the details
departure from equilibrium at the phase transition~if there is
one!, the crucial baryon number violating processes aris
from the chiral anomaly at finite temperature involve ma
difficult and still unresolved questions, etc. Much progre
has however been made, recently in particular using lat
methods to study the phase transition@2#, and the problems
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seem not to be insurmountable.
The approach of this paper is somewhat orthogonal to

direction of investigation of most work on electrowea
baryogenesis. Rather than investigating some aspect o
particle physics, we consider the cosmological side of
problem. The standard and indeed most natural assump
about cosmology at the electroweak epoch is that it is w
one gets by the simplest backward extrapolation from
cleosynthesis: a homogeneous and isotropic radiation do
nated universe. In nucleosynthesis the assumption of su
universe is relaxed to place limits on, for example, the c
tribution of a magnetic field or of a cosmological ‘‘constan
to the energy density. In this paper we ask the analog
question of electroweak baryogenesis: how is the stand
scenario for production of the observed baryon asymmetr
the electroweak epoch affected if we consider cosmolog
other than the standard one? And are there simple alterna
cosmologies which lead to significantly different results f
electroweak baryogenesis?

The same sort of question has been previously addre
in the context of calculations of the relic densities of weak
interacting particles in work of Barrow@3# and Kamion-
kowski and Turner~KT! @4#. These relic densities depend o
the temperature at freeze-out which occurs~approximately!
when the annihilation cross section of the particular spec
drops below the expansion rate of the Universe. Barrow d
cussed the particular case of a non-anisotropic universe
which the average~volume! expansion rate which determine
the freeze-out has an extra component driving it which sca
as 1/a6 (a is the average scale factor!. Consistent with the
requirement of radiation domination at nucleosynthesis,
expansion rate can thus be very much greater in the an
6022 © 1998 The American Physical Society
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57 6023TURNING AROUND THE SPHALERON BOUND: . . .
tropic universe prior to nucleosynthesis when dark ma
relics typically freeze-out (T;100 MeV!, and the require-
ment that such a particle be the cosmological dark ma
may in principle place a bound on the anisotropy. The i
portant idea—that relic densities can provide a probe of
Universe prior to nucleosynthesis, which might be other th
the standard radiation dominated one—was considered
more general way by KT, who discussed the case of an
isotropic universe, as well as various others, including
Brans-Dicke-Jordan theory of gravity. In this latter case
effect can also be modelled as an extra contribution to
energy density scaling as 1/a6, producing in the same way
speeded up expansion rate before nucleosynthesis wit
violating the nucleosynthesis constraints. KT also ment
an example~which they describe as ‘‘exotic’’! of a scalar
field f which oscillates in the minimum of a potentialfn,
for which the energy density scales asa26n/(n12), i.e., faster
than radiation forn.4. Again the energy in such a mode ca
contribute significantly before nucleosynthesis without d
rupting the latter. As discussed in@5# the relevant feature o
this model is that it is the kinetic energy of the scalar fie
which gives the dominant contribution to the energy dens
of the Universe. As well as the oscillating mode of t
power-law potential, the scaling applies to a scalar field r
ing down a simple exponential potential. Rather than be
exotic ~compared to the models which@3# and@4# focus on!,
such models are minimal in the sense that they leave Eins
gravity intact and are consistent with the inflationary exp
nation of the homogeneity and isotropy of the Universe.
this paper we construct and study in detail a model for e
of the two cases in which the single field~exponential or
power-law! both inflates the Universe and then rolls into t
kinetic energy dominated mode. Reheating is achieved u
a simple alternative model of reheating proposed
Spokoiny several years ago@1#. In the power-law potentia
density perturbations are produced which are too large
the model is not viable. Furthermore the coherent oscillat
mode is unstable to decay due to parametric resonance
also discuss less constrained viable models in which the
flaton is a different field and reheating proceeds in the us
way ~by decay of the condensate!. The required potentials do
in fact arise in many particle physics models: Power-l
potentials have been discussed, for example, in the conte
supersymmetry motivated inflationary models in@6,7#. ~The
lower order terms can be excluded by imposing a disc
Zn/211 symmetry on the superpotential.! Exponential poten-
tials arise quite generically in theories involving compac
fied dimensions, such as supergravity and higher dim
sional theories of gravity~for specific examples, se
@8,9,10#!. The latter are also interesting in that they can p
an important~potentially observable! role in the late-time
cosmology of structure formation@11,12#.

In the first part of the paper we address the question
how the expansion rate of the Universe affects the bar
asymmetry produced at the electroweak scale, without re
ence to any particular cosmological model. The two disti
cases—a first order phase transition, and a second-o
phase transition or a cross-over—are treated separatel
the first case the expansion rate enters~i! in determining
when the transition occurs, since this depends on the coo
rate of the Universe below the critical temperature, and~ii ! in
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determining the depletion of the baryon asymmetry produ
by sphaleron processes~and hence in determining the sphal
ron bound!. In this case the baryon asymmetry is actually~at
least in certain extensions of the standard model! produced
on or near the bubble walls as they propagate through
plasma, and does not depend directly on the expansion
In the second case the expansion rate is the sole param
which controls the departure from equilibrium and t
baryon asymmetry which can be generated depends dire
on it.

In the second part of the paper we turn to the discuss
of alternative cosmologies, first reviewing those conside
in previous work and then turning to the detailed consid
ation of cosmologies dominated by the kinetic energy o
scalar field for a period between inflation and nucleosynt
sis, concentrating in particular on the case when this ph
~which, following @5# we termkination! persists until after
the electroweak scale. In this case the expansion rate a
electroweak scale is increased, producing the modificati
to calculations for electroweak baryogenesis discussed in
first part. As outlined above, the two types of models
consider are exponential potentials and power-lawfn

(n.4) potentials. For both cases we first discuss a one fi
model, in which the field both inflates the Universe a
causes kination. Instead of decaying as in the standard ex
nation of reheating, the inflaton rolls into a kinetic mode a
simply red-shifts away. The radiation created by the sup
luminal expansion of the Universe at the transition betwe
the two phases thermalizes and comes to dominate the
ergy density of the Universe at a later time determined by
expansion rate at the end of inflation@1#. We show that in the
exponential potential one can have~i! a transition to radia-
tion domination as late as nucleosynthesis and~ii ! thermali-
zation of the radiation well prior to the electroweak sca
and further,~iii ! density perturbations of the right amplitud
for structure formation. In the power-law potential, howev
we find that the requirement that the Universe become ra
tion dominated before nucleosynthesis leads to the prod
tion of density perturbations which are much larger than
consistent with observations. In any case the oscillat
mode in this model typically decays non-perturbative
~through parametric resonance! unless the self-couplings o
the field are extremely small, and the energy does not sta
the kinetic mode for long enough. We conclude Sec. V w
a brief discussion of two fields models in which one field
the inflaton and reheats the Universe in the standard w
and the second field is the ‘‘kinaton’’ which comes to dom
nate for a phase subsequent to inflation. In this case the
ond field can be either exponential or power-law~provided
the couplings are such that decay by parametric resona
does not occur until after nucleosynthesis!. In the last section
we summarize our findings and then discuss the implicati
of our results for the testability of theories of electrowe
baryogenesis, and consider briefly other ways in which p
nucleosynthesis cosmology might be probed.

II. DEPENDENCE ON THE EXPANSION RATE

In electroweak cosmology the assumption is genera
made that the Universe is flat, homogeneous, isotropic,
radiation dominated. Hence all cosmological information
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6024 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
encoded in the expansion rateH rad, which is given as a
function of the plasma temperatureT:

H rad5h
T2

MP
, h5S p2g*

90 D 1/2

~1!

whereg* ;102 is the number of relativistic degrees of fre
dom in the plasma andMP5(8pG)21/2.2.431018 GeV is
the reduced Planck mass. The clean separation betwee
purely particle physics and cosmological calculations occ
because of the adiabaticity of the expansion. It is adiab
because the time scale characterizing the exp
sion—texpansion5M P /(hT2).1016(100 GeV/T)T21, taking
g* .102—is much greater than the time scales associa
with the thermalization processes which have typical ra
;a2T ~where a.1/50 for all the interactions well abov
100 GeV!. The phase transition can thus be studied us
equilibrium methods—the expansion of the Universe en
only in determining the cooling rate and, hence, when
transition occurs~if it does!. In general we could of cours
consider any cosmology at the electroweak scale, with
sole requirement that it be consistent with nucleosynthe
We have no probe of the electroweak scale except that
vided by electroweak physics, and methodologically
makes sense to ask how changing the standard assum
about the Universe at this phase affects the predictions o
remnants which result. Here we limit ourselves to relax
only the assumption that the expansion rate is related to
temperature by~1!. Instead we take

H5HewS T

Tew
D p

~2!

where p is a number and the subscript ‘‘ew’’ means th
quantities are evaluated at some temperature characteris
the electroweak phase transition. UsingH5ȧ/a this corre-
sponds to the time dependencea}t1/p for the scale factora.
All our results concerning baryogenesis are, we will see,
sentially independent ofp because they depend only on tem
peratures very close toTew. We will treat Hew as a free
parameter, only taking it to be such that the assumption
adiabaticity is valid, which allows it to be different from th
standard value by orders of magnitude. We will review
Sec. V some of the nonstandard cosmologies which can
described by these assumptions. The model which we
discuss in detail is a homogeneous and isotropic unive
dominated by a kinetic mode of a scalar field rather than
radiation.

Baryogenesis, the creation of baryons from an initial z
baryon state, requires a departure from thermal equilibri
In the big bang Universe this is provided by the expans
which causes the Universe to cool. At the electroweak sc
this cooling can lead to two very different effects, depend
on whether the electroweak phase transition is of first or
or not. Recall that at a first order phase transition as
Universe cools it becomes thermodynamically favorable
the system to be in the ‘‘broken’’ state. The ‘‘broken’’ an
‘‘unbroken’’ phases are separated by a potential bar
which decreases as the Universe cools. Once the barri
low enough, the transition proceeds by the nucleation
propagation of true vacuum bubbles. This departure fr
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equilibrium is characterized by time scales which are mu
shorter than that associated with the expansion. Almost
proposed mechanisms for baryogenesis at the electrow
scale make use of this dramatic departure from equilibriu
using the interaction between the plasma and propaga
walls to generate the baryon asymmetry. In the case tha
transition is second order or cross-over there is no such
fect. Everything evolves continuously and the departure fr
equilibrium is controlled directly by the expansion rate. Th
usually leads one to conclude that anything but a first or
phase transition is inimical to baryogenesis at the el
troweak scale. Once one relaxes the assumption that the
pansion rate is its standard radiation dominated value,
conclusion does not follow and needs to be examined m
carefully. We will thus treat these two cases separately
some detail.

III. FIRST ORDER PHASE TRANSITION

In this case the baryons are created as the bubbles o
true vacuum propagate through the false vacuum. The
effect of the propagation of the bubble through the medi
in all proposed mechanisms is the creation of a flux of ba
ons into the broken phase. The expansion rate enters
indirectly through other parameters involved in th
calculation—through the temperature at which the transit
occurs which it determines, and, in certain regimes, throu
the bubble wall velocity. On the other hand, it enters direc
in the determination of the amount of the created asymm
which survives once it is in the broken phase. We consi
these two dependences separately.

A. Bubble nucleation

In this section we investigate how the bubble nucleat
temperature depends on the expansion rate of the Unive
We also briefly discuss how the bubble wall velocity m
depend on this parameter. As the Universe supercools be
the critical temperatureTc , the fractionf filled by nucleated
bubbles at a timet is given by ~see @2# and references
therein!:

f ~ t !512e2D~ t !, D~ t !5E
tc

t

dt8
4p

3
v3~ t2t8!3R~ t8!,

R5I 0T4e2Sb /T, ~3!

whereSb is the bounce action,R the nucleation rate per uni
volume,I 0 is a prefactor which is a slowly varying functio
of temperature of order one, given in more detail below, a
v is the bubble wall velocity. Changing the integration va
able tox5(Tc2T)/Tc and using the time-temperature rel
tion t}T2p which follows from ~2!, one finds

D~x!5
4pv3

3
I 0S Tc

Hc
D 4E

0

x

dx8~12x8!32p

3S 1

p~12x!p
2

1

p~12x8!pD 3

expS 2
Sb~x8!

Tc~12x8!
D
~4!
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57 6025TURNING AROUND THE SPHALERON BOUND: . . .
whereHc is the expansion rate atTc . We will see below that
the nucleation temperatureTnucl defined byD(xnucl)51 is
always very close to the critical temperature so that we
take 0,x8<x!1 and expand to linear order in~4! to get

D~x!5
4pv3

3
I 0S Tc

Hc
D 4E

0

x

dx8~x2x8!3expS 2
Sb~x8!

Tc
D .

~5!

Keeping the first term in a derivative expansion of t
bounce action about x, i.e., taking Sb(x8)5Sb(x)
1„dSb(x)/dx…(x82x)1O„(x82x)2

…, the integral can be
performed with the assumption thatxd(Sb /T)/dx(x'xc)
@1, and gives the nucleation temperature implicitly as

Sb~Tnucl!

Tc
5 lnF8pv3I 0

~Tc /H rad!
4

~dSb /dTnucl!
4G24ln

Hc

H rad
, ~6!

where H rad.1.2310216(Tc/100 GeV)Tc is the expansion
rate atTc in the standard radiation dominated cosmology

To check the consistency of our assumptions and eval
this expression to give the nucleation temperature, one m
calculate the bounce action near the critical temperatur
the particular model of interest. We consider the minim
standard model~MSM! in the regime where it is describe
by the effective potential

V~f,T!5
g

2
~T22T0

2!f22
a

3
Tf31

lT

4
f4 ~7!

with the one-loop ring improved values@13,14#

a5
1

2p

2mW
3 1mZ

3

v0
3

1
1

4p
~3133/2!xT

3/2,

g5
2mW

2 1mZ
212mt

2

4v0
2

1
1

2
lT ,

lT5
mH

2

2v0
2

2
3

16p2v0
4 S 2mW

4 ln
mW

2

aBT2
1mZ

4 ln
mZ

2

aBT2

24mt
4 ln

mt
2

aFT2D ,

T0
25

mH
2 18bv0

2

2g
,

b5
3

64p2v0
4 ~4mt

422mW
4 2mZ

4!, ~8!

where v05246 GeV, aB5(4p)2e22gE.50, aF
5(p)2e22gE.3.1, andgE is Euler’s constant. This treat
ment of the MSM is reasonably accurate up tomH;60 GeV,
when nonperturbative effects become important. With t
effective potential the critical temperatureTc is given by
n

te
st
in
l

s

Tc5
T0

S 12
2

9

a2

lTg D 1/2, ~9!

and the latent heatL and surface tensions by

L5V~f* ,T!1T
dV~f* ,T!

dT
, s5E

0

f
* dfA2V,

~10!

where f* , defined by degeneracy of the minim
@V(f* ,T)5V(0,T)#, is

f*
T

5
2a2@4a2218lTg„12~T0 /T!2

…#1/2

3lT
. ~11!

