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Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this
paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate,
weak decay constants, Goldstone boson mages,and theK ™ — 7+ 7% decay amplitude, using partially
guenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and gener-
alize, results of previous work by Sharpe. We com@yeand theK* decay amplitude with their real-world
values in some examples. For the latter quantity, two other systematic effects that plague lattice computations,
namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also
considered. We find that typical one-loop corrections can be substdS#H56-282(198)06509-4

PACS numbdps): 13.25.Es, 12.38.Gc, 12.39.Fe

[. INTRODUCTION Lagrangian, along with the other Goldstone bosons. The
theory depends on a mass scalg, independent of the
Recently, large scale numerical lattice QCD computationgjuark masses, which in the unquenched theory is the singlet
have started to move away from the quenched approximatiopart of the »" mass, but in the quenched theory no longer
by taking virtual-quark loop effects into account. However, appears in any pole mags,7,8,9. A systematic expansion
since the computation of quark determinants is much moré the quenched case only exists if we treat the ratimgto
expensive than that of quark propagators, one is often rethe chiral-symmetry-breaking scale as an indepeneerl
stricted to only very few values of the sea-quark mass, whileparameter, in addition to the light-quark masses, and if we
given an ensemble of “dynamical fermion” gauge configu- stay away from the chiral limit, where infrared divergences
rations, one can explore a much larger range of values for theccur[8,9,10,11.
valence-quark masses. This naturally leads us to consider In partially quenched lattice computations, it may happen
partially quenched theories, which are theories in which théhat the scale set by the sea-quark mass is not small com-
valence- and sea-quark masses are not equal. pared to the scalm,. In this paper we therefore keep thé
Chiral perturbation theor¢ChPT) plays an important role in the effective theory and show that one can still develop
in the analysis of results from lattice computatidsse, for PQChPT systematically if one assumes, as in QChPT, that
instance, Ref[1]). Since the quenched or partially quenchedthe ratio ofm, to the chiral-symmetry-breaking scale is rea-
approximations of lattice QCD are theories different fromsonably small. This generalizes the results of Réf.
the full unquenched theory, ChPT needs to be adapted to The outline of this paper is as follows. In Sec. Il, we give
these situations. For the quenched case, this has been extengquick review of PQChPT and discuss the role of #ien
sively investigatedfor a rather complete list of references, more detail. We explain more precisely how our calculation
see Ref.[2]), but much less work has been done for thegeneralizes that of Ref4]. We then calculate in Sec. Il the
partially quenched case. chiral condensate and Goldstone boson masses and decay
Partially quenched chiral perturbation thedQChPT  constants to one loop as a function of the quark masses, and
was developed in Ref.3] and used to calculate one-loop investigate their dependence o. We restrict ourselves to
expressions for Goldstone boson masses and decay constatite theory withN degenerate sea quarks. In Sec. IV, we
in Ref.[4]. In this paper, we revisit Goldstone boson massegalculateBy for nondegenerate valence-quark masses and
and decay constants, and we also give the one-loop expretiie K*— 7" 7° decay amplitude for degenerate valence-
sions for the chiral condensatB,, and theK*—#*7®  quark masses. F&¢ " — 7+ 7° we also discuss other system-
decay amplitude(For an application to heavy-light decay atic errors which have affected lattice computations of this
constants an® parameters, see Réb].) quantity to date. In Sec. V, we give numerical examples of
In the partially quenched cas@nlike in the quenched the role of one-loop corrections f@ andK™— 7" #%in a
case, the ' meson is heavy in the sense that its mass doesomparison between the real work and the partially
not vanish in the chiral limit. One can therefore approachquenched theory with parameters typical of a lattice compu-
PQChHPT in the same way as one does in the unquenchedtion. More details on the assumptions underlying these nu-
case, where the' is integrated out, and only the Goldstone merical examples will be given in due course. We end with
bosons are kept in the effective Lagrangian. This is the apeur conclusions.
proach taken in Refl4]. In the completely quenched case,

b : ;
however, ther' is light, and needs to be kept in the effective || —osENTIALS OF PARTIALLY QUENCHED CHIRAL
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theory by addingn—N flavors of (unphysical quarksg;
obeying bosonic statistickl2], which we will call ghost

qguarks. The ghost-quark masses are chosen to equal those of

the firstn—N physical quarks. These— N quarks are then

guenched since their loop contributions are exactly cancelled

by their bosonic counterparts. The remainigjuarks con-
tribute through(seajquark loops to physical quantities. With
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then—N quarks identified as valence quarks, the theory cor-

responds to partially quenched QCD with flavors of sea

guarks. Recent partially quenched lattice computations use

degenerate sea-quark masses; hence, in the following, we

will set all sea-quark masses; ,
to ms.

