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Can COBE see the shape of the universe?
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In recent years, the large angle COBE-DMR data have been used to place constraints on the size and shape
of certain topologically compact models of the universe. Here we show that this approach does not work for
generic compact models. In particular, we show that compact hyperbolic models do not suffer the same loss of
large angle power seen in flat or spherical models. This follows from applying a topological theorem to show
that generic hyperbolic three manifolds support long wavelength fluctuations, and by taking into account the
dominant role played by the integrated Sachs-Wolfe effect in a hyperbolic uniy86&56-282(98)05310-7

PACS numbdrs): 98.70.Vc, 98.80.Cq, 98.80.Hw

In 1966, Kac[1] posed the question “Can one hear the Walker (FRW) models? but display different global charac-
shape of a drum?” In recent years a similar question haseristics. In particular, small universes have a discrete
been asked in cosmology: “Can one see the shape of thgpectrum of eigenmodes and are globally anisotropic and
universe?”’[2]. More formally, the question can be phrased:inhomogeneous. In models with locally spherical or Euclid-
can we discern the global topology of the universe by studyean geometry the eigenvalue spectrum is raised above that of
ing fluctuations in the cosmic microwave backgroGiB) the simply connected models and there is a corresponding
radiation? long wavelength cut-off. For example, the eigenvalues of the

With the launch of new satellites next century, and with aL-aplacian on flat Euclidean space take all values in the range
careful search for matched microwave temperatures arourffie [0.), corresponding to wavelengths=2m/ke (»,0].
pairs of circles on the last scattering surfg€pological However, if we compactify this space by making the identi-
lensing”) [3,4], we should be able to answer this question inlications &,y,z)=(x+n.L,y+n,L,z+n,L) where then,
the affirmative. In the interim, we can ask how much can be® INtegers, the eigenvalue spectrum becomes disdrete,
done with the 4-year Cosmic Background Explo@oBE) ~ — 27/L(m+ny+n3) ™ and the bottom of the spectrum is
Differential Microwave RadiometefDMR) data[5]. Poor ~ 'aised fromk=0 tok=2m/L. There is then a corresponding
angular resolution and low signal to noise make the COBEONG wavelength cut-ofh pma=L. o
data unsuitable for direct lensing studies, but several groups Assuming th?t temperature fluctuations in the_ CMB are
[6-10 have used the data to put constraints on a variety o aused by density fluctuations on the last scattering surface,

. ! ; . his long wavelength cut-off is translated into a suppression
toroidal models. Here we consider how their results might be .
eneralized to encompass a wider class of small universOf large angle powef6,7). The cut-off in long wavelength
9 1 ) P : ) _ ) Sower that occurs in Euclidean space was first used by
models: In particular we will be interested in hyperbolic

. . o .~ Sokolov[6] to show that a flat universe with toroidal spatial
models since observations suggest we live in a negativelyq ions could not be much smaller than the horizon size. He
curved universe. Moreover, the topology scale and the CUl3rgued that the topology scale had to be large enough to
vature scale are intimately related in hyperbolic modelsg|iow the wavelengths needed to produce the quadrapole an-
whereas in a flat universe there is no scale at which ON@otropy measured by COBE. A number of groufs-9]
would expect to observe the topology. By applying a numbehaye since improved on Sokolov's bound and extended his
of results pertaining to the topology of three manifolds, andanalysis to include other flat topologies. Recently, Levin
by taking into account the integrated Sachs-Wolfe effect, weet al. [10] have generalized these bounds to include a non-
argue thatgeneric small universe models cannot be con- compact, infinite volume hyperbolic topology describing a
strained by COBE data. Naturally, some specific models catoroidal horn.
be constrained by COBE data, but we argue these are the There has been a tendency to draw general conclusions
exception rather than the rule. from these few examples. Indeed, the small universe idea
Small universes enjoy the same local geometry and dy-
namics as the usual simply connected Friedmann-Robertson-—
2By simply connected we mean the fundamental grayps.) is
trivial. Sincerr((S%) = 7, (E®) = (H%) =1, the usual FRW models

A small universe is defined to be one that is multiply connectedare all simply connected. A multiply connected model has a non-

on scales smaller than the particle horizon. trivial fundamental group.
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was declared dead in Rdi8]. While it is fair to say that length of the shortest closed geodesics in a typical small
positively curved small universes, and the simplest toroidahyperbolic universe is roughly (0-51.0)R,, where R,

flat universes with topology scale much less than the horizor=H, !/\/1—Q, is the comoving curvature radius. Helrg,
scale are effectively ruled ou®], we show that the same s the Hubble constant arfd, is the matter density in units
cannot be said about negatively curved models. Lessonsf the critical density. The first copies of the Milky Way
learned in flat space do not always apply in hyperbolic spacejalaxy or Coma cluster would not be seen before a confor-

For example, the eigenvalue spectrum is typicédywered  mal lookback time ofy=0.5—1.0. Converting this to red-
rather than raised by making hyperbolic space compact, i.&hift space via the relation

k? can be less than zero. Consequently, there need not be a

long wavelength cut-off. Even if there were, and even as- 2(01-1)
suming a simple initial power spectrum at large wavelengths, = m, (1.7
the existence of large angle power as measured by COBE- 07

DMR still could not directly be used to constrain compact h B h(20 is th f i
hyperbolic models since the large angle power in a negal/N€re7o=arccosh(),—1) is the present conformal time,

tively curved universe does not come from the last scattering’® find that the first ghost 'imagias will be at a redshifizof
surface. The bulk of the large angle power is due to the-0-9—2.9 in a universe witf}o=0.3. If the universe has
decay of curvature perturbations along the line of sjgnt- (o closer to unity, the first ghost images will be even more
13). If the universe is hyperbolic, COBE has been detecting!iStant. _ ,
fluctuations produced at moderate redshiftss, rather than These numbers suggest that direct searches for ghost im-
z~1200. Consequently, the large angle power is produce@9€s Of astrophysical objects will be unable to tell if we live
by fluctuations occurring on small comoving length scaledn @ compact hyperbolic universe. A more promising ap-
that only appear large due to their relatively close proximity.proach Is to look for topologpal Iensmg of the Iast s_catterlng
In Sec. | we briefly discuss constraints on small universeurface by studying fluctuations in the cosmic microwave

models based on searches for ghost images. In Sec. Il wRckground radiatiofi3,4].
emphasize the importance of the ISW effect for calculating
CMB fluctuations on large angular scales. In Sec. Ill we ll. MICROWAVE BACKGROUND FLUCTUATIONS

describe the eigenmodes of infinite hyperbolic space. Section . . .
IV contains an introduction to compact hyperbolic space and Conventional lore holds that the finite size of a small uni-
its underlying mathematical structure. In Sec. V we obtain’€'S€ Will lead to a long wavelength cutoff in the spectrum of
lower limits on the wavelength of the longest wavelengthPrimordial fluctuations. In the sections to follow, we show
mode, showing that modes with wavelengths longer than thiat this is not guaranteed in a hyperbolic universe. In this
curvature scale usually exist, though in what multiplicity we section we point out that even if there were such a cut-off, it

cannot say. In Sec. VI we digress to consider a particulaf/ould be masked by the integrated Sachs-WlgW) ef-
class of topologies closely related to the horn topology studf€ct on the angular scales probed by COBE.

ied by Levinet al. [10]. In Sec. VI we speculate about the _ In adiabatic modelsg.g. inflation) the primordial fluctua-
form of the primordial power spectrum in compact models,t'on sp_ectrum determines the power spe_ctrum on the last
and describe how the mixing property of compact hyperbolicscatter'”g surface. However, the fluctuations measured by
space tends to spread power across a wide range of anguEtPBE do not nec.essanly orlgmat(_e on the last scattering sur-
scales. Our conclusions can be found in Sec. VIII. A glossary@c€- In @ negatively curved universe, power on angular
of mathematical terms is included in the Appendix. Refer-Scales larger than the curvature scale is produced at relatively

ences to words appearing in the glossary are indicated in tH@W rédshifts by fluctuations occurring on scales consider-
text by roman superscripts, e.g. Betti numbgr ably smaller than the curvature scale. This severely limits

