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We compute the hadron mass spectrum, the quark masses, and the meson decay constants in quenched
lattice QCD with nonperturbativel@(a)-improved Wilson fermions. The calculations are done for two values
of the coupling constang=6.0 and 6.2, and the results are compared with the predictions of ordinary Wilson
fermions. We find that the improved action reduces lattice artifacts as expE8656-282(98)05609-4

PACS numbe(s): 12.38.Gc, 12.15.Ff, 12.40.Yx

I. INTRODUCTION When we talk about improved fermions in the following, we
always understand that,, has been chosen according to Eq.
The calculation of hadron masses in lattice gauge theory3).
has a long history. Over the years there has been a steady In this paper we shall present results for the light hadron
improvement in computing power and methods allowingmass spectrum, the light and strange quark masses, and the
simulations on larger volumes and smaller quark masselght meson decay constants using the improved action. The
with higher statistics. However, the progress to smaller latcalculation is done for two values of the couplifg-6.0 and
tice spacinga has been slower because of the high compute6.2 which allows us to test for scaling.
cost which increases by at least a factor o&)¥/ Since it is The mass calculations extend our earlier wsk where
so expensive to reduce cutoff effects by reducmgwe  we have examined thes,, dependence @=6.0. To exhibit
should consider reducing them by improving the action.  the effect of improvement, we have also done calculations
A systematic improvement program reducing the cutoffwith Wilson fermions on the same lattices. Most of our Wil-
errors order by order i@ has been proposed by Symanzik son data come from our structure function calculati@ ],
[1] and developed for on-shell quantities in REZ]. The and we combine this with masses from the literature at other
standard gluonic action has discretization error®O¢h?), B values to see the dependenceaoolearly.
but those for Wilson fermions are @(a). Therefore it is From the meson correlation functions we also extract me-
the fermionic action which is most in need of improvement.son decay constants and quark masses. However, simply im-
Sheikholeslami and Wohle[8] proposed the actiofwe  proving the action is not sufficient to remove @l{a) errors
assume =1 throughout the papgr from these quantities. Here we also have to improve the op-
erators which is done by adding higher-dimensional terms
i _ with the same quantum numbers in an appropriate fashion.
Se=50— > kgCsw(9)aa’ Y, w(X)o,,F ., (X)¢(x), This paper is organized as follows. In Sec. Il we briefly
X 0 describe our numerical method. The hadron masses are given
in Sec. Ill, concentrating in particular on the extrapolation to
) ; o ) ) the chiral limit and the scaling behavior of improved and
whereS:™ is the original Wilson action and Wilson action results. In Sec. IV we compute the light and
strange quark masses using two different methods, from the
axial vector current Ward identity and from the lattice bare
Fu(X)= 8iga? #zi [U(X)uv_U(X)Lv]' 2 quark masses. The meson decay constants are discussed in
' Sec. V. Finally, in Sec. VI we give our conclusions.

In Eq. (2) the sum extends over the four plaquettes inghe
plane which havex as one corner, and the plaquette opera- Il. COMPUTATIONAL DETAILS

torsU(x),, are the products of the four link matrices com- Our calculations have mainly been donggat6.0 and 6.2
prising t_he plaquettes tal_<en in. a clockwise sensesifis 1632, 24832, and 2348 lattices. We use Quadri¢tor-
appropriately chosen, this action removes @lla) errors oy called APE parallel computers. For the improved case
from on-shell quantities such as the hadron masses. A nogg, parametecs,, is given from Eq.(3) as cey=1.769 at
perturbative evaluation of this function leads[#] B=6.0 andcey~ 1.614 atB=6.2. The simulastions are done
5 4 6 fo_r at least five dif_feremk value_s in_ea_lch case. This helps
CswW(9)= 1-0.656"~0.153"—0.054 g’<1. (3 with the extrapolation to the chiral limit.
S 1-0.921° ' ' For the gauge field update we use a combination of 16
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TABLE I. Hadron masses g8=>5.7 for Sheikholeslami-Wohlert fermions witly,,=1 and 2.25. In the bottom row we give, and the
mass values extrapolated to the chiral limit. The numbers in rofitalic) are from three-parametétwo-parameterfits. The errors are
bootstrap errors.

B=5.7
CSW: 10
\% K am, am, amy amy, am,, amy,
0.1500 0.5028.7) 0.7517) 1.135198 1.3610) 1.61(19 1.06(16)
16°32 0.1510 0.41®@) 0.7118) 1.04Q17) 1.1%17) 1.31(12 1.1%17)
0.1520 0.286) 0.66Q19) 0.923) 1.0917) 1.2520)
C.L. 0.1528014) 0 0.605(24) 0.797(49) 0.70(36) 1.31(30)
\% K am; am, amy am,, am,, amy,
0.1270 0.8413) 1.08713) 1.58812) 1.6410 1.567) 1.4813
0.1275 0.791) 1.05310) 1.51823) 1.567) 1.515) 1.539)
1632 0.1280 0.73@) 1.02211) 1.45318) 1.507) 1.464) 1.427)
0.1285 0.67%5) 0.9889) 1.39924) 1.5714) 1.4%6) 1.397)
0.1290 0.6077) 0.9558) 1.32020) 1.5914) 1.348) 1.3311)
0.1295 0.51@11) 0.92216) 1.233) - 1.2810 1.3316)
C.L. 0.1307429) 0 0.793(19) 0.948(46) 1.43(33) 1.06(16) 1.13(25)

overrelaxation sweeps followed by a three-hit Metropolis up-for the residue, which is the best that can be achieved for our
date. This procedure is repeated 50 times to generate a nesingle precision machine.
configuration. For the mass calculations we used Jacobi smearing for
The improvement term in Eq(l) appears in the site- source and sink. For a detailed description of our application
diagonal part of the action. The major overhead in our case i8f this procedure see Réfl1]. We have two parameters we
multiplication by this term during inversion of the fermion can use to set the size of our source, the number of smearing
mass matrix. In our basis of Hermitiap matrices we can StepsNs and the smearing hopping parametgr We chose
rewrite this term a$8] Ns=50 for 5=6.0 and 100 foi3=6.2 andxs=0.21 at both
B values. This gives roughly the same rms radius in physical
units in both cases, namely 0.4 fm. To define the matrix
elements for the decay constants and quark masses, we have
also computed correlation functions with smeared source and
local sink. This does not require any additional matrix inver-

i A B
1_ E KgCSWo" F— B .
sions.

A

1/1 —-1\[{A+B 0 At B=6.0 andcgy=0 we had generate®(5000) con-
=5 (1 1 0 A—B) figurations for our structure function project on which we
have computed the hadron masses. To these we added
1 1 0O(150) new configurations on which we computed the me-
x( 1 1), 4 son decay constants and the chiral Ward identity. ¢y

=1.769 we have analyze@(1000) configurations. For the
heavier quark masse=0.1487 and«=0.1300, 0.1310,
0.1320, respectively, the number of configurations was
0(200). On the 22 lattice we have generate@(100) and
0(200) configurations atg,=0 and 1.769, respectively. At
B=6.2 we only ran on Zlattices. Here we have analyzed
(100) configurations forcgy,=0 and O(300) configura-
tions for cg=1.614. We employed both relativistic and

whereA, B are 6x6 matrices(two-spinors with coloy, so
that instead of a 212 multiplication we have two 86
multiplications and two inexpensive coordinate transforma
tions. This reduces the overhead for the improvement in th
inverter from 45 to 30%. Also, the inverse of the matrix in

Eq. (4) is required on half the lattice due to the eVen'Oddnonrelativistic wave functiongg,7], except for the high sta-

precondmonlng. We now have_ to invert tWO@_ instead of tistics runs where we only looked at the nonrelativistic wave
a 12x12 matrix. However, this is only required once for function in order to save computer time

each propagator inversion.

For the matrix inversion we mainly used the minimal resi-
due algorithm, except for the lightest quark mass on th
larger lattices where we used theGSTAB algorithm[9,10].