i=n—N+1,...n, equal

The full chiral symmetry of the theory is the semidirect gng

product of graded groupsG=[SU(n|n—N)®SU(n|n

—N)]®U() after the anomaly has been taken in account
[8]. We will briefly discuss the construction of the Lagrang-

ian for PQChPT for our choice of quark masses.
The unitary field2, is defined through

S=exp2i®/f) (1)
from the (2h— N) X (2n—N) Hermitian matrix field
o ¢ X' -
X ¢

where ¢ is thenXn matrix of ordinary mesons made from
then ordinary quarks and antiquarks,is the corresponding
(n—N) X (n—N) matrix for ghost-quark mesons, agds an
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_ 5|j6i
Ij(p) 2+ Mzii
1 (Mg+ ap?)(p*+Mgg
(3+Na) (pZ+ M2)(p2+ M2)(p2Hmt,)
©)
where
+1 for 1<i=n,
€= -1 for n+1<i<2n—N, ©
2 _MEstNi3 @
7’ 1+Na/3

which is the square of the pole mass for thg two-point
function, as can easily be verified from H§). It is equal to
the square of the %»’'” meson mass in the SUN) theory
constructed only from the unquenched quds It does not
vanish in the chiral limitmg— 0.

A simplification occurs in partially quenched QCD. For a
correlation function in which onlk out of then— N valence
quarks are on the external lines, the rest of theN—k
valence quarks do not contribute at all, and therefore this
correlation function does not depend on their masses. In
most of this paper, we will only consider quantities involving
at most two valence quarks; i.e., we will only consider va-

(n—N)Xxn matrix of fermionic mesons made from a ghost |ence quarksy; with i=1,2.

quark and an ordinary antiquark.is the tree-level pion de-
cay constant. The (2-N) X (2n—N) quark-mass matrix/

is defined byM;;=m;&j; ,
massesn; for i— 1,... n—N are arbitrary and equal to the
ghost-quark massanJr 1,...,2n—N. The remaining\
massesn;, i=n—N+1,...
mg.

As discussed in Refs[8,3], the supery’ field &
=str(®) is invariant under the full chiral grou and intro-
duces new parametemg and a into the O(p?) Euclidean
Lagrangian for PQChPT, which reads

2 + f2u ~ ~ mg 5
£=§str(c9”2&#2 )—TSII'(ME'FME )+F (O
o
+5 (0uP0)(9,Po). €
We define
M= p(m;+m) @)
(for i=j=n—N+1,...n, this simplifies toM2=2umg

EMés). It is instructive to display the two-point functions
for the neutral meson§.e., the diagonal field®;;) explic-
itly. In the diagonal basis with stateb;, i=1,...,2—N,
corresponding t@|;q;,9,0,,..., andtheir ghost-quark coun-

terparts, these two-point functions are, in momentum space

(31,

Compared to quenched ChRQChPT), PQChPT intro-
duces an extra mass scadless. We can therefore consider

where, as already discussed, thevarious possible “expansion schemes.” e} be the cutoff

of the partially quenched theory. The first scheme, adopted in
Ref.[4], takesM 11,M5;,Mgg<m,,~A . This corresponds

,n, are degenerate and equal to to the usual setup for power counting in ChPT, in which the

7' is not a Goldstone boson, but instead a “heavy” particle,
due to the presence of the scaig, which does not vanish in
the chiral limit. In this scheme, the fiefll; can be integrated
out, absorbing the dependence on the parametersd mg
into O(p*) terms in the chiral Lagrangian. This can be illus-
trated by considering, for instance, the two-point function
Gy, [cf. Eq.(5)]. We first write the second term i@, ; as

m>, — M3

2
(m ,,—Mu)"‘

1 1
p?+M1,

2 2
p +m7],

)

For Iargem , the expansion of the term containing the pole
1/(p2+m ) in powers ofM 11/m77 andMng” generates
contact terms which can be absorbed iBp*) coefficients

of the chiral Lagrangian. Similarly expanding the remaining
terms in Eq.(8) gives the leading terms

Jl(_ 1 MEe My
N | p>+M7, (p*+M3)?

