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Applications of partially quenched chiral perturbation theory
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Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this
paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate,
weak decay constants, Goldstone boson masses,BK , and theK1→p1p0 decay amplitude, using partially
quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and gener-
alize, results of previous work by Sharpe. We compareBK and theK1 decay amplitude with their real-world
values in some examples. For the latter quantity, two other systematic effects that plague lattice computations,
namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also
considered. We find that typical one-loop corrections can be substantial.@S0556-2821~98!06509-6#

PACS number~s!: 13.25.Es, 12.38.Gc, 12.39.Fe
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I. INTRODUCTION

Recently, large scale numerical lattice QCD computatio
have started to move away from the quenched approxima
by taking virtual-quark loop effects into account. Howev
since the computation of quark determinants is much m
expensive than that of quark propagators, one is often
stricted to only very few values of the sea-quark mass, wh
given an ensemble of ‘‘dynamical fermion’’ gauge config
rations, one can explore a much larger range of values for
valence-quark masses. This naturally leads us to cons
partially quenched theories, which are theories in which
valence- and sea-quark masses are not equal.

Chiral perturbation theory~ChPT! plays an important role
in the analysis of results from lattice computations~see, for
instance, Ref.@1#!. Since the quenched or partially quench
approximations of lattice QCD are theories different fro
the full unquenched theory, ChPT needs to be adapte
these situations. For the quenched case, this has been e
sively investigated~for a rather complete list of reference
see Ref.@2#!, but much less work has been done for t
partially quenched case.

Partially quenched chiral perturbation theory~PQChPT!
was developed in Ref.@3# and used to calculate one-loo
expressions for Goldstone boson masses and decay con
in Ref. @4#. In this paper, we revisit Goldstone boson mas
and decay constants, and we also give the one-loop exp
sions for the chiral condensate,BK , and theK1→p1p0

decay amplitude.~For an application to heavy-light deca
constants andB parameters, see Ref.@5#.!

In the partially quenched case~unlike in the quenched
case!, theh8 meson is heavy in the sense that its mass d
not vanish in the chiral limit. One can therefore approa
PQChPT in the same way as one does in the unquen
case, where theh8 is integrated out, and only the Goldston
bosons are kept in the effective Lagrangian. This is the
proach taken in Ref.@4#. In the completely quenched cas
however, theh8 is light, and needs to be kept in the effectiv
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Lagrangian, along with the other Goldstone bosons. T
theory depends on a mass scalem0 , independent of the
quark masses, which in the unquenched theory is the sin
part of theh8 mass, but in the quenched theory no long
appears in any pole mass@6,7,8,9#. A systematic expansion
in the quenched case only exists if we treat the ratio ofm0 to
the chiral-symmetry-breaking scale as an independentsmall
parameter, in addition to the light-quark masses, and if
stay away from the chiral limit, where infrared divergenc
occur @8,9,10,11#.

In partially quenched lattice computations, it may happ
that the scale set by the sea-quark mass is not small c
pared to the scalem0 . In this paper we therefore keep theh8
in the effective theory and show that one can still deve
PQChPT systematically if one assumes, as in QChPT,
the ratio ofm0 to the chiral-symmetry-breaking scale is re
sonably small. This generalizes the results of Ref.@4#.

The outline of this paper is as follows. In Sec. II, we giv
a quick review of PQChPT and discuss the role of theh8 in
more detail. We explain more precisely how our calculati
generalizes that of Ref.@4#. We then calculate in Sec. III the
chiral condensate and Goldstone boson masses and d
constants to one loop as a function of the quark masses,
investigate their dependence onm0 . We restrict ourselves to
the theory withN degenerate sea quarks. In Sec. IV, w
calculateBK for nondegenerate valence-quark masses
the K1→p1p0 decay amplitude for degenerate valenc
quark masses. ForK1→p1p0 we also discuss other system
atic errors which have affected lattice computations of t
quantity to date. In Sec. V, we give numerical examples
the role of one-loop corrections forBK andK1→p1p0 in a
comparison between the real work and the partia
quenched theory with parameters typical of a lattice com
tation. More details on the assumptions underlying these
merical examples will be given in due course. We end w
our conclusions.

II. ESSENTIALS OF PARTIALLY QUENCHED CHIRAL
PERTURBATION THEORY

Consider a QCD-like theory withn flavors of quarksqi ,
each with arbitrary massmi . We then partially quench the
5703 © 1998 The American Physical Society
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theory by addingn2N flavors of ~unphysical! quarks q̃i
obeying bosonic statistics@12#, which we will call ghost
quarks. The ghost-quark masses are chosen to equal tho
the firstn2N physical quarks. Thesen2N quarks are then
quenched since their loop contributions are exactly cance
by their bosonic counterparts. The remainingN quarks con-
tribute through~sea-!quark loops to physical quantities. Wit
then2N quarks identified as valence quarks, the theory c
responds to partially quenched QCD withN flavors of sea
quarks. Recent partially quenched lattice computations
degenerate sea-quark masses; hence, in the following
will set all sea-quark massesmi , i 5n2N11, . . . ,n, equal
to mS .

