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Can COBE see the shape of the universe?
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In recent years, the large angle COBE-DMR data have been used to place constraints on the size and shape
of certain topologically compact models of the universe. Here we show that this approach does not work for
generic compact models. In particular, we show that compact hyperbolic models do not suffer the same loss of
large angle power seen in flat or spherical models. This follows from applying a topological theorem to show
that generic hyperbolic three manifolds support long wavelength fluctuations, and by taking into account the
dominant role played by the integrated Sachs-Wolfe effect in a hyperbolic universe.@S0556-2821~98!05310-7#

PACS number~s!: 98.70.Vc, 98.80.Cq, 98.80.Hw
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In 1966, Kac@1# posed the question ‘‘Can one hear t
shape of a drum?’’ In recent years a similar question
been asked in cosmology: ‘‘Can one see the shape of
universe?’’@2#. More formally, the question can be phrase
can we discern the global topology of the universe by stu
ing fluctuations in the cosmic microwave background~CMB!
radiation?

With the launch of new satellites next century, and with
careful search for matched microwave temperatures aro
pairs of circles on the last scattering surface~‘‘topological
lensing’’! @3,4#, we should be able to answer this question
the affirmative. In the interim, we can ask how much can
done with the 4-year Cosmic Background Explorer~COBE!
Differential Microwave Radiometer~DMR! data @5#. Poor
angular resolution and low signal to noise make the CO
data unsuitable for direct lensing studies, but several gro
@6–10# have used the data to put constraints on a variety
toroidal models. Here we consider how their results might
generalized to encompass a wider class of small univ
models.1 In particular we will be interested in hyperboli
models since observations suggest we live in a negati
curved universe. Moreover, the topology scale and the
vature scale are intimately related in hyperbolic mode
whereas in a flat universe there is no scale at which
would expect to observe the topology. By applying a num
of results pertaining to the topology of three manifolds, a
by taking into account the integrated Sachs-Wolfe effect,
argue thatgeneric small universe models cannot be co
strained by COBE data. Naturally, some specific models
be constrained by COBE data, but we argue these are
exception rather than the rule.

Small universes enjoy the same local geometry and
namics as the usual simply connected Friedmann-Robert

1A small universe is defined to be one that is multiply connec
on scales smaller than the particle horizon.
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Walker ~FRW! models,2 but display different global charac
teristics. In particular, small universes have a discr
spectrum of eigenmodes and are globally anisotropic
inhomogeneous. In models with locally spherical or Eucl
ean geometry the eigenvalue spectrum is raised above th
the simply connected models and there is a correspon
long wavelength cut-off. For example, the eigenvalues of
Laplacian on flat Euclidean space take all values in the ra
kP@0,̀ ), corresponding to wavelengthsl52p/kP(`,0#.
However, if we compactify this space by making the iden
fications (x,y,z)5(x1nxL,y1nyL,z1nzL) where theni
are integers, the eigenvalue spectrum becomes discretekn

52p/L(nx
21ny

21nz
2)1/2, and the bottom of the spectrum

raised fromk50 to k52p/L. There is then a correspondin
long wavelength cut-offlmax5L.

Assuming that temperature fluctuations in the CMB a
caused by density fluctuations on the last scattering surf
this long wavelength cut-off is translated into a suppress
of large angle power@6,7#. The cut-off in long wavelength
power that occurs in Euclidean space was first used
Sokolov@6# to show that a flat universe with toroidal spati
sections could not be much smaller than the horizon size.
argued that the topology scale had to be large enough
allow the wavelengths needed to produce the quadrapole
isotropy measured by COBE. A number of groups@7–9#
have since improved on Sokolov’s bound and extended
analysis to include other flat topologies. Recently, Lev
et al. @10# have generalized these bounds to include a n
compact, infinite volume hyperbolic topology describing
toroidal horn.

There has been a tendency to draw general conclus
from these few examples. Indeed, the small universe i

d

2By simply connected we mean the fundamental groupp1(S) is
trivial. Sincep1(S3)5p1(E3)5p1(H3)5I , the usual FRW models
are all simply connected. A multiply connected model has a n
trivial fundamental group.
5982 © 1998 The American Physical Society
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57 5983CAN COBE SEE THE SHAPE OF THE UNIVERSE?
was declared dead in Ref.@8#. While it is fair to say that
positively curved small universes, and the simplest toroi
flat universes with topology scale much less than the hori
scale are effectively ruled out@9#, we show that the sam
cannot be said about negatively curved models. Less
learned in flat space do not always apply in hyperbolic spa
For example, the eigenvalue spectrum is typicallylowered,
rather than raised by making hyperbolic space compact,
k2 can be less than zero. Consequently, there need not
long wavelength cut-off. Even if there were, and even
suming a simple initial power spectrum at large waveleng
the existence of large angle power as measured by CO
DMR still could not directly be used to constrain compa
hyperbolic models since the large angle power in a ne
tively curved universe does not come from the last scatte
surface. The bulk of the large angle power is due to
decay of curvature perturbations along the line of sight@11–
13#. If the universe is hyperbolic, COBE has been detect
fluctuations produced at moderate redshiftsz,5, rather than
z;1200. Consequently, the large angle power is produ
by fluctuations occurring on small comoving length sca
that only appear large due to their relatively close proxim

In Sec. I we briefly discuss constraints on small unive
models based on searches for ghost images. In Sec. I
emphasize the importance of the ISW effect for calculat
CMB fluctuations on large angular scales. In Sec. III
describe the eigenmodes of infinite hyperbolic space. Sec
IV contains an introduction to compact hyperbolic space a
its underlying mathematical structure. In Sec. V we obt
lower limits on the wavelength of the longest waveleng
mode, showing that modes with wavelengths longer than
curvature scale usually exist, though in what multiplicity w
cannot say. In Sec. VI we digress to consider a particu
class of topologies closely related to the horn topology st
ied by Levinet al. @10#. In Sec. VII we speculate about th
form of the primordial power spectrum in compact mode
and describe how the mixing property of compact hyperbo
space tends to spread power across a wide range of an
scales. Our conclusions can be found in Sec. VIII. A gloss
of mathematical terms is included in the Appendix. Ref
ences to words appearing in the glossary are indicated in
text by roman superscripts, e.g. Betti number.@a#

Throughout the paper we will be assuming that a cosm
logical constant does not provide a significant contribution
the density of the universe.

I. GHOST HUNTING

The most obvious observational signature of a multi
connected universe would be repeated or ‘‘ghost’’ images
familiar objects such as galaxies or rich clusters@14#. How-
ever, searches for ghost images are hampered by evolutio
the objects; our ability to recognize objects when view
from different directions; and the difficulty in determinin
the distances to objects.

Despite these problems, the consensus seems to be
there is no evidence for ghost images out to redshifts oz
;0.4—the current depth of wide-field redshift surveys. It
interesting to note that this lack of ghost images is exa
what one expects for typical small compact hyperbolic m
els. According to Thurston@15#, the expectation value for th
l
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length of the shortest closed geodesics in a typical sm
hyperbolic universe is roughly (0.5→1.0)R0, where R0

5H0
21/A12V0 is the comoving curvature radius. HereH0

is the Hubble constant andV0 is the matter density in units
of the critical density. The first copies of the Milky Wa
galaxy or Coma cluster would not be seen before a con
mal lookback time ofh.0.5→1.0. Converting this to red-
shift space via the relation

11z5
2~V0

2121!

cosh~h02h!21
, ~1.1!

whereh05arccosh(2/V021) is the present conformal time
we find that the first ghost images will be at a redshift oz
.0.9→2.9 in a universe withV050.3. If the universe has
V0 closer to unity, the first ghost images will be even mo
distant.

These numbers suggest that direct searches for ghos
ages of astrophysical objects will be unable to tell if we li
in a compact hyperbolic universe. A more promising a
proach is to look for topological lensing of the last scatteri
surface by studying fluctuations in the cosmic microwa
background radiation@3,4#.

II. MICROWAVE BACKGROUND FLUCTUATIONS

Conventional lore holds that the finite size of a small u
verse will lead to a long wavelength cutoff in the spectrum
primordial fluctuations. In the sections to follow, we sho
that this is not guaranteed in a hyperbolic universe. In t
section we point out that even if there were such a cut-of
would be masked by the integrated Sachs-Wolfe~ISW! ef-
fect on the angular scales probed by COBE.