(€)
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The poles in this expression, which no longer depends on such terms can be absorbed into @p*) coefficients(after
and mj, lead to nonanalytic terms at one loop. For detailsexpanding inM;; /m,). However, this is not true foMgg
and further discussion, see Rf4]. whenMggis of ordermg or larger. In this case, the depen-
In QChPT, there is no heavy particle with a mass deterdence of®, tadpoles onMgs will be complicated. More-
mined by the parametem?, as can be seen by setting OVer, the contributions fromb, tadpoles will depend on
N=0 in Eq.(5). (The @, two-point function vanishes for ©other’ coupling constantsanalogous tang and ) which
N=0 [8].) The second term in Eq5) is proportional to &€ basically unknowr{We did not include these couplings
m2+ ap® and has a double pole at the Goldstone mesof! Ed- (3); for a more complete expression, see R¢8,

2 : 31
massesM;;. (Of course, noMss dependence remaips. Therefore, in this paper, we will take the point of view

Hen_ce this term needs t_o be kept n the quenched apPPIOXiKat we keepM g fixed and calculate the nonanalytic depen-
mation, and the decouplmg as described above does noF Ofence on the valence-quark masses. This, then, allows us to
cur. It t.urns out that, in order to make sense of the ch|ra|grlore contributions fromb,, tadpoles, which we will do in
expansion, we need to assume that the parametghe rest of this paper. It does not affect the coefficients of the
(m§/3)/ (4wt ;)% is small, in addition to the usual require- other chiral logarithms. Note that we do not assume the ra-
ment thaﬂ\/lﬁ/(4q-rf,,)2 be small[8,9]. QChPT therefore cor- tios of the valence-quark masses and the sea-quark mass to
responds to a second “scheme” in whidd{1,M,mg be small; our scheme allows for arbitrary values of these
<ApandMgg>A,, which corresponds to freezing out sea- ratios.
quark loop effects, effectively settifd=0. We note that in
the unquenched theory, m/3)/(4=f)?~0.09 (where lll. CHIRAL CONDENSATE, MASSES, AND WEAK
f.=132 MeV is the physical pion decay constarit is be- DECAY CONSTANTS
lieved that the value oimg is not very different in the
guenched theory1].

Since the partially quenched theory “interpolates” be-

We list the one-loop expressions for the condensate, me-
son masses, and decay constants for a theory with nondegen-

Lo erate valence-quark mas andm, and sea-quark mass
tween the quenched and unquenched theories, it is natural q i 2 d

; \ _ _ > s in terms of the bare parametefs M2, m3, anda, in-
consider a third scheme, which we will now explain. First, ascluding only nonanalytic termpwith M-ZJ:(M?JrMZS)/Z'
in Ref. [4], we take M;;,My,Mgs<A, and My;,M5; of. Eq. (4)] IS i S
<m,, . However, we would like to leave the ratio Mg - =091
and mg arbitrary. Let us consider the possibilities. Mgg [mi(Qiai) 11 loop
<m,, we can systematically study the effective theory for
mesons with masseéd ;;, M,,, andMgsby integrating out M2 f2 M2 M 2
the 7', because Nowl;3,M,,Mge<m, ., as in Ref[4]. If, =T |1 Gz 9 (7 32
on the contraryMggis of ordermg or larger, this would be P
incorrect. Now we can only systematically investigate the
effective theory for mesons with massbs;;, M,,, and X
Mg, if we keep ther’ in the effective theory and, as in the
completely quenched case, assume thatt A, . 1, )

In partially quenched lattice computations, oftlhys is :_Z[Mii]l tood. Fii ]1 1oop» (10
fairly large, and we may well be in the situation that indeed

