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We compute the hadron mass spectrum, the quark masses, and the meson decay constants in quenched
lattice QCD with nonperturbativelyO(a)-improved Wilson fermions. The calculations are done for two values
of the coupling constantb56.0 and 6.2, and the results are compared with the predictions of ordinary Wilson
fermions. We find that the improved action reduces lattice artifacts as expected.@S0556-2821~98!05609-4#

PACS number~s!: 12.38.Gc, 12.15.Ff, 12.40.Yx
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I. INTRODUCTION

The calculation of hadron masses in lattice gauge the
has a long history. Over the years there has been a st
improvement in computing power and methods allowi
simulations on larger volumes and smaller quark mas
with higher statistics. However, the progress to smaller
tice spacinga has been slower because of the high compu
cost which increases by at least a factor of (1/a)5. Since it is
so expensive to reduce cutoff effects by reducinga, we
should consider reducing them by improving the action.

A systematic improvement program reducing the cut
errors order by order ina has been proposed by Symanz
@1# and developed for on-shell quantities in Ref.@2#. The
standard gluonic action has discretization errors ofO(a2),
but those for Wilson fermions are ofO(a). Therefore it is
the fermionic action which is most in need of improveme

Sheikholeslami and Wohlert@3# proposed the action~we
assumer 51 throughout the paper!

SF5SF
~0!2

i

2
kgcSW~g!aa4(

x
c̄~x!smnFmn~x!c~x!,

~1!

whereSF
(0) is the original Wilson action and

Fmn~x!5
1

8iga2 (
m,n56

@U~x!mn2U~x!mn
† #. ~2!

In Eq. ~2! the sum extends over the four plaquettes in themn
plane which havex as one corner, and the plaquette ope
tors U(x)mn are the products of the four link matrices com
prising the plaquettes taken in a clockwise sense. IfcSW is
appropriately chosen, this action removes allO(a) errors
from on-shell quantities such as the hadron masses. A n
perturbative evaluation of this function leads to@4#
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When we talk about improved fermions in the following, w
always understand thatcSW has been chosen according to E
~3!.

In this paper we shall present results for the light had
mass spectrum, the light and strange quark masses, an
light meson decay constants using the improved action.
calculation is done for two values of the couplingb56.0 and
6.2 which allows us to test for scaling.

The mass calculations extend our earlier work@5# where
we have examined thecSW dependence atb56.0. To exhibit
the effect of improvement, we have also done calculatio
with Wilson fermions on the same lattices. Most of our W
son data come from our structure function calculations@6,7#,
and we combine this with masses from the literature at ot
b values to see the dependence ona clearly.

From the meson correlation functions we also extract m
son decay constants and quark masses. However, simply
proving the action is not sufficient to remove allO(a) errors
from these quantities. Here we also have to improve the
erators which is done by adding higher-dimensional ter
with the same quantum numbers in an appropriate fashio

This paper is organized as follows. In Sec. II we brie
describe our numerical method. The hadron masses are g
in Sec. III, concentrating in particular on the extrapolation
the chiral limit and the scaling behavior of improved a
Wilson action results. In Sec. IV we compute the light a
strange quark masses using two different methods, from
axial vector current Ward identity and from the lattice ba
quark masses. The meson decay constants are discuss
Sec. V. Finally, in Sec. VI we give our conclusions.

II. COMPUTATIONAL DETAILS

Our calculations have mainly been done atb56.0 and 6.2
on 16332, 24332, and 24348 lattices. We use Quadrics~for-
merly called APE! parallel computers. For the improved ca
the parametercSW is given from Eq.~3! as cSW51.769 at
b56.0 andcSW51.614 atb56.2. The simulations are don
for at least five differentk values in each case. This help
with the extrapolation to the chiral limit.

For the gauge field update we use a combination of
5562 © 1998 The American Physical Society



57 5563SCALING OF NONPERTURBATIVELYO(a)-IMPROVED . . .
TABLE I. Hadron masses atb55.7 for Sheikholeslami-Wohlert fermions withcSW51 and 2.25. In the bottom row we givekc and the
mass values extrapolated to the chiral limit. The numbers in roman~italic! are from three-parameter~two-parameter! fits. The errors are
bootstrap errors.

b55.7
cSW51.0

V k amp amr amN ama0
ama1

amb1

0.1500 0.5028~17! 0.757~7! 1.135~18! 1.36~10! 1.61~19! 1.06~16!

16332 0.1510 0.414~2! 0.711~8! 1.040~17! 1.11~17! 1.31~12! 1.11~17!

0.1520 0.288~5! 0.660~19! 0.92~3! 1.09~17! 1.25~20!

C.L. 0.15280~14! 0 0.605(24) 0.797(49) 0.70(36) 1.31(30)

cSW52.25
V k amp amr amN ama0

ama1
amb1

0.1270 0.841~3! 1.087~8! 1.588~12! 1.64~10! 1.56~7! 1.48~13!

16332

0.1275 0.791~4! 1.053~10! 1.518~23! 1.56~7! 1.51~5! 1.53~9!

0.1280 0.736~3! 1.022~11! 1.453~18! 1.50~7! 1.46~4! 1.42~7!

0.1285 0.672~5! 0.988~9! 1.399~24! 1.57~14! 1.41~6! 1.39~7!

0.1290 0.607~7! 0.955~8! 1.320~20! 1.59~14! 1.34~8! 1.33~11!

0.1295 0.519~11! 0.922~16! 1.23~3! - 1.28~10! 1.33~16!

C.L. 0.13074~29! 0 0.793(19) 0.948(46) 1.43(33) 1.06(16) 1.13(25)
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overrelaxation sweeps followed by a three-hit Metropolis u
date. This procedure is repeated 50 times to generate a
configuration.

The improvement term in Eq.~1! appears in the site
diagonal part of the action. The major overhead in our cas
multiplication by this term during inversion of the fermio
mass matrix. In our basis of Hermitiang matrices we can
rewrite this term as@8#

12
i

2
kgcSWs•F5S A B

B AD
5

1

2 S 1 21

1 1 D S A1B 0

0 A2BD
3S 1 1

21 1D , ~4!

whereA, B are 636 matrices~two-spinors with color!, so
that instead of a 12312 multiplication we have two 636
multiplications and two inexpensive coordinate transform
tions. This reduces the overhead for the improvement in
inverter from 45 to 30%. Also, the inverse of the matrix
Eq. ~4! is required on half the lattice due to the even-o
preconditioning. We now have to invert two 636 instead of
a 12312 matrix. However, this is only required once f
each propagator inversion.

For the matrix inversion we mainly used the minimal re
due algorithm, except for the lightest quark mass on
larger lattices where we used theBICGSTAB algorithm@9,10#.
As convergence criterion we chose

ur u<1026 ~5!
-
ew

is

-
e

-
e

for the residue, which is the best that can be achieved for
single precision machine.

For the mass calculations we used Jacobi smearing
source and sink. For a detailed description of our applicat
of this procedure see Ref.@11#. We have two parameters w
can use to set the size of our source, the number of smea
stepsNs and the smearing hopping parameterks . We chose
Ns550 for b56.0 and 100 forb56.2 andks50.21 at both
b values. This gives roughly the same rms radius in phys
units in both cases, namely 0.4 fm. To define the ma
elements for the decay constants and quark masses, we
also computed correlation functions with smeared source
local sink. This does not require any additional matrix inve
sions.

At b56.0 andcSW50 we had generatedO(5000) con-
figurations for our structure function project on which w
have computed the hadron masses. To these we a
O(150) new configurations on which we computed the m
son decay constants and the chiral Ward identity. ForcSW
51.769 we have analyzedO(1000) configurations. For the
heavier quark masses,k50.1487 andk50.1300, 0.1310,
0.1320, respectively, the number of configurations w
O(200). On the 243 lattice we have generatedO(100) and
O(200) configurations atcSW50 and 1.769, respectively. A
b56.2 we only ran on 243 lattices. Here we have analyze
O(100) configurations forcSW50 and O(300) configura-
tions for cSW51.614. We employed both relativistic an
nonrelativistic wave functions@6,7#, except for the high sta-
tistics runs where we only looked at the nonrelativistic wa
function in order to save computer time.

