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Self-similarity of the negative binomial multiplicity distributions
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The negative binomial distribution is self-similar: If the spectrum over the whole rapidity range gives rise to
a negative binomial, in the absence of correlation and if the source is unique, also a partial range in rapidity
gives rise to the same distribution. The property is not seen in experimental data, which are rather consistent
with the presence of a number of independent sources. When multiplicities are very large, self-similarity might
be used to isolate individual sources in a complex production prof®8556-282(198)00401-9

PACS numbeps): 12.40.Ee, 13.85.Hd

One of the first basic pieces of evidence observed in the
field of many-particle production and nuclear collisions is pn:f Wh(é1,....6n)dEy, ... A&,
the distribution of the multiplicity of the produced patrticles. _
Multiplicity distributions are measured both by looking at _i j 6 d " I
the whole spectrum of the produced particles and by looking n! ) 83(é) ¢| 230=0

only at a restricted segment, typically a rapidity interval.

[ n
Both for theoretical and experimental reasons, one of the :i i} Z[I+N1]]5—on-
favorite parametrizations of the multiplicity distributi¢f], n! [N ImoN=0
also in different rapidity interval§2], is the negative bino- 17 g1n 1 n
mial (NB) distributions. A very detailed discussion of the =— || 2N =0=7 | 55| ZM)|r=0- ()
experimental evidence, the interpretations, and also the for- n! [ dn n! [oN

malism used to deal with these kinds of problems has been | ot ys now consider the situation where the interval in
recently publisheds]. In the case of a generic distribution \yhich the variables lie is divided into two parts. Then for a
the relation between the multiplicities of a restricted part ofparticular choice of these variablesW,(&,,....&,)

the spectrum and those arising from the whole spectrum is-yy (&1 ... £ )W(&),...,£7) with r+s=n. Taking into
not trivial. In the present paper we point out that for NB, on 5ccount all the possible choices §f and ¢” it results that
the contrary, a peculiar self-similarity property holds be-

tween the distributions obtained from different intervals of W,(£7,...,& )Wy(&] ,....£2)

the spectrum. 1 5 s 1 8 S
We find it convenient to make use of the generating func- = — — e ~ — e — Z[J]|;5-0-
tional formalism to deal with these kinds of problefds-6]. rhsJ(g)  8I(E) st 8I(E) BIEY)
I&:asttx\tl)rzj(tl%ns &) be the normalized multiparticle exclusive |t \ye sum over all configurations igf’ the distributions ir¢’
: are W,(&1,....&) -2 IWy(&7,....£0)d¢€] ... déL.A set of
semi-inclusive distributions are obtained in this Wajnce
> f W (&q,... &0 déEq,. .. dE=1. (1)  everything referring to the variables are not observed. The
n generator of these new distributions B =Z[J +0"],

whereJ’ has as an argument on§y, i.e.,J'(£")=0,0" is

1foré=¢" and 0 foré=¢', ®' is 1 foré=¢' and O foré
The variablesf can have different meanings and also repre-=¢”. The probability of findingn particles in the observed
sent more than one physical parameter. In high-energy collipart of the spectrum is then
sions¢ could represent the rapidity and the transverse mo-
mentum; if the distributions refer to incoming partogs pl=—
could represent the fractional longitudinal momentarand n
the impact parameter. The distributions may be obtained in
the usual way from a generating functioril

n

Z’(Mly=0- 4

2N

(9 " ! n — 1
N ZINO'+06 ]|x=o—m

Two particular cases of interest are as follows. The Pois-
sonian distribution, which is obtained by defining

_ 1 ) )
Wn(fl:---én)—m 53(&) " BI(EY Z[3-0 2

U=f~](§)‘D(§)d§, U=f D(£)d¢,

g:eu[J]’ glze‘ﬁ

and the normalization is expressed By1]=1. Sometimes and finally Z= CA
it is useful to also use an unrenormalized genergtovith
Z[J]=glI1/g[1].
The probability of producing particles, in any configu- A similar treatment has been proposed by van Hlein deal-
ration, is evidently given by ing with continuous NB distributions.
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If one looks only at the spectrum & by integrating over
&, the new generator isg’ =eIENI+UO"]: gince T
=U[O']+U[O"], Z'=Z.

The NB distribution, whose generating functional is

f(e)=[1-u]"M[1-Tu]¥, ©)
while the generator of the semi-inclusive spectr&'ins
{1-U[3&EH-Ue" ] ML-Tu] ~.