M2
M?—AMZ +(M?-2AM?)log P”_ ”
p

Mss is of order mg. Therefore, in this paper, we will be 2 Mil(Mz_AMil)
interested in calculating the nonanalytic dependence on the[MZ,]; o= M7, 1+ o7 ( s

quark masseM;, M,,, andM g for various quantities at 3(4f) M2—M1,

one loop, takingMi;,My,Mss,me<A, and Mi;,M5, M2, MZ(M2—AMZ,) M2,
<m,,. Note that we can still consider the case tivig Xlog A2 MZI_M2 09 37 ”
<mg if M11,M,,<mq, which leads us back to the assump- p 22 V11 p

tions made in Ref[4]. Indeed, when we expand our results (11
for meson masses and decay constantd gz/m,, , we ob-

tain those of Ref[4].> On the other hand, if we takilgg N , Mg . Mjg
large and expand iM;/Mgs, My/Mgs, andmy/Mgs,  [f12ls Ioop/f:l_m (MlS |09A—S+Mzs log A_r23>

we obtain the quenchedle., N=0) results of Refs[8], [9],

[13]. 1 o[ 1 l+e
Before we present our results, we should address one +—23(47Tf) M e log 1_6—1
more issue. In our scheme, there will be one-loop contribu-

tions proportional to Ioglz, coming from® tadpoles. For 2 1-€ l+e
7 . ) +AM7,| 1- ——log , (12
values of the meson masses which are small relative,{q 2e 1-€
where
!Because of a difference in normalization, our tree-level weak _ 2 _\2
- m,—m;  M%—M7;
decay constartt is by a factor ofy2 larger than that of Ref§4,9]. e= = (13

=2 2
This should be taken into account before comparing results. my+m; Mot M7
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All dependence ornné and « is embodied in the quantities
M? andA, with

MEqmg 3y

2_ ss 0 _ 2

M=z Nng3 TNy Ve (19
aMi+NmMY3 o+ 3Ny?

A= sst NIy y (15

(M2t NMZ/3)% ~ (1+Ny)?’

where we introduced the ratip=(m3/3)/M3g The results
of Ref. [4] [with a,= a5=ag= ag=0 in Egs.(13)—(20) of
Ref. [4]] can easily be obtained by expanding? andA in
MZgdm?, (or M34m?) and keeping the leading order terms
3M§5{N and 3N, respectively.(Subleading terms are of
higher order in the chiral expansion and can be dropped
This corresponds mathematically to taking the limpit> o,
Let us comment briefly on this comparison between our re
sults and those of Ref4]. In our case, we keep theg’,
whereas in Ref[4] the %’ is integrated out. One would
therefore in general expect that in order to “match” the two

theories, we would need to adjust the bare parameters. F8F
the quantities considered here, it turns out that, at one loop°

all nontrivial adjustments come frord,-tadpole contribu-

tions. However, we did not have to, and hence did not, in-

clude such contributions, as was explained in Sec. Il. Wi
conclude that, for the Goldstone meson masses and dec
constants, no adjustment is needed.

The results of QChPT8,9] can be obtained by takiny
=0, for which M?=m3 andA=a.

With degenerate quark masseg=m;=m, in Eqgs.(11)
and(12), we obtain

2 _ 2 2 2
Mvv=[M11]1 Ioop:Mll 1‘%2
X| M2—AMZ,
M3,
+(/\/12—2A|v|§1)|og7 ” (16)
p
and
fuv (1111 toop Mis =~ Mig
=——P_1-N (17)

T f (amt)2 09 Az
As in QChPT, the ratio ofMZ, to its tree-level value,
M2,/MZ,, is singular, whilefy, is regular in the chiral limit
my— 0. Moreover,f,,, does not depend omné and a.

We can defineM ¢ and fys to one loop from Eqs(11),
(12) by replacingm; by m,, and m, by mg. In the chiral
limit my,—0, keepingmg fixed, we havee—1 and the
nonanalytic functions multiplying\1?> and A in the expres-
sion forfyg[cf. Eq.(12)] diverge. Itis obvious from Eq11)
that the ratio ofM 2 to its tree-level value is regular in the
chiral limit my—0.

Of course, all quantities considered here also receive ana-

lytic contributions fromO(p*) terms in the chiral Lagrang-
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O(p* vertices, they do not explicit depend on the param-
etersm3 and a, and therefore are identical to those reported
in Ref.[4], to which we refer for their explicit form. In Ref.
[4] it was pointed out that the quantity

MZy—MZ,o with my,=2my=mg (18)
is independent 0O(p*) coefficients.