Besides our calculations atb56.0 and 6.2 we also mad
exploratory studies atb55.7 to see what effect varyingcSW
has on coarser lattices. If one decreasesb, increasescSW or
increasesk, one starts to get problems with exceptional co
figurations. This showed up in nonconvergence of our f
mion matrix inversions. It was, however, only a real proble
at b55.7, cSW52.25 and@5# b56.0, cSW53.0.
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TABLE II. Hadron masses atb56.0 for Wilson fermions (cSW50) and improved fermions (cSW51.769). Otherwise the notation is th
same as in Table I.

b56.0
cSW50

V k amp amr amN ama0
ama1

amb1

0.1487 0.6384~18! 0.683~2! 1.071~7! 0.885~19! 0.933~13! 0.940~19!

16332
0.1515 0.5037~8! 0.5696~10! 0.9019~17! 0.817~7! 0.851~7! 0.849~13!
0.1530 0.4237~8! 0.5080~11! 0.7977~20! 0.763~11! 0.797~6! 0.809~7!
0.1550 0.3009~10! 0.4264~14! 0.6517~30! 0.735~15! 0.717~12! 0.736~9!

0.1550 0.292~2! 0.418~5! 0.638~8! 0.610~48! 0.657~33! 0.659~35!
24332 0.1558 0.229~2! 0.384~7! 0.555~12! 0.616~90! 0.613~41! 0.638~38!

0.1563 0.179~3! 0.358~11! 0.488~22! 0.88~15! 0.584~52! 0.615~44!

C.L. 0.15713~3! 0 0.327~6! 0.412~16! 0.658(19) 0.632(14) 0.650(13)

cSW51.769
V k amp amr amN ama0

ama1
amb1

0.1300 0.707~2! 0.783~6! 1.190~6!

16332

0.1310 0.627~2! 0.714~3! 1.079~7!
0.1320 0.545~5! 0.644~8! 0.974~16!
0.1324 0.5039~7! 0.6157~16! 0.932~4! 0.779~14! 0.829~12! 0.853~7!
0.1333 0.4122~8! 0.5502~23! 0.821~5! 0.738~15! 0.773~7! 0.799~10!
0.1342 0.2988~17! 0.487~3! 0.705~9! 0.92~5! 0.68~2! 0.775~15!

0.1342 0.3020~11! 0.491~3! 0.686~7! 0.82~3! 0.715~19! 0.758~16!
24332 0.1346 0.2388~14! 0.467~6! 0.626~10! 1.00~8! 0.684~26! 0.745~20!

0.1348 0.194~4! 0.448~13! 0.593~19! 1.52~20! 0.664~34! 0.736~29!

C.L. 0.13531~1! 0 0.417~7! 0.511~15! 0.816(33) 0.625(19) 0.710(14)
n

ua

tial
fit

thod
lts in

in
III. HADRON MASSES

We consider hadrons where all the quarks have dege
ate masses. We looked atp, r, nucleon (N), a0 , a1 , andb1
masses, and we have used this nomenclature for all q
masses, not just in the chiral limit.
er-

rk

In our mass calculations we have made single exponen
fits to meson and baryon correlators over appropriate
ranges. The errors are determined using the bootstrap me
with 50 data samples. We present our hadron mass resu
Tables I, II, and III. Table II updates the results presented
e
TABLE III. Hadron masses atb56.2 for Wilson fermions (cSW50) and improved fermions (cSW51.614). Otherwise the notation is th
same as in Table I.

b56.2
cSW50

V k amp amr amN ama0
ama1

amb1

0.1468 0.5258~12! 0.5585~16! 0.872~5! 0.685~8! 0.700~21! 0.695~21!
0.1489 0.4148~13! 0.4615~19! 0.720~6! 0.589~8! 0.624~9! 0.626~9!

24348 0.1509 0.2947~14! 0.3672~27! 0.560~10! 0.507~14! 0.536~13! 0.540~13!
0.1518 0.2299~15! 0.326~4! 0.487~12! 0.474~20! 0.509~16! 0.519~17!
0.1523 0.1867~17! 0.307~6! 0.448~14! 0.479~30! 0.492~17! 0.511~21!

C.L. 0.15336~4! 0 0.255~9! 0.342~28! 0.407(17) 0.449(15) 0.464(16)

cSW51.614
V k amp amr amN ama0

ama1
amb1

0.1321 0.5179~7! 0.5738~11! 0.877~4! 0.691~5! 0.723~6! 0.727~6!

24348
0.1333 0.4143~8! 0.4850~15! 0.735~5! 0.603~10! 0.642~5! 0.638~8!
0.1344 0.3046~9! 0.4005~26! 0.592~9! 0.532~21! 0.563~7! 0.566~9!
0.1349 0.2444~9! 0.3626~43! 0.521~13! 0.543~22! 0.529~10! 0.539~12!
0.1352 0.2016~11! 0.3430~53! 0.485~6! 0.646~53! 0.514~13! 0.523~25!

C.L. 0.13589~2! 0 0.287~9! 0.378~18! 0.460(21) 0.460(9) 0.465(12)
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TABLE IV. The critical values ofk, kc , of our data for the linear@Eq. ~6!#, chiral @Eq. ~7!#, and
phenomenological fit@Eq. ~8!# for the variouscSW parameters.

b cSW

Eq. ~6! Eq. ~7! Eq. ~8!

kc x2/dof kc x2/dof kc x2/dof

5.7
1.0 0.15305~5! 3.0 0.15274~15! 0.15280~14!

2.25 0.13120~7! 0.7 0.13065~28! 0.1 0.13074~29! 0.1

6.0
0 0.15695~1! 17.5 0.15726~5! 8.6 0.15713~3! 6.6
1.769 0.13521~1! 11.5 0.13537~2! 1.5 0.13531~1! 1.0

6.2
0 0.15308~1! 30.8 0.15361~8! 0.7 0.15336~4! 0.0
1.614 0.13574~1! 39.6 0.13601~3! 1.2 0.13589~2! 0.1
r
v

nd
rk
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w
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Ref. @5#. For the meson masses we found very little diffe
ence between using relativistic and nonrelativistic wa
functions, and we settled for relativistic wave functions~ex-
cept for the high statistics runs!. For the nucleon we have
chosen nonrelativistic wave functions@6# which performed
slightly better because the effective mass plateaus exte
to larger times. Atb56.0 we repeated the lightest qua
mass on 16332 on the 24332 lattice, for both improved and
Wilson fermions. The values agree within less than 3%. T
indicates that all our results on the 16332 lattice do not suffer
from significant finite size effects.

Chiral Behavior.To obtain the critical value ofk, kc , and
the hadron masses in the chiral limit, we extrapolate our d
to zerop mass. We first tried

mp
2 5bS 1

k
2

1

kc
D . ~6!

Using this relation gives a rather poor fit of the data, and
saw that there was a slight curvature in a plot ofmp

2 against
1/k. Quenched chiral perturbation theory predicts@12#

FIG. 1. The critical values ofk for improved Wilson fermions
as a function ofg2 from this work~s! and Ref.@4# ~3!. The curve
is the tadpole-improved result given in Eq.~10!.
-
e

ed

is

ta

e

mp
2 5b8S 1

k
2

1

kc
D 1/~11d!

, ~7!

whered is small and positive. We made fits using this fo
mula but found thatd was always negative. As in our prev
ous work@5# we conclude that ourk values are too far from
kc for the formula to be applicable. This is in agreement w
observations made by other authors@13#. As an alternative
parametrization of the curvature we used the phenome
logical fit

1

k
5

1

kc
1b2mp

2 1b3mp
3 . ~8!

In Table IV we give the values ofkc for the different fits.
The linear fits givex2/dof values of up to 40. The other tw
fits both give acceptable values ofx2, but Eq. ~8! usually
gives a lowerx2 than Eq.~7!. In the following we shall take
kc from the phenomenological fits.

FIG. 2. Fits and chiral extrapolations ofr and nucleon masse
for improved~d! and Wilson fermions~s!.
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TABLE V. World Wilson fermion masses aboveb56.0.

b k amp amr amN Lattice Ref.