As convergence criterion we chose

Besides our calculations @=6.0 and 6.2 we also made
exploratory studies g8=>5.7 to see what effect varyinggy
as on coarser lattices. If one decreg8emcreasesgyy or
increasess, one starts to get problems with exceptional con-
figurations. This showed up in nonconvergence of our fer-
mion matrix inversions. It was, however, only a real problem

Ir|<10°® (5) atB=5.7,csy=2.25 and5] B=6.0, cgy=3.0.
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TABLE II. Hadron masses g&8= 6.0 for Wilson fermions ¢s,,=0) and improved fermionscgy,= 1.769). Otherwise the notation is the

same as in Table I.

B=6.0
CSW: 0
\% K am; am, amy amy am,, am,
0.1487 0.6384L8) 0.6832) 1.07%7) 0.88519) 0.93313) 0.94Q19)
16832 0.1515 0.503®) 0.569€10) 0.901917) 0.8117) 0.8517) 0.84913)
0.1530 0.423®) 0.508@11) 0.797720) 0.76311 0.7976) 0.8097)
0.1550 0.3004L0) 0.426414) 0.651730) 0.73515) 0.71712) 0.7369)
0.1550 0.292) 0.4185) 0.6388) 0.61048) 0.657133) 0.65935)
24332 0.1558 0.22@) 0.3847) 0.55512) 0.61690) 0.61341) 0.63838)
0.1563 0.17¢8) 0.35811) 0.48822) 0.8915) 0.58452) 0.61544)
C.L. 0.157133) 0 0.3276) 0.41216) 0.658(19) 0.632(14) 0.650(13)
csw=1.769
\% K am; am, amy amy, am,, am,
0.1300 0.70®R) 0.7836) 1.1906)
0.1310 0.62R) 0.7143) 1.0797)
16%32 0.1320 0.546) 0.64438) 0.97416)
0.1324 0.503%) 0.615716) 0.9324) 0.77914) 0.82912) 0.8537)
0.1333 0.4128) 0.550223) 0.8215) 0.73815) 0.7737) 0.79910)
0.1342 0.298@L7) 0.4813) 0.7059) 0.925) 0.682) 0.77515
0.1342 0.302(1) 0.4913) 0.6867) 0.823) 0.71519) 0.75816)
24332 0.1346 0.23884) 0.46716) 0.62610) 1.008) 0.68426) 0.74520)
0.1348 0.1944) 0.44813) 0.59319) 1.5220) 0.66434) 0.73629)
C.L. 0.135311) 0 0.4177) 0.51115) 0.816(33) 0.625(19) 0.710(14)

ate masses. We looked af p, nucleon (), ay, a;, andb,

. HADRON MASSES

In our mass calculations we have made single exponential
We consider hadrons where all the quarks have degenefits to meson and baryon correlators over appropriate fit

ranges. The errors are determined using the bootstrap method

masses, and we have used this nomenclature for all quaskith 50 data samples. We present our hadron mass results in

masses, not just in the chiral limit.

Tables I, Il, and IIl. Table Il updates the results presented in

TABLE lll. Hadron masses g8=6.2 for Wilson fermions ¢s,,=0) and improved fermionscg,= 1.614). Otherwise the notation is the
same as in Table I.

B=6.2
CSW: 0
\% K am; am, amy am am,, am,
0.1468 0.5258.2) 0.558516) 0.8725) 0.6858) 0.70021) 0.69521)
0.1489 0.414813 0.461%19) 0.7206) 0.5898) 0.6249) 0.6269)
24348 0.1509 0.29424) 0.367227) 0.56Q10) 0.507114) 0.53613) 0.54Q13)
0.1518 0.22945) 0.3264) 0.487112) 0.47420) 0.50916) 0.51917)
0.1523 0.186[17) 0.3076) 0.44814) 0.47930) 0.49217) 0.51121)
C.L. 0.153364) 0 0.25%9) 0.34228) 0.407(17) 0.449(15) 0.464(16)
\% K am, am, amy am, am, am,
0.1321 0.517&) 0.573811) 0.87714) 0.6915) 0.7236) 0.7276)
0.1333 0.414®) 0.485@15) 0.7355) 0.60310) 0.6425) 0.6388)
24348 0.1344 0.304@®) 0.4005%26) 0.5929) 0.53221) 0.5637) 0.5689)
0.1349 0.244®) 0.362€43) 0.521(13) 0.54322) 0.52910) 0.53912)
0.1352 0.2016.1) 0.343@53) 0.4856) 0.64653) 0.51413) 0.52325)
C.L. 0.135892) 0 0.2879) 0.37818) 0.460(21) 0.460(9) 0.465(12)
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TABLE IV. The critical values ofx, k., of our data for the lineafEq. (6)], chiral [Eq. (7)], and
phenomenological fitEq. (8)] for the variouscg,y parameters.

Eq. (6) Eq. (7) Eq.(8)
B Csw Ke x/dof K¢ x2/dof K¢ x2/dof
57 1.0 0.1530%6) 3.0 0.1527415) 0.1528@14)
’ 2.25 0.1312(7) 0.7 0.13068298) 0.1 0.1307429) 0.1
6.0 0 0.1569%1) 17.5 0.157265) 8.6 0.157183) 6.6
' 1.769 0.1352() 11.5 0.1353R) 1.5 0.135311) 1.0
6.2 0 0.153081) 30.8 0.1536(8) 0.7 0.153364) 0.0
' 1.614 0.13574.) 39.6 0.1360(13) 1.2 0.1358®) 0.1
Ref. [5]. For the meson masses we found very little differ- ) 1 1 \v1+d
ence between using relativistic and nonrelativistic wave m_=b’ P K—) : (7)
C

functions, and we settled for relativistic wave functides-
cept for the high statistics rupsFor the nucleon we have
chosen nonrelativistic wave functiofi§] which performed where §is small and positive. We made fits using this for-
slightly better because the effective mass plateaus extendegula but found tha® was always negative. As in our previ-
to larger times. At3=6.0 we repeated the lightest quark ous work[5] we conclude that ouk values are too far from
mass on 1832 on the 2432 lattice, for both improved and «. for the formula to be applicable. This is in agreement with
Wilson fermions. The values agree within less than 3%. Thisbservations made by other authdis]. As an alternative
indicates that all our results on the®B lattice do not suffer parametrization of the curvature we used the phenomeno-
from significant finite size effects. logical fit

Chiral Behavior.To obtain the critical value of, ., and
the hadron masses in the chiral limit, we extrapolate our data

to zerom mass. We first tried E: £+b m2 + b.m3 ®)
1 1
= b(—— —) : 6 | | .
K K In Table IV we give the values ok, for the different fits.

The linear fits givey?/dof values of up to 40. The other two
Using this relation gives a rather poor fit of the data, and wdits both give acceptable values gf, but Eq.(8) usually
saw that there was a slight curvature in a plotf against ~ gives a lowery? than Eq.(7). In the following we shall take

1/k. Quenched chiral perturbation theory predicg] k. from the phenomenological fits.
0.15 —
T
0.14 -
QJ /X//T’T\Q B
0.13 -
0.12 —
o8 0.e t 11 ol v v by )
g2 o] 0.2 0.4 06 © 0.2 0.4 0.6
(am_)? (am_)?

FIG. 1. The critical values ok for improved Wilson fermions
as a function of? from this work(O) and Ref[4] (X). The curve FIG. 2. Fits and chiral extrapolations pfand nucleon masses
is the tadpole-improved result given in E4.0). for improved(®) and Wilson fermiongO).
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TABLE V. World Wilson fermion masses aboyg=6.0.

