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The usual sphaleron bound and the statement of the impossibility of baryon production at a second order
phase transition or analytic cross-over are reformulated in the first part of the paper as requirements of the
expansion rate of the Universe at the electroweak scale. Witkxatt or effectivieadditional contribution to
the energy density scaling asal/ which dominates until just before nucleosynthesis, the observed baryon
asymmetry may be produced at the electroweak scale in simple extensions of the minimal standard model, even
in the case that the phase transition is not first order. We focus our attention on one such cosmology, in which
the Universe goes through a period ternk@thtion in which its energy is dominated by the kinetic energy of
a scalar field. The required kinetic energy dominated modes can occur either as a field rolls down an expo-
nential (or steeperpotential, or in the oscillation of a field about the minimum of a steep power-law potential.
We implement in detail the former case with a single exponential field first driving inflation, and then rolling
into a kinetic energy dominated mode. Reheating is achieved using an alternative to the usual mechanism due
to Spokoiny, in which the Universe is “reheated” by particle creation in the expanding background. Density
perturbations of the magnitude required for structure formation may also be generated. We show that the
analogous model for the power-law potential cannot be consistently implemented. In models with inflation
driven by a second field and the usual mechanism of reheéiindecay of the inflatonthe required kinetic
energy dominated cosmology is viable in both types of poterj&556-282198)06610-1

PACS numbegps): 98.80.Cq, 64.60-i

[. INTRODUCTION seem not to be insurmountable.
The approach of this paper is somewhat orthogonal to the
Nucleosynthesis provides a role model for electroweakdirection of investigation of most work on electroweak

baryogenesis to whose impressive heights it can still onljparyogenesis. Rather than investigating some aspect of the
aspire. The great attraction of the idea that the baryon asyniarticle physics, we consider the cosmological side of the
metry of the UniverséBAU) may have been created at the Problem. The standard and indeed most natural assumption
electroweak epoch lies in the possibility that one dayahn @bout cosmology at the electroweak epoch is that it is what
initio calculation to rival that of nucleosynthesis may be pos-°"€ gets by the simplest backward extrapolation from nu-
sible, and that it will give a definitively positive or negative cl€osynthesis: a homogeneous and isotropic radiation domi-
answer. Rather than simply providing an alternative to Sce[lated universe. In nucleosynthesis the assumption of such a

narios for baryon creation at the grand unified the@WT) Universe 1s relaxed to p_Iace limits on, for ex.amp?‘le, the cc?,n-
ttrlbutlon of a magnetic field or of a cosmological “constant

scale, it has the fundamental interest of relying on physics g . ;
. . . .10 the energy density. In this paper we ask the analogous
a scale directly accessible to experiments. We can realistl-

) question of electroweak baryogenesis: how is the standard
cally hope to kr-10w thg correct theory of physics .at the elec'scenario for production of the observed baryon asymmetry at
troweak scale, in particular the structure of B violating ¢ electroweak epoch affected if we consider cosmologies
gnd symmetry b.reaklng septors. .JUSt as |n'nucleosynthe§'sdEher than the standard one? And are there simple alternative
is then a question of putting this theory in an expanding:osmologies which lead to significantly different results for
universe and finding the output. Electroweak baryogenesig|ectroweak baryogenesis?
however faces more substantial obstacles on the road to a The same sort of question has been previously addressed
reliable calculation than did nucleosynthesis, e.g., the detein the context of calculations of the relic densities of weakly
mination of the baryon asymmetry involves all the details ofinteracting particles in work of BarroW3] and Kamion-
departure from equilibrium at the phase transitjirthere is ~ kowski and TurnefKT) [4]. These relic densities depend on
one), the crucial baryon number violating processes arisinghe temperature at freeze-out which occ(approximately
from the chiral anomaly at finite temperature involve manywhen the annihilation cross section of the particular species
difficult and still unresolved questions, etc. Much progressdrops below the expansion rate of the Universe. Barrow dis-
has however been made, recently in particular using latticeussed the particular case of a non-anisotropic universe, in
methods to study the phase transiti@), and the problems which the averagévolume expansion rate which determines

the freeze-out has an extra component driving it which scales

as 18° (a is the average scale facioConsistent with the
*Electronic address: joyce@maths.tcd.ie requirement of radiation domination at nucleosynthesis, the
*Electronic address: prokopec@nbi.dk expansion rate can thus be very much greater in the aniso-

0556-2821/98/5(1.0)/602228)/$15.00 57 6022 © 1998 The American Physical Society



57 TURNING AROUND THE SPHALERON BOUND: ... 6023

tropic universe prior to nucleosynthesis when dark mattedetermining the depletion of the baryon asymmetry produced
relics typically freeze-out T~100 MeV), and the require- by sphaleron processésnd hence in determining the sphale-
ment that such a particle be the cosmological dark mattefon bound. In this case the baryon asymmetry is actugdiy
may in principle place a bound on the anisotropy. The im-east in certain extensions of the standard mpgedbduced
portant idea—that relic densities can provide a probe of th@n or near the bubble walls as they propagate through the
Universe prior to nucleosynthesis, which might be other tharPlasma, and does not depend directly on the expansion rate.
the standard radiation dominated one—was considered in i the second case the expansion rate is the sole parameter
more general way by KT, who discussed the case of an arfvhich controls the d_eparture from equilibrium and _the
isotropic universe, as well as various others, including &@ryon asymmetry which can be generated depends directly
Brans-Dicke-Jordan theory of gravity. In this latter case thePn It _ _
effect can also be modelled as an extra contribution to the , N the second part of the paper we turn to the discussion
energy density scaling asaf/ producing in the same way a pf alter_natlve cosmologies, f|rs'§ reviewing tho;e cons@ered
speeded up expansion rate before nucleosynthesis witholft Prévious work and then turning to the detailed consider-
violating the nucleosynthesis constraints. KT also mentiorfion of cosmologies dominated by the kinetic energy of a
an example(which they describe as “exotig”of a scalar s_calar field for a p(_arlod b_etween inflation and nucleo_synthe-
field ¢ which oscillates in the minimum of a potentiaf’, 5|s,_concentra_t|ng in partlcular_on _the case when _thls phase
for which the energy density scales@s®("*2), i.e., faster (which, following [5] we term kination) persists until after
than radiation fon>4. Again the energy in such a mode can the electroweak scgle_. In this case the expansion rg;e qt the
contribute significantly before nucleosynthesis without dis_electrowea}k scale is increased, producmg_ the_ mod|f|cqt|ons
rupting the latter. As discussed Ji5] the relevant feature of to calculations for'electroweak baryogenesis discussed in the
this model is that it is the kinetic energy of the scalar fieldfIrSt part. As outlined above, the two types of models we

which gives the dominant contribution to the energy densit)f:cms'der are exponential potentials' anq power-lai !
of the Universe. As well as the oscillating mode of the (N>4) potentials. For both cases we first discuss a one field

power-law potential, the scaling applies to a scalar field roll-model, n W.h'Ch the field both |_nf|ates_ the Universe and
ing down a simple exponential potential. Rather than bein auses klnatlon.. Instead_ of decaymg_as In th_e st_andard expla-
exotic (compared to the models whi¢B] and[4] focus on, ation of reheatlng, the inflaton r_oII_s into a kinetic mode and
such models are minimal in the sense that they leave Einste mply red-shlft§ away. The .radlatlon created by the super-
gravity intact and are consistent with the inflationary expla-Uminal expansion of the Universe at the transition between
nation of the homogeneity and isotropy of the Universe. InN€ two phases thermalizes and comes to dominate the en-
gray density of the Universe at a later time determined by the

expansion rate at the end of inflatiph]. We show that in the

power-law both inflates the Universe and then rolls into thegxponen?ial _potential one can haii¢ a transit.i.o n to radi_a-
kinetic energy dominated mode. Reheating is achieved usin n domination as I_ate as nuc_leosynthe5|s éndthermali-

a simple alternative model of reheating proposed b ation of the___radlatl(_)n well prior to the electroweak scale,
Spokoiny several years ada]. In the power-law potential and further iii ) denslty perturbations of the rlght amplitude
density perturbations are produced which are too large anf®’ structure format|o.n. In the power—law_ potential, howevef'
the model is not viable. Furthermore the coherent oscillating?® find that the requirement that the Universe become radia-
mode is unstable to decay due to parametric resonance. n dominated before nucleosynthesis leads to the produc-

also discuss less constrained viable models in which the inion Of density perturbations which are much larger than is
flaton is a different field and reheating proceeds in the usudfonsistent with observations. In any case the oscillating
way (by decay of the condensatd he required potentials do mode in this mo.del typically decays non-perturbatwely
in fact arise in many particle physics models: Power-law(thro_ugh parametric resonancenless the self-couplings of .
potentials have been discussed, for example, in the context i€ field are extremely small, and the energy does not stay in
supersymmetry motivated inflationary models[@7]. (The "€ kinetic mode for long enough. We conclude Sec. V with
lower order terms can be excluded by imposing a discret@ Prief discussion of two fields models in which one field is
Z.12+1 Symmetry on the superpotentiRExponential poten- the inflaton and _rehgats th‘fa .Un|ve,r'se in the standard way,
tials arise quite generically in theories involving compacti-and the second field is the “kinaton” which comes to domi-

fied dimensions, such as supergravity and higher dimen?ate for a phase sqbsequent to inflation. In this case the sec-
sional theories of gravity(for specific examples, see ond field can be either exponential or power-lgwovided

[8,9,10)). The latter are also interesting in that they can playiN€ couplings are such that decay by parametric resonance
an important(potentially observab)erole in the late-time does not oceur untlllaftgr nucleosynthe).sle the Ias'g section
cosmology of structure formaticii1,12. we summarize our findings and then discuss the implications

Igf our results for the testability of theories of electroweak

In the first part of the paper we address the question o ) . ) . .
how the expansion rate of the Universe affects the baryo@ryogenesis, and consider briefly other ways in which pre-

asymmetry produced at the electroweak scale, without refefiucléosynthesis cosmology might be probed.
ence to any particular cosmological model. The two distinct

of the two cases in which the single fieléxponential or

cases—a flr_s_t order phase transition, and a second-order || DEPENDENCE ON THE EXPANSION RATE
phase transition or a cross-over—are treated separately. In
the first case the expansion rate ent@jsin determining In electroweak cosmology the assumption is generally

when the transition occurs, since this depends on the coolinghade that the Universe is flat, homogeneous, isotropic, and
rate of the Universe below the critical temperature, @ndn radiation dominated. Hence all cosmological information is
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encoded in the expansion rak,q, which is given as a equilibrium is characterized by time scales which are much

function of the plasma temperatufe shorter than that associated with the expansion. Almost all
proposed mechanisms for baryogenesis at the electroweak

T? w?g, |2 scale make use of this dramatic departure from equilibrium,

Hrad:hM_P' h= 90 1) using the interaction between the plasma and propagating

walls to generate the baryon asymmetry. In the case that the
whereg, ~ 107 is the number of relativistic degrees of free- transition is second order or cross-over there is no such ef-
dom in the plasma anp=(87G) ?=2.4x10¥GeV is  fect. Everything evolves continuously and the departure from
the reduced Planck mass. The clean separation between tBguilibrium is controlled directly by the expansion rate. This
purely particle physics and cosmological calculations occursisually leads one to conclude that anything but a first order
because of the adiabaticity of the expansion. It is adiabatiphase transition is inimical to baryogenesis at the elec-
because the time scale characterizing the expariroweak scale. Once one relaxes the assumption that the ex-
Sion_frexpansionzMP/(hT2)21016(100 GeVMT ™!, taking pansion rate is its standard radiation dominated value, this
g, =10°—is much greater than the time scales associategonclusion does not follow and needs to be examined more
with the thermalization processes which have typical rategarefully. We will thus treat these two cases separately in
~a?T (where a>1/50 for all the interactions well above some detail.
100 GeV). The phase transition can thus be studied using
equilibrium methods—the expansion of the Universe enters IIl. FIRST ORDER PHASE TRANSITION
only in determining the cooling rate and, hence, when the ]
transition occursif it does). In general we could of course [N this case the baryons are created as the bubbles of the
consider any cosmology at the electroweak scale, with thfué vacuum propagate through the false vacuum. The net
sole requirement that it be consistent with nucleosynthesigffect of the propagation of the bubble through the medium
We have no probe of the electroweak scale except that prdd all proposed mechanisms is the creation of a flux of bary-
vided by electroweak physics, and methodologically itOnS into the broken phase. The expansion rate enters only
makes sense to ask how changing the standard assumptiBilirectly through other parameters involved in this
about the Universe at this phase affects the predictions of thglculation—through the temperature at which the transition
remnants which result. Here we limit ourselves to relaxing®ccurs which it determines, and, in certain regimes, through
only the assumption that the expansion rate is related to th_@ne bubble wall velocity. On the other hand, it enters directly

temperature byl). Instead we take in the determination of the amount of the created asymmetry
which survives once it is in the broken phase. We consider
T\P these two dependences separately.
H= Hew( T—) )
ew,

A. Bubble nucleation
where p is a number and the subscript “ew” means the

uantities are evaluated at some temperature characteristic fln this section we investigate how the bubble nucleation
q P t%mperature depends on the expansion rate of the Universe.

the electroweak phase transitionl./ UsiHg=a/a this corre- e also briefly discuss how the bubble wall velocity may
sponds to the time dependermet™® for the scale factoa.  gdepend on this parameter. As the Universe supercools below
All' our results concerning baryogenesis are, we will see, este critical temperatur&,, the fractionf filled by nucleated

sentially independent qf because they depend only on tem- ppbles at a time is given by (see[2] and references
peratures very close t@,,. We will treat He,, as a free  therein:

parameter, only taking it to be such that the assumption of
adiabaticity is valid, which allows it to be different from the —AQ) to, 4 R
standard value by orders of magnitude. We will review in f(D)=1—e %", A(t)= tdt 3 U= U)TR(Y),
Sec. V some of the nonstandard cosmologies which can be ¢
described by these assumptions. The model which we will
discuss in detail is a homogeneous and isotropic universe
dominated by a kinetic mode of a scalar field rather than by , i , i
radiation. whereS, is the bounce actiorR the nucleation rate per unit
Baryogenesis, the creation of baryons from an initial zera’ClUmelo is & prefactor which is a slowly varying function
baryon state, requires a departure from thermal equilibrium®f temperature of order one, given in more detail below, and
In the big bang Universe this is provided by the expansior? 1S the bubble wall veIouty._Changmg the integration vari-
which causes the Universe to cool. At the electroweak scal@Pe ©0x=(Tc—T)/T. and using the time-temperature rela-
this cooling can lead to two very different effects, dependingfion t=T~? which follows from(2), one finds
on whether the electroweak phase transition is of first order 3
or not. Recall that at a first order phase transition as the A(x)= 4my | (E)
Universe cools it becomes thermodynamically favorable for 3 Ol H,
the system to be in the “broken” state. The “broken” and 5
“unbroken” phases are separated by a potential barrier ( 1 1 ) xp( Sp(x") )
which decreases as the Universe cools. Once the barrier is - , N
low enough, the transition proceeds by the nucleation and P(1=x)"  p(1=x)° Te(1=x)
propagation of true vacuum bubbles. This departure from 4

R=I OT487 Sb/Ty (3)

4 X
J dx’(1—x")3"P
0




57 TURNING AROUND THE SPHALERON BOUND: ... 6025

whereH_ is the expansion rate at.. We will see below that To
the nucleation temperaturg,, defined byA(X,,o)=1 is Tczﬁ,—, 9
always very close to the critical temperature so that we can ( >
take 0<x’'<=x<1 and expand to linear order {#) to get 9 Nry
Amvd [ T\4 (> Sy(x") and the latent hedt and surface tensionr by
A(X)= lol = f dx’ (x—x")3exp — .
3 H. Jo T, q )
Vi T b
) L=V(é, ,T)+T(j—_|’:, U:J dé\2V,
0

Keeping the first term in a derivative expansion of the (10)
bounce action aboutx, i.e., taking Sy(x')=Sy(X)

+(dS()/dX)(X" —x) +O((x' —x)?), the integral can be where ¢,, defined by degeneracy of the minima
performed with the assumption thaid(S,/T)/dx(x~Xg) [V(¢, ,T)=V(0T)], is

>1, and gives the nucleation temperature implicitly as

¢, 2a—[4a?—18\ry(1—(To/T))H?