6.30 0.1400 0.789~4! 0.804~4! 323348 @16#

6.30 0.1430 0.646~6! 0.670~5! 323348 @16#

6.30 0.1460 0.4879~12! 0.5188~18! 0.8252~42! 243332 @17#

6.30 0.1480 0.382~4! 0.429~4! 323348 @16#

6.30 0.1485 0.3480~14! 0.3990~23! 0.6340~47! 243332 @17#

6.30 0.1498 0.2631~19! 0.3354~30! 0.5215~67! 243332 @17#

6.30 0.1500 0.253~6! 0.333~4! 323348 @16#

6.30 0.1505 0.2093~26! 0.3012~40! 0.4506~89! 243332 @17#

6.20 0.1468 0.5258~12! 0.5585~16! 0.872~5! 243348 this work
6.20 0.1489 0.4148~13! 0.4615~19! 0.720~6! 243348 this work
6.20 0.1509 0.2947~14! 0.3672~27! 0.560~10! 243348 this work
6.20 0.1510 0.289~1! 0.366~2! 0.566~4! 243364 @18#

6.20 0.1515 0.254~1! 0.343~3! 0.525~6! 243364 @18#

6.20 0.1518 0.2299~15! 0.326~4! 0.487~12! 243348 this work
6.20 0.1520 0.220~7! 0.327~9! 0.495~10! 243348 @19#

6.20 0.1520 0.215~1! 0.321~5! 0.48~1! 243364 @18#

6.20 0.1523 0.1867~17! 0.307~6! 0.448~14! 243348 this work
6.20 0.1526 0.158~1! 0.29~1! 0.45~3! 243364 @18#

6.17 0.1500 0.3866~12! 0.4458~18! 0.6966~40! 322330340 @20#

6.17 0.1519 0.2631~12! 0.3572~26! 0.5460~52! 322330340 @20#

6.17 0.1526 0.2064~15! 0.3245~39! 0.4848~68! 322330340 @20#

6.17 0.1532 0.1455~20! 0.2965~88! 0.4097~78! 322330340 @20#
kc5
1

8
@11g2~0.10857120.028989cSW20.012064cSW

2 !#.

~9!
In Fig. 1 we plotkc for improved Wilson fermions. We
compare our results with the results of Ref.@4#. The agree-
ment is excellent. In one-loop perturbation theorykc is given
by @5#
TABLE VI. World Wilson fermion masses atb56.0.

b k amp amr amN Lattice Ref.

6.0 0.1450 0.8069~7! 0.8370~9! 1.3225~28! 243354 @21#

6.0 0.1487 0.6384~18! 0.683~2! 1.071~7! 163332 this work
6.0 0.1515 0.5037~8! 0.5696~10! 0.9019~17! 163332 this work
6.0 0.1520 0.4772~9! 0.5486~15! 0.8669~49! 243354 @21#

6.0 0.1520 0.474~1! 0.545~2! 0.861~5! 183332 @17#

6.0 0.1530 0.423~1! 0.508~3! 0.801~6! 183364 @18#

6.0 0.1530 0.4237~8! 0.5080~11! 0.7977~20! 163332 this work
6.0 0.1530 0.422~1! 0.505~1! 0.786~3! 323364 @22#

6.0 0.1540 0.364~1! 0.468~4! 0.729~7! 183364 @18#

6.0 0.1545 0.33076~28! 0.4425~10! 0.6777~21! 243364 @23#

6.0 0.1550 0.298~1! 0.431~6! 0.66~1! 183364 @18#

6.0 0.1550 0.3009~10! 0.4264~14! 0.6517~30! 163332 this work
6.0 0.1550 0.29642~27! 0.4220~12! 0.6393~27! 243364 @23#

6.0 0.1550 0.292~2! 0.418~5! 0.638~8! 243332 this work
6.0 0.1550 0.2967~15! 0.4218~42! 0.6440~85! 243354 @21#

6.0 0.1550 0.296~1! 0.422~2! 0.630~5! 323364 @22#

6.0 0.1555 0.25864~33! 0.4016~17! 0.6003~37! 243364 @23#

6.0 0.1555 0.2588~16! 0.3982~61! 0.6007~109! 243354 @21#

6.0 0.1558 0.234~1! 0.387~3! 0.557~7! 323364 @22#

6.0 0.1558 0.229~2! 0.384~7! 0.555~12! 243332 this work
6.0 0.1563 0.1847~27! 0.353~15! 0.536~30! 243354 @21#

6.0 0.1563 0.185~1! 0.361~5! 0.506~11! 323364 @22#

6.0 0.1563 0.179~3! 0.358~11! 0.488~22! 243332 this work
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TABLE VII. World Wilson fermion masses belowb56.0.

b k amp amr amN Lattice Ref.

5.93 0.1543 0.4572~26! 0.5527~40! 0.8674~102! 243336 @20#

5.93 0.1560 0.3573~19! 0.4864~42! 0.7448~99! 243336 @20#

5.93 0.1573 0.2641~25! 0.4369~48! 0.6423~80! 243336 @20#

5.93 0.1581 0.1885~31! 0.4071~57! 0.5652~92! 243336 @20#

5.85 0.1440 1.0293~12! 1.0598~15! 1.6961~50! 243354 @21#

5.85 0.1540 0.6122~11! 0.6931~27! 1.1060~55! 243354 @21#

5.85 0.1585 0.3761~12! 0.5294~69! 0.815~13! 243354 @21#

5.85 0.1585 0.378~2! 0.530~6! 0.783~10! 163332 @24#

5.85 0.1595 0.3088~14! 0.4856~96! 0.744~17! 243354 @21#

5.85 0.1600 0.2730~30! 0.486~9! 0.673~9! 163332 @24#

5.85 0.1605 0.2226~21! 0.434~20! 0.683~48! 243354 @21#

5.70 0.1600 0.6905~31! 0.8022~56! 1.3124~135! 243332 @20#

5.70 0.1600 0.6873~24! 0.8021~29! 1.2900~60! 163320 @25#

5.70 0.1610 0.6527~15! 0.7842~26! 1.263~5! 123324 @17#

5.70 0.1630 0.5621~18! 0.7232~35! 1.153~6! 123324 @17#

5.70 0.1640 0.5080~29! 0.6822~38! 1.0738~80! 163320 @25#

5.70 0.1650 0.4604~22! 0.6663~45! 1.039~8! 123324 @17#

5.70 0.1650 0.4589~22! 0.6491~73! 1.0301~104! 243332 @20#

5.70 0.1663 0.3829~26! 0.6206~103! 0.9421~131! 243332 @20#

5.70 0.1665 0.3674~39! 0.6085~58! 0.915~11! 163320 @25#

5.70 0.1670 0.3302~30! 0.6042~83! 0.919~14! 123324 @17#

5.70 0.1675 0.2955~24! 0.5912~125! 0.8668~177! 243332 @20#
or
e

ts
f

a

ce

nd
rld

n

-

.

The tadpole-improved value ofkc that follows from this re-
sult is

kc5
1

8
@11g* 2

„0.02523820.028989cSWu0
3

20.012064~cSWu0
3!2

…#u0
21, ~10!

wherecSW is given by Eq.~3!,

u05 K 1

3
Tr UhL 1/4

~11!

andg* 2 is the boosted coupling constant defined by

g* 25g2/u0
4. ~12!

In Fig. 1 we compare the tadpole-improved perturbative f
mula ~10! with the data where for the larger couplings w
have takenu0 from @14,15#. The curve and the data poin
agree within less than 1%. In Eq.~10! one has the choice o
using the lowest order tadpole-improved value ofcSW,
namelyu0

23 @4#, or the value from Eq.~3! which is the value
actually used in the simulations. Both procedures remove
the tadpole diagrams and differ only by smallO(g4) terms,
so they are both reasonable. We prefer the second choi

We fit the other hadron masses by the formula

mH
2 5b01b2mp

2 1b3mp
3 , H5r,N,... . ~13!

The result of the fit is shown in Fig. 2 for both improved a
Wilson fermion data. The Wilson fermion data are the wo
data compiled in Tables V, VI, and VII.
-

ll

.

We find Eq.~13! to be a more appropriate fit formula tha
the ansatz@26#

mH5b081b28mp
2 1b38mp

3 , ~14!

because for the nucleon the plot ofmN
2 againstmp

2 ~or 1/k! is
less curved thanmN againstmp

2 , as can be seen from com
paring Fig. 2 with Fig. 3.@Note that the two formulas differ
only by terms ofO(mp

4 )#. This was noticed before in Refs

FIG. 3. Linear plot ofr and nucleon masses for improved~d!
and Wilson fermions~s!.
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5568 57M. GÖCKELER et al.
@16, 27#, and recently also in Ref.@28#. To decide which fit
formula is best and to do a reliable extrapolation to the ch
limit, it is important to have manyk values. For thea0 , a1 ,
and b1 masses only a two-parameter fit withb3 set to zero
was reasonable. The mass values in the chiral limit for
data are also given in Tables I, II, and III.