The ~spherical! bounce action is given by

Sb54pE r 2drF1

2S df

dr D 2

1V~f,T!G ~12!

with the boundary conditionsf(r 50)5f* , df/dr(r 50)
50, and f(r 5`)50 (r 5uxW u is the radial coordinate!.
Rather than solving this exactly~which is numerically ex-
pensive!, or in the thin wall approximation~which is inaccu-
rate for strong phase transitions whenf* ;T), we will use
an approximation forSb developed in@13#:

Sb~T!

T
59p

g3/2

a2 F12S T0

T D 2G3/2

f ~A!,

f ~A!511
A
4 F11

2.4

12A1
0.26

~12A!2G ,

A5
12~T0 /T!2

12~T0 /Tc!
2

, ~13!

which is valid for 0<A<0.95.
The prefactorI 0 in ~3! can be written as

I 05
kdyn

2p S Sb

2p D 3/2

l2
21/2Kbubble

21/2 , kdyn5F 2sr

R3L2G 1/2

~14!

wherekdyn is the dynamical prefactor as given in@15#. R is
the radius of the nucleating bubble, which can be estima
in the thin wall approximation to beR.Rnucl;2s/Lxnucl,
xnucl512Tnucl/Tc , r5p2T4g* /30 is the energy density o
the plasma withg* relativistic degrees of freedom. The on
loop fluctuation determinant consists of the ‘‘negative
model2.0.05g1/2f(T), and we takeKbubble51 ~for a more
accurate value, see@16,17#!.

We have solved~6! numerically to find the nucleation
temperatureTnucl, using these values and approximation
We also usedmt5175 GeV,mW581 GeV, mZ591 GeV,
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6026 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
and took the bubble wall velocityv50.4 @14#.1 In Fig. 1~a!
we show a plot ofznucl5(Tc2Tnucl)/(Tc2T0) against the
logarithm of the expansion rateHc at the critical tempera-
ture, for a range of Higgs massesmH . We see clearly tha
the usual result in a radiation dominated universe is qua
tively unchanged by varying the expansion rate over ord
of magnitude:zc is small, so the nucleation temperature
very close to the critical temperature, and much closer toTc

thanT0. There is a small quantitative change,zc varying by
about 40% as the expansion rate varies over five order
magnitude, but the change in absolute terms is tiny si
DTnucl52(Tc2T0)Dzc<531023Tnucl. Typically there is
about the same change tozc over this range at a fixed Higg
mass as is brought about by decreasing the Higgs mas
about 25 GeV in a radiation dominated universe.2

1This is a friction limited upper bound. The results here are
course not very sensitive to the details of the prefactor in the nu
ation rate. As we will discuss below, this assumes that the Univ
is not reheated significantly by latent heat release, which is a
sonable approximation in the MSM. In the case that signific
reheating occurs, so that bubble nucleation stops, the correct v
of v in the early stages of nucleation would be the speed of so
vs'1/A3 at which the shock fronts propagate.

2znucl increases as the Higgs massmH decreases because the pha
transition gets stronger, and therefore more supercooling occu

FIG. 1. ~a! znucl vs the expansion rate.~b! LDr vs the expansion
rate.
-
rs

of
e

by

The results are easy to understand both quantitatively
qualitatively. Varying the bounce action~13! and assuming
12A<0.2 @which is satisfied for most of the paramet
space in Fig. 1~a!# so that the last term in the expressio
dominates, one obtainsd(Sb /T);22(dznucl/znucl)(Sb /T),3

and hence@using ~6!#

Dznucl

znucl
'

2ln~Hc /H rad!

Sb /T
. ~15!

The bounce actionSb approximately halves, going from
100T to 50T as the expansion rate changes fromH rad
→105H rad. Taking an average value for it in~15! gives good
agreement with the estimates we made above from the
ure. Qualitatively the reason the expansion rate changes
nucleation temperature so little is that, as long as the U
verse expands on a time scale much longer thanTnucl

21 , the
transition always proceeds when the nucleation rate is v
suppressed, where the bounce action is an extremely s
tive function of temperature. The nucleation temperature
creases as the expansion rate increases because the Un
must supercool more to attain a less suppressed nucle
rate.

Such a small change to the nucleation temperature le
to minor changes to the quantities which determine
baryon asymmetry generated. We will see in Sec. III B t
betweenTc and T0 the VEV of the Higgs field changes b
50%, and its derivative with respect toT by about a factor of
three. From Fig. 1~a! this would mean an increase in th
VEV at nucleation of 1% or a little more per order of ma
nitude increase in the expansion rate. We would expect
this result will hold true in any typical electroweak mod
and not just the MSM in the regime we have studied it he
These minor changes to the VEV~s! and the other macro
scopic parameters which determine the baryon asymm
~bubble wall thickness, profile etc.! are essentially negligible
in their effect on the baryon asymmetry generated.

One condition must be attached to this conclusion, ho
ever: Other macroscopic effects can come into play as
bubbles propagate. When the propagating bubbles b
‘‘bathing’’ in the hydrodynamic shock waves of the neig
boring bubbles, i.e., whenD(t);1 in ~3!, the plasma can
heat up and slow down the propagation of the bubbles@18#.
To determine how big this effect can be one compares
latent heat releaseL with the difference in the thermal en
ergy densityDr54r(Tc2Tnucl)/Tc between the nucleate
phase and the unbroken phase. IfL/Dr>1 the system can
reheat all the way back up toTc . If such reheating occurs th
main effect on baryon generation at the bubble walls
through the slowing down of the bubble walls.

In Fig. 1~b! we show a plot of this ratioL/Dr as a func-
tion of the expansion rate in the MSM with the same valu
and range of Higgs mass as above. As the expansion
increases the amount of re-heating decreases—simply a
sult of the increased supercooling. In all the parameter sp
the ratio is less than one, but of order one, so the effec

f
e-
se
a-
t

lue
d

e
.

3This estimate is just that obtained in the thin wall approximat
in which Sb,thin}znucl

22 .
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reheating may be significant, leading potentially to a slo
down of the bubble walls relative to the friction dominat
regime. To determine the effect precisely is a very involv
problem, and we will not attempt to tackle here the ev
more involved one of looking at the effect on such slo
down of changing the expansion rate. We limit ourselves
the qualitative observation that the amount of reheating
creases slightly as the expansion rate increases, and
modifying the expansion rate by orders of magnitude
likely to lead to only small corrections.

The one-loop effective action which we use here becom
an increasingly poor approximation formH.60 GeV, and
the latent heat is one of the quantities it estimates very in
curately. Lattice studies@2# have shown that there is a regim
in the MSM whereL/Dr.1. In other models also this i
certainly a condition we can envisage being satisfied.
mentioned above, in this case the bubble walls slow dow
a final velocity determined by the expansion rate of the U
verse, which has been estimated to bev;102221023 @18,2#
in a radiation dominated universe. These estimates show
this velocity depends on the expansion rate only through
combination HR where R is the average bubble radiu
which is the radius at whichd f /dR of ~3! peaks, i.e.,
d2D/dR2'0. A little algebra gives

HR.
3vs

udS/dTu
, ~16!

wherevs51/A3 is the speed of sound. Now using the e
pression~6! above we see thatudSb /dTu}Sb /T decreases by
about 10%—and hence the final wall velocity increases
the same amount—per order of magnitude change in the
pansion rate. IfL/Dr.1 for different expansion rates, thi
will be the only change to the final bubble velocity. Give
the behavior we have observed ofL/Dr it is clear that in
certain models increasing the expansion rate consider
relative to its radiation dominated value could make the d
ference between this final wall velocity and a~typically
much larger! friction limited one corresponding to
L/Dr,1. In this particular case the change to the bub
wall velocity may not be so small.

The determination of how the baryon asymmetry wou
be affected by such changes in the velocity of the bub
wall is a model dependent problem. The velocity depende
of the baryon asymmetry depends on what precise me
nism is operative, which depends on both the microsco
and macroscopic physics. At low velocities (v,1023) the
result always goes to zero at least linearly, and at lar
velocities the most sensitive dependence is;1/v2. Using
this dependence and assuming the greatest possible e
due to a change in the expansion rate~from an upper bound
in the friction dominated regimev;0.4 to the lower bound
of the adiabatic ‘‘complete reheat’’ regime withv;1023)
would give a change in the calculated BAU by~at most! 105.
As we have discussed however, in most models the cha
will be much smaller and probably very small. A more d
tailed investigation of this question would however be
quired to draw stronger quantitative conclusions.
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B. Washout and the sphaleron bound

The baryons created at the bubble walls are subjec
decay after they enter the broken phase if the baryon num
violating processes are not sufficiently suppressed. The
quirement that this attenuation not reduce the created as
metry to less than that required for nucleosynthesis lead
the sphaleron bound@19# in a radiation dominated universe
Here this bound will be restated as a requirement of
expansion rate of the Universe in a given theory. In t
course of this discussion we will also draw attention to i
precisions in commonplace statements of the sphale
bound ~with the usual assumption of radiation dominatio!
which can be of considerable importance.

Since the time scale associated with the baryon num
violating sphaleron processes is much longer than the t
scale for thermalization processes, the baryon number a
the completion of the electroweak phase transition is giv
by its local equilibrium value

^B&5
1

Z
Tr@Be2b~H2mBB2(AmAQA!# ~17!

wheremB andmA are chemical potentials for baryon numb
and the other chargesQA conserved on the relevant tim
scale, i.e., exactly conserved, or violated at a rate slower t
the baryon number violating processes. On the ti
scale over which the violation of baryon number
relevant, the system relaxes to equilibrium at a r
Ḃ52Ḡsph(DF/T)DB, whereḠsph is the rate per unit volume
of sphaleron processes in which the Chern-Simons num
Ncs changes byoneunit, andDF is the free energy chang
per process. SinceDB5NFDNcs per process (NF is the num-
ber of fermion families!, we get

Ḃ52NF
2 Ḡsph

T
mB ~18!

where we assume that other charges are defined so that
are conserved in these processes (DQA50). The sphaleron
rate is given by@20#

Ḡsph5Cg
f7

T3
e2Esph/T, Esph5BS 4p

aw
D 1/2

f~T!,

C5
v2

2pgf~T!
NtrNrotVrotKsph ~19!

where aw5g2/4p'1/29, B is a monotonically increasing
function of l/g25mH

2 /8mW
2 ranging between 1.5 and 2.7 a

l/g2 varies from 0 to` @21# and C is a temperature inde
pendent ‘‘constant,’’ given fully below@with v2;gf(T)
the frequency of the negative mode of the sphaleron,Ksph the
one loop fluctuation determinant,Vrot58p2 a group volume
factor, andNtr andNrot the number of translational and ro
tational degrees of freedom#.

The conserved chargesQA are just the primordial values
of the exactly~or, in some cases, approximately! conserved
charges in the electroweak model with which we are cal
lating. In scenarios for electroweak baryogenesis these
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6028 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
always taken to be zero. From~17! it then follows thatmB
can be expressed in terms ofB, so that~18! becomes simply

Ḃ52anGsphB, Gsph56NF
2 Ḡsph

T3
~20!

where an is a number of orderone whose precise value
depends on the model and its corresponding set of cha
QA . In Sec. IV below we carry out the constraint calculati
explicitly and findan'0.4 for typical electroweak models
Integrating ~20! gives the baryon asymmetryBfreeze which
survives to partake of nucleosynthesis:

Bfreeze5B~Tb!expF2E
tb

`

dtanGsph~ t !G
5B~Tb!expF2Hb

21E
0

Tb
dT

anGsph

T S Tb

T D pG , ~21!

whereB(Tb) is the baryon asymmetry at the completion
the transition, at temperatureTb andHb is the expansion rate
at that time. As discussed in the previous section the ap
priate value ofTb depends on the details of the of the pha
transition and lies in the rangeTbP@Tc ,Tnucl#. To obtain the
latter form of ~21! we have used the time-temperature re
tion t}T2p which follows from ~2!. Changing variables to
y5Tb /T we can write thedepletion factorD as

D[2 ln
Bfreeze

Bb

5
Tb

Hb
36anCNF

2gE
1

`S f~T!

Tb
D 7

y51pe2@Esph~T!/Tb# ydy.

~22!

Over the range of integration the factorEsph/Tb in the expo-
nential increases from its minimum value aty51, which is
quite a large number;30. This means that the domina
contribution to this integral comes from temperatures v
ov
th

r
ic
es

o-
e

-

y

close toTb with y;111/30. In fact we will see below tha
the rate of change of the VEV is typically large enough
narrow the range of temperatures which dominate the in
gral even more than this. Thep dependence in the integral i
therefore very weak and the only significant effect of t
change in the expansion rate from its radiation domina
valueH rad is to change the depletion factorD by the factor
H rad/Hb . Increasing the expansion rate decreases the de
tion because the sphaleron rate decouples at a higher
perature.

Is this change significant? For a given theory~with all
parameters determined! the depletion factor is~in principle!
calculable. There is essentially no depletion for any exp
sion rate greater than the expansion rateHsphgiven by setting
D51 in ~22!. For H,Hsph, however, a baryon asymmetr
produced at the first order phase transition is attenuated
factore2Hsph/H. Whether a change in the expansion rate fro
that in a radiation dominated universe to a different value
important therefore depends on what the critical expans
rate Hsph is in the particular model. If a model hasHsph
510nH rad, the baryon asymmetry left behind in the univer
with H;Hsph may be compatible with observation, and th
in a radiation dominated universe too small by a factore210n

.
If, on the other hand,Hsph,H rad the asymmetry will survive
unattenuated in either universe.

We now turn to determining the effect of treating th
expansion rate as a variable on the sphaleron bound in
more familiar forms, in which the requirementD<1 is con-
verted to a bound on parameters in a particular model.
bound is usually stated as a lower bound on the sphale
energy, or as a lower bound on the ratio of a VEV to t
temperature at the nucleation or critical temperature,
then converted into a bound on parameters in the spe
model concerned. We will follow through the derivation
such bounds in detail, particularly because we wish to n
certain points which are often overlooked in this context. W
then analyze the case of the MSM in detail using the sa
effective potential~7! and ~8! used in the previous section.

Using the sphaleron energyx5B(4p/g)„f(T)/T… as the
variable in ~22! we obtain the sphaleron bound in its ne
form as
Hb>Hsph56anNF
2CS aw

4p D 4

gB28E
xb

`S Tb

T~x! D
pU d~f/T!

dT
~x!U21

dxx7e2x

'S aw

4p D 1/2

B21UT d~f/T!

dT U
b

21

anGsph~Tb! ~23!
where, to derive the latter expression, we assumed that
the range of temperatures which contribute to the integral
derivative term is approximately constant, and„Tb /T(x)…p

'1. Let us assess the validity of this approximation in mo
detail in the case of the MSM. At any temperature at wh
the two phases coexist, i.e., betweenTc andT0,
er
e

e
h

T
d

dTS f

T D'2
2g~T0 /T!2

2lT~f/T!2a

2
T

lT

dlT

dT FfT 1
g„12~T0 /T!2

…

2lTf/T2a G , ~24!
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FIG. 2. ~a! Minimum f(T)/T vs the expansion rate.~b! Minimum sphaleron energy vs the expansion rate.~c! Minimum expansion rate
vs mH . ~d! f(T)/T vs mH in MSM.
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whereTdlT /dT528b, and

f

T
5

a1@a224lTg„12~T0 /T!2
…#1/2

2lT
. ~25!