Throughout the paper we will be assuming that a COSmO_COBE's ability to probe the large scale topology of the uni-

logical constant does not provide a significant contribution to’€">€: . .
thg density of the universz. g In a hyperbolic universe, there are two terms that produce

the microwave background fluctuations on large angular
scales:
I. GHOST HUNTING

" dx,p)dy (2.0

Msls

The most obvious observational signature of a multiply
connected universe would be repeated or “ghost” images of
familiar objects such as galaxies or rich clusterd]. How-
ever, searches for ghost images are hampered by evolution where7gs is the conformal time at the surface of last scatter
the objects; our ability to recognize objects when viewedand, is the present conformal time. The first term is due to
from different directions; and the difficulty in determining Vvariations in the gravitational potential and photon density at
the distances to objects. the surface of last scatter. The latter term, which is zero to

Despite these problems, the consensus seems to be thiear order in a matter dominatéit universe, is due to the
there is no evidence for ghost images out to redshiftz of decay of potential fluctuations at late times;{4) <Q*. In
~0.4—the current depth of wide-field redshift surveys. It isa universe with(};=0.3, the latter term, the so-called inte-
interesting to note that this lack of ghost images is exacthgrated Sachs-Wolfe effect, is tl®minantsource of micro-
what one expects for typical small compact hyperbolic modwave background fluctuations on large angular scpl&
els. According to Thursto[iL5], the expectation value for the The late-time ISW effect dominates multipole moments be-

AT(60,¢) D (Xgis) 7s1s)
T 3 +2f
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low / cun=2v1—Q¢/Qq. Neglecting this contribution will
lead to a severe underestimate of the large angle power.
Because of the late-time ISW effects, we expect signifi-
cant large angular scale fluctuations evefl ifis as small as
0.1. Kamionkowski and Sperg¢l3] calculated the CMB
fluctuations in hyperbolic models with trivial topology and a
variety of primordial power spectra. Below the curvature
scale the standard scale-invariant Harrison-Zeldovich spec-
trum was used. This is probably reasonable at sufficiently
small scales for models with non-trivial topology, including
compact models, as small scale perturbations will be less
sensitive to global properties such as the curvature and to-
pology. Beyond the curvature scale, both the unknown form
of the eigenmodes and the expected effects of transients in
the inflationary dynamics make the situation much less clear.
For the latter reason, Kamionkowski and Spergel considered fiG. 1. A density plot showing the quadrapole integrand,
a range of power spectra. Of the models they considered, the'(;)X2(5,— 7), as a function of wave numbérand time since
“volume power law model” has the least long wavelength |ast scatter;. The regions of highest contrast are where the domi-
power. In this model, fluctuations on scales larger than theant contribution occurs.
curvature scale are exponentially suppressed. Consequentle/} ) ) ] ] ]
there is essentially no contribution tT/T from the last (m)Xi(770— 7). in a universe with(2o=0.3. Notice that
scattering surface in the volume power law model. Neverthethe dominant contribution comes from late timeg: 1.5, z
less, the second term in E.1) produced sufficient power <2 and large wave number. —
to fit the fluctuations observed by COBE-DMRBee figures 6 We highlight the wave number dependence in Fig. 2 by
and 9 in[13)]). plotting | a»(k)| and|a,(k)|. The latter is shown for a vol-
The above result is not difficult to understand. As men-Ume power law scaling with spectral index 1. We see that
tioned earlier, the large angle power in a sub-critical universéhe€ dominant contribution to the quadrapole comes from
is produced by fluctuations occurring on small comovingModes with wave numbers~3—10 in curvature units or
length scales that only appear large due to their relativelytsis 7 —24 in units of the radius of the surface of last scat-
close proximity. To make this concrete, we can consider thd€!- This should be contrasted with the flat space case where
contributiona, (k) to a given multipole/”, from modes with modes withkg s~ 2—4 provide the dominate contribution to

) the quadrapole.
wave numbek [12]; The important lesson in all this for compact hyperbolic

- models is that the form of the power spectrum at very small
a,(K)=® (1) a(K) (22 wave number(long wavelengthis largely irrelevant. It is
power on scales smaller than the curvature scale that contrib-
where utes most to the low multipoles. Since the topology scale is
typically comparable to or larger than the curvature scale, the

- 1 p ISW effect should ensure there is no significant suppression
a/(k):[§|:(7lsls)x|’<(770— 7sls) of the large angle temperature fluctuations in generic com-
pact models.
wdF _ o In contrast to the amplitude fluctuations, microwave back-
+2f E(ﬂ)xk/( no—mdn|. (23  ground polarization fluctuations exclusively probe the sur-
Msls

face of last scatter. These fluctuations arise due to electron

HereX{ are the radial eigenfunctions of the Laplaciankth
(see next sectignand®,(») describes the curvature pertur-
bation on scales#/k at conformal timen. These are related
to the curvature perturbations today byd, (%)

=®(70)F(7)/F(70) where[16]

c Esinhz( n) — 3ysinhy+4coshy— 4
(m)=5 (COShI]—l)S
In a flat universelF/d =0 to leading order, and only the

first term contributes. Moreover, it is easy to show that
a,(k) is strongly peaked aty s~/ +1 in a flat universe if
we chose our unit of length to be the radius of the surface of
last scatter. The same is true in an open universe for multi- A
poles with/> /", but for low multipoles the second term

in Eq. (2.3) dominates. For example, Fig. 1 shows which  FIG. 2. The functionga,(k)| and|a,(k)| in a universe with
modes k contribute most to the quadrapole integrand,Q,=0.3. The scaling is arbitrary.

(2.9
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scattering and depend on gradients in the velocity field k?=qg?—1. (3.6
(17,18
i - o In the literature there is considerable confusion surrounding
(Q+iU)(n)=0.17A7, m m'5i01|7* (2.5 this shift between eigenvalue and wave number in hyperbolic

) . ) ~ space. Some authors claim ttiatis the wave number, but
WhereA’T* is the width of the last Scatte”ng surface and |Sthis is not true. |ndeed, it is Simp'e to prove that f?r

giving a measure of the distance photons can travel betweef 2 /i the radial eigenfunctions take the form

their last two scatterings. Her® andU are the Stokes pa-

rameters,n is the direction of photon propagation, and p codKy+ )

=g, +ie, wheree, ande, form a basis orthogonal to. Note Xa(x)~ ey 3.7
that polarization fluctuations are produced only due to scat-

tering and are not sensitive to the ISW effects. Thus, polar
ization fluctuations are our best chance to directly probe s
percurvature modes.

where ¢, is a k,/ dependent phase. The 1/sinfactor
Yollows from flux conservation in a space where the surface
area of a ball grows as#sinify. Clearly, k is the wave
number and\ =2#/k is the wavelength. We will refrain
from calling modes with\>1 ‘“supercurvature” to avoid

When attempting to calculate perturbation spectra in comeonfusion with other papers in the literature where “super-
pact hyperbolic space one is immediately confronted by th&urvature” is used to describe modes Wmﬁ<_1- Perhaps
highly non-trivial task of finding the eigenmodes. In prin- the confusion surrounding wave numbers in open models
ciple the eigenmodes of a compact space can be obtainé@mes from considering the wave equation for massless sca-
from the eigenmodes of the simply connected covering spadé' fields:
using the method of imagd4.9]. In practice the sums in-
volved are highly divergent and can only be tamed by so-
phisticated resummation methof20,21]. Before confront-
ing this challenging problem we need to know the

eigenmodes of the covering space. The covering space hgsr eigenmode® (7,x) with eigenvalueg and angular fre-