The full chiral symmetry of the theory is the semidire
product of graded groupsG[@SU(nun2N) ^ SU(nun
2N)#sU~1! after the anomaly has been taken in acco
@8#. We will briefly discuss the construction of the Lagran
ian for PQChPT for our choice of quark masses.

The unitary fieldS is defined through

S[exp~2iF/ f ! ~1!

from the (2n2N)3(2n2N) Hermitian matrix field

F5S f x†

x f̃
D , ~2!

wheref is then3n matrix of ordinary mesons made from
then ordinary quarks and antiquarks,f̃ is the corresponding
(n2N)3(n2N) matrix for ghost-quark mesons, andx is an
(n2N)3n matrix of fermionic mesons made from a gho
quark and an ordinary antiquark.f is the tree-level pion de
cay constant. The (2n2N)3(2n2N) quark-mass matrixM̂
is defined byM̂ i j 5mid i j , where, as already discussed, t
massesmi for i 51, . . . ,n2N are arbitrary and equal to th
ghost-quark masses,i 5n11, . . . ,2n2N. The remainingN
massesmi , i 5n2N11, . . . ,n, are degenerate and equal
mS .

As discussed in Refs.@8,3#, the super-h8 field F0
[str(F) is invariant under the full chiral groupG and intro-
duces new parametersm0

2 and a into the O(p2) Euclidean
Lagrangian for PQChPT, which reads

L5
f 2

8
str~]mS]mS†!2

f 2m

4
str~M̂S1M̂S†!1

m0
2

6
F0

2

1
a

6
~]mF0!~]mF0!. ~3!

We define

Mi j
2 [m~mi1mj ! ~4!

~for i 5 j 5n2N11, . . . ,n, this simplifies toMii
2 52mmS

[MSS
2 ). It is instructive to display the two-point function

for the neutral mesons~i.e., the diagonal fieldsF i i ) explic-
itly. In the diagonal basis with statesF i i , i 51,...,2n2N,
corresponding toq1q̄1 ,q2q̄2 ,..., andtheir ghost-quark coun
terparts, these two-point functions are, in momentum sp
@3#,
e of

d

r-

se
we

t

ce

Gi , j~p!5
d i j e i

p21Mii
2

2
1

~31Na!

~m0
21ap2!~p21MSS

2 !

~p21Mii
2 !~p21M j j

2 !~p21mh8
2

!
,

~5!

where

e i5H 11 for 1< i<n,

21 for n11< i<2n2N,
~6!

and

mh8
2

5
MSS

2 1Nm0
2/3

11Na/3
, ~7!

which is the square of the pole mass for theF0 two-point
function, as can easily be verified from Eq.~5!. It is equal to
the square of the ‘‘h8’’ meson mass in the SU(N) theory
constructed only from the unquenched quarks@3#. It does not
vanish in the chiral limitmS→0.

A simplification occurs in partially quenched QCD. For
correlation function in which onlyk out of then2N valence
quarks are on the external lines, the rest of then2N2k
valence quarks do not contribute at all, and therefore
correlation function does not depend on their masses
most of this paper, we will only consider quantities involvin
at most two valence quarks; i.e., we will only consider v
lence quarksqi with i 51,2.

Compared to quenched ChPT~QChPT!, PQChPT intro-
duces an extra mass scaleMSS. We can therefore conside
various possible ‘‘expansion schemes.’’ LetLp be the cutoff
of the partially quenched theory. The first scheme, adopte
Ref. @4#, takesM11,M22,MSS,mh8;Lp . This corresponds
to the usual setup for power counting in ChPT, in which t
h8 is not a Goldstone boson, but instead a ‘‘heavy’’ partic
due to the presence of the scalem0 , which does not vanish in
the chiral limit. In this scheme, the fieldF0 can be integrated
out, absorbing the dependence on the parametersa and m0

2

into O(p4) terms in the chiral Lagrangian. This can be illu
trated by considering, for instance, the two-point functi
G1,1 @cf. Eq. ~5!#. We first write the second term inG1,1 as

2
m0

21ap2

31Na F mh8
2

2MSS
2

~mh8
2

2M11
2 !2 S 1

p21M11
2 2

1

p21mh8
2 D

1
MSS

2 2M11
2

mh8
2

2M11
2

1

~p21M11
2 !2 G . ~8!