B K am; am, amy Lattice Ref.
6.30 0.1400 0.789) 0.8044) 32x48 [16]

6.30 0.1430 0.646) 0.6705) 32%x 48 [16]

6.30 0.1460 0.48722) 0.518818) 0.825242) 243% 32 [17]

6.30 0.1480 0.382) 0.4294) 328x 48 [16]

6.30 0.1485 0.34804) 0.399@23) 0.634@47) 243x 32 [17]

6.30 0.1498 0.26319) 0.335430) 0.521%67) 243X 32 [17]

6.30 0.1500 0.258) 0.3334) 328x48 [16]

6.30 0.1505 0.20926) 0.301240) 0.450689) 243X 32 [17]

6.20 0.1468 0.52582) 0.558516) 0.8725) 243x 48 this work
6.20 0.1489 0.41483) 0.461519) 0.7206) 243 48 this work
6.20 0.1509 0.29414) 0.367227) 0.56010) 243 48 this work
6.20 0.1510 0.289) 0.3662) 0.5664) 243X 64 [18]

6.20 0.1515 0.254) 0.3433) 0.5256) 243x 64 [18]

6.20 0.1518 0.22995) 0.3264) 0.487112) 243x 48 this work
6.20 0.1520 0.220) 0.3279) 0.49510) 243X 48 [19]

6.20 0.1520 0.218) 0.3215) 0.491) 243X 64 [18]

6.20 0.1523 0.18617) 0.30716) 0.44814) 243X 48 this work
6.20 0.1526 0.158) 0.291) 0.453) 243X 64 [18]

6.17 0.1500 0.38682) 0.445818) 0.696640) 322X 30% 40 [20]

6.17 0.1519 0.26312) 0.357226) 0.546@52) 322X 30x 40 [20]

6.17 0.1526 0.20645) 0.324539) 0.484868) 322X 30x 40 [20]

6.17 0.1532 0.14520) 0.296588) 0.409778) 322X 30x40 [20]

In Fig. 1 we plotk. for improved Wilson fermions. We
compare our results with the results of Ref]. The agree-
ment is excellent. In one-loop perturbation theagyis given

by [5]

1
ko= [1+g%(0.108571 0.02898% 5~ 0.0120643,) .

TABLE VI. World Wilson fermion masses g=6.0.

B K am,_ am, amy Lattice Ref.
6.0 0.1450 0.8069) 0.837Q9) 1.322528) 243x 54 [21]

6.0 0.1487 0.63848) 0.6832) 1.0717) 16°x 32 this work
6.0 0.1515 0.503B) 0.569610) 0.901917) 16°x 32 this work
6.0 0.1520 0.477®) 0.548§15) 0.866949) 24°x 54 [21]

6.0 0.1520 0.474) 0.5452) 0.861(5) 18¥x 32 [17]

6.0 0.1530 0.42Q3) 0.5083) 0.801(6) 18¥x 64 [18]

6.0 0.1530 0.423B) 0.508@11) 0.797720) 16°x 32 this work
6.0 0.1530 0.42Q) 0.5051) 0.7863) 328x64 [22]

6.0 0.1540 0.364) 0.4684) 0.7297) 18°x 64 [18]

6.0 0.1545 0.3307@9) 0.442%10) 0.677721) 243% 64 [23]

6.0 0.1550 0.298) 0.4316) 0.661) 18°x 64 [18]

6.0 0.1550 0.30090) 0.426414) 0.651730) 16°x 32 this work
6.0 0.1550 0.296427) 0.422Q12) 0.639327) 24°% 64 [23]

6.0 0.1550 0.292) 0.4185) 0.6398) 243% 32 this work
6.0 0.1550 0.29615) 0.421842) 0.644G85) 243x 54 [21]

6.0 0.1550 0.294) 0.4222) 0.6305) 3264 [22]

6.0 0.1555 0.258633) 0.401§17) 0.600337) 243% 64 [23]

6.0 0.1555 0.25886) 0.398261) 0.6007109 243% 54 [21]

6.0 0.1558 0.234) 0.38713) 0.5577) 328x 64 [22]

6.0 0.1558 0.22@) 0.3847) 0.55512) 243% 32 this work
6.0 0.1563 0.18427) 0.35315) 0.53630) 243x 54 [21]

6.0 0.1563 0.188) 0.3615) 0.50611) 32°x 64 [22]

6.0 0.1563 0.17®) 0.35811) 0.48822) 243% 32 this work

(€)
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TABLE VII. World Wilson fermion masses beloyg=6.0.

B K am_ am, amy Lattice Ref.
5.93 0.1543 0.45726) 0.552740) 0.8674102 243% 36 [20]
5.93 0.1560 0.35739) 0.486442) 0.744899) 243% 36 [20]
5.93 0.1573 0.26425) 0.436948) 0.642380) 243X 36 [20]
5.93 0.1581 0.18881) 0.407157) 0.565292) 243% 36 [20]
5.85 0.1440 1.02932) 1.059815) 1.696150) 283% 54 [21]
5.85 0.1540 0.61221) 0.693127) 1.106@55) 283% 54 [21]
5.85 0.1585 0.37612) 0.529469) 0.81513) 283% 54 [21]
5.85 0.1585 0.37®) 0.5306) 0.78310) 16°x 32 [24]
5.85 0.1595 0.30884) 0.485696) 0.74417) 243% 54 [21]
5.85 0.1600 0.27380) 0.4869) 0.6739) 16°x 32 [24]
5.85 0.1605 0.22281) 0.43420) 0.683498) 243 54 [21]
5.70 0.1600 0.69081) 0.802256) 1.3124135) 243% 32 [20]
5.70 0.1600 0.68724) 0.802129) 1.290G60) 16°% 20 [25]
5.70 0.1610 0.65215) 0.784226) 1.2635) 128x24 [17]
5.70 0.1630 0.56218) 0.723235) 1.1536) 128x24 [17]
5.70 0.1640 0.508Q9) 0.682238) 1.073880) 16°x 20 [25]
5.70 0.1650 0.46022) 0.666345) 1.0398) 128x24 [17]
5.70 0.1650 0.45822) 0.649173) 1.0301104) 243% 32 [20]
5.70 0.1663 0.38226) 0.6206103 0.9421131) 243% 32 [20]
5.70 0.1665 0.36789) 0.608%58) 0.91511) 16°x 20 [25]
5.70 0.1670 0.33020) 0.604283) 0.91914) 128x24 [17]
5.70 0.1675 0.29924) 0.5912125 0.8668177) 243% 32 [20]

5567

The tadpole-improved value af; that follows from this re-
sult is

We find Eq.(13) to be a more appropriate fit formula than
the ansat126]
. M= i+ bymz + bim?, 14
Ke=g [14g*2(0.025238- 0.028988 U3
because for the nucleon the plotraf, againsim? (or 1/k) is

—0.012064csu3)?)up 1, (10)  less curved thamy againstm?, as can be seen from com-
paring Fig. 2 with Fig. 3[Note that the two formulas differ
wherecgyy, is given by Eq.(3), only by terms ofO(m?)]. This was noticed before in Refs.
1 1/4 L L B L L I L B AL B
U0:<§ Tr UD> (11) r T
1 8=6.0 ! g=6.2

andg*? is the boosted coupling constant defined by

g*?=g?/ug. (12
In Fig. 1 we compare the tadpole-improved perturbative for-
mula (10) with the data where for the larger couplings we = '[
have takeru, from [14,15. The curve and the data points E
agree within less than 1%. In EQLO) one has the choice of
using the lowest order tadpole-improved value &fy,
namelyu, 3 [4], or the value from Eq(3) which is the value
actually used in the simulations. Both procedures remove a %% (&
the tadpole diagrams and differ only by sm@l{g?*) terms,
so they are both reasonable. We prefer the second choice.
We fit the other hadron masses by the formula

(13) 0-""'J“"__--w>--I.‘\.—

0 0.2 0.4 06 o0 0.2 0.4 0.6
2
(am,)

mZ=bg+b,m2+bsm3, H=p,N,... .
- _— . (am,)?
The result of the fit is shown in Fig. 2 for both improved and
Wilson fermion data. The Wilson fermion data are the world
data compiled in Tables V, VI, and VII.