Ill. VIBRATIONS IN A HYPERBOLIC CAVITY

32
(a—nz—A)\P(n,x)=0. (3.9

the metric quencywg we have
ds?=dt?>—R2(t)do?, (22
2 42— 1 241 =
=R%(n)(dn*~da?), (3.0 wg=0? =K+ 1=—5—+1. (3.9
where thedo is the metric on hyperbolic three-space, Notice that the usual relationship between frequency and

wavelength is offset by one unit. If we were to neglect this
offset and assert thad =27/\, then we would erroneously

The Ricci curvature of this metric is 1, corresponding to a  ¢onclude thag was the wave number. _ _
curvature scale of unity. Perturbations in such a spacetime " compact hyperbolic space the e|genm<2:>des will be dis-
can be expanded in terms of spherically symmetric solution§"€t€ azmd the spectrum can leveredbelowk®=0. Modes
of the Helmholtz equationX+q?)Q=0, where theA is the with k“<0 are not square integrable in infinite hyperbolic

do?=dy2+ sinfx(d 62+ sir?6d ¢2). (3.2

Laplace operator ofi® space as they grow exponentially wigh However, these
modes are square integrable in compact hyperbolic space and
1 a{ . aQ 1 9/ dQ are thus quite acceptable.
AQ= Sinfx a Slnhz)(a +m% SWW@ The physical and comoving counterparts to the wave
numberk and wavelength\ are scaled such that
+ L 70 (3.3
sirf6 367 | ' k k —
kphyS:W' kcng:R_OzkHO 1_90,
The eigenfunctions are given §g2]
QY™ x,6,4)=Xq(X)YP(6, ), (34

)\phys: R(t) A y A cmvg: Ro)\ = (31@

A
Hov1—Qo

Fluctuations in the temperature of the cosmic microwave
background are due to variations in the gauge invariant

where theY""s are spherical harmonics and the radial eigen-
functions are given by

(—1) "1sint y d”"tcogky)

CroN — gravitational potentiatb(x,»). The connection between ei-
Xa(x) | m . (39 AN
H ( ) d(coshy)” ** genvalue spectra and observed fluctuations in the CMB fol-
n°+ lows from the relation
n=0
The wave pumbe|k=277/)\, is related to the eigenvalues of B (x)= E cq/qu/m(x). (3.11
the Laplacian by q.7,m
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The expansion coefficients,,, are fixed by the primordial
power spectrum. Moreover, any physical mechanism for
generating that primordial power will be influenced by the
shape of the eigenmodes and the eigenspectrum, for no mat-
ter how skilled the drummer, a snare drum will not sound
like a timpani.

IV. COMPACT HYPERBOLIC SPACE

A compact hyperbolic universe has spatial sections of the
form 3 =H3T, where the fundamental group, is a dis-
crete subgroup o50Q(3,1)=PSL(2,C) acting freely(i.e.
without fixed point$ and discontinuouslysince it is dis-
cretg. According to Poincare’s fundamental polyhedron
theorem 23], %, can be obtained by gluing together the faces

of a polytope in hyperbolic space. The polytope is otherwise FIG. 3. The fundamental cell for Thurston’s manifold.
referred to as the manifold’s fundamental cell or Dirichlet
domain® Given a set of generatofa, ,..,a;}, any element of the fun-

Any function defined on the compact spaBe=H®/T damental groug’ can be written as
must be invariant under the action of the fundamental group
I'CSQ(3,1). The simplest way to enforce this condition em- _ i N
ploys the method of images: 9 H am, (Lii,mie2), (4.4
with possible repetitions of the generators. The group ele-
Qr(x)= gz’r Q(gx). (4D mentg is called a word, and the length of the word is defined

to be

The same method can be used to generatengpgint func-
tion in the compact space via a sum over translated copies of |g:2 ljil. (4.5
the corresponding function in the covering space. In a recent [

paper, Boncet al. [24] applied the method of images to the . , .
two-point correlation function in several compact hyperbolicN.Ot all words generated according to &4.4) will be unique

universes. They concluded that several of the smaller voluma!"c€® the gP;erators are typically subje(?t FO a set of relqtions,
hyperbolic models were incompatible with the COBE data 89 &828; “a;=1. The number of distinct words with
However, in this preliminary study they did not include the 'engths less than or equal tois denoted\(1). A theorem
ISW effect, nor did they demonstrate that their results arélue to Milnor [26] tells us thatA(l) grows exponentially
independent of the infrared regularization scheme they used!ith | if I'" is the fundamental group of a compact hyperbolic
They[25] recently reported a new analysis that includes thgnanifold. It is precisely this exponentlal growth that causes
ISW effect and appears to be consistent with our conclusioRroblems with the sum over images. The rate of growth is

that COBE is compatible with compact manifolds. measured by the grammatical complexity (7)rl topological en-
Hyperbolic 3-space can be viewed as the unit hyperboloidropy of the fundamental grougir=lim, .. "log M(1)].
(mass-shell To illustrate the preceeding discussion we $S2PPEA
[27] to study Thurston’s manifol28], X, [m003—2,3) in
X+ X+ xe=—1, (4.2  thesnapPEAcensu$ The fundamental grouf; = m(Sm),

has the presentatidn

embedded in four-dimensional Minkowski space. We can re- . _ a2k a-1p34-1 —lp—lap—1,-1
late this representation to the induced metrid-bh (3.2), by F'={ab:a®ba "b’a *b, ababa“b"ab™"a b(}4 6
the coordinate identifications '
The generators of the fundamental group describe identifica-

Xg=coshy, X;=sinhycosd, X,=sinhysinfcosp, tions in the faces of the fundamental cell shown in Fig. 3.
The fundamental cell is drawn using Klein's projective
X3=sinhysindsing. 4.3 model for hyperbolic space. In this projectiet? is mapped

into an open ball irE3. Under this mapping hyperbolic lines
From this perspective it is easy to understand why the isomand planes are mapped into their Euclidean counterparts.
etries ofH® are described by the orientation preserving ho-This is why the totally geodesic faces of the fundamental cell
mogeneous Lorentz group in four-dimensior$((3,1). appear as flat planes.
Thurston’s manifold has volume 0.98137, symmetry
group G={u,v:u?v2uvuv}=2,8Z,, first homology
SA simple analogue in two dimensions is the torE€(T', where
E2 is the plane and is the group generated by a translationd Ly
in the x direction, andL, in they direction. The fundamental cell “A presentation lists the group generators followed by any words
for this torus is a rectangle with opposite faces identified. which are equivalent to the identity.
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groupZs and Betti number$! by=b;=1, b;=b,=0. The TABLE I. Minimal geodesics shorter than 2.
symmetry group describes the symmetries of the manifold: -
The (first) homology groug29] is the Abelianized version of Length Torsion Word
the fundamental groug4.6). When Abelianized, the rela- 57808244 213243064 ab
tions obeyed by the fundamental group collapse down: 0.72156837 115121299 b
oy 1431 ~5 0.889442997 2.94185905 a
a’ba”"b’a 'b=1 = b°=1 0.998325189 ~2.92101779 ab~!
~ 1.040315125 0.98237189 aba™'b
ababa'b 'ab™ta 'b=1 = @=b"', (47 1793800843 —1.55687105 a%b
. 1.822279900 —2.41353903 ab 'a"lb
leaving the homology group
Hi(Sm)={b:b°>=1}=2Z5. (4.8 and the line they define in Minkowski space intersects the

. . . hyperboloid at the point
Choosing a coordinate system centered at a maximum of

the injectivity radius function®! the generators have the v=[1.2428,0.2409; 0.6425,0.271h (4.12

SQO(3,1) matrix representations . . . . .
Acting on this point bya leads to the image point