This corresponds to a pure redefinitioniogince one gets
the new generator by going frol8=f{U{} to Z'=f{U/(1
—U[®"])}. This means that the NB is transformed into a
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It then follows that g(y)g(y)=Rg(y)?> with R

=(0)/g(0)?. With the usual position

y
g(y)=exr{ fo q(W)dW},

which ensures the correct normalizatig0)=1, the equa-
tion becomes

ay)=(R-1)q(y)2 (80)

The solution of Eq.8¢) is q(y)=[(1—R)y+S] *. Rede-
fining the constants ak=1/(R—1) andu=(R—1)/S one

NB, with the same exponent as the original one. Clearly, inobtains

both cases, the mean multiplicity is changed.
The generating function of the multiplicity distribution in
this case is explicitly given as
zON)=[1-zu'—u"]¥[1-T] ¥ (6a)
or, after defining =u’/(1-1), in a different and sometimes
more convenient form

z(N)=[1+(@1-Nr]k (6b)

In terms of these parameters one gets for the mean multiplicev

ity n=Kkr and for the dispersio®?=kr(r+1).

A survey of other kinds of one-body distributions shows
that this property of self-similarity if only a part of the spec-
trum is observed is quite unlikefyOne may therefore won-
der whether this property is peculiar to the NB distribution,
with the Poissonian distribution as a limiting case, or if it is
also found in other cases.

It will be shown that in the simplest conditions the prop-
erty of self-similarity is unique of the NB distribution. In this

case one can give for the non-normalized generating func-

tional the representatioi=g(l{); the probabilitiesp’, Eq.
(4), can be obtained from a generating functigf\u’
+u"”), where

u/:f D(é:/)dgl, u//:f D(g//)dg/l, u/_"_u//:'ﬁl
(@)

The invariance of the functional form of the distribution,
when considering only limited parts of the spectrum is ex-
pressed ag(x+y)=N(y)g(x- f(y)) because in this way the
relation p;,=c"p,/C is produced, and this property can be
expressed by saying that the distribution remains the sam
The arbitrary normalizatio(0)= 1, which is always pos-
sible, givesN(y)=g(y). So finally,

g(x+y)=9a(y)gx-f(y)). (8a)

gu(y)=[1-uy] ™~ 9)
This expression is the generating function of a binomial dis-
tribution whose exponent is, in general, not integer. The
meaning of the functiorg(£) requires that it be positive
together with all its derivatives in the origin; this certainly
happens if the exponent is negative, iR>1 and the pa-
rameteru is positive. A different possibility is given by posi-
tive integer exponent and negative This corresponds, how-
er, to a distribution with only a finite humber of terms.
The two differential equation$8hb) are not completely
equivalent to the functional relation E@a), but they follow
from it. The conclusion is that the self-similarity implies the
NB (which could be not sufficientout it has already shown
that the NB implies the self-similarity, so the two properties
are equivalent. The generating functional of the NB is more
conveniently expressed by writingg,(\) asg;(Au) and sup-
pressing from now on the index 1; the normalized distribu-
tion is given byz(\)=g(\u)/g(u).

The Ilimit R—1 gives rise to the solutiong(y)
=exdy/s], i.e., it yields the generating function for a Pois-
sonian distribution.

The experimental evidence and their elaborat{8;9]
show that the NB distribution holds well for different inter-
vals of observed rapidity but that the parameters present
strong variations. The real world does not show the sharp
self-similarity property discussed above. The actual analysis
was done in a frame wherg=f{l{} so that case genuine
two-body correlation was absent.

When correlations are present the relation between exclu-
sive and semi-inclusive distribution is more complicated and
here is no obvious reason for the self-similarity to hold.

owever, this does not seem too promising: either the effect
of the correlations is so strong that the NB distribution is
destroyed or the overall effect is not very important; but then
the parameters of the NB distribution are changed too little
to agree with the experimental evidence. An example will be

By taking the first and the second derivative with respect tasshown in the Appendix.

x and setting thex=0, two differential equations fog(y)
are obtained:

a(y)=9(0)g(y)f(y), 9(y)=98(0)g(y)f(y)% (8b)

A more interesting possibility is given by the often con-
sidered possibilityf1,2,9] of considering multiple sources in
the rapidity range. Let us consider a simple case where a
source extends in rapidity frolyy to y; and another source
is present fromy; to y,: when we observe the produced
particles in a rapidity range that ends wi<y,; then the

