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Self-similarity of the negative binomial multiplicity distributions

G. Calucci and D. Treleani
Dipartimento di Fisica Teorica dell’Universita` and INFN, Trieste, I 34014 Italy

~Received 7 August 1997; published 2 December 1997!

The negative binomial distribution is self-similar: If the spectrum over the whole rapidity range gives rise to
a negative binomial, in the absence of correlation and if the source is unique, also a partial range in rapidity
gives rise to the same distribution. The property is not seen in experimental data, which are rather consistent
with the presence of a number of independent sources. When multiplicities are very large, self-similarity might
be used to isolate individual sources in a complex production process.@S0556-2821~98!00401-9#
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One of the first basic pieces of evidence observed in
field of many-particle production and nuclear collisions
the distribution of the multiplicity of the produced particle
Multiplicity distributions are measured both by looking
the whole spectrum of the produced particles and by look
only at a restricted segment, typically a rapidity interv
Both for theoretical and experimental reasons, one of
favorite parametrizations of the multiplicity distribution@1#,
also in different rapidity intervals@2#, is the negative bino-
mial ~NB! distributions. A very detailed discussion of th
experimental evidence, the interpretations, and also the
malism used to deal with these kinds of problems has b
recently published@3#. In the case of a generic distributio
the relation between the multiplicities of a restricted part
the spectrum and those arising from the whole spectrum
not trivial. In the present paper we point out that for NB,
the contrary, a peculiar self-similarity property holds b
tween the distributions obtained from different intervals
the spectrum.

We find it convenient to make use of the generating fu
tional formalism to deal with these kinds of problems@4–6#.
Let Wn(j1 ,...,jn) be the normalized multiparticle exclusiv
distributions:

(
n
E Wn~j1 ,...,jn!dj1 ,...,djn51. ~1!

The variablesj can have different meanings and also rep
sent more than one physical parameter. In high-energy c
sionsj could represent the rapidityy and the transverse mo
mentum; if the distributions refer to incoming partonsj
could represent the fractional longitudinal momentumx and
the impact parameter. The distributions may be obtaine
the usual way from a generating functionalZ:

Wn~j1 ,...,jn!5
1

n!

d

dJ~j1!
•••

d

dJ~jn!
Z@J#uJ50 ~2!

and the normalization is expressed byZ@1#51. Sometimes
it is useful to also use an unrenormalized generatorG with
Z@J#5G@J#/G@1#.

The probability of producingn particles, in any configu-
ration, is evidently given by
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pn5E Wn~j1 ,...,jn!dj1 ,...,djn

5
1

n! F E d

dJ~j!
djGn

Z@J#uJ50

5
1

n! F ]

]lGn

Z@J1l1#uJ50,l50

5
1

n! F ]

]lGn

Z@l1#ul505
1

n! F ]

]lGn

z~l!ul50 . ~3!

Let us now consider the situation where the interval
which the variablesj lie is divided into two parts. Then for a
particular choice of these variablesWn(j1 ,...,jn)
5Wr(j18 ,...,j r8)Ws(j19 ,...,js9) with r 1s5n. Taking into
account all the possible choices ofj8 andj9 it results that

Wr~j18 ,...,j r8!Ws~j19 ,...,js9!

5
1

r !

d

dJ~j18!
•••

d

dJ~j r8!

1

s!

d

dJ~j19!
•••

d

dJ~js9!
Z@J#uJ50 .

If we sum over all configurations inj9 the distributions inj8
are Wr(j18 ,...,j r8)•S*Ws(j19 ,...,js9)dj19 ,...,djs9 .A set of
semi-inclusive distributions are obtained in this way1 since
everything referring to the variablesj9 are not observed. The
generator of these new distributions isZ85Z@J81Q9#,
whereJ8 has as an argument onlyj8, i.e., J8(j9)50, Q9 is
1 for j5j9 and 0 forj5j8, Q8 is 1 for j5j8 and 0 forj
5j9. The probability of findingn particles in the observed
part of the spectrum is then

pn85
1

n! F ]

]lGn

Z@lQ81Q9#ul505
1

n! F ]

]lGn

z8~l!ul50 . ~4!

Two particular cases of interest are as follows. The Po
sonian distribution, which is obtained by defining

U5E J~j!•D~j!dj, ũ5E D~j!dj,

G5eU@J#, G15eũ

and finallyZ5eU@J#2 ũ.

1A similar treatment has been proposed by van Hove@7#, in deal-
ing with continuous NB distributions.
602 © 1997 The American Physical Society
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57 603BRIEF REPORTS
If one looks only at the spectrum inj8 by integrating over
j9, the new generator isG85eU@J(j8)#1U@Q9#; since ũ
5U @Q8#1U @Q9#, Z85Z.