14498 -0.3191 0.8911 -0.453
—0.5653 —0.5653 —0.8911 0.4538

v,=[1.0292;-0.1431,0.19035,0.0496 (4.13

a , a distance 0.8894 units away in 3-space.
08844 —08844 08911 —0.4538 By acting on points lying on the symmetry axis of each
0.0000 0.0000 —0.4538 —0.891 group element it is possible to compile a list of the minimal
4.9 geodesics. A typical isometry is a corkscrew-type motion,
consisting of a translation of lengthalong a geodesic, com-
and bined with a simultaneous rotation through an anglabout
the same geodesic. The length and torsion can be found di-
2.9351 2.4389 —1.1390 —0.607 rectly from the eigenvalues of the group element, and are
0.9195 0.4233 —1.1390 —0.6073 conveniently listed by thesNAPPEA program[27]. Table |
b= 25087 25987 —0.8587 —05125| ° rLeE(;rds both the length and the torsion of all geodesics with
0.1255 0.1255 -0.5125 0.8587 Each wordgeI" does not necessarily produce a unique

(410 minimal geodesic. The minimal geodesic generatedab¥y
has the same length and torsion as that generatdd e
o9 : . mapping between words and minimal geodesics is many to
multiplication. To give an example, the origin=0 hasx  ;ne 7o make the mapping one to one, the words need to be
=0 and corresponds to the point,0,0,J when embedded grouped into conjugacy classes. Two worgisndg’ belong

in four-dimensional Minkowski space. Acting on this point (1 1o same conjugacy class if and only if they are equal up
by a takes it to the poinf1.450,-0.565,0.884,]. This point to an isometry T

hasy=0.9161,=2.1395 andp=0.0157, and so lies a dis-
tance 0.9161 units away in 3-space. g~g' iff g'=f"1gf (fel). (4.14
Points lying on a symmetry axis of a group element will

be translated the shortest distances. Conversely, the furtherfatheorem by McKeah30] then states that there is a one-to-
point lies from the symmetry axis of a group element, theone correspondence between conjugacy classes of the funda-
further it is translated by that element. Since the fundamentahental group and the periodic geodesics. If we defineto
group acts differently on different points, compact hyper-be the set of all geodesic loops at some ppiats,, endowed
bolic models are not homogeneous. Nor are they isotropiwith the producty,Oy, (first v, then y,) for all y,,
since there are preferred symmetry axes. Points on the syme1Il,, thenll, is isomorphic tom(2)=1I". This link be-
metry axis of a group element can be located by finding theween geodesic loops and the fundamental group can be used
eigenvectors of th&((3,1) matrix describing the group el- to re-express the sum over imagdsl) as a sum over peri-
ement. The two real eigenvectors define points on the lightdic orbits. It is this principle that forms the basis of
cone enclosing the hyperboloi#.2). The line passing
through these two points defines the symmetry axis of the
group element. The intersection of this line with the hyper- 5A simple way to work out the length of the shortest geodesic
boloid (4.2) defines the point irH® that is translated the connecting two points is to first perform &x3,1) rotation of the
shortest distance. For exampiehas the two real eigenvec- coordinate system so that one of the points lies at the origii®of
tors The proper distance between the two points is then found by taking

the arccosh of the other point’s “time” coordinate, in accordance

e;=[—0.7491,0.3497 0.6563,0.089% with Eq. (4.3).
®E.g., for Thurston’s manifold we havab?’~bab~ababa !
e,=[0.7350,0.2687 0.6460,0.225P, (4.11 =b laba 'b~aba ~b.

The image of any pointe H® can now be found by matrix
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Gutzwiller's method 19] for determining the eigenmodes on hyperbolic spaces. In particular, we prove that generic com-
compact hyperbolic space. Indeed, many of the techniqugsact hyperbolic spaces admit modes with wavelengths that
used to describe quantum chaos, including Gutzwiller's tracexceed the curvature scale. In addition, we show that there
formula, have been developed using compact hyperboliexist finite volume, compact hyperbolic manifolds with an
space as a laboratofi31]. The exponential growth in the arbitrarily large number of modes with arbitrarily long wave-
number of words with symbolic lengtig=I is echoed by lengths.
the exponential growth in the number of closed geodesics To relate these results to cosmology we need to recall the
with physical lengthd. ,<L: relationship between curvature, redshift, density and the ra-
dius of the surface of last scatté8LS) in a hyperbolic uni-
verse. The curvature radius is fixed by the scale faRia)
N(L)~ hL’ (4.19 since the metri€3.2) has unit curvature radius. The radius of
the last scattering surface at redskhifis given by

ehL

whereh is the Kolmogorov-Sina{(KS) entropy of the geo-
desic flow[31]. It is interesting to note that KS entropy 2(1—-Qp)
scales ashaV~ Y3 while the topological entropy scales as Rgis= Rarccosl61+ Oo(1t2)
HyocV. This is because the KS entropy measures the rate of
chaotic_mixing, and smaller manifolds mix better, while the.l.he volume of space encompassed by the SLS is
topological entropy measures the complexity of the funda-
mental group, and larger manifolds have more complicated 3
topologies[32]. Vsis= mR(SINN(2 x515) — 2Xs19)- (5.2

We can make some general observations about the exis-
tence of long wavelength modes &t*/I" based onsnap-  The radius of the last scattering surface today is approxi-
PEA's listing of the short minimal geodesics. Typical closed mately equal to the curvature radius(¥,=0.8. If Q,=0.4
geodesics, such as those listed in Table | for Thurston'gve find Rgs~2R,; if ;=0.1 we find Ry ~3.6R,. The
manifold, involve a considerable torsion. A similar twisting angle subtended by the curvature scale on the last scattering
occurs in 5 of the 6 compact, orientable flat three manifoldssurface is approximately
[33]. One example i§3_, where opposite faces of a cube

1,7

=RXxsls- (5.9

are identified, with one pair of faces identified after a twist Q,
through 7. If the cube has side length, then the twisted ﬂcurv”1-68\/:ﬂ- (5.3
minimal geodesic has length and torsionz. As a conse- 1=%Q

guence of this torsion, the lowest eigenmode along the

twisted direction must wrap twice arourid _ before clos- The above expression assumes that the universe has been

ing. The maximum allowed wavelength is thuk ,2not L. matter dor_’ninated sinpe decoupling. This will be trL_Je if

We may anticipate a similar phenomenon occurring in hy_matter—radlatlon equality was reached before decoupling so

perbolic space. The shortest geodesic listed in Table | haat

torsion 2.13243%27/2.9465. This geodesic approximately

closes after 3 turns, but may never close exactly if it is an Zeq= 240002 p0*> 7= Qoh*>0.052. (5.9

irrational multiple of 2. Using this Bohr-Sommerfeld style

reasoning, it appears likely that compact hyperbolic maniAssumingh>0.5, Eq. (5.3 will be valid so long asQ,

folds will admit very long wavelength modes. >0.2. Since, roughly speaking, th€¢™ multipole moment
measures power on angular scale -/ /, modes with\

V. LONG WAVELENGTH MODES >1 probe angular scales</ ', where

Here we study long wavelength modes in small hyper- 2J1- (1,
bolic universes. We do this without explicitly solving for the S 0
eigenmodes by exploiting the close connection between ei- Qo
genvalue spectra and topology. We find a number of useful
topological results pertaining to long wavelength modes. In a universe withQ;=0.5, only the /=2 quadrapole

For hyperbolic manifolds of dimensiod=3 there is a probes modes with >1, while in a universe witt{2;=0.3
remarkable connection between geometry and topology. Thehe range is increased to include all multipoles bel6w6.
rigidity theorem of Mostow-Prasd@®4] proves that any con- This tells us that perturbations with wavelengths larger than
nected and orientable manifold of dimenside 3 supports the curvature scale are responsible for the large angle power
at most one hyperbolic metrigip to diffeomorphisms This  on the last scattering surface(¥;<0.5.
means that geometrical quantities such as volume, injectivity Using Eq.(5.2) we can estimate the redshift when a fun-
radius!® diameterl?] geodesic length spectra and eigen-damental cell first dropped within the last scattering surface
value spectra are albpological invariantsfor compact hy-  from the relation
perbolic manifolds.