SolTru) _ o (Te/Hpmg* He T 3 (1)
————=In| 87v°l, —4In , (6 T
Te (dS,/dThue)? Hrad
The (spherical bounce action is given by
where H,=1.2x10 (T /100 GeVJT, is the expansion
rate atT, in the standard radiation dominated cosmology. .. [1(d¢ 2
To check the consistency of our assumptions and evaluate Sb:477f redri 5| 5] TV(@T) (12

this expression to give the nucleation temperature, one must
calculate the bounce action near the critical temperature in . o
the particular model of interest. We consider the minimalith the boundary conditiong(r=0)= ¢, , d¢/dr(r=0)

standard modefMSM) in the regime where it is described =0, and ¢(r==)=0 (r=|x| is the radial coordinaje
by the effective potential Rather than solving this exactigvhich is numerically ex-

pensive, or in the thin wall approximatiofwhich is inaccu-
y a A rate for strong phase transitions wheg ~T), we will use
V(¢ T)= E(Tz—T§)¢2— §T¢3+ de‘ (7)  an approximation fofs, developed if13]:

with the one-loop ring improved valu¢$3,14 ST ¥ To|?|%?
— =97 —|1-| = f(A),
T a? T
1 2my+ms 1
a= o —— 2+ T (3+3%9, 37,
2m vy AT i Ay, 24, 026
2ma+ma+2m? 1
Y= 5 T 5
4vg 1-(To/T)
A= ————, (13
1-(To/Te)
)\_mﬁ 3 24|m6\’+4|m§
T 002 t6m2t| T W T 2 e which is valid for 0<.4<0.95.
The prefactoi in (3) can be written as
2
—4m* In— ), 172
t agT? _ Kdyn i 3/27\_1/216_1/2 _| 2op 14
=512, ~" Apubbler  Kdyn™ R3L 2 (14)
122 mé+8pv3
o 2y where kg, is the dynamical prefactor as given[ih5]. R is
the radius of the nucleating bubble, which can be estimated
in the thin wall approximation to b&=R,;~20/LXyqls
8= 4(4mf—2mﬁ,— m3), 8  Xnue=1—Toua/Te, p=m°T"g, /30 is the energy density of
647 the plasma wittg, relativistic degrees of freedom. The one

loop fluctuation determinant consists of the “negative”
where ©v,=246 GeV, ag=(4wm)%e 26=50, ar mode\_=0.05¢(T), and we takélp,p= 1 (for a more
=(m)%e ?7e=3.1, andyg is Eulers constant. This treat- accurate value, sg§&6,17).
ment of the MSM is reasonably accurate uprig~ 60 GeV, We have solved6) numerically to find the nucleation
when nonperturbative effects become important. With thigemperatureT, ., using these values and approximations.
effective potential the critical temperatufe is given by We also usedn,=175 GeV,my=81 GeV,my;=91 GeV,
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The results are easy to understand both quantitatively and
oal my=10GeV,T,,,4=58GeV — qualitatively. Varying the bounce actigd3) and assuming
mT:;04G52\7‘\4,Tn::g=c)?ggzx . 1-A=<0.2 [which is satisfied for most of the parameter
- my=80GeV. T,...~108GeV - space in Fig. (@)] so that the last term in the expression
"3, 025 dominates, one obtain&(S,/T) ~ — 2(8nua {nue) (So/ T) .2
4 and hencdusing (6)]
"_r% 02y _)'___.-——“"'-— '/_,,-*"" | Aé‘nucI% 2|n(Hc/Hrad) (15)
N ul e s Ll Sp/T
015} e
The bounce actiorS, approximately halves, going from
100T to 50T as the expansion rate changes frdmn,g
@ 1696 105 1e1d 1o43 fed2 fe-l 1ed0 1609 —10°H 4. Taking an average value for it {d5) gives good
agreement with the estimates we made above from the fig-
m=10GeV T, ~58GeV — ure. Qualitatively the reason the expansion rate changes the
M, =45GeV, T, ~78GeV nucleation temperature so little is that, as long as the Uni-
025 | ™ M =60GeV,T, 4=00.6GeV - 1 verse expands on a time scale much longer thaf, the
m=80GeV, T, ,=109GeV ... transition always proceeds when the nucleation rate is very

suppressed, where the bounce action is an extremely sensi-
tive function of temperature. The nucleation temperature de-
creases as the expansion rate increases because the Universe
must supercool more to attain a less suppressed nucleation
rate.

Such a small change to the nucleation temperature leads
to minor changes to the quantities which determine the
. baryon asymmetry generated. We will see in Sec. Il B that
1o 16 118 1od7 o3 1o12 111 o0 1e0e betweenT. and T, the VEV of the Higgs field changes by
(b) T 50%, and its derivative with respect Toby about a factor of
three. From Fig. (@ this would mean an increase in the
VEV at nucleation of 1% or a little more per order of mag-
nitude increase in the expansion rate. We would expect that
this result will hold true in any typical electroweak model
and took the bubble wall velocity=0.4[14]." In Fig. (&  and not just the MSM in the regime we have studied it here.
we show a plot off,,q=(Te— Thued)/(Tc—To) against the These minor changes to the VEY and the other macro-
logarithm of the expansion ratd. at the critical tempera- scopic parameters which determine the baryon asymmetry
ture, for a range of Higgs massaes,. We see clearly that (bubble wall thickness, profile ejcare essentially negligible
the usual result in a radiation dominated universe is qualitain their effect on the baryon asymmetry generated.
tively unchanged by varying the expansion rate over orders One condition must be attached to this conclusion, how-
of magnitude:{. is small, so the nucleation temperature is€ver: Other macroscopic effects can come into play as the
very close to the critical temperature, and much closéfto bubbles propagate. When the propagating bubbles begin
thanT,. There is a small quantitative chande,varying by ~ Pathing” in the hydrodynamic shock waves of the neigh-
about 40% as the expansion rate varies over five orders §°ring bubbles, i.e., whea(t)~1 in (3), the plasma can

magnitude, but the change in absolute terms is tiny sinc%eat up an_d slow doyvn the propagation of the bubfiéh.
AT o= — (Te—To)ALe=5X 10~ 3T, . Typically there is o determine how big this effect can be one compares the

" , . latent heat releask with the difference in the thermal en-
about the same change dgover this range at a fixed Higgs . = _
mass as is brought about by decreasing the Higgs mass Sy densityAp=4p(Tc—Tnuc)/ T between the nucleated

: o ; . p¥1ase and the unbroken phaseLIAp=1 the system can
about 25 GeV in a radiation dominated univefse. reheat all the way back up .. If such reheating occurs the

main effect on baryon generation at the bubble walls is
through the slowing down of the bubble walls.
In Fig. 1(b) we show a plot of this ratid./Ap as a func-
This is a friction limited upper bound. The results here are Oftion of the expansion rate in the MSM with the same values
course not very sensitive to the details of the prefactor in the nucleynq range of Higgs mass as above. As the expansion rate
ation rate. As we will discuss below, this assumes that the U“i"ersfncreases the amount of re-heating decreases—simply a re-
is not reheated significantly by latent heat release, which is a reds it of the increased supercooling. In all the parameter space

sonable approximation in the MSM. In the case that significantthe ratio is less than one. but of order one. so the effect of
reheating occurs, so that bubble nucleation stops, the correct value ’ ’

of v in the early stages of nucleation would be the speed of sound
vs~1/\/3 at which the shock fronts propagate.

27 ue increases as the Higgs masg decreases because the phase °This estimate is just that obtained in the thin wall approximation
transition gets stronger, and therefore more supercooling occurs. in which S yin* 02,

02

L/Ap

0.15 |

0.1 r

FIG. 1. (8 {nuq VS the expansion ratéb) LAp vs the expansion
rate.
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reheating may be significant, leading potentially to a slow- B. Washout and the sphaleron bound
down of the bubble walls relative to the friction dominated The baryons created at the bubble walls are subject to

regime. To determin_e the effect precisely is a very involveddeCay after they enter the broken phase if the baryon number
problem, and we will not attempt to tackle here the evenyiolating processes are not sufficiently suppressed. The re-
more involved one of looking at the effect on such slow-quirement that this attenuation not reduce the created asym-
down of changing the expansion rate. We limit ourselves tametry to less than that required for nucleosynthesis leads to
the qualitative observation that the amount of reheating dethe sphaleron boundl9] in a radiation dominated universe.
creases slightly as the expansion rate increases, and thdére this bound will be restated as a requirement of the
modifying the expansion rate by orders of magnitude isexpansion rate of the Universe in a given theory. In the
likely to lead to only small corrections. course of this discussion we will also draw attention to im-
The one-loop effective action which we use here becomeprecisions in commonplace statements of the sphaleron
an increasingly poor approximation fon,>60 GeV, and bound (with the usual assumption of radiation dominajion
the latent heat is one of the quantities it estimates very inadvhich can be of considerable importance.
curately. Lattice studigi?] have shown that there is a regime _ Since the time scale associated with the baryon number
in the MSM whereL/Ap>1. In other models also this is violating sphalerqn processes is much longer than the time
certainly a condition we can envisage being satisfied. AScale for thermalization processes, the baryon number after
mentioned above, in this case the bubble walls slow down t e'completlon .qf t.he electroweak phase transition is given
a final velocity determined by the expansion rate of the UniPY its local equilibrium value
verse, which has been estimated tabel0 2—10 3[18,2] 1
in a radiation dominated universe. These estimates show that (B)= ZTr[Be*mH*“BB*EA/‘AQA)] 17
this velocity depends on the expansion rate only through the
combinationHR where R is the average bubble radius, . .
which is the radius at whichsf/oR of (3) peaks, ie., whereug andu, are chemical potentials for baryon number
d2A/dR2~0. A little algebra gives and th_e other charge®, conserv_ed on the relevant time
scale, i.e., exactly conserved, or violated at a rate slower than
the baryon number violating processes. On the time
3 scale over which the violation of baryon number is
~ ﬁ (16) r_elevant, the system relaxes to equilibrium at a rate

B= —ITSph(AF/T)AB, Whereiphis the rate per unit volume
of sphaleron processes in which the Chern-Simons number

B . . N¢ changes byone unit, andAF is the free energy change
wherev=1/\/3 is the speed of sound. Now using the ex- per process. SincB=NgA N, per processN is the num-

pression(6) above we see thdid_ S,/dT|«S, /T decreases by ey of fermion familie, we get
about 10%—and hence the final wall velocity increases by
the same amount—per order of magnitude change in the ex- T
pansion rate. IL/Ap>1 for different expansion rates, this B=—N2 SphMB (18)
will be the only change to the final bubble velocity. Given T
the behavior we have observed lofAp it is clear that in ]
certain models increasing the expansion rate considerabl/nere we assume that other charges are defined so that they
relative to its radiation dominated value could make the dif-aré conserved in these processa®f=0). The sphaleron
ference between this final wall velocity and (gypically ~ rate is given by 20]
much larger friction limited one corresponding to
L/Ap<1. In this particular case the change to the bubble — ¢ 12
wall velocity may not be so small. Fsph=Cg§e s, Bspr=B @ #(T),

The determination of how the baryon asymmetry would
be affected by such changes in the velocity of the bubble
wall is a model dependent problem. The velocity dependence C= _ Y- NooViotson (19)
of the baryon asymmetry depends on what precise mecha- 2mgp(T) (7 rerrrorTe
nism is operative, which depends on both the microscopic
and macroscopic physics. At low velocities<1073) the ~ where a,,=g%*4m~1/29, B is a monotonically increasing
result always goes to zero at least linearly, and at largefunction of \/g2=m?2/8m, ranging between 1.5 and 2.7 as
velocities the most sensitive dependence~i$/v?. Using  \/g? varies from O tox [21] andC is a temperature inde-
this dependence and assuming the greatest possible effgmndent “constant,” given fully belowwith w_~g¢(T)
due to a change in the expansion rétem an upper bound the frequency of the negative mode of the sphalekag, the
in the friction dominated regime~ 0.4 to the lower bound one loop fluctuation determinant,,,= 8?2 a group volume
of the adiabatic “complete reheat” regime with~10"3) factor, and\;, and N, the number of translational and ro-
would give a change in the calculated BAU (&t mosj 10°.  tational degrees of freeddm
As we have discussed however, in most models the change The conserved chargé&3, are just the primordial values
will be much smaller and probably very small. A more de-of the exactly(or, in some cases, approximatelonserved
tailed investigation of this question would however be re-charges in the electroweak model with which we are calcu-
quired to draw stronger guantitative conclusions. lating. In scenarios for electroweak baryogenesis these are

HR

7



6028 MICHAEL JOYCE AND TOMISLAV PROKOPEC 57

always taken to be zero. Frofd7) it then follows thatug  close toT, with y~1+1/30. In fact we will see below that
can be expressed in terms®f so that(18) becomes simply  the rate of change of the VEV is typically large enough to
narrow the range of temperatures which dominate the inte-
T. gral even more than this. Thiedependence in the integral is
sph (200  therefore very weak and the only significant effect of the
T change in the expansion rate from its radiation dominated
. , valueH,,q is to change the depletion factér by the factor
where a;, is a number of ordeone whose precise value . jncreasing the expansion rate decreases the deple-

depends on the model and its correspondmg set of Ch"?‘rg?r%n because the sphaleron rate decouples at a higher tem-
Qa- In Sec. IV below we carry out the constraint calculation perature

B=—al¢B, Tgn=6NE

explicitly and finq a,~0.4 for typical electroweak mo_dels. Is this change significant? For a given thedwith all
Integrating (20) gives the baryon asymmet@freeze which parameters determingthe depletion factor igin principle)
survives to partake of nucleosynthesis: calculable. There is essentially no depletion for any expan-

sion rate greater than the expansion i{g, given by setting
o D=1 in (22). For H<Hg,, however, a baryon asymmetry
Bireezé— B(Tb)exr{ - Jt dtanrsph(t)} produced at the first order phase transition is attenuated by a
b factore Hset'H Whether a change in the expansion rate from
oy [To,_anl'spy Tp\P that in a radiation dominated universe to a different value is
=B(Tpexg —Hy f dT——\5/ [ @) important therefore depends on what the critical expansion
rate Hgpp is in the particular model. If a model hdsgy,

whereB(T}) is the baryon asymmetry at the completion of = 10"Haq, the baryon asymmetry left behind in the universe
the transition, at temperatufig, andH, is the expansion rate With H~Hgp, may be compatible with observation, and that
at that time. As discussed in the previous section the appradn a radiation dominated universe too small by a faetot?.
priate value ofT}, depends on the details of the of the phaself, on the other hand{,<H,,q the asymmetry will survive
transition and lies in the rangg,e [T, T,l- TO obtain the unattenuated in either universe.
latter form of (21) we have used the time-temperature rela- We now turn to determining the effect of treating the
tion t« TP which follows from (2). Changing variables to expansion rate as a variable on the sphaleron bound in its
y=Ty/T we can write thedepletion factorD as more familiar forms, in which the requiremef<1 is con-
verted to a bound on parameters in a particular model. The
bound is usually stated as a lower bound on the sphaleron