In adiabatic models~e.g. inflation! the primordial fluctua-
tion spectrum determines the power spectrum on the
scattering surface. However, the fluctuations measured
COBE do not necessarily originate on the last scattering
face. In a negatively curved universe, power on angu
scales larger than the curvature scale is produced at relat
low redshifts by fluctuations occurring on scales consid
ably smaller than the curvature scale. This severely lim
COBE’s ability to probe the large scale topology of the u
verse.

In a hyperbolic universe, there are two terms that prod
the microwave background fluctuations on large angu
scales:

DT~u,f!

T
5

F~xsls ,hsls!

3
12E

hsls

h0
Ḟ~x,h!dh, ~2.1!

wherehsls is the conformal time at the surface of last scat
andh0 is the present conformal time. The first term is due
variations in the gravitational potential and photon density
the surface of last scatter. The latter term, which is zero
linear order in a matter dominatedflat universe, is due to the
decay of potential fluctuations at late times, (11z),V0

21. In
a universe withV050.3, the latter term, the so-called inte
grated Sachs-Wolfe effect, is thedominantsource of micro-
wave background fluctuations on large angular scales@13#.
The late-time ISW effect dominates multipole moments b
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5984 57NEIL J. CORNISH, DAVID SPERGEL, AND GLENN STARKMAN
low l curv52A12V0/V0. Neglecting this contribution will
lead to a severe underestimate of the large angle power

Because of the late-time ISW effects, we expect sign
cant large angular scale fluctuations even ifV0 is as small as
0.1. Kamionkowski and Spergel@13# calculated the CMB
fluctuations in hyperbolic models with trivial topology and
variety of primordial power spectra. Below the curvatu
scale the standard scale-invariant Harrison-Zeldovich sp
trum was used. This is probably reasonable at sufficie
small scales for models with non-trivial topology, includin
compact models, as small scale perturbations will be
sensitive to global properties such as the curvature and
pology. Beyond the curvature scale, both the unknown fo
of the eigenmodes and the expected effects of transien
the inflationary dynamics make the situation much less cl
For the latter reason, Kamionkowski and Spergel conside
a range of power spectra. Of the models they considered
‘‘volume power law model’’ has the least long waveleng
power. In this model, fluctuations on scales larger than
curvature scale are exponentially suppressed. Conseque
there is essentially no contribution toDT/T from the last
scattering surface in the volume power law model. Nevert
less, the second term in Eq.~2.1! produced sufficient powe
to fit the fluctuations observed by COBE-DMR~see figures 6
and 9 in@13#!.

The above result is not difficult to understand. As me
tioned earlier, the large angle power in a sub-critical unive
is produced by fluctuations occurring on small comovi
length scales that only appear large due to their relativ
close proximity. To make this concrete, we can consider
contributiona l (k) to a given multipole,l , from modes with
wave numberk @12#:

a l ~k!5Fk~h0!ã l ~k! ~2.2!

where

ã l ~k!5F1

3
F~hsls!Xk

l ~h02hsls!

12E
hsls

h0 dF

dh
~h̃ !Xk

l ~h02h̃ !dh̃ G . ~2.3!

HereXk
l are the radial eigenfunctions of the Laplacian onH3

~see next section!, andFk(h) describes the curvature pertu
bation on scales 2p/k at conformal timeh. These are related
to the curvature perturbations today byFk(h)
5Fk(h0)F(h)/F(h0) where@16#

F~h!55
sinh2~h!23hsinhh14coshh24

~coshh21!3 . ~2.4!

In a flat universedF/dh50 to leading order, and only th
first term contributes. Moreover, it is easy to show th
ã l (k) is strongly peaked atksls;l 11 in a flat universe if
we chose our unit of length to be the radius of the surface
last scatter. The same is true in an open universe for m
poles withl @l curv, but for low multipoles the second term
in Eq. ~2.3! dominates. For example, Fig. 1 shows whi
modes k contribute most to the quadrapole integran
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F8(h)Xk
2(h02h), in a universe withV050.3. Notice that

the dominant contribution comes from late times,h.1.5, z
,2 and large wave number.

We highlight the wave number dependence in Fig. 2
plotting uã2(k)u and ua2(k)u. The latter is shown for a vol-
ume power law scaling with spectral indexn51. We see that
the dominant contribution to the quadrapole comes fr
modes with wave numbersk;3→10 in curvature units or
ksls;7→24 in units of the radius of the surface of last sc
ter. This should be contrasted with the flat space case w
modes withksls;2→4 provide the dominate contribution t
the quadrapole.

The important lesson in all this for compact hyperbo
models is that the form of the power spectrum at very sm
wave number~long wavelength! is largely irrelevant. It is
power on scales smaller than the curvature scale that con
utes most to the low multipoles. Since the topology scale
typically comparable to or larger than the curvature scale,
ISW effect should ensure there is no significant suppress
of the large angle temperature fluctuations in generic co
pact models.

In contrast to the amplitude fluctuations, microwave ba
ground polarization fluctuations exclusively probe the s
face of last scatter. These fluctuations arise due to elec

FIG. 1. A density plot showing the quadrapole integran
F8(h)Xk

2(h02h), as a function of wave numberk and time since
last scatterh. The regions of highest contrast are where the do
nant contribution occurs.

FIG. 2. The functionsuã2(k)u and ua2(k)u in a universe with
V050.3. The scaling is arbitrary.
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57 5985CAN COBE SEE THE SHAPE OF THE UNIVERSE?
scattering and depend on gradients in the velocity fi
@17,18#

~Q1 iU !~ n̂!50.17Dt* mimj] iv j ut
*

~2.5!

whereDt* is the width of the last scattering surface and
giving a measure of the distance photons can travel betw
their last two scatterings. Here,Q andU are the Stokes pa
rameters,n is the direction of photon propagation, andm
5e1̂1 ie2̂, wheree1̂ ande2̂ form a basis orthogonal ton. Note
that polarization fluctuations are produced only due to s
tering and are not sensitive to the ISW effects. Thus, po
ization fluctuations are our best chance to directly probe
percurvature modes.

III. VIBRATIONS IN A HYPERBOLIC CAVITY

When attempting to calculate perturbation spectra in co
pact hyperbolic space one is immediately confronted by
highly non-trivial task of finding the eigenmodes. In pri
ciple the eigenmodes of a compact space can be obta
from the eigenmodes of the simply connected covering sp
using the method of images@19#. In practice the sums in
volved are highly divergent and can only be tamed by
phisticated resummation methods@20,21#. Before confront-
ing this challenging problem we need to know t
eigenmodes of the covering space. The covering space
the metric

ds25dt22R2~ t !ds2,

5R2~h!~dh22ds2!, ~3.1!

where theds2 is the metric on hyperbolic three-space,

ds25dx21sinh2x~du21sin2udf2!. ~3.2!

The Ricci curvature of this metric is21, corresponding to a
curvature scale of unity. Perturbations in such a spacet
can be expanded in terms of spherically symmetric soluti
of the Helmholtz equation (D1q2)Q50, where theD is the
Laplace operator onH3,

DQ5
1

sinh2x F ]

]x S sinh2x
]Q

]x D1
1

sin2u

]

]u S sinu
]Q

]u D
1

1

sin2u

]2Q

]u2 G . ~3.3!

The eigenfunctions are given by@22#

Qql m~x,u,f!5Xq
l ~x!Yl

m~u,f!, ~3.4!

where theYl
m’s are spherical harmonics and the radial eige

functions are given by

Xq
l ~x!5

~21! l 11sinhl x

F )
n50

l

~n21k2!G 1/2

dl 11cos~kx!

d~coshx! l 11
. ~3.5!

The wave number,k52p/l, is related to the eigenvalues o
the Laplacian by
d

en

t-
r-
u-

-
e

ed
ce

-

as

e
s

-

k25q221. ~3.6!