For largemh8 , the expansion of the term containing the po
1/(p21mh8

2 ) in powers ofM11
2 /mh8

2 andMSS
2 /mh8

2 generates
contact terms which can be absorbed intoO(p4) coefficients
of the chiral Lagrangian. Similarly expanding the remaini
terms in Eq.~8! gives the leading terms

2
1

N S 1

p21M11
2 1

MSS
2 2M11

2

~p21M11
2 !2 D . ~9!
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The poles in this expression, which no longer depends oa
and m0

2, lead to nonanalytic terms at one loop. For deta
and further discussion, see Ref.@4#.

In QChPT, there is no heavy particle with a mass de
mined by the parameterm0

2, as can be seen by settin
N50 in Eq. ~5!. ~The F0 two-point function vanishes fo
N50 @8#.! The second term in Eq.~5! is proportional to
m0

21ap2 and has a double pole at the Goldstone me
massesMii

2 . ~Of course, noMSS dependence remains!
Hence this term needs to be kept in the quenched appr
mation, and the decoupling as described above does no
cur. It turns out that, in order to make sense of the ch
expansion, we need to assume that the param
(m0

2/3)/(4p f p)2 is small, in addition to the usual require
ment thatMii

2 /(4p f p)2 be small@8,9#. QChPT therefore cor-
responds to a second ‘‘scheme’’ in whichM11,M22,m0

,Lp andMSS.Lp , which corresponds to freezing out se
quark loop effects, effectively settingN50. We note that in
the unquenched theory, (m0

2/3)/(4p f p)2'0.09 ~where
f p5132 MeV is the physical pion decay constant!. It is be-
lieved that the value ofm0 is not very different in the
quenched theory@1#.

Since the partially quenched theory ‘‘interpolates’’ b
tween the quenched and unquenched theories, it is natur
consider a third scheme, which we will now explain. First,
in Ref. @4#, we take M11,M22,MSS,Lp and M11,M22
,mh8 . However, we would like to leave the ratio ofMSS
and m0 arbitrary. Let us consider the possibilities. IfMSS
,mh8 , we can systematically study the effective theory
mesons with massesM11, M22, andMSSby integrating out
theh8, because nowM11,M22,MSS,mh8 , as in Ref.@4#. If,
on the contrary,MSS is of orderm0 or larger, this would be
incorrect. Now we can only systematically investigate t
effective theory for mesons with massesM11, M22, and
MSS, if we keep theh8 in the effective theory and, as in th
completely quenched case, assume thatm0,Lp .

In partially quenched lattice computations, oftenMSS is
fairly large, and we may well be in the situation that inde
MSS is of order m0. Therefore, in this paper, we will be
interested in calculating the nonanalytic dependence on
quark massesM11, M22, andMSS for various quantities a
one loop, taking M11,M22,MSS,m0,Lp and M11,M22
,mh8. Note that we can still consider the case thatMSS
,m0 if M11,M22,m0 , which leads us back to the assum
tions made in Ref.@4#. Indeed, when we expand our resu
for meson masses and decay constants inMSS/mh8 , we ob-
tain those of Ref.@4#.1 On the other hand, if we takeMSS
large and expand inM11/MSS, M22/MSS, and m0 /MSS,
we obtain the quenched~i.e., N50) results of Refs.@8#, @9#,
@13#.

Before we present our results, we should address
more issue. In our scheme, there will be one-loop contri
tions proportional to logmh8

2 coming fromF0 tadpoles. For
values of the meson masses which are small relative tomh8 ,

1Because of a difference in normalization, our tree-level we
decay constantf is by a factor ofA2 larger than that of Refs.@4,9#.
This should be taken into account before comparing results.
s
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such terms can be absorbed into theO(p4) coefficients~after
expanding inMii /mh8). However, this is not true forMSS
when MSS is of orderm0 or larger. In this case, the depen
dence ofF0 tadpoles onMSS will be complicated. More-
over, the contributions fromF0 tadpoles will depend on
otherh8 coupling constants~analogous tom0

2 anda! which
are basically unknown.@We did not include these coupling
in Eq. ~3!; for a more complete expression, see Refs.@8#,
@3##.

Therefore, in this paper, we will take the point of vie
that we keepMSS fixed and calculate the nonanalytic depe
dence on the valence-quark masses. This, then, allows u
ignore contributions fromF0 tadpoles, which we will do in
the rest of this paper. It does not affect the coefficients of
other chiral logarithms. Note that we do not assume the
tios of the valence-quark masses and the sea-quark ma
be small; our scheme allows for arbitrary values of the
ratios.