0

DE_mereeze energy, or as a lower bound on the ratio of a VEV to the
b temperature at the nucleation or critical temperature, and
T, = $(T)\7 then converted into a bgund on parameters in t_he 'specific

= _xaanCNggJ (—) y°tPe[Espd D/ Tl Yy, model concerned. We will follow through the derivation of
Hp 1\ Tp such bounds in detail, particularly because we wish to note

(22) certain points which are often overlooked in this context. We
then analyze the case of the MSM in detail using the same
Over the range of integration the fact®g,,/ Ty, in the expo-  effective potential7) and(8) used in the previous section.
nential increases from its minimum valueyat 1, which is Using the sphaleron energy= B(47/g)(¢(T)/T) as the
quite a large number-30. This means that the dominant variable in(22) we obtain the sphaleron bound in its new
contribution to this integral comes from temperatures veryform as

e[ To |?|d(eT)
_ 24 Gw -8 b 7 A—X
Hp=Hgpr 6anNFC(47T) gB Lb(_l_(x)) a7 (x)| dxx'e
1/2 -1
) Rt e Gl
~(47-r) B HT aT |, anlspd Tp) (23
|
where, to derive the latter expression, we assumed that over d(¢ 29(To/T)?
the range of temperatures which contribute to the integral the Td_T( ?) ~ = m
derivative term is approximately constant, a@d,/T(x))P T
~1. Let us assess the validity of this approximation in more T d\ ¢ y(1—(To/T)d
detail in the case of the MSM. At any temperature at which TN dT ?+ m ., (29
T T

the two phases coexist, i.e., betweknand T,
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FIG. 2. (a) Minimum ¢(T)/T vs the expansion ratéb) Minimum sphaleron energy vs the expansion r&tgMinimum expansion rate
vsmy. (d) ¢(T)/T vs my in MSM.

whereTd\;/dT=-88, and ference from the naive freeze-out estimetg,i~I'sp( Ty)]-
) 112 The range of temperatures which contributes in the integral
¢ at[a®—ANry(1—(To/T)9)] is therefore much less than betweBnand T,=0.99T., and
== . (25 e e . L
T 2\t the constant derivative approximation used in evaluating it is
indeed very accurate. Further, &g varies in this range the
For simplicity, in (24) we neglected the temperature depen-change in the result associated with the derivative is at most
dence ofa and y, which would result in numerically irrel-  this factor of three. In what follows we will keep track of this
evant corrections. Even though bo#iT and its derivative dependence of the sphaleron boundTgn and quantify it in
in (24) and (25) are very sensitive functions oF, in the  comparison to the other effects on the bound in which we are
temperature interval (=T=T, both are monotonically de- interested here.

creasing, and we can write their lower and upper bounds as The sphaleron bound as given (@3) can be converted,

follows: for a given expansion ratel,, into a lower bound on the
ratio ¢,/ Ty, [where ¢p= &(T;,)]. A numerically convenient
b _2a ¢ _a (05  andinstructive way to write the lower bound on this quantity
Te 3N To Ap is in the implicit form
and ) ( )
6Ny =———=N; NotViolK
12 F&%n tr/Vrot¥rot/\sph| &
L9 8] 6y[To? daf 86| 6 ﬂgl(ﬂ) , T
a7 el T Tt T T e To Blam d ¢ pHea
¢ dT T|,” Tp
d 2 8« 2
- é — Y — 4+ _ﬁ ~ — _')’, (27)
dT T, @ 2\ @ Hy P
—In +7In—|. (28

wherey/a ~18. The large value of the derivative means that
the pre-factor in front of the sphaleron rate(28) is =10°.
This is essentially just thénverse fraction of an expansion
time in which the sphaleron freezes dlgading to the dif- In Fig. 2@ we show the solutions to this equation ob-
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tained from an iterative evaluation ©28), for the MSM.  which, given (47/a,,)*?~20, agrees well with the numbers
We have taken V,,=8w? and fit N, N,x=86 read off from the figures. Over five orders of magnitude in
—5In(mf/8mg) [22]. The one loop result forC,, We  the expansion rate we see a decrease in the bountl, 57,

took from [23]: Kgy={7.54,5.64,4.57,3.89,3.74 for  py about 0.4, or approximately 0.08 per order of magnitude
my=1{0.4,0.5,0.6,0.8,fim,, and extrapolated or interpolated jcrease in the expansion rate.

for other valuesm,, <[10,80GeV. w_ we took from[22], The usual starting point for analysis of most extensions of
where it was found thatw_/g¢(T)e[0.4,0.53 for o gangard model departs from the sphaleron bound given

my €[10,80GeV. We neglected the plasma effectson. i
Finally, we tooka, =0.4, andB={1.52,1.61,1.83,2.10for as a lower bound on the ratio of the sphaleron energy or the

mﬁ/mfve{o,8>< 10°%,8x10°2,0.8,8 [21], and quadratically appropriate VEV to the temperature, and then converts this
interpolated for the intermediate values. The authorieaf '@ @ bound on the parameters of the model. We have noted
neglected the finite temperature correctionsBiothe most ~ that such a procedure should be considered more carefully as
important one being the cubic term. Even though we expediiére can in fact be significant model dependence in the
them not to be very important for the transition strengths a®ounds on these quantities. We have derived nevertheless
in the minimal standard model, it would be useful to inves-how such bounds are changed as a function of the expansion
tigate how the value of is affected by finite temperature rate of the Universe, and the approximate fd@&#8) is essen-
corrections, especially in models which can lead to strongially model independent. Using this formula one can there-
transiti_ons, like the minimal supersymmetric standard mOde'fore turn the usual Spha|er0n bound for any given model into

~ Besides varying the expansion rate over the range showg |ower bound on the expansion rate as a function of model
in the figure, we have taken a wide range of Higgs massegarameters, provided one has the correct form of the bounds

and different values foll,. It is instructive to do this be- b . o . )
cause the sphaleron bound is often stated as a bound on 198 ép/Tp (OF Egp{Ty) in the radiation dominated case: For

ratio of VEV to temperature as if this were a model- each set of parameter values one calculates the value of the
independent and temperature independent statement of fiven ratio, and then solves usifgo) for the expansion rate
We see from Fig. @) that this is very far from being true. Which reducegor increasesthe radiation dominated value to
For a range of Higgs masses from 10 GeV to 80 GeV théhe calculated critical value.
bound on¢/T decreases by about 20%. That most of the However, the most direct way to calculate the sphaleron
dependence comes from the factBr which varies non- bound as a lower bound on the expansion rate is simply to
negligibly with the Higgs mass, can be verified ea8iljhis  evaluate the integraR3) directly to findH g, for each value
is also clear from Fig. (), which shows the sphaleron of the parameters in the theory. We have done this for the
bound as a lower bound on the sphaleron enGEQB{(Tb MSM using the same parameter values and effective poten-
[where EJ,=E,{T)] as a function of the expansion rate. tial as above, and for the temperatufigs=Tc, Tnua, To- The
There is however still a significant mass dependeage ~ result is shown in Fig. @), where the sphaleron bound is
proximately 8% over the mass range considgredthe  given as a plot of _the minimum expansion rate required as a
bound stated this way. The temperature dependence of tfnction of the Higgs massn, . The dependence on the
bounds is comparatively smaller—a&sincreases fronT, to  temperature seen in the figure is greater than in the bound on
T, the bound ong/T decreases by 3-4 %, and far, ¢/T, since it also enters in relatingy to ¢/T, as shown in
& [Thue» To] by less than 1%. This dependence comes fronfig. 2d). Figure 2c) shows dramatically how badly the
the derivative of the VEV inside the logarithm, which as we usual sphaleron bound is violated in the MSMor no
saw above can vary by a factor of three over the range fronRhysical Higgs mass is the minimum required expansion rate
TC to TO' In ana'yzing any particu'ar mode' in deta” the W|th|n OrderS Of magnitude Of that in a radiation dominated
parameter dependence of the sphaleron bound stated thigiverse. The discrepancy of this result with the early sphale-
way in terms of these quantities should clearly be borne ifon bounds calculated for the MSM9] is explained by the
mind and carefully examined. much larger(now physical top quark massn,=175 GeV
The dependence we are primarily interested in here is thatsed here. For smath;; one can see fron®) that the one-
seen in both Figs. (@) and 2b) on the expansion rate of the l0op thermal contribution from the top quark dominakgs
Universe. Bothéy,/T, and ES, (T, show an almost exact and therefore, froni25), that¢/T stops increasing and levels
linear dependence on the logarithm léf which is evident ~©Off s seen in Fig. @). The increase in the minimum expan-
from (28). For a small fractional change in the bound on Sion rate_ seen in Fig.(8) asmy decreases below this value
b,/ Ty O Egpf(Tb due to a change in the expansion rate fromCoMes simply from the dependence o of the sphaleron

H,.q we have the approximate formula e;tg)rgy through3 (which decreases, increasing the sphaleron
rate.
In many extensions of the standard model it has been
Am\12 [, P In H shown that, in contrast to the MSM, there are physically
o sph rad .
(a—) (T—)=A T~ T [gp. 1 (29 allowed regions of the parameter space where the usual
w b b 1_7(Lph> sphaleron bound is satisfied. The way of stating the sphale-
Ty

SStudies of the two loop effective potential and lattice studies
AS(HITY(PIT)=—(SBIB)[1— 7B Y a,4m) Y3 (4/T)]7. For  show that the one-loop ring improved effective potential we are
my=10 GeV to 80 GeV,sB/B=1/8, and hence5(/T)/(#/T) using underestimate the strength of the phase transition, but not
=1/6, accounting for most of the dependencenagpnon Fig. 2a). enough to significantly alter the conclusions drawn here.
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ron bound we have illustrated for the MSM can be easilyviolation produces in various ways a term biasing the anoma-
generalized to any such model. Besides being, as we argue ious sphaleron processes, causing the creation of baryons on
this paper, a more correct way to state the sphaleron bourat around the wall. These source terms, which are present
(given that the expansion rate really is an unconstrained pawvhen there is space or time dependence of the condensate
rametey, our discussion also shows that it is an instructivefields, can equally be used to bias the anomalous processes
way to state it, because it quantifies how well or badly theand produce baryons when the phase transition is not first
bound is satisfied or violated. If we state the sphaleron boundrder. In the case of a second-order or cross-over transition
in this way, it is easy to determine the effect on the calcuwe expect the evolution to be homogeneous with time de-
lated bounds in any change to input parameterg. to any pendence only of the condensate fields, and we will model
of the pre-factors in the sphaleron rate the problem this way. In fact the validity of the analysis is
Having discussed how the sphaleron bound should be résroader than just the regime where the phase transition is not
stated as a lower bound on the expansion rate, let us adkst order. It also describes well the period after the comple-
finally what electroweak baryogenesis at a first order phasgon of a first order phase transition. In particular, as we will
transition can potentially tell us about the expansion rate atliscuss below, it describes the case where the phase transi-
that epochA priori we do not know what it is and can use tion is too weakly first order to satisfy the sphaleron bound.
baryogenesis as a probe. If the correct electroweak theory We will now consider separately two types of source
turns out to be one in which there is a first order phasderms for baryogenesis discussed in the literature.
transition which successfully produces exactly the right

amount of baryons during the phase transition, we would A. Potentials for baryon number
have compelling evidence that the expansion rate is greater . ) ,
than the corresponding critical vallr,,,. But it can tell us The first apparently viable mechanisms for electroweak

no more. If the model satisfies the “old” sphaleron bound baryogenesis, discussed [iB5] and[26],. considered poten-
with the assumption of radiation domination, but hast'als_ for_baryon ngmber. T_he model_s differ in t_helr particular
Hepr<Hrag (as it typically will), the success of the model reallzatlons_ of this poten_tlgl. In various theories—two dou-
provides no evidence that the Universe expandsigg. It  Plet extensions of the minimal standard mof] and su-
could even potentially expand orders of magnitude slowepersymmetric theories with or without an addlthnal singlet
than H,,g. We will now see that in contrast electroweak [26]—there areCP odd terms in the effectlve~act|0n for the
baryogenesis in a homogeneous universe provides a mug@uge-Higgs sector, of the forngy/16x%) xFF, where F
more sensitive probe of the expansion rate at that scale. andF are the S(?) field strength tensor and its dua, is
some field or combination of fields which acquire VEVs at
the phase transition, times a numerical facttypically a
suppression When these terms are integrated by parts and

Analysis using the effective potential constructed in per-the anomaly equationg@/lGa-rZ)Ffzaﬂj’B‘ is used, in the
turbation theory indicates a first order phase transition but ifomogeneous cadgvith time dependence onlythey pro-
only of validity for Higgs masses up to about 60 GeV. Re-duce terms calculationally equivalent to a chemical potential
cent non-perturbative resulf24] indicate that for heavier for paryon numbernB. Specifically in two doublet models
Higgs masses the line of first order phase transitions ends ifhere are terms with25]

a second order phase transition at about 80 GeV in the mini-

IV. BARYOGENESIS IN A HOMOGENEOUS UNIVERSE

mal standard model. For larger masses the transition is an . Tia( m\22 :
analytic cross-over, i.e., there is actually no phase transiton ~ x8=~ | —1(@]De® 1~ (De®1)'®)
since all physical quantities vary continuougind differen- U1

tiably) as a function of temperature. This sort of behavior is )

typical of a system in which there is no order parameter ~7§3(ﬂ> Lb, {3~1.202, (30)

which can define the symmetry state of the system—the mT v§+v§

gauge symmetry is never strictly speaking broken or unbro-

ken. whered is the relative phase between the two doublets, with
The only departure from equilibrium in this case is thatVEVs of magnitudev,; andv, (where the former couples to

caused directly by the expansion of the Universe. All physi-the top quarks In theories withCP violation characterized

cal quantities vary on a time scale characterized by the cooky some scalév [26] the equivalent quantityg is

ing rate~H. Unlike the case of bubble nucleation there is no

separation between the mechanism by which the baryons are 1

created and the part of the calculation involving the expan- —— 0| $|?,

sion rate directly, a separation which allowed us to take the 3m?2

created asymmetry simply as an input without specifying

how it was created. Here we must make use of a particulawhere the first case is a theory with doublets only, the second

model in order to answer the question of how the baryorone with a singles.

asymmetry depends on the expansion rate. Up to higher derivative corrections to the VEVs the sys-
Most work on mechanisms for electroweak baryogenesisem in this background tries to thermalize to the equilibrium

has considered extensions of the standard model with an adi the presence of this extra term, in which the baryon num-

ditional source ofCP violation beyond the KM matrix. On ber is given by the expression {17), with ug=0 andH

bubble walls formed at a first order phase transition@  including the additional term due to the background.