FIG. 3. Linear plot ofp and nucleon masses for improve®)
and Wilson fermiongO).
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TABLE VIII. Comparison of chiral extrapolations g8=6.0 16 —
using all the datatop rowg, and using only the data from the r
largest lattice. In the fits on the 23 lattice we have sdi;= b,
=0.
CSWZO *__
V Fit formulas Ke am, amy
16°32 & 24°32 (8) & (13) 0.157133) 0.3276) 0.41216) o
24332 (6) & (13) 0.157094) 0.31916) 0.37437) E |
24332 (6) & (14) 0.157094) 0.32514) 0.410226) g
CSW: 1769
\% Fit formulas K¢ am, amy
16°32 & 24°32 (8) & (13) 0.135311) 0.41717) 0.51%15 J
24332 (6) & (13) 0.135262) 0.42115 0.51427)
24332 (6) & (14) 0.135262) 0.42414) 0.52723
| ! L s L L L L { L i ! |
. 0.4 0.6 0.8 1
[16, 27], and recently also in Ref28]. To decide which fit (m,/m,)?
formula is best and to do a reliable extrapolation to the chiral _ _
limit, it is important to have many values. For the,, a;, FIG. 4. APE plot at =6.0 for improved(®) and Wilson fer-

andb; masses only a two-parameter fit with set to zero mions(O) compared with the physical mass ratig at the physical
was reasonable. The mass values in the chiral limit for oufitark mass and in the heavy quark limit. The solid lines are from
data are also given in Tables I, II, and III. the mass fits described in the text.
We see that the effect of improvement is largest forghe
mass. In the chiral limit the difference between improvedFig. 2. At 8=6.0 we find that the mass ratio data are rather
and Wilson results is 25% g8=6.0 and still 12% atg@  different for the two actions. The improved results lie con-
=6.2. It is quite common to define the physical scale fromsistently lower than the Wilson results. At=6.2 we find the
the p mass. The relatively large change of this quantity fromsame pattern in the data.
the Wilson to the improved case suggests that it contains At 8=6.0 we can say something about the chiral limit.
largeO(a) corrections, and that this procedure is misleadingOur fits give my/m,=1.20(6) for improved fermions and
A better procedure is to use the string tensiom9f29], the ~ my/m,=1.33(2) for Wilson fermions. The improved results
force parameter, as the scale. For the nucleon mass the difome closer to the physical value than the Wilson results. At
ference between the two actions is smaller. B=6.2 we are lacking data at small quark masses and on
At B=6.0 we have data on two different lattice sizes forlarger volumes. In the chiral limit our fits giveny/m,
improved and Wilson fermions. Though we have already=1.32(11) for improved fermions antdhy/m,=1.39(12)
seen that finite size effects are small, one may ask to do a
separate analysis for each lattice size, to keep finite size ar 16 7 — ]
finite lattice spacing effects separate, and to test for consis I | 1
tency of the results. We have made fits using only the data o i b
the large lattice. Because these data are closef tdhem? I T
term in Eqs(8), (13), and(14) is not needed, so that we have
used the truncated formulae withy andbj set to zero. Near
. it should also make no difference whether ELp) or Eq.
(14) is used. The result of the fits are given in Table VIII. We
see that the fits on the large lattice and the fit to all date
points give consistent results for the masses. The errors frol
fitting just the data on the large lattice, however, turn out to
be a factor of two larger. Fat, the various fits give consis- f
tent results for Wilson fermions. For improved fermions the P |
results differ by 2—3 standard deviations. The value from the 13 L -
simultaneous fit is the best estimate we have. It is in goot 77
agreement with the UKQCD resutt,=0.13533529[30]. In
the following we shall use the values from the simultaneous
fits. o ]
APE plots.In Figs. 4 and 5 we show the dimensionless T e T s s
ratio my/m, as a function of €n,/m,)?, a so-called APE (m,/m,)?
plot, for 3=6.0 and 6.2, both for improved and Wilson fer- -
mions (the latter using the world data given in Tables V and FIG. 5. The same as Fig. 4, but f@=6.2. The hatched bars
VI). The solid lines are the results of the ratio of the fits inindicate the errors of the fit in the chiral limit.

mN/mp
-
I
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TABLE IX. The lattice spacing expressed in terms of the string tenkicend the force parametep.
When several groups have computed these quantities, we have taken the weighted average, while we inter-
polate logarithmically whenever the values are not known.

B aJK Ref. ro/a Ref. rovK
6.8 0.073012 [32] 16.74) [15] 1.224)
6.5 0.106810) [33]

0.121512) [32] 9.878) [15]
6.4 0.121828) [34] 9.70(24) [34]
0.121%11) combined 9.88) combined 1.19@5)
6.3 0.139411) interpolated
0.161G9) [35] 7.36(4) [15]
6.2 0.160823) [34] 7.3325) [34]
' 0.160928) [36]
0.161Q8) combined 7.364) combined 1.18%)
6.17 0.16778) interpolated
0.220923 [35] 5.284) [15]
6.0 0.215450) [34] 5.5315) [34]

' 0.218221) [37]

0.219115) combined 5.30) combined 1.16@2)
5.93 0.253629) interpolated
5.90 0.270237) [38] 4.6211) [15] 1.253)
5.85 0.29827) interpolated
5.8 0.330230) [38] 3.635) [15] 1.19920)
5.7 0.409924) [38] 2.865) [15] 1.17322)
5.6 2.296) [15]
5.5 2.013) [15]

for Wilson fermions, so that we cannot say anything concluin Fig. 6. In the continuum limit we obtairmp/JR
sive about the behavior of the two actions in the chiral limit=1.80(10). We compare this result with the experimeptal

in this case. mass. For the string tension we take the value
Scaling behaviorLet us now look at and compare the
scaling behavior of the two actions. We shall limit our dis- JK=427 MeV (15

cussion to thep mass because the errors of the nucleon are ) o
too large to make precise statements. In order to exhibit th@hich has been obtained from a potential fit to the charmo-
cutoff effects most clearly, it has been sugge$&4 thatm, ~ Nium mass spectruni39]. Using this value the physical
should be plotted in units of the square root of the stringm, /K is 1.80 which agrees with the lattice number.
tensionK which has cutoff errors ad(a?) only. In Table IX The simultaneous fit uses all the information we have and
we have compiled the world string tension data. When ther@ives the best estimate of the ratig,/ /K in the continuum
are several calculations, we performed the weighted averagmit. Separate fits to the improved and Wilson data give
In Fig. 6 we plot the ration, /K as a function oK. ~ 1.6413) and 2.0115), respectively. These numbers are one
This is done for fixed physicalr masses witm2=0, 2K, §tand§1rd deviation away from the resglt of the s'lmultan.eous
and 4. Comparing hadron masses at larger quark massed- This shows that both data sets are important in the simul-
has the advantage that this does not require large extrapolianeous fit, and that the error bar on the continuum result is
tions of the lattice data but rather involves small interpola-Substantially reduced by combining both data sets.
tions only. The Wilson fermion data shown are a fit to the AS mentioned previously, an alternative scale from the
world data compiled in Tables V, VI, and VII. As expected, Potential isro. We have also compiled lattice results for
the Wilson masses show practically a linear behavior in thdn Table IX. We see that it scales very well witfK, as the
lattice spacinga. We have done a simultaneous linear plusproductr oK is approximately constant at about 1.19, while
quadratic fit to the Wilson data and a quadratic fit to thethe lattice spacinga changes by a factor of more than 5.
improved data. The fit is constrained to agree in the conHowever, the physical value of VK is 1.06, takingrgl as
tinuum limit. The result of the fit is shown by the solid lines 402 MeV which follows from the same potential that gives
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Wilson

FIG. 7. The vector-pseudoscalar mass splitting as a function of
the quark mass. Open symbols correspon@+c6.0, solid symbols
to B=6.2. This is compared with the physicalw (asterisk and
T T S E N B B K*-K (octogon mass splitting. The curves are from the mass fits.
0 0.1 0.2 0.3 0.4 0.5

Quenched lattice calculations with Wilson fermions are un-
able to reproduce these numbers. Wilson fermions give a

FIG. 6. The ratiam, /K as a function of the lattice spacing for splittir.lg which is much too small. In Fig. 7 we compare the

improved(®) and Wilson fermiongO). The solid lines are from a  €xperimental values Uhi— m?2 and mi* —mg with the lat-
simultaneous linear plus quadratic fit to the Wilson data and a quatice data and the mass fits. As before, we have taken the
dratic fit to the improved data. This is compared with the experi-string tension Eq(15) as the scale. In Fig. 7 we also show
mental valug*) using K =427 MeV. The shaded bars indicate the the results for improved fermions and the corresponding
errors of the fit in the continuum limit. mass fits as well. There is a noticeable change when going to
the improved case. We find good agreement with experiment