In the literature there is considerable confusion surround
this shift between eigenvalue and wave number in hyperb
space. Some authors claim thatq is the wave number, bu
this is not true. Indeed, it is simple to prove that forx
.2p/k, the radial eigenfunctions take the form

Xq
l ~x!;

cos~kx1fkl !

sinhx
, ~3.7!

where fkl is a k,l dependent phase. The 1/sinhx factor
follows from flux conservation in a space where the surfa
area of a ball grows as 4psinh2x. Clearly, k is the wave
number andl52p/k is the wavelength. We will refrain
from calling modes withl.1 ‘‘supercurvature’’ to avoid
confusion with other papers in the literature where ‘‘sup
curvature’’ is used to describe modes withq2,1. Perhaps
the confusion surrounding wave numbers in open mod
comes from considering the wave equation for massless
lar fields:

S ]2

]h2 2D DC~h,x!50. ~3.8!

For eigenmodesC(h,x) with eigenvalueq and angular fre-
quencyvq we have

vq
25q25k2115

~2p!2

l2 11. ~3.9!

Notice that the usual relationship between frequency
wavelength is offset by one unit. If we were to neglect th
offset and assert thatv52p/l, then we would erroneously
conclude thatq was the wave number.

In compact hyperbolic space the eigenmodes will be d
crete and the spectrum can beloweredbelow k250. Modes
with k2,0 are not square integrable in infinite hyperbo
space as they grow exponentially withx. However, these
modes are square integrable in compact hyperbolic space
are thus quite acceptable.

The physical and comoving counterparts to the wa
numberk and wavelengthl are scaled such that

kphys5
k

R~ t !
, kcmvg5

k

R0
5kH0A12V0,

lphys5R~ t !l, lcmvg5R0l5
l

H0A12V0

. ~3.10!

Fluctuations in the temperature of the cosmic microwa
background are due to variations in the gauge invari
gravitational potentialF(x,h). The connection between e
genvalue spectra and observed fluctuations in the CMB
lows from the relation

F~x!5 (
q,l ,m

cql mQql m~x!. ~3.11!



l
fo
he
m
nd

th

on
e
is
le

ou
m

s
e
e
lic
m
ta
e

ar
se
th
io

lo

re

om
o

le-
ed

ns,

lic
es
is

en-

ca-
3.
e

s
rts.
ell

try

l rds
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The expansion coefficientscql m are fixed by the primordia
power spectrum. Moreover, any physical mechanism
generating that primordial power will be influenced by t
shape of the eigenmodes and the eigenspectrum, for no
ter how skilled the drummer, a snare drum will not sou
like a timpani.

IV. COMPACT HYPERBOLIC SPACE

A compact hyperbolic universe has spatial sections of
form S5H3/G, where the fundamental group,G, is a dis-
crete subgroup ofSO(3,1)>PSL(2,C) acting freely ~i.e.
without fixed points! and discontinuously~since it is dis-
crete!. According to Poincare’s fundamental polyhedr
theorem@23#, S can be obtained by gluing together the fac
of a polytope in hyperbolic space. The polytope is otherw
referred to as the manifold’s fundamental cell or Dirich
domain.3

Any function defined on the compact spaceS5H3/G
must be invariant under the action of the fundamental gr
G,SO(3,1). The simplest way to enforce this condition e
ploys the method of images:

QG~x!5 (
gPG

Q~gx!. ~4.1!

The same method can be used to generate anyn-point func-
tion in the compact space via a sum over translated copie
the corresponding function in the covering space. In a rec
paper, Bondet al. @24# applied the method of images to th
two-point correlation function in several compact hyperbo
universes. They concluded that several of the smaller volu
hyperbolic models were incompatible with the COBE da
However, in this preliminary study they did not include th
ISW effect, nor did they demonstrate that their results
independent of the infrared regularization scheme they u
They @25# recently reported a new analysis that includes
ISW effect and appears to be consistent with our conclus
that COBE is compatible with compact manifolds.

Hyperbolic 3-space can be viewed as the unit hyperbo
~mass-shell!

2x0
21x1

21x2
21x3

2521, ~4.2!

embedded in four-dimensional Minkowski space. We can
late this representation to the induced metric onH3, ~3.2!, by
the coordinate identifications

x05coshx, x15sinhxcosu, x25sinhxsinucosf,

x35sinhxsinusinf. ~4.3!

From this perspective it is easy to understand why the is
etries ofH3 are described by the orientation preserving h
mogeneous Lorentz group in four-dimensions,SO(3,1).

3A simple analogue in two dimensions is the torus,E2/G, where
E2 is the plane andG is the group generated by a translations byLx

in the x direction, andLy in the y direction. The fundamental cel
for this torus is a rectangle with opposite faces identified.
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Given a set of generators$a1 ,..,aj%, any element of the fun-
damental groupG can be written as

g5)
i

ami

j i ~ i , j i ,miPZ!, ~4.4!

with possible repetitions of the generators. The group e
mentg is called a word, and the length of the word is defin
to be

l g5(
i

u j i u. ~4.5!

Not all words generated according to Eq.~4.4! will be unique
since the generators are typically subject to a set of relatio
e.g. a1a2a1

22a251. The number of distinct words with
lengths less than or equal tol is denotedN( l ). A theorem
due to Milnor @26# tells us thatN( l ) grows exponentially
with l if G is the fundamental group of a compact hyperbo
manifold. It is precisely this exponential growth that caus
problems with the sum over images. The rate of growth
measured by the grammatical complexity or topological
tropy of the fundamental group,HT5 lim l→`l 21log@N( l )#.

To illustrate the preceeding discussion we useSNAPPEA

@27# to study Thurston’s manifold@28#, STh @m003~22,3! in
the SNAPPEAcensus#. The fundamental group,G5p1(STh),
has the presentation4

G5$a,b:a2ba21b3a21b, ababa21b21ab21a21b%.
~4.6!

The generators of the fundamental group describe identifi
tions in the faces of the fundamental cell shown in Fig.
The fundamental cell is drawn using Klein’s projectiv
model for hyperbolic space. In this projectionH3 is mapped
into an open ball inE3. Under this mapping hyperbolic line
and planes are mapped into their Euclidean counterpa
This is why the totally geodesic faces of the fundamental c
appear as flat planes.

Thurston’s manifold has volume 0.98137, symme
group G5$u,v:u2,v2,uvuv%5Z2% Z2, first homology

4A presentation lists the group generators followed by any wo
which are equivalent to the identity.

FIG. 3. The fundamental cell for Thurston’s manifold.
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57 5987CAN COBE SEE THE SHAPE OF THE UNIVERSE?
groupZ5 and Betti numbers@a# b05b351, b15b250. The
symmetry group describes the symmetries of the manif
The~first! homology group@29# is the Abelianized version o
the fundamental group~4.6!. When Abelianized, the rela
tions obeyed by the fundamental group collapse down:

a2ba21b3a21b51 ⇒ b̃ 551

ababa21b21ab21a21b51 ⇒ ã5 b̃21, ~4.7!

leaving the homology group

H1~STh!5$ b̃ : b̃ 551%5Z5 . ~4.8!

Choosing a coordinate system centered at a maximum
the injectivity radius function,@b# the generators have th
SO(3,1) matrix representations

a5S 1.4498 20.3191 0.8911 20.4538

20.5653 20.5653 20.8911 0.4538

0.8844 20.8844 0.8911 20.4538

0.0000 0.0000 20.4538 20.8911

D ,

~4.9!

and

b5S 2.9351 2.4389 21.1390 20.6073

0.9195 0.4233 21.1390 20.6073

2.5987 2.5987 20.8587 20.5125

0.1255 0.1255 20.5125 0.8587

D .

~4.10!

The image of any pointxPH3 can now be found by matrix
multiplication. To give an example, the originx50 has x
50 and corresponds to the point@1,0,0,0# when embedded
in four-dimensional Minkowski space. Acting on this poi
by a takes it to the point@1.450,20.565,0.884,0#. This point
hasx50.9161,u52.1395 andf50.0157, and so lies a dis
tance 0.9161 units away in 3-space.