In this section we will put the topologists’ interest in the
eigenvalue spectra to good use. Without having to solve for “The reasoning being that thé" multipole has 2” zeros in the
the eigenmodes explicitly we can prove several results corrange 6<[—m, 7], with approximately equal spacings df6
cerning the existence of long wavelength modes in compact #//.

(5.5
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2(Q,1-1) vature. We have quoted Buser’s bound in the form relevant
1+z= Qo(cosh .~ 1) (5.6)  for 3-manifolds with constant negative curvature. Given a
0 + 3-manifold X, we can in principle calculate Cheeger’'s con-
wherer , is the outradiu€! of the manifold. Taking Thurst- Stant and subsequently use it to place boundgorRecast-
on’s manifold[28] (see Fig. 3with Vol(S)=0.98137 and N9 Qheeger’s mequallt_y in terms of wavelengths we find the
r,=0.748537 as a particular example, we find that the fun/Maximum wavelength is bounded from above by
damental cell dropped inside the SLS no earlier ttzan

=9.2 if Qy=0.4. Today there would be approximately 86 N 4m (5.10
copies of the fundamental cell within the Sl(his is the max \/hC7_4' ’

ratio of volume of the optically observable universe to the

comoving volume of Thurston’s manifgldSince the volume  Similarly, Buser’s inequality provides a lower bound on the
of a hyperbolic manifold is a measure of topological com-maximum wavelength:

plexity, Thurston’s manifold ranks as one of the simplest

topologies the universe can have. The only known example 2
that is simpler is the Weeks manifold with volume 7\max>m- (5.11
0.942 ... . It is thought that the Weeks manifold ithe c c

smallest hyperbolic three manifold, though the most recen

lower bound, VoIE i) >0.166[35] still leaves some room be a long wavelength cut-off. Similarly, tie> 21+ 472

for smaller, simpler topologies. ~
Returning to our treatment of the eigenvalues, we intro- _ 12.7 we would learn tha,,<1 and therefore no modes

. . with A>1. On the other hand, an interesting lower bound
duce the ordering € qp<q;<ds . . . ,where the eigenvalues —_—— .
are counted with their multiplicities. The mathematical lit- occurs whenhe<(y14+407°—2)/10~1.82. In this case

erature is littered with dozens of upper and lower bounds fthe manifold supports perturbations beyond the curvature
the g;'s in terms of the volume, diameter or isoperimetric scale. . :

constant of a manifold. Unfortunately most of these bounds As we Q|scuss bglow, the v_alu_e bt is not known for .
are not very sharp since the results apply to a great variety dpost manifolds, but it can in principle _be calculated numeri-
manifolds. Sharper bounds can probably be found by restric€a!ly- There are however some special examples where

ing one’s attention to three dimensional manifolds with con-]?an ;i glyenl a tight Iuppgr_ b_o_undeheer?;ers cqn;tant IS
stant negative curvature. ound by simultaneously minimizing Vdg) while maximiz-

Most papers deal with the first eigenvalgg, whereas we N9 VOl(M1)<Vol(M,). The two conditions can separately
are most interested in eigenmodes wifhe [ 1,1+ €2] where be satisfied by choosing to be totally geode5|c_ and taking
e<1. Eigenmodes in this interval correspond to modes with? 2/(M1) =V0I(M2) =Vol(M)/2. One way to satisfy both of

wavelengths\=2/e. Nevertheless, some of the bounds Onthese conditions simultaneously is to find an involutiorivbn
g, are useful to us. . ’ that fixesS and interchangeM; andM,. ThenS is neces-

Many of the bounds on; employ Cheeger's isoperimet- Sa7ily totally geodesic anil; andM are mirror images of
ric constan{36]. Isoperimetric inequalities relate the volume eagh other. Th's partition provides a Iogal minimum for the
of a manifold to its surface area. Cheeger's constant is dd&tio Vol(S)/min(Vol(M,),Vol(Mz)), but it might not yield

f hce>2 we would learn thak <. That is, there would

fined to be the global minimum required by the infinum in E¢.7).
Some interesting examples are known wh8rs a genugy
_ Vol(S) =2 surface and the ratio Vd§j/Vol(M) is maximized, i.e.
hc:Igfmin{Vol(Ml),Vol(Mz)}' (5.7 these examples have the largest valuehgffor manifolds

that separate along a totally geodesic boundlagy. Written
as a function of genus, the volume §f is 47(g—1) and

Here S runs through all compact codimensiéhone sub- the volume ofM is given by

manifolds which divideM into two disjoint submanifolds

M, M, with common boundarg=JdM;=JdM,. A familiar ld
example is the two-sphere. In this cddg andM, are both VoI(Mg)zg[ —8f log|2siru|du
hemispheresS= M, is a great circle and we fintc(S?) 0
=1 wi3g cow
Using his isoperimetric constant, Chee{f&8] derived the —3] arccos?(x—) dv|. (5.12
lower bound 0 2cow -1
hé For these manifolds, the bounds dn: range from hg
qizj. (5.8 <1.9477 forg=2 to hc<3.43 in the infinite genus limit.
The genus 2 case is interesting since it tells us that there is a
A decade later BusdB7] derived the upper bound closed manifold with volume 12.904 that supports wave-
lengths\ >0.94. Furthermore, any other manifold that can
gi<4hc+10h2. (5.9  be cut along a genus 2 surface will have larger volume and

hence a lower isoperimetric constamt . These manifolds
Cheeger’s bound is valid for arbitrary closed manifolds inwill in turn support even longer wavelength modes.
any dimension. Buser provided a general bound valid in any In principle it should be possible to provide a numerical
dimension for any closed manifold with bounded Ricci cur-estimate of Cheeger’s constant for arbitrary manifolds by
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trying a number of trial partitions. The best partitions could TABLE Il. Scenes from thesNAPPEACENSUS.
then be varied slightly and the search continued until the
optimal partition is found. A judicious choice for the original by Vol r- r. Finj

trial partl'tlons would ensure rapid convergence. The fqrm 0fm00:{—3,1) 0.9427 05192 0.7525 0.2923

Cheeger's constant5.7) suggests that the trial partitions

should employ fairly smooth surfacé&that divide, into moo3-2.3 0.9814 0.5354 0.7485 0.2890
) . . s556—1,1) 1.0156 0.5276 0.7518 0.4157

two approximately equal sized pieces. At present no numeri-

cal algorithm has been written, but it is hoped that the facil-mooq_l‘z) 1.2637 0.5502 0.8373 0.2875

ity will be available in later releases of thesrrea program m188-1,1) 1.2845 0.5335 0.9002 0.2402
[27]. v20301,1) 1.3956 0.5483 1.0361 0.1831
In the absence of numerical results we have to resort t§0194.D 14124 0.5584 0.8941 0.3971
analytic estimates. An upper bound for Cheeger’s constarit’181. 2.2726 0.6837 0.9692 0.1696
can be derived using geodesic bd9]: m120-6,1) 3.1411 0.7269 1.2252 0.1570
s654—3,1) 4.0855 0.7834 1.1918 0.1559

_ alnV(x,x) v28332,3 5.0629 0.7967 1.3322 0.2430

hc\ X ’ (5.13 v35094,3 6.2392 0.9050 1.3013 0.1729

HereV(x,X) is the volume of a geodesic ball with radiys _ _ _ _ _

centered ake 3. The radius of the ball must be larger than sharp since Cheng considered manifolds with arbitrary cur-
the injectivity radiu&! lnj, but small enough so that vature. Here we derive a new, sharper bound by specializing
V(x,X)<Vol(3)/2. A lower bound for Cheeger’s constant is t0 three-dimensional manifolds with constant negative curva-

quoted by Gallof40]: ture. The first eigenvalue of an open geodesic ball of radius
Xo is found by solving the equatiom\(+ g?)Q=0 with the
4o boundary conditions
he= — . , (5.19
diam3)(sinhyJa+ Ja) dQ
. (0=0, Q(x0)=0. (5.20
where X
a=(diam3))? and aeZ. (5.15  The eigenfunction with lowest eigenvalue is radial=<0,
m=0),

Notice that Egs(5.13 and(5.10 can be combined to show

that manifolds with diameters smaller than 0.9195 hgye 00 sin(vVg?—1y)

=1 and thus no supercurvature modes. Applying the above Q™M)= —\/Tlsinhs( ' (5.2
bounds to Thurston’s manifolavhich hasr,;=0.289, 0.868 q

=diam(% ;) <0.88 and Volgry) =0.9814 we find and the boundary conditions demand that

2.09<hc(3+,)<6.42, (5.16 2

2

=1+ —. 5.2
and a1 2 (5.22

1.04<q;=<20.9. (5.17  From this we derive the bound on the eigenvalueg of

Thus, Thurston’s manifold does not support supercurvature ) 27 \?
modes(i.e. modes with complex wavelengihdut modes gi<1+ diams)] (5.23
with wavelengths larger than the curvature scale are not
ruled out.