We see that the effect of improvement is largest for thr
mass. In the chiral limit the difference between improv
and Wilson results is 25% atb56.0 and still 12% atb
56.2. It is quite common to define the physical scale fro
ther mass. The relatively large change of this quantity fro
the Wilson to the improved case suggests that it conta
largeO(a) corrections, and that this procedure is misleadi
A better procedure is to use the string tension orr 0 @29#, the
force parameter, as the scale. For the nucleon mass the
ference between the two actions is smaller.

At b56.0 we have data on two different lattice sizes f
improved and Wilson fermions. Though we have alrea
seen that finite size effects are small, one may ask to d
separate analysis for each lattice size, to keep finite size
finite lattice spacing effects separate, and to test for con
tency of the results. We have made fits using only the data
the large lattice. Because these data are closer tokc , themp

3

term in Eqs.~8!, ~13!, and~14! is not needed, so that we hav
used the truncated formulae withb3 andb38 set to zero. Near
kc it should also make no difference whether Eq.~13! or Eq.
~14! is used. The result of the fits are given in Table VIII. W
see that the fits on the large lattice and the fit to all d
points give consistent results for the masses. The errors f
fitting just the data on the large lattice, however, turn out
be a factor of two larger. Forkc the various fits give consis
tent results for Wilson fermions. For improved fermions t
results differ by 2–3 standard deviations. The value from
simultaneous fit is the best estimate we have. It is in go
agreement with the UKQCD resultkc50.135335217

120 @30#. In
the following we shall use the values from the simultaneo
fits.

APE plots.In Figs. 4 and 5 we show the dimensionle
ratio mN /mr as a function of (mp /mr)2, a so-called APE
plot, for b56.0 and 6.2, both for improved and Wilson fe
mions~the latter using the world data given in Tables V a
VI !. The solid lines are the results of the ratio of the fits

TABLE VIII. Comparison of chiral extrapolations atb56.0
using all the data~top rows!, and using only the data from th
largest lattice. In the fits on the 24332 lattice we have setb35b38
50.

cSW50
V Fit formulas kc amr amN

16332 & 24332 ~8! & ~13! 0.15713~3! 0.327~6! 0.412~16!

24332 ~6! & ~13! 0.15709~4! 0.319~16! 0.377~37!

24332 ~6! & ~14! 0.15709~4! 0.325~14! 0.410~26!

cSW51.769
V Fit formulas kc amr amN

16332 & 24332 ~8! & ~13! 0.13531~1! 0.417~7! 0.511~15!

24332 ~6! & ~13! 0.13526~2! 0.421~15! 0.514~27!

24332 ~6! & ~14! 0.13526~2! 0.424~14! 0.527~23!
l
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Fig. 2. At b56.0 we find that the mass ratio data are rath
different for the two actions. The improved results lie co
sistently lower than the Wilson results. Atb56.2 we find the
same pattern in the data.

At b56.0 we can say something about the chiral lim
Our fits give mN /mr51.20(6) for improved fermions and
mN /mr51.33(2) for Wilson fermions. The improved resul
come closer to the physical value than the Wilson results
b56.2 we are lacking data at small quark masses and
larger volumes. In the chiral limit our fits givemN /mr

51.32(11) for improved fermions andmN /mr51.39(12)

FIG. 4. APE plot at b56.0 for improved~d! and Wilson fer-
mions~s! compared with the physical mass ratio~* ! at the physical
quark mass and in the heavy quark limit. The solid lines are fr
the mass fits described in the text.

FIG. 5. The same as Fig. 4, but forb56.2. The hatched bars
indicate the errors of the fit in the chiral limit.
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TABLE IX. The lattice spacing expressed in terms of the string tensionK and the force parameterr 0 .
When several groups have computed these quantities, we have taken the weighted average, while w
polate logarithmically whenever the values are not known.

b aAK Ref. r 0 /a Ref. r 0AK

6.8 0.0730~12! @32# 16.7~4! @15# 1.22~4!

6.5 0.1068~10! @33#

0.1215~12! @32# 9.87~8! @15#

6.4 0.1218~28! @34# 9.70~24! @34#

0.1215~11! combined 9.85~8! combined 1.197~15!

6.3 0.1394~11! interpolated

0.1610~9! @35# 7.36~4! @15#

6.2
0.1608~23! @34# 7.33~25! @34#

0.1609~28! @36#

0.1610~8! combined 7.36~4! combined 1.185~9!

6.17 0.1677~8! interpolated

0.2209~23! @35# 5.28~4! @15#

6.0
0.2154~50! @34# 5.53~15! @34#

0.2182~21! @37#

0.2191~15! combined 5.30~4! combined 1.161~12!

5.93 0.2536~29! interpolated

5.90 0.2702~37! @38# 4.62~11! @15# 1.25~3!

5.85 0.2986~27! interpolated

5.8 0.3302~30! @38# 3.63~5! @15# 1.199~20!

5.7 0.4099~24! @38# 2.86~5! @15# 1.172~22!

5.6 2.29~6! @15#

5.5 2.01~3! @15#
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for Wilson fermions, so that we cannot say anything conc
sive about the behavior of the two actions in the chiral lim
in this case.

Scaling behavior.Let us now look at and compare th
scaling behavior of the two actions. We shall limit our d
cussion to ther mass because the errors of the nucleon
too large to make precise statements. In order to exhibit
cutoff effects most clearly, it has been suggested@31# thatmr

should be plotted in units of the square root of the str
tensionK which has cutoff errors ofO(a2) only. In Table IX
we have compiled the world string tension data. When th
are several calculations, we performed the weighted aver

In Fig. 6 we plot the ratiomr /AK as a function ofaAK.
This is done for fixed physicalp masses withmp

2 50, 2K,
and 4K. Comparing hadron masses at larger quark mas
has the advantage that this does not require large extrap
tions of the lattice data but rather involves small interpo
tions only. The Wilson fermion data shown are a fit to t
world data compiled in Tables V, VI, and VII. As expecte
the Wilson masses show practically a linear behavior in
lattice spacinga. We have done a simultaneous linear pl
quadratic fit to the Wilson data and a quadratic fit to t
improved data. The fit is constrained to agree in the c
tinuum limit. The result of the fit is shown by the solid line
-
t

e
e

g

re
e.

es
la-
-

e

-

in Fig. 6. In the continuum limit we obtainmr /AK
51.80(10). We compare this result with the experimentar
mass. For the string tension we take the value

AK5427 MeV ~15!

which has been obtained from a potential fit to the charm
nium mass spectrum@39#. Using this value the physica
mr /AK is 1.80 which agrees with the lattice number.

The simultaneous fit uses all the information we have a
gives the best estimate of the ratiomr /AK in the continuum
limit. Separate fits to the improved and Wilson data gi
1.64~13! and 2.01~15!, respectively. These numbers are o
standard deviation away from the result of the simultane
fit. This shows that both data sets are important in the sim
taneous fit, and that the error bar on the continuum resu
substantially reduced by combining both data sets.

As mentioned previously, an alternative scale from t
potential isr 0 . We have also compiled lattice results forr 0

in Table IX. We see that it scales very well withAK, as the
productr 0AK is approximately constant at about 1.19, wh
the lattice spacinga changes by a factor of more than
However, the physical value ofr 0AK is 1.06, takingr 0

21 as
402 MeV which follows from the same potential that giv
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5570 57M. GÖCKELER et al.
AK5427 MeV @39#. It does not seem that this discrepan
will vanish asa→0. It is telling us that the lattice potentia
has a slightly different shape to the continuum potential. T
may be an effect of quenching@40#.

Although atb55.7 we do not know the correct value o
cSW, using our larger valuecSW52.25 we find mr /AK
51.94 in the chiral limit. Comparing this number with Fig
6, it indicates thatO(a2) effects are moderate even at th
coupling.

Mass splitting.The vector-pseudoscalar mass splitting

DV-PS5mV
2 2mPS

2 ~16!

is experimentally rather constant for all quark flavors. O
finds

mr
22mp

2 50.57 GeV2,

mK*
2

2mK
2 50.55 GeV2,

mD*
2

2mD
2 50.55 GeV2. ~17!