Points lying on a symmetry axis of a group element w
be translated the shortest distances. Conversely, the furt
point lies from the symmetry axis of a group element, t
further it is translated by that element. Since the fundame
group acts differently on different points, compact hyp
bolic models are not homogeneous. Nor are they isotro
since there are preferred symmetry axes. Points on the s
metry axis of a group element can be located by finding
eigenvectors of theSO(3,1) matrix describing the group e
ement. The two real eigenvectors define points on the l
cone enclosing the hyperboloid~4.2!. The line passing
through these two points defines the symmetry axis of
group element. The intersection of this line with the hyp
boloid ~4.2! defines the point inH3 that is translated the
shortest distance. For example,a has the two real eigenvec
tors

e15@20.7491,0.3497,20.6563,0.0896#,

e25@0.7350,0.2687,20.6460,0.2252#, ~4.11!
d.
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and the line they define in Minkowski space intersects
hyperboloid at the point

v5@1.2428,0.2409,20.6425,0.2716#. ~4.12!

Acting on this point bya leads to the image point

va5@1.0292,20.1431,0.19035,0.0496#, ~4.13!

a distance5 0.8894 units away in 3-space.
By acting on points lying on the symmetry axis of ea

group element it is possible to compile a list of the minim
geodesics. A typical isometry is a corkscrew-type motio
consisting of a translation of lengthL along a geodesic, com
bined with a simultaneous rotation through an anglev about
the same geodesic. The length and torsion can be found
rectly from the eigenvalues of the group element, and
conveniently listed by theSNAPPEA program @27#. Table I
records both the length and the torsion of all geodesics w
L,2.

Each wordgPG does not necessarily produce a uniq
minimal geodesic. The minimal geodesic generated byab2

has the same length and torsion as that generated byb. The
mapping between words and minimal geodesics is man
one. To make the mapping one to one, the words need t
grouped into conjugacy classes. Two words,g andg8 belong
to the same conjugacy class if and only if they are equal
to an isometry of6 G:

g;g8 iff g85 f 21g f ~ f PG!. ~4.14!

A theorem by McKean@30# then states that there is a one-t
one correspondence between conjugacy classes of the fu
mental group and the periodic geodesics. If we definePp to
be the set of all geodesic loops at some pointpPS, endowed
with the productgasgb ~first gb then ga) for all ga ,gb
PPp , then Pp is isomorphic top1(S)5G. This link be-
tween geodesic loops and the fundamental group can be
to re-express the sum over images~4.1! as a sum over peri-
odic orbits. It is this principle that forms the basis

5A simple way to work out the length of the shortest geode
connecting two points is to first perform anO(3,1) rotation of the
coordinate system so that one of the points lies at the origin ofH3.
The proper distance between the two points is then found by ta
the arccosh of the other point’s ‘‘time’’ coordinate, in accordan
with Eq. ~4.3!.

6E.g., for Thurston’s manifold we haveab2;bab;ababa21

5b21aba21b;aba21;b.

TABLE I. Minimal geodesics shorter than 2.

Length Torsion Word

0.57808244 2.13243064 ab
0.72156837 21.15121299 b
0.889442997 2.94185905 a
0.998325189 22.92101779 ab21

1.040315125 0.98237189 aba21b
1.793800843 21.55687105 a2b
1.822279900 22.41353903 ab21a21b
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Gutzwiller’s method@19# for determining the eigenmodes o
compact hyperbolic space. Indeed, many of the techniq
used to describe quantum chaos, including Gutzwiller’s tr
formula, have been developed using compact hyperb
space as a laboratory@31#. The exponential growth in the
number of words with symbolic lengthsl g< l is echoed by
the exponential growth in the number of closed geode
with physical lengthsLg<L:

N~L !;
ehL

hL
, ~4.15!

whereh is the Kolmogorov-Sinai~KS! entropy of the geo-
desic flow @31#. It is interesting to note that KS entrop
scales ash}V21/3 while the topological entropy scales a
HT}V. This is because the KS entropy measures the rat
chaotic mixing, and smaller manifolds mix better, while t
topological entropy measures the complexity of the fun
mental group, and larger manifolds have more complica
topologies@32#.

We can make some general observations about the e
tence of long wavelength modes onH3/G based onSNAP-

PEA’s listing of the short minimal geodesics. Typical clos
geodesics, such as those listed in Table I for Thursto
manifold, involve a considerable torsion. A similar twistin
occurs in 5 of the 6 compact, orientable flat three manifo
@33#. One example isT1,p

3 , where opposite faces of a cub
are identified, with one pair of faces identified after a tw
throughp. If the cube has side lengthL, then the twisted
minimal geodesic has lengthL and torsionp. As a conse-
quence of this torsion, the lowest eigenmode along
twisted direction must wrap twice aroundT1,p

3 before clos-
ing. The maximum allowed wavelength is thus 2L, not L.
We may anticipate a similar phenomenon occurring in
perbolic space. The shortest geodesic listed in Table I
torsion 2.132431'2p/2.9465. This geodesic approximate
closes after 3 turns, but may never close exactly if it is
irrational multiple of 2p. Using this Bohr-Sommerfeld style
reasoning, it appears likely that compact hyperbolic ma
folds will admit very long wavelength modes.

V. LONG WAVELENGTH MODES

Here we study long wavelength modes in small hyp
bolic universes. We do this without explicitly solving for th
eigenmodes by exploiting the close connection between
genvalue spectra and topology. We find a number of us
topological results pertaining to long wavelength modes.

For hyperbolic manifolds of dimensiond>3 there is a
remarkable connection between geometry and topology.
rigidity theorem of Mostow-Prasad@34# proves that any con
nected and orientable manifold of dimensiond>3 supports
at most one hyperbolic metric~up to diffeomorphisms!. This
means that geometrical quantities such as volume, injecti
radius,@c# diameter,@d# geodesic length spectra and eige
value spectra are alltopological invariantsfor compact hy-
perbolic manifolds.

In this section we will put the topologists’ interest in th
eigenvalue spectra to good use. Without having to solve
the eigenmodes explicitly we can prove several results c
cerning the existence of long wavelength modes in comp
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e
ic

s

of

-
d

is-

’s

s

t

e

-
as

n

i-

-

i-
ul

he

ty
-

r
n-
ct

hyperbolic spaces. In particular, we prove that generic co
pact hyperbolic spaces admit modes with wavelengths
exceed the curvature scale. In addition, we show that th
exist finite volume, compact hyperbolic manifolds with a
arbitrarily large number of modes with arbitrarily long wav
lengths.

To relate these results to cosmology we need to recall
relationship between curvature, redshift, density and the
dius of the surface of last scatter~SLS! in a hyperbolic uni-
verse. The curvature radius is fixed by the scale factorR(t)
since the metric~3.2! has unit curvature radius. The radius
the last scattering surface at redshiftz is given by

Rsls5RarccoshS 11
2~12V0!

V0~11z! D[Rxsls . ~5.1!

The volume of space encompassed by the SLS is

Vsls5pR3
„sinh~2xsls!22xsls…. ~5.2!

The radius of the last scattering surface today is appro
mately equal to the curvature radius ifV050.8. If V050.4
we find Rsls'2R0; if V050.1 we find Rsls'3.6R0. The
angle subtended by the curvature scale on the last scatte
surface is approximately

ucurv'1.68
V0

A12V0

. ~5.3!

The above expression assumes that the universe has
matter dominated since decoupling. This will be true
matter-radiation equality was reached before decoupling
that

zeq524000V0h2.zsls⇒V0h2.0.052. ~5.4!

Assuming h.0.5, Eq. ~5.3! will be valid so long asV0
.0.2. Since, roughly speaking, thel th multipole moment
measures power on angular scales7 of p/ l , modes withl
.1 probe angular scalesl ,l curv, where

l curv'
2A12V0

V0
. ~5.5!

In a universe withV050.5, only the l 52 quadrapole
probes modes withl.1, while in a universe withV050.3
the range is increased to include all multipoles belowl 56.
This tells us that perturbations with wavelengths larger th
the curvature scale are responsible for the large angle po
on the last scattering surface ifV0,0.5.

Using Eq.~5.2! we can estimate the redshift when a fu
damental cell first dropped within the last scattering surfa
from the relation

7The reasoning being that thel th multipole has 2l zeros in the
range uP@2p,p#, with approximately equal spacings ofDu
5p/l .



un

6

he

m
s
p
e

e

ro
s
it-
fo
ic
d

y
ric
n

it
on

t-
e
d

in
an
r

ant
a

n-

the

he

s
nd

ure

ri-

t is

ly
g
f

he

is a
e-

an
and

al
by

57 5989CAN COBE SEE THE SHAPE OF THE UNIVERSE?
11z5
2~V0

2121!