Another quantity which is independent 6f(p*) coeffi-
cients, first introduced in Reff14] for the quenched case and
also considered in Ref4] for the partially quenched case at
y=o, is

f12 1+ 1 |:M2< ll 1+€ 1)
= —| _o —
Viafaol, oo 3(4wf)? 2¢°91—¢
wamz|1 1—62| 1+e€
12\ = T oe Ogl—e

(19

For anymg, this quantity diverges whem;—0 with m,
fixed (i.e., for e—1). Note thatf f1,]; op IS @n even function
€ (because of symmetry under the interchange-ms,),
that( f1,/vVf11f 2211 100p= 1+ 0O(€?) for e—0.
From Egs.(11), (12), (16) we see that the coefficients of
he chiral logarithms of the valence-quark mass depend on
he ratioy of the parametemg and the sea-quark mass,
ough the quantities? andA [cf. Egs.(14), (15)]. From
artially) quenched lattice data, it is estimated tmag/3
presumably has a valusZ/2<mz/3<=mZ (mc=496 MeV is
the physical kaon map§1,15]. Typical lattice computations
haveN=2 andmz<M5s<2m3. These values omj and
M%S correspond toy ranging fromy=~1/4 to y=1. This
leads toM?/M3¢=1/2 for y=1/4 and toM?M3s=1 for
y=1. Fory— one obtainsM?/M2s=3/2. This shows that
for relatively heavy sea quarks, there is a clear dependence
of the coefficient of the chiral logarithms am(z) (Experience
with quenched lattice daftd] indicates that it is hard to fit
the chiral logarithms reliably, partially because of the “com-
petition” of O(p*) coefficients. This may make it difficult to
see they dependence of the chiral logarithms in praclice.
The quantityA also has an effect on the coefficients of the
chiral logarithms, in particular for values of the valence-
guark mass of order of the sea-quark mass. Taking dgain
=2, we findA=(8a+3)/18 fory=1/4 andA=(a+6)/9
for y=1, while A=3/2 fory—o. It is clear thatA is more
sensitive to the value ok for smaller values of. We note
that for my/mg=1, Mfllmfy,=l/(1+ Ny) (for a=0), so
that our results may not be reliable for smaller valuey .of

t

IV. Bx AND K*— 7+ 7% DECAY

In this section, we will generalize earlier quenched one-
loop calculations foBy [9,16,13 andK* — 7+ 70 [13] to
the partially quenched case. In the following, d, ands
denote valence quarks with masseg, m;, andm,, respec-
tively. The kaonB parameteBy is defined agwith My the
mass of theds meson, i.e., at tree levéll (=M ,)

o _(KOl(sdst [K)

K 8e2n012
§fKMK

, (20

ian. Since they are obtained from tree-level diagrams within which the four-quark operator is defined by
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(q_iqjq_kql)LL:(q_iLyquL)(q_kLqulL), (22) ChPT and QChPTsee also the discussion & — 7" 7°
below). In the nondegenerate case, the partially quenched

whereq, =3(1—ys)q is a left-handed quark field. The de- result follows from the quenched result by replacing
nominator in Eqg. (200 is the matrix element _ A2 a—A. For adiscussion of contributions fro®yp*)
(K% (sdsd), |[K® evaluated by vacuum saturation. The coefficients, see Ref13].
O(p?) weak-interaction operator in ChPT corresponding to  The AS=1, Al=3/2, K" 7" 7% decay amplitude is
(sdsd),, , which is theAS=2 component of a 27-plet under proportional to the weak matrix element
SU(3)., is

. + Ol el Lo oA Ar +
where the tensary, is defined by setting The four-fermion operator is th&l=3/2 component of the
same 27-plet that also contains the operasats(l), , [Eq.
%=1, (23 (20)]. To O(p?) in ChPT, the operator is represented by
while all other components are equal to zero. The parameter _ ij ws Ty K !
a,7 is the only newO(p?)-operator coefficient; its value is O4= (22 /(20,21 (28
determined by QCD dynamics. At tree level, one obtains -
[17] where the tensor), has nonzero components:
(KOO’ |KO%) = Baar 12 (24) 21 12 12 21 1
fZ K ra1=r3=ra=ri=s,
and, therefore,
22 22
Bay; r2=rs=—5 (29
Bk=—z = (25) 2

(all other components vanishirhe parametes,- is the same
as in Eq.(22). The aim is then to calculate the matrix ele-
ment{ 7" 7°/0,4/K*) to one loop.