JK=427 MeV [39]. It does not seem that this discrepancy for the absolute values.

avk

will vanish asa—0. It is telling us that the lattice potential  In the heavy quark effective theofy1]
has a slightly different shape to the continuum potential. This _
may be an effect of quenchirig0]. Avps(Vo,,F W), (18

Although atB=5.7 we do not know the correct value of
Csw, Uusing our larger valuegy=2.25 we find mp/\/K whereW is the heavy quark field. So it is natural that turning
=1.94 in the chiral limit. Comparing this number with Fig. on the Sheikholeslami-Wobhlert term would increase the mass
6, it indicates thaO(a?) effects are moderate even at this splitting, and this is what we see.
coupling. Wilson k.. Let us now come back to the critical value of
Mass splitting.The vector-pseudoscalar mass spliting  « for Wilson fermions. In Table X we have given the values
of k. from a fit of the world data in Tables V, VI, and VIl

Ay.ps= MG — Mg (16) i, 1
TABLE X. The critical values ofx, «., for the Wilson world
is experimentally rather constant for all quark flavors. Ongdata.
finds
B Kc
6.40 0.15075@.45
m,—m2=0.57 GeV, 6.30 0.15177¢86)
6.20 0.15337dL7)
6.17 0.1538387)
mi* _ mﬁ =0.55 GeVf, 6.00 0.15721(8)
5.93 0.15898&73)
5.85 0.16171&3
5.70 0.16931&2)

M. —m3=0.55 GeVf. (17)
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0.18 T L L I R R A 1(1 1
=5 |- 2
) am(a) 5 (K Kc)’ (20
° giving the renormalized mass as
ois oo | m"S(p) = Zy (au.amm(a), (21)
o —
) ] where st(a,u,am) is the mass renormalization constant.
& » a” ] We call this method of determining the renormalized mass
ISt the standard method.
T 1 An alternative way of defining a bare mass is by means of
0.14 _/// i the PCAC(partial conservation of axial vector currgméla-
)/ tion between the divergence of the axial vector currpt
/K’/X’—m ] =4y, ys¢ and the pseudoscalar densRy-= ys,
» — d4(A4(X)O)
" 2(P00) “
ol b 0y
0 0.1 0.2 0.3 0.4 0.5 . . .
a VK whereQ is a suitable operator having zero three-momentum

and no physical overlap with,(x) andP(x) to avoid con-

FIG. 8. The critical value ok as a function of the lattice spac- tact terms.(See later on for a precise definitiomll opera-

ing for Wilson fermions((J). The dashed curve is the prediction of tors are bare operators. To avoid anomaly terms in(£2),
tadpole improved perturbation theory. This is compared with theflavor nonsinglet operators are taken. We call this method

results for improved fermions from Fig. 1. the Ward identity method. The renormalized mass is then
given by

using the phenomenological ansd®. In Fig. 8 we plot

these results as a function af/K (the string tension being — Zx(am)

taken from Table IX. We see thak. is a linear function of mMMS(u) = ———— m(a), (23

a over the whole range of the data which extends fr8m Z'Q,"S(a,u,am)

=5.7 to 6.4. Comparing this with the improved, which is o

approximately constant, we conclude that the Wilggrhas  where Z,(am) and Z’},"S(a,u,am) are the renormalization
large O(a) effects. We also compare the Wilson data with constants of the axial vector current and the pseudoscalar
the predictions of tadpole-improved perturbation theory aslensity, respectively.

given by Eg.(10) with cgy=0. Here we have taken the The quark mass inherits its scale dependence from the
one-loop perturbative formula foa beyond3=6.8 where renormalization constant&,, and Z, which involve loga-
there are no numerical values for the string tension availablethms of . In the following we will computeZ,,, and Zp

any more. Not even at the smallest valueaofan perturba- perturbatively to one-loop order for lack of a better, nonper-
tion theory describe the Wilson data. For improved fermionsturbative determination. To keep the logarithms under con-
on the other hand, the agreement with tadpole-improved petrol it is best to takeau =1 and do the transformation to any
turbation theory is quite good, as we have already noticed.other scale by the renormalization group formula

NS, .\ 822
IV. QUARK MASSES s ad>(u') =
: M )= ———| m(w). (29)
We shall now turn to the calculation of the quark masses. aMS(w)

When chiral symmetry is dynamically broken, care has to be
taken in defining renormalized masses. In the continuum the | the continuum limit both procedures should give iden-

renormalized quark mass at scafe= . can be writterf42] i) results form“S(u). Note, however, that the two bare

massesn andm can be different, though they both vanish in
1 -1 -1 _ the chiral limit. On the lattice the two procedures may give
2 TS A M) =S 0] =m(p), 19 7 L ; - may.
different results fom">(u) due to nonuniversal discretiza-
tion errors.
where S¢ is the renormalized quark propagator which is to  The lattice calculation of the quark masses now proceeds
be evaluated in a given gauge. This definition refers to thén two steps. In the first step one has to find thealues
momentum subtraction scheme. It is usual to give the quarkorresponding to the real world by adjusting, e.g., the pseu-
masses in the modified minimal subtraction schemS).  doscalar meson masses to their experimental numbers. In
To convert from one scheme to the other, one has to go toase of the Ward identity method one furthermore has to
high enough scales so that one can use perturbation theory.ddmputem. In the second step the bare quark masses have to
the quark mass is defined in this way, then the renormalizetie converted to renormalized masses. We shall compute the
mass is proportional to the bare mass. masses of the andd quarks, which we assume to be equal,
On the lattice the standard assignment of the bare mass @&@1d the mass of the strangg) (quark.
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FIG. 9. The bare mas® from the Ward identity method a8 FIG. 10. The same as Fig. 9 but f8= 6.2 for Wilson((1) and

=6.0 for Wilson () and improved fermiongM) on the 1632 improved fermiongl).
lattice. The errors are bootstrap errors.

_ da(A4(1)P(0))+cpada(P(t)P(0))

Improved fermionsLet us consider the case of improved m(a) (28)
fermions first. Later on we shall compare our results with the 2(P(1)P(0))
predictions of Wilson fermions to see the effect of improve-
ment. S _ has been plotted in Fig. 9 fg8=6.0 and our smallest quark
We will discuss the Ward identity method first. For the 1555 on the @2 lattice. In Fig. 10 we show the same
operatorO we take the pseudoscalar density quantity for 3=6.2 and our smallest quark mass on the
24348 lattice.(Also shown in these figures are the results for
_ —0% Wilson fermions which we will discuss later grEquation
P(0)=2, P(x4= 2
© 2;‘ (X4=0%) @9 (28) should be independent of except where the operators

physically overlap with the source, if the cutoff effects have

and smear it as we did in the hadron mass calculations. ABeen successfully removed. In both cases, but in particular at
the P(O) part is common to all two_point functionsy we could B:62, we see a smaller deviation from the plateau at small

have used any operator projecting onto the pseudoscal@nd larget values. To obtain the mass, we fit the ra@g) to
state. Similarly, we write a constant. We have used the same fit ranges as for the pion

mass. The results of the fit are given in Tables XI and XII. At
B=6.0 in the improved case we see thatxat 0.1342 we
Au(t)= Z As(Xa=1,X). (26)  have small finite size effects, indicating again that our results
X on the 16832 lattice are not significantly volume dependent.
] ] . . . For both the Ward identity and the standard method we
For improved fermions the axial vector currentin £22) is  choose to determine thevalues from the pseudoscalar me-

to be replaced by son masses. Sometimes t#1020 meson is taken for the
determination of the strange quark mass. However, we do
As— Ayt CpadsP(x), (27)  not think that this is a good idea because of potentiap

mixing [43]. We generalize E(8) to the case of two differ-
wherec, is a function of the coupling only. The time deriva- ent quark masses by writing
tive d, is taken to be the average of the forward and back-
ward derivative. The coefficiemt, has been computed [A] 1
giving c,=—0.083 atB=6.0 andc,=—0.037 atB3=6.2. -
The resulting bare mass 2

1 1
_+_
K1 K2

_l bmigrbm (29)
Ke 21ps 3!tlps
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TABLE XI. The bare quark masses for Wilson fermions
(csw=0) and improved fermionscgy=1.769) at3=6.0. The er-
rors are bootstrap errors.
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TABLE XIl. The bare quark masses for Wilson fermions
(csw=0) and improved fermionscgy=1.614) at3=6.2. The er-
rors are bootstrap errors.