) Translated into a bound on the allowed wavelengths this
Other bounds omy; exist that do not use Cheeger's con- roaqs

stant. Cheng41] provides the bound
diam(2)

8(1+ 72)j? A= — (5.249
g’<1+ (—)i (5.19 ! j
diam(X)
_ Thus, the maximum wavelength,, is at least as large as
and Busef42] provides the bound the diameter. The diameter is constrained to lie in the range

H 2/3 .

J r_<r,<diamZ2)<2r,. (5.29

2< — > _ + +
gjsl+c VoI(E)) , €>1, (5.19

Herer_ is the inradiu$! andr. is the outradid§!. The
but the constant is not quoted explicitly. Cheng derived his geometrical constants for a selection sefrreas manifolds
bound by first proving that the eigenvalugsin a closed are collected in Table Il. The volume and injectivity radius
manifold X, are always lower than the first eigenvalue of anare both topological invariants while the in- and outradii de-
open geodesic ball with the same curvature and ragijgls pend on the choice of basepoint for the Dirichlet domain.
=diam()/(2j). The bound quoted in E¢5.18 is not very  The diameter can be found by forming the supremum



57 CAN COBE SEE THE SHAPE OF THE UNIVERSE? 5991

TABLE lll. Diameters and eigenvalue bounds.

by diam gy min g, max
m003 3,1 0.843 1.08 7.52
m003—2,3 0.868 1.04 7.31
s556—1,1) 0.833 1.09 7.61
mO00§—1,2) 1.017 0.82 6.26
m188—1,1) 0.995 0.84 6.40
v203Q1,1) 1.082 0.77 5.90
mO0154,1) 0.923 0.98 6.88
s7181,1) 1.439 0.53 4.48
m120—6,1) 1.694 0.45 3.84
s654—3,1) 1.946 0.36 3.38
v28332,3 1.701 0.45 3.83
v35094,3) 1.802 0.39 3.63 _ _ _
FIG. 4. A portion of the two-dimensional pseudosphere embed-
ded in three-dimensional space.
d|an(2)=sg|p{r+}, (5.26 power is doomed to failure. Admittedly, the manifolds con-

sidered by Buser have large diameters, but they also have
] . ~ small injectivity radii so they describe models that are multi-
where the supremum is taken over all choices of basepoingonnected on scales smaller than the curvature scale. The
Using a more direct numerical method we were able to comfyndamental cells for these manifolds are highly anisotropic,
pile a collection of sharp lower bounds for the diameter. Oukyhich may bring them into conflict with observations, but
method ensures that the true diameter is within01 of the  this is not certain since the face identifications tend to mix all
lower bounds quoted in Table Ill. Also listed are upper andthree spatial directions and thus apparent isotropy can be
lower bounds on the first eigenvalue of the Laplacian derivegestored.
using the inequalities quoted in this section.
It is interesting to note that the length of the shortest geo-
desic(twice the length of the injectivity raditf3 lnj) does
not grow with the volume. Even the largest manifolds in the In this section we digress to consider a particular class of
SNAPPEAcCensus, with volumes- 6, have geodesics as short models that can be partially constrained by COBE data. In
as 0.3 in curvature units. This is consistent with Thurston’sRef.[10], Levin et al. describe the microwave sky in a uni-
assertior] 15] that the expectation value for the length of the verse with the topology of a hyperbolic toroidal horn. The
shortest loop at an arbitrary point in a generic hyperbolictopology they consider is the three-dimensional analogue of
3-manifold lies in the range 0:51. This suggests that even the two-dimensional pseudosphere. The pseudosphere, re-
relatively large manifolds still make for interesting small ferred to as a cusp by mathematicians, is topologically
universe models. equivalent toS' X[ 0,%), whereS! is a circle. Figure 4 shows
Having established that generic compact hyperbolic 3@ portion of the pseudosphere embedded in three-
manifolds support modes with wavelengths exceeding the€imensional space. The pseudosphere is described in the up-
curvature scale, we have partially answered the question weer half plane representation B by
set out to answer. Even neglecting the integrated Sachs- 5
Wolfe effect, our results show that compact hyperbolic mod- , dx +dZ
els are able to support the long wavelength modes required T
to produce large angle anisotropy on the surface of last scat-
ter. A complete answer would require a knowledge of thewith the identificationsx=x+nL, with ne Z. Cusps ind
spectral density at long wavelengths, as a few isolated sulgimensions are analogously defined to be of the f&tn®
curvature modes could not support significant large angle<[0,%) whereEY ! is a flat topology in d— 1) dimensions.
power on the SLS. In contrast, even a single supercurvaturk should be emphasized that the line const connecting
mode @;<1) could greatly enhance the large angle powerandx+L is not a geodesic. Geodesics in the upper half plane
[43]. Preliminary results from Bonet al. [25] using the model appear as half-circles of the foxfr z2=a?, perpen-
method of images point to a reduced spectral density at londicular to the boundary plane.
wavelengths. Unfortunately, their method is unable to detect The hyperbolic horn studied in Ref10] is of the form
supercurvature modes, so the most important part of th&2Xx[0,%) whereT? is the two-torus. In the upper half plane

VI. HORNED TOPOLOGIES

6.9

spectrum might be missing. model of H3,
We can supplement the preceding discussion using a theo-
rem due to Busef44] which states that there exist finite , O¢+dy*+d7
volume compact hyperbolic 3-manifolds with an arbitrarily do”= 22 : 6.2

large number of modes with arbitrarily long wavelength.
This theorem proves that any attempt to exclalecompact the horn is defined by making the identificatioms= x
hyperbolic models on the basis of a lack of long wavelength+nL, and y=y+mL,. Since translations commute, the
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horn’s fundamental group is Abelian and geodesics on thaon-trivial way. Without going into detaifsit is sufficient to
horn are non-chaotic. This means that the horn’s eigenmodea®te that the twisting can be parametrized by two integers
can be written down explicitly. (p,q)- In the limit p,q— with p,q relatively prime, the
The calculational simplicity of the horn model is offset by original cusped manifold is recovered. For smally the
some unappealing physical characteristics. Not only is theusp can be completely removed. For large valugs, gfthe
horn noncompact and infinite in volume, but it also suffersend of the cusp is rounded off leaving a “horned manifold.”
from severe global anisotropy. The anisotropy can be seeli one happened to live deep inside one of the horns, the
by moving to spherical coordinates centered aty(z) universe would look similar to how it does in the infinite
=(0,0,1). Our ghost images then appear at the points toroidal horn. The exact correspondence is broken since
Dehn surgery makes the fundamental group non-Abelian.
This means that the geodesics will be chaotic and the eigen-
' modes complicated. Nonetheless, for high order Dehn fill-
ings the chaos should be mild and it seems reasonable to

H 1 2] 2 21 2
x=arcsinharccosh1+ z(n Lx+mLy)