For simplicity, in ~24! we neglected the temperature depe
dence ofa and g, which would result in numerically irrel-
evant corrections. Even though bothf/T and its derivative
in ~24! and ~25! are very sensitive functions ofT, in the
temperature intervalTc>T>T0 both are monotonically de
creasing, and we can write their lower and upper bound
follows:

fc

Tc
5

2

3

a

lT
,

f0

T0
5

a

lT
~26!

and

FT
d

dT

f

T G
c

52
6g

a S T0

Tc
D 2

1
4a

3lT
S 11

8b

lT
D'2

6g

a
,

FT
d

dT

f

T G
0

52
2g

a
1

8ab

lT
2

'2
2g

a
, ~27!

whereg/a '18. The large value of the derivative means th
the pre-factor in front of the sphaleron rate in~23! is >103.
This is essentially just the~inverse! fraction of an expansion
time in which the sphaleron freezes out@leading to the dif-
-

as

t

ference from the naive freeze-out estimateHsph;Gsph(Tb)].
The range of temperatures which contributes in the integ
is therefore much less than betweenTc andT0.0.99Tc , and
the constant derivative approximation used in evaluating
indeed very accurate. Further, asTb varies in this range the
change in the result associated with the derivative is at m
this factor of three. In what follows we will keep track of th
dependence of the sphaleron bound onTb , and quantify it in
comparison to the other effects on the bound in which we
interested here.

The sphaleron bound as given in~23! can be converted
for a given expansion rateHb , into a lower bound on the
ratio fb /Tb @wherefb[f(Tb)]. A numerically convenient
and instructive way to write the lower bound on this quant
is in the implicit form

fb

Tb
5

1

BS aw

4p D 1/2F ln

6NF
2anS v2

2pgf~T!
NtrNrotVrotKsphDaw

UT d

dT

f

TU
b

B
H rad

Tb

2 ln
Hb

H rad
17ln

fb

TbG . ~28!

In Fig. 2~a! we show the solutions to this equation o
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tained from an iterative evaluation of~28!, for the MSM.
We have taken Vrot58p2, and fit NtrNrot.86
25 ln(mH

2 /8mW
2 ) @22#. The one loop result forKnucl we

took from @23#: Ksph5$7.54,5.64,4.57,3.89,3.74% for
mH5$0.4,0.5,0.6,0.8,1%mW , and extrapolated or interpolate
for other valuesmHP@10,80#GeV. v2 we took from @22#,
where it was found thatv2 /gf(T)P@0.4,0.55# for
mHP@10,80#GeV. We neglected the plasma effects onv2 .
Finally, we tookan50.4, andB5$1.52,1.61,1.83,2.10% for
mH

2 /mw
2 P$0,831023,831022,0.8,8% @21#, and quadratically

interpolated for the intermediate values. The authors of@21#
neglected the finite temperature corrections toB, the most
important one being the cubic term. Even though we exp
them not to be very important for the transition strengths
in the minimal standard model, it would be useful to inve
tigate how the value ofB is affected by finite temperatur
corrections, especially in models which can lead to stro
transitions, like the minimal supersymmetric standard mo

Besides varying the expansion rate over the range sh
in the figure, we have taken a wide range of Higgs mas
and different values forTb . It is instructive to do this be-
cause the sphaleron bound is often stated as a bound on
ratio of VEV to temperature as if this were a mode
independent and temperature independent statement o
We see from Fig. 2~a! that this is very far from being true
For a range of Higgs masses from 10 GeV to 80 GeV
bound onf/T decreases by about 20%. That most of t
dependence comes from the factorB, which varies non-
negligibly with the Higgs mass, can be verified easily.4 This
is also clear from Fig. 2~b!, which shows the sphalero
bound as a lower bound on the sphaleron energyEsph

b /Tb

@whereEsph
b [Esph(Tb)] as a function of the expansion rat

There is however still a significant mass dependence~ap-
proximately 8% over the mass range considered! in the
bound stated this way. The temperature dependence o
bounds is comparatively smaller—asT increases fromT0 to
Tc , the bound onf/T decreases by 3–4 %, and forTb
P@Tnucl,Tc# by less than 1%. This dependence comes fr
the derivative of the VEV inside the logarithm, which as w
saw above can vary by a factor of three over the range f
Tc to T0. In analyzing any particular model in detail th
parameter dependence of the sphaleron bound stated
way in terms of these quantities should clearly be borne
mind and carefully examined.

The dependence we are primarily interested in here is
seen in both Figs. 2~a! and 2~b! on the expansion rate of th
Universe. Bothfb /Tb and Esph

b /Tb show an almost exac
linear dependence on the logarithm ofH which is evident
from ~28!. For a small fractional change in the bound
fb /Tb or Esph

b /Tb due to a change in the expansion rate fro
H rad we have the approximate formula

BS 4p

aw
D 1/2

DS fb

Tb
D[DS Esph

b

Tb
D'2

ln
H

H rad

127S Esph
b

Tb
D 21 ~29!

4d(f/T)/(f/T).2(dB/B)@127B21(aw/4p)1/2/(f/T)#21. For
mH510 GeV to 80 GeV,dB/B.1/8, and henced(f/T)/(f/T)
.1/6, accounting for most of the dependence onmH on Fig. 2~a!.
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which, given (4p/aw)1/2'20, agrees well with the number
read off from the figures. Over five orders of magnitude
the expansion rate we see a decrease in the bound onfb /Tb

by about 0.4, or approximately 0.08 per order of magnitu
increase in the expansion rate.

The usual starting point for analysis of most extensions
the standard model departs from the sphaleron bound g
as a lower bound on the ratio of the sphaleron energy or
appropriate VEV to the temperature, and then converts
to a bound on the parameters of the model. We have no
that such a procedure should be considered more careful
there can in fact be significant model dependence in
bounds on these quantities. We have derived neverthe
how such bounds are changed as a function of the expan
rate of the Universe, and the approximate form~29! is essen-
tially model independent. Using this formula one can the
fore turn the usual sphaleron bound for any given model i
a lower bound on the expansion rate as a function of mo
parameters, provided one has the correct form of the bou
on fb /Tb ~or Esph

b /Tb) in the radiation dominated case: Fo
each set of parameter values one calculates the value o
given ratio, and then solves using~29! for the expansion rate
which reduces~or increases! the radiation dominated value t
the calculated critical value.

However, the most direct way to calculate the sphale
bound as a lower bound on the expansion rate is simply
evaluate the integral~23! directly to findHsph for each value
of the parameters in the theory. We have done this for
MSM using the same parameter values and effective po
tial as above, and for the temperaturesTb5Tc ,Tnucl,T0. The
result is shown in Fig. 2~c!, where the sphaleron bound
given as a plot of the minimum expansion rate required a
function of the Higgs massmH . The dependence on th
temperature seen in the figure is greater than in the boun
f/T, since it also enters in relatingmH to f/T, as shown in
Fig. 2~d!. Figure 2~c! shows dramatically how badly th
usual sphaleron bound is violated in the MSM.5 For no
physical Higgs mass is the minimum required expansion
within orders of magnitude of that in a radiation dominat
universe. The discrepancy of this result with the early spha
ron bounds calculated for the MSM@19# is explained by the
much larger~now physical! top quark massmt5175 GeV
used here. For smallmH one can see from~8! that the one-
loop thermal contribution from the top quark dominateslT ,
and therefore, from~25!, thatf/T stops increasing and level
off as seen in Fig. 2~d!. The increase in the minimum expan
sion rate seen in Fig. 2~c! asmH decreases below this valu
comes simply from the dependence onmH of the sphaleron
energy throughB ~which decreases, increasing the sphale
rate!.

In many extensions of the standard model it has b
shown that, in contrast to the MSM, there are physica
allowed regions of the parameter space where the u
sphaleron bound is satisfied. The way of stating the sph

5Studies of the two loop effective potential and lattice stud
show that the one-loop ring improved effective potential we
using underestimate the strength of the phase transition, but
enough to significantly alter the conclusions drawn here.
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ron bound we have illustrated for the MSM can be eas
generalized to any such model. Besides being, as we arg
this paper, a more correct way to state the sphaleron bo
~given that the expansion rate really is an unconstrained
rameter!, our discussion also shows that it is an instruct
way to state it, because it quantifies how well or badly
bound is satisfied or violated. If we state the sphaleron bo
in this way, it is easy to determine the effect on the cal
lated bounds in any change to input parameters~e.g. to any
of the pre-factors in the sphaleron rate!.

Having discussed how the sphaleron bound should be
stated as a lower bound on the expansion rate, let us
finally what electroweak baryogenesis at a first order ph
transition can potentially tell us about the expansion rate
that epoch.A priori we do not know what it is and can us
baryogenesis as a probe. If the correct electroweak the
turns out to be one in which there is a first order pha
transition which successfully produces exactly the rig
amount of baryons during the phase transition, we wo
have compelling evidence that the expansion rate is gre
than the corresponding critical valueHsph. But it can tell us
no more. If the model satisfies the ‘‘old’’ sphaleron bou
with the assumption of radiation domination, but h
Hsph,H rad ~as it typically will!, the success of the mode
provides no evidence that the Universe expands atH rad. It
could even potentially expand orders of magnitude slow
than H rad. We will now see that in contrast electrowea
baryogenesis in a homogeneous universe provides a m
more sensitive probe of the expansion rate at that scale.

IV. BARYOGENESIS IN A HOMOGENEOUS UNIVERSE

Analysis using the effective potential constructed in p
turbation theory indicates a first order phase transition bu
only of validity for Higgs masses up to about 60 GeV. R
cent non-perturbative results@24# indicate that for heavier
Higgs masses the line of first order phase transitions end
a second order phase transition at about 80 GeV in the m
mal standard model. For larger masses the transition is
analytic cross-over, i.e., there is actually no phase transi
since all physical quantities vary continuously~and differen-
tiably! as a function of temperature. This sort of behavior
typical of a system in which there is no order parame
which can define the symmetry state of the system—
gauge symmetry is never strictly speaking broken or unb
ken.

The only departure from equilibrium in this case is th
caused directly by the expansion of the Universe. All phy
cal quantities vary on a time scale characterized by the c
ing rate;H. Unlike the case of bubble nucleation there is
separation between the mechanism by which the baryons
created and the part of the calculation involving the exp
sion rate directly, a separation which allowed us to take
created asymmetry simply as an input without specify
how it was created. Here we must make use of a partic
model in order to answer the question of how the bary
asymmetry depends on the expansion rate.

Most work on mechanisms for electroweak baryogene
has considered extensions of the standard model with an
ditional source ofCP violation beyond the KM matrix. On
bubble walls formed at a first order phase transition theCP
y
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violation produces in various ways a term biasing the anom
lous sphaleron processes, causing the creation of baryon
or around the wall. These source terms, which are pre
when there is space or time dependence of the conden
fields, can equally be used to bias the anomalous proce
and produce baryons when the phase transition is not
order. In the case of a second-order or cross-over trans
we expect the evolution to be homogeneous with time
pendence only of the condensate fields, and we will mo
the problem this way. In fact the validity of the analysis
broader than just the regime where the phase transition is
first order. It also describes well the period after the comp
tion of a first order phase transition. In particular, as we w
discuss below, it describes the case where the phase tr
tion is too weakly first order to satisfy the sphaleron boun

We will now consider separately two types of sour
terms for baryogenesis discussed in the literature.

A. Potentials for baryon number

The first apparently viable mechanisms for electrowe
baryogenesis, discussed in@25# and @26#, considered poten-
tials for baryon number. The models differ in their particul
realizations of this potential. In various theories—two do
blet extensions of the minimal standard model@25# and su-
persymmetric theories with or without an additional sing
@26#—there areCP odd terms in the effective action for th
gauge-Higgs sector, of the form (g2/16p2)xFF̃ , where F

and F̃ are the SU~2! field strength tensor and its dual,x is
some field or combination of fields which acquire VEVs
the phase transition, times a numerical factor~typically a
suppression!. When these terms are integrated by parts a
the anomaly equation (g2/16p2)FF̃5]m j B

m is used, in the
homogeneous case~with time dependence only! they pro-
duce terms calculationally equivalent to a chemical poten
for baryon numberẋB. Specifically in two doublet models
there are terms with@25#

ẋB52
7z3

4 S mt

pTD 2 2

v1
2

i „F1
†D0F12~D0F1!†F1…

'7z3S mt

pTD 2 v2
2

v1
21v1

2
u̇, z3.1.202, ~30!

whereu is the relative phase between the two doublets, w
VEVs of magnitudev1 andv2 ~where the former couples to
the top quarks!. In theories withCP violation characterized
by some scaleM @26# the equivalent quantityẋB is

1

3M2
]0ufu2,

1

3M
]0s, ~31!

where the first case is a theory with doublets only, the sec
one with a singlets.

Up to higher derivative corrections to the VEVs the sy
tem in this background tries to thermalize to the equilibriu
in the presence of this extra term, in which the baryon nu
ber is given by the expression in~17!, with mB50 andH
including the additional term due to the background.



ib-
ry
i

tin

al

dd
e
Th
in
vio

tti
im
te
bb
tw

a

s
re
o

e

ro
gh

e
rg
a
th

s
at

th

m
c

f
ili
e
d

e

ely
to
tion
out.
he
B
en-

for

rn
of

n
-

nd

in
s to

ula

-
g cor-

wo

6032 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
It is perhaps instructive to note exactly why an equil
rium calculation of this sort can give a baryon asymmet
The Sakharov requirement of a departure from equilibrium
sometimes shown using this type of expression by ac
with Q5CPT on baryon number as follows

^B&5Tr@QBQ†Qe2bHQ†#52^B& ~32!

and thereforê B&50. The same will hold true if we allow
non-zero chemical potentials for charges which areCP even
and, of course, it will not hold if we impose a chemic
potential forCP odd charges likeB or B2L. In the case we
are considering the reason it does not hold is that the a
tional effective term inH is not CPT invariant, as the tim
varying condensate field violates CPT spontaneously.
underlying Hamiltonian is of course CPT invariant, but
the expanding Universe this symmetry is spontaneously
lated.

The constraints which are to be imposed are those se
all the charges which are conserved over the relevant t
scale to zero. Compared to the case of the same source
used to generate a biasing of baryon number on the bu
walls during a first order phase transition, there are thus
important differences:

~i! The ‘‘relevant time scale’’ on the bubble wall~of
thicknessL moving with velocity vw) is the wall passage
time L/vw , typically ;102/T. Here it is that characterizing
the time rate of change of the field; in the homogeneous c
this will be ;H21. Thus the numerous processes~e.g.,
chirality flipping processes of the lighter quarks and lepton!,
which are effectively inoperative on the bubble wall, a
equilibrated in the present case. The set of relevant c
served charges is therefore much smaller~and the calculation
therefore simpler!. For a radiation dominated universe th
only conserved charges at the electroweak scale are the
actly conserved charges—hyperchargeY, electric chargeQ,
and 1

3 B2Li (Li the lepton number in generationi ). The
charge which is violated slowest is right-handed elect
numbereR , since it is coupled to other species only throu
its small Yukawa couplingye , by processes with rate
;ye

2T;10212T ~times a number of order 0.120.01; see
@27#, @28#!. Thus forH.10212T we will also need to addeR
as a conserved charge, forH.1028T both eR andmR , etc.