The lattice determination of7* 7°|0,4K*) was com-
pared with its real-world value in great detail at one loop in
ChPT and QChPT in Ref13], and here we will only discuss

(fx=f at tree level. Since the partially quenched theory is
different from unquenched QCD, the partially quenched
value of the coefficientr, is in principle different from the

QCD value. We will make this explicit by using a subscript
or superscriptp to denote bare parameters of the partially

quenched theory, specificallyz;, B, andf,. what is new in the partially quenched case.

The partially quenched one-loop result B with non- " A} atempts to compute this matrix element on the lattice
degenerate quark masses, keeping only nonanalytic terms, e been restricted to the mass-degenerate, quenched

M2 M2 theory, and moreover, all mesons are taken to be at rest
B,Q=Bp(1+ 12 , (_2(3+62)Iog _122 [18,19,2Q. The operat0|0_4 then inserts energy, implying
(4mty) A that the values thus obtained are unphysical. All these sys-

tematic errors can be studied in ChPT. Deviations due to the
choice of unphysical masses and momenta already show up
at tree leve[18], while all three systematic effectmcluding
) quenching lead to one-loop contributions different from
n 2 [MZ( 2—¢€ log 1+'~‘_2) those calculated for physical masses and momenta in the
3(4771‘,0)2 2e l-€ unquenched theor13]. In addition, at one loop one finds

s 3 that there are powerlike finite-volume corrections, which
e 1-2€’~€ log 1+e were also calculated in Reff13].

€ l-€ The one-loop result for this unphysical matrix element in
]) a finite volumeL? (with periodic boundary conditionsand

(2t o1 — <) — 1+e
(2+€)log(1—€)—3€ log 1

+AMZ,

26 with m;=m,=my, (henceM =My, with M the mass of
the ud meson for the partially quenched theory is, keeping
only nonanalytic corrections,

Miz(l_f) )
—
Ap

+2€ Iog(

wheree is defined in Eq(13). It can easily be seen that Eq.
(26) does not depend omn(z) and « in the case of degenerate (" 79 O4/K )P
quark massese(=0), just as in QChPT. Actually, apart from 4T Junphys

changing the values @& andf to their (partially) quenched 24i ab M2 M2 M2 M2,
values,(partia) quenching does not introduce any change in —=a { —N @t )2 log ?4— @nf)?

the nonanalytic one-loop corrections®f in the degenerate ‘/Efp e p e

case. For the quenched case this was already discussed in M2

Ref. [9], and the fact that this is also true in PQChPT does x| -3 |09—;-1+F(M11L)”, (30)
not come as a surprise, since PQChPT is “in between” Ap
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TABLE I. The factorP, Eq.(33), for different values oMZ, y, TABLE II. (a) The factorW for different values ofM?2 and
and different combinations oA and A,. Other parameters are different combinations of\ andA ;. Other parameters are fixed at

fixed atf,=f ., e=1/2,Mgg=my, andN= 2. The superscript oR fo=f., Mgs&=mg, N=2,andM _L=6 for M 2=0.2. The super-
denotesA in GeV; the subscript o denotes\, in GeV. Mﬁ isin script onW denotesA in GeV; the subscript oW denotesA, in