—12 expect a flat spot in the CMB if one lived in a horned region
6=+ arcco% 1+ _22—22_} ) , of the manifold.
(n“Li+mLy) The preceding considerations have shown that the results

of Ref.[10] apply in certain regions of a large class of three
_ mL, manifolds. If we happened to live in one of these horned
p=arcsin ———=— 1. (6.3  regions, we would see a severe suppression of CMB fluctua-
VneL+miLy tions along the horn. Leviet al. found that this effect was
not masked by the integrated Sachs-Wolfe effect, so the
. o ) o COBE satellite would have detected flat spots in the CMB.
The ghost images are evenly distributed in thalirection,  However, the absence of flat spots is not a very strong con-
but distant images pile up along the axis of the hoth ( straint on us living in a cusped manifold. This is because
=m/2). ) ) cusps only account for a very small portion of a cusped
Because the horn’s fundamental group is Abelian, therenanifold’s volume. Therefore, it is very unlikely that we
will be a |0ng WaVelength cut-off in directions Orthogonal to would be ||V|ng in or near a Cusp_ If we make what topo'o_
the axis of the horn. In this respect the hyperbolic horn ngists refer to as a “thick-thin” decompositio6], we find
similar to the flat topolog = Rx T?. The difference is that  that most of a manifold’s volume is in the “thick” part and
the torus cross sections of the horn do not have fixed area. Agery little is in “thin” regions such as cusps. The chance that
we move away from the origin, the torus area decreases likge live deep inside a cusp is even smaller since the volume
of a cusp decreases as ex{2g¥), where y is the proper
distance down the cusp. We are far more likely to live in a
thick portion of a manifold where the breaking of global

) isotropy is much less noticeable. The analysis of Leatial.
This means that the wavelength cut-off gets shorter angk o valid for observers that live in the thick portion of a

shorter as we move toward the cusp. Moreover, the decreagg,ifold. The fundamental group of a cusped manifold is
is doubly exponentialvith increasing proper distance. This non-Abelian, but contains a normal Abelian subgroup of fi-
has the effect of suppressing all temperature fluctuations ifjjt index, corresponding to isometries of the cusp. Inside a
the direction of the horn, leading to a “flat-spof10] inthe  ¢,5 the fundamental group is dominantly Abelian and the
microwave _sky. o horn analysis holds, but in the thick part of the manifold the
Considering that there are an infinite number of hyperigometries are dominantly non-Abelian and the horn analysis
bolic 3-manifolds to choose from, it might seem strange ©yses not hold. It would be interesting to extend the horn

focus on one particular example. However, it turns out thabaiysis to cusped manifolds with finite volume and to
many manifolds have horn-like regions. To see why 0n&nsed manifolds with horn-like regions.

needs to understand something about how hyperbolic 3- |, summary, it would be surprising if we did live in a

manifolds are constructed. According tagensen's theorem  ,rne region, and the results of Lewhal. confirm that we
[45], all finite volume hyperbolic 3-manifolds can be ob-

A(T?) = %LXLyexq —2sinhy). (6.4)

tained by Dehn surgery on a finite number of link comple- © not.

ments inS°. A link complement is constructed by drilling

out a solid tubular knot or link from spherical space. The VIl. POWER SPECTRA, WAVE NUMBERS
complement of this linki.e. the space outside the linkill AND MULTIPOLES

almost always be topologically equivalent to a hyperbolic A. Generating the primordial power spectrum

3-manifold with one or more cusps. If one happened to live .
deep inside a cusp, the universe would look exactly like a The temperature fluctuations m_e_asqred by COBE-DMR
toroidal horn. are thought to arise from the amplification of quantum fluc-

While the finite volume of the cusped manifolds makestuations during an inflationary phase,.or alternatively, from a
them more appealing than the basic hyperbolic horn, they arJgetwork of topological defects. We will not consider the lat-
still non-compact. In order to arrive at compact models we
need to perform Dehn surgery on the link. The surgery in- , ) _
volves cutting out a portion of the link and replacing it with €€ Thurston's booki6] or the appendix of Carlip’s articlg47]

a solid torus that is first twisted around the link in somefor @ description of how to perform Dehn surgery.
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determined by specifying Cauchy data for the metric and
matter fields on the initiah® Cauchy surface. Put differently,
the solution is specified globally on tt& hypersurface but
only locally in the direction normal to this surface. Let us
start by considering the simplest non-trivial topology for the
matching surface — the real projective spa&RBE*=S%/Z,.
Taking the geometry shown in Fig. 5 as the universal cover,
we find there is a clone of the bubble on the opposite side of
de Sitter space. Since antipodal points in de Sitter space lie
outside each other’s light cone, the bubble and its clone
never intersect. Inside the bubbles we have two copies of the
same simply connected hyperbolic universe. While this
FIG. 5. The tunnelling configuration. The lines indicate constantsounds reasonable, we encounter a problem when trying to
time hypersurfaces. The arrow indicates the point orsth€auchy  define quantum fields in this background as the instanton has
surface where the bubble nucleates. The region to the upper right ggpology RP* and is thus non-orientable. It is impossible to
this p.oint. is the interior of the bubble, the region to the upper 'eftseparate modes into positive and negative frequency compo-
remains in the false vacuum. nents in such spacetimes. As we move on to consider more
complicated topologies the situation gets worse. Once the
ter possibility as there appears to be a topological obstructionumber of clones exceeds two, the bubbles start to collide
to the formation of topological defects in a small universe(self-intersegt Moreover, according to an observer inside
[48]. In the inflationary context, some fine tuning is requiredthe bubble, the spatial identifications on the spherical slicings
to avoid blowing the curvature scale outside the surface obecome spatio-temporal identifications in hyperbolic space.
last scatter. There are currently two scenarios for arriving aThese universes have closed time loops and there is no
a negatively curved universe from inflation. The first is one-known prescription for defining a sensible quantum theory in
bubble inflation[49], the second is compact inflatidr3]. such spacetimes.
Detailed calculations of the power spectrum have been per- So while the most complete calculations of the primordial
formed for the one-bubble model, while little is known about power spectrum have been done in the context of one-bubble
the spectrum for compact inflation. Here we discuss how thénflation, they cannot be generalized to models with compact
one-bubble scenario relates to multiconnected models, angyperbolic sections. Indeed, if we do find evidence for non-
offer some speculations about the form of density perturbatrivial (purely) spatial topology, we would know that the
tions produced by compact inflation. one-bubble model is ruled out.

1. One-bubble inflation 2. Compact inflation

Since there is an explicit and well understood quantum In the compact inflation scenario the universe is taken to
tunnelling process underlying the one-bubble inflation scehave compact hyperbolic spatial sections. The chaotic mix-
nario, it is possible to make definite predictions about theing that occurs in compact hyperbolic space is understood to
form of the primordial power spectruf9]. The universe have erased any initial density perturbations before vacuum
begins in an inflationary epoch driven by an inflaton field indomination is reache@3]. This prepares the ground for a
a false vacuum state. During this epoch, any inhomogeneitiasecessarily short burst of inflation. It is the chaotic mixing
are inflated away. Subsequently, a single bubble is nucleatethat solves the horizon problem, and not the short period of
inside of which the inflaton field rolls toward its true mini- inflation.
mum. Taking the inflaton to be described by a single real In order to calculate the quantum fluctuations in compact
scalar fieldg (several variants of this basic picture have beeninflation we need to know the eigenmodes and the initial
considereyl surfaces of constanp inside the bubble have vacuum state, i.e. how the modes are populated. Once these
constant negative curvature. Mathematically this process iare known we can evolve the quantum fluctuations to find
described by anO(4) symmetric Euclidean instanton— the density perturbations at the end of inflation. At present
Euclidean de Sitter space with one special point. The bubbleve know neither the eigenmodes nor the correct vacuum
nucleation selects a preferred point in de Sitter space, breaktate to choose. The situation is only slightly better for non-
ing the fullO(5) symmetry down t@(4). Asshown in Fig. compact open inflation models, for while the eigenmodes are
5, the Euclidean instanton is matched onto its Lorentziarknown, the choice of initial vacuum is not. Here we are
counterpart across a totally geodesic spatial hypersurfacegferring to models other than the one-bubble mdde¢ e.g.
S3=9S*. The matching surface is a Cauchy surface for theRef.[11]). Another difficulty with open inflation stems from
subsequent Lorentzian evolution. Owing to 1B¢4) sym- the short period of inflation being insufficient to solve the
metry of the instanton, the bubble interior has ®©(3,1)  horizon problem. This problem is greatly exacerbated by the
symmetry of hyperbolic space. open universe Grishchuk-Zel'dovich effeld0], which de-