III. CHIRAL CONDENSATE, MASSES, AND WEAK
DECAY CONSTANTS

We list the one-loop expressions for the condensate,
son masses, and decay constants for a theory with nonde
erate valence-quark massesm1 and m2 and sea-quark mas
mS in terms of the bare parametersf , Mi j

2 , m0
2, anda, in-

cluding only nonanalytic terms@with MiS
2 5(Mii

2 1MSS
2 )/2;

cf. Eq. ~4!#:

@mi^q̄iqi&#1 loop

52
Mii

2 f 2

4 F122N
MiS

2

~4p f !2 log
MiS

2

Lp
2 2

2

3~4p f !2

3SM22AMii
2 1~M222AMii

2 !log
Mii

2

Lp
2 D G

52
1

4
@Mii

2 #1 loop@ f i i
2 #1 loop, ~10!

@M12
2 #1 loop5M12

2 F11
2

3~4p f !2 S M11
2 ~M22AM11

2 !

M22
2 2M11

2

3 log
M11

2

Lp
2 2

M22
2 ~M22AM22

2 !

M22
2 2M11

2 log
M22

2

Lp
2 D G ,

~11!

@ f 12#1 loop/ f 512
N

2~4p f !2 S M1S
2 log

M1S
2

Lp
2 1M2S

2 log
M2S

2

Lp
2 D

1
1

3~4p f !2FM2S 1

2e
log

11e

12e
21D

1AM12
2 S 12

12e2

2e
log

11e

12e D G , ~12!

where

e[
m22m1

m21m1
5

M22
2 2M11

2

M22
2 1M11

2 . ~13!
k
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All dependence onm0
2 and a is embodied in the quantitie

M2 andA, with

M2[
MSS

2 m0
2

MSS
2 1Nm0

2/3
5

3y

11Ny
MSS

2 , ~14!

A[
aMSS

4 1Nm0
4/3

~MSS
2 1Nm0

2/3!2 5
a13Ny2

~11Ny!2 , ~15!

where we introduced the ratioy[(m0
2/3)/MSS

2 . The results
of Ref. @4# @with a45a55a65a850 in Eqs.~13!–~20! of
Ref. @4## can easily be obtained by expandingM2 andA in
MSS

2 /mh8
2 ~or MSS

2 /m0
2) and keeping the leading order term

3MSS
2 /N and 3/N, respectively.~Subleading terms are o

higher order in the chiral expansion and can be dropp!
This corresponds mathematically to taking the limity→`.
Let us comment briefly on this comparison between our
sults and those of Ref.@4#. In our case, we keep theh8,
whereas in Ref.@4# the h8 is integrated out. One would
therefore in general expect that in order to ‘‘match’’ the tw
theories, we would need to adjust the bare parameters.
the quantities considered here, it turns out that, at one lo
all nontrivial adjustments come fromF0-tadpole contribu-
tions. However, we did not have to, and hence did not,
clude such contributions, as was explained in Sec. II.
conclude that, for the Goldstone meson masses and d
constants, no adjustment is needed.

The results of QChPT@8,9# can be obtained by takingN
50, for whichM25m0

2 andA5a.
With degenerate quark massesmV[m15m2 in Eqs.~11!

and ~12!, we obtain

MVV
2 [@M11

2 #1 loop5M11
2 F12

2

3~4p f !2

3SM22AM11
2

1~M222AM11
2 !log

M11
2

Lp
2 D G ~16!

and

f VV

f
[

@ f 11#1 loop

f
512N

M1S
2

~4p f !2 log
M1S

2

Lp
2 . ~17!

As in QChPT, the ratio ofMVV
2 to its tree-level value,

MVV
2 /M11

2 , is singular, whilef VV is regular in the chiral limit
mV→0. Moreover,f VV does not depend onm0

2 anda.
We can defineMVS

2 and f VS to one loop from Eqs.~11!,
~12! by replacingm1 by mV and m2 by mS . In the chiral
limit mV→0, keeping mS fixed, we havee→1 and the
nonanalytic functions multiplyingM2 andA in the expres-
sion for f VS @cf. Eq.~12!# diverge. It is obvious from Eq.~11!
that the ratio ofMVS

2 to its tree-level value is regular in th
chiral limit mV→0.

Of course, all quantities considered here also receive a
lytic contributions fromO(p4) terms in the chiral Lagrang
ian. Since they are obtained from tree-level diagrams w
.