FIG. 6. The ratiomr /AK as a function of the lattice spacing fo
improved~d! and Wilson fermions~s!. The solid lines are from a
simultaneous linear plus quadratic fit to the Wilson data and a q
dratic fit to the improved data. This is compared with the expe
mental value~* ! usingAK5427 MeV. The shaded bars indicate th
errors of the fit in the continuum limit.
is

e

Quenched lattice calculations with Wilson fermions are u
able to reproduce these numbers. Wilson fermions giv
splitting which is much too small. In Fig. 7 we compare t
experimental values ofmr

22mp
2 andmK*

2
2mK

2 with the lat-
tice data and the mass fits. As before, we have taken
string tension Eq.~15! as the scale. In Fig. 7 we also sho
the results for improved fermions and the correspond
mass fits as well. There is a noticeable change when goin
the improved case. We find good agreement with experim
for the absolute values.

In the heavy quark effective theory@41#

DV-PS}^C̄smnFmnC&, ~18!

whereC is the heavy quark field. So it is natural that turnin
on the Sheikholeslami-Wohlert term would increase the m
splitting, and this is what we see.

Wilsonkc . Let us now come back to the critical value o
k for Wilson fermions. In Table X we have given the valu
of kc from a fit of the world data in Tables V, VI, and VI

a-
-

FIG. 7. The vector-pseudoscalar mass splitting as a functio
the quark mass. Open symbols correspond tob56.0, solid symbols
to b56.2. This is compared with the physicalr-p ~asterisk! and
K* -K ~octogon! mass splitting. The curves are from the mass fi

TABLE X. The critical values ofk, kc , for the Wilson world
data.

b kc

6.40 0.150759~145!
6.30 0.151774~36!

6.20 0.153374~17!

6.17 0.153838~37!

6.00 0.157211~8!

5.93 0.158985~73!

5.85 0.161716~23!

5.70 0.169313~72!
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using the phenomenological ansatz~8!. In Fig. 8 we plot
these results as a function ofaAK ~the string tension being
taken from Table IX!. We see thatkc is a linear function of
a over the whole range of the data which extends fromb
55.7 to 6.4. Comparing this with the improvedkc , which is
approximately constant, we conclude that the Wilsonkc has
large O(a) effects. We also compare the Wilson data w
the predictions of tadpole-improved perturbation theory
given by Eq. ~10! with cSW50. Here we have taken th
one-loop perturbative formula fora beyondb56.8 where
there are no numerical values for the string tension availa
any more. Not even at the smallest value ofa can perturba-
tion theory describe the Wilson data. For improved fermio
on the other hand, the agreement with tadpole-improved
turbation theory is quite good, as we have already notice

IV. QUARK MASSES

We shall now turn to the calculation of the quark mass
When chiral symmetry is dynamically broken, care has to
taken in defining renormalized masses. In the continuum
renormalized quark mass at scalep25m2 can be written@42#

1

4
Tr@SF

21~m!2SF
21~0!#5m~m!, ~19!

whereSF is the renormalized quark propagator which is
be evaluated in a given gauge. This definition refers to
momentum subtraction scheme. It is usual to give the qu
masses in the modified minimal subtraction scheme (MS).
To convert from one scheme to the other, one has to g
high enough scales so that one can use perturbation theo
the quark mass is defined in this way, then the renormali
mass is proportional to the bare mass.

On the lattice the standard assignment of the bare ma

FIG. 8. The critical value ofk as a function of the lattice spac
ing for Wilson fermions~h!. The dashed curve is the prediction
tadpole improved perturbation theory. This is compared with
results for improved fermions from Fig. 1.
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am~a!5
1

2 S 1

k
2

1

kc
D , ~20!

giving the renormalized mass as

mMS~m!5Zm
MS~am,am!m~a!, ~21!

where Zm
MS(am,am) is the mass renormalization constan

We call this method of determining the renormalized ma
the standard method.

An alternative way of defining a bare mass is by means
the PCAC~partial conservation of axial vector current! rela-
tion between the divergence of the axial vector currentAm

5c̄gmg5c and the pseudoscalar densityP5c̄g5c,

m̃~a!5
]4^A4~x!O&
2^P~x!O&

, ~22!

whereO is a suitable operator having zero three-moment
and no physical overlap withA4(x) andP(x) to avoid con-
tact terms.~See later on for a precise definition.! All opera-
tors are bare operators. To avoid anomaly terms in Eq.~22!,
flavor nonsinglet operators are taken. We call this meth
the Ward identity method. The renormalized mass is th
given by

mMS~m!5
ZA~am!

ZP
MS~am,am!

m̃~a!, ~23!

where ZA(am) and ZP
MS(am,am) are the renormalization

constants of the axial vector current and the pseudosc
density, respectively.

The quark mass inherits its scale dependence from
renormalization constantsZm and ZP which involve loga-
rithms of m. In the following we will computeZm and ZP
perturbatively to one-loop order for lack of a better, nonp
turbative determination. To keep the logarithms under c
trol it is best to takeam51 and do the transformation to an
other scale by the renormalization group formula

mMS~m8!5S as
MS~m8!

as
MS~m!

D 8/22

mMS~m!. ~24!

In the continuum limit both procedures should give ide
tical results formMS(m). Note, however, that the two bar
massesm andm̃ can be different, though they both vanish
the chiral limit. On the lattice the two procedures may gi
different results formMS(m) due to nonuniversal discretiza
tion errors.

The lattice calculation of the quark masses now proce
in two steps. In the first step one has to find thek values
corresponding to the real world by adjusting, e.g., the ps
doscalar meson masses to their experimental numbers
case of the Ward identity method one furthermore has
computem̃. In the second step the bare quark masses hav
be converted to renormalized masses. We shall compute
masses of theu andd quarks, which we assume to be equ
and the mass of the strange (s) quark.

e
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Improved fermions.Let us consider the case of improve
fermions first. Later on we shall compare our results with
predictions of Wilson fermions to see the effect of improv
ment.

We will discuss the Ward identity method first. For th
operatorO we take the pseudoscalar density

P~0!5(
xW

P~x450,xW ! ~25!

and smear it as we did in the hadron mass calculations
theP(0) part is common to all two-point functions, we cou
have used any operator projecting onto the pseudosc
state. Similarly, we write

A4~ t !5(
xW

A4~x45t,xW !. ~26!

For improved fermions the axial vector current in Eq.~22! is
to be replaced by

A4→A41cAa]4P~x!, ~27!

wherecA is a function of the coupling only. The time deriva
tive ]4 is taken to be the average of the forward and ba
ward derivative. The coefficientcA has been computed in@4#
giving cA520.083 atb56.0 andcA520.037 atb56.2.
The resulting bare mass

FIG. 9. The bare massm̃ from the Ward identity method atb
56.0 for Wilson ~h! and improved fermions~j! on the 16332
lattice. The errors are bootstrap errors.
e
-

s

lar

-

m̃~a!5
]4^A4~ t !P~0!&1cAa]4

2^P~ t !P~0!&
2^P~ t !P~0!&

~28!

has been plotted in Fig. 9 forb56.0 and our smallest quar
mass on the 16332 lattice. In Fig. 10 we show the sam
quantity for b56.2 and our smallest quark mass on t
24348 lattice.~Also shown in these figures are the results
Wilson fermions which we will discuss later on.! Equation
~28! should be independent oft, except where the operator
physically overlap with the source, if the cutoff effects ha
been successfully removed. In both cases, but in particula
b56.2, we see a smaller deviation from the plateau at sm
and larget values. To obtain the mass, we fit the ratio~28! to
a constant. We have used the same fit ranges as for the
mass. The results of the fit are given in Tables XI and XII.
b56.0 in the improved case we see that atk50.1342 we
have small finite size effects, indicating again that our res
on the 16332 lattice are not significantly volume dependen

For both the Ward identity and the standard method
choose to determine thek values from the pseudoscalar m
son masses. Sometimes thef~1020! meson is taken for the
determination of the strange quark mass. However, we
not think that this is a good idea because of potentialv-f
mixing @43#. We generalize Eq.~8! to the case of two differ-
ent quark masses by writing

1

2 S 1

k1
1

1

k2
D2

1

kc
5b2mPS

2 1b3mPS
3 ~29!