The question we need to ask is: can the one-bubble scenands that the pre-inflationary universe be smooth on scales
nario be generalized to produce a hyperbolic universe witlone thousand times larger than the curvature scale. In a com-
non-trivial spatial topology? The answer is no, unless one ipact hyperbolic universe this is not a problem since the entire
willing to live with closed timelike curves. The only way universe is typically no larger than the curvature scale. In a
non-trivial topology can enter into the picture is through thesmall universe there can be no “monsters” lurking over the
spatial topology 06°, since the Lorentzian evolution is fully horizon, for we already see all there is to see.
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The generation of curvature perturbations in an open uniematically, the effect arises because a multipole expansion
verse closely parallels that in a flat universe: Starting in somattempts to use a basis of smooth analytic functions to rep-
initial state, the perturbations evolve until they cross outsideesent the non-analytic wavefunctions. According to Berry
the Hubble horizon, whence they are frozen in. After infla-[53], if ¥ (x) is an eigenmode dfi®/T", then the coefficients
tion, the Hubble horizon expands to encompass perturbatiorss,,, in the expansion
of increasing wavelength. Once back inside the Hubble ra-
dius the perturbations can undergo further evolution. In an y y
open universe the large scale perturbations are amplified by q'k(x):; m;/ @/ mXi(X)Ym(6, ), (7.2
the ISW effect. Fluctuations with wavelengths much smaller '
than the curvature scale are insensitive to the curvature arfe essentially random variables with amplitude virtually in-
evolve just as they do in the flat models. For these modes Rependent o#”. At small wave numbers and large angular
seems reasonable to use the usual conformal vacuum initigFales, there is almost no correlation betwéeand /* in
conditions[11]. We anticipate the same should be true incompact hyperbolic space. The convergence of the Gugh
compact hyperbolic models for fluctuations frozen in |ongiS inherently slow since it comes not from a decrease in the
after the topology scale exited the Hubble horizon. The situexpansion coefficients, but from the decayXjf(x) across
ation is far more complicated near the curvature scale, as it ihe fundamental domain.
here that the geometry and topology of the background mani- Some concrete results are known in two dimensions that
fold become most important. On large angular scales thersicely illustrate this effect. Consider a genusgt®perbolig
will be a delicate interplay between 6 main effedts: Am-  surface with eigenmodeE,(x). The analogue of Eq7.2) is
plification by the ISW effect;(2) Suppression by gravita- then
tional focusing;(3) Curvature distortions of the conformal
vacuum;(4) Inflationary transientg5) Finite size distortions m -
of the conformal vacuum(6) Reduced spectral density at \Pk(x):m;w damYi(x)e™?.
long wavelengths. The first four of these effects are present
in all open inflation models while the last two are unigue toHere it is known that
compact inflation. Taking into account effedts) and (2)
while neglecting effect§3) and(4) leads to an angular power calm| V< ap| <c,m| Y2, (7.9
spectrum with positive slopgbl1]. Of the remaining effects,
it is likely that inflationary transients will boost the power on
large scales while any reduction in the spectral density wil
tend to reduce power on large angular scales. The hard
guestions to answer concern distortions to the conformat _
vacuum, as these can only be answered in the context deriurbation spectrursy.

guantum cosmology by repeating the sort of calculations per- The above r(_asults suggest a novel way of arriving at a
formed by Halliwell and Hawking for closed models2]. nearly flat Harrison-Zeldovich spectrum, regardless of the

Until this is done, and until more is known about the eigen_underlying physical process that produces the fluctuations.

mode spectra, no firm predictions can be made about thi/e expect that this redistribution of power .W.i” be most
efficient on large angular scales and least efficient on small

power spectrum on large angular scales. angular scales. Our reasoning is that long wavelength modes
are the hardest to approximate by analytic functions since
B. Wave numbers and multipoles they are most affected by the complicated periodic boundary
In Sec. Il we described how the ISW effect alters the flatconditions imposed by the topology. Conversely, the short
space relationship between wave numkeand multipole wavelength modes are less sensitive to global e_ffects_, and
number/. In flat space, the dominant contribution to #i&  therefore well approximated by the corresponding eigen-
multipole comes from fluctuations with wave numbey, ~ Modes of infinite hyperbolic space.
~/'+1. This simple relationship betweérand/ translates
into a simple relationship between the power spectrum of VIIl. CONCLUSIONS
density perturbationsp (k) =|5,/2, and the r.m.s. tempera-
ture fluctuations in each multipol®(l)=(/(/+1)C,)*?,

m=/

m=oo

(7.3

wherec; andc, are constants. It is thought that the lower
bound|a,,|~|m| 2 is a good estimate of the true behavior
1]. This leads to an essentially flat angular power

pectrum P(m)=(2|m|)¥3a,|=const, regardless of the

A hyperbolic drum produces a rich and complex sound. A
- 2 ; . compact hyperbolic universe is likewise infinitely more com-
W_hereC/—<|a/m| ) The standarnd exampl_e Isa flat universe plex than its spherical or Euclidean counterparts. The simple
with power-law spectrunP (k) =k", where itis found that  athods used to constrain flat models do not work when
I[3-n] T[(2/+n-1)/2] space is. negatively curved. The eigenmod_es in a gompact
C, x 5 . (7.2 hyperbolic space can only be calculated using sophisticated
I[(4=n)/2)° T[(2/+5-n)/2] methods developed to treat quantum chaos. Moreover, hy-
perbolic models do not suffer the simple long wavelength
Already we have seen that the ISW effect breaks this correcut-off used to exclude toroidal models.
spondence on large angular scales in an open universe. In In addition to the issue of what fluctuations are supported
compact hyperbolic space there is an additional effect that
tends to spread power from different scales into each multi=—
pole. Physically, this effect is related to quantum chaos and°P(m) is the two-dimensional analogue of the usual angular
the mixing properties of compact hyperbolic spaces. Mathpower spectrumP(/), in three-dimensions.
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on the last scattering surface, there is also the issue of wh&etti numberb,, counts the number of incontractible loops.
exactly it was that COBE measured. In a compact hyperboli@The second Betti numbeh,, counts the number of incon-
universe the curvature radius provides a natural length scal&actible surfaces. Higher Betti numbers are similarly de-
Ro=Hy YV1—Q,. The curvature radius sets the length fined. The first Betti number is equal to the rank of the free
scale where we might hope to find the first evidence that wé\belian part of the first homology groud;(%). In other

live in a multiply connected universe. The curvature radiuswords, the first Betti number is equal to the number of gen-
also sets the angular scale beyond which fluctuations in therators ofH(X) that are not subject to any relations save
cosmic microwave background radiation no longer originatghose that make the group Abelian. Poincare duality relates
from the last scattering surface. This confluence of physicathe various Betti numbers so that id-dimensions b;
scales is very unfortunate for COBE since it means that the=bq_j).

ISW effect takes over just when things get interesting. For- [b] Injectivity radius function. The injectivity radius of a
tunately the next generation of CMB satellites will be able topoint pe M, riy(p), is the radius of the largest coordinate
probe much smaller angular scales, so the ISW effect wilchart that can be centered pt Since a coordinate chart
not obscure their view of the large scale topology of thebreaks down when any geodesic refocuses, the injectivity

universe. radius of a point is half the length of the shortest geodesic
The search for multi-connectedness in our universe is notonnectingp to itself.
over. It has barely begun. [c] Injectivity radius. The injectivity radius of a manifold,
rinj(M), is the smallest injectivity radius of any point in the
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