-

or
p,

-
e
ay

a-

h

O(p4) vertices, they do not explicit depend on the para
etersm0

2 anda, and therefore are identical to those report
in Ref. @4#, to which we refer for their explicit form. In Ref
@4# it was pointed out that the quantity

MVV
2 2MV8S

2 with mV852mV5mS ~18!

is independent ofO(p4) coefficients.
Another quantity which is independent ofO(p4) coeffi-

cients, first introduced in Ref.@14# for the quenched case an
also considered in Ref.@4# for the partially quenched case a
y5`, is

F f 12

Af 11f 22
G

1 loop

511
1

3~4p f !2FM2S 1

2e
log

11e

12e
21D

1AM12
2 S 12

12e2

2e
log

11e

12e D G .
~19!

For any mS , this quantity diverges whenm1→0 with m2
fixed ~i.e., for e→1!. Note that@ f 12#1 loop is an even function
of e ~because of symmetry under the interchangem1↔m2),
so that@ f 12/Af 11f 22#1 loop511O(e2) for e→0.

From Eqs.~11!, ~12!, ~16! we see that the coefficients o
the chiral logarithms of the valence-quark mass depend
the ratio y of the parameterm0

2 and the sea-quark mas
through the quantitiesM2 andA @cf. Eqs.~14!, ~15!#. From
~partially! quenched lattice data, it is estimated thatm0

2/3
presumably has a valuemK

2 /2&m0
2/3&mK

2 (mK5496 MeV is
the physical kaon mass! @1,15#. Typical lattice computations
have N52 and mK

2 &MSS
2 &2mK

2 . These values ofm0
2 and

MSS
2 correspond toy ranging from y'1/4 to y'1. This

leads toM2/MSS
2 51/2 for y51/4 and toM2/MSS

2 51 for
y51. Fory→` one obtainsM2/MSS

2 53/2. This shows that
for relatively heavy sea quarks, there is a clear depende
of the coefficient of the chiral logarithms onm0

2. ~Experience
with quenched lattice data@1# indicates that it is hard to fit
the chiral logarithms reliably, partially because of the ‘‘com
petition’’ of O(p4) coefficients. This may make it difficult to
see they dependence of the chiral logarithms in practice.!

The quantityA also has an effect on the coefficients of t
chiral logarithms, in particular for values of the valenc
quark mass of order of the sea-quark mass. Taking agaN
52, we find A5(8a13)/18 for y51/4 andA5(a16)/9
for y51, while A53/2 for y→`. It is clear thatA is more
sensitive to the value ofa for smaller values ofy. We note
that for mV /mS51, M11

2 /mh8
2

51/(11Ny) ~for a50!, so
that our results may not be reliable for smaller values ofy.

IV. BK AND K1
˜p1p0 DECAY

In this section, we will generalize earlier quenched on
loop calculations forBK @9,16,13# and K1→p1p0 @13# to
the partially quenched case. In the following,u, d, and s
denote valence quarks with massesm1 , m1, andm2, respec-
tively. The kaonB parameterBK is defined as~with MK the
mass of theds̄ meson, i.e., at tree levelMK5M12!

BK5
^K̄0u~ s̄ds̄d!LLuK0&

8
3 f K

2 MK
2

, ~20!

in which the four-quark operator is defined by
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~ q̄iqj q̄kql !LL5~ q̄iLgmqjL !~ q̄kLgmqlL !, ~21!

whereqL5 1
2 (12g5)q is a left-handed quark field. The de

nominator in Eq. ~20! is the matrix element
^K̄0u( s̄ds̄d)LLuK0& evaluated by vacuum saturation. Th
O(p2) weak-interaction operator in ChPT corresponding
( s̄ds̄d)LL , which is theDS52 component of a 27-plet unde
SU(3)L , is

O85a27tkl
i j ~S]mS†! i

k~S]mS†! j
l , ~22!

where the tensortkl
i j is defined by setting

t33
2251, ~23!

while all other components are equal to zero. The param
a27 is the only newO(p2)-operator coefficient; its value i
determined by QCD dynamics. At tree level, one obta
@17#

^K̄0uO8uK0&5
8a27

f 2 MK
2 ~24!

and, therefore,

BK5
3a27

f 4 [B ~25!

( f K5 f at tree level!. Since the partially quenched theory
different from unquenched QCD, the partially quench
value of the coefficienta27 is in principle different from the
QCD value. We will make this explicit by using a subscri
or superscriptp to denote bare parameters of the partia
quenched theory, specifically,a27

p , Bp, and f p .
The partially quenched one-loop result forBK

p with non-
degenerate quark masses, keeping only nonanalytic term

BK
p 5BpX11

M12
2

~4p f p!2 S 22~31e2!log
M12

2

Lp
2

2~21e2!log~12e2!23e log
11e

12e D
1

2

3~4p f p!2 HM2 S 22e2

2e
log

11e

12e
22D

1AM12
2 F21e22

122e32e3

e
log

11e

12e

12e2 logS M12
2 ~12e!