V0~coshr 121!
, ~5.6!

wherer 1 is the outradius@e# of the manifold. Taking Thurst-
on’s manifold@28# ~see Fig. 3! with Vol(STh)50.98137 and
r 150.748537 as a particular example, we find that the f
damental cell dropped inside the SLS no earlier thanz
59.2 if V050.4. Today there would be approximately 8
copies of the fundamental cell within the SLS~this is the
ratio of volume of the optically observable universe to t
comoving volume of Thurston’s manifold!. Since the volume
of a hyperbolic manifold is a measure of topological co
plexity, Thurston’s manifold ranks as one of the simple
topologies the universe can have. The only known exam
that is simpler is the Weeks manifold with volum
0.9427 . . . . It is thought that the Weeks manifold isthe
smallest hyperbolic three manifold, though the most rec
lower bound, Vol(Smin).0.166@35# still leaves some room
for smaller, simpler topologies.

Returning to our treatment of the eigenvalues, we int
duce the ordering 05q0,q1,q2 . . . ,where the eigenvalue
are counted with their multiplicities. The mathematical l
erature is littered with dozens of upper and lower bounds
the qj ’s in terms of the volume, diameter or isoperimetr
constant of a manifold. Unfortunately most of these boun
are not very sharp since the results apply to a great variet
manifolds. Sharper bounds can probably be found by rest
ing one’s attention to three dimensional manifolds with co
stant negative curvature.

Most papers deal with the first eigenvalue,q1, whereas we
are most interested in eigenmodes withq2P@1,11e2# where
e!1. Eigenmodes in this interval correspond to modes w
wavelengthsl>2p/e. Nevertheless, some of the bounds
q1 are useful to us.

Many of the bounds onq1 employ Cheeger’s isoperime
ric constant@36#. Isoperimetric inequalities relate the volum
of a manifold to its surface area. Cheeger’s constant is
fined to be

hC5 inf
S

Vol~S!

min$Vol~M1!,Vol~M2!%
. ~5.7!

Here S runs through all compact codimension@ f # one sub-
manifolds which divideM into two disjoint submanifolds
M1, M2 with common boundaryS5]M15]M2. A familiar
example is the two-sphere. In this caseM1 andM2 are both
hemispheres,S5]M1 is a great circle and we findhC(S2)
51.

Using his isoperimetric constant, Cheeger@36# derived the
lower bound

q1
2>

hC
2

4
. ~5.8!

A decade later Buser@37# derived the upper bound

q1
2<4hC110hC

2 . ~5.9!

Cheeger’s bound is valid for arbitrary closed manifolds
any dimension. Buser provided a general bound valid in
dimension for any closed manifold with bounded Ricci cu
-
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vature. We have quoted Buser’s bound in the form relev
for 3-manifolds with constant negative curvature. Given
3-manifoldS, we can in principle calculate Cheeger’s co
stant and subsequently use it to place bounds onq1. Recast-
ing Cheeger’s inequality in terms of wavelengths we find
maximum wavelength is bounded from above by

lmax<
4p

AhC
2 24

. ~5.10!

Similarly, Buser’s inequality provides a lower bound on t
maximum wavelength:

lmax>
2p

A10hC
2 14hC21

. ~5.11!

If hC.2 we would learn thatlmax,`. That is, there would
be a long wavelength cut-off. Similarly, ifhC.2A114p2

'12.7 we would learn thatlmax,1 and therefore no mode
with l.1. On the other hand, an interesting lower bou
occurs whenhC,(A14140p222)/10'1.82. In this case
the manifold supports perturbations beyond the curvat
scale.

As we discuss below, the value ofhC is not known for
most manifolds, but it can in principle be calculated nume
cally. There are however some special examples wherehC
can be given a tight upper bound. Cheeger’s constan
found by simultaneously minimizing Vol(S) while maximiz-
ing Vol(M1)<Vol( M2). The two conditions can separate
be satisfied by choosingS to be totally geodesic and takin
Vol( M1)5Vol( M2)5Vol( M )/2. One way to satisfy both o
these conditions simultaneously is to find an involution onM
that fixesS and interchangesM1 and M2. ThenS is neces-
sarily totally geodesic andM1 andM2 are mirror images of
each other. This partition provides a local minimum for t
ratio Vol(S)/min„Vol( M1),Vol(M2)…, but it might not yield
the global minimum required by the infinum in Eq.~5.7!.
Some interesting examples are known whereS is a genusg
>2 surface and the ratio Vol(S)/Vol( M ) is maximized, i.e.
these examples have the largest value ofhC for manifolds
that separate along a totally geodesic boundary@38#. Written
as a function of genus, the volume ofSg is 4p(g21) and
the volume ofM is given by

Vol~Mg!5gF28E
0

p/4

logu2sinuudu

23E
0

p/3g

arccoshS cosv
2cosv21D dvG . ~5.12!

For these manifolds, the bounds onhC range from hC
<1.9477 forg52 to hC<3.43 in the infinite genus limit.
The genus 2 case is interesting since it tells us that there
closed manifold with volume 12.904 that supports wav
lengthsl.0.94. Furthermore, any other manifold that c
be cut along a genus 2 surface will have larger volume
hence a lower isoperimetric constanthC . These manifolds
will in turn support even longer wavelength modes.

In principle it should be possible to provide a numeric
estimate of Cheeger’s constant for arbitrary manifolds
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trying a number of trial partitions. The best partitions cou
then be varied slightly and the search continued until
optimal partition is found. A judicious choice for the origin
trial partitions would ensure rapid convergence. The form
Cheeger’s constant~5.7! suggests that the trial partition
should employ fairly smooth surfacesS that divideS into
two approximately equal sized pieces. At present no num
cal algorithm has been written, but it is hoped that the fa
ity will be available in later releases of theSNAPPEA program
@27#.

In the absence of numerical results we have to resor
analytic estimates. An upper bound for Cheeger’s cons
can be derived using geodesic balls@39#:

hC<
] lnV~x,x!

]x
. ~5.13!

HereV(x,x) is the volume of a geodesic ball with radiusx
centered atxPS. The radius of the ball must be larger tha
the injectivity radius@c# r inj , but small enough so tha
V(x,x),Vol(S)/2. A lower bound for Cheeger’s constant
quoted by Gallot@40#:

hC>
4Aa

diam~S!~sinhAa1Aa!
, ~5.14!

where

a>„diam~S!…2 and aPZ. ~5.15!

Notice that Eqs.~5.13! and~5.10! can be combined to show
that manifolds with diameters smaller than 0.9195 haveq1
>1 and thus no supercurvature modes. Applying the ab
bounds to Thurston’s manifold@which hasr inj50.289, 0.868
<diam(STh)<0.88 and Vol(STh)50.9814# we find

2.09<hC~STh!<6.42, ~5.16!

and

1.04<q1<20.9. ~5.17!

Thus, Thurston’s manifold does not support supercurva
modes~i.e. modes with complex wavelengths!, but modes
with wavelengths larger than the curvature scale are
ruled out.

Other bounds onqj exist that do not use Cheeger’s co
stant. Cheng@41# provides the bound

qj
2<11

8~11p2! j 2

diam~S!2
, ~5.18!

and Buser@42# provides the bound

qj
2<11cS j

Vol~S! D
2/3

, c.1, ~5.19!

but the constantc is not quoted explicitly. Cheng derived h
bound by first proving that the eigenvaluesqj in a closed
manifold S are always lower than the first eigenvalue of
open geodesic ball with the same curvature and radiusx0
5diam(S)/(2 j ). The bound quoted in Eq.~5.18! is not very
e
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sharp since Cheng considered manifolds with arbitrary c
vature. Here we derive a new, sharper bound by specializ
to three-dimensional manifolds with constant negative cur
ture. The first eigenvalue of an open geodesic ball of rad
x0 is found by solving the equation (D1q2)Q50 with the
boundary conditions

dQ

dx
~0!50, Q~x0!50. ~5.20!

The eigenfunction with lowest eigenvalue is radial (l 50,
m50),

Qq00~x!5
sin~Aq221x!