FIG. 10. The same as Fig. 9 but forb56.2 for Wilson~h! and
improved fermions~j!.
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with the same coefficientsb2 , b3 as before. This is inspired
by chiral perturbation theory where it is expected that
pseudoscalar mass is a function of the sum of quark
antiquark massmq1mq̄ even when quark and antiquark ha
different flavors. By fixingmPS to the physical pion mas
mp6, using the string tension values compiled in Table
with Eq. ~15! as the scale, we find the value forku,d5k1
[k2 . The strange quark mass is obtained by identifyingmPS
with the kaon massmK6, takingk15ku,d as input and solv-
ing for k25ks . This gives for the light mass

mu,da5
1

2 S 1

ku,d
2

1

kc
D5H 0.001836~36! for b56.0,

0.001384~36! for b56.2.
~30!

For the strange mass we get

msa5
1

2 S 1

ks
2

1

kc
D5H 0.0419~11! for b56.0,

0.0310~11! for b56.2,
~31!

wheremu,d51/2(mu1md).
The bare massesm̃u,d ,m̃s are computed analogously. W

write

m̃[
1

2
~m̃11m̃2!5b̃2mPS

2 1b̃3mPS
3 . ~32!

Using this parametrization we first fit the masses in Tab
XI and XII to the pseudoscalar masses in Tables II and
This gives usb̃2 ,b̃3 . We then determinem̃u,d ,m̃s by fixing
mPS to the physical pion and kaon masses, respectively
before.

The mass dependence of the renormalization cons
ZA(am) can be parametrized as@44#

ZA~am!5~11bAam!ZA . ~33!

TABLE XI. The bare quark massesm̃ for Wilson fermions
(cSW50) and improved fermions (cSW51.769) atb56.0. The er-
rors are bootstrap errors.

b56.0
cSW50

V k 2am̃

16332

0.1487 0.2959~5!

0.1515 0.1866~5!

0.1530 0.1321~5!

0.1550 0.0642~7!

cSW51.769
V k 2am̃

0.1300 0.2836~3!

0.1310 0.2279~3!

16332 0.1324 0.15231~10!

0.1333 0.10380~11!

0.1342 0.0553~2!

0.1342 0.0551~3!

24332 0.1346 0.0330~3!

0.1348 0.0214~4!
e
d

s
I.

as

nt

The renormalization constantZA has been computed nonpe
turbatively in Ref.@45#. The fit formula in this paper gives
ZA50.7924 atb56.0 andZA50.8089 atb56.2. The coef-
ficient bA is only known perturbatively to one-loop orde
@46#. The best we can do at present is to take the tadp
improved value. For the boosted coupling we useas

MS(1/a),
giving

bA511as
MS~1/a!1.912, ~34!

where we takeas
MS(1/a)50.1981 atb56.0 andas

MS(1/a)
50.1774 atb56.2 @14#. For ZP

MS(am,am) we write

ZP
MS~am,am!5~11bPam!ZP

MS~am!. ~35!

The renormalization constantZP
MS(am) has been computed

perturbatively@47#. The result is

ZP
MS~am!512

g2

16p2 CF@26 ln~am!122.59522.249cSW

12.036cSW
2 #, ~36!

with CF54/3. We shall take the scalem51/a and use the
tadpole-improved value of Eq.~36! which turns out to be

ZP
MS~am51!5F12

as
MS~1/a!

4p
@16.96722.999cSWu0

3

12.715~cSWu0
3!2#Gu0 . ~37!

~We useu050.8778 atb56.0 andu050.8851 atb56.2.)
The coefficientbP has also been computed perturbatively
one-loop order@46#. Again we shall use the tadpole im
proved value

bP511as
MS~1/a!1.924. ~38!

TABLE XII. The bare quark massesm̃ for Wilson fermions
(cSW50) and improved fermions (cSW51.614) atb56.2. The er-
rors are bootstrap errors.

b56.2
cSW50

V k 2am̃

0.1468 0.2474~3!

0.1489 0.1616~3!

24348 0.1509 0.0845~3!

0.1518 0.0514~3!

0.1523 0.0336~3!

cSW51.614
V k 2am̃

0.1321 0.21618~7!

0.1333 0.14585~7!

24348 0.1344 0.08185~7!

0.1349 0.05283~8!

0.1352 0.03538~9!
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TABLE XIII. Our results of the renormalized quark massesmMS(2 GeV) in MeV for improved and
Wilson fermions, together with the extrapolation to the continuum limit (b5`). The continuum numbers
refer to improved fermions. We give the results for both the Ward identity and the standard method.

b cSW

mu,d
MS ms

MS

Ward Standard Ward Standard

6.0 0 4.4060.17 6.4760.20 105.064.5 141.866.0
6.2 0 4.7360.14 6.3960.25 108.564.2 138.867.4
6.0 1.769 4.0260.10 4.9460.09 92.862.9 109.463.9
6.2 1.614 4.4760.06 5.0960.16 101.661.7 111.764.7
` 5.0060.18 5.2760.36 111.965.0 114.4611.1
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We cannot be sure that we have removed allO(a) effects
in ZP . Therefore we have also computed the renormaliza
constantsZA(am), ZP(am,am) nonperturbatively@48#. So
far we have results forb56.0 only. Our numbers are in fai
agreement with the nonperturbative calculation in Ref.@45#
and the tadpole-improved value~37!. However, for smallm
the constantZP behaves very differently from the perturb
tive formula.

To compare the results at the two differentb values, we
rescale them both tom852 GeV using formula~24!. As be-
fore, we use the string tension to convert the lattice spac
into physical units. The resulting quark mass
mu,d

MS(2 GeV), ms
MS(2 GeV) are given in Table XIII.

Let us now discuss the standard method. We already h
determinedmu,d(a),ms(a) in Eqs. ~30! and ~31!. For the
renormalization constantZm

MS(am,am) we write

Zm
MS~am,am!5~11bmam!Zm

MS~am!. ~39!

The constantZm
MS(am) has been computed perturbative

@47#. We obtain

Zm
MS~am!512

g2

16p2 CF@6 ln~am!212.95227.738cSW

11.380cSW
2 #. ~40!

The tadpole-improved value, which we will be using, is

Zm
MS~am51!5F12

as
MS~1/a!

4p
@24.110210.317cSWu0

3

11.840~cSWu0
3!2#Gu0

21. ~41!

The coefficientbm has been computed in@46#. The tadpole-
improved value is

bm52
1

2
2as

MS~1/a!1.210. ~42!

Again we extrapolate the quark masses tom852 GeV using
Eq. ~24!. The results which follow from this approach a
listed in Table XIII as well.

The results of the Ward identity and the standard met
may differ byO(a2) effects, and they do. We can ‘‘fit’’ the
a dependence by
n

g
s

ve

d

mq
MS5c01c2a2. ~43!

The result of the fit is shown in Figs. 11 and 12. The co
tinuum values from this fit are given in Table XIII. We fin
that the two methods give consistent results in the continu
limit. Taking the statistical average of the two results w
obtain the continuum values

mu,d
MS~2 GeV!55.160.2 MeV, ~44!

ms
MS~2 GeV!511265 MeV. ~45!

The Ward identity method appears to have largerO(a2) ef-
fects than the standard method.

We may compare our results with the prediction of chi
perturbation theory, which cannot give absolute values
can determine the ratio ofms to mu,d . A recent calculation
gives @49# ms /mu,d524.461.5. We find ms /mu,d522.2
61.2.

FIG. 11. The light quark massmu,d
MS as a function of the lattice

spacing for improved fermions using the Ward identity~d! and
standard method~j!. This is compared with the Wilson result fo
the Ward identity~s! and standard method~h!. The curves are
quadratic extrapolations to the continuum limit.
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Wilson fermions.Let us now consider the case of Wilso
fermions. We proceed in the same way as before. The s
ation here is thatZA(am) is known nonperturbatively only
for b56.0 @50#, and thatbA , bP , andbm are only known to
the tree level. So forZA we use the tadpole-improved pertu
bative value

ZA5F12
as

MS~1/a!

4p
7.901Gu0 , ~46!

and forbA , bP , andbm we take the tree-level results. Com
paringZA with the nonperturbative determination atb56.0

FIG. 12. The same as Fig. 11 but for the strange quark m
ms

MS .