~ii ! On a bubble wall the constraints forcing the conserv
charges to zero are appropriate only when negligible cha
can be transported onto the wall over the relevant time sc
~The charges are conserved only globally, not locally on
bubble wall unless this is true@29#.! This places a condition
on the thickness of the wallL.D/vw for the applicability of
this simple form of the calculation. This condition follow
from the requirement that the wall passage time be gre
than the diffusion time (L/vw.D/vw

2 ), in order for transport
to be inefficient. In the present case the Universe is~as-
sumed! homogeneous and the global constraints forcing
charges equal to zero are always appropriate.

Because the electroweak phase transition is not a sym
try breaking phase transition, we cannot define an exact
terion for whether the ‘‘broken’’ or ‘‘unbroken’’ basis o
particle states presents the correct description in the equ
rium calculation. A correct calculation would assume neith
basis. A simple example of such a calculation has been
.
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cussed recently in@30# and a cross-over from one limit to th
other explicitly shown to occur atmW;mD ~the vacuum
mass and Debye mass of the gauge bosons respectiv!.
Converting this to a constraint on the ratio of the VEV
temperature, it turns out that the symmetric phase calcula
is a better approximation when the sphaleron freezes
Thus we will calculate here in this approximation, using t
‘‘unbroken’’ phase classification of the states. In Sec. IV
we will also see that either basis of states gives almost id
tical results.

We take the case wheneR50 as this will turn out to be
appropriate in the regime of expansion rates of interest
the generation of the observed BAU.6 However, the numeri-
cal difference induced by this additional constraint will tu
out to be insignificant. Expressing the charges in terms
particles densitiesna , and using the linear approximatio
na5(T2/12)kama , wherema is given in terms of the chemi
cal potentialsmA for the chargesQA by ma5qa

AmA ~where
qa

A is theQA charge of the speciesa) andka is a statistical
factor which is equal to 1~2! for fermions ~bosons! in the
massless approximation,7 we find

Y5
T2

6 F ~101n!mY12mB1
8

3
S jm j2meRG

1

3
B2Li5

T2

6 F8

3
mY1

4

3
mB1S j S 4

9
13d i j Dm j2d1imeRG

eR5
T2

6
@2mY2m11meR

# ~33!

B5
T2

6 F2mY14mB1
4

3
S jm j G ~34!

wherem i is the chemical potential forB2Li , andn is the
number of Higgs doublets.

Setting the first three charges equal to zero8 we find

B05cnT2mB , cn5
1

6

36~2916n!

399182n
. ~35!

Note that cn5B0 /(T2mB) is almost insensitive ton, the
number of Higgs doublets, varying only between 0.436 a

6We will neglect the potentially interesting effect discussed
@31#. Incorporating it could lead in certain cases to minor change
the final baryon asymmetry.

7Including the lowest order mass correction to this simple form
results in na5(T2/6)ma„12(3/2)(ma /pT)2

… for fermions, and
na5(T2/3)ma„12(3/2)(ma /pT)… for bosons. In this paper we ig
nore these mass corrections since they appear as a subleadin
rection to the result presented in the text.

8In the ‘‘unbroken’’ phase one can choose to constrain any t
linear combinations of hyperchargeY and isospinT3. The choice of
Y and T3 is simple, becauseT3 is then proportional to its own
chemical potential andT350 is trivial.
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0.439, asn changes from 0 tò .9 Taking the source term to
be as given in~30! or ~31!, we setmB5ẋB in ~35! to obtain
the baryon asymmetry in the ‘‘equilibrium’’ to which th
baryon number violating processes will try to bring t
plasma in the slowly varying background. To calculate
rate at which these slow processes bring the system to
state, we impose a chemical potentialmB on baryon number
and include the source term. The baryon numberB in this
state is then given by~35! with the replacementmB→mB

1ẋB , and therefore

mB5cn
21S B

T2
2cnẋBD . ~36!

Using ~17! this gives the rate at whichB approaches its
‘‘equilibrium’’ as

Ḃ52anGsph~B2cnẋBT2!, Gsph56NF
2 Ḡsph

T3
, an5

1

6cn
,

~37!

wherean50.382→0.380 asn50→` and Ḡsph is given in
~19!.

Before calculating the final baryon asymmetry we co
sider another treatment of induced source terms for ba
genesis in a time dependent background.

B. Potential for hypercharge

A different treatment of the biasing of baryon number w
given in @32#.10 In the broken phase of a two Higgs doubl
model the relative phaseu of the neutral components of th
Higgs fields enters in the fermionic mass terms. A hyp
charge rotation of the fields to remove this phase from
mass term producesat tree levela real mass term and a
additional term in the Lagrangian which, in the homog
neous case can be written simply asẋYY, whereY is the
hypercharge operator,11 and

9If we had not assumed the right-handed electron to be in equ
rium, the change would be small. In this casecn50.455→0.462, as
n50→`.

10The account given here is not precisely that of the original v
sion of the idea given in@32#, which treated a potential forfermi-
onic hypercharge. It was pointed out in@33# that the rotation should
also be performed on the Higgs fields, giving a potential for to
hypercharge which in the unbroken limit~VEVs →0) is pure
gauge, and therefore can have no physical effect. The lea
baryon production is in this case mass-squared suppressed.
discussion of this point, see also Sec. III of@34#.

11We follow the convention used in@32#. There is nothing specia
about the choice of hypercharge. The essential element is that
an anomaly free charge which is spontaneously broken by the m
term. A rotation proportional to isospin, for example, or any cha
which is a linear combination of hypercharge and a charge exa
conserved in the broken phase is equally good. It is not difficul
check that the extra induced ‘‘source’’ term always drops out in
calculations given below.
e
is

-
o-

s

-
e

-

ẋY52
2v2

2

v1
21v2

2
u̇. ~38!

In the unbroken phase this is just a gauge term, but in
broken phase it can have physical significance because
percharge is not conserved, being violated by VEV su
pressed terms.

Again, as discussed in Sec. IV A, we can calculate eit
in the broken phase or unbroken phase, but the latter is p
ably more appropriate for the temperature range of
evance. In this case of course we must include the inform
tion about hypercharge violating processes to get a non-
answer, so calculating in the unbroken phase means ta
the basis of chiral states of the unbroken phase and trea
the mass terms as interaction vertices which can violate
percharge by flipping chirality. The correct constraint calc
lation is therefore one in which we take the same glo
conserved charges as in the previous calculation, but ins
of the constraint on hypercharge, we must impose the c
straint on the~conserved! electric chargeQ, and we get

Q5
T2

6 F ~101n!mY12~101n!mQ12mB

1
8

3
S jm j2meRG ,

1

3
B2Li5

T2

6 F8

3
mY1

8

3
mQ

1
4

3
mB1S j S 4

9
13d i j Dm j2d1imeRG ,

eR5
T2

6
@2mY2mQ2m11meR

#,

B5
T2

6 F2mY12mQ14mB1
4

3
S jm j G . ~39!

The ‘‘chemical potential’’mY for hypercharge here is th
effective one which arises from the source term for hyp
charge, i.e.,mY52ẋY . Setting the conserved charges
zero in ~39! we can solve forB to find

B5
T2

6 S 24~101n!

12191164n
ẋY1

36~89112n!

12191164n
mBD . ~40!

Using ~18! we obtain the equation describing the relaxati
of baryon number to the ‘‘equilibrium’’ in presence of th
hypercharge source term:

Ḃ52an8Gsph~B2cn8ẋYT2!,

Gsph56NF
2 Ḡsph

T3
, an85

12191164n

36~89112n!
,

cn85
24~101n!

6~12191164n!
. ~41!
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Note thatcn850.033→0.024, andan850.3805→0.3796 for
n50→`. The rate of relaxation is essentially independe
of the number of doublets, and it is almost identical to t
rate in the presence of a potential for baryon number in S
IV A.

It is noteworthy that the coefficientcn8 is significantly
smaller than the corresponding coefficient in the case o
potential for baryon number (cn /cn8.13218 asn50→`).
It follows therefore that, even though the baryon numb
source~30! is suppressed by a factor of mass over tempe
ture squared relative to that in~38!, the former may give the
dominant source term for baryogenesis. The reason for th
a suppression due to strong sphaleron processes in the
of a hypercharge source term@35#. In the massless quar
approximation these force the densities of right and le
handed baryons equal, i.e.,BL5BR . On the other hand, it is
easy to show that, with source terms for a charge such
hypercharge which is conserved in baryon number violat
processes,Ḃ}(3BL1LL). With B2L50 this implies

Ḃ}( 5
2 B2LR) ~where LR is the density of all right-handed

leptons!. Therefore, settingLR50 would lead to an equilib-
rium with B50, i.e., a vanishing source term for baryo
number. The non-zero result we have obtained is there
proportional to the charge in the right-handed leptons, wh
gives a small statistical factor related to the fraction of
total number of degrees of freedom they represent.

When the VEVs approach zero, the result in~41! does
indeed vanish, but not explicitly. In this limit the rate of th
‘‘hypercharge violating’’ processes goes to zero, so
‘‘equilibrium’’ calculation is no longer appropriate as it i
only valid on a time scale longer than one which diverges
one sends the VEVs to zero. It is not difficult to check th
one does indeed get zero for the baryon number in the p
ence of this source term when we impose the extra const
appropriate in this limit.12

C. The baryon asymmetry

Equations~37! and ~41! have the same form for bot
source terms, and so we can analyze them together. Inte
ing ~37! gives the baryon asymmetry as a function of time

B~ t !52E
t8

t E
t i

t

dt8cnẋ~ t8!T2~ t8!

3
d

dt8
expF2E

t8

t

dt9anGsph~ t9!G
.@cnẋT2# freeze, ~42!

wheret i is an initial time chosen before the phase transit
or cross-over takes place such that the source term ma
taken to be zero. This expression is simply the source t

12Choosing to impose the conservation onT3 with chemical po-
tentialmT3

, we getT35(T2/6) (101n)(mT3
1mQ) andQ also picks

up the extra term (101n)mT3
. Imposing T350 leaves only the

linear combinationu̇1mQ in the other equations. The solution
the trivial unperturbed equilibrium.
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integrated against the appropriate Green’s function. T
freeze-out time~temperature! t f(Tf) is that at which the in-
tegral in the exponent is equal to one, i.e.,

E
t f

t

dt9anGsph~ t9![1. ~43!

The approximation in~42! follows since we would expec
that the time scale characterizing the variation inẋ should be
of the same order as that characterizing the change inf/T.
However, as discussed in Sec. III B, there is an exponen
dependence in the sphaleron rate onf/T with a large pre-
factor (;1/aw). This means that the derivative inside th
integral in~42! can be approximated by a delta function att f

down to a time scale much shorter than that over whichẋ
varies, and the result follows. The sphaleron rateGsph enters
only in determining the freeze-out value for the sour

@cnẋT2# freeze. Optimally, the sphaleron processes switch
when the source is at its maximum, leading to an estimat
the maximum production of baryons at a second order ph
transition or cross-over:Bmax.@cnẋT2#max. To a very good
approximation the final baryon to entropy ratio is

B

s
52

45cn

2p2g*
S H

T D
freeze

S T
dx

dTD
freeze

, ~44!

using the fact thatdx/dt52HTdx/dT and that the entropy
densitys5(2p2/45)g* T3 (g* the number of relativistic de-
grees of freedom!. The subscript denotes that all these qua
tities are to be evaluated at the sphaleron ‘‘freeze-out.’’

In the case of baryon production in a homogeneous U
verse with source terms of this type the final baryon asy
metry is therefore proportional to the expansion rate
freeze-out. This contrasts completely with the case of bar
genesis at a first order transition, for which the baryon asy
metry can be effectively the same for an expansion rate
fering by many orders of magnitude.

We can invert~44! to get the range of expansion rate
consistent with the baryon to entropy required
nucleosynthesis13

S H

T D
freeze

.~2212!310211g*
0.44

cn

1

u~Tdx/dT! freezeu
.

~45!

How big is (Tdx/dT) freeze in any given theory? A full
treatment of the phase transition in any of the models m
tioned would be required to actually calculate this, a ta
however considerably beyond the methods used to dat

13This range corresponds to the conservative bounds from d
observations of element abundances given in@36#. Tighter bounds,
corresponding roughly to the range (329)310211 in ~45!, are
given in @37# and @38#.
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the study of the phase transition.14 A naiveguess would be

T
dx

dT
;

df

dT
e;e ~46!

taking the field x to trace the VEV~or combination of
VEVs!, which is itself then assumed to evolve roughly
proportion to the temperature~i.e., on a time scale given b
the expansion rate!. The parametere is one characterizing
CP violation, which we might expect to be constrained
CP violation phenomenology of the relevant model.

A full calculation of any given model at finite temperatu
would be required to turn the bound~45! into a precise one
on the expansion rate alone. However, short of such a ca
lation, we can do better than the very naive estimate given
~46!.

~i! In Sec. III B we examined the minimal standard mod
and saw that, near the critical temperature, the VEVf is a
very sensitive function of the temperature, wi
Td(f/T)/dT'df/dT;(100230) in the range of tempera
turesTc to T0, and about 60 at the nucleation temperatu
Typically the sphaleron will freeze-out in this range of tem
peratures, as the sphaleron rate changes by many orde
magnitude. The same sort of behavior can be seen to
tinue at larger Higgs masses in the non-perturbative tr
ment of the phase transition, in the case when the ph
transition is a ‘‘sharp—but regular—cross-over’’@24#. This
means that the range of temperatures over which phys
measurables like the susceptibility vary is a small fraction
the temperature at which the change occurs.~It is, of course,
this ‘‘sharpness’’ which allows one still to talk about a pha
transition when, strictly speaking, there is none.! From the
data in@24# we see that there is a range of temperature o
few GeV which compares with a ‘‘transition temperature
anywhere between 60 and 200 GeV. Thus the stand
model estimate ofdf/dT;60 seems reasonable, muc
larger than our naive estimate in~46!.

~ii ! We can also learn something about the constraints
e by looking at the effective potential for a particular cas
Consider a two Higgs doublet model. One interesting reg
is that in which the evolution of theCP violating angle is
determined dominantly by terms which breakCP spontane-
ously. In a CP invariant Higgs potential@39# only the terms

l5@~f1
†f2!21H.c.#

~l6f1
†f11l7f2

†f2!~f1
†f21H.c.! ~47!

are functions of the relative angle of the two VEVs. Taki
the real parts of the VEVs to be determined by the rest of
potential @i.e., working in the approximation that the term
~47! are small# this gives a quadratic potential for the cosi
of the relative phase, which~taking l52l7 positive!, is
minimized at

14Perturbative methods apply when the phase transition is fa
strongly first order. The methods which have been employed
describe the opposite regime do not include the evolution of theCP
odd fields relevant here.
u-
y
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.
e

e

cosu52minS 1,
l6

4l5

v1

v2
1

l7

4l5

v2

v1
D . ~48!

There are two (CP conjugate! solutions which will be split
by additional explicitCP violation. How the angle change
as the VEVs do depends on the values of the ratios of
couplings l6 /l5 and l7 /l5. A necessary condition for
du/dTÞ0 at the phase transition is cosuÞ21, which is the
case whenl7/2l5,v1 /v2,2l5 /l6. For couplings such
that the first term in~48! dominates, andv1 changing faster
thanv2 as a function of temperature, we have

T
du

dT
'2

1

tan u

T

v1

dv1

dT
, for

v1

v2
.S l7

l6
D 1/2

,

d ln v1

d ln T
.

d ln v2

d lnT
. ~49!