Lp
2 D G J C, ~26!

wheree is defined in Eq.~13!. It can easily be seen that Eq
~26! does not depend onm0

2 anda in the case of degenerat
quark masses (e50), just as in QChPT. Actually, apart from
changing the values ofB and f to their ~partially! quenched
values,~partial! quenching does not introduce any change
the nonanalytic one-loop corrections ofBK in the degenerate
case. For the quenched case this was already discuss
Ref. @9#, and the fact that this is also true in PQChPT do
not come as a surprise, since PQChPT is ‘‘in betwee
er

s

d

, is

in
s
’’

ChPT and QChPT~see also the discussion ofK1→p1p0

below!. In the nondegenerate case, the partially quenc
result follows from the quenched result by replacingm0

2

→M2, a→A. For a discussion of contributions fromO(p4)
coefficients, see Ref.@13#.

The DS51, DI 53/2, K1→p1p0 decay amplitude is
proportional to the weak matrix element

^p1p0u~ s̄dūu1 s̄uūd2 s̄dd̄d!LLuK1&. ~27!

The four-fermion operator is theDI 53/2 component of the
same 27-plet that also contains the operator (s̄ds̄d)LL @Eq.
~20!#. To O(p2) in ChPT, the operator is represented by

O45a27r kl
i j ~S]mS†! i

k~S]mS†! j
l , ~28!

where the tensorr kl
i j has nonzero components:

r 31
215r 13

125r 31
125r 13

215
1

2
,

r 32
225r 23

2252
1

2
~29!

~all other components vanish!. The parametera27 is the same
as in Eq.~22!. The aim is then to calculate the matrix el
ment ^p1p0uO4uK1& to one loop.

The lattice determination of̂p1p0uO4uK1& was com-
pared with its real-world value in great detail at one loop
ChPT and QChPT in Ref.@13#, and here we will only discuss
what is new in the partially quenched case.

All attempts to compute this matrix element on the latti
have been restricted to the mass-degenerate, quen
theory, and moreover, all mesons are taken to be at
@18,19,20#. The operatorO4 then inserts energy, implying
that the values thus obtained are unphysical. All these s
tematic errors can be studied in ChPT. Deviations due to
choice of unphysical masses and momenta already show
at tree level@18#, while all three systematic effects~including
quenching! lead to one-loop contributions different from
those calculated for physical masses and momenta in
unquenched theory@13#. In addition, at one loop one find
that there are powerlike finite-volume corrections, whi
were also calculated in Ref.@13#.

The one-loop result for this unphysical matrix element
a finite volumeL3 ~with periodic boundary conditions! and
with m15m25mV ~henceMp5MK , with Mp the mass of
the ud̄ meson! for the partially quenched theory is, keepin
only nonanalytic corrections,

^p1p0uO4uK1&unphys
p

5
24ia27

p Mp
2

A2 f p
3 F12N

M1S
2

~4p f p!2 log
M1S

2

Lp
2 1

M11
2

~4p f p!2

3S 23 log
M11

2

Lp
2 1F~M11L ! D G , ~30!
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up to corrections vanishing faster than any power ofL21,
where the functionF is given by

F~x!5
17.827

x
1

12p2

x3 . ~31!

We note that the chiral logarithm due to the sea-quark lo
does not diverge in the chiral limitmV→0. Note also that the
result, Eq.~30!, does not depend on the parametersm0

2 and
a. For a discussion of contributions fromO(p4) coefficients,
see Ref.@13#.

The above result can also be derived from the ‘‘qua
flow picture’’ @7,9# and the results of Ref.@13#. First, take all
quark masses equal, including the sea-quark mass.
quenched and unquenched results of Ref.@13# then are the
special cases obtained from Eq.~30! by settingN50 and
N53, respectively. The difference is due to the sea-qu
loops which are present in the unquenched case, but n
the quenched case. Therefore, if we now haveN instead of 3
sea quarks, one obtains the correct result by multiplying
difference between the unquenched and quenched resul
N/3, yielding the first chiral logarithm in Eq.~30!. But now
we also identified which of the logarithms is due to se
quark loops~the term proportional toN), and we conclude
that we obtain the partially quenched result formSÞmV by
replacingM11

2 →M1S
2 in the term linear inN. @Because of the

structure ofO4 and theO(p2) vertices from the effective
Lagrangian, Eq.~3!, there can be at most one sea quark
the loop. Therefore, the result does not depend onMSS and
the parametersm0 anda; cf. Eq. ~5!.# Of course, one should
keep in mind that the parametersf p anda27

p depend onN.
The powerlike finite-volume corrections in Eq.~30! are

independent ofN. This follows from the fact that they origi
nate from diagrams which do not contain sea-quark lo
@13,21#.