3m 908 (31
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It is perhaps instructive to note exactly why an equilib- cussed recently if30] and a cross-over from one limit to the
rium calculation of this sort can give a baryon asymmetry.other explicity shown to occur atny~mp (the vacuum
The Sakharov requirement of a departure from equilibrium isnass and Debye mass of the gauge bosons respegtively
sometimes shown using this type of expression by actingConverting this to a constraint on the ratio of the VEV to

with ® =CPT on baryon number as follows temperature, it turns out that the symmetric phase calculation
is a better approximation when the sphaleron freezes out.
(B)=Tr[®@BO'Oe PHO']=—(B) (32 Thus we will calculate here in this approximation, using the

“unbroken” phase classification of the states. In Sec. IV B
and thereford B)=0. The same will hold true if we allow we will also see that either basis of states gives almost iden-
non-zero chemical potentials for charges which@feven tical results.
and, of course, it will not hold if we impose a chemical We take the case whexxk=0 as this will turn out to be
potential forCP odd charges likd or B—L. In the case we appropriate in the regime of expansion rates of interest for
are considering the reason it does not hold is that the addthe generation of the observed BAUWHowever, the numeri-
tional effective term inH is not CPT invariant, as the time cal difference induced by this additional constraint will turn
varying condensate field violates CPT spontaneously. Theut to be insignificant. Expressing the charges in terms of
underlying Hamiltonian is of course CPT invariant, but in particles densities,, and using the linear approximation
the expanding Universe this symmetry is spontaneously vion,=(T2/12)k,u, , Wherewu,, is given in terms of the chemi-
lated. cal potentialsu, for the chargefQ, by w,=q5ua (Where

The constraints which are to be imposed are those setting’jv is the Q4 charge of the specias) andk, is a statistical

all the charges which are conserved over the relevant timgyctor which is equal to (B) for fermions (boson$ in the
scale to zero. Compared to the case of the same source teffiassless approximatidnye find

used to generate a biasing of baryon number on the bubble
walls during a first order phase transition, there are thus two 2
important differences:

(i) The “relevant time scale” on the bubble walbf
thicknessL moving with velocityv,,) is the wall passage

8
Y= 3 (10+Nn)puy+2ug+ §EJ‘,LLJ'_,LLQR}

time L/v,,, typically ~10%/T. Here it is that characterizing 1 T2(8 4 4

the time rate of change of the field; in the homogeneous case §B— Li= ke §,LLB+EJ- 9 + 36 ) M= 51i/-LeR}
this will be ~H™!. Thus the numerous processésg.,

chirality flipping processes of the lighter quarks and leptons

which are effectively inoperative on the bubble wall, are T?

equilibrated in the present case. The set of relevant con- €r= E[_“Y_'“l""“ea] (33
served charges is therefore much smalerd the calculation

therefore simpler For a radiation dominated universe the T2 4

only conserved charges at the electroweak scale are the ex- _ s

actly conserved charges—hyperchaigeelectric charge, B 6 2pytAust 32"“’} (39

and 3B—L; (L; the lepton number in generatian. The
charge which is violated slowest is right-handed eIECtrOWNhere,ui is the chemical potential foB—L;, andn is the
numbereg, since it is coupled to other species only through,umber of Higgs doublets.
its small Yukawa couplingy., by processes with rate  getting the first three charges equal to Jave find
~y2T~10 2T (times a number of order 0-0.01; see
[27], [28]). Thus forH>10" 2T we will also need to adég 1 36294 6
as a conserved charge, fidr>10 8T botheg and ug, etc. Bo=c,T2ug, Cp== u
(ii) On a bubble wall the constraints forcing the conserved " © " 6 399+82n
charges to zero are appropriate only when negligible charge
can be transported onto the wall over the relevant time scalgyote thatc,=B,/(T?ug) is almost insensitive ta, the
(The charges are conserved only globally, not locally on thgyymber of Higgs doublets, varying only between 0.436 and
bubble wall unless this is trye9].) This places a condition
on the thickness of the wall>D/v,, for the applicability of
this simple form of the calculation. This condition follows ) ) ) ) ) )
from the requirement that the wall passage time be great rGWe will negl_ect_the F’Ote”“?”y Interesting eﬁeCt. discussed in
. . . 2y - 31]. Incorporating it could lead in certain cases to minor changes to
than the diffusion timel(/v,,>D/vy,), in order for transport the final baryon asymmetry
to be inefficient. In the present case the U_nlverse(e_lls- "Including the lowest order mass correction to this simple formula
sumed homogeneous and the global constraints forcing theasults in n,=(T2/6)u,(1— (3/2)(m, /=T)?) for fermions, and

charges equal to zero are always appropriate. n,=(T23)u,(1—(3/2)(m, /=T)) for bosons. In this paper we ig-

Because the electrowegk phase transition IS Not @ SYyMM@pye these mass corrections since they appear as a subleading cor-
try breaking phase transition, we cannot define an exact Crigction to the result presented in the text.

terion for whether the “broken” or “unbroken” basis of 8 the “unbroken” phase one can choose to constrain any two
particle states presents the correct description in the equilibmear combinations of hypercharyeand isospinT ;. The choice of
rium calculation. A correct calculation would assume neithery and T, is simple, becaus&s is then proportional to its own
basis. A simple example of such a calculation has been dishemical potential and;=0 is trivial.

(35
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0.439, a: changes from 0 te.® Taking the source term to _ ng
be as given in30) or (31), we setug= g in (35) to obtain Xy=——5——0. (38)
the baryon asymmetry in the “equilibrium” to which the v1tUy

baryon number violating processes will try to bring the
plasma in the slowly varying background. To calculate th
rate at which these slow processes bring the system to th
state, we impose a chemical potentig) on baryon number
and include the source term. The baryon numBen this
state is then given by35) with the replacemeniug— ug

In the unbroken phase this is just a gauge term, but in the
oken phase it can have physical significance because hy-
percharge is not conserved, being violated by VEV sup-
pressed terms.
Again, as discussed in Sec. IV A, we can calculate either
in the broken phase or unbroken phase, but the latter is prob-

+xe, and therefore ably more appropriate for the temperature range of rel-
evance. In this case of course we must include the informa-
_,/ B ) tion about hypercharge violating processes to get a hon-zero
M#B=Cn 7| 5 ~CnXB (36) answer, so calculating in the unbroken phase means taking

the basis of chiral states of the unbroken phase and treating

] o ) ~ the mass terms as interaction vertices which can violate hy-
Using (17) this gives the rate at whicB approaches its percharge by flipping chirality. The correct constraint calcu-
“equilibrium” as lation is therefore one in which we take the same global

conserved charges as in the previous calculation, but instead

) - » Tsph 1 of the constraint on hypercharge, we must impose the con-
B=—anl'ss{B—CaxsT"), Fsph:6NFFy an=gc»  straint on the(conservelielectric chargeQ, and we get
n
(37 T2
where a,=0.382-0.380 asn=0—x and I'y, is given in
(19.
Before calculating the final baryon asymmetry we con- + 521“1_“% '
sider another treatment of induced source terms for baryo-
genesis in a time dependent background. 1 T2(8 38
B. Potential for hypercharge 4 4

_ A di_fferentltt)reatment of the biasing of baryon_ number was + §MB+2j 3 + 36 ) M= 5“,%4,
given in[32].*" In the broken phase of a two Higgs doublet
model the relative phasé of the neutral components of the T2

Higgs fields enters in the fermionic mass terms. A hyper-
charge rotation of the fields to remove this phase from the
mass term producest tree levela real mass term and an

additional term in the Lagrangian which, in the homoge- B T2

neous case can be written simply asY, whereY is the 6
hypercharge operatdt,and

er= g LMy QT M1 pel,

4
2uyt2uqtapgt 521-“]-

. (39

The “chemical potential” uy for hypercharge here is the
effective one which arises from the source term for hyper-

%f we had not assumed the right-handed electron to be in equilibcharge, i.e.,uy=—xy. Setting the conserved charges to
rium, the change would be small. In this case=0.455-0.462, as  Z€r0 in(39) we can solve foB to find
n=0—o0,

The account given here is not precisely that of the original ver- _ T?[ 2410+n) . N 36(89+12n) 40
sion of the idea given if32], which treated a potential fdiermi- T 61219+ 164nXY 1219+ 164n KB - (40)

onic hypercharge. It was pointed out i3] that the rotation should

also be performed on the Higgs fields, giving a potential for totalysing (18) we obtain the equation describing the relaxation

hypercharge which in the unbroken Iimi¥EVs —0) is pure  of baryon number to the “equilibrium” in presence of the
gauge, and therefore can have no physical effect. The 'eadi”ﬁypercharge source term:

baryon production is in this case mass-squared suppressed. For a
discussion of this point, see also Sec. III[8#].

e follow the convention used §82]. There is nothing special
about the choice of hypercharge. The essential element is that it is
an anomaly free charge which is spontaneously broken by the mass
term. A rotation proportional to isospin, for example, or any charge
which is a linear combination of hypercharge and a charge exactly
conserved in the broken phase is equally good. It is not difficult to
check that the extra induced “source” term always drops out in the ¢l = 24(10+n)
calculations given below. " 6(1219+164n)°

B=- arqrspl{B_ Cr,1)-(YT2)y

. :6N2F_i’“ . l219r16m
PETF g3 T 36(89+12n)

(41)
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Note thatc;=0.033-0.024, ande,,=0.3805-0.3796 for integrated against the appropriate Green’s function. The
n=0—w. The rate of relaxation is essentially independentfreeze-out timgtemperaturet(Ty) is that at which the in-
of the number of doublets, and it is almost identical to thetegral in the exponent is equal to one, i.e.,
rate in the presence of a potential for baryon number in Sec.
IV A.
t
It is noteworthy that the coefficient, is significantly f dt" e, g t")=1. (43)
smaller than the corresponding coefficient in the case of a t
potential for baryon numberc(/c;=13-18 asn=0—x).
It follows therefore that, even though the baryon numberyq approximation in42) follows since we would expect
source(30) is suppressed by a factor of mass over tempera:

ture squared relative to that {88), the former may give the that the time scale characterizing the variatiotyishould be

dominant source term for baryogenesis. The reason for this i f the same or.der as thgt characterizing thg changg/ :
Qwever, as discussed in Sec. Il B, there is an exponential

a suppression due to strong sphaleron processes in the ¢ . )

of a hypercharge source terf85]. In the massless quark ependence in the' sphaleron rate AT W'.th a Iarge_pre-
approximation these force the densities of right and |eﬂ_factor (N_ le). This means_that the derivative |ns_|de the
handed baryons equal, i.&, =Bg. On the other hand, it is integral in(42) can be approximated by a delta funcuomat
easy to show that, with source terms for a charge such #&own to a time scale much shorter than that over which
hypercharge which is conserved in baryon number violating/aries, and the result follows. The sphaleron tag, enters
processeS,Boc(3BL+LL). With B—L=0 this implies only in determining the freeze-out value for the source
[CaXT?]ireeze: Optimally, the sphaleron processes switch off
when the source is at its maximum, leading to an estimate of
the maximum production of baryons at a second order phase

Bx(3B—Lg) (Wherelg is the density of all right-handed
leptons. Therefore, settindg =0 would lead to an equilib-
rium with B=0, i.e., a vanishing source term for baryon - C
number. The non-zero result we have obtained is therefor@nsition or cross-oveB,a=[CoxT"Imax- TO a very good
proportional to the charge in the right-handed leptons, whicifPProximation the final baryon to entropy ratio is
gives a small statistical factor related to the fraction of the
total number of degrees of freedom they represent. B 45 [H d

When the VEVs approach zero, the result(#1) does = n (_> (T_X) , (44)
indeed vanish, but not explicitly. In this limit the rate of the S 2729, \ T/ freeze freeze
“hypercharge violating” processes goes to zero, so the
“equilibrium” calculation is no longer appropriate as it is .
only valid on a time scale longer than one which diverges a&'Sing the fact ghad)(/dtj —HTdy/dT and that the entropy
one sends the VEVs to zero. It is not difficult to check thatdensitys=(27/45)g, T° (g, the number of relativistic de-
one does indeed get zero for the baryon number in the preS/€es of freedom The subscript denotes that all these quan-

ence of this source term when we impose the extra constraifi{/€S &re to be evaluated at the sphaleron “freeze-out.”
appropriate in this limit2 In the case of baryon production in a homogeneous Uni-

verse with source terms of this type the final baryon asym-
metry is therefore proportional to the expansion rate at
freeze-out. This contrasts completely with the case of baryo-
Equations(37) and (41) have the same form for both genesis at a first order transition, for which the baryon asym-
source terms, and so we can analyze them together. Integraetry can be effectively the same for an expansion rate dif-

ing (37) gives the baryon asymmetry as a function of time adfering by many orders of magnitude.
We can invert(44) to get the range of expansion rates
B(t)= — J" ftdt’ TRt consistent with the baryon to entropy required by
(H= vy, Cx ()T nucleosynthest$

C. The baryon asymmetry

d F{ ft
X—— expg — dt,’anrspr{tn)} ( H) _q 0.44 1
' ' = ~(2—-12)x10 - -
! t T freeze ( ) 19* Cn |(TdX/dT)free24

=[ Cn)-(Tz] freezer (42 (45)

wheret; is an initial time chosen before the phase transition 4y big is (Tdx/dT)jeese in any given theory? A full

or cross-over takes place such that the source term may Bgsamment of the phase transition in any of the models men-
taken to be zero. This expression is simply the source terfjoned would be required to actually calculate this, a task

however considerably beyond the methods used to date in

2Choosing to impose the conservation By with chemical po-

tential wr,, we getT=(T?/6) (10+n)(ur,+ o) andQ also picks  13pp;g range corresponds to the conservative bounds from direct
up the extra term (18n) ur,. Imposing T;=0 leaves only the  gpservations of element abundances givefs#l. Tighter bounds,
linear combinationd+ uq in the other equations. The solution is corresponding roughly to the range 43)x10 1 in (45), are

the trivial unperturbed equilibrium. given in[37] and[38].
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the study of the phase transitibhA naive guess would be Ne U1 Ay Uy
co=—min| 1——+——|. (48
d dq’) 4)\5 %) 4)\5 U1
X
dt dr¢ € (46) There are two CP conjugate solutions which will be split

by additional explicitCP violation. How the angle changes
taking the field y to trace the VEV(or combination of as the VEVs do depends on the values of the ratios of the
VEVSs), which is itself then assumed to evolve roughly in couplings Ag/Ns and A;/As. A necessary condition for
proportion to the temperatufée., on a time scale given by d#/dT#0 at the phase transition is ab6—1, which is the
the expansion raje The parametek is one characterizing case whenk;/2\s<v,/v,<2\s/\g. For couplings such
CP violation, which we might expect to be constrained by that the first term in48) dominates, ana, changing faster

CP violation phenomenology of the relevant model. thanv, as a function of temperature, we have

A full calculation of any given model at finite temperature

i i - de 1 Tdv vi_ (N2

would be required to turn the bourid5) into a precise one T~ — e S A
on the expansion rate alone. However, short of such a calcu- daT tanf v, dT’ vy \Ng/
lation, we can do better than the very naive estimate given by
(46). dinv, dinwv,