Aq221sinhx
, ~5.21!

and the boundary conditions demand that

q1
2511

p2

x0
2 . ~5.22!

From this we derive the bound on the eigenvalues ofS:

qj
2<11S 2p j

diam~S! D
2

. ~5.23!

Translated into a bound on the allowed wavelengths
reads

l j>
diam~S!

j
. ~5.24!

Thus, the maximum wavelength,l1, is at least as large a
the diameter. The diameter is constrained to lie in the ra

r 2,r 1<diam~(!<2r 1. ~5.25!

Here r 2 is the inradius@g# and r 1 is the outradius@e#. The
geometrical constants for a selection ofSNAPPEA’s manifolds
are collected in Table II. The volume and injectivity radiu
are both topological invariants while the in- and outradii d
pend on the choice of basepoint for the Dirichlet doma
The diameter can be found by forming the supremum

TABLE II. Scenes from theSNAPPEAcensus.

S Vol r 2 r 1 r inj

m003~23,1! 0.9427 0.5192 0.7525 0.2923
m003~22,3! 0.9814 0.5354 0.7485 0.2890
s556~21,1! 1.0156 0.5276 0.7518 0.4157
m006~21,2! 1.2637 0.5502 0.8373 0.2875
m188~21,1! 1.2845 0.5335 0.9002 0.2402
v2030~1,1! 1.3956 0.5483 1.0361 0.1831
m015~4,1! 1.4124 0.5584 0.8941 0.3971
s718~1,1! 2.2726 0.6837 0.9692 0.1696
m120~26,1! 3.1411 0.7269 1.2252 0.1570
s654~23,1! 4.0855 0.7834 1.1918 0.1559
v2833~2,3! 5.0629 0.7967 1.3322 0.2430
v3509~4,3! 6.2392 0.9050 1.3013 0.1729
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diam~S!5sup
0

$r 1%, ~5.26!

where the supremum is taken over all choices of basepo
Using a more direct numerical method we were able to co
pile a collection of sharp lower bounds for the diameter. O
method ensures that the true diameter is within;0.01 of the
lower bounds quoted in Table III. Also listed are upper a
lower bounds on the first eigenvalue of the Laplacian deri
using the inequalities quoted in this section.

It is interesting to note that the length of the shortest g
desic~twice the length of the injectivity radius@c# r inj! does
not grow with the volume. Even the largest manifolds in t
SNAPPEAcensus, with volumes;6, have geodesics as sho
as 0.3 in curvature units. This is consistent with Thursto
assertion@15# that the expectation value for the length of t
shortest loop at an arbitrary point in a generic hyperbo
3-manifold lies in the range 0.5→1. This suggests that eve
relatively large manifolds still make for interesting sma
universe models.

Having established that generic compact hyperbolic
manifolds support modes with wavelengths exceeding
curvature scale, we have partially answered the question
set out to answer. Even neglecting the integrated Sa
Wolfe effect, our results show that compact hyperbolic mo
els are able to support the long wavelength modes requ
to produce large angle anisotropy on the surface of last s
ter. A complete answer would require a knowledge of
spectral density at long wavelengths, as a few isolated s
curvature modes could not support significant large an
power on the SLS. In contrast, even a single supercurva
mode (q1,1) could greatly enhance the large angle pow
@43#. Preliminary results from Bondet al. @25# using the
method of images point to a reduced spectral density at l
wavelengths. Unfortunately, their method is unable to de
supercurvature modes, so the most important part of
spectrum might be missing.

We can supplement the preceding discussion using a t
rem due to Buser@44# which states that there exist finit
volume compact hyperbolic 3-manifolds with an arbitrar
large number of modes with arbitrarily long waveleng
This theorem proves that any attempt to excludeall compact
hyperbolic models on the basis of a lack of long wavelen

TABLE III. Diameters and eigenvalue bounds.

( diam q1 min q1 max

m003~23,1! 0.843 1.08 7.52
m003~22,3! 0.868 1.04 7.31
s556~21,1! 0.833 1.09 7.61
m006~21,2! 1.017 0.82 6.26
m188~21,1! 0.995 0.84 6.40
v2030~1,1! 1.082 0.77 5.90
m015~4,1! 0.923 0.98 6.88
s718~1,1! 1.439 0.53 4.48
m120~26,1! 1.694 0.45 3.84
s654~23,1! 1.946 0.36 3.38
v2833~2,3! 1.701 0.45 3.83
v3509~4,3! 1.802 0.39 3.63
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power is doomed to failure. Admittedly, the manifolds co
sidered by Buser have large diameters, but they also h
small injectivity radii so they describe models that are mu
connected on scales smaller than the curvature scale.
fundamental cells for these manifolds are highly anisotrop
which may bring them into conflict with observations, b
this is not certain since the face identifications tend to mix
three spatial directions and thus apparent isotropy can
restored.

VI. HORNED TOPOLOGIES

In this section we digress to consider a particular class
models that can be partially constrained by COBE data
Ref. @10#, Levin et al. describe the microwave sky in a un
verse with the topology of a hyperbolic toroidal horn. Th
topology they consider is the three-dimensional analogue
the two-dimensional pseudosphere. The pseudosphere
ferred to as a cusp by mathematicians, is topologica
equivalent toS13@0,̀ ), whereS1 is a circle. Figure 4 shows
a portion of the pseudosphere embedded in thr
dimensional space. The pseudosphere is described in the
per half plane representation ofH2 by

ds25
dx21dz2

z2 , ~6.1!

with the identificationsx5x1nLx with nPZ. Cusps ind
dimensions are analogously defined to be of the formEd21

3@0,̀ ) whereEd21 is a flat topology in (d21) dimensions.
It should be emphasized that the linez5const connectingx
andx1L is not a geodesic. Geodesics in the upper half pla
model appear as half-circles of the formx21z25a2, perpen-
dicular to the boundary plane.

The hyperbolic horn studied in Ref.@10# is of the form
T23@0,̀ ) whereT2 is the two-torus. In the upper half plan
model ofH3,

ds25
dx21dy21dz2

z2 , ~6.2!

the horn is defined by making the identificationsx5x
1nLx and y5y1mLy . Since translations commute, th

FIG. 4. A portion of the two-dimensional pseudosphere emb
ded in three-dimensional space.
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horn’s fundamental group is Abelian and geodesics on
horn are non-chaotic. This means that the horn’s eigenmo
can be written down explicitly.

The calculational simplicity of the horn model is offset b
some unappealing physical characteristics. Not only is
horn noncompact and infinite in volume, but it also suffe
from severe global anisotropy. The anisotropy can be s
by moving to spherical coordinates centered at (x,y,z)
5(0,0,1). Our ghost images then appear at the points

x5arcsinhFarccoshS 11
1

2
~n2Lx

21m2Ly
2! D G ,

u56arccosS F11
4

~n2Lx
21m2Ly

2!G
21/2D ,

f5arcsinS mLy

An2Lx
21m2Ly

2D . ~6.3!

The ghost images are evenly distributed in thef direction,
but distant images pile up along the axis of the hornu
5p/2).

Because the horn’s fundamental group is Abelian, th
will be a long wavelength cut-off in directions orthogonal
the axis of the horn. In this respect the hyperbolic horn
similar to the flat topologyS5R3T2. The difference is that
the torus cross sections of the horn do not have fixed area
we move away from the origin, the torus area decreases

A~T2!5
1

2
LxLyexp~22sinhx!. ~6.4!

This means that the wavelength cut-off gets shorter
shorter as we move toward the cusp. Moreover, the decr
is doubly exponentialwith increasing proper distance. Th
has the effect of suppressing all temperature fluctuation
the direction of the horn, leading to a ‘‘flat-spot’’@10# in the
microwave sky.

Considering that there are an infinite number of hyp
bolic 3-manifolds to choose from, it might seem strange
focus on one particular example. However, it turns out t
many manifolds have horn-like regions. To see why o
needs to understand something about how hyperbolic
manifolds are constructed. According to Jo”rgensen’s theorem
@45#, all finite volume hyperbolic 3-manifolds can be o
tained by Dehn surgery on a finite number of link comp
ments inS3. A link complement is constructed by drilling
out a solid tubular knot or link from spherical space. T
complement of this link~i.e. the space outside the link! will
almost always be topologically equivalent to a hyperbo
3-manifold with one or more cusps. If one happened to l
deep inside a cusp, the universe would look exactly lik
toroidal horn.