V. NUMERICAL EXAMPLES

In this section, we will give some numerical examples
the differences between the one-loop estimates forBK and
^p1p0uO4uK1& calculated in the partially quenched theo
and in the ‘‘real world.’’ For^p1p0uO4uK1& we will also

TABLE I. The factorP, Eq.~33!, for different values ofMK
2 , y,

and different combinations ofL and Lp . Other parameters ar
fixed at f p5 f p , e51/2,MSS5mK , andN52. The superscript onP
denotesL in GeV; the subscript onP denotesLp in GeV. MK

2 is in
GeV2.

MK
2 y P(1)

(1) P(0.77)
(0.77) P(0.77)

(1) P(1)
(0.77)

0.5 1.02 0.98 1.19 0.84
0.2 1 1.02 0.98 1.19 0.84

` 1.01 0.96 1.17 0.83
0.5 0.99 1.13 1.37 0.81

0.4 1 0.98 1.11 1.35 0.81
` 0.96 1.05 1.28 0.79

0.5 1.11 1.73 2.10 0.92
0.6 1 1.09 1.64 1.99 0.90

` 1.03 1.42 1.73 0.84
s

k

he

k
in

e
by

-

n

s

f

take the other systematic effects discussed in Sec. IV
account. We will take values for the lattice parameters ty
cal of those used in recent numerical computations~for par-
tially quenched results forBK , see Refs.@22#, @23#; for
^p1p0uO4uK1&, we are not aware of any lattice data!.

The general strategy for our estimates is the same a
Ref. @13#. We will set all O(p4) coefficients to zero. We
choose the cutoffsL ~for the full theory! and Lp ~for the
partially quenched theory! to be 1 GeV or 770 MeV, inde-
pendent of one another. The sensitivity under a change iL
andLp is taken as an indication of the systematic error
sociated with our ignorance of the values ofO(p4) coeffi-
cients. For the real-world values off p , mp , andmK we will
use f p5132 MeV,mp5136 MeV, andmK5496 MeV.

A. BK

BK in the full and partially quenched theories can be
lated by using Eq.~26! above and Eq.~36! of Ref. @13#;

BK
phys

BK
p 5

a27

a27
p S f p

f D 4

P, ~32!

where

P5
11H

11H̃
, ~33!

with H50.724 ~for L51 GeV! and H50.417 ~for L5770
MeV! is the numerical value of the relative one-loop corre
tion for BK in the real world andH̃ is the relative one-loop
correction for the partially quenched theory in Eq.~26!. To
one-loop accuracy,M12

2 can be replaced byMK
2 . The factor

P incorporates all one-loop corrections (P51 at the tree
level!.

Since the ratiosf p / f and a27/a27
p cannot be determined

within ChPT, we will arbitrarily set them equal to 1. Th

TABLE II. ~a! The factorW for different values ofMp
2 and

different combinations ofL andLp . Other parameters are fixed a
f p5 f p , MSS5mK , N52, andMpL56 for Mp

2 50.2. The super-
script onW denotesL in GeV; the subscript onW denotesLp in
GeV. Mp

2 is in GeV2. ~b! The factorW for different values ofMp
2

and different combinations ofL and Lp . Other parameters are
fixed at f p5 f p , MSS5mK , N52, andMpL5`. The superscript
on W denotesL in GeV; the subscript onW denotesLp in GeV.
Mp

2 is in GeV2.

~a!

Mp
2 W(1)

(1) W(0.77)
(0.77) W(0.77)

(1) W(1)
(0.77)

0.2 0.59 0.60 0.66 0.53
0.4 0.54 0.60 0.66 0.49
0.6 0.55 0.66 0.73 0.49

~b!

Mp
2 W(1)

(1) W(0.77)
(0.77) W(0.77)

(1) W(1)
(0.77)

0.2 0.68 0.71 0.78 0.62
0.4 0.65 0.75 0.83 0.59
0.6 0.68 0.90 0.99 0.62
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constitutes one of the major uncertainties of our meth
Furthermore, we will takea50 for simplicity. In Table I, we
list the numerical values ofP for different combinations of
cutoffs, choosingf p5 f p , e51/2, MSS5mK , andN52, for
various choices of the parametersy5(m0

2/3)/MSS
2 andMK

2 .
For MK

2 50.6 GeV2, values forP as high as 2 are ob
tained, forLp5770 MeV. However, for this cutoff, the me
son mass is probably too large for PQChPT to be relia
Also, for MK

2 50.6 GeV2 andy50.5,MK
2 /mh8

2 is of order 1.
We will therefore concentrate on the two lower masses in
following discussion. For these values, we see thatP never
differs from 1 by more than about 10%, if we chooseL
5Lp , which is equivalent to the assumption that the b
parameters of the full and partially quenched theories
equal~this may not be unreasonable forN52). However, if
e

e

ay
th

bl
o
t
e

u
ac

-

ro
s-

w

o
oo
.
n

.

e.

e

e
re

we take the two cutoffs unequal, corrections can be as la
as 20–30 %. The results are fairly insensitive to change
the value ofy.