(i) In Sec. 1l B we examined the minimal standard model dinT = dInT ° (49)

and saw that, near the critical temperature, the VENVs a
very sensitive function of the temperature, with Typically we haveTd6/dT~dv,/dT, but there are also
Td(¢/T)/dT~d¢/dT~(100—-30) in the range of tempera- parts of parameter spa¢eear co®)=—1) where the phase
turesT, to Ty, and about 60 at the nucleation temperaturecan change much faster than this. The only role of the ex-
Typically the sphaleron will freeze-out in this range of tem- plicit CP violation here is to split the two degenerate minima
peratures, as the sphaleron rate changes by many orders suf that the same sign is chosen everywhere. This illustrates
magnitude. The same sort of behavior can be seen to comhat the constraint on the parameter which we caddtbm
tinue at larger Higgs masses in the non-perturbative treatP violating phenomena at zero temperature may be ex-
ment of the phase transition, in the case when the phageemely weak. With a moderate fine tuning it can be consid-
transition is a “sharp—but regular—cross-ovef24]. This  erably larger than one, and not related directly to any small
means that the range of temperatures over which physicgarameter associated with the smallnes€ &f violation. In
measurables like the susceptibility vary is a small fraction offact in theories such as the minimal supersymmetric standard
the temperature at which the change occdtss, of course, model(MSSM) it is naturally the case that the terms which
this “sharpness” which allows one still to talk about a phasebreak CP spontaneouslywhich are induced in the plasma
transition when, strictly speaking, there is ngnietcom the  through thermal correctiohsare dominant over the terms
data in[24] we see that there is a range of temperature of avhich breakC P explicitly (which are suppressed by a loop
few GeV which compares with a “transition temperature” factor [40]. We conclude, on the basis of a simple analysis
anywhere between 60 and 200 GeV. Thus the standardf the two Higgs doublet model, that the naive estin(@t
model estimate ofd¢/dT~60 seems reasonable, much for T(dy/dT) with e~1 is too small by about two orders of
larger than our naive estimate (46). magnitude. A result of this magnitude is obtained for a large
(i) We can also learn something about the constraints oportion of the parameter space, without any tuning. With a
€ by looking at the effective potential for a particular case.moderate fine tuning, the effectiv@P violation can be fur-
Consider a two Higgs doublet model. One interesting regimeher enhanced. To make a more precise statement would re-
is that in which the evolution of th€P violating angle is quire a detailed analysis of the Higgs sector of the particular
determined dominantly by terms which bre@l spontane- model.
ously In a CP invariant Higgs potential39] only the terms

V. NON-STANDARD COSMOLOGIES

As[ (Pl )2+ H.c.
L ($12) ] Having established quantitatively the dependence of the

baryon asymmetry on the expansion rate in two possible sce-
(\eb1d1+ Nrdhbo) (1ot H.C) 47 narios for baryon production at the electroweak scale, we
i ) ~nhow turn to the discussion of physical mechanisms which
are functions of the relative angle of the two VEVs. Taking could lead to such a different expansion rate at the elec-
the real parts of the VEVs to be determined by the rest of thggweak scale.
potential[i.e., working in the approximation that the terms  ag mentioned in the introduction this kind of question has
(47) are smal this gives a quadratic potential for the cosine previously been treated in the context of calculations of relic
of the relative phase, whiclitaking As—\; positive), is  gensities of weakly interacting particles 8] and[4]. The
minimized at relic density of a weakly interacting species is determined by
the temperature at which the species decouples from the or-
dinary (visible) matter, which depends, just as in the case of
Yperturbative methods apply when the phase transition is fairjfn€ sphaleron decoupling discussed above, on a comparison
strongly first order. The methods which have been employed tdetween the appropriate interaction rate and the expansion
describe the opposite regime do not include the evolution ofthe  rate of the Universe. In typical models this decoupling oc-
odd fields relevant here. curs before nucleosynthesis, and therefore one is led to con-
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sider, just as we are doing here, possible alternatives to raquivalent of 1.5 extra Dirac neutrino degrees of freedom

diation domination at that epoch. The alternative which isover the three degrees of freedom of the standard model, i.e.,

considered exclusively if8] and in most detail if4] is: we allow an additional energy density at 1 MeV which is
(i) An anisotropic universe: A universe which is homoge-3(7/8)/10.75=0.25 of the standard model orfwith 10.75

neous but not isotropic is described by a metric with threedegrees of freedomFrom (50) this means

scale factors, one for each spatial dimension. With an adia-

batic approximation(i.e., expansion slow enough to allow 1 ae —05 51
thermalization it is the effective volume expansion raké NIEW) ans G

associated with an average scale fagtarhich determines ) o
how the temperature changes in the same way as in the isélsing Ta=f(a)Tea, this gives the upper bound on the ex-

tropic FRW spacetime. The equation of motion Foris just ~ Pansion rate at the electroweak scale

that of the FRW space, but with an additional term which is H T, 2
e%ivalent to a component of the energy density scaling as ?s1.8>< 1014 ﬁgee) . (52
1/a®.

A further possibility considered if¥] is The result differs only by/3/2 if we take the less conserva-

(if) Non-standard theories of gravity. The case studied iRjye nucleosynthesis bound [37] and[38].
[4] is a Brans-Dicke theory, which again turns out to effec-  TakingH,,, to be the expansion rate corresponding to the
tlvely produ%e an extra component in the energy de_ns'%pper bound52), the requirement45) for generation of the
scaling as H". There are also of course many other variantsypserved BAU at the electroweak scale in a homogeneous

on standard Einstein gravity which can be considered.  ynjverse can be expressed as a requirement of the relevant
The simple possibility we will concentrate on is: CP violating parameter

(iii) Einstein gravity with isotropy and homogeneity, but

with an extra contribution to the energy density which is dy
important prior to nucleosynthesis. As noted by one of us Tﬁ
(M.J) in [5] any mode of a scalar field dominated by its (53
kinetic energy has the required property, as its energy den-

sity can scale as fast asat/ The electroweak phase transi- Apsorbing the nucleosynthesis limit, i.e., takifg= H gz, We
tion could potentially occur during a phase of the Universenaye the strict lower bourd

dominated by the kinetic energy of a scalar field, termed

(100 Ge\)) 2( H max( 100 Ge\/))
H(100 GeV} |°

~(1-6)0,

freeze Tfreeze

kinationin [5], which can end before nucleosynthesis as the dyx 100 GeV} 2
kinetic energy density red-shifts away relative to the radia- T =0 Treoe | (54)
tion. Below we will discuss several ways in which such a freeze reeze

phase can come abqut within the context of inflationary cos- krom the analysis in Sec. IV C it follows that this bound
mology, which explains the assumed isotropy and homogenay indeed be satisfied in extensions of the MSM such as
neity. In particular we WI|| discuss models which come natu-those we have discussed, without any fine tuning. If the up-
re_llly out of an alterr_1at|\_/e to the usual theory of reheatlngper bound52) on the expansion rate is not saturated, @
discussed by Spokoiny ifl]. violation parameter is required to be larger as giver(38).

A clear mot|v(_':1t|on_for cons@ermg suph models follows aq giscussed in Sec. IV C, with some fine-tuning of param-
from the calculations in the previous section. If we have suclyiers in the potential, this parameter can indeed be enhanced
a component scaling asaf/ the expansion rate is given by 4 considerably greater than the typical value which just sat-

2 isfies the lower boun4). An exact statement of how large
,_(a] _87G pe it can be would require a detailed examination of the model
H al 3 2 in question.

The important result is that in a cosmology with an addi-
wherea, is the scale factor when the density in the modetional component scaling asaf/ which dominates prior to
becomes equal to that in radiation apgdis the total energy —nucleosynthesis, the creation of the baryon asymmetry is
density at that time. The factdi(a) accounts for the effect Possible(i.e., consistent with all observationat the elec-
of decouplings, and, assuming adiabatic decouplingsifoweak scale in a homogeneous expanding Universe. The
f(a)=[g(ae)/g(a)]*® whereg(a) is the number of relativ- fact that generation of the BAU in this case has generally
istic degrees of freedom as a function of the scale fagtor been dismissed as impossible provides clear motivation for
Nucleosynthesis constraints place a lower boundgnthe  the consideration of such cosmologies in greater detail. Cer-
temperature at the time of equality of radiation-kinetic en-t@inly also as experiment pushes the bounds on scalar par-
ergy density, which can be inferred from the correspondingicles upwards, the usual sphaleron bound for generation of
bounds on additional relativistic particle degrees of freedom.

This is the case since the predominant effect of such extra
degrees of freedom is also in the change they cause to theSyote that taking the upper bound on the expansion rat&an

expansion rate at the beginning of nucleosynthesis, whicBorresponds to absorbing the upper bound on effective number of
determines the crucial ratio of neutrons to protons when th@egrees of freedom at nucleosynthesis, which is only consistent

weak interactions drop out of equilibrium atl MeV. We  with the lowest baryon to entropy ratiincreasing the expansion
take here the conservative bounds[86], which allow the rate increases the fraction of helium

6 4

Qe
a

a
+f(a)

. (50
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the BAU is becoming increasingly severe and alternativenal expansion very similar to that of radiatioa%t? or
mechanisms for the production of the BAU within the con- matter @t?3). Writing the stress energy tensor in terms of

text of electroweak cosmology become more relevant. the pressur@ and the energy density in the standard way,
the equation of state jg= p for the kinetic mode, in contrast
A. Kination to p=(1/3)p (radiation, p=0 (mattep, andp=—p (infla-
tion).

Consider the dynamics of a real scalar fieldvith poten-
tial V(¢). Varying the action

Szf d*xy/—g

We now consider various ways in which a phase of kina-
tion could come about. Inflation is the standard paradigm
1 which explains isotropy and homogeneity of the Universe as
Eg“V(&M¢)T(aV¢)—V(¢) (55 it appears today. A scalar field drives a period of inflation

and subsequently decays, filling the Universe with radiation
. 2 2 220 and matter. We will assume that a period of inflation pro-
?notl taklrt1g th_e FRt\éV metrldt_sz—dft at_(t) (:X ;/;lllthhscale duces the isotropic and homogeneous Universe, but ask how
actor a(t), glves. € equa |on. 9 m.o lon for the o.moge- it might come about that after inflation a reheated universe
neous modes which, after multiplication ky can be written  \yould be dominated by a kinetic scalar mode.
as follows Two questions can be separated:
How can a scalar field potential support a mode that is
+3H}2=0. (56) kinetic energy dominated? 'I_'his question is twofol_d. I_:irst,
what shape must the potential have to keep the kinetic en-
o - ergy dominant? Second, what is required of the field in order
Defining {(t)=V(#)/p(¢), wherep(t)=¢°/2+V(¢), we  that energy does not leak out of the coherent mode?
find How can kinetic modes come to dominate the energy den-
. sity, i.e., how can they be excited?
p(t)=p(t,)exp— f 6[1— () JH(t)dt Let us start with the_hrst_que_stlon. The most trivial case of
to potential energy domination is the example used above of an
. da exactly flat potential. This case is not of interest here, since
_ _ the energy in such a mode is negligible at the end of infla-
=p(t,)ex 6[1 a)]—. 5
plto)exp— fao [1-d@)] a 67 tion, as it also red-shifts away asaf/during inflation. Any
kinetic energy domination must therefore occur through the

df1.,
gt §¢ +V(¢)

When the kinetic energy dominates~0 and roll of a field in a potential after inflation. The dynamics of a
homogeneous real scalar fiedtd with potential V() in an
1 expanding FRW universe are described by the equations
. 1 .
y ’ . | ’ —
If a potential possesses a flat direction, for example, the en- ¢+3HP+V'(¢)= a3 dt(a $)+V'(¢)=0 (62

ergy in the associated coherent goldstone mode scales in this
way. In this case the scaling can be seen to follow directly

from the conservation of the Noether current associated with H2= —[E¢2+V(¢)+pr
the symmetry. Consider for example a complex scdbar 3M§, 2
with a potential invariant under the global symmetry (63
d—e D
o, +4Hp, =0 (64)
NDTD—02)2. (59 PP

. _ _ where p, is the energy density in radiation, to which we
The moded>=v§"9 with f=constis a solution of the assume the scalar field to be coupled only through gravity.
equations of motion for which the conserved Noether chargehis is a roll damped by the expansion of the Universe and

IS the first question is therefore: how steep must a potential be
- ) in order that the roll be more effective in creating kinetic
j°=p,=a’i®T°® =2a%20. (60)  energy than the damping is in attenuating it? A hint of the
] ) solution is immediately given by considering again the trivial
Thus #x1/a® and p=v26%/2x1/a8. caseV(¢)=0, which gives the solution

Such kinetic energy dominated modes represent the oppo-
site limit to inflation[41] which is driven by potential energy : . B[t . t
so that{—1 andp(t)~p(t,). Indeed for any homogeneous ()= do L (1) =ot ¢°t0|ng
mode[assuming only tha¥/(¢) is positive we have that (65)

3o
a

a,\° whenp,=0. If, with this solution for¢, the potential is such
p(to)(§> <p()=p(ty), t=t. (61 that the terms which depend on it decrease faster than the
other terms in the equations of motion, the kinetic energy
Instead of superluminal expansion in inflation, a kinetic en-domination will continue once established. Given that the
ergy dominated mode of a scalar potential drives a sublumitime dependence is logarithmic, it is clear that an exponential
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potential is what is required. That exponential potentials deenergy dominated universe wheae:t'® (H=1/3t). If the
fine what is steep enough for kination can be seen by takingcalar field is in a kinetic energy dominated mode, we find,
the explicit attractor solutions given [@2] for the potential assuming radiation domination, that

V($)=Vee M

_ Clag\® L [t
2 N2 _ A2 ) d(1)= g a =, T) )
¢>(t)=xln t, a«t ) é‘—l—g, \<6, (66)
_ (| 2
and the origin of¢ is redefined so thaV,=2\"2(6\ 2 ¢(t):¢o+2¢oto(l_(T) ) (67)