The NB distribution, whose generating functional is

f ~U!5 @12U#2k/@12ũ#2k , ~5!

while the generator of the semi-inclusive spectra inj8 is

$12U @J~j8!#2U @Q9#%2k/@12ũ#2k .

This corresponds to a pure redefinition ofU since one gets
the new generator by going fromZ5 f $U% to Z85 f $U/(1
2U @Q9#)%. This means that the NB is transformed into
NB, with the same exponent as the original one. Clearly
both cases, the mean multiplicity is changed.

The generating function of the multiplicity distribution i
this case is explicitly given as

z~l!5 @12lu82u9#2k/@12ũ#2k ~6a!

or, after definingr 5u8/(12ũ), in a different and sometime
more convenient form

z~l!5@11~12l!r #2k. ~6b!

In terms of these parameters one gets for the mean multi
ity n̄5kr and for the dispersionD25kr(r 11).

A survey of other kinds of one-body distributions show
that this property of self-similarity if only a part of the spe
trum is observed is quite unlikely.2 One may therefore won
der whether this property is peculiar to the NB distributio
with the Poissonian distribution as a limiting case, or if it
also found in other cases.

It will be shown that in the simplest conditions the pro
erty of self-similarity is unique of the NB distribution. In thi
case one can give for the non-normalized generating fu
tional the representationG5g(U); the probabilitiesp8, Eq.
~4!, can be obtained from a generating functiong(lu8
1u9), where

u85E D~j8!dj8, u95E D~j9!dj9, u81u95ũ.

~7!

The invariance of the functional form of the distributio
when considering only limited parts of the spectrum is e
pressed asg(x1y)5N(y)g„x• f (y)… because in this way the
relation pn85cnpn /C is produced, and this property can b
expressed by saying that the distribution remains the sa
The arbitrary normalizationg(0)51, which is always pos-
sible, givesN(y)5g(y). So finally,

g~x1y!5g~y!g„x• f ~y!…. ~8a!

By taking the first and the second derivative with respec
x and setting thenx50, two differential equations forg(y)
are obtained:

ġ~y!5ġ~0!g~y! f ~y!, g̈~y!5g̈~0!g~y! f ~y!2. ~8b!

2E.g., the NB is a particular case of a hypergeometric distribut
but a generic hypergeometric distribution does not have this kin
self-similarity.
n

c-

,

c-

-

e.

o

It then follows that g(y)g̈(y)5Rġ(y)2 with R
5g̈(0)/ġ(0)2. With the usual position

g~y!5expF E
0

y

q~w!dwG ,
which ensures the correct normalizationg(0)51, the equa-
tion becomes

q̇~y!5~R21!q~y!2. ~8c!

The solution of Eq.~8c! is q(y)5@(12R)y1S#21. Rede-
fining the constants ask51/(R21) and u5(R21)/S one
obtains

gu~y!5@12uy#2k. ~9!

This expression is the generating function of a binomial d
tribution whose exponent is, in general, not integer. T
meaning of the functiong(j) requires that it be positive
together with all its derivatives in the origin; this certain
happens if the exponent is negative, i.e.,R.1 and the pa-
rameteru is positive. A different possibility is given by posi
tive integer exponent and negativeu. This corresponds, how
ever, to a distribution with only a finite number of terms.

The two differential equations~8b! are not completely
equivalent to the functional relation Eq.~8a!, but they follow
from it. The conclusion is that the self-similarity implies th
NB ~which could be not sufficient! but it has already shown
that the NB implies the self-similarity, so the two properti
are equivalent. The generating functional of the NB is mo
conveniently expressed by writinggu(l) asg1(lu) and sup-
pressing from now on the index 1; the normalized distrib
tion is given byz(l)5g(lu)/g(u).

The limit R→1 gives rise to the solutiong(y)
5exp@y/S#, i.e., it yields the generating function for a Poi
sonian distribution.

The experimental evidence and their elaboration@8,9#
show that the NB distribution holds well for different inte
vals of observed rapidity but that the parameters pres
strong variations. The real world does not show the sh
self-similarity property discussed above. The actual analy
was done in a frame whereZ5 f $U% so that case genuin
two-body correlation was absent.

When correlations are present the relation between ex
sive and semi-inclusive distribution is more complicated a
there is no obvious reason for the self-similarity to ho
However, this does not seem too promising: either the ef
of the correlations is so strong that the NB distribution
destroyed or the overall effect is not very important; but th
the parameters of the NB distribution are changed too li
to agree with the experimental evidence. An example will
shown in the Appendix.