While the finite volume of the cusped manifolds mak
them more appealing than the basic hyperbolic horn, they
still non-compact. In order to arrive at compact models
need to perform Dehn surgery on the link. The surgery
volves cutting out a portion of the link and replacing it wi
a solid torus that is first twisted around the link in som
e
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non-trivial way. Without going into details,8 it is sufficient to
note that the twisting can be parametrized by two integ
(p,q). In the limit p,q→` with p,q relatively prime, the
original cusped manifold is recovered. For smallp,q the
cusp can be completely removed. For large values ofp,q the
end of the cusp is rounded off leaving a ‘‘horned manifold
If one happened to live deep inside one of the horns,
universe would look similar to how it does in the infinit
toroidal horn. The exact correspondence is broken si
Dehn surgery makes the fundamental group non-Abel
This means that the geodesics will be chaotic and the eig
modes complicated. Nonetheless, for high order Dehn
ings the chaos should be mild and it seems reasonabl
expect a flat spot in the CMB if one lived in a horned regi
of the manifold.

The preceding considerations have shown that the res
of Ref. @10# apply in certain regions of a large class of thr
manifolds. If we happened to live in one of these horn
regions, we would see a severe suppression of CMB fluc
tions along the horn. Levinet al. found that this effect was
not masked by the integrated Sachs-Wolfe effect, so
COBE satellite would have detected flat spots in the CM
However, the absence of flat spots is not a very strong c
straint on us living in a cusped manifold. This is becau
cusps only account for a very small portion of a cusp
manifold’s volume. Therefore, it is very unlikely that w
would be living in or near a cusp. If we make what topol
gists refer to as a ‘‘thick-thin’’ decomposition@46#, we find
that most of a manifold’s volume is in the ‘‘thick’’ part an
very little is in ‘‘thin’’ regions such as cusps. The chance th
we live deep inside a cusp is even smaller since the volu
of a cusp decreases as exp(22ex), where x is the proper
distance down the cusp. We are far more likely to live in
thick portion of a manifold where the breaking of glob
isotropy is much less noticeable. The analysis of Levinet al.
is not valid for observers that live in the thick portion of
manifold. The fundamental group of a cusped manifold
non-Abelian, but contains a normal Abelian subgroup of
nite index, corresponding to isometries of the cusp. Insid
cusp the fundamental group is dominantly Abelian and
horn analysis holds, but in the thick part of the manifold t
isometries are dominantly non-Abelian and the horn analy
does not hold. It would be interesting to extend the ho
analysis to cusped manifolds with finite volume and
closed manifolds with horn-like regions.

In summary, it would be surprising if we did live in
horned region, and the results of Levinet al.confirm that we
do not.

VII. POWER SPECTRA, WAVE NUMBERS
AND MULTIPOLES

A. Generating the primordial power spectrum

The temperature fluctuations measured by COBE-DM
are thought to arise from the amplification of quantum flu
tuations during an inflationary phase, or alternatively, from
network of topological defects. We will not consider the la

8See Thurston’s book@46# or the appendix of Carlip’s article@47#
for a description of how to perform Dehn surgery.
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ter possibility as there appears to be a topological obstruc
to the formation of topological defects in a small univer
@48#. In the inflationary context, some fine tuning is requir
to avoid blowing the curvature scale outside the surface
last scatter. There are currently two scenarios for arriving
a negatively curved universe from inflation. The first is on
bubble inflation@49#, the second is compact inflation@3#.
Detailed calculations of the power spectrum have been
formed for the one-bubble model, while little is known abo
the spectrum for compact inflation. Here we discuss how
one-bubble scenario relates to multiconnected models,
offer some speculations about the form of density pertur
tions produced by compact inflation.

1. One-bubble inflation

Since there is an explicit and well understood quant
tunnelling process underlying the one-bubble inflation s
nario, it is possible to make definite predictions about
form of the primordial power spectrum@49#. The universe
begins in an inflationary epoch driven by an inflaton field
a false vacuum state. During this epoch, any inhomogene
are inflated away. Subsequently, a single bubble is nuclea
inside of which the inflaton field rolls toward its true min
mum. Taking the inflaton to be described by a single r
scalar fieldf ~several variants of this basic picture have be
considered!, surfaces of constantf inside the bubble have
constant negative curvature. Mathematically this proces
described by anO(4) symmetric Euclidean instanton—
Euclidean de Sitter space with one special point. The bub
nucleation selects a preferred point in de Sitter space, br
ing the full O(5) symmetry down toO(4). Asshown in Fig.
5, the Euclidean instanton is matched onto its Lorentz
counterpart across a totally geodesic spatial hypersurf
S35]S4. The matching surface is a Cauchy surface for
subsequent Lorentzian evolution. Owing to theO(4) sym-
metry of the instanton, the bubble interior has theSO(3,1)
symmetry of hyperbolic space.

The question we need to ask is: can the one-bubble
nario be generalized to produce a hyperbolic universe w
non-trivial spatial topology? The answer is no, unless on
willing to live with closed timelike curves. The only wa
non-trivial topology can enter into the picture is through t
spatial topology ofS3, since the Lorentzian evolution is fully

FIG. 5. The tunnelling configuration. The lines indicate const
time hypersurfaces. The arrow indicates the point on theS3 Cauchy
surface where the bubble nucleates. The region to the upper rig
this point is the interior of the bubble, the region to the upper
remains in the false vacuum.
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determined by specifying Cauchy data for the metric a
matter fields on the initialS3 Cauchy surface. Put differently
the solution is specified globally on theS3 hypersurface but
only locally in the direction normal to this surface. Let u
start by considering the simplest non-trivial topology for t
matching surface – the real projective spaceRP3>S3/Z2.
Taking the geometry shown in Fig. 5 as the universal cov
we find there is a clone of the bubble on the opposite side
de Sitter space. Since antipodal points in de Sitter space
outside each other’s light cone, the bubble and its clo
never intersect. Inside the bubbles we have two copies of
same simply connected hyperbolic universe. While t
sounds reasonable, we encounter a problem when tryin
define quantum fields in this background as the instanton
topologyRP4 and is thus non-orientable. It is impossible
separate modes into positive and negative frequency com
nents in such spacetimes. As we move on to consider m
complicated topologies the situation gets worse. Once
number of clones exceeds two, the bubbles start to col
~self-intersect!. Moreover, according to an observer insid
the bubble, the spatial identifications on the spherical slici
become spatio-temporal identifications in hyperbolic spa
These universes have closed time loops and there is
known prescription for defining a sensible quantum theory
such spacetimes.

So while the most complete calculations of the primord
power spectrum have been done in the context of one-bu
inflation, they cannot be generalized to models with comp
hyperbolic sections. Indeed, if we do find evidence for no
trivial ~purely! spatial topology, we would know that th
one-bubble model is ruled out.

2. Compact inflation

In the compact inflation scenario the universe is taken
have compact hyperbolic spatial sections. The chaotic m
ing that occurs in compact hyperbolic space is understoo
have erased any initial density perturbations before vacu
domination is reached@3#. This prepares the ground for
necessarily short burst of inflation. It is the chaotic mixin
that solves the horizon problem, and not the short period
inflation.