5=6.0 £=6.2
Csw= 0 Csw— 0
V K 2am \Y K 2am
0.1487 0.295) 0.1468 0.247®)
16%32 0.1515 0.1866) 0.1489 0.161®)
0.1530 0.132() 24348 0.1509 0.084®)
0.1550 0.064¢) 0.1518 0.051¢)
Cou=1.769 0.1523 0.033®)
Y, K 2am csw=1.614
\% 2am
0.1300 0.2836) o
0.1310 0.227&®8) 0.1321 0.21618)
16°32 0.1324 0.152310) 0.1333 0.14585)
0.1333 0.1038@.1) 24348 0.1344 0.08185)
0.1342 0.055@) 0.1349 0.0528®)
0.1352 0.035
0.1342 0.055®) %)
24332 0.1346 0.033@)
0.1348 0.021¢4) The renormalization consta@j, has been computed nonper-

with the same coefficients,,

different flavors. By fixingmpg to the physical pion mass

m_+, using the string tension values compiled in Table IX

with Eq. (15) as the scale, we find the value faf, 4=«
=k,. The strange quark mass is obtained by identifymg;
with the kaon massn =, taking ;= «, 4 as input and solv-
ing for x,= k5. This gives for the light mass

0.00183636)

1( 1 1) for B=6.0,
2\ kyg xc/ |0.00138436)

for B=6.2.
(30)

mu,da=

For the strange mass we get

1/1 1)
2\ks o
wherem, 4=1/2(m,+my).

The bare massés, 4,ms are computed analogously. We
write

0.041911)
0.031011)

for 8=6.0,

Msa= for B=6.2, @D

mE (ﬁ:ll+ m2)=52m%5+63mgs (32)

N| =

Using this parametrization we first fit the masses in Tables
Xl and XII to the pseudoscalar masses in Tables Il and IlI.

This gives ushb,,bs. We then determinen, 4,m; by fixing
Mpg to the physical pion and kaon masses, respectively,
before.

The mass dependence of the renormalization consta

Z,(am) can be parametrized §44]

Zpy(am)=(1l+bpam)Z,. (33

turbatively in Ref.[45]. The fit formula in this paper gives
Z,=0.7924 atB=6.0 andZ,=0.8089 at3=6.2. The coef-

bs as before. This is inspired goiant b is only known perturbatively to one-loop order
by chiral perturbation theory where it is expected that th A y P Y P

pseudoscalar mass is a function of the sum of quark an
antiquark mass,+ mgeven when quark and antiquark have

46]. The best we can do at present is to take the tadpole-
improved value. For the boosted coupling we ué’é:‘(lla),

giving

ba=1+a¥S(1/2)1.912, (34)

where we takmgﬂ_s(lla)zo.l%l atB=6.0 andag"_s(lla)
=0.1774 at3=6.2[14]. For Z¥>(au,am) we write
Z'\P"_S(ap,,am)=(1+ bpam)Z'\P"_S(ap,). (35

The renormalization constam’\p"_s(aﬂ) has been computed
perturbatively{47]. The result is

2

Zg%@ap)=1- 1.

Cel—6 In(ap) +22.595- 2.24% g,

+2.0363,], (36)
with C=4/3. We shall take the scalge=1/a and use the
tadpole-improved value of E¢36) which turns out to be
aM_S( 1/a)

S

S

Z¥S(au=1)= [16.967- 2.99Tgud

+2.715(cs\,\,ug)2]}u0. (37)

We useuy=0.8778 atB=6.0 anduy=0.8851 at3=6.2.)
he coefficientop has also been computed perturbatively to

@ne-loop order{46]. Again we shall use the tadpole im-

proved value

bp=1+a¥S(1/a)1.924. (38)
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TABLE XIIl. Our results of the renormalized quark massmg‘_s(Z GeV) in MeV for improved and
Wilson fermions, together with the extrapolation to the continuum lin8it=¢c). The continuum numbers
refer to improved fermions. We give the results for both the Ward identity and the standard method.

i md*
B Csw Ward Standard Ward Standard
6.0 0 4.40:0.17 6.47-0.20 105.¢:4.5 141.8:6.0
6.2 0 4.73x0.14 6.3%:0.25 108.5:4.2 138.8:7.4
6.0 1.769 4.020.10 4.94-0.09 92.8:2.9 109.4£3.9
6.2 1.614 4.4%0.06 5.09:0.16 101.6:1.7 111.#4.7
o 5.00+0.18 5.2720.36 111.¢5.0 114.4711.1
We cannot be sure that we have removedXh) effects mg/l_s: Co+ Coa2. (43)

in Zp . Therefore we have also computed the renormalization
constantsZ,(am), Zp(aw,am) nonperturbativel\{48]. So
far we have results fo8=6.0 only. Our numbers are in fair
agreement with the nonperturbative calculation in Ré§]
and the tadpole-improved valy87). However, for smallu
the constanZ, behaves very differently from the perturba-
tive formula.

To compare the results at the two differggwvalues, we
rescale them both tp’ =2 GeV using formula24). As be-
fore, we use the string tension to convert the lattice spacing
into physical units. The resulting quark masses mg"_s(g GeV)=112+5 MeV. (45)
mi (2 GeV), mi>(2 GeV) are given in Table XIIl.

Let us now discuss the standard method. We already havehe Ward identity method appears to have larg¢a?) ef-
determinedm, 4(a),ms(a) in Egs. (30) and (31). For the  fects than the standard method.

The result of the fit is shown in Figs. 11 and 12. The con-
tinuum values from this fit are given in Table XIlI. We find
that the two methods give consistent results in the continuum
limit. Taking the statistical average of the two results we
obtain the continuum values

m$(2 GeV)=5.1+0.2 MeV, (44)

renormalization constamt}>(au,am) we write We may compare our results with the prediction of chiral
_ _ perturbation theory, which cannot give absolute values but
ZMS(au,am)=(1+bmamzZ¥(auw). (39  can determine the ratio afg to m, 4. A recent calculation

_ gives [49] mg/my 4=24.4+1.5. We find mg/m 4=22.2
The constantzms(a,u) has been computed perturbatively +1.2.
[47]. We obtain

7 ——
2

Z¥S(apu)=1- —zlgw Cel6In(au)—12.952-7.738&sy : } %
+1.38@3,,]. (40)
1 i
The tadpole-improved value, which we will be using, is =
[
o =
MS -
_ ag (1/a) -
chz A
i !
+1.840c5y15)%] |Ug “y = %

The coefficientb,,, has been computed [46]. The tadpole-
improved value is

1 —
b=~ 5— a¥3(1/a)1.210. (42

Again we extrapolate the quark massesuto=2 GeV using a VK

Eq. (24). The results which follow from this approach are |G, 11. The light quark mass\"S as a function of the lattice
listed in Table XIIl as well. spacing for improved fermions using the Ward identi®) and

The results of the Ward identity and the standard metho@tandard method). This is compared with the Wilson result for
may differ byO(a?) effects, and they do. We can “fit” the the Ward identity(O) and standard methot]). The curves are
a dependence by quadratic extrapolations to the continuum limit.
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_FIG. 12. The same as Fig. 11 but for the strange quark mass g 14. The strange quark mamg"_s for improved fermions

MS
my®.