A more interesting possibility is given by the often co
sidered possibility@1,2,9# of considering multiple sources in
the rapidity range. Let us consider a simple case wher
source extends in rapidity fromy0 to y1 and another source
is present fromy1 to y2 : when we observe the produce
particles in a rapidity range that ends atyf,y1 then the
second source in inactive, the parameterr grows withyf and
does the multiplicity, the parameterk stays evidently con-
stant. Whenyf goes beyondy1 the first source is frozen~r

,
of
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has attained its final value! and the second gives a contrib
tion still growing with yf . The generating function is now

z~l!5@11~12l!r #2k
•@11~12l!r f #

2k ~10!

and does not yield a NB distribution. One could force t
function z(l) to become a NB-generating function:

ze~l!5@11~12l!r e#
2ke ~11!

by defining the equivalent parameters in such a way
multiplicity and dispersion acquire the correct values. T
prescription is expressed through the auxiliary parameter
5r f /r : r e5r (11r2)/(11r), ke5k(11r)2/(11r2). In
order to explore how good this representation is it is usefu
calculate the higher central momentams5^(n2^n&)s&. The
third central momentum indicates that the worst situation
produced forr f'

1
3 r and a similar indication is obtained b

examining the fourth cumulant@10# k45m423D2; in this
situation the error cannot exceed 12%. One can also exam
in detail the individual distribution of the multiplicity pro
duced, respectively, by the generating functions Eq.~10! and
Eq. ~11!; it results that the approximation is better than
could seem at first sight because large deviations betwee
two series of numbers is found for multiplicities very larg
typically a discrepancy of the order 12% arises for mu
plicities of the order of 25 which gives sizable contributio
to the higher momenta but are not very relevant in the an
sis of the data; for values from 6 to 9, where the maximum
the production rate lies in the difference, it is less than 1
These values are obtained forr f'

1
3 r , in other cases the dis

crepancy is definitely smaller. Anyhow, without dwellin
furthermore on a particular form of approximation the co
clusion that we are trying to draw is that a number
sources, each of them giving rise to a strict NB distributi
within a definite range of rapidity, yields a distribution n
very different when taken over the whole rapidity range.

If one would try to construct a model for high-energ
particle production which implies sources extended in rap
ity, one would like to determine the extension in rapidity
the individual sources. A qualitative examination of the d
tributions associated to events with 2, 3, 4 jets suggests
the extension of the individual source cannot be the sam
the different families of events but, better, that it is larger
the 2-jet events and becomes narrower and narrower in p
ing to the configurations with 3 and 4 jets. The extension
y of the sources cannot become too narrow, if this sho
happen and the number of sources grows too high, the
erating function would approach the corresponding exp
sion for the Poissonian distribution.

When many sources are active the present descriptio
the multiple production acquires many similarities with t
‘‘clan’’ description @9#. On the other hand, a feature of th
two-source model discussed previously is that it is poss
that only a part of the source is active. The description
start with is in fact differential iny. The model lacks infor-
mation on the transverse dynamics which certainly en
also in the multiplicity distributions. In fact the total mult
plicity is larger when the jets number is larger@8,9#. In the
description presented here this would require that more t
one source is active in the same rapidity interval, wh
looks very artificial if we neglect the transverse degrees
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freedom but becomes quite natural when transverse deg
of freedom are taken into account. The model of multip
sources just described is still rather rough; in particular, o
would not expect a sharp beginning and a sharp end for
rapidity range where the source is active. The present a
racy of the experimental data, however, does not allow u
discriminate the actual model from different possibilities.
further point is that the sources have been taken as equ
lent: the presence of internal quantum numbers, which m
affect the production mechanism@11#, have not been taken
into account.

A rather general feature, associated with the presenc
different sources ordered in rapidity is a weak, long-ran
correlation in rapidity among the particles. This may be se
in the following way. The generating functional Eq.~5! is
substituted by a product

f ~U!5)
n

@12Un#2k/@12ũn#2k ; ~12!

every factorn acts in a different range of rapidity. If the tw
particles lie in the same rapidity interval, the two-body d
tribution is D(j1 ,j2)5Ak(k11)D(j1)D(j2)@12ũn8#

2;
whereas if the two particles lie in different rapidity interval
D(j1 ,j2) 5 Ak2D(j1)D(j2)@12ũn8# @12ũn9#. In both
casesA5Pn@12ũn#k.

In conclusion the main points of the present analysis
summarized. The success of the NB in describing the mu
particle distributions supports the possibility that the NB
the actual distribution arising from a single source. The ch
acterizing property of the NB is the self-similarity: if th
source is unique, when considering a part of the spect
one obtains the same NB distribution which describes
total spectrum. The large variation of the NB parameters a
function of the rapidity interval in multiparticle production i
therefore a strong indication for the presence of ma
sources. The alternative possibility is the presence of a
relation within a single source. If the distribution in th
whole spectrum is a NB, correlations most probably produ
different distributions when looking at different parts of th
spectrum. On the contrary, as in the model discussed ab
the superposition of different sources, each giving rise t
NB distribution, can easily produce distributions which a
close to a NB with altered parameters.