In order to calculate the quantum fluctuations in comp
inflation we need to know the eigenmodes and the ini
vacuum state, i.e. how the modes are populated. Once t
are known we can evolve the quantum fluctuations to fi
the density perturbations at the end of inflation. At pres
we know neither the eigenmodes nor the correct vacu
state to choose. The situation is only slightly better for no
compact open inflation models, for while the eigenmodes
known, the choice of initial vacuum is not. Here we a
referring to models other than the one-bubble model~see e.g.
Ref. @11#!. Another difficulty with open inflation stems from
the short period of inflation being insufficient to solve th
horizon problem. This problem is greatly exacerbated by
open universe Grishchuk-Zel’dovich effect@50#, which de-
mands that the pre-inflationary universe be smooth on sc
one thousand times larger than the curvature scale. In a c
pact hyperbolic universe this is not a problem since the en
universe is typically no larger than the curvature scale. I
small universe there can be no ‘‘monsters’’ lurking over t
horizon, for we already see all there is to see.
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The generation of curvature perturbations in an open u
verse closely parallels that in a flat universe: Starting in so
initial state, the perturbations evolve until they cross outs
the Hubble horizon, whence they are frozen in. After infl
tion, the Hubble horizon expands to encompass perturbat
of increasing wavelength. Once back inside the Hubble
dius the perturbations can undergo further evolution. In
open universe the large scale perturbations are amplifie
the ISW effect. Fluctuations with wavelengths much sma
than the curvature scale are insensitive to the curvature
evolve just as they do in the flat models. For these mode
seems reasonable to use the usual conformal vacuum in
conditions @11#. We anticipate the same should be true
compact hyperbolic models for fluctuations frozen in lo
after the topology scale exited the Hubble horizon. The s
ation is far more complicated near the curvature scale, as
here that the geometry and topology of the background m
fold become most important. On large angular scales th
will be a delicate interplay between 6 main effects:~1! Am-
plification by the ISW effect;~2! Suppression by gravita
tional focusing;~3! Curvature distortions of the conforma
vacuum;~4! Inflationary transients;~5! Finite size distortions
of the conformal vacuum;~6! Reduced spectral density a
long wavelengths. The first four of these effects are pres
in all open inflation models while the last two are unique
compact inflation. Taking into account effects~1! and ~2!
while neglecting effects~3! and~4! leads to an angular powe
spectrum with positive slope@51#. Of the remaining effects
it is likely that inflationary transients will boost the power o
large scales while any reduction in the spectral density
tend to reduce power on large angular scales. The har
questions to answer concern distortions to the confor
vacuum, as these can only be answered in the contex
quantum cosmology by repeating the sort of calculations p
formed by Halliwell and Hawking for closed models@52#.
Until this is done, and until more is known about the eige
mode spectra, no firm predictions can be made about
power spectrum on large angular scales.

B. Wave numbers and multipoles

In Sec. II we described how the ISW effect alters the fl
space relationship between wave numberk and multipole
numberl . In flat space, the dominant contribution to thel th

multipole comes from fluctuations with wave numberksls
;l 11. This simple relationship betweenk andl translates
into a simple relationship between the power spectrum
density perturbations,P(k)5udku2, and the r.m.s. tempera
ture fluctuations in each multipole,P( l )5„l (l 11)Cl …

1/2,
whereCl 5^ual mu2&. The standard example is a flat univer
with power-law spectrumP(k)}kn, where it is found that

Cl }
G@32n#

G@~42n!/2#2

G@~2l 1n21!/2#

G@~2l 152n!/2#
. ~7.1!

Already we have seen that the ISW effect breaks this co
spondence on large angular scales in an open univers
compact hyperbolic space there is an additional effect
tends to spread power from different scales into each m
pole. Physically, this effect is related to quantum chaos
the mixing properties of compact hyperbolic spaces. Ma
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ematically, the effect arises because a multipole expan
attempts to use a basis of smooth analytic functions to r
resent the non-analytic wavefunctions. According to Be
@53#, if Ck(x) is an eigenmode ofH3/G, then the coefficients
al m in the expansion

Ck~x!5(
l

(
m52l

m5l

dkal mXk
l ~x!Ym

l ~u,f!, ~7.2!

are essentially random variables with amplitude virtually
dependent ofl . At small wave numbers and large angul
scales, there is almost no correlation betweenk and l in
compact hyperbolic space. The convergence of the sum~7.2!
is inherently slow since it comes not from a decrease in
expansion coefficients, but from the decay ofXk

l (x) across
the fundamental domain.

Some concrete results are known in two dimensions
nicely illustrate this effect. Consider a genus 2~hyperbolic!
surface with eigenmodesCk(x). The analogue of Eq.~7.2! is
then

Ck~x!5 (
m52`

m5`

dkamYk
m~x!eimf. ~7.3!

Here it is known that

c1umu21/2<uamu,c2umu1/2, ~7.4!

wherec1 and c2 are constants. It is thought that the low
bounduamu;umu21/2 is a good estimate of the true behavi
@31#. This leads to an essentially flat angular pow
spectrum9 P(m)5(2umu)1/2uamu5const, regardless of the
perturbation spectrumdk .

The above results suggest a novel way of arriving a
nearly flat Harrison-Zeldovich spectrum, regardless of
underlying physical process that produces the fluctuatio
We expect that this redistribution of power will be mo
efficient on large angular scales and least efficient on sm
angular scales. Our reasoning is that long wavelength mo
are the hardest to approximate by analytic functions si
they are most affected by the complicated periodic bound
conditions imposed by the topology. Conversely, the sh
wavelength modes are less sensitive to global effects,
therefore well approximated by the corresponding eig
modes of infinite hyperbolic space.

VIII. CONCLUSIONS

A hyperbolic drum produces a rich and complex sound
compact hyperbolic universe is likewise infinitely more com
plex than its spherical or Euclidean counterparts. The sim
methods used to constrain flat models do not work wh
space is negatively curved. The eigenmodes in a com
hyperbolic space can only be calculated using sophistica
methods developed to treat quantum chaos. Moreover,
perbolic models do not suffer the simple long waveleng
cut-off used to exclude toroidal models.

In addition to the issue of what fluctuations are suppor

9P(m) is the two-dimensional analogue of the usual angu
power spectrum,P(l ), in three-dimensions.
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57 5995CAN COBE SEE THE SHAPE OF THE UNIVERSE?
on the last scattering surface, there is also the issue of w
exactly it was that COBE measured. In a compact hyperb
universe the curvature radius provides a natural length sc
R05H0

21/A12V0. The curvature radius sets the leng
scale where we might hope to find the first evidence that
live in a multiply connected universe. The curvature rad
also sets the angular scale beyond which fluctuations in
cosmic microwave background radiation no longer origin
from the last scattering surface. This confluence of phys
scales is very unfortunate for COBE since it means that
ISW effect takes over just when things get interesting. F
tunately the next generation of CMB satellites will be able
probe much smaller angular scales, so the ISW effect
not obscure their view of the large scale topology of t
universe.

The search for multi-connectedness in our universe is
over. It has barely begun.
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APPENDIX

The following glossary of terms describes the basic ma
ematical quantities used in our discussion of topology. O
definitions are designed to be more pictorial than the us
formal definitions found in the mathematical literature.

@a# Betti numbers. The zeroth Betti number,b0, counts
the number of disconnected regions in a manifold. The fi
y
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Betti number,b1, counts the number of incontractible loop
The second Betti number,b2, counts the number of incon
tractible surfaces. Higher Betti numbers are similarly d
fined. The first Betti number is equal to the rank of the fr
Abelian part of the first homology groupH1(S). In other
words, the first Betti number is equal to the number of ge
erators ofH1(S) that are not subject to any relations sa
those that make the group Abelian. Poincare duality rela
the various Betti numbers so that ind-dimensions bi
5b(d2 i ) .

@b# Injectivity radius function. The injectivity radius of a
point pPM , r inj(p), is the radius of the largest coordina
chart that can be centered atp. Since a coordinate char
breaks down when any geodesic refocuses, the injecti
radius of a point is half the length of the shortest geode
connectingp to itself.

@c# Injectivity radius. The injectivity radius of a manifold
r inj(M ), is the smallest injectivity radius of any point in th
manifold, i.e.

r inj~M !5 infpr inj~pPM !. ~A1!

Thus,r inj(M )5 l min/2, wherel min is the length of the shortes
geodesic in (M ,g).

@d# Diameter. The diameter, diam(M ), of a manifold
(M ,g) is the greatest distance between any two points on
manifold.

@e# Outradius. The outradius,r 1 , of a compact hyper-
bolic manifold fixes the size of the smallest hyperbolic b
that can be used to enclose the fundamental cell.

@ f # Codimension. The codimension is a complement
dimension. A n-dimensional hypersurface living in
d-dimensional space has codimensiond2n.

@g# Inradius. The inradius,r 2 , is the radius of the larges
simply connected geodesic ball in (M ,g). In other words,r 2

is the largest distance any point in the manifold can be fr
its closest image. For a compact hyperbolic manifold,
inradius fixes the size of the largest hyperbolic ball that c
be placed inside the fundamental cell.
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