Wilson fermionsLet us now consider the case of Wilson

from Fig. 12 compared with the world Wilson mas$ésg compiled

in [52]. These authors use th#(1020 meson to determine the
strange quark mass.

fermions. We proceed in the same way as before. The situ-

ation here is thaZ,(am) is known nonperturbatively only
for 8=6.0[50], and thatb, , bp, andb,, are only known to
the tree level. So foZ, we use the tadpole-improved pertur-
bative value

a¥S(1/a)
1- =" 7.901u,, (46)

Zn= 4

and forb,, bp, andb,, we take the tree-level results. Com-
paring Z, with the nonperturbative determination @t 6.0

10—+
8 .
—
>
=
= el ] 1
(=) 3
=
) 3
g i
Il
Sy 1
2=
g
2~ -
0 T S ST R RS S S S AN S S S SO SO S S ST SR R S S S
0 0.1 02 0.3 04 0.5
a VK

FIG. 13. The light quark masml"ﬂﬁ for improved fermions from
Fig. 11 compared with the world Wilson masdg&s) compiled in
[52].

[50], as well as with a nonperturbative calculationBat 5.9,

6.1, and 6.3 using the Ward identif$p1], we find good
agreement. The renormalization consta?ﬂ?(a,u =1) and
Z">(au=1) are obtained from Eq$37) and(41) by setting
csw=0. The resulting quark masses are given in Table XlII,
and they are plotted and compared with the improved results
in Figs. 11 and 12. In this case we expect discretization er-
rors ofO(a) instead ofO(a?). So it is not surprising that the
Ward identity and the standard method give results which are
far apart. We find that the Ward identity method gives mass
values which are closer to the continuum result.

Finally, in Figs. 13 and 14 we compare our improved
quark masses with the world data of Wilson quark masses as
compiled in Ref[52] for the standard method. These authors
use thep mass extrapolated to the chiral limit to set the scale.
At B=6.0 the scale set by the string tension and by the
Wilson actionp mass differ by about 20% which explains
the difference between our Wilson data and the world data in
Figs. 13 and 14. We see that the improved action improves
the scaling behavior.

V. DECAY CONSTANTS

The pion decay constaifif, is well known experimentally
and can be determined from the two-point correlation func-
tions on the lattice as well, allowing for a further test of
scaling of the improved theory. We shall also look at the
decay constants of the, p, K*, and thea; meson.

In Euclidean space at zero three-momentum we define

<0|A4| 7T> = mﬂ'fﬂ' '

(0 Ailag Ny=e(\)m3 fa, (47)
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2 i
m Co,0,(1) =(01(1) 03(0))
(O[Vilp,\)=e(N); f—p, 1
P 1
= 5— [(0]O1|H)(0|Oz|H)* e~ M
: ; 2m
where A andV are the renormalized axial vector and vector H
currfnt, respectively, are(\) is the polarization vector with +<0|OI|H>*<0|O£|H>e‘ my(T-1)7
2\€7 (N\)ej(N)= ;. The pseudoscalar and vector states are
normalized by =Aop,0,[e” M+ e ™TY], (51
(plp’y=(2m)32ped(F—p’). (48)  whereO(t) is of the formVy 25 ;(X,t) [ (X,t), Vs being
the spatial volume of the lattice, ar@ = 7O with »=+1
Note that ourfall is defined to be dimensionless. being given byy,I'Ty,= 5I". The 7 factor tells us how®

In the improved theory the renormalized operators are Pehaves under time reversal, i.e., whether the two-point
function is symmetric or antisymmetric with respect tto

—T—t. HereT is the temporal extent of the lattice. In gen-
eral we have computed correlation functions with loda) (
and smearedS) operators.
V,=(1+byamZy(V,+icyad,T ), (50 We shall now consider the appropriate matrix elements
separately. We start with those matrix elements necessary for

WhereVM=Jyﬂzp and TMV:JO-Mle are the vector and ten- the 7. With our conventions we set
sor operators, respectively. We use the definitiop,

A,=(1+bpam)Zx(A,+cpad,P), (49

=i[y,.7,]/2. Both currents arépartially) conserved, and (0| Ay my=m {2, (52
hence no scale enters into their definition. The renormaliza-
tion constanZ, and the improvement coefficientg andby, (0]ad4P|m)=—sinham_(O|P|m)

have already been given in the last section. The renormaliza-
tion constantZ,, and the coefficientd,, andc, have been
computed nonperturbatively in Refel5, 53. At 8=6.0 the ©) £(1) _ »
values arez,=0.7780,b,=1.472, andc,=—0.326), and whgref LS,f aresgefmeq to be real and.posmve. By com-
at 8=6.2 the numbers arg, =0.7927,b,=1.409, andc,,  Puting C;’» andCpp we find, for the matrix element ok,
=—0.227). While for most of these quantities the authors from Eq. (52),

have given fit formulas im?, for ¢, we have read the num-

1
=m,af,

bers from the graph ifi53], as no such formula exists yet. «/ZmWA,L\SP
We have also determined, and by at 8=6.0 from our m, f¥0=—2x —554 (53
nucleon three-point functions and find consistent results. VAR

On the lattice we extract the meson decay constant from
two-point correlation functions. For large times we expectand for the matrix element @f,P we obtain from the ratio of
that the C3 and C> correlation functions

TABLE XIV. The various contributions to the decay constahjs f,, andfal at 8=6.0.

B=6.0
CSW: 0
v ‘ af® - i : oy
0.1487 0.13®) 0.3055) 0.1615)
16932 0.1515 0.1222) 0.3645) 0.2073)
0.1530 0.11®) 0.3977) 0.2313)
0.1550 0.098) 0.4599) 0.2624)
0 1 0 0 1 0 0
% K af® af®/£© £ af(D/f( £
0.1300 0.134(15) 1.7927) 0.2099) 0.6702) 0.1317)
0.1310 0.1298.5) 1.6988) 0.2283) 0.5882) 0.15313
16°32 0.1324 0.1208) 1.5995) 0.2612) 0.482312) 0.1727)
0.1333 0.1128) 1.5413) 0.2883) 0.414715) 0.20216)
0.1342 0.103®) 1.5116) 0.3233) 0.3532) 0.20816)
0.1342 0.108) 1.52116) 0.3307) 0.3483) 0.21210)
24°32 0.1346 0.10@) 1.583) 0.3537) 0.3276) 0.22514)

0.1348 0.10(8) 1.625) 0.35215) 0.32419) 0.252)
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TABLE XV. The same as Table XIV but fo8=6.2.
£=6.2
CSW: 0
Y% K af® £ %
0.1468 0.102819) 0.2695) 0.1279)
0.1489 0.093@7) 0.3156) 0.1804)
24348 0.1509 0.079@4) 0.3747) 0.2304)
0.1518 0.0714.3) 0.4129) 0.2614)
0.1523 0.066@.4) 0.43810) 0.2765)
Y% K af® afdrf £ af(N/f £
0.1321 0.098811) 1.2973) 0.2113) 0.46378) 0.1332)
0.1333 0.091@11) 1.1984) 0.2433) 0.371910) 0.1672)
24348 0.1344 0.081@0) 1.1332) 0.2834) 0.290Q15) 0.2043)
0.1349 0.075@®) 1.1187) 0.3085) 0.2552) 0.2263)
0.1352 0.07®) 1.131(11) 0.32716) 0.2354) 0.241(11)
aflV A3 (1) SALS S ASS
: af kAT, T KAV, v,
f(_O:S|nh am_ AT (54) _(g) =—j sinh amp Ll: ka SSk k_ (59)
” AaP fo 2 AV, \/ AT T

Alternatively, we can take the time derivative from the pla-
teau in the correlation function. Numerically we found that it
made very little difference to the result.

For thea; we set

(OlAlar Ny =e(\)img {1, (55)
and we find
2Ma, SiAia
m2 10 =2k ———p (56)
NS
For thep we set
0[Vilp,A)=e(\);m2f,
<|||p> ()lpp (57)

(0ladyTislp,\)=—sinham (0| T4lp.\)=ie(\)mzaf’,
and we obtain
V2m S AV,

VBZATY,

2£(0)
m2f (=2 (59)

and

In Tables XIV and XV we give the lattice results for the
matrix elements calculated from the above formulas. The fits
to the correlation functions, as for the masses, are all made
using the bootstrap method.

Collecting all the terms, the physical decay constants are
given by

f.=(1+baamZ,(fP+cafl),

(0)

fa1:(1+ bAam)ZAfal y (60)

1f,=(1+byamZ,(f¥+cyafll).