Typically we haveTdu/dT'dv1 /dT, but there are also
parts of parameter space~near cosu521) where the phase
can change much faster than this. The only role of the
plicit CP violation here is to split the two degenerate minim
so that the same sign is chosen everywhere. This illustr
that the constraint on the parameter which we callede from
CP violating phenomena at zero temperature may be
tremely weak. With a moderate fine tuning it can be cons
erably larger than one, and not related directly to any sm
parameter associated with the smallness ofCP violation. In
fact in theories such as the minimal supersymmetric stand
model ~MSSM! it is naturally the case that the terms whic
breakCP spontaneously~which are induced in the plasm
through thermal corrections! are dominant over the term
which breakCP explicitly ~which are suppressed by a loo
factor! @40#. We conclude, on the basis of a simple analy
of the two Higgs doublet model, that the naive estimate~46!
for T(dx/dT) with e;1 is too small by about two orders o
magnitude. A result of this magnitude is obtained for a lar
portion of the parameter space, without any tuning. With
moderate fine tuning, the effectiveCP violation can be fur-
ther enhanced. To make a more precise statement would
quire a detailed analysis of the Higgs sector of the particu
model.

V. NON-STANDARD COSMOLOGIES

Having established quantitatively the dependence of
baryon asymmetry on the expansion rate in two possible
narios for baryon production at the electroweak scale,
now turn to the discussion of physical mechanisms wh
could lead to such a different expansion rate at the e
troweak scale.

As mentioned in the introduction this kind of question h
previously been treated in the context of calculations of re
densities of weakly interacting particles in@3# and @4#. The
relic density of a weakly interacting species is determined
the temperature at which the species decouples from the
dinary ~visible! matter, which depends, just as in the case
the sphaleron decoupling discussed above, on a compa
between the appropriate interaction rate and the expan
rate of the Universe. In typical models this decoupling o
curs before nucleosynthesis, and therefore one is led to

ly
to
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6036 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
sider, just as we are doing here, possible alternatives to
diation domination at that epoch. The alternative which
considered exclusively in@3# and in most detail in@4# is:

~i! An anisotropic universe: A universe which is homog
neous but not isotropic is described by a metric with th
scale factors, one for each spatial dimension. With an a
batic approximation~i.e., expansion slow enough to allo
thermalization! it is the effective volume expansion rateH̄
associated with an average scale factorā which determines
how the temperature changes in the same way as in the
tropic FRW spacetime. The equation of motion forH̄ is just
that of the FRW space, but with an additional term which
equivalent to a component of the energy density scaling
1/ā6.

A further possibility considered in@4# is
~ii ! Non-standard theories of gravity. The case studied

@4# is a Brans-Dicke theory, which again turns out to effe
tively produce an extra component in the energy den
scaling as 1/a6. There are also of course many other varia
on standard Einstein gravity which can be considered.

The simple possibility we will concentrate on is:
~iii ! Einstein gravity with isotropy and homogeneity, b

with an extra contribution to the energy density which
important prior to nucleosynthesis. As noted by one of
~M.J.! in @5# any mode of a scalar field dominated by
kinetic energy has the required property, as its energy d
sity can scale as fast as 1/a6. The electroweak phase trans
tion could potentially occur during a phase of the Unive
dominated by the kinetic energy of a scalar field, term
kination in @5#, which can end before nucleosynthesis as
kinetic energy density red-shifts away relative to the rad
tion. Below we will discuss several ways in which such
phase can come about within the context of inflationary c
mology, which explains the assumed isotropy and homo
neity. In particular we will discuss models which come na
rally out of an alternative to the usual theory of reheat
discussed by Spokoiny in@1#.

A clear motivation for considering such models follow
from the calculations in the previous section. If we have su
a component scaling as 1/a6, the expansion rate is given b

H25S ȧ

a
D 2

5
8pG

3

re

2 F S ae

a D 6

1 f ~a!S ae

a D 4G , ~50!

whereae is the scale factor when the density in the mo
becomes equal to that in radiation andre is the total energy
density at that time. The factorf (a) accounts for the effec
of decouplings, and, assuming adiabatic decouplin
f (a)5@g(ae)/g(a)#1/3, whereg(a) is the number of relativ-
istic degrees of freedom as a function of the scale factoa.
Nucleosynthesis constraints place a lower bound onTe , the
temperature at the time of equality of radiation-kinetic e
ergy density, which can be inferred from the correspond
bounds on additional relativistic particle degrees of freedo
This is the case since the predominant effect of such e
degrees of freedom is also in the change they cause to
expansion rate at the beginning of nucleosynthesis, wh
determines the crucial ratio of neutrons to protons when
weak interactions drop out of equilibrium at;1 MeV. We
take here the conservative bounds of@36#, which allow the
a-
s
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equivalent of 1.5 extra Dirac neutrino degrees of freed
over the three degrees of freedom of the standard model,
we allow an additional energy density at 1 MeV which
3(7/8)/10.75'0.25 of the standard model one~with 10.75
degrees of freedom!. From ~50! this means

1

Af ~ans!

ae

ans
<0.5. ~51!

Using Ta5 f (a)Teae this gives the upper bound on the e
pansion rate at the electroweak scale

H

T
<1.8310211S Tfreeze

100 GeVD
2

. ~52!

The result differs only byA3/2 if we take the less conserva
tive nucleosynthesis bound of@37# and @38#.

TakingHmax to be the expansion rate corresponding to
upper bound~52!, the requirement~45! for generation of the
observed BAU at the electroweak scale in a homogene
Universe can be expressed as a requirement of the rele
CP violating parameter

UT dx

dTU
freeze

'~126!g* S 100 GeV

Tfreeze
D 2S Hmax~100 GeV!

H~100 GeV! D .

~53!

Absorbing the nucleosynthesis limit, i.e., takingH5Hmax we
have the strict lower bound15

UT dx

dTU
freeze

>g* S 100 GeV

Tfreeze
D 2

. ~54!

From the analysis in Sec. IV C it follows that this boun
may indeed be satisfied in extensions of the MSM such
those we have discussed, without any fine tuning. If the
per bound~52! on the expansion rate is not saturated, theCP
violation parameter is required to be larger as given by~53!.
As discussed in Sec. IV C, with some fine-tuning of para
eters in the potential, this parameter can indeed be enha
to considerably greater than the typical value which just s
isfies the lower bound~54!. An exact statement of how larg
it can be would require a detailed examination of the mo
in question.

The important result is that in a cosmology with an ad
tional component scaling as 1/a6 which dominates prior to
nucleosynthesis, the creation of the baryon asymmetry
possible~i.e., consistent with all observations! at the elec-
troweak scale in a homogeneous expanding Universe.
fact that generation of the BAU in this case has genera
been dismissed as impossible provides clear motivation
the consideration of such cosmologies in greater detail. C
tainly also as experiment pushes the bounds on scalar
ticles upwards, the usual sphaleron bound for generatio

15Note that taking the upper bound on the expansion rate in~52!
corresponds to absorbing the upper bound on effective numbe
degrees of freedom at nucleosynthesis, which is only consis
with the lowest baryon to entropy ratio~increasing the expansion
rate increases the fraction of helium!.
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the BAU is becoming increasingly severe and alternat
mechanisms for the production of the BAU within the co
text of electroweak cosmology become more relevant.

A. Kination

Consider the dynamics of a real scalar fieldf with poten-
tial V(f). Varying the action

S5E d4xA2g F1

2
gmn~]mf!†~]nf!2V~f!G ~55!

and taking the FRW metricds25dt22a(t)2dxW2 with scale
factor a(t), gives the equation of motion for the homog
neous modes which, after multiplication byḟ, can be written
as follows

d

dt F1

2
ḟ21V~f!G13Hḟ250. ~56!

Defining z(t)5V(f)/r(f), where r(t)5ḟ2/21V(f), we
find

r~ t !5r~ to!exp2E
to

t

6@12z~ t !#H~ t !dt

5r~ to!exp2E
ao

a

6@12z~a!#
da

a
. ~57!

When the kinetic energy dominates,z→0 and

r}
1

a6
. ~58!

If a potential possesses a flat direction, for example, the
ergy in the associated coherent goldstone mode scales in
way. In this case the scaling can be seen to follow direc
from the conservation of the Noether current associated w
the symmetry. Consider for example a complex scalarF
with a potential invariant under the global symmet
F→eiuF

l~F†F2v2!2. ~59!

The modeF5ve2 iu with u̇5const is a solution of the
equations of motion for which the conserved Noether cha
is

j o[ru5a3iF†]JoF52a3v2u̇. ~60!

Thus u̇}1/a3 andr5v2u̇2/2}1/a6.
Such kinetic energy dominated modes represent the o

site limit to inflation@41# which is driven by potential energ
so thatz→1 andr(t)'r(to). Indeed for any homogeneou
mode@assuming only thatV(f) is positive# we have that

r~ to!S ao

a D 6

<r~ t !<r~ to!, t>to . ~61!

Instead of superluminal expansion in inflation, a kinetic e
ergy dominated mode of a scalar potential drives a sublu
e

n-
his
y
th

e

o-

-
i-

nal expansion very similar to that of radiation (a}t1/2) or
matter (a}t2/3). Writing the stress energy tensor in terms
the pressurep and the energy densityr in the standard way,
the equation of state isp5r for the kinetic mode, in contras
to p5(1/3)r ~radiation!, p50 ~matter!, and p52r ~infla-
tion!.

We now consider various ways in which a phase of kin
tion could come about. Inflation is the standard paradi
which explains isotropy and homogeneity of the Universe
it appears today. A scalar field drives a period of inflati
and subsequently decays, filling the Universe with radiat
and matter. We will assume that a period of inflation pr
duces the isotropic and homogeneous Universe, but ask
it might come about that after inflation a reheated unive
would be dominated by a kinetic scalar mode.

Two questions can be separated:
How can a scalar field potential support a mode tha

kinetic energy dominated? This question is twofold. Fir
what shape must the potential have to keep the kinetic
ergy dominant? Second, what is required of the field in or
that energy does not leak out of the coherent mode?

How can kinetic modes come to dominate the energy d
sity, i.e., how can they be excited?

Let us start with thefirst question. The most trivial case o
potential energy domination is the example used above o
exactly flat potential. This case is not of interest here, si
the energy in such a mode is negligible at the end of in
tion, as it also red-shifts away as 1/a6 during inflation. Any
kinetic energy domination must therefore occur through
roll of a field in a potential after inflation. The dynamics of
homogeneous real scalar fieldf with potentialV(f) in an
expanding FRW universe are described by the equations

f̈13Hḟ1V8~f!5
1

a3

d

dt
~a3ḟ !1V8~f!50 ~62!

H25
1

3MP
2 F1

2
ḟ21V~f!1r r G

~63!

ṙ r14Hr r50 ~64!

where r r is the energy density in radiation, to which w
assume the scalar field to be coupled only through grav
This is a roll damped by the expansion of the Universe a
the first question is therefore: how steep must a potentia
in order that the roll be more effective in creating kine
energy than the damping is in attenuating it? A hint of t
solution is immediately given by considering again the triv
caseV(f)50, which gives the solution

ḟ~ t !5ḟoS ao

a D 3

5ḟoS to

t D , f~ t !5fo1ḟotoln
t

to
~65!

whenr r50. If, with this solution forf, the potential is such
that the terms which depend on it decrease faster than
other terms in the equations of motion, the kinetic ene
domination will continue once established. Given that t
time dependence is logarithmic, it is clear that an exponen
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6038 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
potential is what is required. That exponential potentials
fine what is steep enough for kination can be seen by tak
the explicit attractor solutions given in@42# for the potential
V(f)5Voe2lf

f~ t !5
2

l
ln t, a}t2/l2

, z512
l2

6
, l2,6, ~66!

and the origin off is redefined so thatVo52l22(6l22

21). ~For simplicity we tookMP51.! The context within
which @42# discussed this potential was ‘‘power-law infla
tion,’’ for which the superluminal expansion occurs wh
l,A2. From ~57! it follows that r}a2l2

so in the limit
l→A6 we recover the scaling of an exactly flat potenti
When l.A6 the pre-factor cannot be written in this wa
There is no single attractor solution, and the ratioz rather
than being fixed approaches zero asymptotically.

In this analysis we have assumed a simple roll dow
potential. Another possibility is that a field oscillates abou
minimum. It is easy to see from~57! the well-known result
that an oscillation in a quadratic potential gives an ene
scaling like matter}1/a3 since z can be replaced by its
averagê z&51/2 over a time scale of the expansion tim
The analysis for thefn potential is given in@43#. The result
is that an oscillating mode scales asa26n/(n12) and, corre-
spondingly, ^z&52/(n12), so that the kinetic energy be
comes more dominant asn increases.

We also require that, if such a mode is excited, the ene
remains in it, i.e., that it does not leak out by decay of
coherent mode into particle excitations of itself or oth
fields to which it is coupled. In the present context we wa
to maximize the effect of the mode and therefore need
energy to stay in the kinetic mode from before the el
troweak scale until shortly before nucleosynthesis. Poten
which support coherent modes which are so weakly coup
to other fields~or self-coupled in the case of massless fiel!
that they do not decay before nucleosynthesis are in
commonplace in particle physics—they are the source
problems like the Polonyi problem. In particular, exponen
potentials which arise in theories involving compactificatio
are typically extremely weakly coupled to other sectors. A
cordingly, these sectors are termed ‘‘hidden,’’ as they int
act with the ‘‘visible’’ matter only~or predominantly! gravi-
tationally. We will thus assume that perturbative decay
negligible. On the other hand non-perturbative decay mec
nisms like parametric resonance which have been much
cussed recently in the context of the problem of rehea
after inflation@47,54,53,52,51,48#, must be considered in th
case of oscillating modes of non-linear potentials. This i
possibility we will consider explicitly below, and the require
ment that such a mode survive until nucleosynthesis
place constraints on the potentials we consider.

The secondquestion above concerned how such a mo
would come to dominate over radiation. In the analysis j
given of a field rolling down a potential we setr r50, and
the solutions are therefore valid only ifrf@r r ~whererf is
the total energy in the scalar field!. What happens if
r r@rf? Can we end up rolling into the kinetic energy dom
nated mode withrf@r r if we are in an exponential with
such a mode? In a radiation dominated universea}t1/2

(H51/2t) so that the damping is stronger than in the kine
-
g

.
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energy dominated universe wherea}t1/3 (H51/3t). If the
scalar field is in a kinetic energy dominated mode, we fi
assuming radiation domination, that

ḟ~ t !5ḟoS ao

a D 3

5ḟoS to

t D 3/2

,

f~ t !5fo12ḟotoX12S to

t D 1/2C. ~67!

The result is that the exponential potential energy will
ways ‘‘catch up’’ with the kinetic energy and the field wi
be driven into a mode which scales much slower than ra
tion, until rf;r r . These quite different behaviors in the tw
limits rf@r r (rf}1/a6) andrf!r r (r;const) which tend
to drive the system from one regime to the other sugge
that there may be an attractor solution withrf;1/a4. That
such a solution exists and is an attractor has been note
@44# and@45#. It can in fact be generalized to the case that
non-scalar component scales asrm}1/am ~e.g., non-
relativistic matter withm53), and all components scale as
does with the ratios of their contributions given by

z512
m

6
,

rf

rf1rm
5

m

l2
. ~68!