—1). (For simplicity we tookMp=1.) The context within
which [42] discussed this potential was “power-law infla- The result is that the exponential potential energy will al-
tion,” for which the superluminal expansion occurs whenways “catch up” with the kinetic energy and the field will
A<+/2. From (57) it follows that p:xa_)‘z so in the limit  be driven into a mode which scales much slower than radia-
A— /6 we recover the scaling of an exactly flat potential.tion, until p,~ p, . These quite different behaviors in the two
When \> /6 the pre-factor cannot be written in this way. limits py>p; (p4=1/a% andp 4<p, (p~const) which tend
There is no single attractor solution, and the raficather o drive the system from one regime to the other suggests
than being fixed approaches zero asymptotica”y_ that there may be an attractor solution W[IQ"“ 1/a4. That .
In this analysis we have assumed a simple roll down guch a solution exists and is an attractor has been noted in
potential. Another possibility is that a field oscillates about al44] and[45]. It can in fact be generalized to the case that the
minimum. It is easy to see frort67) the well-known result non-scalar component scales gg,=<1/am (e.g., non-
that an oscillation in a quadratic potential gives an energyelativistic matter wittm=23), and all components scale as it
scaling like matters1/a® since { can be replaced by its does with the ratios of their contributions given by
average({)=1/2 over a time scale of the expansion time.
The analysis for the)" potential is given if43]. The result
is that an oscillating mode scales as®”("*2) and, corre-
spondingly,({)=2/(n+2), so that the kinetic energy be-
comes more dominant asincreases. In this case one need not assume that the pre-factor in the
We also require that, if such a mode is excited, the energgxponential can be written in the special form required for
remains in it, i.e., that it does not leak out by decay of thethe solution(66) and\ can take on any value>+/m, which
coherent mode into particle excitations of itself or otheris just the requirement that the attractor modg66) with
fields to which it is coupled. In the present context we wantp,,=0 scale faster than 47.
to maximize the effect of the mode and therefore need the The existence of this attractor means that if we start in a
energy to stay in the kinetic mode from before the elecradiation dominated univers@r, more generally, in a uni-
troweak scale until shortly before nucleosynthesis. Potentialgerse dominated by energy scaling aa™)/we will always
which support coherent modes which are so weakly couplednd up in this solutiori68) rather than in the kinetic energy
to other fieldSor self-coupled in the case of massless figlds dominated mode of the exponential. In order to realize kina-
that they do not decay before nucleosynthesis are in fadion in this potential we must therefore satisfy the condition
commonplace in particle physics—they are the source oft the end of inflation, or some time after it, that the kinetic
problems like the Polonyi problem. In particular, exponentialenergy dominate over the radiation. The dynamics of the
potentials which arise in theories involving compactificationssimple exponential alone will not produce kination if we
are typically extremely weakly coupled to other sectors. Ac-have a radiation dominated universe after inflation. We will
cordingly, these sectors are termed “hidden,” as they interexamine two possibilities(i) A non-standard theory of re-
act with the “visible” matter only(or predominantlygravi-  heating in which the radiation in the Universe is that created
tationally. We will thus assume that perturbative decay isby the expansion of the background during inflation, and
negligible. On the other hand non-perturbative decay mechaadiation is naturally subdominant after inflation, afio
nisms like parametric resonance which have been much distandard reheating with a slightly different exponential po-
cussed recently in the context of the problem of reheatingential which can first cool the radiation with a short infla-
after inflation[47,54,53,52,51,48 must be considered in the tionary phase and then roll into a kinetic mode.
case of oscillating modes of non-linear potentials. This is a We will concentrate on this first kind of model, because in
possibility we will consider explicitly below, and the require- it there must by construction be a phase of kination, and in
ment that such a mode survive until nucleosynthesis willour view it offers a very attractivéand unjustifiably ne-
place constraints on the potentials we consider. glected alternative to the standard re-heating scenario. What
The secondguestion above concerned how such a modssort of model would lead to this phase ending as late as
would come to dominate over radiation. In the analysis jushucleosynthesis will be the question which interests us in the
given of a field rolling down a potential we spf=0, and  specific context of electroweak cosmology.
the solutions are therefore valid onlyf,>p, (wherep,, is In the oscillatory potential things are slightly different.
the total energy in the scalar figldWhat happens if The scaling was predicated on the assumption that the field
pr>p,? Can we end up rolling into the kinetic energy domi- oscillated on a time scale short compared to the expansion
nated mode withp 4> p, if we are in an exponential with time, but not on any assumption about the time dependence
such a mode? In a radiation dominated univeeset'>  of the expansion raté.e., about which component domi-
(H=1/2t) so that the damping is stronger than in the kineticnates the energy densjtyThus if the Universe is radiation

=1-—, =—. 68
¢ 6° pytom A2 8
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dominated when we enter the oscillatory mode of a potentiascales as &f with s>4, the energy densitgp" will come
with n>4, it will always be radiation dominated since the to dominate at some timg .nqafter inflation when the scale
energy in the scalar field red-shifts away faster. To realizéactor has evolved tay ¢nqfrom a; ¢ngat the end of inflation
kination in this potential we therefore require the radiation towith

be sub-dominant when the oscillatory phase begins. Just as
for the exponential potential we will discuss in this case how g, .., [ 9 Mg \Ms=4 g\ Us=4) | 2s—4)
this condition can be realized in two way@) in the same a |z o =(E—) (H- J )
alternative standard theory of reheating after a period of in- " " p Picen P hen (70)
flation driven by the power-law potential itself, agd) with

ordinary rehgating _by another field followgd by a brief SUb'whereak <nais the scale factor at the end of kinaticduring
sequent period of inflation as the field with the power-law,pich ,5c1/a%), the phase which interpolates between infla-
potential rolls before it begins oscillating. Again most of our j5 and radiation domination. The energy in the inflaton

attention will focus on the first case, in which a Single field 'SSImpIy red-shifts away instead of decaying. As discussed in

both inflaton and “kinaton.” [1], in order to accommodate nucleosynthesis there are two
requirements which must be fulfilledi) the radiation must
B. Reheating by kination thermalize at a temperature above 1 MeV afiid,the tran-

Reheating after inflation is required in order to match theSition to radiation dominance must occur sufficiently long
“cold empty” Universe left behind by inflation onto the ra- before nucleosynthesis to satisfy the appropriate constraints

diation dominated one which must in the standard cosmolfﬂ that time on the expansion rate. Takkig(a) to be the

; . typical energy of the created radiation as a function of scale
ogy be established by nucleosynthesis at the ldtast usu- 0 ' : -
aly, it is assumed, at some temperature high enough (FE TN s e 8 CETEN OO0 TE
support some theory of baryogengsia the standard theory freedom, the interaction rate for processes coupling them is
this is achieved by the decay of the inflaton into particles in_ ke (for keg>Myy anda~ 1/30- 1/50). Comparing this

an oscillatory phase after inflation, the zero entropy coherent c _ - I3 1
state producing the enormous entropy of the radiation dom?[-.o the expansion ra‘c_éH~2/st~Hiv end @ eng/@)"* (in kina-
on), we get an estimate for the thermalization temperature

nated universe. That there exists a simple alternative to thi

scenario has been pointed out by Spokoinylih The Uni- reheat
verse isnotin fact in an exactly cold zero entropy state after 14
inflation—besides the energy in the inflaton, there is some 30, As—2

: , : TreneatHi end —————| a2 (71)
energy in the particles created by the accelerated expansion. reheat " i, en 729, i en

The process which gives rise to the perturbations from ho-
mogeneity required for structure formation on large scalegpare
creates an energy density which is peaked at the ddale
whereH is the expansion rate during inflation, with energy
density 5p™=¢€,H*, where the superscrigti denotes that
this energy density is dominated by the schileH, and
€,~=(m2g5'"130)/(2m)* [55], whereg"~ 10 is the effective
number of light(massm<H) degrees of freedorff. In a
typical inflationary model with energy densipy ¢ng at the
end of inflation

O« i, end 1S the number degrees of freedom which are
relativistic at kK~H; o,q, and we have definedﬁ)‘p{'end
=0y i, end™ T} end30, and takenTe1/a.'® Assuming this
temperatureTl .,05:t0 be attained before the transition to ra-
diation dominance, it follows fron(70) that Ty ¢nq, the tem-
perature at the beginning of radiation domination, is given

approximately by
Tk, end:

_ 1/4 _ _
EP) (s 4)( 306,; d) (Hi,end) (s—2)/(s—4)
H 2 2 :
5pi,end~ € Hi,end~ E Pi, end Mp 3 7729*, i,en Mp

_P .
pred 3 M2 9 MY ©9 (72

Requiring this to be above the nucleosynthesis temperature 1
which is very small since the energy scale associated WitiyieV/ places a lower bound ol; 4. Fors=6 we find that
inflation is typically required to be well beloMp, e.g., for Hi eng> 10" GeV, which correéponds 13 ;oneas> 10° GeV,
chaotic inflationary model in a potentialg®, dpf'e.dpiena  consistent with the assumption th@eneat> Tk eng: FOT
~€,\, while the requirement that one gets density perturbas=5 bothH; ¢ng @aNd T enear@re greater by a factor of 104
tions of the correct magnitudéon COBE scalesp/p~5  In both cases a late transition to radiation dominance implies
X10°) gives A\~10 "3 In the context of ordinary re- that the energy scale at the end of inflation and thermaliza-
heating this small fraction is irrelevant as it is swamped bwtion scale are well below the GUT scale.
the radiation created by inflaton decay. The possibility envis-
aged in[1] is one which is easy to see given the observations———
of the preceding section on kination: If, instead of decaying,

. . P S . 2" 17 far from equilibrium system may in fact need many rescatter-
the inflaton rolls into a potential in which its energy densnyings (i.e., Nogy> 1) to fully thermalize. Modifying the estimate in

(71) to incorporate this gived eneasmaller by a factoN 252
Here and below we neglect the effect of possible decouplings
16This estimate assumes the same contribution from all particlebetweenT jonear@Nd Ty eng, 1.€., We assume the number of relativis-
as from the scalar particles analyzed &%). tic degrees of freedom to be fixed.
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In standard inflationary models the usual constraint on
H; eng Or the energy density at the end of inflation comes
from the requirement that the amplitude of perturbations be
that required for structure formation. In the models which we
discuss below we will consider how this non-trivial con-
straint is satisfied in this model of reheatifey question not
considered irf1]), and in particular how it fits with the par-
ticular type of realization of this model we are interested in,
where the transition to radiation domination does actually
occur close to nucleosynthesis with the potentially important
consequences for electroweak baryogenesis discussed in the
first part of this paper.

C. Inflation-kination in an exponential potential
a

As discussed in Sec. V A, a simple exponential which
gives rise to the kinetic energy dominated mode required for FIG. 3. Evolution of scales in the inflation-kination model.
kination does not itself accommodate an inflationary solu- ] ]
tion. We need to have a potential which is flatter in somevhere IX denotes the time when the perturbatioexits the
region (for inflation) and sufficiently steeggfor kinatior) in ~ horizon in inflation, ande;=3/57=0.2[41] is a constant.
the part of the potential the field rolls into after inflation. An The formula is valid provided the slow-roll approximation
example is an exponentiate ¢ where\ varies as a func- holds at this time, which in the case of the exponential po-
tion of ¢. As a simple case of this, which we can treat tential corresponds ta < \J2. The evolution of scales is il-

analytically, we considé? lustrated on Fig. 3, wherk= Kk, ico@ is plotted versusia
(both on the logarithmic scaleSince the comoving scale is
V(¢)=Vee 7, fixed, it follows that
where k=kix=kox < (Ha)ix=(Ha)ax, (75)
N<VZ for < iong and therefore

(Ha)lx (Ha)k, beg(Ha)r, beg(Ha)m,beg:l

AN=N'>2 for ¢>¢i,end (73) (Ha)i, end(Ha)k, end(Ha)r, end (Ha)ZX (76)

where we seMp=1. As discussed above, one solution to thewhere the indices, k, r, andm denoteinflation, kination,
equations of motion for this potential is a power-law infla- radiation andmatter, respectively, and we have assumed that
tionary attractor(66) with ¢= (1) IN[VA"T2(6—\)],  (Ha); eng= (H&)k begr  (HA)k end= (HA) beg:  (HA); end
anda=t?*. We assume the field to evolve in this attractor in = (Ha) m beg and that the relevant perturbation enters the
inflation from ¢<¢; eng- When the field reaches; eng in- horizon in the matter era. In writinf6) we assumed sharp
flation ends and after a transient period it will roll, for transitionsi—k—r—m. Within our approximation we keep
N’ <6, into the new attractor in the steeper potential. If& continuous, but its derivative exhibits a jumid € 2/\“t in
\'=16, there is no single attractor, but the field will run inflation matches ontét=2/\" ?t in kination). With the at-
after a few expansion times into a solution in which thetractor solutions fo73) in (74) we obtain
kinetic energy is very dominant. In either case we will ne-
glect the details of the few expansion times in which this @(k)zegi
p

! (77
A3 i

transition occurs.

We calculate first the cosmological perturbations gener-
ated in the usual way by the amplification of quantum fluc-Using (76) and calculatingHa in each of the eras, we find
tuations during inflation. The amplitude of the perturbationthat
in a mode with comoving momentuknwhen it re-enters the

, 21512
horizon after inflation at time 2, is given by the usual for- tix a em:) (A" 2-2)2 A end | 1229
mula ti, end Ay en aox '
3p Hix A'=min[ V6], (78)
?(k)%eﬁ-_a (74)
b1x where, for simplicity, we take 2 to be in the radiation era.

The behavior of77) is the usual one, with an overall ampli-
tude set by the expansion rate at the end of inflation and, for

19We could of course consider any potential which accommodate§ufficiently small\ (required for consistency of our slow-roll
inflation in some region and is asymptotically a sufficiently steep@Pproximation, a fairly flat spectrum of perturbations over
exponential. Motivation for an exponential with varyingis given  the scales relevant to structure formation. Indeed, using the

in [44]. standard expression#1+[—3(V'/V)2+2V"IVIM3 [46],
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we obtain n~1—\2. Assuming the reheating scenariof@f  ing) to make the amplitude of perturbations sufficiently
discussed in the previous section, we can exp(&gs in large. The effect of having an interpolating scaling between
terms of the radiation temperature at the end of kinationthat in inflation and H® scaling will be to increaskl; ¢nq(at

Ty eng- Taking the radiation energy density at the inflation-fixed T; ¢,9, Which also increases the density perturbations,
kination transition to be; eng= eprend, and using70) and  allowing a spectral index closer to one.

(72) allows us to express the temperature and time at the end

of inflation as follows D. Inflation-kination in a power-law potential

s 270 v In this section we consider another one field model in
Thend =| 5| Teend™ which an inflation-kination-radiation domination cosmology
T°Qx, i, encp can be realized. Again we assume the mechanism of reheat-

ing through particle creation in inflation discussed in Sec.

720y i end| T2 2 VB. The potential we study is simply the non-

Hiend=| —30¢ e, Tiend™ 5 ) (79 renormalizable power-law potential

i, en
A ¢ \"
so that ALY VEY
V()= MP(MP) (81
r2_ 2192

5p e 270 (LB[2[(A" >=2)+N21(2—\?)] - - . .

—(kzx)wy — wheren>4 is an integer, which is taken to be even for
p TG, i, encp stability reasons. As discussed in Sec. V A this potential has

an oscillatory solution in which the energy density in the
field scales asa 5"("*2), je., faster than radiation fom

This is the desired expression for the amplitude of fluctua:> - It also has, as we will discuss below, “slow-roll” in-

tions at the comoving scale,x which re-enters the horizon ﬂﬁg@gﬁ Zolu::)or:isagg r}:::iza\llv'clljr%i?c?ie 'ii(t:gsainn Oiﬁgg:gy
when the temperature B,y . P pprop Y

. . . 4 . . . . .
This result depends on three unknown parameters—th'émat'on in a¢” potential. As mentioned in the introduction

temperature at the end of kinatidi .,q, and the parameters _poter_ltials Of this type have been_ stuplied in the context of
X and\’ in the potential. The COBEnéxperiment provides us|nflat|on motivated byF andD flat directions of supergravity

with a constraint on the amplitud@p/p(k) ~5x 10-5] and theories(see, for exampld,6,46]). Lower order perturbative

the spectral index of density perturbations 0.1 <1.3). tsirlgnesrpa(\)r;:]?i;tlndden by a discrete symmetry imposed on the
The extra constraints we impose are those required by our There are several important differences between the expo-

cor!3|derat|on of glectroweak baryogenesis: The phase of kIriential we have considered in the previous section and this
nation must persist well past the electroweak phase to have

an important effect on the expansion at that scale. For exQotentlal. There the potential was made up of two pieces, one

. ith an inflati he oth ith a “kinati "
ample, forTy on=Tne, AN Tox=1 €V, we find\ = y0.33 with an inflationary attractor the other with a “kinationary

| , attractor. Here we also have solutions of the two types in
=0.57 forA'= 6, and\ = /0.11=0.33 forA' = \5. These different regions of the potential, but the cross-over from one

lead to the filt in the power spectrum0.7 for \'>\8, 1o the other is dynamically determined rather than an inde-
and n~0.9 for\'= /5, which are consistent with the con- pendent inputi.e., specified byg; end. Therefore once\,,
straint from COBE. Following the discussion in Sec. IV We gndn are specified, the potential afig .,qand sp/p(k) are
know that in order to create the observed BAU at a Secon@ompletely determined.
order or cross-over electroweak phase transition we need to The second difference between the two potentials is that
have very close to &P scaling in kination, i.e\’=\6. This  in the power-law potential kination is associated with an os-
requirement therefore leads in this model to a prediction otillatory mode, which can decay non-perturbativelg para-
the spectral index r=0.7. Using(79) we can also compute metric resonanc€47]. Only if such decay occurs after the
Ti.end=Hi ends tiends @i enar €1C. In particular, fod’=16  transition to radiation domination, is the scenario we have
we haveT; ¢,¢=6X10" GeV, and for\'= J5 we have envisaged possible. If it occurs a little earlier, but still suffi-
Ti eng=2X 10* GeV (independent ok in inflation). ciently close to nucleosynthesis that the reheat temperature
What we have illustrated with this analysis is the obserresultant from the decay of the field is below the electroweak
vational adequacyand even potential predictivityof a  temperature, there will be some minor effect on the predic-
model of this type. The “prediction” we derived here is of tions of electroweak cosmology. We will not consider this
course particular to a model we have invoked in its specifianarginal case and simply require the stability of the oscilla-
form in an ad hocway. It would be of interest to study tory mode until after the transition to radiation domination,
models which are derived in detail from a well motivated which we require below the electroweak scale in order to
particle physics model. We will limit ourselves here to onehave an effect on electroweak cosmology. Later in this sec-
qualitative comment on the sort of model which motivatedtion we will investigate in more detail the consequences of
our choice(see[44]) in which the parametex varies slowly  the resonant inflaton decay.
(logarithmically as a function of¢. It is not difficult to see In analogy to our treatment of the exponential potential in
that the constraint on the spectral index may be much weake$ec. V C, we now determine how the potentidl) is con-
when \ interpolates between our limiting values: We were strained by the requirement thét generates cosmological
constrained to increaseasA’ increasedto give 1A% scal-  perturbations of the required magnitude for structure forma-

A" 2=2)I(A 2=2)1+—\%I(2-22
XTE«end N )TZX ( )- (80)
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tion, and that kination—driven by the oscillatory mode—

ends in radiation dominatiotby the mechanism df1]) be- Ha=
fore the temperaturd,s at which nucleosynthesis occurs.