%E.g., the NB is a particular case of a hypergeometric distributionsecond source in inactive, the parametgrows withy; and
but a generic hypergeometric distribution does not have this kind ofloes the multiplicity, the parametér stays evidently con-
self-similarity. stant. Whery; goes beyond/; the first source is frozefr
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has attained its final valyend the second gives a contribu- freedom but becomes quite natural when transverse degrees
tion still growing withy;. The generating function is now of freedom are taken into account. The model of multiple
sources just described is still rather rough; in particular, one
zZ(M)=[1+(1-Mr] % [1+(@-Mrd ™% (10 would not expect a sharp beginning and a sharp end for the
rapidity range where the source is active. The present accu-
and does not yield a NB distribution. One could force theracy of the experimental data, however, does not allow us to
functionz(\) to become a NB-generating function: discriminate the actual model from different possibilities. A
_ —k further point is that the sources have been taken as equiva-
Ze(N)=[1+(1=Nre] e 1D lent: the presence of internal quantum numbers, which may
o ) , affect the production mechanisfi1], have not been taken
by defining the equivalent parameters in such a way thajto account.
multiplicity and dispersion acquire the correct values. The A rather general feature, associated with the presence of
prescription is expressed through the auxiliary parameter different sources ordered in rapidity is a weak, long-range
=r¢lr: re=r(1+p?/(1+p), ke=k(1+p)%(1+p?. In  correlation in rapidity among the particles. This may be seen
order to explore how good this representation is it is useful tan the following way. The generating functional E) is
calculate the higher central momenig=((n—{n))%). The  substituted by a product
third central momentum indicates that the worst situation is
produced forr ;~3r and a similar indication is obtained by fan=11 11-u,17M1-1a,1"%; (12)
examining the fourth cumulartL0] x,=u,—3D?; in this n
situation the error cannot exceed 12%. One can also examirée erv factom acts in a different range of rapidity. If the two
in detail the individual distribution of the multiplicity pro- very ! ' g pidity. w

. . . particles lie in the same rapidity interval, the two-body dis-
duced, respectively, by the generating functions #€) and 0 ; _ _~ 92
Eq. (11); it results that the approximation is better than it tribution __is  D(&3,&2) =Ak(k+ 1)D(£1)D(£2)[1=Un T

could seem at first sight because large deviations between tI%v?hereas if the t%/vo particles lie in different rapidity intervals,
(£1.£2) D(£1)D(&2)[1-un ] [1=Up]. In bo

two series of numbers is found for multiplicities very large, casesA=1I1,[1-T,]

typically a discrepancy of the order 12% arises for multi- |5 conclusion the main points of the present analysis are
pI|C|t|es_of the order of 25 which gives sizable CQ”t”bUt'O”Ssummarized. The success of the NB in describing the multi-
to the higher momenta but are not very relevant in the analyparticle distributions supports the possibility that the NB is
sis of the data; for values from 6 to 9, where the maximum ofthe actual distribution arising from a single source. The char-
the production rate lies in the difference, it is less than 1%acterizing property of the NB is the self-similarity: if the
These values are obtained figr= 31, in other cases the dis- source is unique, when considering a part of the spectrum
crepancy is definitely smaller. Anyhow, without dwelling one obtains the same NB distribution which describes the
furthermore on a particular form of approximation the con-total spectrum. The large variation of the NB parameters as a
clusion that we are trying to draw is that a number offunction of the rapidity interval in multiparticle production is
sources, each of them giving rise to a strict NB distributiontherefore a strong indication for the presence of many
within a definite range of rapidity, yields a distribution not Sources. The alternative possibility is the presence of a cor-
very different when taken over the whole rapidity range. ~ relation within a single source. If the distribution in the
If one would try to construct a model for high-energy Whole spectrum is a NB, correlations most probably produce
particle production which implies sources extended in rapid_dlfferent distributions when Ioo.klng at dlffererjt parts of the
ity, one would like to determine the extension in rapidity of SPECtrum. On the contrary, as in the model discussed above,
the individual sources. A qualitative examination of the dis-th€ SuPerposition of different sources, each giving rise to a

tributions associated to events with 2, 3, 4 jets suggests th B distribution, can easily produce distributions which are
the extension of the individual source cannot be the same i Oli%rg?:eaol\rlg Zv(;tuhl dal(t:(ca):]estij dg?r?rn?iterféner rocesses with
the different families of events but, better, that it is larger in ; 9 gy p

: . very high multiplicity, to use the self-similarity property in
the 2-jet events and becomes narrower and narrower in PaS§ider to isolate different sources which are active in a com-

ing to the configurations with 3 and 4 jets. The.exte-znsion INhlex production process. Events could be organized by con-
y of the sources cannot become too narrow, if this shoul idering different topologies, e.g., number of jets, impact pa-
happen and the number of sources grows too high, the gefameter(in heavy-ion collision etc., and one could look at
erating function would approach the corresponding expresmuyitiplicity distributions in different regions of phase space.
sion for the Poissonian distribution. The individual sources are isolated when, subdividing further
When many sources are active the present description ehe phase space regions, the corresponding multiplicity dis-
the multiple production acquires many similarities with thetributions are self-similar.
“clan” description [9]. On the other hand, a feature of the