In this case one need not assume that the pre-factor in
exponential can be written in the special form required
the solution~66! andl can take on any valuel.Am, which
is just the requirement that the attractor mode in~66! with
rm50 scale faster than 1/am.

The existence of this attractor means that if we start i
radiation dominated universe~or, more generally, in a uni-
verse dominated by energy scaling as 1/am) we will always
end up in this solution~68! rather than in the kinetic energ
dominated mode of the exponential. In order to realize ki
tion in this potential we must therefore satisfy the conditi
at the end of inflation, or some time after it, that the kine
energy dominate over the radiation. The dynamics of
simple exponential alone will not produce kination if w
have a radiation dominated universe after inflation. We w
examine two possibilities:~i! A non-standard theory of re
heating in which the radiation in the Universe is that crea
by the expansion of the background during inflation, a
radiation is naturally subdominant after inflation, and~ii !
standard reheating with a slightly different exponential p
tential which can first cool the radiation with a short infl
tionary phase and then roll into a kinetic mode.

We will concentrate on this first kind of model, because
it there must by construction be a phase of kination, and
our view it offers a very attractive~and unjustifiably ne-
glected! alternative to the standard re-heating scenario. W
sort of model would lead to this phase ending as late
nucleosynthesis will be the question which interests us in
specific context of electroweak cosmology.

In the oscillatory potential things are slightly differen
The scaling was predicated on the assumption that the
oscillated on a time scale short compared to the expan
time, but not on any assumption about the time depende
of the expansion rate~i.e., about which component dom
nates the energy density!. Thus if the Universe is radiation
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dominated when we enter the oscillatory mode of a poten
with n.4, it will always be radiation dominated since th
energy in the scalar field red-shifts away faster. To rea
kination in this potential we therefore require the radiation
be sub-dominant when the oscillatory phase begins. Jus
for the exponential potential we will discuss in this case h
this condition can be realized in two ways:~i! in the same
alternative standard theory of reheating after a period of
flation driven by the power-law potential itself, and~ii ! with
ordinary reheating by another field followed by a brief su
sequent period of inflation as the field with the power-la
potential rolls before it begins oscillating. Again most of o
attention will focus on the first case, in which a single field
both inflaton and ‘‘kinaton.’’

B. Reheating by kination

Reheating after inflation is required in order to match
‘‘cold empty’’ Universe left behind by inflation onto the ra
diation dominated one which must in the standard cosm
ogy be established by nucleosynthesis at the latest~and usu-
ally, it is assumed, at some temperature high enough
support some theory of baryogenesis!. In the standard theory
this is achieved by the decay of the inflaton into particles
an oscillatory phase after inflation, the zero entropy cohe
state producing the enormous entropy of the radiation do
nated universe. That there exists a simple alternative to
scenario has been pointed out by Spokoiny in@1#. The Uni-
verse isnot in fact in an exactly cold zero entropy state aft
inflation—besides the energy in the inflaton, there is so
energy in the particles created by the accelerated expan
The process which gives rise to the perturbations from
mogeneity required for structure formation on large sca
creates an energy density which is peaked at the scaleH,
whereH is the expansion rate during inflation, with ener
density drH5erH4, where the superscriptH denotes that
this energy density is dominated by the scalek;H, and
er.(p2g

*
e f f/30)/(2p)4 @55#, whereg

*
eff;102 is the effective

number of light ~massm,H) degrees of freedom.16 In a
typical inflationary model with energy densityr i, end at the
end of inflation

dr i, end
H

r i, end
.

er

3

H i, end
2

MP
2

.
er

9

r i, end

MP
4

, ~69!

which is very small since the energy scale associated w
inflation is typically required to be well belowMP, e.g., for
chaotic inflationary model in a potentiallf4, dr i, end

H /r i, end

;erl, while the requirement that one gets density pertur
tions of the correct magnitude~on COBE scalesdr/r;5
31025) gives l;10213. In the context of ordinary re-
heating this small fraction is irrelevant as it is swamped
the radiation created by inflaton decay. The possibility env
aged in@1# is one which is easy to see given the observati
of the preceding section on kination: If, instead of decayi
the inflaton rolls into a potential in which its energy dens

16This estimate assumes the same contribution from all parti
as from the scalar particles analyzed in@55#.
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scales as 1/as with s.4, the energy densitydrH will come
to dominate at some timetk, endafter inflation when the scale
factor has evolved toak, end from ai, end at the end of inflation
with

ak, end

ai, end
'S 9

er

M P
4

r i, end
D 1/~s24!

5S 3

er
D 1/~s24!S M P

H i, end
D 2/~s24!

,

~70!

whereak, end is the scale factor at the end of kination~during
which r}1/as), the phase which interpolates between infl
tion and radiation domination. The energy in the inflat
simply red-shifts away instead of decaying. As discussed
@1#, in order to accommodate nucleosynthesis there are
requirements which must be fulfilled:~i! the radiation must
thermalize at a temperature above 1 MeV and,~ii ! the tran-
sition to radiation dominance must occur sufficiently lo
before nucleosynthesis to satisfy the appropriate constra
at that time on the expansion rate. Takingkeff(a) to be the
typical energy of the created radiation as a function of sc
factor, we havekeff5H i, endai, end/a. Assuming that the domi-
nant form of this radiation is in standard model degrees
freedom, the interaction rate for processes coupling them
;a2keff ~for keff@MW anda;1/3021/50). Comparing this
to the expansion rate17 H'2/st'H i, end(ai, end/a)s/2 ~in kina-
tion!, we get an estimate for the thermalization temperat
Treheat

Treheat;H i , endS 30er

p2g* , i, end
D 1/4

a4/~s22! ~71!

whereg* , i , end is the number degrees of freedom which a
relativistic at k;Hi , end, and we have defineddr i, end

H

5g* , i , endp
2Ti , end

4 /30, and takenT}1/a.18 Assuming this
temperatureTreheatto be attained before the transition to r
diation dominance, it follows from~70! thatTk, end, the tem-
perature at the beginning of radiation domination, is giv
approximately by

Tk, end

M P
.S er

3 D 1/~s24!S 30er

p2g* , i , end
D 1/4S H i, end

M P
D ~s22!/~s24!

.

~72!

Requiring this to be above the nucleosynthesis temperatu
MeV places a lower bound onH i, end. For s56 we find that
H i, end.107 GeV, which corresponds toTreheat.106 GeV,
consistent with the assumption thatTreheat.Tk, end. For
s55 bothH i, end andTreheatare greater by a factor of;104.
In both cases a late transition to radiation dominance imp
that the energy scale at the end of inflation and thermal
tion scale are well below the GUT scale.

s

17A far from equilibrium system may in fact need many rescatt
ings ~i.e., Nscatt@1) to fully thermalize. Modifying the estimate in
~71! to incorporate this givesTreheatsmaller by a factorNscatt

22/(s22) .
18Here and below we neglect the effect of possible decoupli

betweenTreheatandTk, end, i.e., we assume the number of relativi
tic degrees of freedom to be fixed.
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6040 57MICHAEL JOYCE AND TOMISLAV PROKOPEC
In standard inflationary models the usual constraint
H i, end or the energy density at the end of inflation com
from the requirement that the amplitude of perturbations
that required for structure formation. In the models which
discuss below we will consider how this non-trivial co
straint is satisfied in this model of reheating~a question not
considered in@1#!, and in particular how it fits with the par
ticular type of realization of this model we are interested
where the transition to radiation domination does actua
occur close to nucleosynthesis with the potentially import
consequences for electroweak baryogenesis discussed i
first part of this paper.

C. Inflation-kination in an exponential potential

As discussed in Sec. V A, a simple exponential wh
gives rise to the kinetic energy dominated mode required
kination does not itself accommodate an inflationary so
tion. We need to have a potential which is flatter in so
region ~for inflation! and sufficiently steep~for kination! in
the part of the potential the field rolls into after inflation. A
example is an exponential;e2lf wherel varies as a func-
tion of f. As a simple case of this, which we can tre
analytically, we consider19

V~f!5Voe2lf,

where

l,A2 for f,f i,end

l[l8.2 for f.f i, end ~73!

where we setMP51. As discussed above, one solution to t
equations of motion for this potential is a power-law infl
tionary attractor~66! with f5 (1/l) ln@Vol

4t2/2(62l2)#,
anda}t2/l2

. We assume the field to evolve in this attractor
inflation from f!f i, end. When the field reachesf i, end in-
flation ends and after a transient period it will roll, fo
l8,A6, into the new attractor in the steeper potential.
l8>A6, there is no single attractor, but the field will ru
after a few expansion times into a solution in which t
kinetic energy is very dominant. In either case we will n
glect the details of the few expansion times in which t
transition occurs.

We calculate first the cosmological perturbations gen
ated in the usual way by the amplification of quantum flu
tuations during inflation. The amplitude of the perturbati
in a mode with comoving momentumk when it re-enters the
horizon after inflation at time 2X, is given by the usual for-
mula

dr

r
~k!'ed

H1X
2

ḟ1X

, ~74!

19We could of course consider any potential which accommod
inflation in some region and is asymptotically a sufficiently ste
exponential. Motivation for an exponential with varyingl is given
in @44#.
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where 1X denotes the time when the perturbationk exits the
horizon in inflation, anded53/5p.0.2 @41# is a constant.
The formula is valid provided the slow-roll approximatio
holds at this time, which in the case of the exponential p
tential corresponds tol!A2. The evolution of scales is il-
lustrated on Fig. 3, wherek5kphysicala is plotted versusHa
~both on the logarithmic scale!. Since the comoving scale i
fixed, it follows that

k[k1X5k2X ⇔ ~Ha!1X5~Ha!2X , ~75!

and therefore

~Ha!1X

~Ha! i, end

~Ha!k, beg

~Ha!k, end

~Ha!r, beg

~Ha!r, end

~Ha!m, beg

~Ha!2X
51, ~76!

where the indicesi , k, r , andm denoteinflation, kination,
radiation andmatter, respectively, and we have assumed th
(Ha) i, end5(Ha)k, beg, (Ha)k, end5(Ha)r, beg, (Ha)r, end
5(Ha)m, beg, and that the relevant perturbation enters t
horizon in the matter era. In writing~76! we assumed sharp
transitionsi→k→r→m. Within our approximation we keep
a continuous, but its derivative exhibits a jump (H52/l2t in
inflation matches ontoH52/l8 2t in kination!. With the at-
tractor solutions for~73! in ~74! we obtain

dr

r
~k!5ed

2

l3

1

t1X
. ~77!

Using ~76! and calculatingHa in each of the eras, we find
that

t1X

t i, end
5F S ai, end

ak, end
D (L8 222)/2S ak, end

a2X
D Gl2/~22l2!

,

L85min@A6,l8#, ~78!

where, for simplicity, we take 2X to be in the radiation era
The behavior of~77! is the usual one, with an overall ampl
tude set by the expansion rate at the end of inflation and,
sufficiently smalll ~required for consistency of our slow-ro
approximation!, a fairly flat spectrum of perturbations ove
the scales relevant to structure formation. Indeed, using
standard expression n'11@23(V8/V)212V9/V#MP

2 @46#,

s
p

FIG. 3. Evolution of scales in the inflation-kination model.
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57 6041TURNING AROUND THE SPHALERON BOUND: . . .
we obtain n'12l2. Assuming the reheating scenario of@1#
discussed in the previous section, we can express~77! in
terms of the radiation temperature at the end of kinati
Tk, end. Taking the radiation energy density at the inflatio
kination transition to ber i, end5erH i, end

4 , and using~70! and
~72! allows us to express the temperature and time at the
of inflation as follows

Ti, end
L82225S 270

p2g* , i , ender
D 1/2

Tk, end
L8 224,

H i, end5S p2g* , i , end

30er
D 1/2

Ti, end5
2

l2t i, end

, ~79!

so that

dr

r
~k2X!'

ed

l S 270

p2g* , i , ender
D ~1/4!@2/~L8 222!1l2/~22l2!#

3Tk, end
~L8 224!/~L8 222!T2X

2l2/~22l2! . ~80!

This is the desired expression for the amplitude of fluct
tions at the comoving scalek2X which re-enters the horizon
when the temperature isT2X .

This result depends on three unknown parameters—
temperature at the end of kinationTk, end, and the parameter
l andl8 in the potential. The COBE experiment provides
with a constraint on the amplitude@dr/r(k)'531025# and
the spectral index of density perturbations (0.7< n <1.3).
The extra constraints we impose are those required by
consideration of electroweak baryogenesis: The phase o
nation must persist well past the electroweak phase to h
an important effect on the expansion at that scale. For
ample, forTk, end5Tns, and T2X51 eV, we findl5A0.33
50.57 forl8>A6, andl5A0.1150.33 forl85A5. These
lead to the tilt in the power spectrum n'0.7 for l8>A6,
and n'0.9 for l85A5, which are consistent with the con
straint from COBE. Following the discussion in Sec. IV w
know that in order to create the observed BAU at a sec
order or cross-over electroweak phase transition we nee
have very close to 1/a6 scaling in kination, i.e.,l8>A6. This
requirement therefore leads in this model to a prediction
the spectral index n'0.7. Using~79! we can also compute
Ti, end;H i, end, t i, end, f i, end, etc. In particular, forl8>A6
we have Ti, end563107 GeV, and for l85A5 we have
Ti, end5231011 GeV ~independent ofl in inflation!.

What we have illustrated with this analysis is the obs
vational adequacy~and even potential predictivity! of a
model of this type. The ‘‘prediction’’ we derived here is o
course particular to a model we have invoked in its spec
form in an ad hoc way. It would be of interest to study
models which are derived in detail from a well motivat
particle physics model. We will limit ourselves here to o
qualitative comment on the sort of model which motivat
our choice~see@44#! in which the parameterl varies slowly
~logarithmically! as a function off. It is not difficult to see
that the constraint on the spectral index may be much we
when l interpolates between our limiting values: We we
constrained to increasel asL8 increased~to give 1/a6 scal-
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e

ur
i-

ve
x-

d
to

f

-

c

er

ing! to make the amplitude of perturbations sufficien
large. The effect of having an interpolating scaling betwe
that in inflation and 1/a6 scaling will be to increaseH i, end ~at
fixed Ti, end), which also increases the density perturbatio
allowing a spectral index closer to one.

D. Inflation-kination in a power-law potential

In this section we consider another one field model
which an inflation-kination-radiation domination cosmolog
can be realized. Again we assume the mechanism of reh
ing through particle creation in inflation discussed in S
V B. The potential we study is simply the non
renormalizable power-law potential

V~f!5
ln

n
M P

4 S f

M P
D n

~81!

where n.4 is an integer, which is taken to be even f
stability reasons. As discussed in Sec. V A this potential
an oscillatory solution in which the energy density in t
field scales asa26n/(n12), i.e., faster than radiation forn
.4. It also has, as we will discuss below, ‘‘slow-roll’’ in
flationary solutions which will precede such an oscillato
phase for appropriate initial conditions, just as in ‘‘chaotic
inflation in af4 potential. As mentioned in the introductio
potentials of this type have been studied in the context
inflation motivated byF andD flat directions of supergravity
theories~see, for example,@6,46#!. Lower order perturbative
terms are forbidden by a discrete symmetry imposed on
superpotential.