B. K1
˜p1p0

The K1→p1p0 matrix elements in the full and partially
quenched theories can be related by using Eq.~30! above and
Eqs.~43!, ~87! of Ref. @13# ~replacingM11

2 by Mp
2 andM1S

2

by MVS
2 ):

^p1p0uO4uK1&phys5W
a27

a27
p S f p

f D 3 mK
2 2mp

2

2Mp
2

3^p1p0uO4uK1&unphys
p , ~34!

with
W5
11U

12N
MVS

2

~4p f p!2 log
MVS

2

Lp
2 1

Mp
2

~4p f p!2 F23 log
Mp

2

Lp
2 1F~MpL !G , ~35!
-

l
to

co-
on

of
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e
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d
me
s

and

n a
in
where U50.0888 ~for L51 GeV! and U520.0146 ~for
L5770 MeV! are the numerical values of the relative on
loop correction in the real world. At tree level,W51.

We list in Table II the numerical values ofW for different
combinations of the cutoffsL and Lp , and for f p5 f p ,
MSS5mK , andN52, several values ofMp

2 and a fixed vol-
ume L3 such thatMpL56 for Mp

2 50.2 GeV2. Here we
may useMVS

2 5(Mp
2 1MSS

2 )/2. In Table II~b! we list values
of W for infinite volume, with all other parameters the sam
as in Table II~a!.

We see from Table II that one-loop corrections are alw
rather large, even for relatively small meson masses, and
the sensitivity to the values of the cutoffs is significant.@For
infinite volume, the corrections are not quite as big; cf. Ta
II ~b!.# This casts some doubt on the accuracy of one-lo
ChPT in estimating the factorW, and one would expect tha
two-loop contributions are not small. As in the quench
case, the ‘‘correction factor’’W is always substantially
smaller than 1. For a much more detailed discussion of
certainties inherent to our estimates of such ‘‘correction f
tors,’’ see Ref.@13#.

As can be seen from Eq.~30!, the partially quenched re
sult is closer to the unquenched case~for which N53, M1S
5M11! than to the quenched case. The large deviations f
the three-level valueW51 are mostly due to the other sy
tematic effects. For instance, in the unquenched theory,
find W50.56 ~L51 GeV! andW50.57 ~L5770 MeV! for
Mp

2 50.2 GeV2.

VI. CONCLUSIONS

In this paper, we applied PQChPT to the calculation
the quark-mass dependence of various quantities to one l
restricting ourselves to degenerate sea-quark masses
Goldstone boson masses and decay constants, we exte
-

s
at

e
p

d

n-
-

m

e

f
p,

For
ded

results obtained earlier in Ref.@4#: we investigated the sen
sitivity of the chiral logarithms to the singlet part of theh8
massm0 . Since the ‘‘remnants’’ of theh8 are an essentia
part of the fully quenched theory, this is a natural question
ask in the partially quenched theory. We found that the
efficients of the chiral logarithms for the Goldstone mes
masses are sensitive to the value ofm0 for typical values of
the sea-quark mass. The decay constants depend onm0 to a
lesser extent, which is related to the fact that in the limit
degenerate quark masses, the axial current does not coup
the h8.

We also calculated one-loop contributions to the chi
condensate,BK , and theK1→p1p0 decay amplitude, ex-
tending earlier work in QChPT@8,9,16,13# to the partially
quenched case. ForK1→p1p0 we only considered the cas
of degenerate valence-quark masses.

We considered some numerical examples of the comp
son betweenBK and theK1→p1p0 decay amplitude in the
real world and in partially quenched QCD with values of t
parameters typical of current lattice computations. ForBK ,
we found that, for small enough meson masses, the ‘‘cor
tion factor’’ may be very close to 1, but with an uncertain
which could be as large as 20–30 %. ForK1→p1p0, we
also took into account that typical lattice computations
done at unphysical~degenerate! valence-quark masses an
external momenta, and we included the leading finite-volu
corrections. We found that the ‘‘correction factor’’ is alway
much smaller than 1~of order 1

2, with large uncertainties!.
This is mostly due to the unphysical choice of masses
momenta, and not to partial quenching.
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