FIG. 13. The light quark massmu,d
MS for improved fermions from

Fig. 11 compared with the world Wilson masses~n! compiled in
@52#.
u-

@50#, as well as with a nonperturbative calculation atb55.9,
6.1, and 6.3 using the Ward identity@51#, we find good
agreement. The renormalization constantsZP

MS(am 51) and
Zm

MS(am51) are obtained from Eqs.~37! and~41! by setting
cSW50. The resulting quark masses are given in Table X
and they are plotted and compared with the improved res
in Figs. 11 and 12. In this case we expect discretization
rors ofO(a) instead ofO(a2). So it is not surprising that the
Ward identity and the standard method give results which
far apart. We find that the Ward identity method gives ma
values which are closer to the continuum result.

Finally, in Figs. 13 and 14 we compare our improv
quark masses with the world data of Wilson quark masse
compiled in Ref.@52# for the standard method. These autho
use ther mass extrapolated to the chiral limit to set the sca
At b56.0 the scale set by the string tension and by
Wilson actionr mass differ by about 20% which explain
the difference between our Wilson data and the world dat
Figs. 13 and 14. We see that the improved action impro
the scaling behavior.

V. DECAY CONSTANTS

The pion decay constantf p is well known experimentally
and can be determined from the two-point correlation fu
tions on the lattice as well, allowing for a further test
scaling of the improved theory. We shall also look at t
decay constants of theK, r, K* , and thea1 meson.

In Euclidean space at zero three-momentum we defin

^0uA4up&5mp f p ,

^0uAi ua1 ,l&5e~l! ima1

2 f a1
, ~47!

ss FIG. 14. The strange quark massms
MS for improved fermions

from Fig. 12 compared with the world Wilson masses~n! compiled
in @52#. These authors use thef~1020! meson to determine the
strange quark mass.
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^0uVi ur,l&5e~l! i

mr
2

f r
,

whereA andV are the renormalized axial vector and vec
current, respectively, ande(l) is the polarization vector with
(lei* (l)ej (l)5d i j . The pseudoscalar and vector states
normalized by

^pup8&5~2p!32p0d~pW 2pW 8!. ~48!

Note that ourf a1
is defined to be dimensionless.

In the improved theory the renormalized operators are

Am5~11bAam!ZA~Am1cAa]mP!, ~49!

Vm5~11bVam!ZV~Vm1 icVa]lTml!, ~50!

whereVm5c̄gmc andTmn5c̄smnc are the vector and ten
sor operators, respectively. We use the definitionsmn

5 i @gm ,gn#/2. Both currents are~partially! conserved, and
hence no scale enters into their definition. The renormal
tion constantZA and the improvement coefficientscA andbA
have already been given in the last section. The renorma
tion constantZV and the coefficientsbV and cV have been
computed nonperturbatively in Refs.@45, 53#. At b56.0 the
values areZV50.7780,bV51.472, andcV520.32(6), and
at b56.2 the numbers areZV50.7927,bV51.409, andcV
520.22(7). While for most of these quantities the autho
have given fit formulas ing2, for cV we have read the num
bers from the graph in@53#, as no such formula exists ye
We have also determinedZV and bV at b56.0 from our
nucleon three-point functions and find consistent results.

On the lattice we extract the meson decay constant f
two-point correlation functions. For large times we expe

that
r

e

a-

a-

m
t

CO1O2
~ t !5^O1~ t !O2

†~0!&

5
1

2mH
@^0uO1uH&^0uO2uH&* e2mHt

1^0uO1
†uH&* ^0uO2

†uH&e2mH~T2t !#

[AO1O2
@e2mHt1h1h2e2mH~T2t !#, ~51!

whereO(t) is of the formVs
21/2(xWc̄(xW ,t)Gc(xW ,t), Vs being

the spatial volume of the lattice, andO†5hO with h561
being given byg4G†g45hG. The h factor tells us howO
behaves under time reversal, i.e., whether the two-p
function is symmetric or antisymmetric with respect tot
→T2t. HereT is the temporal extent of the lattice. In gen
eral we have computed correlation functions with local (L)
and smeared (S) operators.

We shall now consider the appropriate matrix eleme
separately. We start with those matrix elements necessar
the p. With our conventions we set

^0uA4up&5mp f p
~0! ,

~52!

^0ua]4Pup&52sinh amp^0uPup&

5mpa fp
~1! ,

where f (0), f (1) are defined to be real and positive. By com
puting CA4P

LS andCPP
SS we find, for the matrix element ofA4

from Eq. ~52!,

mp f p
~0!522k

A2mpAA4P
LS

AAPP
SS

, ~53!

and for the matrix element of]4P we obtain from the ratio of
the CPP

LS andCA P
LS correlation functions
4

TABLE XIV. The various contributions to the decay constantsf p , f r , and f a1
at b56.0.

b56.0
cSW50

V k a fp
(0) - f r

(0) - f a1

(0)

0.1487 0.136~2! 0.305~5! 0.161~5!

16332
0.1515 0.122~2! 0.364~5! 0.207~3!

0.1530 0.113~2! 0.397~7! 0.231~3!

0.1550 0.098~2! 0.459~9! 0.262~4!

cSW51.769
V k a fp

(0) a fp
(1)/ f p

(0) f r
(0) a fr

(1)/ f r
(0) f a1

(0)

0.1300 0.1341~15! 1.792~7! 0.209~9! 0.670~2! 0.131~7!

0.1310 0.1295~15! 1.698~8! 0.228~3! 0.588~2! 0.153~13!

16332 0.1324 0.1204~8! 1.599~5! 0.261~2! 0.4823~12! 0.172~7!

0.1333 0.1128~9! 1.541~3! 0.288~3! 0.4147~15! 0.202~16!

0.1342 0.1037~8! 1.511~6! 0.323~3! 0.353~2! 0.208~16!

0.1342 0.105~2! 1.521~16! 0.330~7! 0.348~3! 0.212~10!

24332 0.1346 0.101~2! 1.58~3! 0.352~7! 0.327~6! 0.225~14!

0.1348 0.100~3! 1.62~5! 0.352~15! 0.324~19! 0.25~2!
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TABLE XV. The same as Table XIV but forb56.2.

b56.2
cSW50

V k a fp
(0) f r

(0) f a1

(0)

0.1468 0.1025~19! 0.268~5! 0.127~9!

0.1489 0.0930~17! 0.315~6! 0.180~4!

24348 0.1509 0.0798~14! 0.376~7! 0.230~4!

0.1518 0.0719~13! 0.412~9! 0.261~4!

0.1523 0.0669~14! 0.438~10! 0.276~5!

cSW51.614
V k a fp

(0) a fp
(1)/ f p

(0) f r
(0) a fr

(1)/ f r
(0) f a1

(0)

0.1321 0.0985~11! 1.297~3! 0.211~3! 0.4637~8! 0.133~2!

0.1333 0.0913~11! 1.198~4! 0.243~3! 0.3719~10! 0.167~2!

24348 0.1344 0.0818~10! 1.133~2! 0.283~4! 0.2900~15! 0.204~3!

0.1349 0.0758~9! 1.118~7! 0.308~5! 0.255~2! 0.226~3!

0.1352 0.072~3! 1.131~11! 0.327~16! 0.235~4! 0.241~11!
a fp
~1! APP

LS

la
t i

~1! ( ALS A( ASS

e
fits
ade

are

ro-

e

ar
f p
~0! 5sinh amp AA4P

LS . ~54!

Alternatively, we can take the time derivative from the p
teau in the correlation function. Numerically we found tha
made very little difference to the result.

For thea1 we set

^0uAi ua1 ,l&5e~l! ima1

2 f a1

~0! , ~55!

and we find

ma1

2 f a1

~0!52k
A2ma1

(kAAkAk

LS

A3(kAAkAk

SS
. ~56!

For ther we set

^0uVi ur,l&5e~l! imr
2f r

~0! ,
~57!

^0ua]4Ti4ur,l&52sinh amr^0uTi4ur,l&5 ie~l! imr
2a fr

~1! ,

and we obtain

mr
2f r

~0!52k
A2mr(kAVkVk

LS

A3(kAVkVk

SS
~58!

and
-
t

a fr

f r
~0! 52 i sinh amr

k Tk4Tk4 k VkVk

(kAVkVk

LS A(kATk4Tk4

SS
. ~59!