Ge\2 GeV. M2 is in Ge\. (b) The factorW for different values oM?2
and different combinations oA and A,. Other parameters are
M2 y P& P P{eks P fixed atf,=f,, Mss=my, N=2, andM L =c=. The superscript
on W denotesA in GeV; the subscript oW denotesA , in GeV.
0.5 1.02 0.98 1.19 084  MZisin GeR
0.2 1 1.02 0.98 1.19 0.84 i
% 1.01 0.96 1.17 0.83 @
2 1) (0.79 (1) 0.77)
0.5 0.99 1.13 1.37 081 M2 wid w7 Wi, Wi
0.4 1 0.98 1.11 1.35 0.81
© 096 1.05 1.28 079 02 0.59 0.60 0.66 0.53
05 1.11 1.73 2.10 092 04 0.54 0.60 0.66 0.49
0.6 1 1.09 1.64 1.99 090 06 0.55 0.66 0.73 0.49
e 1.03 1.42 1.73 0.84 )
2 1 (0.77) (1) 0.77
M7 \NEI) W(o.m W(o.m \NEl)
up to corrections vanishing faster than any powetLof, g, 0.68 071 0.78 0.62
where the functiorF is given by 0.4 0.65 0.75 0.83 0.59
2 0.6 0.68 0.90 0.99 0.62
17.827 127
F(X):T'f‘—xg—. (31)

take the other systematic effects discussed in Sec. IV into

We note that the chiral logarithm due to the sea-quark loopgccount. We will take values for the lattice parameters typi-
does not diverge in the chiral limih,— 0. Note also that the cal of those used in recent numerical computatios par-
result, EQ.(30), does not depend on the parametegsand  tially quenched results foBy, see Refs[22], [23]; for
a. For a discussion of contributions fro@(p?) coefficients, (7" 7°|04|K™), we are not aware of any lattice data
see Ref[13]. The general strategy for our estimates is the same as in

The above result can also be derived from the “quarkRef. [13]. We will set all O(p*) coefficients to zero. We
flow picture” [7,9] and the results of Ref13]. First, take all  choose the cutoffs\ (for the full theory and A, (for the
quark masses equal, including the sea-quark mass. THartially quenched theoyyto be 1 GeV or 770 MeV, inde-
guenched and unquenched results of R&8] then are the pendent of one another. The sensitivity under a change in
special cases obtained from E@O) by settingN=0 and andA, is taken as an indication of the systematic error as-
N=3, respectively. The difference is due to the sea-quarieociated with our ignorance of the values @¢p?) coeffi-
loops which are present in the unquenched case, but not iients. For the real-world values 6f, m,, andmy we will
the quenched case. Therefore, if we now hiviestead of 3 usef =132 MeV,m_=136 MeV, andmx =496 MeV.
sea quarks, one obtains the correct result by multiplying the
difference between the unquenched and quenched results by A. By
N/3, yielding the first chiral logarithm in Eq30). But now
we also identified which of the logarithms is due to sea-
quark loops(the term proportional tdN), and we conclude

Bk in the full and partially quenched theories can be re-
lated by using Eq(26) above and Eq(36) of Ref.[13];

that we obtain the partially quenched result fog#m,, by gehys ¢4

replacingM2,— M3 in the term linear irN. [Because of the K Yot Tp ) P (32

structure ofO, and theO(p?) vertices from the effective Bk ab\ f '

Lagrangian, Eq(3), there can be at most one sea quark on

the loop. Therefore, the result does not dependvozand ~ Where

the parameters, and«; cf. Eq.(5).] Of course, one should 14H

keep in mind that the parametefrs and a5, depend orN. P=—~, (33
The powerlike finite-volume corrections in E(B0) are 1+H

independent oN. This follows from the fact that they origi-

nate from diagrams which do not contain sea-quark Ioopg"ith H=0.724(for A=1 GeV) andH=0.417 (for A=770
[13,21]. MeV) is the numerical value of the relative one-loop correc-

tion for By in the real world andH is the relative one-loop

correction for the partially quenched theory in E86). To

one-loop accuracyMm 52 can be replaced bMﬁ. The factor
In this section, we will give some numerical examples of P incorporates all one-loop correction®£1 at the tree

the differences between the one-loop estimatesBjprand  level).

(m* 7% 0,4)K™) calculated in the partially quenched theory — Since the ratiod,/f and a,;/ a5, cannot be determined

and in the “real world.” For{w" 7% 0, K™) we will also  within ChPT, we will arbitrarily set them equal to 1. This

V. NUMERICAL EXAMPLES
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constitutes one of the major uncertainties of our methodwe take the two cutoffs unequal, corrections can be as large
Furthermore, we will takex=0 for simplicity. In Table |, we as 20—30 %. The results are fairly insensitive to changes in
list the numerical values d® for different combinations of the value ofy.
cutoffs, choosing ,=f ., e=1/2, Mgs=my, andN=2, for

various choices of the parameters (m3/3)/M2sand M.