There are several important differences between the ex
nential we have considered in the previous section and
potential. There the potential was made up of two pieces,
with an inflationary attractor the other with a ‘‘kinationary
attractor. Here we also have solutions of the two types
different regions of the potential, but the cross-over from o
to the other is dynamically determined rather than an in
pendent input~i.e., specified byf i, end). Therefore onceln
andn are specified, the potential andTk, endanddr/r(k) are
completely determined.

The second difference between the two potentials is
in the power-law potential kination is associated with an
cillatory mode, which can decay non-perturbativelyvia para-
metric resonance@47#. Only if such decay occurs after th
transition to radiation domination, is the scenario we ha
envisaged possible. If it occurs a little earlier, but still suf
ciently close to nucleosynthesis that the reheat tempera
resultant from the decay of the field is below the electrowe
temperature, there will be some minor effect on the pred
tions of electroweak cosmology. We will not consider th
marginal case and simply require the stability of the osci
tory mode until after the transition to radiation dominatio
which we require below the electroweak scale in order
have an effect on electroweak cosmology. Later in this s
tion we will investigate in more detail the consequences
the resonant inflaton decay.

In analogy to our treatment of the exponential potentia
Sec. V C, we now determine how the potential~81! is con-
strained by the requirement thatf generates cosmologica
perturbations of the required magnitude for structure form
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tion, and that kination—driven by the oscillatory mode
ends in radiation domination~by the mechanism of@1#! be-
fore the temperatureTns at which nucleosynthesis occur
We will see that these two requirements cannot be simu
neously satisfied by a suitable choice of the two variable
the potentialln andn.

To determine the amplitude of the cosmological pertur
tions we follow exactly the analysis of the previous sectio
taking the perturbations to be given by~74!. Furthermore, we
will make use of~75! and ~76! to determineHa in inflation
and kination.

The equations of motion for the homogeneous mode
be written as

f̈13Hḟ1lnfn2150 ~82!

H2[S ȧ

a
D 2

5
rf

3
, rf5

1

2
ḟ21

ln

n
fn ~83!

settingM P51, i.e., with the rescaling

f→
f

MP
, t→tM P , H→

H

MP
. ~84!

In the standard ‘‘slow roll’’ approximation we take

f̈!3Hḟ, lnfn21,
1

2
ḟ2!

ln

n
fn, ~85!

and find from~82! that

ḟ52Fnln

3 G1/2

fn/2 21. ~86!

Putting this expression back in~85! it is easy to show that the
‘‘slow roll’’ condition is

f2@
n2

6
. ~87!

Furthermore during the slow roll~83! gives

H

ḟ
[

d ln a

df
52

f

n
~88!

and hence

a5expS 2
f2

2nD , ~89!

where we chose for the integration constanta0

5exp@2f0
2/2n#. For completeness, we also write the so

tion to ~86!

f5F 12

~n24!2nln
G 1/~n24!

t22/~n24!, ~90!

where we choset50 such thatf→` as t→0.
We can now write the desired expression in inflation:
a-
in

-
,

n

-

Ha5S ln

3nD 1/2

fn/2expS 2
f2

2nD ~ inflation!, ~91!

which allows us to compute the first term in~76!.
Next we computeHa during kination. It is convenient for

this analysis to change the field and time variables to
scaled variablest andw given by

dt5S a

a0
D 3~n22!/~n12!

dt, f5wS a0

a D 6/~n12!

~92!

in terms of which~82! and ~83! become

dw

dt2
1

6

n12 F2
1

a

d2a

dt2
1

n24

n12 S 1

a

da

dt D 2G1lnwn2150

~93!

H2[S 1

a

da

dt D 2

5
r0~t!

3 S a0

a D 12/~n12!

, ~94!

r0~t!5
1

2 S dw

dt
2

6

n12
Hw D 2

1
ln

n
wn.

The approximation of a sharp transition from inflation
kination consists in ignoring the explicit time dependence
r0(t), which is equivalent to

H!
n12

6

1

w

dw

dt
.

n12

6
vn , ~95!

wherevn
2;lnw0

n22 is the average frequency squared ofw
@see~97! below#, andw05f0 is the inflaton amplitude at the
beginning of kination. Within this approximation
d2a/adt25(n24)H2/(n12), and hence the term in th
square brackets of~93! vanishes. It is this feature of th
damping term in these variables which made their cho
appropriate. Thus all of the time dependence in~93! and~94!
drops out and the equations can be easily integrated. The
integral of ~93! leads to

r0[V~w0!5
1

2S dw

dt D 2

1
ln

n
wn, ~96!

which is just the energy conservation law forw.
The oscillatory solution forw can be then expressed i

terms of an elliptic integral with the frequency

vn[
2p

tn
5

p

A2ncn

leff
1/2f0 , ~97!

leff5lnf0
n24 , cn5E

0

1 dx

A12xn

where tn is the oscillation period. Note thatvn decreases
exponentially withn, when the initial amplitudef0,1. In
the limit of a largen, cn approaches unity. Finally, the solu
tion to ~94! is

a

a0
5F 6

n12
H0tG ~n12!/6

~98!
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~where we usedH05H0) and

Ha

H0a0
5S a0

a D 2~n21!/~n12!

~kination!. ~99!

The results for radiation and matter era are given by set
n54 andn52 in ~99! respectively, so that~76! can be recas
as

f1X
2 2f i, end

2 52nH lnF S ak, end

ak, beg
D 2~n21!/~n12! ar, end

ar, beg
S a2X

am, beg
D 1/2G

1
n

2
ln

f1X

f i, end
J . ~100!

The ratio of the scale factors at the beginning and
end of kination is given by~70! in Sec. V B. Using
s56n/(n12) we have~with M P51)

S ak, end

ak, beg
D 2@~n24!/~n12!#

5
rf i end

r i end
5S 270

erg* , i , endp
2D 1/2

1

Ti end
2

~101!

and recalling thatTa5const, we have

S ak, end

ak, beg
D 2@~n21!/~n12!#

5S 270

erg* , i , endp
2D 1/4

1

Tk end

~102!

so that~100! becomes

f1X
2 5f i, end

2 12nH lnF S 270

erg* , i , endp
2D 1/4

1

Tr, end
S Tm, beg

T2X
D 1/2G

1
n

2
ln

f1X

f i, end
J . ~103!

Taking this expression with

dr

r
~k1X!5ed

ln
1/2

31/2n3/2
f1X

~n12!/2 , ed5
3

5p
~104!

specifies the amplitude of density perturbations in the mo
implicitly in terms of the parameters in the potentialln and
n. Comparing this to the requirement of COBE provides
first constraint on the model. The second constraint is
requirement that kination ends before nucleosynthesis, i.e
a temperatureTk, end.Tns. After some algebra we obtain th
simple relation

Tk, end5S 270

erg* , i , endp
2D 1/4S er

9

ln

n
f i, end

n D ~n21!/~n24!

.

~105!

On Fig. 4 we show a plot ofd[dr/r(k1X) and of ln as a
function ofn with Tk, end5Tns andT2X51 eV. It is clear that
everywhere the amplitude is too large~by several orders o
magnitude! to satisfy the constraint from COBE. Further,
increaseTk, end at fixed n we require a largerln , which
results in a largerd. That kination end by nucleosynthes
g

e

el

e
e
at

thus forces the energy density in radiation at the end of
flation to be sufficiently large, which forcesln to be so large
that the density perturbations produced are too large, for
n. A single field model of this type is therefore ruled out.

This analysis neglects the possible decay of the oscilla
mode by parametric resonance into either its own fluct
tions, or other fields that it couples to. If such decay occ
when the energy density of the oscillating mode has r
shifted to be sub-dominant relative to the radiation, then s
decay is irrelevant and the model is simply ruled out
nucleosynthesis constraints~and the requirement that densi
perturbations not be too large!. If, on the other hand, it de-
cays when the energy density of the oscillating mode is s
dominant over the radiation, the model may be viable if t
decay products can thermalize with ordinary matter. In t
case, however, there will always be large production of
tropy ~with corresponding dilution of the baryon to entrop
ratio! and hence the model is not of much interest in t
context of the question of how an increased expansion ra
the electroweak could lead to production of the BAU at th
scale in scenarios when it is usually assumed to be imp
sible.

It is nevertheless of interest to study the non-perturba
decay of this mode~i! to see whether such models are rea
ruled out by the observations above, and~ii ! because this
decay channel is relevant to a scenario where another
plays the role of inflaton, which we will discuss briefly be
low.

We wish to compare the resonant decay timetdecayof the
inflaton-kinaton to the time at the end of kinationt i, end. As
we show in the Appendix, the field can decay either into
own fluctuations, or to other fields that it couples to. In bo
cases the decay timetdecaycan be approximated by

tdecay;
1

2vnm
ln

nscatt

n0
, ~106!

wheren0.1/2 is the initial occupation number, andnscatt is
the ‘‘late time’’ occupation number. The resonance is usua
terminated by the back reaction effects from the created
ticles @48#, and nscatt can be estimated to benscatt;1/leff

51/(lnf i, end
n24 ) for the inflaton-kinaton decay into its ow

fluctuations, andnscatt;1/g whenf couples to a scalar field
z, where g is the coupling constant of the interactio

FIG. 4. d andln vs n with Tk end5Tns .
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term gz2f2/2. In the Appendix we also show tha
m5mn.0.16/n for the decay into its own fluctuations, an
for the decay into another fieldm.0.1– 0.2 whenq>1, and
m!1 whenq!1.

In order to get an expression fortk, end, we make use of
~95!, ~98!, and~101! to get

tk, end.
1

vn
S 9

er

n

ln

1

f i, end
n D 3/~n24!

. ~107!

Setting tk, end5tdecay results in the following constraint on
the instability coefficient

mconstr.
1

2S er

9

ln

n
f i, end

n D 3/~n24!

ln
nscatt

n0
, ~108!

such that when the inflaton decays only into its own fluct
tions, nscatt/n0;1/(lnf i, end

n24 ), and mn
constr.0.049, signifi-

cantly larger than anymn for n.4. This implies
tdecay.(mn

constr/mn)tk, end, typically greater thantns, where
we took Tk, end.2Tns. When f couples to another scala
field via a quartic term of formgf2z2/2, then nscatt/n0

;1/g.1/(4qleff), whereq5gf2/4vn
2 @cf. ~A6! in the Ap-

pendix#, and we see that forq>1, 1/g,1/leff , and hence
mconstr,0.049. Recall that in this casem is typically of order
0.1. This means that whenq.1, the inflaton decays some
what beforetk, end via parametric resonance. If, on the oth
hand, q!1, then m!1, implying a late inflaton decay
tdecay.tns.

In summary, the oscillating mode in the power-law pote
tial decayvia parametric resonance before nucleosynthes
it couples to another scalar field withq>0.1, or equivalently
g>10220. When g>10220 it is not immediately obvious
whether the resonance shift slows down the decay or
and, although the discussion in the Appendix suggests th
does not, further analysis is required to establish this de
tively. In any case we can conclude that this single pow
law potential driving inflation with reheating of the type w
have discussed~as in @1#!, is therefore only ruled out as
viable cosmological model forg<10220.

E. Two field models

Finally we consider briefly models with ordinary re
heating~through the decay of the inflaton!. In this case the
field which supports the kinetic energy dominated mode c
not also be the inflaton, but is a second field which come
be important after inflation and ordinary re-heating. Aga
we consider the two cases of an exponential with its roll
mode and the power-law potential with its oscillating mod

Case 1: Inflation1exponential potential

As discussed in Sec. V A a simple exponent
V(f)5Voe2lf/M P with l such that it supports, when dom
nant over radiation, a mode scaling faster than radiation,
not come to dominate over radiation irrespective of the ini
conditions on the field.@If the initial condition gives a scal-
ing slower than radiation, it will bring the system to th
attractor~68! in which the scalar field contributes at most
amount comparable to the radiation.# Therefore, just as in the
-

-
if

t,
t it
i-
r-

-
to

g
.

l

ill
l

one-field case, a potential is required which is only asym
totically this simple exponential. If the field lies initially in a
part of the potential which is flatter—flat enough to supp
an inflationary type solution—a period of inflation will occu
once the radiation cools so that its energy density is com
rable to that in the scalar field. The initial conditions a
details of the potential will determine what the final ratio
the energy in the scalar field and radiation energy is when
scalar field enters its asymptotic kinetic mode. If this seco
period of inflation occurs at intermediate energy scales~after
‘‘full’’ inflation at the GUT scale, say! and is of a small
number of e-foldings, the ratio will be such that the kine
energy domination may end before nucleosynthesis.

Such a short period of inflation at an intermediate sc
occurs in so-called ‘‘thermal’’ inflation@49#. A scalar field is
trapped in a false minimum by its coupling to the plasma a
comes to dominate for a short period until the inflation
drives cools the plasma and allows it to roll away. In t
present context all that is required is that the field, rather t
rolling into an oscillating mode and decaying, rolls into
potential which is asymptotically exponential.

Another way in which such a transient period of inflatio
which cools the radiation and leaves a kinetic mo
dominant could occur is by special initial conditions
certain potentials, e.g., if the fieldf with potential

V(f)5Voe2lf2/M P
2

sits initially close tof50, a period of
inflation will occur whenr rad becomes comparable toVo ,
the duration of which will depend on how close tof50 the
field is initially. Without significant fine-tuning there will be
a few e-foldings of inflation followed by a period of kination

And lastly, we mention a variant of hybrid inflation. Re
call that in hybrid inflation, one field (f) is held at the false
vacuum minimum by a large expectation value of a seco
field (c), and hence it drives inflation. Whenc becomes
sufficiently small,f rolls down to its true minimum. The rol
in a steep potential, e.g.,gf2c2/21Voe2lf, leads to kina-
tion. Since the shape of thec potential determines the am
plitude of density perturbations, we have more freedom
tune parameters of the model than in the one field case
particular there is no need for variation ofl.

Case 2: Inflation1power-law potential

The various examples just given can be carried over in
obvious way to the case of a power-law potential. The d
ference is parallel to that in the one-field case: If the field
initially sub-dominant relative to the radiation, the oscill
tory mode about the minimum could end up being domin
depending on the initial conditions. If the field lies initially a
f.nMP there will be a period of inflation which brings th
field to dominance over the radiation. For a small number
e-foldings the radiation produced by ordinary re-heating~by
decay of the inflaton! may be dominant over any radiatio
produced by particle production as in the mechanism
discussed in the one-field models. The constraints which
derived in the one field model in Sec. V D, and which w
found could not be satisfied, are circumvented simply
cause the initial radiation density is not specified by the
tential, and the relation~105! no longer holds. For the mode
to work we also require that the field decayvia parametric
resonance occur after the mode has become sub-dom
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relative to the radiation, i.e., after nucleosynthesis, wh
will translate into some upper bound on the couplings of
field. The precise bound would have to be derived in anal
to the treatment given above for any particular model~which
will specify tk, end).