In Tables XIV and XV we give the lattice results for th
matrix elements calculated from the above formulas. The
to the correlation functions, as for the masses, are all m
using the bootstrap method.

Collecting all the terms, the physical decay constants
given by

f p5~11bAam!ZA~ f p
~0!1cAa fp

~1!!,

f a1
5~11bAam!ZAf a1

~0! , ~60!

1/f r5~11bVam!ZV~ f r
~0!1cVa fr

~1!!.

When the improvement terms are weighted with the app
priate c factors, they contribute about 10–20 % atb56.0
and up to 10% atb56.2. It is thus important to improve th
operators as well.

To perform the chiral extrapolation, we make fits simil
to those for the hadron masses, namely,

f p
2 5b01b2mp

2 1b3mp
3 , ~61!

f a1

2 5b01b2mp
2 1b3mp

3 , ~62!

1/f r
25b01b2mp

2 1b3mp
3 . ~63!
TABLE XVI. The decay constantsf p , andf a1
, andf r extrapolated to the chiral limit, as well asf K , f K*

taken at the physical quark mass.

b cSW a fp f a1
1/f r a fK 1/f K*

6.0 0 0.0569~77! 0.2240~76! 0.295~11! 0.0732~26! 0.2385~24!

6.2 0 0.0423~36! 0.2429~48! 0.2971~71! 0.0537~11! 0.2345~28!

6.0 1.769 0.0627~20! 0.195~10! 0.2664~39! 0.0721~8! 0.2020~13!

6.2 1.614 0.0462~38! 0.2130~45! 0.2726~74! 0.0557~14! 0.2149~19!
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5578 57M. GÖCKELER et al.
We decided to fit the square of the decay constants ra
than the decay constants themselves because this show
curvature. The fits and the data are shown in Fig. 15 forf p

and f r . We compare this result with the meson decay c
stants computed with the Wilson action. These follow fro
Eq. ~60! with cA ,cV50. ForZA we use the tadpole-improve
value given in Eq.~46!, and for bA we take the tree-leve
result (bA51). The renormalization constantZV ~in the chi-
ral limit! has been determined nonperturbatively from a tw
point correlation function of the local vector current@51# at
b55.9, 6.1 and 6.3. Unlike the case ofZA , we find signifi-
cant differences between this determination and our dete
nation using the nucleon three-point function. The lat
givesZV50.651(15) atb56.0 which is close to the tadpole
improved result. This indicates largeO(a) effects. Since we
are applyingZV to a two-point function, we chose to use th
nonperturbative result from Ref.@51#. We interpolate this
result tob56.0 and 6.2 and findZV50.565 and 0.618, re
spectively. ForbV we again take the tree-level result. A
though the individual contributions of the improveme
terms are significant, the overall result forf p in Fig. 15 is not
much changed when compared with the Wilson case
smaller quark masses. For larger quark masses, especia
b56.0, the Wilsonf p is larger. The situation is different fo
f r . Here we find a systematic difference of 10–20 % atb
56.0 and approximately 10% atb56.2 for all quark masses
In both cases the difference between the two actions
comes smaller with increasingb as one would expect.

Our results extrapolated to the chiral limit are given
Table XVI, and we comparef p and f r with experiment in
Fig. 16. For f p we find reasonable agreement of the im
proved results with the experimental value using, as bef
the string tension as the scale. When including the data
Ref. @54#, one sees that the Wilson results lie lower, and
appears that the values are increasing as we approac
continuum limit. For f r both our improved and Wilson re
sults lie within 5% of the experimental value. There is, ho

FIG. 15. Fits and chiral extrapolations of the decay constantsf p

and f r for improved~d! and Wilson~s! fermions.
er
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t
the
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ever, a definite difference as we previously remarked. T
Wilson numbers lie above the experimental value, while
improved ones lie below. One must remember though tha
the Wilson case there is a systematic error in the renorm
ization constantZV which may be larger than the statistic
errors in the figure. The experimental number for the de
constant of thea1 is @55# f a1

50.17(2) ~in our notation!. The

FIG. 16. The decay constantsf p and f r as a function of the
lattice spacing for improved~d! and Wilson~s! fermions together
with the experimental values~* !. The errors onf r for improved
fermions are statistical only. Our results forf p are compared with
the Wilson results of Ref.@54# ~3!.

FIG. 17. The decay constantsf K and f K* as a function of the
lattice spacing for improved~d! and Wilson ~s! fermions. The
errors onf K* for improved fermions are statistical only. The sol
lines in the f K* figure are from a simultaneous linear fit to th
Wilson data and a quadratic fit to the improved data. Our results
f K are compared with the experimental value~* !.
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agreement between experimental and lattice values is
couraging.

We can avoid errors from extrapolating to the chiral lim
by considering quark masses within our data range, as
have already done in Figs. 6 and 7. The most physicak
values to use are those corresponding to theK mass. To
obtain the decay constants we take Eqs.~61! and ~63! at
mp5mK . ~Remember that we are usingmp as a generic
name for the pseudoscalar meson mass.! We give the results
for f K and f K* in Table XVI, and in Fig. 17 we show the
scaling behavior together with the experimental value
f K . We find the errors to be substantially reduced. Forf K we
see no difference between improved and Wilson results, b
lying 10% below the experimental value. Forf K* the error
bars have become small enough to attempt an extrapola
to the continuum limit. The curves are a simultaneous
linear for the Wilson and quadratic for the improved da
constrained to agree in the continuum limit. In this quant
there appear to be largeO(a2) effects in the improved case

VI. CONCLUSIONS

The goal of this paper was to investigate the scaling
havior of O(a)-improved fermions. If scaling is good, th
results we get should already be close to the continuum
ues for present values of the coupling. To this end we h
done simulations for two values ofb and looked at two-point
correlation functions from which we derive hadron mass
quark masses, and meson decay constants.

First we looked at hadron masses. The most visible
ference between Wilson and improved fermions is that thr
mass is much lighter in the Wilson case at comparable p
masses. In Fig. 6 we see that the improved action
brought ther mass closer to its physical value when we u
the string tension to set the scale. In this figure we h
compared the Wilson actionr masses at many differen
scales. We see a linear behavior in the lattice spacinga as
one would expect. For improved fermions we find the d
cretization errors reduced for our couplings.

A problem with Wilson fermions was that they could n
describe the vector-pseudoscalar mass splitting adequa
This problem seems to be cured by using improved fermio

Quark masses are important parameters in the stan
lff,

lz,

,

F

n-

e

r

th

on
t,
,

-

l-
e

s,

f-

n
s

e
e

-

ly.
s.
rd

model. Experimentally, their values are poorly known, an
reliable lattice determination would be useful. Using two d
ferent methods, we have determined the light and stra
quark masses. Our results can be seen in Figs. 11 and
Both methods give consistent results for improved fermio
In the continuum limit we find for the average ofu and d
quark massesmu,d

MS~2 GeV!55.160.2 MeV and ms
MS(2

GeV)511265 MeV. In the Wilson case the discrepancy b
tween the two methods is much larger, hinting at substan
O(a) effects.

When calculating the decay constants, an advantag
using the improved theory is that the renormalization co
stants and improvement coefficients forf p , f a1

, f r , andf K*
are known. Forf K we still have to use the perturbative va
ues ofbA because they have not yet been computed non
turbatively. A systematic uncertainty in the Wilson case l
in the choice of the renormalization constants. While t
results are in reasonable agreement with phenomenology
data are at present not precise enough to discuss an ext
lation to the continuum limit, with the possible exception
f K* . In that case it looks that there are relatively lar
O(a2) effects betweenb56.0 and 6.2.

Our general conclusion is that the Wilson action atb
56.0 hasO(a) errors of up to 20% compared to the co
tinuum extrapolation. The nonperturbativelyO(a)-improved
theory still showsO(a2) effects of up to 10% atb56.0,
except for the Ward identity quark masses where the effec
somewhat larger. If one wants to go to smaller values ofb,
one probably will have to reduce theO(a2) errors as well.
Going tob56.2 reducesa2 by a factor of almost 2, bringing
discretization errors down to 5% or less. To achieve a o
percent accuracy would require calculations at severalb val-
ues and an extrapolation toa50.
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@44# M. Lüscher, S. Sint, R. Sommer, and P. Weisz, Nucl. Ph

B478, 365 ~1996!.
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