We will see that these two requirements cannot be simultawhich allows us to compute the first term (#6).

neously satisfied by a suitable choice of the two variables in Next we computéda during kination. It is convenient for

the potentialk, andn. _ this analysis to change the field and time variables to re-
To determine the amplitude of the cosmological perturbascaled variables and ¢ given by
tions we follow exactly the analysis of the previous section,

1/2 2
;\_:]) (/;”’Zexi{—;ﬁ—n) (inflation),  (92)

taking the perturbations to be given B84). Furthermore, we a|3(n-2/(n+2) ag|®(nt2
will make use of(75) and(76) to determineHa in inflation dt= ao dr, ¢=¢ a (92)
and kination.
The equations of motion for the homogeneous mode caim terms of which(82) and (83) become
be written as
de 6 1d2a n-4[1da\’ o
$+3Hp+Nap" 1=0 (82 42 ni2| “agz nrzlads] |Thee =0
s (93)
, (&l _p _1. ) Nn N )
H'=\3) =3 Pe=39"+ ¢ (83 , [1da\? po(7) [ag) 22 o
“ladr/ 3 \a ’ (94)
settingMp=1, i.e., with the rescaling
- 1(/de 6H 2+>\nn
po(m) =5 -~ He| +—o
bl M, Ho (84) 2\dr n+2 n
Mp Mp

The approximation of a sharp transition from inflation to

In the standard “slow roll” approximation we take kination consists in ignoring the explicit time dependence of
po(7), which is equivalent to

o i1 Lo, Mg N N
$<3H, Ng"h SeP<—o, (85) H<n62%%:nTZ‘”“' ©9
and find from(82) that where wﬁ~)\n<p8’2 is the average frequency squared ¢f
172 [see(97) below], and¢y= ¢ is the inflaton amplitude at the
P21, (86)  beginning of kination. Within this approximation,
d?a/adr®=(n—4)H?*/(n+2), and hence the term in the
square brackets of93) vanishes. It is this feature of the
damping term in these variables which made their choice
appropriate. Thus all of the time dependencé&diB) and(94)

N\,

$=- 3

Putting this expression back {85) it is easy to show that the
“slow roll” condition is

n2 drops out and the equations can be easily integrated. The first
P°> 5 (87) integral of (93) leads to
de\? X\, N
Furthermore during the slow rolB3) gives po=V(eo) =5\ 47| T *" (96)
H dina_ ¢ 89 which is just the energy conservation law for
¢_ d¢  n The oscillatory solution forp can be then expressed in
terms of an elliptic integral with the frequency
and hence
2 T )\1/2¢> 97)
2 W= ff o>
a= eX% _;ﬁ;) , (89) Th \/%Cn ¢
n
1 dx
where we chose for the integration constart, Nei=Nnbd C”:f T
=exr[—¢§/2n]. For completeness, we also write the solu- 0 vi=X
tion to (86) where 7, is the oscillation period. Note thab, decreases
) 1U(n—4) exponentially withn, when the initial amplitudepy<<1. In
_ 1 t—2(n—4) (90) the limit of a largen, ¢, approaches unity. Finally, the solu-
(n—4)%n\, ' tion to (94) is
6 (n+2)/6
where we chosé=0 such thatp—o ast—0. °_ Hor (98)
We can now write the desired expression in inflation: ag |n+2 °
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(where we used{,=Hg) and

2(n=1)/(n+2)
(kination).

Ha

Hoag a

p

a

(99

The results for radiation and matter era are given by setting

n=4 andn=2 in (99) respectively, so thdi6) can be recast

as
2(n=1)/(n+2 1/2
ak, encgi) ( A )ar, enc( azxg) }
ak, be ar, beg am, be

n
+ =In Pax ]
2 ¢i,end

¢ix_ ¢|2 end Zn( In

(100

The ratio of the scale factors at the beginning and the

end of kination is given by(70) in Sec. V B. Using
s=6n/(n+2) we have(with Mp=1)

— 1/2
ay, enz) 2n 4)/(n+2)]:p¢ iend _ ( 270 1
Ak, be Piend €04 i, endﬂ'z Tizend
(101
and recalling thafr a=const, we have
ay, enz) An-wie2n [ 270 M
ay, be €,0x. i engm?| Tkend
(102
so that(100 becomes
1/4
270 1 (T 12
d)iX: ¢|2 end+ 2n{ In ( 2) / m, beg)
' €,0%, i, end™ Tr, end\ TZX

N éix
+ Elnqbi’ end] . (103
Taking this expression with
op n
_ _ N 4(n+2)/2 _
p (kl)() - 6531/2n3/2 1X ’ €5= 5 (104)
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FIG. 4. § and\, vs n with Ty eng= Ths-

thus forces the energy density in radiation at the end of in-
flation to be sufficiently large, which forces, to be so large
that the density perturbations produced are too large, for any
n. A single field model of this type is therefore ruled out.

This analysis neglects the possible decay of the oscillating
mode by parametric resonance into either its own fluctua-
tions, or other fields that it couples to. If such decay occurs
when the energy density of the oscillating mode has red-
shifted to be sub-dominant relative to the radiation, then such
decay is irrelevant and the model is simply ruled out by
nucleosynthesis constraini@nd the requirement that density
perturbations not be too largdf, on the other hand, it de-
cays when the energy density of the oscillating mode is still
dominant over the radiation, the model may be viable if the
decay products can thermalize with ordinary matter. In this
case, however, there will always be large production of en-
tropy (with corresponding dilution of the baryon to entropy
ratio) and hence the model is not of much interest in the
context of the question of how an increased expansion rate at
the electroweak could lead to production of the BAU at that
scale in scenarios when it is usually assumed to be impos-
sible.

It is nevertheless of interest to study the non-perturbative
decay of this modéi) to see whether such models are really
ruled out by the observations above, afiid because this
decay channel is relevant to a scenario where another field

specifies the amplitude of density perturbations in the modgp!2ys the role of inflaton, which we will discuss briefly be-

implicitly in terms of the parameters in the potentig) and

n. Comparing this to the requirement of COBE provides the,

low.
We wish to compare the resonant decay timgg.,,of the

first constraint on the model. The second constraint is thdflaton-kinaton to the time at the end of kinatiopenq. As
requirement that kination ends before nucleosynthesis, i.e., ${€ Show in the Appendix, the field can decay either into its

a temperaturd, on¢> Tps. After some algebra we obtain the

simple relation

270 14 € \n | (n—1)/(n—4)
Teend| ———— 9 ?i, end
€,0x%, i, end™ (109

On Fig. 4 we show a plot o= 6p/p(k,x) and ofA,, as a
function ofn with Ty ¢ng=ThsandT,x=1 eV. Itis clear that
everywhere the amplitude is too lar@ey several orders of

own fluctuations, or to other fields that it couples to. In both
cases the decay timgye.o Can be approximated by

(106

whereny=1/2 is the initial occupation number, amd.,is
the “late time” occupation number. The resonance is usually
terminated by the back reaction effects from the created par-

ticles [48], and Ny, Can be estimated to bBg i 1/ off
=

magnitudé to satisfy the constraint from COBE. Further, to =1/(\¢; o) for the inflaton-kinaton decay into its own

increaseTy ¢ng at fixed n we require a largei,, which

fluctuations, andhg .~ 1/g when ¢ couples to a scalar field

results in a larged. That kination end by nucleosynthesis ¢, where g is the coupling constant of the interaction
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term gZ2¢%/2. In the Appendix we also show that one-field case, a potential is required which is only asymp-
n=u,=0.16h for the decay into its own fluctuations, and totically this simple exponential. If the field lies initially in a
for the decay into another field=0.1-0.2 wherg=1, and  part of the potential which is flatter—flat enough to support

u<1l wheng<l1. an inflationary type solution—a period of inflation will occur
In order to get an expression faf ¢ng, We make use of once the radiation cools so that its energy density is compa-
(95), (98), and(101) to get rable to that in the scalar field. The initial conditions and
Sl details of the potential vv_iII determine_z vyhat the final ratio of
1/9n 1 the energy in the scalar field and radiation energy is when the
Tk, end™ w—n( E—p )\—n o d) (107) scalar field enters its asymptotic kinetic mode. If this second
I, en

period of inflation occurs at intermediate energy scéddter
“full” inflation at the GUT scale, say and is of a small
number of e-foldings, the ratio will be such that the kinetic
energy domination may end before nucleosynthesis.

Setting 7, end= Tdecay €SUIts in the following constraint on
the instability coefficient

1 N sn-4) Such a short period of inflation at an intermediate scale
constr_ = €p A 4n In—2at occurs in so-called “thermal” inflatiof49]. A scalar field is
M ®i, end n ) (108 . . . .
219 n "t n trapped in a false minimum by its coupling to the plasma and

comes to dominate for a short period until the inflation it
such that when the inflaton decays only into its own fluctuagrives cools the plasma and allows it to roll away. In the
tions, Necar/No~1/(\nf ond, and u"'=0.049, signifi-  present context all that is required is that the field, rather than
cantly larger than anyu, for n>4. This implies rolling into an oscillating mode and decaying, rolls into a
Tdecay:(uf,"”“?un) Tk, ena» typically greater tharr,s, where  potential which is asymptotically exponential.
we took Ty en=2T,s. When ¢ couples to another scalar ~ Another way in which such a transient period of inflation
field via a quartic term of formg¢?z2/2, then ng.,/ny  which cools the radiation and leaves a kinetic mode
~1/g=1/(49\¢f), whereq:g¢>2/4wﬁ [cf. (AB) in the Ap- dominant could occur is by special initial conditions in
pendix, and we see that fog=1, 1lg<1/\., and hence certain potentials, e.g., if the fieldp) with potential

1< 0.049. Recall that in this cageis typically of order v(¢)=v0e—k¢2/M§ sits initially close to¢»=0, a period of
0.1. This means that whep>1, the inflaton decays some- inflation will occur whenp,,q becomes comparable 14,
what beforer ¢,qVia parametric resonance. If, on the other the duration of which will depend on how close ¢o=0 the
hand, g<1, then u<1, implying a late inflaton decay, field is initially. Without significant fine-tuning there will be
Tdecay” Tns- a few e-foldings of inflation followed by a period of kination.
In summary, the oscillating mode in the power-law poten-  And lastly, we mention a variant of hybrid inflation. Re-
tial decayvia parametric resonance before nucleosynthesis itall that in hybrid inflation, one fieldd) is held at the false
it couples to another scalar field wig=0.1, or equivalently  vacuum minimum by a large expectation value of a second
9=10%. When g=10 % it is not immediately obvious field (¢), and hence it drives inflation. Whes becomes
whether the resonance shift slows down the decay or notufficiently small,¢ rolls down to its true minimum. The roll
and, although the discussion in the Appendix suggests that i a steep potential, e.gg¢?y?/2+V,e %, leads to kina-
does not, further analysis is required to establish this definition. Since the shape of thg potential determines the am-
tively. In any case we can conclude that this single powerplitude of density perturbations, we have more freedom to
law potential driving inflation with reheating of the type we tune parameters of the model than in the one field case. In
have discussedas in[1]), is therefore only ruled out as a particular there is no need for variation »of
viable cosmological model fag<10~2°,

) Case 2: Inflation+power-law potential
E. Two field models ) ) ) ) )
The various examples just given can be carried over in an

Finally we consider briefly models with ordinary re- opyious way to the case of a power-law potential. The dif-
heating(through the decay of the inflatpnin this case the fgrence is parallel to that in the one-field case: If the field is
field which supports the kinetic energy dominated mode canpjtially sub-dominant relative to the radiation, the oscilla-
not also be the inflaton, but is a second field which comes t?ory mode about the minimum could end up being dominant
be important after inflation and ordinary re-heating. Againgepending on the initial conditions. If the field lies initially at
we consider the two cases of an exponential with its rolllng¢>nMP there will be a period of inflation which brings the
mode and the power-law potential with its oscillating mode fig|q to dominance over the radiation. For a small number of
e-foldings the radiation produced by ordinary re-heatimg
decay of the inflatonmay be dominant over any radiation

As discussed in Sec. VA a simple exponentialproduced by particle production as in the mechanism we
V(¢)=V,e *Mp with \ such that it supports, when domi- discussed in the one-field models. The constraints which we
nant over radiation, a mode scaling faster than radiation, wilderived in the one field model in Sec. V D, and which we
not come to dominate over radiation irrespective of the initialfound could not be satisfied, are circumvented simply be-
conditions on the fieldIf the initial condition gives a scal- cause the initial radiation density is not specified by the po-
ing slower than radiation, it will bring the system to the tential, and the relatiofiL05) no longer holds. For the model
attractor(68) in which the scalar field contributes at most anto work we also require that the field decai parametric
amount comparable to the radiatipherefore, just as in the resonance occur after the mode has become sub-dominant