For M2=0.6 GeV, values forP as high as 2 are ob-  TheK'— " 7% matrix elements in the full and partially
tained, forA,=770 MeV. However, for this cutoff, the me- guenched theories can be related by using(&@).above and
son mass is probably too large for PQChPT to be reliableEgs. (43), (87) of Ref.[13] (replacingM?; by M2 andMZg
Also, for M =0.6 GeV andy=0.5,Mg/m’, is of order 1. by MZ9):

B.K*=ata®

We will therefore concentrate on the two lower masses in the w f 3 m2—m?2
following discussion. For these values, we see fatever (mt 7TO|O4|K+>phys:W _’237 ( P ) K_Z’T
differs from 1 by more than about 10%, if we choode ab\ f 2M7
=A,, which is equivalent to the assumption that the bare +,0 +\p
p _ ; X 0Oy4lK , 34
parameters of the full and partially quenched theories are (777 Oa K Yy 39
equal(this may not be unreasonable fde=2). However, if  with
|
1+U
W= 2 2 2 ’ (35)

M\Z/S MVS T
N G2 987 T a2

M’?T
1 —3log——=+F(M L)
Ap

where U=0.0888 (for A=1 GeV) and U= —0.0146 (for results obtained earlier in Rg#]: we investigated the sen-
A=770 MeV) are the numerical values of the relative one-sitivity of the chiral logarithms to the singlet part of thg

loop correction in the real world. At tree levély=1. massmg. Since the “remnants” of they’ are an essential
We list in Table Il the numerical values W¥ for different  part of the fully quenched theory, this is a natural question to
combinations of the cutoffs\ and A,, and for f,=f_, ask in the partially quenched theory. We found that the co-

Mgs=mg, andN=2, several values d\‘/lfT and a fixed vol-  efficients of the chiral logarithms for the Goldstone meson
ume L3 such thatM ,L=6 for M2=0.2 Ge\’. Here we Masses are sensitive to the valuemyf for typical values of
may useMZ¢=(M2+M29/2. In Table I(b) we list values the sea-quark mass. The decay constants depentda a
of W for infinite volume, with all other parameters the same!€Sser extent, which is related to the fact that in the limit of
as in Table I(a). degenerate quark masses, the axial current does not couple to
We see from Table Il that one-loop corrections are alwaydn€ 7" o _
rather large, even for relatively small meson masses, and that We also calculated one-loop contributions to the chiral
the sensitivity to the values of the cutoffs is significgifior ~ condensateBy, and theK” — " 7% decay amplitude, ex-
infinite volume, the corrections are not quite as big; cf. Tabldending earlier work in QChPT8,9,16,13 to the partially
lI(b).] This casts some doubt on the accuracy of one-loogluenched case. Fér* — " we only considered the case
ChPT in estimating the factal, and one would expect that ©Of degenerate valence-quark masses. _
two-loop contributions are not small. As in the quenched We considered some numerical examples of the compari-
case, the “correction factor'W is always substantially SOn betweery and theK " — " =° decay amplitude in the
smaller than 1. For a much more detailed discussion of untéal world and in partially quenched QCD with values of the
certainties inherent to our estimates of such “correction facParameters typical of current lattice computations. Bgr,
tors,” see Ref[13]. we found that, for small enough meson masses, the “cqrrec-
As can be seen from E¢30), the partially quenched re- tion factor” may be very close to 1, but with an uncertainty
sult is closer to the unquenched caa which N=3, M, Which could be as large as 20-30 %. Fof — " m°, we
=M}, than to the quenched case. The large deviations frorAlso took into apcount that typical lattice computations are
the three-level valugV=1 are mostly due to the other sys- done at unphysicaldegenerafevalence-quark masses and
tematic effects. For instance, in the unquenched theory, wexternal momenta, and we included the leading finite-volume

find W=0.56 (A=1 GeV) andW=0.57 (A=770 MeV) for corrections. We found that the “correction factor” is always
M2=02 Ge\l much smaller than 1of order 1, with large uncertaintigs

This is mostly due to the unphysical choice of masses and
momenta, and not to partial quenching.
VI. CONCLUSIONS
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