Hence one could consider, in high-energy processes w
very high multiplicity, to use the self-similarity property i
order to isolate different sources which are active in a co
plex production process. Events could be organized by c
sidering different topologies, e.g., number of jets, impact
rameter~in heavy-ion collisions!, etc., and one could look a
multiplicity distributions in different regions of phase spac
The individual sources are isolated when, subdividing furt
the phase space regions, the corresponding multiplicity
tributions are self-similar.

This work was partially supported by the Italian Ministr
of University and of Scientific and Technological Resear
by means of the Fondi per la Ricerca scientifica–Univers`
di Trieste.

APPENDIX

In this appendix only the two-body correlations are stu
ied; so beyond the linear termU@J#5*J(j)D(j)dj, a term
V@J,J#51/2*C(j1 ,j2)J(j1)J(j2)dj1dj2 is also used with
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the conditionV @1,1#50. Then a generating functional, wit
these restrictions, can be expressed asZ5g(U @J#,
V @J,J#)/g(U @1#) so that the corresponding generati
function for the multiplicities isz(l)5g(lũ)/g(ũ). If one
looks only at one part of the spectrum, then one can de
the corresponding multiplicities according to Eq.~4!, and the
result is

z~l!5g~lu81u9,l2v812l v̄1v9!/g~ ũ!. ~A1!

The terms ũ,u8,u9 have been already defined in E
~5!. The definition of thev terms, where the symmetry o
C has been used, is

v85
1

2 E C~j18 ,j28!dj18dj28 , v̄5
1

2 E C~j18 ,j29!dj18dj29 ,

v95
1

2 E C~j19 ,j29!dj19dj29 ; ~A2!

the initial conditionV @1,1#50 is translated intov812v̄
1v950 which will be used in order to eliminate the termv̄.

Now one can look to particular cases, the most interes
of which seems to be precisely a distribution which produ
a NB multiplicity when integrated over the whole spectru
but contains two-body correlations. The simplest form
which the generating functional may be written is

Z5 f ~U!5 @12U2V#2k/@12ũ#2k , ~A3!

and when only a part of the spectrum is observed and the
is integrated over the generating function of the multiplic
is

z~l!5 @12ũ#k/@12~u91lu8!2~l2v812l v̄1v9!#k .
~A4!

It is useful to write the same expression in a more comp
form: i.e.,

z~l!5N•@12la2l2b#2k, ~A5!

having definitions

a5 u82v82v9/~12u92v9!, b5 v8/~12u92v9!,

N5@12a2b#k5„~12ũ!/~12u92v9!…k. ~A6!

The new expression for the multiplicity distribution is no
obtained by expandingz(l), as given in Eq.~A5!, in powers
of l; the result is
-

e:
e

g
s

st

ct

z~l!5N(
n

~ ilAb!nCn
~k!~ ia/2Ab!, ~A7!

where Cn
(k) represents the Gegenbauer polynomial@10# of

index k and ordern. This kind of expansion does not loo
very transparent, but from the explicit form of the Gege
bauer polynomials it is easily seen that every term of the s
is real, as obviously it must be. It is also straightforward
verify that when the effect of the correlations vanishes,v8,
v9, b go to zero and the usual binomial distribution is reco
ered.

If the correlations are present but not very strong,
termsv will be small and one can perform an expansion
b. To the first order inb the expression ofz(l) is

z~l!5N$@12la#2k~122kb/a2!

1~@12la#2k111@12la#2k21!kb/a2%. ~A8!

With this expansion the original binomial distribution is r
produced, with some small correction for the parameter,
other satellite binomial distributions arise, whose exponen
shifted by61, so that the distance from the original distr
bution increases with the power of the small parameter r
resenting the effect of the correlations.

Also in the presence of a correlation there is the limiti
relation between the NB and the Poissonian distribution. I
formal way this may be obtained through the definitionsU
5P/k, V5Q/k, u5p/k, v5q/k; then in the limit
k→` out of Eqs.~A3!, ~A4! it results thatZ5exp@P1Q
2p1#, z(l)5exp@2(p81q9)1l(p82q82q9)1l2q8#, and as
far as Eq.~A7! is concerned, one can use the limiting expre
sions of the Gegenbauer polynomials yielding the Herm
polynomials@10#.

What appears, beyond the details of the calculations
necessarily refer to simplified examples, is that in prese
of two-body correlations the partial spectra are necessa
different from the complete ones: if the correlations play
minor role, then the NB distribution is approximately pr
served, but with the too strong result of having a constank
parameter, strong correlations may simulate a variablek pa-
rameter but strongly modify the distribution, which is n
longer a NB distribution~not even approximately!.
.
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