. . : e ; This work was partially supported by the Italian Ministry
- I [ h I ) ) L .
two-source model discussed previously is that it is possib %f University and of Scientific and Technological Research

that only a part of the source is active. The description Web f the Fondi la Ri ientifi Universit
start with is in fact differential iry. The model lacks infor- g?lan}gi?es ot the -ondi per fa Ricerca scientifica—Universita

mation on the transverse dynamics which certainly enter
also in the multiplicity distributions. In fact the total multi- APPENDIX

plicity is larger when the jets number is largd,9]. In the

description presented here this would require that more than In this appendix only the two-body correlations are stud-
one source is active in the same rapidity interval, whichied; so beyond the linear tert J]=[J(£)D(£)dé, a term
looks very artificial if we neglect the transverse degrees oM J,J]=1/2[C(&1,£,)I(&1)I(&2)dE1déE, is also used with
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the conditiony [1,1]=0. Then a generating functional, with ) )

these restrictions, can be expressed &s=g(i/[J], Z()‘):N; (ixvb)"c(iar2yb), (A7)
V[J,ID/g(U[1]) so that the corresponding generating

function for the multiplicities isz(\)=g(\u)/g(u). If one

looks only at one part of the spectrum, then one can defing 0 .
the corresponding multiplicities according to E4), and the where C,,” represents the Gegenbauer polynoniikd] of

result is index k and ordem. This kind of expansion does not look
o _ very transparent, but from the explicit form of the Gegen-
zZ(\)=g(\u’'+Uu" \%'+2\v+v")/g(U). (A1)  bauer polynomials it is easily seen that every term of the sum
is real, as obviously it must be. It is also straightforward to
verify that when the effect of the correlations vanishe’s,
v”, b go to zero and the usual binomial distribution is recov-
ered.
L1 P —— s ot If the correlations are present but not very strong, the
v'T2 J Cl&1,£5)d62dé5, v= 2 J’ Clé1,£5)d6,d8, termsv will be small and one can perform an expansion in
b. To the first order irb the expression of(\) is

The termsu,u’,u” have been already defined in Eq.
(5). The definition of thev terms, where the symmetry of
C has been used, is

1
o= | e epagag; (2) k
z(N)=N{[1-ra] ¥(1—-2kb/a?)
the initial conditionV[1,1]=0 is translated intaw’+2v +([1-Na] < 1+[1—ra] % Lkb/aZl. (A8)
+v"”=0 which will be used in order to eliminate the tetm
Now one can look to particular cases, the most interesting
of which Seems to be pr_emsely a distribution which produceswith this expansion the original binomial distribution is re-
a NB multiplicity when integrated over the whole SpeCtrumproduced, with some small correction for the parameter, but

\?vl;]ticiopht:'gznt:git:%d?urfgggﬂ;“%n; J:\e/vr?tltrgrelie}:t form "Nother satellite binomial distributions arise, whose exponent is
shifted by =1, so that the distance from the original distri-
Z=fU)=[1-U-V]"M[1-T]¥, (A3)  bution increases with the power of the small parameter rep-
resenting the effect of the correlations.
and when only a part of the spectrum is observed and the rest Also in the presence of a correlation there is the limiting
is integrated over the generating function of the multiplicity relation between the NB and the Poissonian distribution. In a
is formal way this may be obtained through the definitidhs
z(N)=[1-UIM[1—(u"+ru")— (N2 +2 v +0") K. =PIk, V=9lk, u=p/k, v=qg/k; then in the limit
(A4) k—o out of Egs.(A3), (A4) it results thatZ=exgd P+ Q
_ _ o —p1l, Z(\) =ex{—(p' +¢")+N\(p'—q'—q)+\°q'], and as
It is useful to write the same expression in a more compacfgr as Eq(A?) is concerned, one can use the ||m|t|ng expres-

form:i.e., sions of the Gegenbauer polynomials yielding the Hermite
zZ(\)=N-[1—ra—\2b] 7K, (A5) polynomials[10]. . .

What appears, beyond the details of the calculations that

having definitions necessarily refer to simplified examples, is that in presence

of two-body correlations the partial spectra are necessarily

a=u'—v'=v"/(1-u"=v"), b=v'/(1-Uu"-v"), different from the complete ones: if the correlations play a

N=[1—-a—b]*=((1-T)/(1-u"—v")k.  (A6)  minor role, then the NB distribution is approximately pre-
served, but with the too strong result of having a conskant

The new expression for the multiplicity distribution is now parameter, strong correlations may simulate a variklpe-
obtained by expanding(\), as given in EqQ(A5), in powers rameter but strongly modify the distribution, which is no

of \; the result is longer a NB distributior(not even approximately
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