VI. SUMMARY AND DISCUSSION

In this paper we have considered relaxing the usual~un-
stated! assumption of a radiation dominated universe ma
in investigating the possibility that the observed BAU is pr
duced by processes at the electroweak energy scale. In
first half of the paper we considered in a generic way how
different rate of expansion of the Universe leads to a cha
in the standard analysis of baryogenesis. For a first o
phase transition the most important effect is on the sphale
bound, which becomes weaker as the expansion rate
creases. In the context of this discussion we reformulated
usual ‘‘absolute’’ sphaleron bound as a lower bound on
~unknown! expansion rate at the electroweak scale, a
noted in our treatment various inaccuracies in how t
bound is often stated. When the electroweak phase trans
is second-order or an analytic cross-over we showed tha
usual assumption—that it is impossible to produce the
served BAU in this case—no longer holds. With an expli
calculation appropriate for various simple extensions of
minimal standard model, we showed that an expansion
at the electroweak scale;10211T, five orders larger than its
radiation dominated value, would be sufficient to produce
observed BAU without fine tuning of parameters.

In the second part of the paper we discussed some spe
cosmological models which would give rise to such a mo
fication of the expansion rate at the electroweak scale.
concentrated on the simple possibility that a coherent m
of a weakly coupled scalar field would dominate the ene
density of the Universe, like in the case of inflation, but w
its kinetic dominant over its potential energy so that its e
ergy density scales as 1/a6. We showed that the requireme
from nucleosynthesis that such a mode not make up m
than a certain fraction of the energy density allows an
crease in the expansion rate at the electroweak scale b
much as the five orders of magnitude required for succes
baryogenesis without a strong first order phase transit
Working in the context of inflation in the early Universe, w
constructed in considerable detail various models in wh
the phase of kinetic energy domination orkination follows
inflation, interpolating between it and the radiation dom
nated epoch in the required manner. We concentrated
single field models in which the inflationary phase is driv
by a mode of the same scalar field which subsequently r
into a kinetic energy dominated phase. The eventual tra
tion to radiation domination, without the decay of the infl
ton in standard reheating models, occurs because of the s
rapid scaling of the kinetic energy mode which makes
eventually sub-dominant relative to the initially su
dominant radiation created during inflation. Analysis of t
case of the two different types of potential which can supp
such kinetic energy dominated modes—exponential poten
andfn potentials—showed us that only the former is viab
as the latter automatically produce density perturbati
which are much too large when one requires that the tra
h
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tion to radiation domination occurs before nucleosynthe
Finally we discussed briefly various two field models wi
standard reheating in which electroweak cosmology wo
also be modified in the same way.

In conclusion we turn to a brief discussion of some of t
broader implications of the observations we have made
particular, we began this paper with the usual motivation
the consideration of electroweak baryogenesis: It promise
follow nucleosynthesis in making firm and observable p
dictions about the cosmological remnants from an epoch
which temperatures are such that we can have experime
knowledge of the relevant physics. It promises to be a te
able theory. What is left of this testability now that we ha
effectively turned one crucial parameter, which is usua
assumed to be known, into an unknown?

In contrast to nucleosynthesis there is in this case o
one ‘‘observable’’—the baryon to entropy ratio—produc
by a calculation. Our analysis shows that, at least in cer
particle physics theories, it will be possible to ‘‘fit’’ the ob
served asymmetry by an appropriate expansion rate. D
making H a variable make the theory intrinsically untes
able? The answer is negative for two reasons. First, it is
extremely non-trivial requirement that one can produce
observed BAU in any given electroweak model, even if t
expansion rate is a variable. In a first order phase transit
for example, the requirement of various parameters—m
importantly onCP violating parameters—are typically ex
tremely strong, independently of the expansion rate~without
the sphaleron bound!. As we have seen in this paper, it
conceivable that it could turn out that the scalar sector in
cates an analytic cross-over or a weakly first order transi
and CP violation sufficiently large that the BAU could b
produced if the expansion rate is greater by about five ord
of magnitude than usually assumed. Would we then tak
this to tell us that this is the case or that we are unlikely to
able to draw a definite conclusion as to whether the BA
was created at this scale? This brings us to the second an
to the question: The theory is truly testable only if we c
find other observables which depend on pre-nucleosynth
cosmology. If we do indeed find that the BAU can be ge
erated with a different cosmology, that would provide a m
jor incentive to pursue this possibility.

One possibility is exactly the relic densities of dark mat
particles discussed in@3# and @4#. The discovery of a candi-
date dark-matter particle would allow one to determine
expansion rate at its time of decoupling from the requirem
that it be the cold dark matter in the Universe. For examp
from Fig. 2 in@4# we see that the relic density of a Majoran
neutrino changes by several orders of magnitude as the
pansion rate at its decoupling does. If this indicated an
pansion rate different from the standard value and consis
with that required at the electroweak scale for generation
the observed BAU, one would have compelling evidence t
cosmology is indeed different. Another possible way
probing pre-nucleosynthesis cosmology is with magne
fields, which in certain models are produced at or before
electroweak scale, or at the QCD phase transition. T
seems a more remote possibility for a firm constraint in t
the connection to observed fields is itself very indirect. Ho
ever, it is one worth bearing in mind. For example, in t
mechanism discussed in@31# in which fields are generated b
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an instability related to the Abelian anomaly, the expans
rate enters in determining when perturbative processes c
into equilibrium. This depends on the expansion rate, and
a significantly different expansion rate the results would
different.

Further there is also the possibility of probing cosmolo
at the electroweak scale indirectly by its connections to ot
epochs. A good example of this is in fact the scalar fi
cosmology we have discussed, in particular the exponen
potential. In this case the same coherent mode which do
nated in kination can in fact play an important role again
later times. We noted the existence of an attractor solu
with energy densities given as in~68! for the exponential in
the presence of a component of matter or radiation. H
soon this will be established after the end of kination d
pends essentially how much the ratio of kinetic to poten
energy at the end of kination differs from its value in t
attractor~68!, and this will vary depending on the model.
@11# the case is treated in which this transient period betw
the two attractors is assumed to end well before the be
ning of matter domination, and details of the observable c
sequences on structure formation in a flat CDM domina
universe are studied; in@12# the case of entry into the attrac
tor well into the matter era at a red-shiftz;70 is treated.
With the forthcoming satellite experiments which will me
sure the properties of the microwave sky, such models
become testable in detail.
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APPENDIX A: RESONANT INFLATON DECAY
IN THE fn POTENTIAL

In this appendix we study the decay of the inflaton v
parametric resonance. First we address the decay into its
fluctuations, and then we discuss how it decays into ot
fields. We start with writing the evolution equation for sma
fluctuations around the inflaton zero momentum mo
f→f1df in ~82!. After a Fourier transform and settin
M5MP51 as in~84!, we get the following linearized mod
equation

d2dfkW

dt2
13H

ddfkW

dt
1F S a0

a D 2

kW21ln~n21!fn22GdfkW50.

~A1!

Rescaling to the new variables as in~92! and assuming pure
kination, i.e., that the field amplitude is small~95!, we obtain

d2dwkW

dt2
1F S a

a0
D 4~n24!/~n12!

kW21ln~n21!wn22GdwkW50.

~A2!
n
e
r

e

r
d
ial
i-
t
n

w
-
l

n
n-
-
d

ill

e

e

wn
er

:

Notice the scale dependence next tokW2 which means that,
even though the zero-mode equations are time independ
the mode equations arenot. Assuming adiabatic variation o
a/a0, Eq. ~A2! becomes the famous Hill equation

d2dwkW

dt8 2
1@A12q f~t8!#dwkW50,

A5S a

a0
D 4~n24!/~n12! k2

vn
2

12q, q5
~n21!lnw0

n22

4vn
2

,

~A3!

where t85vnt and f 52„w(t8)/w0…
n2221 is defined so

that maxu f u51, ^ f &50, f (t81p)5 f (t8). The general solu-

tion of Hill’s equation is of the forme6mt8P(t8), where
P(t81p)5P(t8), and it is often given as the stability char
The unstable regions are specified by the curves of cons
m in the $q,A% plane, and the stable regions are bounded
m50. The instability chart is important since the field d
cays exponentially into the modes withm.0, preferably so
to the ones with largem. The special case of the Hill equa
tion whenn54—the Lame´ equation—is extensively studie
in the literature on inflaton decay@52,53#, @54#. The instabil-
ity chart exhibits unstable regions which branch off fro
A5n2 at q50. For q!A one is in the narrow resonanc
regime, since the bands are narrow andm!1. The chart is
symmetric underq→2q. On the other hand, for 1,2q
<A the resonance bands become broad andm ‘‘large.’’
Typically, when 2q.A, m peaks at;(2p)21. In this case
the field decays very fast, characteristically in a few doze
oscillations.

Notice that in general for a givenn, qn5(n
21)w0

n22/(4vn
2) is specified. Consequently, to get a rou

estimate of the decay time, it suffices to plot the one dim
sional sliceq5qn of the chart. As the field decays,q stays
constant, unless the backreaction of the created particle
large enough to changevn . Numerical simulations@51,48#
show that for thel4w4 potential the backreaction from cre
ated particles grows to aboutdm2[3l^dw2&;l4w0

2/4,
changing the effective frequencyvn

2→vn
21dm2, and conse-

quently reducingq to about half of its original value and
A→A1dm2/(vn

21dm2). The growth ofdm2 is terminated
by narrowing the resonance as a consequence of the ba
action onA and q, and intensifying scatterings of the res
nant particles off the zero mode, as a consequence of incr
ing resonant amplitudes. By then a significant portion of
field has decayed. We will assume that a similar scena
holds for a genericfn case. This is plausible since, as w
will see below, the instability charts are quite similar.

We have evaluated numerically@50# the instability charts
for some of the models. The results forn54,8,16,32 are
plotted in Fig. 5. The corresponding initial values forqn are
1.045,3.84,14.29,54.64. Note that in all cases to a very g
approximation the first instability band terminates atA52q,
so that the field decays into the second instability band. T
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57 6047TURNING AROUND THE SPHALERON BOUND: . . .
values for m are m450.0425,20 m850.023, m1650.011,
m3250.0056, so thatmn.4m4 /n.0.16/n. For the following
analysis the details of the chart are not that important. I
sufficient to keep in mind that forn larger,mn decreases.

As discussed in Sec. V, an inflaton that decays into
own fluctuations and does not couple to other fields lead
disastrous consequences for nucleosynthesis. Indeed,
the inflaton decay products scale as radiation and eventu
dominate the energy density of the Universe, and also
couple from the rest of matter, they behave effectively
many additional massless degrees of freedom, leading
very different expansion rate than predicted by nucleosyn
sis. If, on the other hand, the inflaton predominately dec
into another scalar field, which consequently thermaliz
producing thus standard radiation and matter particles,
cleosynthesis may be unaffected by late inflaton-kinaton
cay, as long as the decay occurs comfortably before nuc
synthesis.

Before we start discussing the inflaton decay time,
outline the physics of the inflaton decay into another sca
field z. We assume a standard quartic couplingg to z ~that
itself couples to standard model particles! of the form
gz2f2/2 such that the linearized mode equations of mot
are

d2zkW

dt2
13H żk1F S a0

a D 2

kW21gf2GzkW50. ~A4!

With the rescaling~92!21 and z5 z̃ (a0 /a)6/(n12), this be-
comes

d2 z̃ kW

dt2
1F S a

a0
D 4~n24!/~n12!

kW21S a

a0
D 6~n24!/~n12!

gw2G z̃ kW50,

~A5!

and can be recast as

20Note that this value is a bit higher fromm450.0359, the value
quoted in@54#.

21In this case conformal rescaling might seem more appropr
since it would get rid of all dependence ona. Nevertheless, we stick
to the rescaling in~92!, in order to be able to make direct compa
son of decay times.

FIG. 5. mn vs A.
is

s
to
nce
lly
e-
s
a

e-
s

s,
u-
e-
o-

e
r

n

d2 z̃ kWdt8 21@Az12qz f z# z̃ kW50

Az5S a

a0
D 4~n24!/~n12! k2

vn
2

12qz ,

qz5S a

a0
D 6~n24!/~n12! gw0

2

4vn
2

~A6!

wheret85vnt and f z52@w(t8)/w0#221 is defined so that
maxu f zu51, ^ f z&50, f z(t81p)5 f z(t8). As above in~A3!,
in adiabatic limit, this reduces to Hill’s equation. There a
however two differences: first,qz can assume a wide rang
of values depending ong, and, second,qz is a ~growing!
function of a. The corresponding Mathieu equation fo
n52 is studied in great detail in the literature, and sho
that for qz.1 the field decays with an average valu
m;0.1 @56#. For the conformal case withn54 a similar
value for m is obtained. Here we will assume that, for an
n.4, m;0.1 as well.

Now we present an estimate of the decay timetdecay. For
a moment we assume that the resonance shift does not
tically affect particle production. Later on we comment o
the plausibility of this assumption. The typical initial mod
amplitudes are such that the corresponding initial ‘‘occu
tion numbers’’nk}vkwkWw2kW ~wherevk is the energy of the
mode k) are of ordernk

initial.n0.1/2. Since the resonan
mode amplitudes grow asdwk}expmkvnt, one can estimate
the field decay time as follows. The field decays when
energy in fluctuations become comparable to the energ
the zero momentum mode, i.e., when the occupation n
bers nk.n0exp2mkvnt become of order nk;1/leff

(leff5lnf0
n24), implying that the decay time can be ap

proximated by

tdecay;
1

2vnmk
ln

nscatt

n0
. ~A7!

This same equation applies for the fieldf decaying into
other scalar fields. The only difference is that the maxim
occupation number is in this casenscatt;1/g. As a caveat to
~A7!, the authors of@48# showed that one should expe
longer decay times if the self-coupling of the second fie
(z) is large, i.e.,lz@g. In this paper we do not dwell on
these complications, and assume the couplings such tha
simple estimate~A7! is valid.

Finally we comment on how the time dependence ofA in
~A3! and ~A6! can affect the decay time~A7!. We first dis-
cuss the decay into a second scalar field. The~comoving!
resonant momentum is specified bydA;Aq, which in ~A6!
gives

kres
2 .

Agf0vn

2 S a0

a D ~n24!/~n12!

. ~A8!

This agrees with the well known result that forn54 the
resonance is static. On the other hand, forn52 ~Mathieu

te
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case! the resonant momenta grow rather fast as the Unive
expands and, forq large, adiabatic approximation break
down, leading to ‘‘stochastic resonance’’@56#. However, it
turns out that the instability exponent is rather robust a
maintains the valuem;0.1. What happens whenn.4? In
this case the resonant momentum decreases with time
again forq.1 we expect breakdown of adiabatic appro
mation. Just like in then52 case we expectm to be robust
and be of orderm;0.1. This should not in any case be co
sidered as proof, but conjecture.

In the case when the field decays into its own fluctuatio
dA;Aq gives @cf. ~A3!#
n

la

c

s.
se

d

nd

s,

kres
2 .

1

2
A~n21!lnf0

~n22!/2vnS a0

a D 4~n24!/~n12!

~A9!

which again leads to a shift in the resonant momentum. U
fortunately, the conformal case (n54), in which the reso-
nance is static, is the only case studied in the literature, so
cannot make any analogy as we did in the former case. S
in this case the resonance is rather narrow, the resonant
mentum redshift may significantly slow down the decay. A
implication would be that the effectivem decreases, leading
to somewhat less stringent bounds onln and n than indi-
cated in~108!.
h-
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