Case 1: Inflatior+exponential potential
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relative to the radiation, i.e., after nucleosynthesis, whichtion to radiation domination occurs before nucleosynthesis.
will translate into some upper bound on the couplings of theFinally we discussed briefly various two field models with
field. The precise bound would have to be derived in analoggtandard reheating in which electroweak cosmology would
to the treatment given above for any particular mdaéiich  also be modified in the same way.
will specify 7 end- In conclusion we turn to a brief discussion of some of the
broader implications of the observations we have made. In
particular, we began this paper with the usual motivation for
the consideration of electroweak baryogenesis: It promises to
In this paper we have considered relaxing the usuat  follow nucleosynthesis in making firm and observable pre-
stated assumption of a radiation dominated universe madaelictions about the cosmological remnants from an epoch at
in investigating the possibility that the observed BAU is pro-which temperatures are such that we can have experimental
duced by processes at the electroweak energy scale. In the@owledge of the relevant physics. It promises to be a test-
first half of the paper we considered in a generic way how able theory. What is left of this testability now that we have
different rate of expansion of the Universe leads to a changeffectively turned one crucial parameter, which is usually
in the standard analysis of baryogenesis. For a first ordeassumed to be known, into an unknown?
phase transition the most important effect is on the sphaleron In contrast to nucleosynthesis there is in this case only
bound, which becomes weaker as the expansion rate irone “observable”—the baryon to entropy ratio—produced
creases. In the context of this discussion we reformulated thiey a calculation. Our analysis shows that, at least in certain
usual “absolute” sphaleron bound as a lower bound on thegarticle physics theories, it will be possible to “fit” the ob-
(unknowr) expansion rate at the electroweak scale, anderved asymmetry by an appropriate expansion rate. Does
noted in our treatment various inaccuracies in how thismaking H a variable make the theory intrinsically untest-
bound is often stated. When the electroweak phase transiticable? The answer is negative for two reasons. First, it is an
is second-order or an analytic cross-over we showed that thextremely non-trivial requirement that one can produce the
usual assumption—that it is impossible to produce the obebserved BAU in any given electroweak model, even if the
served BAU in this case—no longer holds. With an explicitexpansion rate is a variable. In a first order phase transition,
calculation appropriate for various simple extensions of thdor example, the requirement of various parameters—most
minimal standard model, we showed that an expansion ratienportantly onCP violating parameters—are typically ex-
at the electroweak scale10™ T, five orders larger than its tremely strong, independently of the expansion fat¢hout
radiation dominated value, would be sufficient to produce theéhe sphaleron boundAs we have seen in this paper, it is
observed BAU without fine tuning of parameters. conceivable that it could turn out that the scalar sector indi-
In the second part of the paper we discussed some specifi@tes an analytic cross-over or a weakly first order transition
cosmological models which would give rise to such a modi-and CP violation sufficiently large that the BAU could be
fication of the expansion rate at the electroweak scale. Wproduced if the expansion rate is greater by about five orders
concentrated on the simple possibility that a coherent modef magnitude than usually assumed. Would we then take it
of a weakly coupled scalar field would dominate the energythis to tell us that this is the case or that we are unlikely to be
density of the Universe, like in the case of inflation, but with able to draw a definite conclusion as to whether the BAU
its kinetic dominant over its potential energy so that its en-was created at this scale? This brings us to the second answer
ergy density scales asafl We showed that the requirement to the question: The theory is truly testable only if we can
from nucleosynthesis that such a mode not make up morfind other observables which depend on pre-nucleosynthesis
than a certain fraction of the energy density allows an in-cosmology. If we do indeed find that the BAU can be gen-
crease in the expansion rate at the electroweak scale by asated with a different cosmology, that would provide a ma-
much as the five orders of magnitude required for successfybr incentive to pursue this possibility.
baryogenesis without a strong first order phase transition. One possibility is exactly the relic densities of dark matter
Working in the context of inflation in the early Universe, we particles discussed i8] and[4]. The discovery of a candi-
constructed in considerable detail various models in whictdate dark-matter particle would allow one to determine the
the phase of kinetic energy domination kination follows  expansion rate at its time of decoupling from the requirement
inflation, interpolating between it and the radiation domi-that it be the cold dark matter in the Universe. For example,
nated epoch in the required manner. We concentrated dinom Fig. 2 in[4] we see that the relic density of a Majorana
single field models in which the inflationary phase is drivenneutrino changes by several orders of magnitude as the ex-
by a mode of the same scalar field which subsequently rollpansion rate at its decoupling does. If this indicated an ex-
into a kinetic energy dominated phase. The eventual transpansion rate different from the standard value and consistent
tion to radiation domination, without the decay of the infla- with that required at the electroweak scale for generation of
ton in standard reheating models, occurs because of the sani® observed BAU, one would have compelling evidence that
rapid scaling of the kinetic energy mode which makes itcosmology is indeed different. Another possible way of
eventually sub-dominant relative to the initially sub- probing pre-nucleosynthesis cosmology is with magnetic
dominant radiation created during inflation. Analysis of thefields, which in certain models are produced at or before the
case of the two different types of potential which can supporelectroweak scale, or at the QCD phase transition. This
such kinetic energy dominated modes—exponential potentiadeems a more remote possibility for a firm constraint in that
and ¢" potentials—showed us that only the former is viable,the connection to observed fields is itself very indirect. How-
as the latter automatically produce density perturbationgver, it is one worth bearing in mind. For example, in the
which are much too large when one requires that the transimechanism discussed[i1] in which fields are generated by

VI. SUMMARY AND DISCUSSION
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an |nStab|l|ty related to the Abelian anomaly, the eXpanSiorNotice the scale dependence nextlzﬁ)which means that,
rate enters in determining when perturbative processes comgen though the zero-mode equations are time independent,

into equilibrium. This depends on the expansion rate, and fofhe mode equations aret. Assuming adiabatic variation of
a significantly different expansion rate the results would bea/ao Eq. (A2) becomes the famous Hill equation

different.
Further there is also the possibility of probing cosmology
at the electroweak scale indirectly by its connections to other 2a .
epochs. A good example of this is in fact the scalar field 59"k+[A+2qf(7,)]5@a:0
cosmology we have discussed, in particular the exponential dr'? k=

potential. In this case the same coherent mode which domi-
nated in kination can in fact play an important role again at

later times. We noted the existence of an attractor solution 2 | An=4)(n+2) 2 (N— 1)\ @h 2
with energy densities given as {68) for the exponential in A== — +2q _ . —/hn¥0

the presence of a component of matter or radiation. How Qo w? 40

soon this will be established after the end of kination de- (A3)

pends essentially how much the ratio of kinetic to potential

energy at the end of kination differs from its value in the

attractor(68), and this will vary depending on the model. In where 7' = w,7 and f=2(¢(7')/@o)" ?—1 is defined so
[11] the case is treated in which this transient period betweefhat maxf|=1,(f)=0, (' + m)=f(7'). The general solu-
the two attractors is assumed to end well before the beginﬁon of Hill's equation is of the forme*“” P(+’), where
ning of matter domination, and details of the observable cong (+'+m)=P('), and it is often given as the stat;ility chart.

sequences on structure formation in a flat CDM dominate ! o
he unstable regions are specified by the curves of constant

universe are studied; ir12] the case of entry into the attrac- . .
tor well into the matter era at a red-shift-70 is treated. # ™M the{q,A} plane, and the stable regions are bounded by
p©=0. The instability chart is important since the field de-

With the forthcoming satellite experiments which will mea- - - °
sure the properties of the microwave sky, such models wilfaYs exponentially into the modes with>0, preferably so
become testable in detail. to the ones with large:.. The special case of the Hill equa-

tion whenn=4—the Lameequation—is extensively studied
in the literature on inflaton decd%2,53, [54]. The instabil-
ity chart exhibits unstable regions which branch off from

We thank C. Korthals-Altes and M. Shaposhnikov for A=n” at q=0. For <A one is in the narrow resonance
useful conversations. T. P. acknowledges funding from théegime, since the bands are narrow ang1. The chart is
U.S. NSF, and the hospitality of Columbia University andSymmetric underq— —q. On the other hand, for 42q
Cornell's LNS where part of this work was done. M. J. was<A the resonance bands become broad andlarge.”
supported by the Irish Governme(Department of Educa- Typically, when 2j=A, u peaks at~(2) ™. In this case
tion). We are grateful to Thomas Roos who provided thethe field decays very fast, characteristically in a few dozens
code for determination of the instability bands. oscillations.

Notice that in general for a givenn, q,=(n
—1)¢) ?/(4w?) is specified. Consequently, to get a rough
estimate of the decay time, it suffices to plot the one dimen-
sional sliceq=q,, of the chart. As the field decaysg, stays

In this appendix we study the decay of the inflaton viaconstant, unless the backreaction of the created particles is
parametric resonance. First we address the decay into its owarge enough to change,. Numerical simulation$51,4§
fluctuations, and then we discuss how it decays into otheshow that for thex ;¢ potential the backreaction from cre-
fields. We start with writing the evolution equation for small ated particles grows to abougmzzg)\<5<p2>~)\4¢g/4,
fluctuations around the inflaton zero momentum mode‘changing the effective frequenmyr’;—> wﬁ+ Sm?, and conse-
$— ¢+ 6¢ in (82). After a Fourier transform and setting quently reducingg to about half of its original value and
M= Mp=1 as in(84), we get the following linearized mode A_, a4+ 5m2/(wﬁ+ sm?). The growth ofsm? is terminated
equation by narrowing the resonance as a consequence of the backre-

action onA andq, and intensifying scatterings of the reso-
Zﬁz ne2 i nant particles off the zero mode, as a consequence of increas-
K"+ An(n—=1)¢ S¢i=0. ing resonant amplitudes. By then a significant portion of the
(A1) field has decayed. We will assume that a similar scenario
holds for a generigp” case. This is plausible since, as we
will see below, the instability charts are quite similar.

We have evaluated numericall$0] the instability charts
for some of the models. The results for=4,8,16,32 are
plotted in Fig. 5. The corresponding initial values fgy are
Sei=0. 1.045,3.84,14.29,54.64. Note that in all cases to a very good

approximation the first instability band terminatesfat 2q,
(A2) so that the field decays into the second instability band. The
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APPENDIX A: RESONANT INFLATON DECAY
IN THE ¢" POTENTIAL

)

d?5¢; ddgy
¢k+3H bk %

dt? dt

Rescaling to the new variables as(82) and assuming pure
kination, i.e., that the field amplitude is smédb), we obtain

4(n—4)/(n+2)

a N
K+ \p(n—1)¢" 2

Qo

d?8¢p;

dr2
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oottfrp T T T T T 46 quee1428 — 1 d?Zidr 2 +[A+2q,f,17c=0

0.01 N=32, (3p=54.64 - T
0.009 - 1

0.008 | A a | 4n-H(n+2) .2 ,
o =\ _+ q il
0.007 4 ag wﬁ 4
c 0.006
= i 1
0.005 1 i '
0.004 | i | a 6(n74)/(n+2)g¢2
1 | 0
0.003 i | ‘ i | a:=| = (A6)
0.002 i 1 ‘ i , 0 dwy,
H |
0.001 i 1 i ! . .
. N I wherer’ = w,7 andf,=2[¢(7')/ o]~ 1 is defined so that
30 4050 60 70 80 90100 120 140 160 180 200 maxf,/=1,(f;)=0,f (7" +m7)="F,(7"). As above in(A3),
in adiabatic limit, this reduces to Hill's equation. There are
FIG. 5. up VS A. however two differences: firstj, can assume a wide range

of values depending og, and, secondgq, is a (growing

values for u are u,=0.0425%° 13=0.023, u;s=0.011, function of a. The corresponding Mathieu equation for
3,=0.0056, so that,=~4u,/n=0.16h. For the following n=2 is studied in great detail in the literature, and shows
analysis the details of the chart are not that important. It ighat for q,>1 the field decays with an average value
sufficient to keep in mind that fan larger, 1, decreases. u~0.1[56]. For the conformal case with=4 a similar

As discussed in Sec. V, an inflaton that decays into itsvalue for u is obtained. Here we will assume that, for any
own fluctuations and does not couple to other fields leads ta>4, u~0.1 as well.
disastrous consequences for nucleosynthesis. Indeed, sinceNow we present an estimate of the decay timg.,,. For
the inflaton decay products scale as radiation and eventually moment we assume that the resonance shift does not dras-
dominate the energy density of the Universe, and also ddically affect particle production. Later on we comment on
couple from the rest of matter, they behave effectively aghe plausibility of this assumption. The typical initial mode
many additional massless degrees of freedom, leading to amplitudes are such that the corresponding initial “occupa-
very different expansion rate than predicted by nucleosynthetion numbers”n,« wyere ¢ (Wherew, is the energy of the
sis. If, on the other hand, the inflaton predominately decaysnode k) are of orderni™@=n,=1/2. Since the resonant
into another scalar field, which consequently thermalizesmode amplitudes grow aSo, = expuww,7, ONe can estimate
producing thus standard radiation and matter particles, nuthe field decay time as follows. The field decays when the
cleosynthesis may be unaffected by late inflaton-kinaton deenergy in fluctuations become comparable to the energy in
cay, as long as the decay occurs comfortably before nucleahe zero momentum mode, i.e., when the occupation num-
synthesis. bers ny=ngexpuw,r become of order ng~1/\

Before we start discussing the inflaton decay time, we(\ 4=\ .45~ %), implying that the decay time can be ap-
outline the physics of the inflaton decay into another scalaproximated by
field . We assume a standard quartic couplqgp ¢ (that
itself couples to standard model partiglesf the form

g22¢?/2 such that the linearized mode equations of motion 1 Nscatt
Tdecay ™~ 2 o tie n . (A7)
are wpk - No
d?¢i This same equation applies for the fiedd decaying into

: ao
+3HLH |

2

k2+9¢2}§|2=0- (A4)  other scalar fields. The only difference is that the maximum
occupation number is in this casg .~ 1/g. As a caveat to

(A7), the authors off48] showed that one should expect

longer decay times if the self-coupling of the second field

dt?

With the rescaling(92?* and =7 (a,/a)%""2), this be-

comes (¢) is large, i.e.,\>g. In this paper we do not dwell on
o~ A(n—4)/(n+2) 6(n—4)/(n+2) these complications, and assume the couplings such that the
d”dx a il e 2|7 simple estimat€A7) is valid
= K*+| — 9¢° k=0, b - _ .
dr? & 2N Finally we comment on how the time dependencéoh
(A5) (A3) and(A6) can affect the decay tim@\7). We first dis-
cuss the decay into a second scalar field. {¢tmmoving
and can be recast as resonant momentum is specified B~ \/q, which in (A6)
gives
2Note that this value is a bit higher from,=0.0359, the value (n—4)/
, (n+2)
quoted in[54]. ki = _@dmwn a (A8)
2Yn this case conformal rescaling might seem more appropriate 2 a

since it would get rid of all dependence anNevertheless, we stick . ]
to the rescaling if92), in order to be able to make direct compari- This agrees with the well known result that for=4 the
son of decay times. resonance is static. On the other hand, fier2 (Mathieu
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cas@ the resonant momenta grow rather fast as the Universe 1 ap| 4N~ A/(n+2)
expands and, foq large, adiabatic approximation breaks Ko EV(n_l)An¢E)n72)/2wn a

down, leading to “stochastic resonanc¢56]. However, it

turns out that the instability exponent is rather robust andvhich again leads to a shift in the resonant momentum. Un-

maintains the valug.~0.1. What happens whem>47? In  fortunately, the conformal case€4), in which the reso-

this case the resonant momentum decreases with time am@énce is static, is the only case studied in the literature, so we
again forq>1 we expect breakdown of adiabatic approxi- cannot make any analogy as we did in the former case. Since
mation. Just like in thev=2 case we expeqt to be robust in this case the resonance is rather narrow, the resonant mo-
and be of ordej.~0.1. This should not in any case be con- mentum redshift may significantly slow down the decay. An

(A9)

sidered as proof, but conjecture. implication would be that the effective decreases, leading
In the case when the field decays into its own fluctuationsto somewhat less stringent bounds dp and n than indi-

S5A~\[q gives[cf. (A3)] cated in(108).
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