When the improvement terms are weighted with the appro-
priate ¢ factors, they contribute about 10—-20 % @t 6.0
and up to 10% aB=6.2. It is thus important to improve the
operators as well.

To perform the chiral extrapolation, we make fits similar
to those for the hadron masses, namely,

3

f2=bg+b,m2+bym3, (61)
f3,=bo+bmZ+bgm?, (62)
1/f2=bgo+b,mZ+bam?. (63

TABLE XVI. The decay constants, andfal, andf , extrapolated to the chiral limit, as well &g, fx«

taken at the physical quark mass.

B Cow af, fa, 1, afy 1Uf s

6.0 0 0.056977) 0.224076) 0.29511) 0.073226) 0.238524)
6.2 0 0.042836) 0.242948) 0.297171) 0.053711) 0.234528)
6.0 1.769 0.06220) 0.19510) 0.266439) 0.07218) 0.202G13)
6.2 1.614 0.04638) 0.213@45) 0.272674) 0.055714) 0.214919)
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FIG. 15. Fits and chiral extrapolations of the decay constants FIG. 16. The decay constants, and f, as a function of the
andf, for improved(®) and Wilson(O) fermions. lattice spacing for improve{®) and Wilson(O) fermions together

with the experimental value&). The errors onf, for improved

We decided to fit the square of the decay constants rath%ﬁ;m\}\%':oﬁrree:ﬁtt'ssg?i:[nslij (Oxu)r results foy are compared with

than the decay constants themselves because this shows less

curvature. The fits and the data are shown in Fig. 15for ever, a definite difference as we previously remarked. The

andf,. We compare this result with the meson decay ConWilson numbers lie above the experimental value, while the
stants computed with the Wilson action. These follow from. P ’

0. (60 i . -0 Forz, e use the tacpol-mproved 7540 0123 1€ below. e st femernver hough et
value given in Eq.(46), and forb, we take the tree-level Y

result (o,=1). The renormalization constag, (in the chi- ization constanZ,, which may be larger than the statistical

ral limit) has been determined nonperturbatively from a two-o1ors In the figure. The experimental number for the decay

point correlation function of the local vector currdtl] at constant of the, is [55] fa1:0'17(2)(m our notation. The
B=5.9, 6.1 and 6.3. Unlike the case &f, we find signifi-

cant differences between this determination and our determi- [T ST
nation using the nucleon three-point function. The latter

givesZ,=0.651(15) ay3=6.0 which is close to the tadpole- ]

improved result. This indicates larg®(a) effects. Since we 038 - :

are applyingZy, to a two-point function, we chose to use the % 1 o4 .

nonperturbative result from Ref51]. We interpolate this
result to3=6.0 and 6.2 and find,,=0.565 and 0.618, re-
spectively. Forby, we again take the tree-level result. Al-
though the individual contributions of the improvement
terms are significant, the overall result foyin Fig. 15 is not , ]
much changed when compared with the Wilson case for oss} -
smaller quark masses. For larger quark masses, especially ¢
B=6.0, the Wilsonf , is larger. The situation is different for
f,. Here we find a systematic difference of 10-20 %gat I 1 02
=6.0 and approximately 10% @t= 6.2 for all quark masses.

In both cases the difference between the two actions be-
comes smaller with increasing as one would expect.

0.36 — -

W
4 o022
i

f./VK

Our results extrapolated to the chiral limit are given in 0_3-J....|..‘.h...;.m.ﬁ.f S I T T
Table XVI, and we comparé, and f, with experiment in oo °'2\/°_'3 04 05 0 ot 0z 03 04 05
Fig. 16. Forf_, we find reasonable agreement of the im- a VK a VK

proved results with the experimental value using, as before, g 17. The decay constantg and f.» as a function of the
the string tension as the scale. When including the data Qfyice spacing for improved®) and Wilson (O) fermions. The
Ref. [54], one sees that the Wilson results lie lower, and iterrors onf. for improved fermions are statistical only. The solid
appears that the values are increasing as we approach thiges in thefy. figure are from a simultaneous linear fit to the
continuum limit. Forf, both our improved and Wilson re- wilson data and a quadratic fit to the improved data. Our results for
sults lie within 5% of the experimental value. There is, how-f, are compared with the experimental valig.
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agreement between experimental and lattice values is emaodel. Experimentally, their values are poorly known, and a
couraging. reliable lattice determination would be useful. Using two dif-
We can avoid errors from extrapolating to the chiral limit ferent methods, we have determined the light and strange
by considering quark masses within our data range, as wauark masses. Our results can be seen in Figs. 11 and 12.
have already done in Figs. 6 and 7. The most physical Both methods give consistent results for improved fermions.
values to use are those corresponding to khenass. To In the continuum limit we find for the average ofandd
obtain the decay constants we take E¢(fl) and (63) at  quark massesml'\,"ﬁ(z GeV)=5.1+0.2 MeV and mgﬂs(z
m,=mg. (Remember that we are using, as a generic GeV)=112+5 MeV. In the Wilson case the discrepancy be-
name for the pseudoscalar meson maag give the results tween the two methods is much larger, hinting at substantial
for fx and fx« in Table XVI, and in Fig. 17 we show the O(a) effects.
scaling behavior together with the experimental value for When calculating the decay constants, an advantage of
fx . We find the errors to be substantially reduced. owe  using the improved theory is that the renormalization con-
see no difference between improved and Wilson results, botktants and improvement coefficients far, fal, f,, andfyx«

lying 10% below the experimental value. Fhg« the error  are known. Forf,, we still have to use the perturbative val-
bars have become small enough to attempt an extrapolatiqfes ofb, because they have not yet been computed nonper-
to the continuum limit. The curves are a simultaneous fityrpatively. A systematic uncertainty in the Wilson case lies
linear for the Wilson and quadratic for the improved data,in the choice of the renormalization constants. While the
constrained to agree in the continuum limit. In this quantityresults are in reasonable agreement with phenomenology, the
there appear to be larg@(a®) effects in the improved case. data are at present not precise enough to discuss an extrapo-
lation to the continuum limit, with the possible exception of
VI. CONCLUSIONS fk«. In that case it looks that there are relatively large

. . . . O(a?) effects betweerB=6.0 and 6.2.
The goal of this paper was to investigate the scaling be Our general conclusion is that the Wilson action @t

havior of O(a)-improved fermions. If scaling is good, the o i
results we get should already be close to the continuum va?6'O hasO(a) errors of up to 20% co.mpared.to the con
ues for present values of the coupling. To this end we hav inuum extrapolation. The nonperturbativelya)-improved

i 2 0 =
done simulations for two values gfand looked at two-point ex?:oeryt ?c?r"trfg?/\\llvz:r(g(iz e)nt(iatﬁecljzr(lzfmu;sstgslver{oe rifheeé?f’ect is
correlation functions from which we derive hadron masses P Y4
quark masses, and meson decay constants Somewhat larger. If one wants to go to smaller valueg,of
First we Ioo'ked at hadron masses. The most visible difo"¢ probably will have to reduce t@(a’) errors as well.

. _ 2 . .
ference between Wilson and improved fermions is thatthe G0N t05=6.2 reduces” by a factor of almost 2, bringing

mass is much lighter in the Wilson case at comparable plorqlscrenzatlon errors down to 5% or less. To achieve a one

masses. In Fig. 6 we see that the improved action haRercent accuracy would require calculations at sevensl-

brought thep mass closer to its physical value when we useUes and an extrapolation &= 0.
the string tension to set the scale. In this figure we have
compared the Wilson actiop masses at many different
scales. We see a linear behavior in the lattice spaaias This work was supported in part by the Deutsche Fors-
one would expect. For improved fermions we find the dis-chungsgemeinschaft. The numerical calculations were per-
cretization errors reduced for our couplings. formed on the Quadrics computers at DESY-Zeuthen. We
A problem with Wilson fermions was that they could not wish to thank the operating staff for their support. We fur-
describe the vector-pseudoscalar mass splitting adequateljrermore thank Hartmut Wittig for help with Table IX and
This problem seems to be cured by using improved fermiongdenning Hoeber for communicating his new string tension
Quark masses are important parameters in the standardsults to us prior to publication.
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